Science.gov

Sample records for level waste sludges

  1. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  2. Ultrafilter Conditions for High Level Waste Sludge Processing

    SciTech Connect

    Geeting, John GH; Hallen, Richard T.; Peterson, Reid A.

    2006-08-28

    An evaluation of the optimal filtration conditions was performed based on test data obtained from filtration of a High Level Waste Sludge sample from the Hanford tank farms. This evaluation was performed using the anticipated configuration for the Waste Treatment Plant at the Hanford site. Testing was performed to identify the optimal pressure drop and cross flow velocity for filtration at both high and low solids loading. However, this analysis indicates that the actual filtration rate achieved is relatively insensitive to these conditions under anticipated operating conditions. The maximum filter flux was obtained by adjusting the system control valve pressure from 400 to 650 kPa while the filter feed concentration increased from 5 to 20 wt%. However, operating the system with a constant control valve pressure drop of 500 kPa resulted in a less than 1% reduction in the average filter flux. Also note that allowing the control valve pressure to swing as much as +/- 20% resulted in less than a 5% decrease in filter flux.

  3. Characterization of Radionuclides in Purex Waste Sludges from the F-Area High Level Waste Tanks (U)

    SciTech Connect

    Obryant, R

    2005-06-13

    Sludge-contaminated waste consists of waste contaminated with both insoluble species (the sludge fraction) and entrained supernate. The WCS is based on the assumption that approximately 70% of the weight of what is commonly referred to as sludge is interstitial supernate; the remaining approximately 30% consists of the insoluble species (Reference 1). Development of a method for characterization of sludge-contaminated waste must consider both fractions. Separate waste cuts may contain sludge and supernate fractions in varying proportions due to the nature of the job generating the waste and the variability in waste handling techniques. Development of a distribution representative of all sludge-contaminated waste cuts must allow for varying fractions of sludge and supernate contamination. This document will develop a radionuclide distribution in accordance with the methodology outlined in WSRC 1S SRS Waste Acceptance Criteria Manual, Procedure 2.02, Revision 8 for the sludge fraction of sludge-contaminated waste generated in the F-Area Tank Farm This distribution was based on the assumption that sludge-contaminated waste from F-Area Tank Farm Waste Tanks could be co-mingled, and the actual contamination present on waste in a series of containers from these tanks will be representative of the mean radionuclide distribution. The original characterization was based primarily on process knowledge and fill histories (Reference 6). A single, comprehensive characterization for supernate has been developed previously (Reference 9). This document also describes the methodology for application of radionuclide distributions representative of the sludge and supernate fractions of sludge-contaminated waste to individual waste packages. Most of the waste contaminated with sludge from the F-Area Tank Farm will be categorized as Low Level Waste (LLW) and disposed of in the E-area trenches. The waste does, however, have the potential to be categorized as TRU and/or mixed waste

  4. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    SciTech Connect

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

    2004-01-23

    Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

  5. WASTE ACTIVATED SLUDGE PROCESSING

    EPA Science Inventory

    A study was made at pilot scale of a variety of processes for dewatering and stabilization of waste activated sludge from a pure oxygen activated sludge system. Processes evaluated included gravity thickening, dissolved air flotation thickening, basket centrifugation, scroll cent...

  6. Phase chemistry and radionuclide retention of high level radioactive waste tank sludges

    SciTech Connect

    KRUMHANSL,JAMES L.; BRADY,PATRICK V.; ZHANG,PENGCHU; ARTHUR,SARA E.; HUTCHERSON,SHEILA K.; LIU,J.; QIAN,M.; ANDERSON,HOWARD L.

    2000-05-19

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate groundwaters with radionuclides and RCRA metals. Experimentation on such sludges is both dangerous and prohibitively expensive so there is a great advantage to developing artificial sludges. The US DOE Environmental Management Science Program (EMSP) has funded a program to investigate the feasibility of developing such materials. The following text reports on the success of this program, and suggests that much of the radioisotope inventory left in a tank will not move out into the surrounding environment. Ultimately, such studies may play a significant role in developing safe and cost effective tank closure strategies.

  7. PHYSICAL AND CHEMICAL MEASUREMENTS NEEDED TO SUPPORT DISPOSITION OFSAVANNAH RIVER SITE RADIOACTIVE HIGH LEVEL WASTE SLUDGE

    SciTech Connect

    Hamm, B

    2007-05-17

    Radioactive high level waste (HLW) sludge generated as a result of decades of production and manufacturing of plutonium, tritium and other nuclear materials is being removed from storage tanks and processed into a glass waste-form for permanent disposition at the Federal Repository. Characterization of this HLW sludge is a prerequisite for effective planning and execution of sludge disposition activities. The radioactivity of HLW makes sampling and analysis of the sludge very challenging, as well as making opportunities to perform characterization rare. In order to maximize the benefit obtained from sampling and analysis, a recommended list of physical property and chemical measurements has been developed. This list includes distribution of solids (insoluble and soluble) and water; densities of insoluble solids, interstitial solution, and slurry rheology (yield stress and consistency); mineral forms of solids; and primary elemental and radioactive constituents. Sampling requirements (number, type, volume, etc.), sample preparation techniques, and analytical methods are discussed in the context of pros and cons relative to end use of the data. Generation of useful sample identification codes and entry of results into a centralized database are also discussed.

  8. HIGH LEVEL WASTE (HLW) SLUDGE BATCH 4 (SB4): SELECTING GLASSES FOR A VARIABILITY STUDY

    SciTech Connect

    Fox, K; Tommy Edwards, T; David Peeler, D

    2006-08-17

    / Frit 418 system. In this report, glasses are selected for the variability study using a nominal SB4 composition combined with Frits 418 or 503, covering a range of waste loadings (WLs) that are likely to be processed at DWPF. In addition, three sets of corner points or extreme vertices (EVs) for regions representing different levels of variation in the SB4 composition are combined with Frit 503 to identify glasses that will allow for an evaluation of the effect of sludge variation on the durability of the vitrified waste product. These glasses also cover a range of WLs that are likely to be processed at DWPF. A thorough statistical analysis is used to allow for a wide range of sludge compositions to be examined while minimizing the number of glasses that must be made in the laboratory. A total of 35 glasses are selected for the SB4 variability study. These glasses will be batched and melted following standard SRNL procedures, and testing will be completed to measure the chemical durability of each glass composition. A subsequent report will document the results of the experimental portion of the SB4 variability study.

  9. Determination of Sulfur in High-Level Waste Sludge by Inductively Coupled Plasma-Atomic Emission Spectroscopy and Ion Chromatography

    SciTech Connect

    COLEMAN, CJ

    2004-04-22

    Significant differences (approximately 30 percent) have been observed in the sulfur measurements in high-level waste sludge by the Analytical Development Section (ADS) using the inductively coupled plasma-atomic emission spectroscopy (ICP-AES) method compared with the ADS ion chromatography (IC) method. Since the measured concentrations of sulfur in the sludge approached the maximum concentration that can be processed in the DWPF, experiments were performed to determine the source of the differences and assess the true accuracy of sulfur measurements.

  10. STRESS CORROSION CRACKING SUSCEPTIBILITY OF HIGH LEVEL WASTE TANKS DURING SLUDGE MASS REDUCTION

    SciTech Connect

    Subramanian, K

    2007-10-18

    Aluminum is a principal element in alkaline nuclear sludge waste stored in high level waste (HLW) tanks at the Savannah River Site. The mass of sludge in a HLW tank can be reduced through the caustic leaching of aluminum, i.e. converting aluminum oxides (gibbsite) and oxide-hydroxides (boehmite) into soluble hydroxides through reaction with a hot caustic solution. The temperature limits outlined by the chemistry control program for HLW tanks to prevent caustic stress corrosion cracking (CSCC) in concentrated hydroxide solutions will potentially be exceeded during the sludge mass reduction (SMR) campaign. Corrosion testing was performed to determine the potential for CSCC under expected conditions. The experimental test program, developed based upon previous test results and expected conditions during the current SMR campaign, consisted of electrochemical and mechanical testing to determine the susceptibility of ASTM A516 carbon steel to CSCC in the relevant environment. Anodic polarization test results indicated that anodic inhibition at the temperatures and concentrations of interest for SMR is not a viable, consistent technical basis for preventing CSCC. However, the mechanical testing concluded that CSCC will not occur under conditions expected during SMR for a minimum of 35 days. In addition, the stress relief for the Type III/IIIA tanks adds a level of conservatism to the estimates. The envelope for corrosion control is recommended during the SMR campaign is shown in Table 1. The underlying assumption is that solution time-in-tank is limited to the SMR campaign. The envelope recommends nitrate/aluminate intervals for discrete intervals of hydroxide concentrations, although it is recognized that a continuous interval may be developed. The limits also sets temperature limits.

  11. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A.; Bickford, D.F.

    1994-01-01

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

  12. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    SciTech Connect

    STALLINGS, MARY

    2004-07-08

    sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities).

  13. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea

  14. Low Temperature Aluminum Dissolution Of Sludge Waste

    SciTech Connect

    Keefer, M.T.; Hamm, B.A.; Pike, J.A.

    2008-07-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. The sludge is currently being stabilized in the Defense Waste Processing Facility (DWPF) through a vitrification process immobilizing the waste in a borosilicate glass matrix for long-term storage in a federal repository. Without additional treatment, the existing volume of sludge would produce nearly 8000 canisters of vitrified waste. Aluminum compounds, along with other non-radioactive components, represent a significant portion of the sludge mass currently planned for vitrification processing in DWPF. Removing the aluminum from the waste stream reduces the volume of sludge requiring vitrification and improves production rates. Treating the sludge with a concentrated sodium hydroxide (caustic) solution at elevated temperatures (>90 deg. C) to remove aluminum is part of an overall sludge mass reduction effort to reduce the number of vitrified canisters, shorten the life cycle for the HLW system, and reduce the risk associated with the long term storage of radioactive wastes at SRS. A projected reduction of nearly 900 canisters will be achieved by performing aluminum dissolution on six targeted sludge batches; however, a project to develop and install equipment will not be ready for operation until 2013. The associated upgrades necessary to implement a high temperature process in existing facilities are costly and present many technical challenges. Efforts to better understand the characteristics of the sludge mass and dissolution kinetics are warranted to overcome these challenges. Opportunities to further reduce the amount of vitrified waste and increase production rates should also be pursued. Sludge staged in Tank 51 as the next sludge batch for feed to DWPF consisted

  15. WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242

    SciTech Connect

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E.; Lucero, Randy P.

    2012-07-01

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge waste for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard

  16. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    SciTech Connect

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  17. KEY ELEMENTS OF CHARACTERIZING SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE INSOLUBLES THROUGH SAMPLING AND ANALYSIS

    SciTech Connect

    Reboul, S; Barbara Hamm, B

    2007-05-24

    Characterization of HLW is a prerequisite for effective planning of HLW disposition and site closure performance assessment activities. Adequate characterization typically requires application of a combination of data sources, including process knowledge, theoretical relationships, and real-waste analytical data. Consistently obtaining high quality real-waste analytical data is a challenge, particularly for HLW sludge insolubles, due to the inherent complexities associated with matrix heterogeneities, sampling access limitations, radiological constraints, analyte loss mechanisms, and analyte measurement interferences. Understanding how each of these complexities affects the analytical results is the first step to developing a sampling and analysis program that provides characterization data that are both meaningful and adequate. A summary of the key elements impacting SRS HLW sludge analytical data uncertainties is presented in this paper, along with guidelines for managing each of the impacts. The particular elements addressed include: (a) sample representativeness; (b) solid/liquid phase quantification effectiveness; (c) solids dissolution effectiveness; (d) analyte cross contamination, loss, and tracking; (e) dilution requirements; (f) interference removal; (g) analyte measurement technique; and (h) analytical detection limit constraints. A primary goal of understanding these elements is to provide a basis for quantifying total propagated data uncertainty.

  18. Cadmium level of metro sludge steadily decreases

    SciTech Connect

    Not Available

    1989-04-01

    According to a preliminary review of 1988 cadmium levels, sludge from Seattle Metro's West Point and Renton treatment plants averaged under 25 ppm per year. Data will be officially analyzed and published this spring. The sludge Metro recycles as fertilizer is high-quality for all metals. Federal guidelines require cadmium levels in sludge to be below 25 ppm for sludge to be applied to food-chain crops. As a policy, Metro does not apply the sludge to food chain crops. Instead, the agency recycles its sludge in forestry, soil improvement and composting projects. The metal reduction is attributed to a municipal control project to reduce corrosion of water pipes and to Metro's industrial waste pretreatment program.

  19. FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS

    SciTech Connect

    Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

    2008-08-28

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent Sludge Batch 5 (SB5) as processed at the Defense Waste Processing Facility (DWPF). The data was used to provide recommendations to the Liquid Waste Organization (LWO) regarding blending and washing strategies in preparing SB5 based on acceptability of the glass compositions. These data were also used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of frits. Three composition projections for SB5 were developed using a model-based approach at Savannah River National Laboratory (SRNL). These compositions, referred to as SB5 Cases B, C and D, projected removal of 25, 50 and 75% (respectively) of the aluminum in Tank 51 through the low temperature aluminum dissolution process. The frits for this study (Frits 530 through 537) were selected based on their predicted operating windows (i.e., ranges of waste loadings over which the predicted properties of the glasses were acceptable) and their potential (based on historical trends) to provide acceptable melt rates for SB5. Six additional glasses were designed to evaluate alternatives for uranium in DWPF-type glasses used for variability studies and some scoping studies. Since special measures are necessary when working with uranium-containing glasses in the laboratory, it is desirable as a cost and time saving measure to find an alternative for uranium to support frit optimization efforts. Hafnium and neodymium were investigated as potential surrogates for uranium, and other glasses were made by simply excluding the radioactive components and renormalizing the glass composition. The study glasses were fabricated and characterized at SRNL. Chemical composition analyses suggested only minor difficulties in meeting the targeted compositions

  20. MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY

    SciTech Connect

    Bannochie, C; David Diprete, D; Ned Bibler, N

    2008-12-31

    This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

  1. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    SciTech Connect

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  2. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVEHIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    SciTech Connect

    Ketusky, E

    2008-07-11

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned.

  3. High-Level Waste Mechanical Sludge Removal at the Savannah River Site - F Tank Farm Closure Project

    SciTech Connect

    Jolly, R.C.Jr.; Martin, B.

    2008-07-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intra

  4. Chemical modeling of waste sludges

    SciTech Connect

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety.

  5. SULFATE RETENTION IN HIGH LEVEL WASTE SLUDGE BATCH 4 GLASSES: A PRELIMINARY ASSESSMENT

    SciTech Connect

    Fox, K; Tommy Edwards, T; David Peeler, D

    2006-12-11

    Early projections of the Sludge Batch 4 (SB4) composition predicted relatively high concentrations of alumina (Al{sub 2}O{sub 3}, 23.5 wt%) and sulfate (SO{sub 4}{sup 2-}, 1.2 wt%) in the sludge. A high concentration of Al{sub 2}O{sub 3} in the sludge, combined with Na{sub 2}O additions in the frit, raises the potential for nepheline crystallization in the glass. However, strategic frit development efforts at the Savannah River National Laboratory (SRNL) have shown that frits containing a relatively high concentration of B{sub 2}O{sub 3} can both suppress nepheline crystallization and improve melt rates. A high sulfate concentration is a concern to the DWPF as it can lead to the formation of sulfate inclusions in the glass and/or the formation of a molten, sulfate-rich phase atop the melt pool. To avoid these issues, a sulfate concentration limit of 0.4 wt% SO{sub 4}{sup 2-} in glass was originally set in the Product Composition Control System (PCCS) used at DWPF. It was later shown that this limit could be increased to 0.6 wt% SO{sub 4}{sup 2-} in glass for the Frit 418, Sludge Batch 3 (SB3) system.

  6. FRUIT CANNERY WASTE ACTIVATED SLUDGE AS A CATTLE FEED INGREDIENT

    EPA Science Inventory

    The feasibility of sludge disposal, from a fruit processing waste activated sludge treatment system, by dewatering and using the dewatered biological sludge solids as cattle feed was evaluated by Snokist Growers at Yakima, Washington. Dewatering of the biological sludge utilizing...

  7. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level.

    PubMed

    Motoyama, Miki; Nakagawa, Shuhei; Tanoue, Rumi; Sato, Yuri; Nomiyama, Kei; Shinohara, Ryota

    2011-07-01

    In recent years, sludge generated in sewage treatment plants (STPs) and solid waste from livestock being utilized is useful for circulation of nourishment in farmlands as recycled organic manure (ROM). In this study, we determined the residue levels and patterns of 12 pharmaceutical products generated by human activity in the ROMs produced from human waste sludge (HWS), sewage sludge (SS), cattle manure (CM), poultry manure (PM), swine manure (SM) and horse manure (HM). The kind and number of pharmaceutical products detected in ROMs were different. Fluoroquinolones (FQs) were detected at high levels in HWS and SS samples. In addition, the detection frequency and concentration levels of sulfonamides (SAs) in PM and SM were high. Moreover, high concentrations of chlortetracycline (CTC) were found in only SM. These differences reflect specific adherence adsorption of the pharmaceutical products to different livestock and humans. Moreover, it was found that the concentrations of pharmaceutical products and fermentation levels of ROMs had significant positive correlation (r=0.41, p=0.024). When the fermentation test of ROM was conducted in a rotary fermentor in a lab scale test, the residue levels of pharmaceutical products decreased effectively except carbamazepine (CBZ). The rates of decrease were in the case of tetracyclines (TCs): 85-92%, FQs: 81-100%, erythromycine: 67%, SAs: 79-95%, trimethoprim: 86% and CBZ: 37% by 30 d. Pharmaceutical products that can be decomposed by fermentation process at the lowest impact of residual antibiotic activities may therefore be considered as environmentally friendly medicines. PMID:21570103

  8. Characterization of and waste acceptance radionuclide to be reported for the 2nd macro-batch of high-level waste sludge being vitrified in the DWPF melter

    SciTech Connect

    Fellinger, T.L.

    2000-01-26

    The Defense Waste Processing Facility (DWPF), at the Savannah River Site (SRS), is currently processing the second million gallon batch (Macro-Batch 2) of radioactive sludge slurry into a durable borosilicate glass for permanent geological disposal. To meet the reporting requirements as specified in the Department of Energy's Waste Acceptance Product Specifications (WAPS), for the final glass product, the nonradioactive and radioactive compositions must be provided for a Macro-Batch of material. In order to meet this requirement, sludge slurry samples from Macro-Batch 2 were analyzed in the Shielded Cells Facility of the Savannah River Technology Center (SRTC). This information is used to complete the necessary Production Records at DWPF so that the final glass product, resulting from Macro Batch 2, may be disposed of at a Federal Repository. This paper describes the results obtained from the analyses of the sludge slurry samples taken from Macro-Batch 2 to meet the reporting requirements of the WAPS. Twenty eight elements were identified for the nonradioactive composition and thirty one for the radioactive composition. The reportable radioisotopes range from C-14 to Cm-246.

  9. ACTIVELY CONTROLLED VORTEX DISPOSAL SYSTEM FOR SLUDGE WASTES

    EPA Science Inventory

    The development of an advanced sludge treatment concept is under way for applications to sludge wastes. The concept integrates primary treatment of sludge in an advanced vortex containment combustor (VCC) with subsequent post treatment in an actively controlled acoustic afterburn...

  10. ACTIVELY CONTROLLED VORTEX DISPOSAL SYSTEM FOR SLUDGE WASTES

    EPA Science Inventory

    The development of an advanced sludge treatment concept is underway for applications to sludge wastes. The concept integrates primary treatment of sludge in an advanced vortex containment combustor (VCC) with subsequent post treatment in an actively controlled acoustic afterburne...

  11. Stabilization of a mixed waste sludge for land disposal

    SciTech Connect

    Powers, S.E.; Zander, A.K.

    1996-12-31

    A solidification and stabilization technique was developed for a chemically complex mixed waste sludge containing nitrate processing wastes, sewage sludge and electroplating wastewaters, among other wastes. The sludge is originally from a solar evaporation pond and has high concentrations of nitrate salts; cadmium, chromium, and nickel concentrations of concern; and low levels of organic constituents and alpha and beta emitters. Sulfide reduction of nitrate and precipitation of metallic species, followed by evaporation to dryness and solidification of the dry sludge in recycled high density polyethylene with added lime was determined to be a satisfactory preparation for land disposal in a mixed waste repository. The application of post-consumer polyethylene has the added benefit of utilizing another problem-causing waste product. A modified Toxicity Characteristic Leaching Procedure was used to determine required treatment chemical dosages and treatment effectiveness. The waste complexity prohibited use of standard chemical equilibrium methods for prediction of reaction products during treatment. Waste characterization followed by determination of thermodynamic feasibility of oxidation and reduction products. These calculations were shown to be accurate in laboratory testing. 13 refs., 3 figs., 2 tabs.

  12. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    SciTech Connect

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-03-03

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations ({+-}10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample.

  13. Co-conditioning and dewatering of alum sludge and waste activated sludge.

    PubMed

    Lai, J Y; Liu, J C

    2004-01-01

    Co-conditioning and dewatering behaviors of alum sludge and waste activated sludge were investigated. Two different sludges were mixed at various ratios (2:1; 1:1; 1:2; 1:4) for study. Capillary suction time (CST) and specific resistance to filtration (SRF) were utilized to assess sludge dewaterability. Relatively speaking, waste activated sludge, though of higher solid content, was more difficult to be dewatered than alum sludge. It was found that sludge dewaterability and settlability became better with increasing fraction of alum sludge in the mixed sludge. Dosage required of the cationic polyelectrolyte (KP-201C) for dewatering was reduced as well. It is proposed that alum sludge acts as skeleton builder in the mixed sludge, and renders the mixed sludge more incompressible which is beneficial for sludge dewatering. Implications of the results of the study to the sludge management plan for Taipei City that generates both alum sludge and waste activated sludge at significant amount are also discussed. The current sludge treatment and disposal plan in Metropolitan Taipei could be made more cost-effective. PMID:15580993

  14. Method for Adenosine 5′-Triphosphate Measurement on Coke Waste Activated Sludge

    PubMed Central

    Russell, James; Gauthier, Joseph J.

    1978-01-01

    Measurement of adenosine 5′-triphosphate (ATP) in coke waste activated sludge can provide a simple method for estimating the levels of viable microbes in the sludge. However, the presence of inhibitors such as phenol in the sludge interferes when the luciferin-luciferase method is used to measure ATP. These inhibiting substances can be removed from the sludge before extraction of ATP by washing the cells with dilute sodium dodecyl sulfate. PMID:16345281

  15. Successful recycling for sludge and solid waste

    SciTech Connect

    Kovacik, T.L.

    1987-01-01

    We have mixed digested primary sewage sludge with undigested, thickened waste activated sludge, dewatered in polymer conditioned belt presses, and add lime and cement kiln dust in post press operations. For at least seven days the combined mixture is aerated. The product is far more community acceptable than traditional sludge cake, and is clearly environmentally safe and meets the most stringent new regulatory controls. Even when the kiln dust treated sludge was stressed to a pH of 4, which is far more acidic than would be expected in agricultural soils, the sludge/kiln dust mixture easily met EPA criteria. The process results in a reduction in the weight and in the volume of material. In our Sylvania Pilot Project, 555 tons of sludge were treated with 178 tons of kiln dust, resulting in 504 tons of finished product - a 10% reduction in sludge weight and a far greater reduction in sludge volume. The product can be stored for long periods of time without deterioration. Thus, we see a process that requires about seven days for total treatment. We see a process with limited capital requirements. We see a process with operating costs at or below traditional PSRP processes and far less than alternative PFRP options. We see a community acceptable, storable, nearly odorless, granular, pasteurized product that provides built in protection against pathogen regrowth, odors, and the migration of toxic compounds. We see a product that has multiple market options. The N-Viro Soil product optimizes the nutrient values of sludge, provides potassium, sulphur, and even trace minerals from kiln dust and provides sufficient calcium carbonate to provide both liming and long-term soil calcium requirements. This combination is attractive to agricultural interests, is ideal for reclamation projects or landfill cover materials, and is an excellent landscape fertilizer and soil conditioner.

  16. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  18. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  19. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    SciTech Connect

    KETUSKY, EDWARD

    2005-10-31

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  20. COLLOIDAL AGGLOMERATES IN TANK SLUDGE: IMPACT ON WASTE PROCESSING

    EPA Science Inventory

    During processing of radioactive wastes, insoluble sludges consisting of submicron colloidal particles can clog transfer lines or interfere with solid-liquid separations. The wide range of properties observed for tank wastes can be rationalized by understanding how solution condi...

  1. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-01-01

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  2. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-12-31

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  3. Corrosion of radioactive waste tanks containing washed sludge and precipitates

    SciTech Connect

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1988-05-01

    At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.

  4. Production of bacterial cellulose and enzyme from waste fiber sludge

    PubMed Central

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  5. Harvesting biogas from wastewater sludge and food waste

    NASA Astrophysics Data System (ADS)

    Chua, K. H.; Cheah, W. L.; Tan, C. F.; Leong, Y. P.

    2013-06-01

    Wastewater sludge and food waste are good source of biogas. Anaerobic treatment of slude and food waste able to produce biogas which is a potential renewable energy source. This study looks into the potential biogas generation and the effects of temperature on biogas generation. A lab scale reactor was used to simulate the biogas generation. The results show that wastewater sludge able to produced upto 44.82 ml biogas/kg of sludge. When mixed with food waste at a ratio of 30:70 (food waste), the biogas generated were 219.07 ml/kg of waste. Anaerobic of food waste alone produced biogas amount to 59.75 ml/kg of food waste. Anaerobic treatment also reduces the volume of waste. The effect of temperature shows that higher temperature produces more biogas than lower temperature.

  6. Physical Properties of Hanford Transuranic Waste Sludge

    SciTech Connect

    Poloski, A.; Berg, Dr.

    2003-06-01

    Since the start of this project in March of 2004 two main goals have been achieved. First, the laboratory facilities of the Center for Surfaces, Polymers and Colloids (SPC) at the University of Washington have been updated with the purchase and installation of two state-of-the-art analysis tools. Second, a study of the sedimentation behavior of high density colloidal solids in complex media has been performed. The results of this study were presented at the 78th ACS Colloid and Surface Science Symposium at Yale University in New Haven, CT, and have been submitted for publication to the Journal of Colloid and Interface Science. Both the new equipment and the results of the initial study will help to gain insight into the physical properties of Hanford transuranic waste sludge.

  7. Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond.

    PubMed

    Ouedraogo, Faissal R; Zhang, Jie; Cornejo, Pablo K; Zhang, Qiong; Mihelcic, James R; Tejada-Martinez, Andres E

    2016-08-01

    Improving the hydraulic performance of waste stabilization ponds (WSPs) is an important management strategy to not only ensure protection of public health and the environment, but also to maximize the potential reuse of valuable resources found in the treated effluent. To reuse effluent from WSPs, a better understanding of the factors that impact the hydraulic performance of the system is needed. One major factor determining the hydraulic performance of a WSP is sludge accumulation, which alters the volume of the pond. In this study, computational fluid dynamics (CFD) analysis was applied to investigate the impact of sludge layer geometry on hydraulic performance of a facultative pond, typically used in many small communities throughout the developing world. Four waste stabilization pond cases with different sludge volumes and distributions were investigated. Results indicate that sludge distribution and volume have a significant impact on wastewater treatment efficiency and capacity. Although treatment capacity is reduced with accumulation of sludge, the latter may induce a baffling effect which causes the flow to behave closer to that of plug flow reactor and thus increase treatment efficiency. In addition to sludge accumulation and distribution, the impact of water surface level is also investigated through two additional cases. Findings show that an increase in water level while keeping a constant flow rate can result in a significant decrease in the hydraulic performance by reducing the sludge baffling effect, suggesting a careful monitoring of sludge accumulation and water surface level in WSP systems. PMID:27176549

  8. PHYSICAL AND ENGINEERING PROPERTIES OF HAZARDOUS INDUSTRIAL WASTES AND SLUDGES

    EPA Science Inventory

    This report presents the results of a laboratory testing program to investigate the properties of raw and chemically fixed hazardous industrial wastes and flue gas desulfurization (FGD) sludges. Specimens of raw and fixed sludges were subjected to a variety of tests commonly used...

  9. Biological Aspects of Metal Waste Reclamation With Sewage Sludge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smelter waste deposits pose an environmental threat worldwide. Sewage sludges are potentialy useful in reclamation of such sites. Biological aspects of revegetation of Zn and Pb smelter wastelands are discussed in a paper. The goal of the studies was to asses to what extent sludge treatment would...

  10. Method for the treatment of waste sludge

    SciTech Connect

    Tomyn, W.W.

    1984-10-23

    A method for the treatment of sludge to cause its solidification and render it suitable for use as landfill by admixtures of chemicals therewith, the method including the steps of feeding the sludge into a sludge hopper and feeding chemicals into a chemical hopper. The sludge and chemicals are continuously fed, each at a controlled feed rate, into a rotating mixing chamber to control the generation of heat in the mixing chamber generated by the combination of sludge and chemicals whereby the sludge and chemicals therein are mixed and caused to move upwardly and longitudinally of the chamber from the inlet opening to the outlet opening thereof.

  11. Minimisation and utilisation of waste mineral sludge from sodium perborate production.

    PubMed

    Grilc, Viktor; Jersan, Rok

    2002-10-01

    Various approaches to waste minimisation, waste treatment and recycling or safe disposal of the waste mineral sludge from sodium perborate production are presented and critically discussed. Some most promising actions for waste (or its harmful potential) reduction on the production level are identified. These include: a) use of better raw materials (richer boron ore), b) improvement of the ore leaching process, and c) intensification of sludge washing and dewatering. These source reduction measures have already resulted in 50% reduction of boron content in the sludge. Utilisation of the raw or treated (e.g. dried, compacted) waste sludge could be found in agriculture, civil engineering and construction material production. Agricultural use (as a lime substitute) is based on favourable content of calcium-magnesium minerals and alkali pH value of the sludge, and simultaneous absence of heavy metals. Application in civil engineering (as an aggregate) is possible after calcination, which is costly, or as a cement kiln additive. Stabilisation of sludge before disposal, when no utilisation is available, is possible by small addition of commercial binders (e.g. Portland cement) or larger amounts of pozzolanic wastes (e.g. coal fly ash). PMID:12498478

  12. Physical Properties of Hanford Transuranic Waste Sludge

    SciTech Connect

    Berg, John C.

    2005-06-01

    Equipment that was purchased in the abbreviated year 1 of this project has been used during year 2 to study the fundamental behavior of materials that simulate the behavior of the Hanford transuranic waste sludge. Two significant results have been found, and each has been submitted for publication. Both studies found non-DLVO behavior in simulant systems. These separate but related studies were performed concurrently. It was previously shown in Rassat et al.'s report Physical and Liquid Chemical Simulant Formulations for Transuranic Wastes in Hanford Single-Shell Tanks that colloidal clays behave similarly to transuranic waste sludge (PNNL-14333, National Technical Information Service, U.S. Dept. of Commerce). Rassat et al. also discussed the pH and salt content of actual waste materials. It was shown that these materials exist at high pHs, generally above 10, and at high salt content, approximately 1.5 M from a mixture of different salts. A type of clay commonly studied, due to its uniformity, is a synthetic hectorite, Laponite. Therefore the work performed over the course of the last year was done mainly using suspensions of Laponite at high pH and involving high salt concentrations. One study was titled ''Relating Clay Rheology to Colloidal Parameters''. It has been submitted to the Journal of Colloid and INterface Science and is currently in the review process. The idea was to gain the ability to use measurable quantities to predict the flow behavior of clay systems, which should be similar to transuranic waste sludge. Leong et al. had previously shown that the yield stress of colloidal slurries of titania and alumina could be predicted, given the measurement of the accessible parameter zeta potential (Leong YK et al. J Chem Soc Faraday Trans, 19 (1993) 2473). Colloidal clays have a fundamentally different morphology and surface charge distribution than the spheroidal, uniformly charged colloids previously studied. This study was therefore performed in order to

  13. Co-digestion of pig slaughterhouse waste with sewage sludge.

    PubMed

    Borowski, Sebastian; Kubacki, Przemysław

    2015-06-01

    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35°C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability. PMID:25840737

  14. Characterization of the Radioactive Sludge from the ORNL MVST Waste Tanks

    SciTech Connect

    Keller, J.M.

    2001-10-24

    Over the last several years most of the sludge and liquid from the Liquid Low-Level Waste (LLLW) tanks at ORNL has been transferred and consolidated in the Melton Valley Storage Tanks (MVST). The contents of the MVST tanks at the time the sludge samples were collected for this report included the original inventory in the MVSTs along with the sludge and liquid from the Bethel Valley Evaporator Service Tanks (BVEST), Old Hydrofracture (OHF) tanks, and the Gunite and Associated Tanks (GAAT). During the summer of 2001 full core samples of sludge were collected from the MVST tanks. The purpose of this sampling campaign was to characterize and validate that the current radiochemical and chemical contents of the MVST sludge, which was needed to meet the contract agreements prior to the transfer of the waste to another DOE contractor for processing. This report only discusses the analytical characterization of the sludge from the MVST waste tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) and plutonium ({sup 239}Pu and {sup 241}Pu) were ''denatured'' as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the MVST sludge was found to be hazardous by RCRA characteristics based on total analysis of chromium, mercury, and lead. Also, the alpha activity due to transuranic isotopes was well above the 100 nCi/g limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in previous reports and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP. Therefore, the WIPP WAC limits were not evaluated for this set of samples.

  15. FINAL REPORT. COLLOIDAL AGGLOMERATES IN TANK SLUDGE: IMPACT ON WASTE PROCESSING

    EPA Science Inventory

    Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, andsolidification processes. Properties of sediment layers and sludge suspensions such as slurryviscosit...

  16. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.

    PubMed

    Tiehm, A; Nickel, K; Zellhorn, M; Neis, U

    2001-06-01

    The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation. PMID:11337847

  17. Waste paper and pulp sludge as feedstock for ethanol production

    SciTech Connect

    Sosulski, K.; Swerhone, B.

    1993-12-31

    Samples of newsprint, office, cardboard and magazine paper, paper towels, pulp waste and sludge were evaluated for their cellulose contents and rates of cellulose conversion to glucose. Several pretreatments were evaluated to increase the rate of conversion of newsprint cellulose to glucose. The influence of printers` inks on enzyme hydrolysis and fermentation were determined for printed newsprint and magazine paper and corresponding imprinted controls. Two streams of mixed paper were formed to determine the need for separation of paper prior to processing. A modified, two-stage process was evaluated for hydrolyses of paper samples. The process consisted of sample hydrolysis with one-half of total enzymes for 24 hr, separation of sugars by filtration and hydrolysis of the residue with fresh enzymes for an additional 24 hr. In this way, at the same enzyme loading, the rates of cellulose conversion were increased by 18 to 59%, depending on sample. The maximum cellulose conversion rates were: 62.4% for newsprint, 65.4% for cardboard, 65.7% for office paper, 54.5% for magazine paper and 55.0% for paper towel. Bleached pulp waste was hydrolysed to the level of 62.7%, and the rates of conversion of pulp sludge cellulose were 32.4 to 74.6%, depending on paper waste used for reprocessing by pulp mills. The degrees of saccharification determined for the mixed paper samples were comparable or slightly lower than those calculated based on the best conversion rates for each of the constituents and their contents in mixed sample. Based on the findings of this study, it became apparent that ethanol plants would be able to process all types of paper and pulp wastes blends, at varying ratios, without the need for separation of waste streams. Also, there was no need for other pretreatments than particle size reduction by grinding, prior to enzyme hydrolysis. Printers` inks had no adverse affect on enzyme hydrolysis or yeast fermentation.

  18. The digestibility of waste activated sludges.

    PubMed

    Park, Chul; Abu-Orf, Mohammad M; Novak, John T

    2006-01-01

    Laboratory digestion studies using waste activated sludges (WAS) were conducted to compare the digestion performance between anaerobic and aerobic processes. Nine samples of WAS from seven wastewater treatment plants were collected and batch-digested under both anaerobic and aerobic conditions for 30 days at 25 degrees C. The cation content of wastewater (both floc and solution phases) and solution biopolymer (protein and polysaccharide) was measured before and after digestion and compared with volatile solids destruction data. The study revealed that each digestion process was associated with a distinct biopolymer fraction, which accounted for differences in volatile solids reduction under anaerobic and aerobic conditions. The anaerobic digestion data showed strong correlations between soluble protein generation, ammonium production, percent volatile solids reduction, and floc iron (Fe). These data suggest that the amount of volatile solids destroyed by anaerobic digestion depends on the Fe content of floc. In aerobic digestion, polysaccharide accumulated in solution along with calcium and magnesium. For aerobic digestion, correlations between divalent cation release and the production of inorganic nitrogen were found. This implies that divalent cation-bound biopolymer, thought to be lectin-like protein, was the primary organic fraction degraded under aerobic conditions. The results of the study show that the cation content in wastewater is an important indicator of the material that will digest under anaerobic or aerobic conditions and that some of the volatile solids will digest only under either anaerobic or aerobic conditions. PMID:16553167

  19. EVALUATION OF WASTE CITRUS ACTIVATED SLUDGE IN POULTRY FEEDS

    EPA Science Inventory

    Experiments were conducted on chick broilers and hens to determine the metabolizable energy of citrus sludge. A determination of metabolizable energy values showed that the values decreased as the level of citrus sludge in the diet increased. A series of protein levels were fed t...

  20. Anaerobic bioleaching of metals from waste activated sludge.

    PubMed

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E; Lens, Piet N L

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g(-1) of copper, 487 μg g(-1) of lead, 793 μg g(-1) of zinc, 27 μg g(-1) of nickel and 2.3 μg g(-1) of cadmium. During the anaerobic acidification of 3 gdry weight L(-1) waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. PMID:25659306

  1. Anaerobic co-digestion of sewage sludge and food waste.

    PubMed

    Prabhu, Meghanath S; Mutnuri, Srikanth

    2016-04-01

    Anaerobic co-digestion of organic matter improves digester operating characteristics and its performance. In the present work, food waste was collected from the institute cafeteria. Two types of sludge (before centrifuge and after centrifuge) were collected from the fluidised bed reactor of the institute treating sewage wastewater. Food waste and sludge were studied for their physico-chemical characteristics, such as pH, chemical oxygen demand, total solids, volatile solids, ammoniacal nitrogen, and total nitrogen. A biomethane potential assay was carried out to find out the optimum mixing ratio of food waste and sludge for anaerobic co-digestion. Results indicated that food waste mixed with sludge in the ratio of 1:2 produced the maximum biogas of 823 ml gVS(-1)(21 days) with an average methane content of 60%. Batch studies were conducted in 5 L lab-glass reactors at a mesophilic temperature. The effect of different substrate loading rates on biogas production was investigated. The mixing ratio of food waste and sludge was 1:2. A loading rate of 1 gVS L d(-1)gave the maximum biogas production of 742 ml g(-1)VS L d(-1)with a methane content of 50%, followed by 2 gVS L d(-1)with biogas of 539 ml g(-1)VS L d(-1) Microbial diversity of the reactor during fed batch studies was investigated by terminal restriction fragment length polymorphism. A pilot-scale co-digestion of food waste and sludge (before centrifuge) indicated the process stability of anaerobic digestion. PMID:26879909

  2. High level waste characterization in support of low level waste certification. I. HLW supernate radionuclide characterization

    SciTech Connect

    Jamison, M.E.; d`Entremont, P.D.; Clemmons, J.S.; Bess, C.E.; Brown, D.F.

    1994-07-08

    High Level Waste Programs has radioactive waste storage, treatment and processing facilities that are located in the F and H Areas at the Savannah River Site. These facilities include the Effluent Treatment Facility (ETF), F and H Area Tank Farms, Extended Sludge Processing (ESP), and In-Tank Precipitation (ITP). Job wastes are generated from operation, maintenance, and construction activities inside radiological areas. These items may have been contaminated with radioactive supernate, salt, and sludge material. Most of these wastes will be disposed of in the E-area Vaults. Therefore, an isotopic and hazardous characterization must be performed. The characterization of HLW supernate radionuclides is discussed in Chapter I. The characterization for salt and sludge phases, which can also contaminate LLW, will be included in other Chapters.

  3. Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)

    SciTech Connect

    Jantzen, C.M.; Peeler, D.K.; Gilliam, T.M.; Bleier, A.; Spence, R.D.

    1996-05-06

    Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC`s Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ``proof-of-principle`` demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings.

  4. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. PMID:25277968

  5. Construction materials as a waste management solution for cellulose sludge

    SciTech Connect

    Modolo, R.; Rodrigues, M.; Coelho, I.

    2011-02-15

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  6. TOP-FEED VACUUM FILTRATION OF WASTE-ACTIVATED SLUDGE

    EPA Science Inventory

    A side-by-side comparison of a conventional bottom-feed vacuum filter and a prototype top-feed vacuum filter was conducted. Thickened, waste-activated sludge at approximately 1.8 percent feed solids concentration and conditioned with ferric chloride was dewatered on two filters 1...

  7. Handling 78,000 drums of mixed-waste sludge

    SciTech Connect

    Berry, J.B.; Harrington, E.S.; Mattus, A.J.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now known as the Oak Ridge K-25 Site) closed two mixed-waste surface impoundments by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage included delisting the stabilized sludge from hazardous to nonhazardous and disposing of the delisted monoliths as Class 1 radioactive waste. Because of schedule constraints and process design and control deficiencies, {approximately}46,000 drums of material in various stages of solidification and {approximately}32,000 barrels of unprocessed sludge are stored. The abandoned treatment facility still contains {approximately}16,000 gal of raw sludge. Such storage of mixed waste does not comply with the Resource Conservation and Recovery Act (RCRA) guidelines. This paper describes actions that are under way to bring the storage of {approximately}78,000 drums of mixed waste into compliance with RCRA. Remediation of this problem by treatment to meet regulatory requirements is the focus of the discussion. 3 refs., 2 figs., 4 tabs.

  8. FEASIBILITY OF TREATING SEPTIC TANK WASTE BY ACTIVATED SLUDGE

    EPA Science Inventory

    The objective of the study reported herein was to evaluate the impact of household septic tank wastes on municipal activated sludge treatment plants. Septage addition was evaluated on a continuous basis over a four-month period in a 7500 l/day (1980 gpd) pilot plant. The septage ...

  9. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review.

    PubMed

    Ben Rebah, F; Prévost, D; Yezza, A; Tyagi, R D

    2007-12-01

    Inoculating legumes with commercial rhizobial inoculants is a common agriculture practice. Generally, inoculants are sold in liquid or in solid forms (mixed with carrier). The production of inoculants involves a step in which a high number of cells are produced, followed by the product formulation. This process is largely governed by the cost related to the medium used for rhizobial growth and by the availability of a carrier source (peat) for production of solid inoculant. Some industrial and agricultural by-products (e.g. cheese whey, malt sprouts) contain growth factors such as nitrogen and carbon, which can support growth of rhizobia. Other agro-industrial wastes (e.g. plant compost, filtermud, fly-ash) can be used as a carrier for rhizobial inoculant. More recently, wastewater sludge, a worldwide recyclable waste, has shown good potential for inoculant production as a growth medium and as a carrier (dehydrated sludge). Sludge usually contains nutrient elements at concentrations sufficient to sustain rhizobial growth and heavy metals are usually below the recommended level. In some cases, growth conditions can be optimized by a sludge pre-treatment or by the addition of nutrients. Inoculants produced in wastewater sludge are efficient for nodulation and nitrogen fixation with legumes as compared to standard inoculants. This new approach described in this review offers a safe environmental alternative for both waste treatment/disposal and inoculant production. PMID:17336515

  10. Continuous biohydrogen production from waste bread by anaerobic sludge.

    PubMed

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge. PMID:27065225

  11. Environmental and resource implications of phosphorus recovery from waste activated sludge.

    PubMed

    Sørensen, Birgitte Lilholt; Dall, Ole Leinikka; Habib, Komal

    2015-11-01

    Phosphorus is an essential mineral resource for the growth of crops and thus necessary to feed the ever increasing global population. The essentiality and irreplaceability of phosphorus in food production has raised the concerns regarding the long-term phosphorus availability and the resulting food supply issues in the future. Hence, the recovery of phosphorus from waste activated sludge and other waste streams is getting huge attention as a viable solution to tackle the potential availability issues of phosphorus in the future. This study explores the environmental implications of phosphorus recovery from waste activated sludge in Denmark and further elaborates on the potential availability or scarcity issue of phosphorus today and 2050. Life cycle assessment is used to assess the possibility of phosphorus recovery with little or no environmental impacts compared to the conventional mining. The phosphorus recovery method assessed in this study consists of drying process, and thermal gasification of the waste activated sludge followed by extraction of phosphorus from the ashes. Our results indicate that the environmental impacts of phosphorus recovery in an energy efficient process are comparable to the environmental effects from the re-use of waste activated sludge applied directly on farmland. Moreover, our findings conclude that the general recommendation according to the waste hierarchy, where re-use of the waste sludge on farmland is preferable to material and energy recovery, is wrong in this case. Especially when phosphorus is a critical resource due to its life threatening necessity, lack of substitution options and potential future supply risk originating due to the high level of global supply concentration. PMID:25792438

  12. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    PubMed

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. PMID:25979784

  13. Evaluation of water treatment sludge for ameliorating acid mine waste.

    PubMed

    Van Rensburg, L; Morgenthal, T L

    2003-01-01

    This study investigated the liming effect of water treatment sludge on acid mine spoils. The study was conducted with sludge from a water purification plant along the Vaal River catchments in South Africa. The optimum application rate for liming acid spoils and the speed and depth with which the sludge reacted with the mine waste were investigated. Chemical analysis indicated that the sludge is suitable as a liming agent because of its alkaline pH (8.08), high bicarbonate concentration (183.03 mg L(-1)), and low salinity (electrical conductivity = 76 mS m(-1)). The high cation exchange capacity of 15.47 cmol(c) kg(-1) and elevated nitrate concentration (73.16 mg L(-1)) also increase its value as an ameliorative material. The soluble concentrations for manganese, aluminum, lead, and selenium were high at a pH of 5 although only selenium (0.83 mg L(-1)) warranted some concern. According to experimental results, the application of 10 Mg ha(-1) of sludge to acid gold tailings increased the leach water pH from 4.5 to more than 7.5 and also increased the medium pH from 2.4 to 7.5. The addition of sludge further reduced the solubility of iron, manganese, copper, and zinc in the ameliorated gold tailings, but increased the electrical conductivity. The liming tempo was highest in the coal discard profile that had a coarse particle size distribution and took the longest to move through the gold tailings that had a fine particle size distribution. Results from this study indicate that the water treatment sludge investigated is suitable as a liming agent for rehabilitation of acid mine waste. PMID:14535306

  14. Preparation of delisting petition for SRS (Savannah River Site) raw materials waste sludge---Mixed F006 waste

    SciTech Connect

    Langton, C.A.

    1989-01-01

    Waste sludge from the raw materials manufacturing facility at the Savannah River Site contains both hazardous and low-level radioactive components. This waste, which contains electroplating sludge and depleted uranium, is classified as a mixed waste. The objective of the delisting petition is to demonstrate that this waste can be treated/solidified in a cement-based material and disposed of in concrete vaults so that drinking water standards will not be exceeded. Sampling and analytical data which support this petition will be presented. Results show that when the data are applied to the EPA Vertical and Horizontal Spread Model, health-based standards for all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of stabilized sludge in concrete vaults will also meet the requirements of DOE Order 5820.2A and the March 9, 1988 DOE Record of Decision which outline criteria for low-level radioactive waste disposal at the Savannah River Site. 9 refs., 2 figs., 3 tabs.

  15. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge.

    PubMed

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  16. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  17. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    PubMed Central

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  18. Winery waste recycling through anaerobic co-digestion with waste activated sludge.

    PubMed

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2014-11-01

    In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge. PMID:25151445

  19. High level nuclear waste

    SciTech Connect

    Crandall, J L

    1980-01-01

    The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

  20. Analyses of high-level radioactive glasses and sludges at the Savannah River Site

    SciTech Connect

    Coleman, C.J.; Bibler, N.E.; Dewberry, R.A.

    1990-01-01

    Reliable analyses of high level radioactive glass and sludge are necessary for successful operation of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). This facility will convert the radioactive waste sludges at SRS into durable borosilicate glasses for final disposal in a geologic repository. Analyses that are crucial to DWPF operation and repository acceptance of the glass are measurement of the radioactive and nonradioactive composition of the waste sludges and final glasses and measurement of the Fe(II)/Fe(III) ratio in a vitrified sample of melter feed. These measurements are based on the remote dissolutions of the glass and sludge followed by appropriate chemical analyses. Glasses are dissolved by a peroxide fusion method and a method using HF, HNO{sub 3}, H{sub 3}BO{sub 3}, and HCl acids where the solutions are heated in a microwave oven. The resulting solutions are analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and atomic absorption spectroscopy (AAS) for nonradioactive elements and appropriate counting techniques for radioactive elements. Results for two radioactive glasses containing actual radioactive waste are also presented. Sludges are dissolved by the Na{sub 2}O{sub 2} fusion method and an aqua regia method. 8 refs., 4 tabs.

  1. Composting of municipal waste-water sludges. Seminar pub

    SciTech Connect

    Not Available

    1985-08-01

    This seminar publication provides practical information on current methods of composting municipal waste-water sludges. It is intended for government and private sector individuals involved in the planning, design, and operation of municipal sludge treatment and disposal systems. Chapter 1 presents general principles of the composting process and system design. Chapters 2 and 3 discuss in depth the experiences at the Dickerson, Western Branch, and Site II static-pile-composting operations in Maryland and at the windrow operation in Los Angeles County. In-vessel composting is reviewed in Chapter 4. Chapter 5 discusses current and proposed regulations and guidelines that pertain to sludge composting. The publication is not a design manual nor does it include all the latest knowledge about composting.

  2. Sequential anaerobic/aerobic digestion for enhanced sludge stabilization: comparison of the process performance for mixed and waste sludge [corrected].

    PubMed

    Tomei, M Concetta; Carozza, Nicola Antonello

    2015-05-01

    Sequential anaerobic-aerobic digestion has been demonstrated as a promising alternative for enhanced sludge stabilization. In this paper, a feasibility study of the sequential digestion applied to real waste activated sludge (WAS) and mixed sludge is presented. Process performance is evaluated in terms of total solid (TS) and volatile solid (VS) removal, biogas production, and dewaterability trend in the anaerobic and double-stage digested sludge. In the proposed digestion lay out, the aerobic stage was operated with intermittent aeration to reduce the nitrogen load recycled to the wastewater treatment plant (WWTP). Experimental results showed a very good performance of the sequential digestion process for both waste and mixed sludge, even if, given its better digestibility, higher efficiencies are observed for mixed sludge. VS removal efficiencies in the anaerobic stage were 48 and 50% for waste and mixed sludge, respectively, while a significant additional improvement of the VS removal of 25% for WAS and 45% for mixed sludge has been obtained in the aerobic stage. The post-aerobic stage, operated with intermittent aeration, was also efficient in nitrogen removal, providing a significant decrease of the nitrogen content in the supernatant: nitrification efficiencies of 90 and 97% and denitrification efficiencies of 62 and 70% have been obtained for secondary and mixed sludges, respectively. A positive effect due to the aerobic stage was also observed on the sludge dewaterability in both cases. Biogas production, expressed as Nm(3)/(kgVSdestroyed), was 0.54 for waste and 0.82 for mixed sludge and is in the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. PMID:25028317

  3. Waste form development for use with ORNL waste treatment facility sludge

    SciTech Connect

    Abotsi, G.M.K.; Bostick, W.D.

    1996-05-01

    A sludge that simulates Water Softening Sludge number 5 (WSS number 5 filtercake) at Oak Ridge National Laboratory was prepared and evaluated for its thermal behavior, volume reduction, stabilization, surface area and compressive strength properties. Compaction of the surrogate waste and the calcium oxide (produced by calcination) in the presence of paraffin resulted in cylindrical molds with various degrees of stability. This work has demonstrated that surrogate WSS number 5 at ORNL can be successfully stabilized by blending it with about 35 percent paraffin and compacting the mixture at 8000 psi. This compressive strength of the waste form is sufficient for temporary storage of the waste while long-term storage waste forms are developed. Considering the remarkable similarity between the surrogate and the actual filtercake, the findings of this project should be useful for treating the sludge generated by the waste treatment facility at ORNL.

  4. CFD analysis of sludge accumulation and hydraulic performance of a waste stabilization pond.

    PubMed

    Alvarado, Andres; Sanchez, Esteban; Durazno, Galo; Vesvikar, Mehul; Nopens, Ingmar

    2012-01-01

    Sludge management in waste stabilization ponds (WSPs) is essential for safeguarding the system performance. Sludge accumulation patterns in WSPs are strongly influenced by the pond hydrodynamics. CFD modeling was applied to study the relation between velocity profiles and sludge deposition during 10 years of operation of the Ucubamba WSP in Cuenca (Ecuador). One tracer experiment was performed and three sludge accumulation scenarios based on bathymetric surveys were simulated. A residence time distribution (RTD) analysis illustrated the decrease of residence times due to sludge deposition. Sludge accumulation rates were calculated. The influence of flow pattern on the sludge deposition was studied, enabling better planning of future pond operation and desludging. PMID:23032767

  5. Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)

    SciTech Connect

    Lambert, D.P.

    2000-03-22

    Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

  6. Low-Temperature, Vacuum-Aided Thermal Desorption Studies on a Simulated Organic Sludge Waste

    SciTech Connect

    R. K. Farnsworth; D. R. Peterman; Gary L. Anderson; T. G. Garn

    2002-12-01

    This report describes an initial set of small scale lab tests conducted on surrogate waste materials to investigate mass release behavior of volatile organics (VOC’s) from a solidified liquid organic sludge matrix under vacuumaided, low-temperature thermal desorption conditions. Low temperature thermal desorption is being considered as a potential processing technology alternative to incineration, to remove gas generation limitations affecting the transportation of transuranic (TRU) contaminated organic sludge wastes to a designated off-site repository (i.e., the Waste Isolation Pilot Plant). The lab-scale tests provide initial exploratory level information on temperature profiles and rates of volatile organic desorption for a range of initial VOC/oil liquid mixture concentrations in a calcium silicate matrix, under low temperature heating and vacuum boundary conditions that are representative of potentially desirable “in-drum desorption” conditions. The results of these tests indicate that reduced operating pressures have a potential for significantly enhancing the rate of thermal desorption experienced from a liquid organic/oil solidified “sludge” waste. Furthermore, the results indicate that in-drum thermal desorption can be performed on organic sludge wastes, at reduced pressures, while maintaining an operating temperature sufficiently low to prevent destruction of the waste drum packaging materials (confinement) surrounding the waste. The results also indicate that VOC release behavior/rates in the vacuum thermal desorption process cannot be represented by a simple liquid-liquid mass-diffusion model, since overall mass release rates observed are generally two orders of magnitude greater than predicted by simple liquid-liquid mass diffusion. This is partially attributed to the effects of the transient temperature profiles within the sludge during heat up; however, the primary cause is thought to be micro boiling of the volatile organics within the

  7. OVERVIEW OF TESTING TO SUPPORT PROCESSING OF SLUDGE BATCH 4 IN THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Herman, C

    2006-09-20

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site began processing of its third sludge batch in March 2004. To avoid a feed outage in the facility, the next sludge batch will have to be prepared and ready for transfer to the DWPF by the end of 2006. The next sludge batch, Sludge Batch 4 (SB4), will consist of a significant volume of HM-type sludge. HM-type sludge is very high in aluminum compared to the mostly Purex-type sludges that have been processed to date. The Savannah River National Laboratory (SRNL) has been working with Liquid Waste Operations to define the sludge preparation plans and to perform testing to support qualification and processing of SB4. Significant challenges have arisen during SB4 preparation and testing to include poor sludge settling behavior and lower than desired projected melt rates. An overview of the testing activities is provided.

  8. VOC transport in vented drums containing simulated waste sludge

    SciTech Connect

    Liekhus, K.J.; Gresham, G.L.; Rae, C.; Connolly, M.J.

    1994-02-01

    A model is developed to estimate the volatile organic compound (VOC) concentration in the headspace of the innermost layer of confinement in a lab-scale vented waste drum containing simulated waste sludge. The VOC transport model estimates the concentration using the measured VOC concentration beneath the drum lid and model parameters defined or estimated from process knowledge of drum contents and waste drum configuration. Model parameters include the VOC diffusion characteristic across the filter vent, VOC diffusivity in air, size of opening in the drum liner lid, the type and number of layers of polymer bags surrounding the waste, VOC permeability across the polymer, and the permeable surface area of the polymer bags. Comparison of model and experimental results indicates that the model can accurately estimate VOC concentration in the headspace of the innermost layer of confinement. The model may be useful in estimating the VOC concentration in actual waste drums.

  9. Vermicomposting of milk processing industry sludge spiked with plant wastes.

    PubMed

    Suthar, Surindra; Mutiyar, Pravin K; Singh, Sushma

    2012-07-01

    This work illustrates the vermistabilization of wastewater sludge from a milk processing industry (MPIS) unit spiked with cow dung (CD), sugarcane trash (ST) and wheat straw (WS) employing earthworms Eisenia fetida. A total of nine experimental vermibeds were established and changes in chemical parameters of waste material have been observed for 90 days. Vermistabilization caused significant reduction in pH, organic carbon and C:N ratio and substantial increase in total N, available P and exchangeable K. The waste mixture containing MPIS (60%)+CD (10%)+ST (30%) and MPIS (60%)+CD (10%)+WS (30%) had better waste mineralization rate among waste mixtures studied. The earthworm showed better biomass and cocoon numbers in all vermibeds during vermicomposting operation. Results, thus suggest the suitability of E. fetida for conversion of noxious industrial waste into value-added product for land restoration programme. PMID:22609678

  10. Solidifications/stabilization treatability study of a mixed waste sludge

    SciTech Connect

    Spence, R.D.; Stine, E.F.

    1996-03-01

    The Department of Energy Oak Ridge Operations Office signed a Federal Facility Compliance Agreement with the US Environmental Protection Agency Region IV regarding mixed wastes from the Oak Ridge Reservation (ORR) subject to the land disposal restriction provisions of the Resource Conservation and Recovery Act (RCRA). This agreement required treatability studies of solidification/stabilization (S/S) on mixed wastes from the ORR. This paper reports the results of the cementitious S/S studies conducted on a waste water treatment sludge generated from biodenitrification and heavy metals precipitation. For the cementitious waste forms, the additives tested were Portland cement, ground granulated blast furnace slag, Class F fly ash, and perlite. The properties measured on the treated waste were density, free-standing liquid, unconfined compressive strength, and TCLP performance. Spiking up to 10,000, 10,000, and 4,400 mg/kg of nickel, lead, and cadmium, respectively, was conducted to test waste composition variability and the stabilization limitations of the binding agents. The results indicated that nickel, lead and cadmium were stabilized fairly well in the high pH hydroxide-carbonate- ``bug bones`` sludge, but also clearly confirmed the established stabilization potential of cementitious S/S for these RCRA metals.

  11. Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge.

    PubMed

    Wang, Dongbo; Zeng, Guangming; Chen, Yinguang; Li, Xiaoming

    2015-04-15

    Polyhydroxyalkanoates (PHA), an intracellular energy and carbon storage polymer, can be accumulated in activated sludge in substantial quantities under wastewater dynamic treatment (i.e., substrate feast-famine) conditions. However, its influence on hydrogen production has never been investigated before. This study therefore evaluated the influences of PHA level and composition in waste activated sludge (WAS) on hydrogen production. The results showed that with the increase of sludge PHA content from 25 to 178 mg per gram volatile suspended solids (VSS) hydrogen production from WAS alkaline anaerobic fermentation increased from 26.5 to 58.7 mL/g VSS. The composition of PHA was also found to affect hydrogen production. When the dominant composition shifted from polyhydroxybutyrate (PHB) to polyhydroxyvalerate (PHV), the amount of generated hydrogen decreased from 51.2 to 41.1 mL/g VSS even under the same PHA level (around 130 mg/g VSS). The mechanism studies exhibited that the increased PHA content accelerated both the cell solubilization and the hydrolysis process of solubilized substrates. Compared with the PHB-dominant sludge, the increased PHV fraction not only slowed the hydrolysis process but also caused more propionic acid production, with less theoretical hydrogen generation in this fermentation type. It was also found that the increased PHA content enhanced the soluble protein conversion of non-PHA biomass. Further investigations with enzyme analyses showed that both the key hydrolytic enzyme activities and hydrogen-forming enzyme activities were in the sequence of the PHB-dominant sludge > the PHV-dominant sludge > the low PHA sludge, which was in accord with the observed order of hydrogen yield. PMID:25697693

  12. Relative yields of U-235 fission products measured in a high level radioactive sludge at Savannah River Site

    SciTech Connect

    Bibler, N.E.; Coleman, C.J. ); Kinard, W.F. . Dept. of Chemistry)

    1992-01-01

    This paper presents measurements of the concentrations of 42 of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at Savannah River Site. The 42 fision products make up 98% of the waste sludge. We used inductively coupled plasma-mass spectroscopy for the analysis. The relative yields for most of the fission products are in complete agreement with the known relative yields for the beta decay chains of the two asymmetric branches of the slow neutron fission of U-235. Disagreements can be reconciled based on the chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses. This paper presents measurements of the concentrations of 42 (98%) of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at the Savannah River Site. We analyzed the sludge with inductively coupled plasma-mass spectroscopy. The relative yields for most of the fission products agree completely with the known relative vields for the beta decay chains of the two asymmetric: branches of the slow neutron fission of U-235. The chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses explain the differences in the measured and calculated results.

  13. Relative yields of U-235 fission products measured in a high level radioactive sludge at Savannah River Site

    SciTech Connect

    Bibler, N.E.; Coleman, C.J.; Kinard, W.F.

    1992-10-01

    This paper presents measurements of the concentrations of 42 of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at Savannah River Site. The 42 fision products make up 98% of the waste sludge. We used inductively coupled plasma-mass spectroscopy for the analysis. The relative yields for most of the fission products are in complete agreement with the known relative yields for the beta decay chains of the two asymmetric branches of the slow neutron fission of U-235. Disagreements can be reconciled based on the chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses. This paper presents measurements of the concentrations of 42 (98%) of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at the Savannah River Site. We analyzed the sludge with inductively coupled plasma-mass spectroscopy. The relative yields for most of the fission products agree completely with the known relative vields for the beta decay chains of the two asymmetric: branches of the slow neutron fission of U-235. The chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses explain the differences in the measured and calculated results.

  14. Correlation models for waste tank sludges and slurries

    SciTech Connect

    Mahoney, L.A.; Trent, D.S.

    1995-07-01

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This report presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.

  15. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    SciTech Connect

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  16. Characterization of the ORNL MVST Waste Tanks After Transfer of Sludge from BVEST, GAAT, and OHF Tanks

    SciTech Connect

    Keller, J.M.

    2001-03-23

    Over the last several years most of the sludge and liquid from the Liquid Low-Level Waste (LLLW) tanks at ORNL has been transferred and consolidated in the Melton Valley Storage Tanks (MVST). The contents of the MVST tanks at the time the sludge samples were collected for this report included the original inventory in the MVSTs along with the sludge and liquid from the Bethel Valley Evaporator Service Tanks (BVEST), Old Hydrofracture (OHF) tanks, and most of the Gunite and Associated Tanks (GAAT). During the spring and summer of 2000 the MVST composite sludge was sampled and characterized to validate the radiochemical content and to ensure regulatory compliance. This report only discusses the analytical characterization of the sludge from the MVST waste tanks (except for W-29 and W-30). The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) and plutonium ({sup 239}Pu and {sup 241}Pu) were ''denatured'' as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the MVST sludge was found to be hazardous by RCRA characteristics based on total analysis of chromium, mercury, and lead. Also, the alpha activity due to transuranic isotopes was well above the 100 nCi/g limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

  17. Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization.

    PubMed

    Bilgin Oncu, Nalan; Akmehmet Balcioglu, Isil

    2013-10-01

    Microwave-assisted hydrogen peroxide (MW/H2O2) treatment and microwave-assisted persulfate (MW/S2O8(2-)) treatment of biological waste sludge were compared in terms of simultaneous antibiotic degradation and sludge solubilization. A 2(3) full factorial design was utilized to evaluate the influences of temperature, oxidant dose, and holding time on the efficiency of these processes. Although both MW/H2O2 and MW/S2O8(2-) yielded ≥97% antibiotic degradation with 1.2g H2O2 and 0.87 g S2O8(2-) per gram total solids, respectively, at 160 °C in 15 min, MW/S2O8(2-) was found to be more promising for efficient sludge treatment at a lower temperature and a lower oxidant dosage, as it allows more effective activation of persulfate to produce the SO4(-) radical. Relative to MW/H2O2, MW/S2O8(2-) gives 48% more overall metal solubilization, twofold higher improvement in dewaterability, and the oxidation of solubilized ammonia to nitrate in a shorter treatment period. PMID:23928124

  18. Effects of waste glass additions on quality of textile sludge-based bricks.

    PubMed

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects. PMID:25812619

  19. Gas Retention and Release from Hanford Site Sludge Waste Tanks

    SciTech Connect

    Meacham, Joseph E.; Follett, Jordan R.; Gauglitz, Phillip A.; Wells, Beric E.; Schonewill, Philip P.

    2015-02-18

    Radioactive wastes from nuclear fuel processing are stored in large underground storage tanks at the Hanford Site. Solid wastes can be divided into saltcake (mostly precipitated soluble sodium nitrate and nitrite salts with some interstitial liquid consisting of concentrated salt solutions) and sludge (mostly low solubility aluminum and iron compounds with relatively dilute interstitial liquid). Waste generates hydrogen through the radiolysis of water and organic compounds, radio-thermolytic decomposition of organic compounds, and corrosion of a tank’s carbon steel walls. Nonflammable gases, such as nitrous oxide and nitrogen, are also produced. Additional flammable gases (e.g., ammonia and methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks.

  20. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    SciTech Connect

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form

  1. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    SciTech Connect

    Arbon, R.E.

    2001-01-31

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  2. REAL WASTE TESTING OF SLUDGE BATCH 5 MELTER FEED RHEOLOGY

    SciTech Connect

    Reboul, S.; Stone, M.

    2010-03-17

    Clogging of the melter feed loop at the Defense Waste Processing Facility (DWPF) has reduced the throughput of Sludge Batch 5 (SB5) processing. After completing a data review, DWPF attributed the clogging to the rheological properties of the Slurry Mix Evaporator (SME) project. The yield stress of the SB5 melter feed material was expected to be high, based on the relatively high pH of the SME product and the rheological results of a previous Chemical Process Cell (CPC) demonstration performed at the Savannah River National Laboratory (SRNL).

  3. Descriptive models for single-jet sluicing of sludge waste

    SciTech Connect

    Erian, F.F.; Mahoney, L.A.; Terrones, G.

    1997-12-01

    Mobilization of sludge waste stored in underground storage tanks can be achieved safely and reliably by sluicing. In the project discussed in this report, the waste in Hanford single-shell Tank 241-C-106 will be mobilized by sluicing, retrieved by a slurry retrieval pump, and transferred via an 1800-ft slurry pipeline to Tank 241-AY-102. A sluicing strategy must be developed that ensures efficient use of the deployed configuration of the sluicing system: the nozzle(s) and the retrieval pump(s). Given a sluicing system configuration in a particular tank, it is desirable to prescribe the sequential locations at which the sludge will be mobilized and retrieved and the rate at which these mobilization and retrieval processes take place. In addition, it is necessary to know whether the retrieved waste slurry meets the requirements for cross-site slurry transport. Some of the physical phenomena that take place during mobilization and retrieval and certain aspects of the sluicing process are described in this report. First, a mathematical model gives (1) an idealized geometrical representation of where, within the confines of a storage tank containing a certain amount of settled waste, sludge can be removed and mobilized; and (2) a quantitative measure of the amount of sludge that can be removed during a sluicing campaign. A model describing an idealized water jet issuing from a circular nozzle located at a given height above a flat surface is also presented in this report. This dynamic water-jet model provides the basis for improving the geometrical sluicing model presented next. In this model the authors assume that the water jet follows a straight trajectory toward a target point on a flat surface. However, the water jet does not follow a straight line in the actual tank, and using the true trajectory will allow a more accurate estimate of the amount of disturbed material. Also, the authors hope that developing accurate force and pressure fields will lead to a better

  4. Characterization and Leach Testing for PUREX Cladding Waste Sludge (Group 3) and REDOX Cladding Waste Sludge (Group 4) Actual Waste Sample Composites

    SciTech Connect

    Snow, Lanee A.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-02-13

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.(a) The testing program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual wastetesting program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR)—are the subjects of this report. Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, requiring caustic leaching. Characterization of the composite Group 3 and Group 4 waste samples confirmed them to be high in gibbsite. The focus of the Group 3 and 4 testing was on determining the behavior of gibbsite during caustic leaching. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  5. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    SciTech Connect

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  6. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  7. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    SciTech Connect

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-12-31

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period.

  8. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    SciTech Connect

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  9. Enhanced Waste Tank Level Model

    SciTech Connect

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  10. Sludge.

    ERIC Educational Resources Information Center

    Tenenbaum, David

    1992-01-01

    Cites a recycling success story involving sludge production from wastewater and transformation into an effective plant fertilizer. Discusses related concerns such as dealing with pollutants like heavy metals and PCBs often found in sludge. Provides an example of an application of sludge produced in Chicago to an area reclamation site. (MCO)

  11. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  12. Toxicity and biogas production potential of refinery waste sludge for anaerobic digestion.

    PubMed

    Haak, Laura; Roy, Ratul; Pagilla, Krishna

    2016-02-01

    Two waste streams from an oil refinery wastewater treatment system, float from a dissolved air flotation unit (DAF sludge) and waste activated sludge (WAS), were investigated to determine toxicity and biogas production potential for anaerobic digestion through batch testing methods. Ozonation as a pretreatment was investigated to observe the impacts of waste solubilization on both toxicity and biodegradability. Anaerobic toxicity assays resulted in no detectible inhibition from WAS, neither with nor without ozonation. Untreated DAF sludge exhibited inhibition that amplified with the increases in DAF sludge inclusion. Ozone treatment effectively reduces this inhibition. The biodegradability of WAS, measured by biochemical methane potential tests, doubled with low dose ozonation. DAF sludge biodegradability was negligible prior to treatment and was successfully enhanced through ozonation. PMID:26461442

  13. Assessing the Nonbiodegradable Fraction of the Thickened Waste Activated Sludge.

    PubMed

    Elbeshbishy, Elsayed; Dhar, Bipro Ranjan; Nakhla, George

    2015-08-01

    In this study, the feasibility of using three methods to estimate the nonbiodegradable fraction of five thickened waste activated sludge (TWAS) samples was evaluated using long-term biochemical methane potential tests at four substrate to biomass ratios. The nonbiodegradable fraction was calculated based on the remaining volatile suspended solids (VSS), remaining total chemical oxygen demand (TCOD), and remaining total organic carbon (TOC). It was evident that the nonbiodegradable fraction of TWAS ranged from 12 to 27%. The average nonbiodegradable fractions of TWAS were 21, 18, and 23% based on remaining VSS, TCOD, and TOC, respectively. The proposed method can be potentially used to characterize biosolids for design and modeling anaerobic treatment processes. PMID:26237686

  14. Pretreatment of neutralized cladding removal waste (NCRW) sludge - results of FY 1991 studies

    SciTech Connect

    Lumetta, G.J.; Swanson, J.L.

    1993-04-01

    Neutralized cladding removal waste (NCRW) sludge is a unique waste material that is stored in two underground double-shell tanks at the U.S. Department of Energy's Hanford Site. The NCRW sludge was formed by neutralization of the solution resulting from the chemical decladding of Zircaloy-clad metallic uranium fuel by the Zirflex process. The sludge consists of zirconium and sodium hydroxides and fluorides, with small amounts of potassium, nitrite, and other nonradioactive materials. The sludge also contains uranium, transuranic (TRU) elements, and mixed fission products typical of the nonvolatiles present in irradiated fuel. The NCRW sludge is considered a TRU waste, which must be vitrified for ultimate disposal in a geologic repository. The TRU portion of the waste may be separated from the larger amount of bulk waste material so only the TRU portion would require vitrification and geologic disposal. Separation would significantly reduce waste disposal costs. Work is underway to develop the transuranic extraction (TRUEX) process. This solvent extraction process has been demonstrated to separate a large percentage of the TRU elements from the bulk components of NCRW sludge. Earlier studies identified potential problems in the TRUEX processing of NCRW sludge: potential corrosion of imbedded piping in the facility initially planned for the process, instability of dissolved NCRW solutions towards precipitation, formation of interfacial crud during the TRUEX solvent extraction step, and the amount of phosphorus in the TRU product stream. These four problems were studied in FY 1991 and the results indicate that: a solution of 2 M HNO[sub 3] at a F/(Zr + Al) ratio of about 2 adequately dissolves washed NCRW sludge; such solutions should not be corrosive towards stainless steel materials; dissolved NCRW sludge solutions obtained by dissolution of washed sludge at low F/(Zr + Al) ratios (about 2) are much more stable with respect to precipitation.

  15. Pretreatment of neutralized cladding removal waste (NCRW) sludge: Results of FY 1991 studies

    SciTech Connect

    Lumetta, G.J.; Swanson, J.L.

    1993-04-01

    Neutralized cladding removal waste (NCRW) sludge is a unique waste material that is stored in two underground double-shell tanks at the US Department of Energy`s Hanford Site. The NCRW sludge was formed by neutralization of the solution resulting from the chemical decladding of Zircaloy-clad metallic uranium fuel by the Zirflex process. The sludge consists of zirconium and sodium hydroxides and fluorides, with small amounts of potassium, nitrite, and other nonradioactive materials. The sludge also contains uranium, transuranic (TRU) elements, and mixed fission products typical of the nonvolatiles present in irradiated fuel. The NCRW sludge is considered a TRU waste, which must be vitrified for ultimate disposal in a geologic repository. The TRU portion of the waste may be separated from the larger amount of bulk waste material so only the TRU portion would require vitrification and geologic disposal. Separation would significantly reduce waste disposal costs. Work is underway to develop the transuranic extraction (TRUEX) process. This solvent extraction process has been demonstrated to separate a large percentage of the TRU elements from the bulk components of NCRW sludge. Earlier studies identified potential problems in the TRUEX processing of NCRW sludge: potential corrosion of imbedded piping in the facility initially planned for the process, instability of dissolved NCRW solutions towards precipitation, formation of interfacial crud during the TRUEX solvent extraction step, and the amount of phosphorus in the TRU product stream. These four problems were studied in FY 1991 and the results indicate that: a solution of 2 M HNO{sub 3} at a F/(Zr + Al) ratio of about 2 adequately dissolves washed NCRW sludge; such solutions should not be corrosive towards stainless steel materials; dissolved NCRW sludge solutions obtained by dissolution of washed sludge at low F/(Zr + Al) ratios (about 2) are much more stable with respect to precipitation.

  16. Sludge dewatering: Sewage and industrial wastes. (Latest citations from pollution abstracts). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning sewage sludge dewatering techniques and equipment in industrial and municipal waste treatment systems. Topics include dewatering processes and control, activated sludge systems, fluidized bed systems, biological treatment, heavy metal recovery, and economic aspects. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    EPA Science Inventory

    During sludge washing procedures associated with tank waste remediation, actinide ions are expected to remain with the insoluble metal oxide/hydroxide residue as the sludges are scrubbed to remove Cr, P, Al, S, and thus to be transmitted conveniently to the vitrification plant. ...

  18. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. PMID:25959614

  19. Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL

    SciTech Connect

    Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

    1990-09-01

    The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

  20. High-level-waste immobilization

    SciTech Connect

    Crandall, J L

    1982-01-01

    Analysis of risks, environmental effects, process feasibility, and costs for disposal of immobilized high-level wastes in geologic repositories indicates that the disposal system safety has a low sensitivity to the choice of the waste disposal form.

  1. Technetium Chemistry in High-Level Waste

    SciTech Connect

    Hess, Nancy J.

    2006-06-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry.

  2. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    PubMed

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. PMID:26897469

  3. [Bioleaching of fly ash from municipal solid waste incinerator using sewage sludge and pig manure as culture media].

    PubMed

    Zhou, Shun-gui; Chang, Ming; Hu, Pei; Ni, Jin-ren

    2005-11-01

    A mixed culture of Acidihiobacillus ferrooaidans and Acidihiobacillus thiooxidans was used to leach heavy metals from municipal solid waste incineration fly ash (MSWI fly ash). This study explored the possibility of using sewage sludge or pig manure as nutrients for supporting the growth of the leaching bacteria and allowing metal solubilization like a synthetic mineral medium. In contrast to pig manure, there is a high ability for acidification of the fly ash and solubilization of toxic metals using sewage sludge at the same content. After 15 d of bioleaching, the following removal efficiencies were obtained for the treatment with the addition of 1% sewage sludge: Cd 88.1%; Zn 78.7%; Cu 69.6%, whereas their removal efficiencies for the treatment with the addition of 1% pig manure were 82.4%, 73.5% and 60.0%, respectively. Results demonstrate that the inhibition by sewage sludge DOM is much more significant than by pig manure DOM at the same concentration level. The dissolved organic carbon in excess of 400 and 150 mg/L was inhibitory to the bacterial growth using sludge DOM and manure DOM, respectively. Compared with sewage sludge, pig manure contained a higher fraction of DOM with molecular size <1000, which led to its higher toxicity. PMID:16447455

  4. Use of the TRUEX process for the pretreatment of neutralized cladding removal waste (NCRW) sludge: Results of a design basis experiment

    SciTech Connect

    Swanson, J L

    1991-07-01

    This report presents the results of an experiment designed to demonstrate the feasibility of a sludge dissolution/solvent extraction process to separate transuranic elements from the bulk components of Hanford neutralized cladding removal waste (NCRW) sludge. Such a separation would allow the bulk of the waste to be disposed of as low-level waste, which is much less costly than geologic disposal as would be required for the waste in its current form. The results indicate that the proposed process is well suited to meet the desired objectives. A composite sample of NCRW sludge taken from Tank 103-AW in 1986 was dissolved in nitric acid at room temperature. Dissolution of bulk components and all radionuclides was {ge}95% complete; thus, {le}5% of the bulk components will require geologic disposal. The TRUEX (TRansUranium EXtraction) solvent extraction process gave very good separation of the transuranic from the bulk components of the waste.

  5. Sludge dewatering: Sewage and industrial wastes. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning techniques and equipment used in dewatering waste products. Included are techniques for sewage waste as well as industrial, mining, petroleum, and municipal waste sludge. Dewatering processes, device design, and performance evaluations are considered. (Contains 250 citations and includes a subject term index and title list.)

  6. Sludge dewatering: Sewage and industrial wastes. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning techniques and equipment used in dewatering waste products. Included are techniques for sewage waste as well as industrial, mining, petroleum, and municipal waste sludge. Dewatering processes, device design, and performance evaluations are considered. (Contains 250 citations and includes a subject term index and title list.)

  7. Sludge dewatering: Sewage and industrial wastes. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning techniques and equipment used in dewatering waste products. Included are techniques for sewage waste as well as industrial, mining, petroleum, and municipal waste sludge. Dewatering processes, device design, and performance evaluations are considered. (Contains 250 citations and includes a subject term index and title list.)

  8. FRIT OPTIMIZATION FOR SLUDGE BATCH PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Fox, K.

    2009-01-28

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  9. RECOMMENDED FRIT COMPOSITION FOR INITIAL SLUDGE BATCH 5 PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Fox, K; Tommy Edwards, T; David Peeler, D

    2008-06-25

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  10. DENSITY LEVELS OF PATHOGENIC ORGANISMS IN MUNICIPAL WASTEWATER SLUDGE: A LITERATURE REVIEW

    EPA Science Inventory

    This report presents a critical review of the literature from laboratory and full scale studies regarding density levels of indicator and pathogenic organisms in municipal wastewater sludges and septage. The effectiveness of conventional municipal sludge stabilization processes (...

  11. Thermal hydrolysis of waste activated sludge at Hengelo Wastewater Treatment Plant, the Netherlands.

    PubMed

    Oosterhuis, Mathijs; Ringoot, Davy; Hendriks, Alexander; Roeleveld, Paul

    2014-01-01

    The thermal hydrolysis process (THP) is a sludge treatment technique which affects anaerobic biodegradability, viscosity and dewaterability of waste activated sludge (WAS). In 2011 a THP-pilot plant was operated, connected to laboratory-scale digesters, at the water board Regge en Dinkel and in cooperation with Cambi A.S. and MWH Global. Thermal hydrolysis of WAS resulted in a 62% greater volatile solids (VS) reduction compared to non-hydrolysed sludge. Furthermore, the pilot digesters could be operated at a 2.3 times higher solids loading rate compared to conventional sludge digesters. By application of thermal sludge hydrolysis, the overall efficiency of the sludge treatment process can be improved. PMID:25026572

  12. A novel recovery of silicon nanoparticles from a waste silicon sludge.

    PubMed

    Jang, Hee Dong; Kim, Hyekyoung; Kil, Dae Sup; Chang, Hankwon

    2013-03-01

    As the semiconductor and photovoltaic industry undergo rapid growth, a large amount of silicon sludge is generated from the cutting process of silicon ingots. However, it is not effectively recycled. Recovery of nanometer-sized silicon (Si) particles from the sludge has become an important concern because the silicon sludge contains valuable resources including high purity silicon. In the present study, we investigated the novel recovery of Si nanoparticles from waste silicon sludge. The waste silicon sludge also contained surfactant, silicon carbide particles and metallic fragments. After removal of the surfactant by distillation, the Si nanoparticles were recovered by applying controlled ultrasonic waves and centrifugation in series. Metallic impurities in the recovered Si nanoparticles were purified by HCl treatment. The overall maximum yield and purity of the Si nanoparticles were about 80% and 99.7%, respectively. PMID:23755688

  13. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans.

    PubMed

    Solisio, C; Lodi, A; Veglio, F

    2002-01-01

    Biological solubilisation of heavy metals contained in two different kinds of industrial wastes was performed in batches employing a strain of Thiobacillus ferroxidans. The wastes tested were: a dust coming from the iron-manganese alloy production in an electric furnace (sludge 1) and a sludge coming from a process treatment plant of aluminium anodic oxidation (sludge 2). The experimental results pointed out the ability of the used strain to maintain the environment, that initially has a pH about 8, at strongly acid conditions (pH 2.5-3.5), producing sulphuric acid that is the chemical agent responsible for the metals solubilisation. At wastes initial concentration of 1%, the percentage of solubilised metals was 76 and 78% for the wastes 1 and 2, respectively, but the lag phase was considerably longer for sludge 2 than for sludge 1, indicating a different affinity of microorganisms for the solid phase. Increasing the initial slurry concentration, the percentage of removed metal reached 72-73% for the sludge 1, while in case of sludge 2, the total amount of solubilized metal progressively decreased. Two kinetic models are proposed to describe the trends of metals solubilization curves. PMID:12214978

  14. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation.

    PubMed

    Ji, Zhouying; Chen, Guanlan; Chen, Yinguang

    2010-05-01

    This paper focused on the effects of waste activated sludge (WAS) and surfactant sodium dodecylbenzene sulfonate (SDBS) addition on primary sludge (PS) hydrolysis and short-chain fatty acids (SCFA) accumulation in fermentation. The results showed that sludge hydrolysis, SCFA accumulation, NH(4)(+)-N and PO(4)(3-)-P release, and volatile suspended solids (VSS) reduction were increased by WAS addition to PS, which were further increased by the addition of SDBS to the mixture of PS and WAS. Acetic, propionic and valeric acids were the top three SCFA in all experiments. Also, the fermentation liquids of PS, PS+WAS, and PS+WAS+SDBS were added, respectively, to municipal wastewater to examine their effects on biological municipal wastewater treatment, and the enhancement of both wastewater nitrogen and phosphorus removals was observed compared with no fermentation liquid addition. PMID:20096564

  15. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. PMID:25708406

  16. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE

    SciTech Connect

    Adams, J. W.; Bowerman, B. S.; Kalb, P. D.

    2002-02-25

    The Environmental Protection Agency (EPA) is currently evaluating alternative treatment standards for radioactively contaminated high mercury (Hg) subcategory wastes, which do not require the removal of mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needed additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 46 wt% (30 wt% dry) sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide the EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

  17. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE.

    SciTech Connect

    ADAMA, J.W.; BOWERMAN, B.S.; KALB, P.D.

    2002-10-01

    The Environmental Protection Agency (EPA) is currently seeking to validate technologies that can directly treat radioactively contaminated high mercury (Hg) subcategory wastes without removing the mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needs additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 30 wt% dry sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

  18. Vitrification of F006 plating waste sludge by Reactive Additive Stabilization Process (RASP)

    SciTech Connect

    Martin, H.L.; Jantzen, C.M.; Pickett, J.B.

    1994-06-01

    Solidification into glass of nickel-on-uranium plating wastewater treatment plant sludge (F006 Mixed Waste) has been demonstrated at the Savannah River She (SRS). Vitrification using high surface area additives, the Reactive Additive Stabilization Process (RASP), greatly enhanced the solubility and retention of heavy metals In glass. The bench-scale tests using RASP achieved 76 wt% waste loading In both soda-lime-silica and borosilicate glasses. The RASP has been Independently verified by a commercial waste management company, and a contract awarded to vitrify the approximately 500,000 gallons of stored waste sludge. The waste volume reduction of 89% will greatly reduce the disposal costs, and delisting of the glass waste is anticipated. This will be the world`s first commercial-scale vitrification system used for environmental cleanup of Mixed Waste. Its stabilization and volume reduction abilities are expected to set standards for the future of the waste management Industry.

  19. Application of forward osmosis (FO) under ultrasonication on sludge thickening of waste activated sludge.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Nguyen, Nhat Thien; Li, Chi-Wang

    2015-01-01

    Forward osmosis (FO) is an emerging process for dewatering solid-liquid stream which has the potential to be innovative and sustainable. However, the applications have still been hindered by low water flux and membrane fouling when activated sludge is used as the feed solution due to bound water from microbial cells. Hence, a novel strategy was designed to increase sludge thickening and reduce membrane fouling in the FO process under ultrasonic condition. The results from the ultrasound/FO hybrid system showed that the sludge concentration reached up to 20,400 and 28,400 mg/L from initial sludge concentrations of 3000 and 8000 mg/L with frequency of 40 kHz after 22 hours, while the system without ultrasound had to spend 26 hours to achieve the same sludge concentration. This identifies that the presence of ultrasound strongly affected sludge structure as well as sludge thickening of the FO process. Furthermore, the ultrasound/FO hybrid system could achieve NH4+-N removal efficiency of 96%, PO4(3-)-P of 98% and dissolved organic carbon (DOC) of 99%. The overall performance demonstrates that the proposed ultrasound/FO system using seawater as a draw solution is promising for sludge thickening application. PMID:26465299

  20. Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor.

    PubMed

    Fernández, Francisco J; Sánchez-Arias, Virginia; Rodríguez, Lourdes; Villaseñor, José

    2010-10-01

    Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery-distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. PMID:20435457

  1. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, J.L.

    1990-07-10

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  2. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  3. Fenton peroxidation improves the drying performance of waste activated sludge.

    PubMed

    Dewil, Raf; Baeyens, Jan; Neyens, Elisabeth

    2005-01-31

    Advanced sludge treatment processes (AST) reduce the amount of sludge produced and improve the dewaterability, thus probably also affecting the heat transfer properties and the drying characteristics of the sludge. This paper studies the influence of the Fenton peroxidation on the thermal conductivity of the sludge. Results demonstrate that the Fenton's peroxidation positively influences the sludge cake consistency and hence enhances the mechanical dewaterability and the drying characteristics of the dewatered sludge. For the two sludges used in this study, i.e. obtained from the wastewater treatment plants (WWTP) of Tienen and Sint-Niklaas--the dry solids content of the mechanically dewatered sludge increased from 22.5% to 40.3% and from 18.7% to 35.2%, respectively. The effective thermal conductivity k(e) of the untreated and the peroxidized sludges is measured and used to determine the heat transfer coefficient h(s). An average improvement for k(e) of 16.7% (Tienen) and 5.8% (Sint-Niklaas) was observed. Consequently the value of h(s) increased with 15.6% (Tienen) and 5.0% (Sint-Niklaas). This increased heat transfer coefficient in combination with the increased dewaterability has direct implications on the design of sludge dryers. A plate-to-plate calculation of a multiple hearth dryer illustrates that the number of plates required to dry the peroxidized sludge to 90% DS is less than half the number of plates needed to dry untreated sludge. This results in reduced dryer dimensions or a higher capacity for an existing dryer of given dimensions. PMID:15629575

  4. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. PMID:26896823

  5. Municipal waste-water sludge-combustion technology. Seminar pub

    SciTech Connect

    Not Available

    1985-09-01

    This publication describes and evaluates the various municipal sludge-combustion systems. It also emphasizes the necessity for considering and evaluating the costs involved in the total sludge-management train, including dewatering, combustion, air pollution control, and ash-disposal processes. It is intended to supplement but not replace EPA technology-transfer publications on sludge treatment and disposal, dewatering municipal wastewater sludges, municipal sludge landfills, and land application of municipal sludge. It also answers questions that have been raised about incineration as a means of processing sludge solids for ultimate disposal and presents factual answers supported by case histories. The primary objectives of the document are: (1) to assess the current status of municipal-sludge-combustion technology as to performance of in-place systems, environmental concerns, and regulatory agency viewpoints; (2) to determine what needs to be done to make municipal-sludge combustion more economical, including upgrading the performance of present and future systems; and (3) to discuss technology in the R and D stage.

  6. SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect

    Stone, M; Russell Eibling, R; David Koopman, D; Dan Lambert, D; Paul Burket, P

    2007-09-04

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratio of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.

  7. High-level waste processing at the Savannah River Site: An update

    SciTech Connect

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-09-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ``sludge-only`` composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ``coupled`` feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates.

  8. Effects of ammonia and phosphate limitation on the activated sludge treatment of calcium-containing chemical waste

    SciTech Connect

    Salanitro, J.P.; Sun, P.T.; Thornton, J.B.

    1983-02-01

    Laboratory-scale biotreaters were used to study the effects of NH/sub 3/-N and PO/sub 4/-P nutrients on the activated sludge treatment of a chemical waste containing soluble calcium (1300 mg/L). Units receiving high or low levels of NH/sub 3/-N and PO/sub 4/-P were similar in their ability to remove organic compounds from the waste. Adaptation of sludges to low PO/sub 4/-P levels (<0.1 mg/L effluent) resulted in a marked accumulation of CaCO/sub 3/ in the biosolids, whereas those receiving high PO/sub 4/-P (2-4 mg/L effluent) had little CaCO/sub 3/. Microscopic observations of CaCO/sub 3/ containing sludges showed substantial amounts of CaCO/sub 3/ crystals imbedded in the biomass. These floes also appeared to be enriched with nonfilamentous bacterial species in contrast to floes devoid of CaCO/sub 3/ which had a floe structure of filamentous and nonfilamentous organisms. Scanning electron micrographs of floes grown under low NH/sub 3/-N showed a microbial fibrillar network of exocellular material interconnecting cells in the floe matrix. The sludges adapted to low NH/sub 3/-N also produced higher amounts of extractable polysaccharide. CaCO/sub 3/ containing biosolids were more dense, larger, and settled better (low SVI, high ISV) than floes devoid of the precipitates. It is not known from these experiments whether PO/sub 4/-P or some inorganic or organic polymer produced by the floe bacteria are involved in inhibiting CaCO/sub 3/ precipitation in the activated sludge treatment of calcium-containing wastes.

  9. Actual-Waste Tests of Enhanced Chemical Cleaning for Retrieval of SRS HLW Sludge Tank Heels and Decomposition of Oxalic Acid - 12256

    SciTech Connect

    Martino, Christopher J.; King, William D.; Ketusky, Edward T.

    2012-07-01

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge. During ECC actual waste testing, the introduction of ozone was successful in decomposing oxalate to below the target levels. This testing did not identify physical or chemical changes in the ECC product sludge that would impact downstream processing. The results from these tests confirm observations made by AREVA NP during larger scale testing with waste simulants. This testing, however, had a decreased utilization of ozone, requiring approximately 5 moles of ozone per mole of oxalate decomposed. Decomposition of oxalates in sludge dissolved in 2 wt% OA to levels near 100 ppm oxalate using ECC process conditions required 8 to 12.5 hours without the aid of UV light and 4.5 to 8 hours with the aid of UV light. The pH and ORP were tracked during decomposition testing. Sludge components were tracked during OA decomposition, showing that most components have the highest soluble levels in the initial dissolved sludge and early decomposition samples and exhibit lower soluble levels as OA decomposition progresses. The Deposition Tank storage conditions that included pH adjustment to approximately 1 M free hydroxide tended to bring the soluble concentrations in the ECC product to nearly the same level for each test regardless of storage time, storage temperature, and contact with other tank sludge material. (authors)

  10. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    SciTech Connect

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  11. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation.

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Wang, Shuying

    2016-04-01

    Waste activated sludge (WAS) fermentation integrated with denitritation (the reduction of nitrite to dinitrogen gas) at different pHs was investigated in batch-mode reactors over a 24-day period. The results showed that in comparison with controlled pHs, the volatile fatty acid (VFA) bioproduction for in situ denitritation was significantly improved at uncontrolled pH. VFA fermented from WAS was quickly consumed by denitritation at uncontrolled pH, which accelerated sludge degradation. On the other hand, sludge digestion was benefited from the alkalinity produced from denitritation, while methanogenesis was prohibited by alkalinity and nitrite. The integrated sludge fermentation and denitritation can be cost-effectively applied to wastewater treatment plants, so that organic substrates (e.g., VFAs) are produced for denitritation via simultaneous sludge fermentation, which enables WAS reutilization and enhances nitrogen removal efficiency without the need of external carbon sources. PMID:26475401

  12. In-drum vitrification of transuranic waste sludge using microwave energy

    SciTech Connect

    Petersen, R.D.; Johnson, A.J.

    1989-01-01

    Microwave vitrification of transuranic (TRU) waste at the Rocky Flats nuclear weapons plant is being tested using actual TRU waste in a bench-scale system and simulated waste in a pilot system. In 1987, bench-scale testing was completed to determine the effectiveness of in-drum microwave vitrification of simulated precipitation sludge. The equipment used in the bench tests included a 6-kW, 2.45-GHz microwave generator, aluminum cavity, turntable, infrared (IR) thermometer, and screw feeder. Results similar to those achieved in bench-scale testing are reproducible using a 915-MHz microwave system in solidifying simulated TRU sludge. Nine samples have been processed to date. Also, preliminary results using actual TRU waste indicate that the actual waste will behave in a similar way to the surrogate waste used in the 2.45-GHz system. Work is ongoing to complete the TRU waste tests.

  13. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater...

  14. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater...

  15. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Slimes and sludges, aluminum and iron... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4;...

  16. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Slimes and sludges, aluminum and iron... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4;...

  17. Can aquatic worms enhance methane production from waste activated sludge?

    PubMed

    Serrano, Antonio; Hendrickx, Tim L G; Elissen, Hellen H J; Laarhoven, Bob; Buisman, Cees J N; Temmink, Hardy

    2016-07-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30°C with sludge from a high-loaded membrane bioreactor, the aquatic worm Lumbriculus variegatus, feces from these worms and with mixtures of these substrates. A significant synergistic effect of the worms or their feces on methane production from the high-loaded sludge or on its digestion rate was not observed. However, a positive effect on low-loaded activated sludge, which generally has a lower anaerobic biodegradability, cannot be excluded. The results furthermore showed that the high-loaded sludge provides an excellent feed for L. variegatus, which is promising for concepts where worm biomass is considered a resource for technical grade products such as coatings and glues. PMID:26998797

  18. Parameter identification and modeling of the biochemical methane potential of waste activated sludge.

    PubMed

    Appels, Lise; Lauwers, Joost; Gins, Geert; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-05-01

    Anaerobic digestion is widely used in waste activated sludge treatment. In this paper, partial least-squares (PLS) is employed to identify the parameters that are determining the biochemical methane potential (BMP) of waste activated sludge. Moreover, a model is developed for the prediction of the BMP. A strong positive correlation is observed between the BMP and volatile fatty acids and carbohydrate concentrations in the sludge. A somewhat weaker correlation with COD is also present. Soluble organics (sCOD, soluble carbohydrates and soluble proteins) were shown not to influence the BMP in the observed region. This finding could be most-valuable in the context of application of sludge pretreatment methods. The obtained model was able to satisfactory predict the BMP. PMID:21476497

  19. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    NASA Astrophysics Data System (ADS)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  20. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate.

    PubMed

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952

  1. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    PubMed Central

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952

  2. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    SciTech Connect

    Yamada, Y.; Kawase, Y. . E-mail: bckawase@mail.eng.toyo.ac.jp

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.

  3. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    SciTech Connect

    Nash, Kenneth L; Rao, Linfeng

    2005-06-01

    Removal of waste-limiting components of sludge (Al, Cr, S, P) in underground tanks at Hanford by treatment with concentrated alkali has proven less efficacious for Al and Cr removal than had been hoped. More aggressive treatments of sludges, for example, contact with oxidants targeting Cr(III), have been tested in a limited number of samples and found to improve leaching efficiency for Cr. Oxidative alkaline leaching can be expected to have at best a secondary influence on the mobilization of Al. Our earlier explorations of Al leaching from sludge simulants indicated acidic and complexometric leaching can improve Al dissolution.

  4. Nitrogen removal from wastewater and external waste activated sludge reutilization/reduction by simultaneous sludge fermentation, denitrification and anammox (SFDA).

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-08-01

    This work demonstrates the feasibility of simultaneous nitrogen removal and external waste activated sludge (WAS) reutilization/reduction by using the synergy of sludge fermentation, denitrification and anammox processes in up-flow reactors (SFDA). Pre-treated domestic wastewater and synthetic wastewater (containing nitrite ∼20mg/L, ammonium ∼10mg/L in both) were fed to 1# and 2# SFDA, respectively. Long-term operation of 1# SFDA was investigated with achieving the peak ammonium removal rate of 0.021 and nitrite removal rate of 0.081kgN/(m(3)d) as nitrogen loading rate elevated from 0.075 to 0.106kgN/(m(3)d). Negative effect of dissolved oxygen on anammox or fermentation in the 2# SFDA was demonstrated negligible due to rapid depletion by microorganisms. Furthermore, a "net" sludge reduction of 38.8% was obtained due to sludge decay and organics consumption by denitrification. The SFDA process was expected to potentially be used for nitrogen removal and WAS reutilization/reduction in full-scale application. PMID:27140818

  5. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  6. INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK

    SciTech Connect

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

    2011-05-24

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

  7. NETEC COLD CRUCIBLE INDUCTION MELTER DEMONSTRATION FOR SRNL WITH SIMULATED SLUDGE BATCH 4 DWPF WASTE

    SciTech Connect

    Smith, M; Allan Barnes, A; Alexander Choi, A; James Marra, J

    2008-07-28

    Cold Crucible Induction Melter (CCIM) Technology is being considered as a possible next generation melter for the Defense Waste Processing Facility (DWPF). Initial and baseline demonstrations that vitrified a Sludge Batch 4 (SB4) simulant at a waste loading of 50 weight percent (versus about 38 weight percent in the current DWPF Melter) were performed by the Nuclear Engineering and Technology Institute (NETEC) in South Korea via a subcontract from the Washington Savannah River Company (WSRC). This higher waste loading was achieved by using a CCIM which can run at higher glass processing temperatures (1250 C and higher) than the current DWPF Melter (1150 C). Higher waste loadings would result in less canisters being filled and faster waste throughput at the DWPF. The main demonstration objectives were to determine the maximum melt rate/waste throughput for the NETEC CCIM with a Sludge Batch 4 simulant as well as determine the viability of this technology for use in the DWPF.

  8. STABILIZATION AND TESTING OF MERCURY CONTAINING WASTES: BORDEN SLUDGE

    EPA Science Inventory

    This report details the stability assessment of a mercury containing sulfide treatment sludge. Information contained in this report will consist of background data submitted by the geneerator, landfill data supplied by EPA and characterization and leaching studies conducted by UC...

  9. STABILIZATION AND TESTING OF MERCURY CONTAINING WASTES: BORDEN SLUDGE

    EPA Science Inventory

    This report details the stability assessment of a mercury containing sulfide treatment sludge. Information contained in this report will consist of background data submitted by the generator, landfill data supplied by EPA and characterization and leaching studies conducted by UC...

  10. ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID

    SciTech Connect

    Martino, C.; King, W.; Ketusky, E.

    2012-01-12

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

  11. Characterization of Actinides in Simulated Alkaline Tank Waste Sludges and Leachates

    SciTech Connect

    Nash, Kenneth L.

    2005-06-01

    Removal of waste-limiting components of sludge (Al, Cr, S, P) in underground tanks at Hanford by treatment with concentrated alkali has proven less efficacious for Al and Cr removal than had been hoped. More aggressive treatments of sludges, for example, contact with oxidants targeting Cr(III), have been tested in a limited number of samples and found to improve leaching efficiency for Cr. Oxidative alkaline leaching can be expected to have at best a secondary influence on the mobilization of Al. Our earlier explorations of Al leaching from sludge simulants indicated acidic and complexometric leaching can improve Al dissolution. Unfortunately, treatments of sludge samples with oxidative alkaline, acidic or complexing leachates produce conditions under which normally insoluble actinide ions (e.g., Am3+, Pu4+, Np4+) can be mobilized to the solution phase. Few experimental or meaningful theoretical studies of actinide chemistry in strongly alkaline, strongly oxidizing solutions have been completed. Unfortunately, extrapolation of the more abundant acid phase thermodynamic data to these radically different conditions provides limited reliable guidance for predicting actinide speciation in highly salted alkaline solutions. In this project, we are investigating the fundamental chemistry of actinides and important sludge components in sludge simulants and supernatants under representative oxidative leaching conditions. We are examining the potential impact of acidic or complexometric leaching with concurrent secondary separations on Al removal from sludges. Finally, a portion of our research is directed at the control of polyvalent anions (SO4=, CrO4=, PO43-) in waste streams destined for vitrification. Our primary objective is to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop. We expect to identify those components of sludges that are likely to be problematic in the

  12. Initial studies of pretreatment methods for neutralized cladding removal waste (NCRW) sludge

    SciTech Connect

    Swanson, J L

    1991-06-01

    Pacific Northwest Laboratory (PNL) is performing conceptual and experimental studies for Westinghouse Hanford Company (WHC) aimed at determining the effectiveness of various pretreatment methods for the neutralized cladding removal waste (NCRW) sludge currently being stored at the Hanford Site of the US Department of Energy (DOE). The objective of such pretreatment methods is to separate the transuranic (TRU) elements and the bulk components of the waste (primarily zirconium, sodium, fluoride, and hydroxide) to a level low enough that the bulk components can be disposed of as low-level waste (LLW), with only a small volume, TRU-containing fraction requiring geologic disposal. This objective is driven primarily by the large cost differential projected between LLW and geologic disposal procedures. This report contains the results of the first three years (1987, 1988, and 1989) of the program. These results were earlier reported informally in letter reports; they are here compiled in appendix form in this formal report to be more readily available to other workers and the public. The results of work done in 1990 and in following years will be reported in separate formal reports.

  13. Application of SYNROC to high-level defense wastes

    SciTech Connect

    Tewhey, J.D.; Hoenig, C.L.; Newkirk, H.W.; Rozsa, R.B.; Coles, D.G.; Ryerson, F.J.

    1981-01-01

    The SYNROC method for immobilization of high-level nuclear reactor wastes is currently being applied to US defense wastes in tank storage at Savannah River, South Carolina. The minerals zirconolite, perovskite, and hollandite are used in SYNROC D formulations to immobilize fission products and actinides that comprise up to 10% of defense waste sludges and coexisting solutions. Additional phases in SYNROC D are nepheline, the host phase for sodium; and spinel, the host for excess aluminum and iron. Up to 70 wt % of calcined sludge can be incorporated with 30 wt % of SYNROC additives to produce a waste form consisting of 10% nepheline, 30% spinel, and approximately 20% each of the radioactive waste-bearing phases. Urea coprecipitation and spray drying/calcining methods have been used in the laboratory to produce homogeneous, reactive ceramic powders. Hot pressing and sintering at temperatures from 1000 to 1100/sup 0/C result in waste form products with greater than 97% of theoretical density. Hot isostatic pressing has recently been implemented as a processing alternative. Characterization of waste-form mineralogy has been done by means of XRD, SEM, and electron microprobe. Leaching of SYNROC D samples is currently being carried out. Assessment of radiation damage effects and physical properties of SYNROC D will commence in FY 81.

  14. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    SciTech Connect

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher; and others

    2013-07-01

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sites and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install

  15. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    SciTech Connect

    Daniel, W.E.

    2000-01-06

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  16. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    PubMed

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. PMID:26134447

  17. Evaluation of Sludge Batch 5 Qualification with ISDP Salt Batch 1 Compliance to DWPF Waste Acceptance Criteria

    SciTech Connect

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of Sludge Batch 5 with the initial macrobatch operation of the Interim Salt Disposition Project (ISDP) waste to the Defense Waste Processing Facility (DWPF). This report was prepared to comply with the requirements listed in the Waste Acceptance Criteria for Sludge, Actinide Removal Process (ARP), and Modular Caustic Side Solvent Extraction Unit (MCU) Process Transfers to 512-S and DWPF. The requirements for transfers to 512-S were evaluated during ISDP Salt Batch 1 qualification. The calculations of sludge concentrations are based entirely on the Tank 51 sample processed at SRNL. This is conservative because Tank 51 is blended with the dilute feed in the DWPF Feed Tank (Tank 40). This report documents the acceptability of sludge only as well as Sludge Batch 5 sludge slurry combined with ARP/MCU products for feed to DWPF. All criteria were met for unblended Tank 51 material.

  18. Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes.

    PubMed

    Del Mundo Dacera, Dominica; Babel, Sandhya; Parkpian, Preeda

    2009-08-15

    The suitability for land application of anaerobically digested sewage sludge treated with naturally fermented and Aspergillus niger (A. niger) fermented raw liquid from pineapple wastes, in terms of changes in the forms and amount of heavy metals and nutrient and pathogen content, were investigated in this study. Leaching studies for fermented liquid at optimum conditions (pH and contact time with best metal removal efficiencies) were carried out for the removal of Cd, Cr, Cu, Pb, Ni and Zn from sewage sludge, with citric acid as a reference. Using the same sludge before and after leaching, sequential fractionation studies were done to observe the effect of treatment on the forms of metals in sludge and their mobility and bioavailability. Results of laboratory scale studies revealed that leaching with all extractants at selected optimum conditions resulted in a decrease in heavy metals and pathogen content of the treated sludge, presence of sufficient amount of nutrients (nitrogen and phosphorous) and dominance of residual fractions in most metals, with sludge treated with A. niger, having the best quality. The results, therefore, indicate the high potential of the treated sludge for land application, with no harm from heavy metals released and no toxicity to the soil and groundwater. PMID:19232826

  19. Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation.

    PubMed

    Liu, Jun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zhong, Yu; Li, Xin; Deng, Yongchao; Wang, Liqun; Yi, Kaixin; Zeng, Guangming

    2016-04-01

    The effect of Fe(II)-activated peroxymonosulfate (Fe(II)-PMS) oxidation on the waste activated sludge (WAS) dewatering and its mechanisms were investigated in this study. The capillary suction time (CST), specific resistance to filterability (SRF) of sludge and water content (WC) of dewatered sludge cake were chosen as the main parameters to evaluate the sludge dewaterability. Experimental results showed that Fe(II)-PMS effectively disintegrated sludge and improved sludge dewaterability. High CST and SRF reduction (90% and 97%) was achieved at the optimal conditions of PMS (HSO5(-)) 0.9mmol/gVSS, Fe(II) 0.81mmol/gVSS, and pH 6.8. Extracellular polymeric substances (EPS) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy before and after Fe(II)-PMS oxidation were determined to explain the enhanced dewatering mechanism. The release of EPS-bound water induced by the destruction of EPS was the primary reason for the improvement of sludge dewaterability during Fe(II)-PMS oxidation. PMID:26851897

  20. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  1. Enhancing denitrification using a carbon supplement generated from the wet oxidation of waste activated sludge.

    PubMed

    Strong, P J; McDonald, B; Gapes, D J

    2011-05-01

    This study compared the effect of four pure carbon supplements on biological denitrification to a liquor derived as a by-product from the wet oxidation (WO) of waste activated sludge. Sequencing batch reactors were used to acclimate sludge biomass, which was used in batch assays. Acetate, WO liquor and ethanol-supplementation generated the fastest denitrification rates. Acetate and WO liquor were efficiently utilised by all acclimated biomass types, while poor rates were achieved with methanol and formate. When comparing an inoculum from an ethanol-supplemented and non-supplemented wastewater treatment plant (WWTP), the ethanol-acclimated sludge obtained superior denitrification rates when supplemented with ethanol. Similarly high nitrate removal rates were achieved with both sludge types with acetate and WO liquor supplementation, indicating that WO liquors could achieve excellent rates of nitrate removal. The performance of the WO liquor was attributed to the variety of organic carbon substrates (particularly acetic acid) present within the liquor. PMID:21196117

  2. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate

    SciTech Connect

    Al Yaqout, Anwar F

    2003-07-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14{+-}1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85{+-}0.19 million t representing 37.22{+-}6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.

  3. Heavy metal immobilization during the codisposal of municipal solid waste bottom ash and wastewater sludges

    SciTech Connect

    Eighmy, T.T.; Guay, M.A.; McHugh, S.; Kinner, N.E.; Ballestero, T.P. )

    1988-01-01

    One of the problems attendant to the incineration of municipal solid waste (MSW) is the siting and design of secure landfills to receive combustion residues from the incineration process. The authors have completed a study for a solid waste cooperative that was interested in codisposing MSW bottom ash and wastewater sludges. This codisposal scheme was initiated to address severe ash disposal problems within the Lamprey Regional Solid Waste Cooperative, and a severe sludge disposal problem in the City of Somersworth, NH, a member of the Cooperative and host city to the proposed codisposal site. The design of the landfill indicated that mixtures of bottom ash and combined sludges would range between 10:1 and 5:1 (by volume). An assessment of the leachate characteristics over time was required to address issues of pretreatment requirements, groundwater monitoring, and the potential sequestration and mobilization of heavy metals from the ash by organic ligands present in the sludge. This paper focuses on the biogeochemical conditions in the ash/sludge matrix that are conductive to the immobilization of heavy metals within the matrix via sulfide or polysulfide precipitation.

  4. Nondestructive Assay of TRU Waste Sludge at Los Alamos National Laboratory

    SciTech Connect

    Wachter, J.R.; Stanfield, S.B.; Veilleux, J.M.

    2006-07-01

    Nondestructive assay (NDA) measurements of Transuranic (TRU) sludge waste at Los Alamos National Laboratory (LANL) shares many of the same measurement complexities that have been encountered at other DOE sites. The sludge matrix is highly attenuating to both gamma rays and neutrons, the homogeneity of matrix and source material inside the drums cannot be verified for every drum, there are no representative standards for sludges, and independent tests intended to ascertain the accuracy of the measurements are not characteristic of the waste form. At LANL, a single instrument has been used to explore the appropriateness of both passive neutron and quantitative gamma ray methods for measuring sludge drums. The passive neutron approach uses the Reals coincidence count rate to establish plutonium mass and other parameters of interest for TRU waste. The quantitative gamma ray method assumes a homogeneous distribution of matrix and source material and assays the drum with a calibration based on the known density of the matrix. Both methods are supplemented by a simultaneous isotopic measurement using Multi-Group Analysis (MGA) to determine the plutonium isotopic composition. This report will discuss the two methods in detail. Included in the discussion will be descriptions of the setup parameters and calibration techniques for the instrument. Then an evaluation of the measurement results, including a summary of the checks and tests that are applied to sludges, will be presented. Finally, a brief discussion of the conclusions that can be drawn from the tests will be offered. (authors)

  5. Hazardous Waste Code Determinations for the First/Second Stage Sludge Waste Stream (IDCs 001, 002, 800)

    SciTech Connect

    Arbon, Rodney Edward

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  6. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    SciTech Connect

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal

  7. Optimizing High Level Waste Disposal

    SciTech Connect

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  8. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization.

    PubMed

    Zhang, Ai; Wang, Jie; Li, Yongmei

    2015-03-15

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using calcium peroxide (CaO2) oxidation. Effects of initial pH and CaO2 dosage were investigated. The impacts of CaO2 treatment on sludge solubilization and anaerobic digestion were also evaluated. Specifically, the role of reactive oxygen species (ROS) in EDC degradation during CaO2 oxidation was tested. Effects of 6 metal ions contained in the sludge matrix on EDC degradation were also evaluated. The results showed that CaO2 treatment can be a promising technology for EDC removal and facilitating sludge reuse. The EDC removal efficiencies increased with the increase in CaO2 dosage. At CaO2 doses of more than 0.34 g per gram of total solid (g g(-1) TS), more than 50% of EDCs were removed in a wide pH range of 2-12. Higher removal efficiencies were achieved at initial pH values of 12 and 2. The products of EDCs during CaO2 oxidation had less estrogenic activity than the originals. Under the conditions of neutral pH and CaO2 dosage = 0.34 g g(-1) TS, the sludge solubilization can be improved by increasing the soluble total organic carbon (STOC) and volatile suspended solids (VSS) reduction by 25% and 27% in 7 d, respectively; the volatile fatty acid (VFA) production was enhanced by 96% in the 15 d following anaerobic digestion. The ROS released by CaO2 are the main factors contributing to EDC removal, among which, hydroxyl radicals (OH) play the most important role. Metal ions contained in the sludge matrix also affected EDC removal. For most cases, Fe, Cu, and Zn had positive effects; Mn and Ag had negative effects; and Mg had an insignificant effect on EDC removal. PMID:25613412

  9. REMOVING SLUDGE HEELS FROM SAVANNAH RIVER SITE WASTE TANKS BY OXALIC ACID DISSOLUTION

    SciTech Connect

    Poirier, M; David Herman, D; Fernando Fondeur, F; John Pareizs, J; Michael Hay, M; Bruce Wiersma, B; Kim Crapse, K; Thomas Peters, T; Samuel Fink, S; Donald Thaxton, D

    2009-03-01

    The Savannah River Site (SRS) will remove sludge as part of waste tank closure operations. Typically the bulk sludge is removed by mixing it with supernate to produce a slurry, and transporting the slurry to a downstream tank for processing. Experience shows that a residual heel may remain in the tank that cannot be removed by this conventional technique. In the past, SRS used oxalic acid solutions to disperse or dissolve the sludge heel to complete the waste removal. To better understand the actual conditions of oxalic acid cleaning of waste from carbon steel tanks, the authors developed and conducted an experimental program to determine its effectiveness in dissolving sludge, the hydrogen generation rate, the generation rate of other gases, the carbon steel corrosion rate, the impact of mixing on chemical cleaning, the impact of temperature, and the types of precipitates formed during the neutralization process. The test samples included actual SRS sludge and simulated SRS sludge. The authors performed the simulated waste tests at 25, 50, and 75 C by adding 8 wt % oxalic acid to the sludge over seven days. They conducted the actual waste tests at 50 and 75 C by adding 8 wt % oxalic acid to the sludge as a single batch. Following the testing, SRS conducted chemical cleaning with oxalic acid in two waste tanks. In Tank 5F, the oxalic acid (8 wt %) addition occurred over seven days, followed by inhibited water to ensure the tank contained enough liquid to operate the mixer pumps. The tank temperature during oxalic acid addition and dissolution was approximately 45 C. The authors analyzed samples from the chemical cleaning process and compared it with test data. The conclusions from the work are: (1) Oxalic acid addition proved effective in dissolving sludge heels in the simulant demonstration, the actual waste demonstration, and in SRS Tank 5F. (2) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 100% of the iron, and {approx} 40% of the manganese

  10. A laboratory-scale test of anaerobic digestion and methane production after phosphorus recovery from waste activated sludge.

    PubMed

    Takiguchi, Noboru; Kishino, Machiko; Kuroda, Akio; Kato, Junichi; Ohtake, Hisao

    2004-01-01

    In enhanced biological phosphorus removal (EBPR) processes, activated sludge microorganisms accumulate large quantities of polyphosphate (polyP) intracellularly. We previously discovered that nearly all of polyP could be released from waste activated sludge simply by heating it at 70 degrees C for about 1 h. We also demonstrated that this simple method was applicable to phosphorus (P) recovery from waste activated sludge in a pilot plant-scale EBPR process. In the present study, we evaluated the effect of this sludge processing (heat treatment followed by calcium phosphate precipitation) on anaerobic digestion in laboratory-scale experiments. The results suggested that the sludge processing for P recovery could improve digestive efficiency and methane productivity at both mesophilic (37 degrees C) and thermophilic (53 degrees C) temperatures. In addition, heat-treated waste sludge released far less P into the digested sludge liquor than did untreated waste sludge. It is likely that the P recovery step prior to anaerobic digestion has a potential advantage for controlling struvite (magnesium ammonium phosphate) deposit problems in sludge handling processes. PMID:16233643

  11. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACH SOLUTIONS

    EPA Science Inventory

    The expectation that solubility of actinide ions will be low during alkaline sludge washing to remediate DOE's underground waste tanks is based on minimal experimental evidence, and the application of thermodynamic models of dubious validity to systems that may well be under kine...

  12. CO-GASIFICATION OF DENSIFIED SLUDGE AND SOLID WASTE IN A DOWNDRAFT GASIFIER

    EPA Science Inventory

    Thermal gasification, the subject of this report, is a new process for the co-disposal of densified sewage sludge and solid waste in a co-current flow, fixed bed reactor (also called a downdraft gasifier). The advantages of this technology include lower costs than other sewage sl...

  13. Two-phased hyperthermophilic anaerobic co-digestion of waste activated sludge with kitchen garbage.

    PubMed

    Lee, Myungyeol; Hidaka, Taira; Tsuno, Hiroshi

    2009-11-01

    For co-digestion of waste activated sludge with kitchen garbage, hyperthermophilic digester systems that consisted of an acidogenic reactor operated at hyperthermophilic (70 degrees C) and a methanogenic reactor operated at mesophilic (35 degrees C), thermophilic (55 degrees C) or hyperthermophilic (65 degrees C) conditions in series were studied by comparing with a thermophilic digester system that consisted of thermophilic (55 degrees C) acidogenic and methanogenic reactors. Laboratory scale reactors were operated continuously fed with a substrate blend composed of concentrated waste activated sludge and artificial kitchen garbage. At the acidogenic reactor, solubilization efficiencies of chemical oxygen demand (COD), carbohydrate and protein at 70 degrees C were about 39%, 42% and 54%, respectively, and they were higher than those at 55 degrees C by around 10%. The system of acidogenesis at 70 degrees C and methanogenesis at 55 degrees C was stable and well-functioned in terms of treatment performances and low ammonium nitrogen concentrations. Microbial community analysis was conducted using a molecular biological method. The key microbe determined at the hyperthermophilic acidogenesis step was Coprothermobacter sp., which was possibly concerned with the degradation of protein in waste activated sludge. The present study proved that the hyperthermophilic system was advantageous for treating substrate blends containing high concentrations of waste activated sludge. PMID:19804865

  14. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system.

    PubMed

    Wang, Yi; Zheng, Shu-Jian; Pei, Li-Ying; Ke, Li; Peng, Dang-Cong; Xia, Si-Qing

    2014-01-01

    The uncontrolled release of nutrients from waste sludge results in nitrogen and phosphorus overloading in wastewater treatment plants when supernatant is returned to the inlet. A controlled release, recovery and removal of nutrient from the waste sludge of a Biological Nutrient Removal system (BNR) are investigated. Results showed that the supernatant was of high mineral salt, high electrical conductivity and poor biodegradability, in addition to high nitrogen and phosphorus concentrations after the waste sludge was hydrolysed through sodium dodecyl sulphate addition. Subsequently, over 91.8% of phosphorus and 10.5% of nitrogen in the supernatants were extracted by the crystallization method under the conditions of 9.5 pH and 400 rpm. The precipitate was mainly struvite according to X-ray diffraction and morphological examination. A multistage anoxic-oxic Moving Bed Biofilm Reactor (MBBR) was then adopted to remove the residual carbon, nitrogen and phosphorus in the supernatant. The MBBR exhibited good performance in simultaneously removing carbon, nitrogen and phosphorus under a short aeration time, which accounted for 31.25% of a cycle. Fluorescence in situ hybridization analysis demonstrated that nitrifiers presented mainly in floc, although higher extracellular polymeric substance content, especially DNA, appeared in the biofilm. Thus, a combination of hydrolysis and precipitation, followed by the MBBR, can complete the nutrient release from the waste sludge of a BNR system, recovers nutrients from the hydrolysed liquor and removes nutrients from leftovers effectively. PMID:25176308

  15. Low-level waste forum meeting reports

    SciTech Connect

    1995-12-31

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  16. Municipal incineration studies: Sludge, refuse, and solid wastes. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the use of incineration processes for the destruction of municipal wastes, including sewage sludge, refuse, and solid wastes. Topics include systems design and management, combustion and emissions studies, pollution and toxicity studies, heat recovery operations, pollution control devices, and economic aspects. Analytical methods for pollution identification, marine vessel incinerators, catalytic incineration, and risk assessment studies are also considered. (Contains 250 citations and includes a subject term index and title list.)

  17. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    SciTech Connect

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  18. High-level waste tank modifications, installation of mobilization equipment/check out

    SciTech Connect

    Schiffhauer, M.A.; Thompson, S.C.

    1992-08-31

    PUREX high-level waste (HLW) is contained at the West Valley Demonstration Project (WVDP) in an underground carbon-steel storage tank. The HLW consists of a precipitated sludge and an alkaline supernate. This report describes the system that the WVDP has developed and implemented to resuspend and wash the HLW sludge from the tank. The report discusses Sludge Mobilization and Wash System (SMWS) equipment design, installation, and testing. The storage tank required modifications to accommodate the SMWS. These modifications are discussed as well.

  19. Method to Determine Oxalate in High-Level Sludge by Ion Chromatography

    SciTech Connect

    Coleman, C.J.

    2002-12-19

    The Sludge Batch 3 macrobatch feed to the DWPF is expected to contain a relatively high concentration of oxalate. A simple acid addition at room temperature has been shown to be in high-level sludge. This sample preparation requires only about five minutes and yields solutions suitable for oxalate determinations by ion chromatography.

  20. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.

    PubMed

    Ruiz-Hernando, M; Martín-Díaz, J; Labanda, J; Mata-Alvarez, J; Llorens, J; Lucena, F; Astals, S

    2014-09-15

    Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs. PMID:24907480

  1. Moisture retention of municipal solid waste mixed with sewage sludge and ash in a semi-arid climate.

    PubMed

    Dollar, L H

    2005-06-01

    Mechanisms involved in moisture storage in refuse are explored using data from four sets of experiments in a semi-arid climate. Two laboratory series of experiments contained municipal solid waste (MSW) amended with sewage sludge, one with higher proportions of ash in the MSW than the other. Outdoor experiments contained waste streams with different proportions of ash. Field cells compared moisture retention of refuse and MSW co-disposed with sewage sludge. Sewage sludge at high loads was found to increase the moisture storage relative to unamended MSW. Belt-pressed sludge retained water as bound water that was released by decay and changing pH. Sun-dried sludge also retained more moisture than MSW alone. In gravimetric terms, ash reduced the storage potential of MSW, in laboratory and outdoor experiments. However, outdoor experiments released less leachate from ash-rich refuse than middle-income waste with no ash fraction. PMID:15988940

  2. Physicochemical characterization of sewage sludge and green waste for agricultural utilization.

    PubMed

    Ramdani, N; Hamou, A; Lousdad, A; Al-Douri, Y

    2015-01-01

    In order to valorize the organic wastes, a mixture composed of 60 kg of thick sewage sludge from a wastewater treatment plant, 30 kg of green wastes (made of 10 kg straw of wheat, 10 kg manure farm wastes, and 10 kg of dead leaves), and 10 kg of wood chips was prepared. The organic wastes were mixed and put into a wooden cubic composter having a volume of 1.5 m3. Physicochemical analyses were made every 30 days for five months. The results of the analyses showed that the obtained compost had good physicochemical quality and can be used as an organic fertilizer. The main characteristics of this compost were distinguished by its pH from 7.4 to 7.8, with a ratio of organic matter of 40-42%. During composting, the humification process led to an increase in humic acids from 29.5 to 39.1 mg g(-1), a decrease in fulvic acids from 32.1 to 10.9 mg g(-1), and a global decomposition of hemicellulose, cellulose, and lignin. The obtained results show that a period of 150 days of composting gave a C/N ratio of 15.4. The total metal content in the final compost was much lower than the standard toxic levels for composts to be used as good soil fertilizers. The germination index for the two plants Cicer arietinum and Hordeum vulgare was 93% after the same period of composting, showing that the final compost was not phytotoxic. The study showed the possibility of valorization of the compost and its possible use in the domain of agriculture. PMID:25517858

  3. OPERATIONAL CHALLENGES IN MIXING AND TRANSFER OF HIGH YIELD STRESS SLUDGE WASTE

    SciTech Connect

    Caldwell, T.; Bhatt, P.

    2009-12-07

    The ability to mobilize and transport non-Newtonian waste is essential to advance the closure of highly radioactive storage tanks. Recent waste removal operations from Tank 12H at the Savannah River Site (SRS) encountered sludge mixtures with a yield stress too high to pump. The waste removal equipment for Tank 12H was designed to mobilize and transport a diluted slurry mixture through an underground 550m long (1800 ft) 0.075m diameter (3 inch) pipeline. The transfer pump was positioned in a well casing submerged in the sludge slurry. The design allowed for mobilized sludge to enter the pump suction while keeping out larger tank debris. Data from a similar tank with known rheological properties were used to size the equipment. However, after installation and startup, field data from Tank 12H confirmed the yield stress of the slurry to exceed 40 Pa, whereas the system is designed for 10 Pa. A revision to the removal strategy was required, which involved metered dilution, blending, and mixing to ensure effective and safe transfer performance. The strategy resulted in the removal of over 255,000 kgs of insoluble solids with four discrete transfer evolutions for a total transfer volume of 2400 m{sup 3} (634,000 gallons) of sludge slurry.

  4. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    PubMed

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants. PMID:26381110

  5. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.

    PubMed

    Hidaka, Taira; Wang, Feng; Tsumori, Jun

    2015-09-01

    Anaerobic co-digestion of sewage sludge and other organic wastes, such as kitchen garbage, food waste, and agricultural waste, at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Substrate characteristics and the anaerobic digestion performance of sewage sludge and various organic wastes were compared using experiments and modeling. Co-digestion improved the value of digested sewage sludge as a fertilizer. The relationship between total and soluble elemental concentrations was correlated with the periodic table: most Na and K (alkali metals) were soluble, and around 20-40% of Mg and around 10-20% of Ca (alkaline earth metals) were soluble. The ratio of biodegradable chemical oxygen demand of organic wastes was 65-90%. The methane conversion ratio and methane production rate under mesophilic conditions were evaluated using a simplified mathematical model. There was reasonably close agreement between the model simulations and the experimental results in terms of methane production and nitrogen concentration. These results provide valuable information and indicate that the model can be used as a pre-evaluation tool to facilitate the introduction of co-digestion at WWTPs. PMID:26031329

  6. Food waste co-digestion with sewage sludge--realising its potential in the UK.

    PubMed

    Iacovidou, Eleni; Ohandja, Dieudonné-Guy; Voulvoulis, Nikolaos

    2012-12-15

    The application of anaerobic co-digestion of food waste with sewage sludge, although well established in many European countries, is still in its infancy in the UK. This process has many benefits to offer, with a successful application often associated with increased renewable energy potential, outweighing constraints associated with the variability of food waste and its handling requirements prior to co-digestion. With both regulations and water infrastructures designed and constructed on the basis of linear views and sectorial requirements and conditions and technologies from the past in many parts of the world, in the UK, sewage sludge and food waste digestion operations are also under very different regulatory and management regimes. With sustainability requiring that we do not address single issues in isolation, but through a systems approach that delivers integrated solutions, co-digestion of food waste with sewage sludge could become such a solution. If carefully applied, co-digestion can deliver beneficial synergies for the water industry and authorities responsible for food waste management. The collaboration of all relevant stakeholders and regulators to support changes to current regulatory frameworks to enable this, is proposed as the way forward, particularly as their complexity has been identified as the major hurdle to the implementation of co-digestion in the UK. PMID:22940124

  7. CASE STUDY: IN-SITU SOLIDIFICATION/STABILIZATION OF HAZARDOUS ACID WASTE OIL SLUDGE AND LESSONS LEARNED

    EPA Science Inventory

    The South 8th Street site contained a 2.5 acre oily sludge pit with very low pH waste produced by oil recycling activities. This sludge was treated using in-situ solidification/stabilization technology applied by deep soil mixing augers. The problems encountered, solutions develo...

  8. Packaged low-level waste verification system

    SciTech Connect

    Tuite, K.; Winberg, M.R.; McIsaac, C.V.

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  9. Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment of waste activated sludge.

    PubMed

    Wang, Xiaoxia; Qiu, Zhaofu; Lu, Shuguang; Ying, Weichi

    2010-04-15

    Batch ultrasonic treatments (sonication) were performed on two waste activated sludge (WAS) samples, BNR-WAS from the biological nitrogen removal unit and BNPR-WAS from the biological nitrogen and phosphorus removal unit of two Shanghai municipal WWTPs, to determine the effects of sonication time and intensity on the amount and distribution of the organic, N and P species released from the samples. The concentration profiles of COD, TOC fractions in different molecular weight (MW) ranges (<2 kDa, 2-100 kDa, and >100 kDa), TN, organic-N, NH(3)-N, TP and PO(4)-P were monitored during the treatment at three sonication intensity levels (0.167, 0.330 and 0.500 W/mL). Species releases increased with sonication time and/or intensity; the release rates were accelerated when the sonication intensity was above a critical level between 0.330 and 0.500 W/mL. After 1 h of treatment, 37.9%, 37.5% and 50.8% of the organic content (measured as COD) of BNR-WAS were released, while the same for BNPR-WAS were 40.9%, 55.3% and 56.9%. It also resulted in the release of 40.9%, 38.7%, and 52.1% of total nitrogen from BNR-WAS, relative to 46.2%, 61.6%, and 70.4% of the same from BNPR-WAS; most released nitrogen were organic-N (65.0% and 84.9%), followed by NH(3)-N (34.7% and 14.9%) and trace amounts of nitrate and nitrite. More total phosphorus of a higher orthophosphate content was released from BNRP-WAS (>60% release after 1 h of sonication, 80% was PO(4)-P) than from BNR-WAS (<50% release, 40% was PO(4)-P). The differences in the releases as well as the molecular weight distribution pattern of the soluble TOC species were due to the different structure and composition of the sludge samples. Sonication is a viable sludge treatment process when it is combined with a phosphorus recovery process to remove most of the released PO(4)-P so that the supernatant may be returned for further biological treatment. PMID:20022695

  10. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    SciTech Connect

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-09

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

  11. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect

    Ray, J.W.; Marra, S.L.; Herman, C.C.

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  12. Evaluation of three analytical techniques used to determine high levels of volatile organic compounds in type IV sludge from Rocky Flats Plant

    SciTech Connect

    Parish, K.J.; Applegate, D.V.; Tsai, Y.

    1996-01-01

    Before disposal, radioactive sludge (Type IV) from Rocky Flats Plant (RFP) must be evaluated for volatile organic compound (VOC) content. The Type IV sludge consists of organic solvents, degreasers, cutting oils, and transuranic (TRU) waste mixed with calcium silicate (MicroCel E{reg_sign}) and Oil Dri{reg_sign} to form a grease or paste-like material. For laboratory testing, a simulated Type IV RFP sludge (nonradioactive) was prepared at Argonne National Laboratory-East. This sludge has a composition similar to that expected from field samples. On the basis of historical information, a typical Type IV sludge is expected to contain approximately 1-10 percent of three target VOCs. The objective of this work is to evaluate three proposed methods for the determination of high levels of these three VOCs in Type IV sludge. The three methods are (1) static headspace gas analysis, (2) methanol extraction, and (3) ethylene glycol extraction. All three methods employ gas chromatography/mass spectrometry (GC/MS). They were evaluated regarding general method performance criteria, ease of operation, and amounts of secondary mixed waste generated.

  13. In-drum vitrification of transuranium waste sludge using microwave energy

    SciTech Connect

    Petersen, R.D.; Johnson, A.J. . Rocky Flats Plant)

    1989-01-01

    Microwave vitrification of transuranic (TRU) waste at the Rocky Flats Nuclear Weapons Plant is being tested using actual TRU waste in a bench scale system and simulated waste in a pilot system. In 1987, bench scale testing was completed to determine the effectiveness of in drum microwave vitrification of simulated precipitation sludge. The equivalent used in the bench tests included a 6KW, 2.45 GHz microwave generator, aluminum cavity, turntable, infrared (IR) thermometer and screwfeeder. Passive chokes were added to the cavity for mounting the IR thermometer and screwfeeder.

  14. The Impact of Oxone on Disintegration and Dewaterability of Waste Activated Sludge.

    PubMed

    Wacławek, Stanisław; Grübel, Klaudiusz; Chłąd, Zuzanna; Dudziak, Mariusz; Černík, Miroslav

    2016-02-01

    Biochemical parameters such as soluble chemical oxygen demand (SCOD), phosphate, ammonium nitrogen and proteins are often used to characterize the efficiency of disintegration of waste activated sludge (WAS) flocs and microorganism cells. In this study, the chemical disintegration using peroxymonosulfate (MPS, Oxone) and thermally activated MPS, were evaluated for the destruction of WAS. Our study was conducted for chemical disintegration of WAS by MPS in doses between 84.7 - 847.5 mg/g(TS) activated by temperatures of 50, 70 and 90 °C over 30 minutes. The application of these methods causes an increase in the soluble COD value and protein concentration in the supernatant. Also, they positively influence the sludge volume index (SVI) which decreased from 89.8 to 17.2 ml/g. Our research work confirmed that the application of thermally activated MPS may become a new effective way of improving sewage treatment and sewage sludge processing. PMID:26803102

  15. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  16. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  17. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community.

    PubMed

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  18. Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge.

    PubMed

    Nakashimada, Yutaka; Ohshima, Yasutaka; Minami, Hisao; Yabu, Hironori; Namba, Yuzaburo; Nishio, Naomichi

    2008-07-01

    The study investigated methane production from dehydrated waste-activated sludge (DWAS) with approximately 80% water content under thermophilic conditions. The repeated batch-wise treatment of DWAS using methanogenic sludge unacclimated to high concentrations of ammonia, increased the ammonia production up to 7,600 mg N per kilogram total wet sludge of total ammonia concentration, and stopped the methane production. Investigation revealed that the loading ratio of DWAS for methanogenic sludge influences anaerobic digestion. Methane production significantly decreased and ammonia concentration increased with the increase in loading ratio of DWAS. Since the semicontinuous culture revealed that approximately 50% of organic nitrogen in DWAS converted to ammonia at sludge retention time (SRT) after 4 days at 37 degrees C and 1.33 days at 55 degrees C, the previous stripping of the ammonia produced from DWAS was carried out. The stripping of ammonia increased methane production significantly. This ammonia-methane two-stage anaerobic digestion demonstrated a successful methane production at SRT 20 days in the semicontinuous operation using a laboratory-scale reactor system. PMID:18491038

  19. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-06-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production. PMID:26698921

  20. Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM)

    SciTech Connect

    Quercia, G.; Putten, J.J.G. van der; Hüsken, G.; Brouwers, H.J.H.

    2013-12-15

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 μm. Thus, this sludge constitutes a potentially hazardous waste when it is improperly disposed. Due to its high content of amorphous SiO{sub 2}, this sludge has a potential use as supplementary cementitious material (SCM) in concrete. In this study the main properties of three different samples of photovoltaic's silica-rich waste sludge (nSS) were physically and chemically characterized. The characterization techniques included: scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), nitrogen physical adsorption isotherm (BET method), density by Helium pycnometry, particle size distribution determined by laser light scattering (LLS) and zeta-potential measurements by dynamic light scattering (DLS). In addition, a dispersability study was performed to design stable slurries to be used as liquid additives for the concrete production on site. The effects on the hydration kinetics of cement pastes by the incorporation of nSS in the designed slurries were determined using an isothermal calorimeter. A compressive strength test of standard mortars with 7% of cement replacement was performed to determine the pozzolanic activity of the waste nano-silica sludge. Finally, the hardened system was fully characterized to determine the phase composition. The results demonstrate that the nSS can be utilized as SCM to replace portion of cement in mortars, thereby decreasing the CO{sub 2} footprint and the environmental impact of concrete. -- Highlights: •Three different samples of PV nano-silica sludge (nSS) were fully characterized. •nSS is composed of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. •Dispersability studies demonstrated that nSS agglomerates are broken to nano

  1. STABILIZATION OF A MIXED WASTE SLUDGE SURROGATE CONTAINING MORE THAN 260 PPM MERCURY

    SciTech Connect

    Smith, W. J.; Feizollahi, F.; Brimley, R.

    2002-02-25

    In an earlier demonstration of an innovative mercury stabilization technology for the Department of Energy, ATG's full-scale process stabilized mercury in soils that initially contained more than 260 ppm of mercury of unknown speciation. The treated waste satisfied the leaching standards for mercury that qualify wastes containing less than 260 ppm for land disposal. This paper describes the extension of that work to demonstrate a full-scale process for the stabilization of a representative sludge that contained more than 260 ppm of Hg of several mercury species. RCRA (Resource Conservation and Recovery Act) regulations now require the recovery of mercury from any waste containing more than 260 ppm of mercury, usually with thermal retorts. The results of this work with a surrogate sludge, and of the previous work with an actual soil, support a proposal now before the U.S. EPA (Environmental Protection Agency) to allow such wastes to be stabilized without retorting. The full-scale demonstration with a sulfide reagent reduced the mercury concentrations in extracts of treated sludge below the relevant leaching standard, a Universal Treatment Standard (UTS) limit of 0.025 mg mercury per liter of leachate generated by the Toxicity Characteristic Leaching Procedure (TCLP). The sulfide formulation reduced the concentration to about onehalf the UTS limit.

  2. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria.

    PubMed

    Guo, Liang; Lu, Mingmin; Li, Qianqian; Zhang, Jiawen; Zong, Yan; She, Zonglian

    2014-11-01

    The hydrolysis effect of waste sludge after multi-enzyme and thermophilic bacteria pretreatments is investigated using excitation-emission matrix (EEM) with fluorescence regional integration (FRI) in this study. The compositional characteristics of extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed to evaluate the sludge disintegration. The EPS and cell wall in sludge were disrupted after hydrolysis which led to carbohydrate, protein and soluble chemical oxygen demand (SCOD) of DOM increasing in sludge supernatant. The bio-degradability level in the extracted fractions of EPS and DOM depending on the fluorescence zones was found after hydrolysis. The highest proportion of percent fluorescence response (Pi,n) in EPS and DOM was soluble microbial by-product and humic acid-like organics. A significant increase of humic acid-like organics in DOM after thermophilic bacteria hydrolysis was obtained. The assessment of hydrolysis using EEM coupled with FRI provided a new insight toward the bio-utilization process of waste sludge. PMID:25181696

  3. Caustic leaching of high-level radioactive tank sludge: A critical literature review

    SciTech Connect

    McGinnis, C.P.; Welch, T.D.; Hunt, R.D.

    1998-08-01

    The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, which can be separated into high-level waste (HLW) and low-level waste (LLW) fractions. Since the unit costs of treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW are being developed. A key process currently being studied to reduce the volume of HLW sludges is called enhanced sludge washing (ESW). This process removes, by water washes, soluble constituents such as sodium salts, and the washed sludge is then leached with 2--3 M NaOH at 60--100 C to remove nonradioactive metals such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after radionuclides such as {sup 137}Cs have been removed. Results of bench-scale tests have shown that the ESW will probably remove the required amounts of inert constituents. While both experimental and theoretical results have shown that leaching efficiency increases as the time and temperature of the leach are increased, increases in the caustic concentration above 2--3 M will only marginally improve the leach factors. However, these tests were not designed to validate the assumption that the caustic used in the ESW process will generate only a small increase (10 Mkg) in the amount of LLW; instead the test conditions were selected to maximize leaching in a short period and used more water and caustic than is planned during full-scale operations. Even though calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be reasonable, a detailed study of the amount of LLW from the ESW process is still required. If the LLW analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt process or caustic recycle would be needed. Finally, experimental and theoretical studies have clearly demonstrated the need for the control of solids formation during and after leaching.

  4. Cultivation of phagotrophic algae with waste activated sludge as a fast approach to reclaim waste organics.

    PubMed

    Li, Cong; Xiao, Suo; Ju, Lu-Kwang

    2016-03-15

    Substantial energy is reserved in waste activated sludge (WAS) organics but much of it is difficult to recover because the solid organics require long time to solubilize. In this work we introduced the new approach of recovering WAS organics into the biomass of phagotrophic algae. Phagotrophic algae have the unique ability to grow by ingesting insoluble organic particles including microbial cells. This phagotrophic ability renders the solubilization of WAS organics unnecessary and makes this approach remarkably fast. The approach consists of two stages: a short anaerobic digestion treatment followed by the algal growth on treated WAS. The short anaerobic digestion was exploited to release discrete bacteria from WAS flocs. Phagotrophic algae could then grow rapidly with the released bacteria as well as the solubilized nutrients in the treated WAS. The results showed that WAS organics could be quickly consumed by phagotrophic algae. Among all studied conditions the highest WAS volatile solids (VS) reduction was achieved with 72 h anaerobic digestion and 24 h algal growth. In this optimal process, 28% of WAS VS was reduced, and 41% and 20% of the reduced VS were converted into algal biomass and lipids, respectively. In comparison, only 18% WAS VS were reduced after the same time of aerobic digestion without algae addition. Through this approach, the amount of WAS organics requiring further treatment for final disposal is significantly reduced. With the production of significant amounts of algal biomass and lipids, WAS treatment is expected to be more economical and sustainable in material recycling. PMID:26799709

  5. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible. PMID:26688976

  6. Two-stage thermophilic-mesophilic anaerobic digestion of waste activated sludge from a biological nutrient removal plant.

    PubMed

    Watts, S; Hamilton, G; Keller, J

    2006-01-01

    A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream. PMID:16784199

  7. Impact of Alkali Source on Vitrification of SRS High Level Waste

    SciTech Connect

    LAMBERT, D. P.; MILLER, D. H.; PEELER, D. K.; SMITH, M. E.; STONE, M. E.

    2005-09-08

    The Defense Waste Processing Facility (DWPF) Savannah River Site is currently immobilizing high level nuclear waste sludge by vitrification in borosilicate glass. The processing strategy involves blending a large batch of sludge into a feed tank, washing the sludge to reduce the amount of soluble species, then processing the large ''sludge batch'' through the DWPF. Each sludge batch is tested by the Savannah River National Laboratory (SRNL) using simulants and tests with samples of the radioactive waste to ''qualify'' the batch prior to processing in the DWPF. The DWPF pretreats the sludge by first acidifying the sludge with nitric and formic acid. The ratio of nitric to formic acid is adjusted as required to target a final glass composition that is slightly reducing (the target is for {approx}20% of the iron to have a valence of two in the glass). The formic acid reduces the mercury in the feed to elemental mercury which is steam stripped from the feed. After a concentration step, the glass former (glass frit) is added as a 50 wt% slurry and the batch is concentrated to approximately 50 wt% solids. The feed slurry is then fed to a joule heated melter maintained at 1150 C. The glass must meet both processing (e.g., viscosity and liquidus temperature) and product performance (e.g., durability) constraints The alkali content of the final waste glass is a critical parameter that affects key glass properties (such as durability) as well as the processing characteristics of the waste sludge during the pretreatment and vitrification processes. Increasing the alkali content of the glass has been shown to improve the production rate of the DWPF, but the total alkali in the final glass is limited by constraints on glass durability and viscosity. Two sources of alkali contribute to the final alkali content of the glass: sodium salts in the waste supernate and sodium and lithium oxides in the glass frit added during pretreatment processes. Sodium salts in the waste supernate

  8. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    SciTech Connect

    Sandoval Lozano, Claudia Johanna Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando

    2009-02-15

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH{sub 4} and CO{sub 2}) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L{sup -1} and a concentration of CO{sub 2} of 90%. In this reactor, the fermentative population was predominant (10{sup 5}-10{sup 6} MPN mL{sup -1}). The acetogenic population was (10{sup 5} MPN mL{sup -1}) and the sulphate-reducing population was (10{sup 4}-10{sup 5} MPN mL{sup -1}). In the methanogenic reactor (R2), levels of CH{sub 4} (70%) were higher than CO{sub 2} (25%), whereas the VFA values were lower than 4000 mg L{sup -1}. Substrate competition between sulphate-reducing (10{sup 4}-10{sup 5} MPN mL{sup -1}) and methanogenic bacteria (10{sup 5} MPN mL{sup -1}) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) and hydrogenophilic (0.94 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.

  9. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment.

    PubMed

    Lozano, Claudia Johanna Sandoval; Mendoza, Marisol Vergara; de Arango, Mariela Carreño; Monroy, Edgar Fernando Castillo

    2009-02-01

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH(4) and CO(2)) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Río Frío Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L(-1) and a concentration of CO(2) of 90%. In this reactor, the fermentative population was predominant (10(5)-10(6)MPN mL(-1)). The acetogenic population was (10(5)MPN mL(-1)) and the sulphate-reducing population was (10(4)-10(5)MPN mL(-1)). In the methanogenic reactor (R2), levels of CH(4) (70%) were higher than CO(2) (25%), whereas the VFA values were lower than 4000 mg L(-1). Substrate competition between sulphate-reducing (10(4)-10(5)MPN mL(-1)) and methanogenic bacteria (10(5)MPN mL(-1)) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH(4)g(-1)VSS(-1)day(-1)) and hydrogenophilic (0.94 g COD-CH(4)g(-1)VSS(-1)day(-1)) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified. PMID:18707861

  10. Utilization of molasses spentwash for production of bioplastics by waste activated sludge

    SciTech Connect

    Khardenavis, Anshuman A. Vaidya, Atul N.; Kumar, M. Suresh; Chakrabarti, Tapan

    2009-09-15

    Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and {sup 13}C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio = 28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio = 29). PHB production yield (Y{sub p/s}) was highest (0.184 g g{sup -1} COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.

  11. Photocatalytic reduction of CO₂with SiC recovered from silicon sludge wastes.

    PubMed

    Yang, T-C; Chang, F-C; Peng, C-Y; Wang, H Paul; Wei, Y-L

    2015-01-01

    In the present study, silicon carbide (SiC) recovered from silicon sludge wastes is used as catalysts for photocatalytic reduction of CO₂. By X-ray diffraction, it is clear that the main components in the silicon sludge wastes are silicon and SiC. The grain size of the SiC separated from the sludge waste is in the range of 10-20 µm in diameter (observed by scanning electron microscopy). By solid state nuclear magnetic resonance, it is found that α-SiC is the main crystallite in the purified SiC. The α-SiC has the band-gap of 3.0 eV. To yield C₁-C₂chemicals from photocatalytic reduction of CO₂, hydrogen is provided by simultaneous photocatalytic splitting of H₂O. Under the light (253-2000 nm) illumination, 12.03 and 1.22 µmol/h g cat of formic and acetic acids, respectively, can be yielded. PMID:25241807

  12. Spectroscopic characterization of digestates obtained from sludge mixed to increasing amounts of fruit and vegetable wastes

    NASA Astrophysics Data System (ADS)

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Ricci, Anna; Gigliotti, Giovanni

    2015-04-01

    Anaerobic digestion (AD) represents an efficient waste-treatment technology during which microorganisms break down biodegradable material in absence of oxygen yielding a biogas containing methane. The aim of this work was to investigate the transformations occurring in the organic matter during the co-digestion of waste mixed sludge (WMS) with an increasing amount of fruit and vegetable wastes (FVW) in a pilot scale apparatus reproducing a full-scale digester in an existing wastewater treatment plant. Samples comprised: sludge, FVW, sludge mixed with 10-20-30-40% FVW. Ingestates and digestates were analyzed by means of emission fluorescence spectroscopy and FTIR associated to Fourier self deconvolution (FSD) of spectra. With increasing the amount of FVW from 10% to 20% at which percentage biogas production reached the maximum value, FTIR spectra and FSD traces of digestates exhibited a decrease of intensity of peaks assigned to polysaccharides and aliphatics and an increase of peak assigned to aromatics as a result of the biodegradation of rapidly degradable materials and concentration of aromatic recalcitrant compounds. Digestates with 30 and 40% FVW exhibited a relative increase of intensity of peaks assigned to aliphatics likely as a result of the increasing amount of rapidly degradable materials and the consequent reduction of the hydraulic retention time. This may cause inhibition of methanogenesis and accumulation of volatile fatty acids. The highest emission fluorescence intensity was observed for the digestate with 20% FVW confirming the concentration of aromatic recalcitrant compounds in the substrate obtained at the highest biogas production.

  13. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    PubMed

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal. PMID:24122666

  14. Low-level waste program technical strategy

    SciTech Connect

    Bledsoe, K.W.

    1994-10-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite.

  15. Response of activated sludge to the treatment of oxytetracycline production waste stream.

    PubMed

    Liu, Miaomiao; Zhang, Yu; Ding, Ran; Gao, Yingxin; Yang, Min

    2013-10-01

    To investigate how the microbial community in activated sludge responded to high antibiotic levels, a bench-scale aerobic wastewater treatment system was used to treat oxytetracycline (OTC) mother liquor (OTC-ML). Removal efficiency of chemical oxygen demand decreased from 64.9 to 51.0 % when the OTC level increased from 191.6 to 620.5 mg/L, respectively. According to the cloning results, Psychrobacter and Cryptophyta were the dominant bacterium and eukaryote in the inoculated sludge, respectively, both of which related to low temperature. After OTC exposure, Alphaproteobacteria and Betaproteobacteria became the dominant bacteria, with a small proportion of Firmicutes, Actinobacteria appeared, and fungi (mainly Saccharomycotina) became the dominant eukaryotes, indicating the possible functions of these microorganisms in the wastewater treatment of OTC-ML. The relative abundance of nine tetracycline resistance genes and four mobile elements (class 1 integron, class 2 integron, transposon Tn916/1545, and pattern 1 insertion sequence common region) significantly increased from undetectable to 2.1 × 10(-3) in the inoculated sludge to 1.7 × 10(-4)-9.8 × 10(-1) in sludge exposed to 620.5 mg/L OTC by using real-time PCR. The variety of gene cassette arrays of class 1 integron in the sludge samples increased with increasing OTC exposure concentration. PMID:23188460

  16. Comparison of polycyclic aromatic hydrocarbons levels in sludges from municipal and industrial wastewater treatment plants.

    PubMed

    Salihoglu, N Kamil; Salihoglu, Güray; Tasdemir, Yücel; Cindoruk, S Siddik; Yolsal, Didem; Ogulmus, Ruken; Karaca, Gizem

    2010-04-01

    This study was carried out to investigate the concentrations and potential sources of the polycyclic aromatic hydrocarbons (PAHs) in sludge of 14 wastewater treatment plants (WWTPs). Sludge samples were collected from 2 municipal WWTPs, 11 industrial WWTPs, and 1 sanitary landfill leachate treatment plant within the city of Bursa, Turkey during the summer of 2008. Ultrasonication was applied for extraction and gas chromatography-mass spectrometry was used to analyze the PAH contents of the samples. Twelve of the 16 EPA-listed PAH compounds were determined. Total PAH concentrations (Sigma(12) PAHs) determined in all of the sludge samples ranged from 1,781 to 19,866 microg/kg dry matter (dm). The sum of 8 of the 11 EU PAHs varied between 1,481 and 17,314 microg/kg dm, and 3 of the samples exceeded the proposed EU limit for land application. One of the automotive industry sludges contained the highest level of PAHs, followed by one of the municipal sludges. The average sum of 5- and 6-ring PAH compounds in all of the sludge samples amounted to almost 65% of the total PAHs. The diagnostic ratios of specific PAHs were calculated to determine the dominant sources for the PAHs in the sludge samples. PMID:19763678

  17. The determination of PCBs in Rocky Flats Type IV waste sludge by gas chromatography/electron capture detection. Part 2

    SciTech Connect

    Parish, K.J.; Applegate, D.V.; Postlethwait, P.D.; Boparai, A.S.; Reedy, G.T.

    1994-12-01

    Before disposal, radioactive sludge (Type IV) from Rocky Flats Plant (RFP) must be evaluated for polychlorinated biphenyl (PCB) content. The Type IV sludge consists of organic solvents, degreasers, cutting oils, and transuranic (TRU) waste mixed with calcium silicate (MicroCel E{reg_sign} and Oil Dri{reg_sign} to form a grease or paste-like material. For laboratory testing, a nonradioactive simulated Type 17V RFP sludge was prepared at Argonne National Laboratory-East (ANL-E). This sludge has a composition similar to that expected from field samples. In an earlier effort, a simplified method was developed for extraction, cleanup of extract, and determination of PCBs in samples of simulated sludge spiked with Aroclors 1254 and 1260. The simplified method has now been used to determine the presence and quantities of other Aroclors in the simulated sludge, namely, Aroclors 10 1 6, 1221, 1232, 1242, and 1248. The accuracy and precision of the data for these Aroclors were found to be similar to the data for sludges spiked with Aroclors 1254 and 1260. Since actual sludges may vary in composition, the method was also verified by analyzing another source of Type IV simulated sludge, prepared by Argonne National Laboratory-West (ANL-W).

  18. Effects of combined composting and vermicomposting of waste sludge on arsenic fate and bioavailability.

    PubMed

    Maňáková, Blanka; Kuta, Jan; Svobodová, Markéta; Hofman, Jakub

    2014-09-15

    Composting and vermicomposting are traditional processes for the treatment of sludge. During these processes, the humification of organic matter has a significant effect on the physicochemical form and distribution of heavy metals. In this study, industrial sludge (groundwater treatment waste) contaminated by arsenic (396 ± 1 mg kg(-1)) was used. Such sludge poses a significant challenge with respect to effective treatment. Composting, vermicomposting (with Eisenia fetida), and the combined approach of composting and vermicomposting were performed to determine the evolution of arsenic speciation, mobility and bioavailability. The composting/vermicomposting was done with sludge, horse manure, and grass in the ratios of 3:6:1. A solution of 0.1M NH4COOCH3 was used as a single extraction solvent for determination of the mobile arsenic pool and targeted arsenic species (As(III), As(V), monomethylarsenic acid - MMA(V), dimethylarsenic acid - DMA(V)). The analysis of arsenic in the extracts was carried out by means of HPLC-ICP-MS spectrometry. In addition, the earthworm species E. fetida was used for bioaccumulation tests that followed the compost and vermicompost processes. The obtained results indicate a reduction in arsenic mobility and bioavailability in all matured composts and vermicomposts. The combined process exhibited a greater effect than compost or vermicompost alone. PMID:25209831

  19. Multi functional uptake behaviour of materials prepared by calcining waste paper sludge.

    PubMed

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2006-01-01

    This study concerns with the utilization of waste paper sludge, which contains mainly cellulose fibers and inorganic fillers together with coating materials such as calcite, kaolinite and talc. Paper sludge was fired at 500-900 degrees C for 6 h. The crystalline phases originally present decomposed at increasing temperatures (up to 800 degrees C) in the order kaolinite < calcite < talc. Gehlenite was formed at 800 degrees C in increasing amounts above this temperature together with small amounts of magnesium aluminum silicate and anorthite. The uptake of these fired samples of Ni2+, PO3 and NH+ was investigated at room temperature. Paper sludge fired at 700 degrees C showed the highest uptake of Ni2+, PO4(3-) and NH4+ (3.93, 1.28 and 0.49 mmol/g, respectively). The main process responsible for the sorption of these ions is the ion change along with precipitation with higher solution pH. From an economic point of view, paper sludge is the cheapest raw material for preparing adsorbents with high uptake ability for heavy metal, phosphate and ammonium ions. PMID:16779942

  20. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration.

    PubMed

    Petkovšek, Martin; Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta; Širok, Brane; Dular, Matevž

    2015-09-01

    The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L. PMID:25596776

  1. A hybrid anaerobic membrane bioreactor coupled with online ultrasonic equipment for digestion of waste activated sludge.

    PubMed

    Xu, Meilan; Wen, Xianghua; Yu, Zhiyong; Li, Yushan; Huang, Xia

    2011-05-01

    Anaerobic membrane bioreactor and online ultrasonic equipment used to enhance membrane filtration were coupled to form a hybrid system (US-AnMBR) designed for long-term digestion of waste activated sludge. The US-AnMBR was operated under volatile solids loading rates of 1.1-3.7 gVS/L·d. After comprehensive studies on digestion performance and membrane fouling control in the US-AnMBR, the final loading rate was determined to be 2.7 gVS/L·d with 51.3% volatile solids destruction. In the US-AnMBR, the improved digestion was due to enhanced sludge disintegration, as indicated by soluble matter comparison in the supernatant and particle size distribution in the digested sludge. Maximum specific methanogenic activity revealed that ultrasound application had no negative effect on anaerobic microorganisms. Furthermore, implementing ultrasound effectively controlled membrane fouling and successfully facilitated membrane bioreactor operation. This lab-scale study demonstrates the potential feasibility and effectiveness of setting up a US-AnMBR system for sludge digestion. PMID:21421308

  2. Production of a High-Level Waste Glass from Hanford Waste Samples

    SciTech Connect

    Crawford, C.L.; Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP).

  3. Two-stage high temperature sludge gasification using the waste heat from hot blast furnace slags.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-12-01

    Nowadays, disposal of sewage sludge from wastewater treatment plants and recovery of waste heat from steel industry, become two important environmental issues and to integrate these two problems, a two-stage high temperature sludge gasification approach was investigated using the waste heat in hot slags herein. The whole process was divided into two stages, i.e., the low temperature sludge pyrolysis at ⩽ 900°C in argon agent and the high temperature char gasification at ⩾ 900°C in CO2 agent, during which the heat required was supplied by hot slags in different temperature ranges. Both the thermodynamic and kinetic mechanisms were identified and it was indicated that an Avrami-Erofeev model could best interpret the stage of char gasification. Furthermore, a schematic concept of this strategy was portrayed, based on which the potential CO yield and CO2 emission reduction achieved in China could be ∼1.92∗10(9)m(3) and 1.93∗10(6)t, respectively. PMID:26409106

  4. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    SciTech Connect

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  5. Solids Control in Sludge Pretreatment

    SciTech Connect

    Beahm, E.C., Weber, C.F., Hunt, R.D., Dillow, T.A.

    1997-12-31

    Sludge pretreatment will likely involve washing, followed by caustic or acidic leaching and washing of sludge residues after leaching. The principal goal of pretreatment is to obtain a low-volume high-activity waste stream and a high-volume low-activity waste stream. Also, some waste constituents such as chromium and phosphate can be included in glass formulations only at very low concentrations; therefore, it is desirable to remove them from high-level waste streams. Two aspects of sludge treatment and subsequent separations should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns.Before any treatment technology is adopted, it must be demonstrated that the process can be carried out as planned. Three pretreatment methods were considered in the Tri-Party (Washington State Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy) negotiations: (1) sludge washing with corrosion- inhibiting water, (2) Enhanced Sludge Washing, and (3)acidic dissolution with separations processes. Enhanced Sludge Washing is the baseline process. In Enhanced Sludge Washing, sludge is first washed with corrosion-inhibiting water; it is then leached with caustic (sodium hydroxide solution) and washed again with corrosion- inhibiting water. The initial concern is whether a pretreatment technique is effective in separating sludge components. This can be evaluated by bench-scale tests with sludge specimens from underground storage tanks. The results give data on the distribution of important species such as aluminum, phosphate, and radionuclides between wash and leach solutions and solid sludge residues.

  6. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect

    Albert, R.

    1992-06-30

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  7. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  8. Low-level-waste-form criteria

    SciTech Connect

    Barletta, R.E.; Davis, R.E.

    1982-01-01

    Efforts in five areas are reported: technical considerations for a high-integrity container for resin wastes; permissible radionuclide loadings for organic ion exchange resin wastes; technical factors affecting low-level waste form acceptance requirements of the proposed 10 CFR 61 and draft BTP; modeling of groundwater transport; and analysis of soils from low-level waste disposal sites (Barnwell, Hanford, and Sheffield). (DLC)

  9. Effect of Worm Predation on Changes in Waste Activated Sludge Properties.

    PubMed

    Zhu, Xuefeng; Yuan, Wenyi; Wang, Zhiwei; Zhou, Mingyuan; Guan, Jie

    2016-05-01

    This study explored the effects of worm predation on changes in waste activated sludge properties. Results showed that the rate by which worm predation reduced mixed liquor volatile suspended solids (MLVSS) was approximately 23.7% ± 3.1%. Particle size distribution and extracellular polymeric substance (EPS) analyses indicated that the reduction of fine particles and EPS content in sludge predated by worms mainly increased dewaterability and reduced the ratio of MLVSS/mixed liquor suspended solids. Moreover, both mean particle size and protein/carbohydrate ratio increased. The results of three-dimensional excitation-emission matrix and gel filtration chromatogram analyses demonstrated the varied properties of soluble microbial products and EPS were attributed to the worms' selective predation of low molecular-weight organic matter, which facilitated the hydrolysis of macromolecular organic matter. PMID:27131302

  10. Separating and Stabilizing Phosphate from High-Level Radioactive Waste: Process Development and Spectroscopic Monitoring

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Peterson, James M.; Bryan, Samuel A.; Levitskaia, Tatiana G.

    2012-05-09

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  11. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-01

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams. PMID:22571620

  12. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    SciTech Connect

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent.

  13. Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment

    PubMed Central

    2013-01-01

    Background Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for renewable energy production. Although the field of sludge pretreatment has progressed significantly over the past decade, critical questions concerning the underlying microbial interactions remain unanswered. In this study, a metagenomic approach was adopted to investigate the microbial composition and gene content contributing to enhanced biogas production from sludge subjected to a novel pretreatment method (maintaining pH at 10 for 8 days) compared to other documented methods (ultrasonic, thermal and thermal-alkaline). Results Our results showed that pretreated sludge attained a maximum methane yield approximately 4-fold higher than that of the blank un-pretreated sludge set-up at day 17. Both the microbial and metabolic consortium shifted extensively towards enhanced biodegradation subsequent to pretreatment, providing insight for the enhanced methane yield. The prevalence of Methanosaeta thermophila and Methanothermobacter thermautotrophicus, together with the functional affiliation of enzymes-encoding genes suggested an acetoclastic and hydrogenotrophic methanogenesis pathway. Additionally, an alternative enzymology in Methanosaeta was observed. Conclusions This study is the first to provide a microbiological understanding of improved biogas production subsequent to a novel waste sludge pretreatment method. The knowledge garnered will assist the design of more efficient pretreatment methods for biogas production in the future. PMID:23506434

  14. Dusts, scale, slags, sludges... Not wastes, but sources of profits

    NASA Astrophysics Data System (ADS)

    Koros, Peter J.

    2003-12-01

    Historically, the steel industry has focused on the need for and the many benefits of recycling steel that is discarded either in its own or in its customers’ manufacturing processes, as well as in recovery and reuse of steel scrap that arises after the product has served its intended purpose. In fact, modern steelmaking relies on the use of recycled iron units for at least half of its production. The other side of the story is the fate of the non-steel by-products (e.g., oxide dusts, sludges, scales, slags, spent refractories and the contained “low grade” energy units that are generated as natural adjuncts to iron and steelmaking processes). These valuable by-products often are classified as “wastes” and are discarded to landfills, at significant cost, although in reality they offer significant potential for cost savings or profit if reintroduced into the industrial arena via well planned programs. Examples of such instances will be presented, including energy credit issues, in the hope of pointing the way for future expansion of benefits from these opportunities. Preparing for a challenge and honor such as the Howe Memorial Lecture, one has to stand in awe of the accomplishments of the predecessor we honor in this forum. He worked in the early days of our industry without the benefits of the many technological improvements he and his successors brought to play as the years went by. John Stubbles, in his Howe Memorial Lecture in 1997,[1] presented a masterful and entertaining biography of Howe and his very active and prolific life. Perhaps the most telling quotation he attributed to Howe is very pertinent to the topic we will address presently: “Metallurgy lives by profit, not logic,” to which I would like to add a comment that bears on the topic of this lecture from the 1991 Howe lecturer, my friend and mentor Bill Dennis, “Where there is muck, there is money.” There are numerous examples of “one hand washes the other” in this business; that

  15. Cone Penetrometer Shear Strength Measurements of Sludge Waste in Tanks 241-AN-101 and 241-AN-106

    SciTech Connect

    Follett, Jordan R.

    2014-03-06

    This document presents the resulting shear strength profiles for sludge waste in Tanks 241-AN-101 and 241-AN-106, as determined with a full-flow cone penetrometer. Full-flow penetrometer measurements indicate shear strength profiles that increase roughly uniformly with depth. For Tank 241-AN-101, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 3,300 Pa at 15 inches above the tank bottom. For 241-AN-106, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 5,000 Pa at 15 inches above the tank bottom.

  16. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying; Yu, Dezhong

    2016-10-15

    The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility. PMID:27450355

  17. Zinc recovery and waste sludge minimization from chromium passivation baths.

    PubMed

    Diban, Nazely; Mediavilla, Rosa; Urtiaga, Ane; Ortiz, Inmaculada

    2011-08-30

    This work reports the feasibility of applying emulsion pertraction technology (EPT) aiming at zinc recovery and waste minimization in the zinc electroplating processes that include Cr (III) passivation. The assessment consists of firstly the lifetime extension of the passivation baths by selective removal of the tramp ions zinc and iron, and secondly, the recovery of zinc for further reuse. Spent passivation baths from a local industry were tested, being the major metallic content: Cr(3+) 9000mg L(-1), Zn(2+) 12,000mg L(-1), Fe(3+) 100mg L(-1). Working in a Liqui-Cel hollow fiber membrane contactor and using the extractant bis(2,4,4-trimethylpentyl) phosphinic acid, reduction of zinc and iron concentrations below 60mg L(-1) and 2mg L(-1), respectively were obtained, while trivalent chromium, the active metal that generates the passivation layer, was retained in the baths. Zinc was selectively transferred to an acidic stripping phase that in the experimental time reached a concentration of 157,000mg L(-1). Zinc recovery by electrowinning from the acidic stripping phase without any pretreatment of the electrolyte solution provided a purity of 98.5%, matching the lower commercial zinc grade. As a result of the extension of the life time of the passivation bath, significant environmental advantages are derived such as minimization of the volume of hazardous wastes and savings in the consumption of raw materials. PMID:21704452

  18. Efficacy of bioconversion of paper mill bamboo sludge and lime waste by composting and vermiconversion technologies.

    PubMed

    Sahariah, B; Sinha, I; Sharma, P; Goswami, L; Bhattacharyya, P; Gogoi, N; Bhattacharya, S S

    2014-08-01

    Paper mill bamboo sludge (PMBS) and Paper mill lime waste (PMLW) are extensively produced as solid wastes in paper mills. Untreated PMBS and PMLW contain substantial amount of heavy metals (Zn, Pb, Ni, Cd, Cr) in soluble forms. Efficiency of vermiconversion and aerobic composting with these wastes is reported here. Adopted bioconversion systems enhanced the availability of some essential nutrients (N, P, K and Zn) in various combinations of cow dung (CD) with PMBS and PMLW. Colonization of nitrogen fixing bacteria and phosphate solubilizing bacteria considerably intensified under the vermiconversion system. Moreover, significant metal detoxification occurred due to vermiconversion. Various combinations of bioconverted PMBS and PMLW were applied to tissue cultured bamboo (Bambusa tulda) and chilli (Capsicum annum). Accelerated nutrient uptake coupled with improved soil quality resulted in significant production of chilli. Furthermore, vermiconverted PMBS+CD (1:1) and PMLW+CD (1:3) confirmed as potential enriching substrate for tissue cultured bamboo. PMID:24873710

  19. Assessment of free nitrous acid pre-treatment on a mixture of primary sludge and waste activated sludge: Effect of exposure time and concentration.

    PubMed

    Zahedi, S; Icaran, P; Yuan, Z; Pijuan, M

    2016-09-01

    Free nitrous acid (FNA) has been shown to enhance the biodegradability of waste activated sludge (WAS) but its effectiveness on the pre-treatment of mixed sludge is not known. This study explores the effectiveness of four different FNA concentrations (0, 2.49, 3.55, 4.62mgN-HNO2/L) and three exposure times (2, 5, 9h) lower than the ones reported in literature (24h) on WAS characteristics and specific methane production (SMP). FNA pre-treatment reduced sludge cell viability below 10% in all cases after an exposure time of 5h, increasing the solubility of the organic matter. The treated mixed sludge was used as substrate for the biochemical methane production tests to assess its SMP. Results showed a significant increase (up to 25%) on SMP when the sludge was pretreated with the lowest FNA concentration (2.49mgN-HNO2/L) during 2 and 5h but did not show any improvement at longer exposure times or higher FNA concentrations. PMID:27318660

  20. [Effect of ultrasonic energy on the characteristics of waste activated sludge].

    PubMed

    Feng, Xin; Deng, Jin-Chuan; Li, Bi-Qing; Luo, Gang; Lei, Heng-Yi

    2011-10-01

    Seven ultrasonic energy levels ranging from 0 to 26 000 kJ x kg(-1) were used to disintegrate excess sludge to investigate the changes in physical characteristics. The results indicated that the ultrasonication process destroys floc structure, facilitates the transfer of matter into the aqueous phase, and breaks up cell walls, which facilitated the improvement of settleability and biodegradability. Low ultrasonic energies could improve the settleability and supernatant turbidity. When the energy of 1 000 kJ x kg(-1) was applied into the sludge, the maximal settling velocity of sludge at 45 min was increased by 18.58% and the supernatant turbidity at 24 h was decreased by 43.52%, compared to the control. However, high ultrasonic energies deteriorated the characteristics. The maximal settling velocity was reduced by 37.03% and the supernatant turbidity was increased by 10 times in comparison to the control when the energy dose of 26 000 kJ x kg(-1) was applied. With the increases in ultrasonic energies, the particle size was significantly decreased, the soluble solids increased and the floc clusters dispersed. These changes in sludge characteristics were directly dependent upon the amount of ultrasonic energy applied. Furthermore, these characteristics correlated significantly to the ultrasonic energy. 1000 kJ x kg(-1) was the optimal energy that improved the settleability and the supernatant turbidity, and that destructed the floc structure of sludge. On the other hand, particle size was an important factor affecting sludge settleability and supernatant turbidity. The optimal values led to best settleability and turbidity. PMID:22279916

  1. Modeling water retention of sludge simulants and actual saltcake tank wastes

    SciTech Connect

    Simmons, C.S.

    1996-07-01

    The Ferrocyanide Tanks Safety Program managed by Westinghouse hanford Company has been concerned with the potential combustion hazard of dry tank wastes containing ferrocyanide chemical in combination with nitrate salts. Pervious studies have shown that tank waste containing greater than 20 percent of weight as water could not be accidentally ignited. Moreover, a sustained combustion could not be propagated in such a wet waste even if it contained enough ferrocyanide to burn. Because moisture content is a key critical factor determining the safety of ferrocyanide-containing tank wastes, physical modeling was performed by Pacific Northwest National laboratory to evaluate the moisture-retaining behavior of typical tank wastes. The physical modeling reported here has quantified the mechanisms by which two main types of tank waste, sludge and saltcake, retain moisture in a tank profile under static conditions. Static conditions usually prevail after a tank profile has been stabilized by pumping out any excess interstitial liquid, which is not naturally retained by the waste as a result of physical forces such as capillarity.

  2. Relationship of species-specific filament levels to filamentous bulking in activated sludge.

    PubMed

    Liao, Jiangying; Lou, Inchio; de los Reyes, Francis L

    2004-04-01

    To examine the relationship between activated-sludge bulking and levels of specific filamentous bacteria, we developed a statistics-based quantification method for estimating the biomass levels of specific filaments using 16S rRNA-targeted fluorescent in situ hybridization (FISH) probes. The results of quantitative FISH for the filament Sphaerotilus natans were similar to the results of quantitative membrane hybridization in a sample from a full-scale wastewater treatment plant. Laboratory-scale reactors were operated under different flow conditions to develop bulking and nonbulking sludge and were bioaugmented with S. natans cells to stimulate bulking. Instead of S. natans, the filament Eikelboom type 1851 became dominant in the reactors. Levels of type 1851 filaments extending out of the flocs correlated strongly with the sludge volume index, and extended filament lengths of approximately 6 x 10(8) micro m ml(-1) resulted in bulking in laboratory-scale and full-scale activated-sludge samples. Quantitative FISH showed that high levels of filaments occurred inside the flocs in nonbulking sludge, supporting the "substrate diffusion limitation" hypothesis for bulking. The approach will allow the monitoring of incremental improvements in bulking control methods and the delineation of the operational conditions that lead to bulking due to specific filaments. PMID:15066840

  3. DEFENSE WASTE PROCESSING FACILITY ANALYTICAL METHOD VERIFICATION FOR THE SLUDGE BATCH 5 QUALIFICATION SAMPLE

    SciTech Connect

    Click, D; Tommy Edwards, T; Henry Ajo, H

    2008-07-25

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem Method, see Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 5 (SB5) SRAT Receipt and SB5 SRAT Product samples. The SB5 SRAT Receipt and SB5 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB5 Batch composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 4 (SB4), to form the SB5 Blend composition. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element in the sludge or used to estimate ratios of compounds in the sludge. A statistical comparison of the data validates the use of the DWPF CC method for SB5 Batch composition. However, the difficulty that was encountered in using the CC method for SB4 brings into question the adequacy of CC for the SB5 Blend. Also, it should be noted that visible solids remained in the final diluted solutions of all samples digested by this method at SRNL (8 samples total), which is typical for the DWPF CC method but not seen in the other methods. Recommendations to the DWPF for application to SB5 based on studies to date: (1) A dissolution study should be performed on the WAPS

  4. Low-level waste forum meeting reports

    SciTech Connect

    1991-12-31

    This report contains highlights from the 1991 fall meeting of the Low Level Radioactive Waste Forum. Topics included legal updates; US NRC updates; US EPA updates; mixed waste issues; financial assistance for waste disposal facilities; and a legislative and policy report.

  5. Treatability study for the bench-scale solidification of nonincinerable LDR low-level mixed waste

    SciTech Connect

    Gering, K.L.

    1993-01-01

    The focus of this report is the solidification of nonincinerable, land disposal restricted (LDR) low-level mixed waste generated at the Idaho National Engineering Laboratory. Benchscale solidification was performed on samples of this mixed waste, which was done under a Resource Conservation and Recovery Act treatability study. Waste forms included liquids, sludges, and solids, and treatment techniques included the use of conventional Portland cement and sulphur polymer cement (SPC). A total of 113 monoliths were made under the experimental design matrix for this study; 8 of these were ``blank`` monoliths (contained no waste). Thus, 105 monoliths were used to solidify 21.6 kg of mixed waste; 92 were made with Portland cement systems, and 13 were made with SPC. Recipes for all monoliths are given, and suggested recipes (as based on the minimized leaching of toxic components) are summarized. In most cases, the results presented herein indicate that solidification was successful in immobilizing toxic metals, thereby transforming low-level mixed waste into low-level nonhazardous waste. The ultimate goal of this project is to use appropriate solidification techniques, as described in the literature, to transform low-level mixed waste to low-level nonhazardous waste by satisfying pertinent disposal requirements for this waste. Disposal requirements consider the toxicity characteristic leaching procedure tests, a free liquids test, and radiological analyses. This work is meaningful in that it will provide a basis for the disposal of waste that is currently categorized as LDR low-level mixed waste.

  6. Treatability study for the bench-scale solidification of nonincinerable LDR low-level mixed waste

    SciTech Connect

    Gering, K. L.

    1993-01-01

    The focus of this report is the solidification of nonincinerable, land disposal restricted (LDR) low-level mixed waste generated at the Idaho National Engineering Laboratory. Benchscale solidification was performed on samples of this mixed waste, which was done under a Resource Conservation and Recovery Act treatability study. Waste forms included liquids, sludges, and solids, and treatment techniques included the use of conventional Portland cement and sulphur polymer cement (SPC). A total of 113 monoliths were made under the experimental design matrix for this study; 8 of these were blank'' monoliths (contained no waste). Thus, 105 monoliths were used to solidify 21.6 kg of mixed waste; 92 were made with Portland cement systems, and 13 were made with SPC. Recipes for all monoliths are given, and suggested recipes (as based on the minimized leaching of toxic components) are summarized. In most cases, the results presented herein indicate that solidification was successful in immobilizing toxic metals, thereby transforming low-level mixed waste into low-level nonhazardous waste. The ultimate goal of this project is to use appropriate solidification techniques, as described in the literature, to transform low-level mixed waste to low-level nonhazardous waste by satisfying pertinent disposal requirements for this waste. Disposal requirements consider the toxicity characteristic leaching procedure tests, a free liquids test, and radiological analyses. This work is meaningful in that it will provide a basis for the disposal of waste that is currently categorized as LDR low-level mixed waste.

  7. Co-digestion of cattle manure with food waste and sludge to increase biogas production.

    PubMed

    Marañón, E; Castrillón, L; Quiroga, G; Fernández-Nava, Y; Gómez, L; García, M M

    2012-10-01

    Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH(4)/kg VS(feed) for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36°C, for an OLR of 1.2g VS/L day. Increasing the OLR to 1.5g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55°C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment. PMID:22743289

  8. Response surface optimization of substrates for thermophilic anaerobic codigestion of sewage sludge and food waste.

    PubMed

    Kim, Hyun-Woo; Shin, Hang-Sik; Han, Sun-Kee; Oh, Sae-Eun

    2007-03-01

    This study investigated the effects of food waste constituents on thermophilic (55 degrees C) anaerobic codigestion of sewage sludge and food waste by using statistical techniques based on biochemical methane potential tests. Various combinations of grain, vegetable, and meat as cosubstrate were tested, and then the data of methane potential (MP), methane production rate (MPR), and first-order kinetic constant of hydrolysis (kH) were collected for further analyses. Response surface methodology by the Box-Behnken design can verify the effects and their interactions of three variables on responses efficiently. MP was mainly affected by grain, whereas MPR and kH were affected by both vegetable and meat. Estimated polynomial regression models can properly explain the variability of experimental data with a high-adjusted R2 of 0.727, 0.836, and 0.915, respectively. By applying a series of optimization techniques, it was possible to find the proper criteria of cosubstrate. The optimal cosubstrate region was suggested based on overlay contours of overall mean responses. With the desirability contour plots, it was found that optimal conditions of cosubstrate for the maximum MPR (56.6 mL of CH4/g of chemical oxygen demand [COD]/day) were 0.71 g of COD/L of grain, 0.18 g of COD/L of vegetable, and 0.38 g of COD/L of meat by the simultaneous consideration of MP, MPR, and kH. Within the range of each factor examined, the corresponding optimal ratio of sewage sludge to cosubstrate was 71:29 as the COD basis. Elaborate discussions could yield practical operational strategies for the enhanced thermophilic anaerobic codigestion of sewage sludge and food waste. PMID:17385597

  9. Waste activated sludge treatment based on temperature staged and biologically phased anaerobic digestion system.

    PubMed

    Yu, Jingwen; Zheng, Mingxia; Tao, Tao; Zuo, Jiane; Wang, Kaijun

    2013-10-01

    The concept of temperature staged and biological phased (TSBP) was proposed to enhance the performance of waste-activated sludge anaerobic digestion. Semi-continuous experiments were used to investigate the effect of temperature (35 to 70 degrees C) as well as the hydraulic retention time (HRT) (2, 4 and 6 days) on the acidogenic phase. The results showed that the solubilization degree of waste-activated sludge increased from 14.7% to 30.1% with temperature increasing from 35 to 70 degrees C, while the acidification degree was highest at 45 degrees C (17.6%), and this was quite different from the temperature impact on hydrolysis. Compared with HRT of 2 and 6 days, 4 days was chosen as the appropriate HRT because of its relatively high solubilization degree (24.6%) and acidification degree (20.1%) at 45 degrees C. The TSBP system combined the acidogenic reactor (45 degrees C, 4 days) with the methanogenic reactor (35 degrees C, 16 days) and the results showed 84.8% and 11.4% higher methane yield and volatile solid reduction, respectively, compared with that of the single-stage anaerobic digestion system with HRT of 20 days at 35 degrees C. Moreover, different microbial morphologies were observed in the acidogenic- and methanogenic-phase reactors, which resulted from the temperature control and HRT adjustment. All the above results indicated that 45 degrees C was the optimum temperature to inhibit the activity of methanogenic bacteria in the acidogenic phase, and temperature staging and phase separation was thus accomplished. The advantages of the TSBP process were also confirmed by a full-scale waste-activated sludge anaerobic digestion project which was an energy self-sufficient system. PMID:24494492

  10. Correlation between Organic Matter Degradation and the Rheological Performance of Waste Sludge During Anaerobic Digestion

    NASA Astrophysics Data System (ADS)

    Morel, Evangelina S.; Hernández-Hernándes, José A.; Méndez-Contreras, Juan M.; Cantú-Lozano, Denis

    2008-07-01

    Anaerobic digestion has demonstrated to be a good possibility to reduce the organic matter contents in waste activated sludge resulting in the effluents treatment. An anaerobic digestion was carried out in a 3.5 L reactor at 35 °C for a period of 20 days. An electronic thermostat controlled the temperature. The reactor was agitated at a rate of 200 rpm. The study of the rheological behavior of the waste activated sludge was done with an Anton Paar™ rheometer model MCR301 with a peltier plate for temperature control. Four-blade vane geometry was used with samples of 37 mL for determining rheological properties. Sampling (two samples) was taken every four days of anaerobic digestion through a peristaltic pump. The samples behavior was characterized by the Herschel-Bulkley model, with R2>0.99 for most cases. In all samples were found an apparent viscosity (ηap) and yield stress (τo) decrement when organic matter content diminishes. This demonstrates a relationship between rheological properties and organic matter concentration (% volatile solids). Also the flow activation energy (Ea) was calculated using the Ahrrenius correlation and samples of waste activated sludge before anaerobic digestion. In this case, samples were run in the rheometer at 200 rpm and a temperature range of 25 to 75 °C with an increment rate of 2 °C per minute. The yield stress observed was in a range of 0.93-0.18 Pa, the apparent viscosity was in a range of 0.0358-0.0010 Pa.s, the reduction of organic matter was in a range of 62.57-58.43% volatile solids and the average flow activation energy was 1.71 Calṡg-mol-1.

  11. A high-level disinfection standard for land applying sewage sludges (biosolids).

    PubMed Central

    Gattie, David K; McLaughlin, Tara J

    2004-01-01

    Complaints associated with land-applied sewage sludges primarily involve irritation of the skin, mucous membranes, and the respiratory tract accompanied by opportunistic infections. Volatile emissions and organic dusts appear to be the main source of irritation. Occasionally, chronic gastrointestinal problems are reported by affected residents who have private wells. To prevent acute health effects, we recommend that the current system of classifying sludges based on indicator pathogen levels (Class A and Class B) be replaced with a single high-level disinfection standard and that methods used to treat sludges be improved to reduce levels of irritant chemicals, especially endotoxins. A national opinion survey of individuals impacted by or concerned about the safety of land-application practices indicated that most did not consider the practice inherently unsafe but that they lacked confidence in research supported by federal and state agencies. PMID:14754565

  12. Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge.

    PubMed

    Quiroga, G; Castrillón, L; Fernández-Nava, Y; Marañón, E; Negral, L; Rodríguez-Iglesias, J; Ormaechea, P

    2014-02-01

    This paper presents a study of the effect of applying ultrasound pre-treatment in the production of methane when co-digesting mixtures of cattle manure with food waste and sludge. A series of experiments were carried out under mesophilic and thermophilic conditions in continuously stirred-tank reactors containing 70% cattle manure, 20% food waste and 10% sewage sludge. Ultrasound pre-treatment allows operating at lower HRT, achieving higher volumetric methane yields: 0.85 L CH4/L day at 36°C and 0.82 CH4/L day at 55°C, when cattle manure and sewage sludge were sonicated. With respect to the non-sonicated waste, these values represent increases of up to 31% and 67% for mesophilic and thermophilic digestion, respectively. PMID:24384312

  13. The potential in bioethanol production from waste fiber sludges in pulp mill-based biorefineries.

    PubMed

    Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2007-04-01

    Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed. PMID:18478399

  14. The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries

    NASA Astrophysics Data System (ADS)

    Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J.; Nilvebrant, Nils-Olof

    Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.

  15. Effects of microwave irradiation on dewaterability and extracellular polymeric substances of waste activated sludge.

    PubMed

    Peng, Ge; Ye, Fenxia; Ye, Yangfang

    2013-03-01

    The effects of microwave irradiation on filterability and dewaterability of waste activated sludge measured by capillary suction time (CST) and dry solids in sludge cake were investigated. The results showed that the optimum irradiation time improved filterability, but that further increase of the time was detrimental. Dewaterability was enhanced significantly and increased with microwave time. Filterability and dewaterability were improved 25 to 28% and 1.3 times at the optimum times of 30 and 90 seconds for the sludge of 5 g total suspended solids (TSS)/L and 7 g TSS/L, respectively. The floc size decreased slightly. Loosely bound extracellular polymeric substances (LB-EPS) decreased under optimum time, but tightly bound extracellular polymeric substances did not change significantly after short irradiation time. The results implied that LB-EPS played a more important role in the observed changes of filterability and dewaterability and that the double-layered extracellular polymeric substances extraction method showed marked implications to dewaterability. PMID:23581243

  16. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode.

    PubMed

    Nam, Joo-Youn; Kim, Dong-Hoon; Kim, Sang-Hyoun; Lee, Wontae; Shin, Hang-Sik; Kim, Hyun-Woo

    2016-04-01

    Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge. PMID:26150291

  17. Chemical Speciation of Americium, Curium and Selected Tetravalent Actinides in High Level Waste

    SciTech Connect

    Felmy, Andrew R.

    2005-06-01

    Large volumes of high-level waste (HLW) currently stored in tanks at DOE sites contain both sludges and supernatants. The sludges are composed of insoluble precipitates of actinides, radioactive fission products, and nonradioactive components. The supernatants are alkaline carbonate solutions, which can contain soluble actinides, fission products, metal ions, and high concentrations of major electrolytes including sodium hydroxide, nitrate, nitrite, phosphate, carbonate, aluminate, sulfate, and organic complexants. The organic complexants include several compounds that can form strong aqueous complexes with actinide species and fission products including ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), citrate, glycolate, gluconate, and degradation products, formate and oxalate.

  18. Chemical Speciation of Americium, Curium and Selected Tetravalent Actinides in High Level Waste

    SciTech Connect

    Felmy, Andrew R.

    2006-06-01

    Large volumes of high-level waste (HLW) currently stored in tanks at DOE sites contain both sludges and supernatants. The sludges are composed of insoluble precipitates of actinides, radioactive fission products, and nonradioactive components. The supernatants are alkaline carbonate solutions, which can contain soluble actinides, fission products, metal ions, and high concentrations of major electrolytes including sodium hydroxide, nitrate, nitrite, phosphate, carbonate, aluminate, sulfate, and organic complexants. The organic complexants include several compounds that can form strong aqueous complexes with actinide species and fission products including ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), citrate, glycolate, gluconate, and degradation products, formate and oxalate.

  19. Ferrocyanide Safety Program: Waste tank sludge rheology within a hot spot or during draining. Homogeneous flow versus flow through a porous medium

    SciTech Connect

    Fauske, H.K.; Cash, R.J.

    1993-11-01

    The conditions under which ferrocyanide waste sludge flows as a homogeneous non-Newtonian two-phase (solid precipitate-liquid) mixture rather than as a liquid through a porous medium (of stationary precipitate) are examined theoretically, based on the notion that the preferred rheological behavior of the sludge is the one which imposes the least resistance to the sludge flow. The homogeneous two-phase mixture is modeled as a power-law fluid and simple criteria are derived that show that the homogeneous power-law sludge-flow is a much more likely flow situation than the porous medium model of sludge flow. The implication of this finding is that the formation of a hot spot or the drainage of sludge from a waste tank are not likely to result in the uncovering (drying) and subsequent potential overheating of the reactive-solid component of the sludge.

  20. Effect of mild-temperature H2O2 oxidation on solubilization and anaerobic digestion of waste activated sludge.

    PubMed

    Junga, Heejung; Kim, Jaai; Lee, Seungyong; Lee, Changsoo

    2014-08-01

    Efficient sludge management is among the most challenging issues in wastewater treatment today, and anaerobic digestion is regarded as a viable solution. Mild-temperature H202 oxidation was examined for enhanced solubilization and biogas production of waste activated sludge (WAS). The effects of pretreatment factors (i.e. temperature and H202 concentration) on the degree of WAS disintegration (DD) and biogas yield (BY) were assessed by response surface analysis within the design space of 60-90 degrees C and 0-200mM H202. Significant sludge disintegration (up to 23.0% DD) and visibly enhanced BY (up to 26.9%) were shown in the pretreatment trials. Two response surface models to describe how DD and BY respond to changes in the pretreatment conditions were successfully constructed (R2 > 0.95, p < 0.05). The models showed totally different response surface shapes, indicating the DD and BY were influenced by pretreatment conditions in very different ways. DD was dominantly affected by temperature and showed higher model responses at the high-temperature region, while the BY response peaked in the low-temperature and mid-level H2O2 region. This observation implies that the enhanced solubilization of WAS was not directly translated into an increase in biogas production. Our results showed that WAS can be efficiently disintegrated by H202 oxidation under mild-temperature conditions for enhanced anaerobic digestibility. Within the explored region of pretreatment conditions, the maximum BY was estimated to be 82.1 mL/gCODadded (32.8% greater than the untreated control) at (60.0 degrees C, 74.2 mM H2O2). PMID:24956761

  1. Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities

    PubMed Central

    Yu, Hongguang; Wang, Qiaoying; Wang, Zhiwei; Sahinkaya, Erkan; Li, Yongli; Ma, Jinxing; Wu, Zhichao

    2014-01-01

    An anaerobic dynamic membrane digester (ADMD) was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests. PMID:24695488

  2. Effect of grinding and heating on Ni2+ uptake properties of waste paper sludge.

    PubMed

    Kumar Jha, Vinay; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2006-09-01

    Uptake properties of Ni2+ were examined for unmilled and milled paper sludge calcined at various temperatures to develop a new usage of waste paper sludge. Since paper sludge mainly consists of cellulose ([C6H(10)O5]n) fibers, calcite (CaCO3), kaolinite (Al2Si2O5(OH)4) and talc (Mg3Si(4)O(10)(OH)2), amorphous and crystalline CaO(MgO)-Al(2)O(3)-SiO(2) compounds are formed by calcining paper sludge. Wet and dry milling treatments were performed to accelerate solid-state reaction to form the above mentioned target compounds. The crystalline phases originally present decompose at increasing calcining temperature (up to 800 degrees C) in the order cellulose

  3. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant.

    PubMed

    Jiang, Su; Chen, Yinguang; Zhou, Qi; Gu, Guowei

    2007-07-01

    Short-chain fatty acids (SCFAs), the preferred carbon sources for biological nutrient removal, are the important intermediate products in sludge anaerobic fermentation. Sodium dodecylbenzene sulfonate (SDBS) is a widespread used surfactant, which can be easily found in waste-activated sludge (WAS). In this investigation, the effect of SDBS on SCFAs production from WAS was investigated, and the potential of using fermentative SCFAs to promote enhanced biological phosphorus removal (EBPR) was tested. Results showed that the total SCFAs production increased significantly in the presence of SDBS at room temperature. At fermentation time of 6 days, the maximum SCFAs was 2599.1mg chemical oxygen demand (COD)/L in the presence of SDBS 0.02g/g, whereas it was only 339.1mg (COD)/L in the absence of SDBS. The SCFAs produced in the case of SDBS 0.02g/g and fermentation time 6 days consisted of acetic acid (27.1%), propionic acid (22.8%), iso-valeric acid (20.1%), iso-butyric acid (11.9%), n-butyric acid (10.4%) and n-valeric acid (7.7%). It was found that during sludge anaerobic fermentation, the solubilization of sludge particulate organic-carbon and hydrolysis of solubilized substrate as well as acidification of hydrolyzed products were all increased in the presence of SDBS, while the methane formation was decreased, the SCFAs production was therefore remarkably improved. Further investigation showed that the production of SCFAs enhanced by SDBS was caused mainly by biological effects, rather than by chemical effects and SDBS decomposition. With the fermentative SCFAs as the main carbon source, the EBPR maintained high phosphorus removal efficiency ( approximately 97%). PMID:17499838

  4. Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production.

    PubMed

    Zorpas, Antonis A; Arapoglou, Dimitris; Panagiotis, Karlis

    2003-01-01

    Environmental problems associated with sewage sludge disposal have prompted strict legislative actions over the past few years. At the same time, the upgrading and expansion of wastewater treatment plants have greatly increased the volume of sludge generated. The major limitation of land application of sewage sludge compost is the potential for high heavy metal content in relation to the metal content of the original sludge. Composting of sewage sludge with natural zeolite (clinoptilolite) can enhance its quality and suitability for agricultural use. However, the dewatered anaerobically stabilized primary sewage sludge (DASPSS) contained a low concentration of humic substances (almost 2%), and the addition of the waste paper was necessary in order to produce a good soil conditioner with high concentrations of humics. The final results showed that the compost produced from DASPSS and 40-50% w/w of waste paper was a good soil fertilizer. Finally, in order to estimate the metal leachability of the final compost product, the generalized acid neutralization Capacity (GANC) procedure was used, and it was found that by increasing the leachate pH, the heavy metal concentration decreased. The application of the sequential chemical extraction indicated that metals were bound to the residual fraction characterized as a stabilize fractions. PMID:12623099

  5. Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash.

    PubMed

    Wei, Na

    2015-05-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China's regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  6. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    PubMed Central

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  7. Methanosarcinaceae and Acetate-Oxidizing Pathways Dominate in High-Rate Thermophilic Anaerobic Digestion of Waste-Activated Sludge

    PubMed Central

    Ho, Dang P.; Jensen, Paul D.

    2013-01-01

    This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VSadded. According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time. PMID:23956388

  8. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    SciTech Connect

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  9. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    PubMed

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes. PMID:27416510

  10. Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature.

    PubMed

    Asztalos, Joseph R; Kim, Younggy

    2015-12-15

    This study examined the effects of the microbial electrolysis cell (MEC) reactions on anaerobic digestion of waste activated sludge from municipal wastewater treatment under ambient temperature conditions (22-23 °C). Two lab-scale digesters, a control anaerobic digester and an electrically-assisted digester (EAD - equipped with a MEC bioanode and cathode) were operated under three solids retention times (SRT = 7, 10 and 14 days) at 22.5 ± 0.5 °C. A numerical model was also built by including the MEC electrode reactions in Anaerobic Digestion Model No.1. In experiments, the EAD showed reduced concentration of acetic acid, propionic acid, n-butyric acid and iso-butyric acid. This improved performance of the EAD is thought to be achieved by direct oxidation of the short-chain fatty acids at the bioanode as well as indirect contribution of low acetic acid concentration to enhancing beta-oxidation. The VSS and COD removal was consistently higher in the EAD by 5-10% compared to the control digester for all SRT conditions at 22.5 ± 0.5 °C. When compared to mathematical model results, this additional COD removal in the EAD was equivalent to that which would be achieved with conventional digesters at mesophilic temperatures. The magnitude of electric current in the EAD was governed by the organic loading rate while conductivity and acetic acid concentration showed negligible effects on current generation. Very high methane content (∼95%) in the biogas from both the EAD and control digester implies that the waste activated sludge contained large amounts of lipids and other complex polymeric substances compared to primary sludge. PMID:26051356

  11. Anaerobic Codigestion of Sludge: Addition of Butcher's Fat Waste as a Cosubstrate for Increasing Biogas Production.

    PubMed

    Martínez, E J; Gil, M V; Fernandez, C; Rosas, J G; Gómez, X

    2016-01-01

    Fat waste discarded from butcheries was used as a cosubstrate in the anaerobic codigestion of sewage sludge (SS). The process was evaluated under mesophilic and thermophilic conditions. The codigestion was successfully attained despite some inhibitory stages initially present that had their origin in the accumulation of volatile fatty acids (VFA) and adsorption of long-chain fatty acids (LCFA). The addition of a fat waste improved digestion stability and increased biogas yields thanks to the higher organic loading rate (OLR) applied to the reactors. However, thermophilic digestion was characterized by an effluent of poor quality and high VFA content. Results from spectroscopic analysis suggested the adsorption of lipid components onto the anaerobic biomass, thus disturbing the complete degradation of substrate during the treatment. The formation of fatty aggregates in the thermophilic reactor prevented process failure by avoiding the exposure of biomass to the toxic effect of high LCFA concentrations. PMID:27071074

  12. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    SciTech Connect

    Ragsdale, R.G., Jr

    1994-12-01

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented.

  13. Chemical properties and biodegradability of waste paper mill sludges to be used for landfill covering.

    PubMed

    Zule, Janja; Cernec, Franc; Likon, Marko

    2007-12-01

    Waste paper mill sludges originating from different effluent treatment and de-inking installations are complex mixtures of inorganic and organic particles. Due to their favourable physico-chemical, and microbiological characteristics, they may be conveniently reused for different purposes as such or after appropriate pretreatment. Sludges from the Slovenian paper industry were extensively tested for their chemical, stability and sealing properties. During the biodegradability tests, evolutions of greenhouse gases CO2, CH4 and H2S as well as the concentrations of released volatile organic acids, such as acetic, propionic, butyric, lactic and glycollic acids as the typical degradation products of organic materials, were measured. Some other important parameters of water leachates such as pH, redox potential, content of starch and leachable ions were also evaluated. The results indicate that most of them can be efficiently applied as alternative hydraulic barrier layers for landfill construction and covering instead of the more expensive clay due to their good geomechanical properties, chemical inertness and microbiological stability. Such replacement brings about considerable economical and ecological benefits as the waste is reprocessed as secondary raw material. PMID:18229748

  14. High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste.

    PubMed

    De Vrieze, Jo; De Lathouwer, Lars; Verstraete, Willy; Boon, Nico

    2013-07-01

    Anaerobic digestion is a key technology in the bio-based economy and can be applied to convert a wide range of organic substrates into CH4 and CO2. Kitchen waste is a valuable substrate for anaerobic digestion, since it is an abundant source of organic matter. Yet, digestion of single kitchen waste often results in process failure. High-rate activated sludge or A-sludge is produced during the highly loaded first stage of the two-phase 'Adsorptions-Belebungsverfahren' or A/B activated sludge system for municipal wastewater treatment. In this specific case, the A-sludge was amended with FeSO4 to enhance phosphorous removal and coagulation during the water treatment step. This study therefore evaluated whether this Fe-rich A-sludge could be used to obtain stable methanation and higher methane production values during co-digestion with kitchen waste. It was revealed that Fe-rich A-sludge can be a suitable co-substrate for kitchen waste; i.e. methane production rate values of 1.15 ± 0.22 and 1.12 ± 0.28 L L(-1) d(-1) were obtained during mesophilic and thermophilic co-digestion respectively of a feed-mixture consisting of 15% KW and 85% A-sludge. The thermophilic process led to higher residual VFA concentrations, up to 2070 mg COD L(-1), and can therefore be considered less stable. Addition of micro- and macronutrients provided a more stable digestion of single kitchen waste, i.e. a methane production of 0.45 L L(-1) d(-1) was obtained in the micronutrient treatment compared to 0.30 L L(-1) d(-1) in the control treatment on day 61. Yet, methane production during single kitchen waste digestion still decreased toward the end of the experiment, despite the addition of micronutrients. Methane production rates were clearly influenced by the total numbers of archaea in the different reactors. This study showed that Fe-rich A-sludge and kitchen waste are suitable for co-digestion. PMID:23726710

  15. High-level waste processing and disposal

    NASA Astrophysics Data System (ADS)

    Crandall, J. L.; Drause, H.; Sombret, C.; Uematsu, K.

    The national high level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high level waste disposal will probably and about 5 to 10% to the costs of nuclear electric power. Third conclusion is less optimistic.

  16. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags. PMID:25647028

  17. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment.

    PubMed

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-07-01

    In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source. PMID:26988362

  18. K Basins sludge removal temporary sludge storage tank system

    SciTech Connect

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  19. Management of intermediate-level radioactive wastes in the United States

    SciTech Connect

    Aaberg, R.L.; Lakey, L.T.; Greenborg, J.

    1980-07-01

    While used extensively, the term intermediate-level waste is not a clearly defined waste category. Assuming the ILW includes all radioactive wastes requiring shielding but not ordinarily included in a high-level waste canister, its major sources include power plant operations, spent fuel storage, and spent fuel reprocessing. While the volume is approx. 10/sup 2/ greater than that of high-level waste, ILW contains only approx. 1% of the radioactivity. Power plant waste, constituting approx. 87% of the waste volume, is generally nontransuranic waste. The other approximately 13% from fuel reprocessing is generally transuranic. Intermediate-level wastes fall into the general categories of highly radioactive hardware, failed equipment, HEPA filters, wet wastes, and noncombustible solids. Within each category, however, the waste characteristics can vary widely, necessitating different treatments. The wet wastes, primarily power plant resins and sludges, contribute the largest volume; fuel hulls and core hardware represent the greatest activity. Numerous treatments for intermediate-level wastes are available and have been used successfully. Packaging and transportation systems are also available. Intermediate-level wastes from power plants are disposed of by shallow-land burial. However, the alpha-bearing wastes are being stored pending eventual disposal to a geologic repository or by other means, e.g., intermediate-depth burial, sea disposal. Problem areas associated with intermediate-level wastes include: disposal criteria need to be established; fixation of organic ion exchange resins from power plant operation needs improvement; and reprocessing of LWR fuels will produce ILW considerably different from power plant ILW and requiring different treatment.

  20. Separation of strontium-90 from Hanford high-level radioactive waste

    SciTech Connect

    Lumetta, G.J.; Wagner, M.J.; Jones, E.O.

    1993-10-01

    Current guidelines for disposing of high-level radioactive wastes stored in underground tanks at the US Department of Energy`s Hanford Site call for vitrifying high-level waste (HLW) in borosilicate glass and disposing the glass canisters in a deep geologic repository. Disposition of the low-level waste (LLW) is yet to be determined, but it will likely be immobilized in a glass matrix and disposed of on site. To lower the radiological risk associated with the LLW form, methods are being developed to separate {sup 90}Sr from the bulk waste material so this isotope can be routed to the HLW stream. A solvent extraction method is being investigated to separate {sup 90}Sr from acid-dissolved Hanford tank wastes. Results of experiments with actual tank waste indicate that this method can be used to achieve separation of {sup 90}Sr from the bulk waste components. Greater than 99% of the {sup 90}Sr was removed from an acidic dissolved sludge solution by extraction with di-tbutylcyclohexano-18-crown-6 in 1-octanol (the SREX process). The major sludge components were not extracted.

  1. Parametric Analyses of Heat Removal from High Level Waste Tanks

    SciTech Connect

    TRUITT, J.B.

    2000-06-05

    The general thermal hydraulics program GOTH-SNF was used to predict the thermal response of the waste in tanks 241-AY-102 and 241-AZ-102 when mixed by two 300 horsepower mixer pumps. This mixing was defined in terms of a specific waste retrieval scenario. Both dome and annulus ventilation system flow are necessary to maintain the waste within temperature control limits during the mixing operation and later during the sludge-settling portion of the scenario are defined.

  2. Co-digestion of molasses or kitchen waste with high-rate activated sludge results in a diverse microbial community with stable methane production.

    PubMed

    De Vrieze, Jo; Plovie, Kristof; Verstraete, Willy; Boon, Nico

    2015-04-01

    Kitchen waste and molasses are organic waste streams with high organic content, and therefore are interesting substrates for renewable energy production by means of anaerobic digestion. Both substrates, however, often cause inhibition of the anaerobic digestion process, when treated separately, hence, co-digestion with other substrates is required to ensure stable methane production. In this research, A-sludge (sludge harvested from a high rate activated sludge system) was used to stabilize co-digestion with kitchen waste or molasses. Lab-scale digesters were fed with A-sludge and kitchen waste or molasses for a total period of 105 days. Increased methane production values revealed a stabilizing effect of concentrated A-sludge on kitchen waste digestion. Co-digestion of molasses with A-sludge also resulted in a higher methane production. Volumetric methane production rates up to 1.53 L L(-1) d(-1) for kitchen waste and 1.01 L L(-1) d(-1) for molasses were obtained by co-digestion with A-sludge. The stabilizing effect of A-sludge was attributed to its capacity to supplement various nutrients. Microbial community results demonstrated that both reactor conditions and substrate composition determined the nature of the bacterial community, although there was no direct influence of micro-organisms in the substrate itself, while the methanogenic community profile remained constant as long as optimal conditions were maintained. PMID:25617871

  3. Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.

    PubMed

    Trulli, Ettore; Torretta, Vincenzo

    2015-01-01

    Waste anaerobic co-digestion applications are particularly useful in Southern Mediterranean areas where large quantities of agricultural waste materials and waste from agro-industries are produced. This waste can be added to urban waste together with the sludge produced by wastewater treatment processes, which, when combined, guarantee the supply of organic matrixes for treatment throughout the year. The implementation of facilities to service vast areas of the agricultural economy and which are heterogeneous in terms of production can provide a good solution. We present an experimental investigation into the anaerobic co-digestion of municipal sludge and bio-waste produced in the Mediterranean area. We conducted anaerobic treatability tests, with measures of biogas production and pH of the mixture in digestion. Our main aims were to identify an optimal mix of substrates for the production of biogas, and to analyse the influence on the composition of biogas and the variation in pH values of the substrates. This analysis was conducted considering the variation of the input, in particular due to the addition of waste acids, such as biological sewage sludge. PMID:25442095

  4. The effect of iron dosing on reducing waste activated sludge in the oxic-settling-anoxic process.

    PubMed

    Yagci, Nevin; Novak, John T; Randall, Clifford W; Orhon, Derin

    2015-10-01

    This study evaluates the biological solid reduction in a conventional activated sludge system with an anoxic/anaerobic side stream reactor receiving 1/10 of return sludge mass. Influent iron concentrations and feeding modes were changed to explore the consistency between the influent iron concentration and yield values and to assess the impact of feeding pattern. The results indicated that sludge reduction occurs during alternately exposure of sludge to aerobic and anoxic/anaerobic conditions in a range of 38-87%. The sludge reduction values reached a maximum level with the higher iron concentrations. Thus, it is concluded that this configuration is more applicable for plants receiving high iron concentrations in the wastewaters. PMID:26141280

  5. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    SciTech Connect

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively

  6. OC-ALC hazardous waste minimization strategy: Reduction of industrial biological sludge from industrial wastewater treatment facilities

    SciTech Connect

    Hall, F.E. Jr.

    1997-12-31

    Oklahoma City Air Logistics Center (OC-ALC) is one of five US Air Force Logistic Centers that perform depot level maintenance of aircraft. As part of the maintenance process, aircraft are cleaned, chemically depainted, repainted, and electroplated. These repair/maintenance processes generate large quantities of dilute liquid effluent which are collected and treated in the Industrial Waste Treatment Plant (IWTP) prior to hazardous waste disposal. OC-ALC is committed to reducing the use of hazardous materials in the repair and maintenance of aircraft and ancillary components. A major Air Force initiative is to reduce the amount of hazardous waste discharged off-site by 25% by the end of CY96 and 50% by CY99 end. During maintenance and repair operations, organic chemicals are employed. These organics are discharged to the IWTP for biological degradation. During the biological digestion process, a biological sludge is generated. OC-ALC engineers are evaluating the applicability of a biosludge acid/heat treatment process. In the acid hydrolysis process, an acid is added to the biosludge and processed through a hot, pressurized reactor where the majority of the biosolids are broken down and solubilized. The resulting aqueous product stream is then recycled back to the traditional biotreatment process for digestion of the solubilized organics. The solid waste stream is dewatered prior to disposal. The objective of the subsequent effort is to achieve a reduction in hazardous waste generation and disposal by focusing primarily on end-of-the-pipe treatment at the IWTP. Acid hydrolysis of biosludge is proving to be a practical process for use in industrial and municipal wastewater biotreatment systems that will lower environmental and economic costs by minimizing the production and disposal of biosludge.

  7. VITRIFICATION OF HIGH LEVEL WASTE AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Fox, K.; Peeler, D.

    2009-06-17

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent high level waste Sludge Batch 5 (SB5) as vitrified at the Savannah River Site Defense Waste Processing Facility. These data were used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of candidate frits. The study glasses were fabricated using depleted uranium and their chemical compositions, crystalline contents and chemical durabilities were characterized. Trevorite was the only crystalline phase that was identified in a few of the study glasses after slow cooling, and is not of concern as spinels have been shown to have little impact on the durability of high level waste glasses. Chemical durability was quantified using the Product Consistency Test (PCT). All of the glasses had very acceptable durability performance. The results of this study indicate that a frit composition can be identified that will provide a processable and durable glass when combined with SB5.

  8. Waste Management Facilities cost information for low-level waste

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  9. Design characteristics of the Sludge Mobilization System

    SciTech Connect

    McMahon, C.L.

    1990-09-30

    Radioactive waste stored in underground tanks at the West Valley Demonstration Project is being processed into low-level waste and solidified in cement. High-level waste also stored underground will be vitrified and solidified into canistered glass logs. To move the waste from where it resides at the Waste Tank Farm to the Vitrification Facility requires equipment to prepare the storage tanks for low-level and high-level waste processing, equipment to mobilize and mix the radioactive sludge into a homogeneous slurry, and equipment to transfer the slurry for vitrification. The design of the Sludge Mobilization System has incorporated the necessary components to effect the preparation and transfer of waste in five operational phases. The first phase of the Sludge Mobilization System, which began in 1987, prepared the waste tanks to process radioactive liquid for delivery to the Cement Solidification System and to support the mobilization equipment. The second phase, beginning in 1991, will wash the sludge that remains after the liquid supernatant is decanted to prepare it for mobilization operations. The third phase will combine the contents of various waste tanks into one tank. The fourth phase will resuspend and mix the contents of the high-level waste tank. The fifth and final phase of the Sludge Mobilization System will entail transferring the waste mixture to the Vitrification Facility for processing into glass logs. Provisions for recycling the waste streams or slurries within the tank farm or for returning process streams to the Waste Tank Farm from the Vitrification Facility are also included in the final phase. This document addresses the Sludge Mobilization System equipment design characteristics in terms of its use in each of the five operational phases listed above.

  10. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis.

    PubMed

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng; Angelidaki, Irini; Luo, Gang

    2016-10-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased from 19.2 mL H2/gVSS at 37 °C and pH 10-80.1 mL H2/gVSS at 55 °C and pH 10. However, the production of volatile fatty acids (mainly acetate) was higher at 37 °C and pH 10 by comparison with 55 °C and pH 10. Hydrogen consumption due to homoacetogenesis was observed at 37 °C and pH 10 but not 55 °C and pH 10. Higher expression levels of genes relating with homoacetogenesis and lower expression levels of genes relating with hydrogen production were found at 37 °C and pH 10 compared to 55 °C and pH 10. The continuous experiment demonstrated the steady-state hydrogen yield of WAS was comparable to that obtained from batch experiments at 55 °C and pH 10, and homoacetogenesis was still inhibited. However, the steady-state hydrogen yield of WAS (6.5 mL H2/gVSS) was much lower than that (19.2 mL H2/gVSS) obtained from batch experiments at 37 °C and pH 10 due to the gradual enrichment of homoacetogens as demonstrated by qPCR analysis. The high-throughput sequencing analysis of 16S rRNA genes showed that the abundance of genus Clostridium, containing several homoacetogens, was 5 times higher at 37 °C and pH 10 than 55 °C and pH 10. PMID:27420808

  11. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    SciTech Connect

    Maranon, E.; Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y.; Gomez, L.; Garcia, M.M.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  12. Municipal incineration studies: Sludge, refuse, and solid wastes. (Latest citations from the NTIS bibliographic database). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the use of incineration processes for the destruction of municipal wastes, including sewage sludge, refuse, and solid wastes. Topics include systems design and management, combustion and emissions studies, pollution and toxicity studies, heat recovery operations, pollution control devices, and economic aspects. Analytical methods for pollution identification, marine vessel incinerators, catalytic incineration, and risk assessment studies are also considered. (Contains 250 citations and includes a subject term index and title list.)

  13. Municipal incineration studies: Sludge, refuse, and solid wastes. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of incineration processes for the destruction of municipal wastes, including sewage sludge, refuse, and solid wastes. Topics include systems design and management, combustion and emissions studies, pollution and toxicity studies, heat recovery operations, pollution control devices, and economic aspects. Analytical methods for pollution identification, marine vessel incinerators, catalytic incineration, and risk assessment studies are also considered. (Contains 250 citations and includes a subject term index and title list.)

  14. Municipal incineration studies: Sludge, refuse, and solid wastes. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the use of incineration processes for the destruction of municipal wastes, including sewage sludge, refuse, and solid wastes. Topics include systems design and management, combustion and emissions studies, pollution and toxicity studies, heat recovery operations, pollution control devices, and economic aspects. Analytical methods for pollution identification, marine vessel incinerators, catalytic incineration, and risk assessment studies are also considered.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Pyritic waste from precombustion coal cleaning: Amelioration with oil shale retort waste and sewage sludge for growth of soya beans

    SciTech Connect

    Lewis, B.G.; Gnanapragasam, N.; Stevens, M.L.

    1994-12-31

    Solid residue from fossil fuel mining and utilization generally present little hazard to human health. However, because of the high volumes generated, they do pose unique disposal problems in terms of land use and potential degradation of soil and water. In the specific case of wastes from precombustion coal cleaning, the materials include sulfur compounds that undergo oxidation when exposed to normal atmospheric conditions and microbial action and then produce sulfuric acid. The wastes also contain compounds of metals and nonmetals at concentrations many times those present in the original raw coal. Additionally, the residues often contain coal particles and fragments that combust spontaneously if left exposed to the air, thus contributing to the air pollution that the coal cleaning process was designed to prevent. Federal and state efforts in the United States to ameliorate the thousands of hectares covered with these wastes have focused on neutralizing the acidity with limestone and covering the material with soil. The latter procedure creates additional degraded areas, which were originally farmland or wildlife habitat. It would seem preferable to reclaim the coal refuse areas without earth moving. The authors describe here experiments with neutralization of coal waste acidity using an alkaline waste derived from the extraction of oil from oil shale to grow soya beans (Glycine max. [L]) on a mixture of wastes and sewage sludge. Yield of plant material and content of nutrients an potentially toxic elements in the vegetation and in the growth mixtures were determined; results were compared with those for plants grown on an agricultural soil, with particular focus on boron.

  16. Packaged low-level waste verification system

    SciTech Connect

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-08-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy`s National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL).

  17. Leachates from solid wastes: chemical and eco(geno)toxicological differences between leachates obtained from fresh and stabilized industrial organic sludge.

    PubMed

    Chiochetta, Claudete G; Goetten, Luís C; Almeida, Sônia M; Quaranta, Gaetana; Cotelle, Sylvie; Radetski, Claudemir M

    2014-01-01

    The chemical and ecotoxicological characteristics of fresh and stabilized industrial organic sludge leachates were compared to obtain information regarding how the stabilization process can influence the ecotoxic potential of this industrial waste, which could be used for the amendment of degraded soil. Physicochemical analysis of the sludge leachates, as well as a battery of eco(geno)toxicity tests on bacteria, algae, daphnids, and higher plants (including Vicia faba genotoxicity test) and the determination of hydrolytic enzyme activity, was performed according to standard methods. The chemical comparison of the two types of leachate showed that the samples obtained from stabilized sludge had a lower organic content and higher metal content than leachates of the fresh sludge. The eco(geno)toxicological results obtained with aquatic organisms showed that the stabilized sludge leachate was more toxic than the fresh sludge leachate, both originating from the same industrial organic sludge sample. Nevertheless, phytotoxicity tests carried out with a reference peat soil irrigated with stabilized sludge leachate showed the same toxicity as the fresh sludge leachate. In the case of the industrial solid organic sludge studied, stabilization through a biodegradation process promoted a higher metal mobility/bioavailability/eco(geno)toxicity in the stabilized sludge leachate compared to the fresh sludge leachate. PMID:23872895

  18. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  19. Low-level waste forum meeting reports

    SciTech Connect

    1990-12-31

    This paper provides highlights from the October 1990 meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: a special session on liability and financial assurance needs; proposal to dispose of mixed waste at federal facilities; state plans for interim storage; and hazardous materials legislation.

  20. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity. PMID:26942526

  1. Determination of PCBs in Rocky Flats Type IV waste sludge by gas chromatography/electron capture detection

    SciTech Connect

    Parish, K.J.; Applegate, D.V.; Boparai, A.S.; Reedy, G.T.

    1993-12-01

    Type IV Rocky Flats Plant (RFP) radioactive sludge samples must be evaluated for polychlorinated biphenyl (PCB) content before disposal. The Type IV sludge consists of organic solvents, degreasers, cutting oils, and transuranic (TRU) waste mixed with calcium silicate (MicroCel E{reg_sign}) and Oil Dri{reg_sign} to form a grease or paste-like material. For laboratory studies a nonradioactive simulated Type IV RFP sludge was prepared having a composition similar to that expected from field samples. A simplified method was developed for extraction, purification and analysis of PCBs using samples of simulated sludge spiked with Aroclors 1254 and 1260 (reports provided to Argonne indicated Aroclors 1254 and 1260 as the most likely PCB contaminants in RFP sludge samples). The developed method was compared to the Environmental Protection Agency (EPA) accepted SW-846 method for analysis of PCBs (Method 8081). The accuracy and precision data were found to be similar for the two methods. The developed method was also tested with samples of simulated sludge spiked with Pu (in solid and solution forms). Reduction of radioactivity in final extract versus in the spike sample ranged from a factor of 10{sup 5} to 10{sup 7}.

  2. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE

    SciTech Connect

    Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

    2011-03-14

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

  3. High-level waste qualification: Managing uncertainty

    SciTech Connect

    Pulsipher, B.A.

    1993-09-01

    A vitrification facility is being developed by the U.S. Department of Energy (DOE) at the West Valley Demonstration Plant (WVDP) near Buffalo, New York, where approximately 300 canisters of high-level nuclear waste glass will be produced. To assure that the produced waste form is acceptable, uncertainty must be managed. Statistical issues arise due to sampling, waste variations, processing uncertainties, and analytical variations. This paper presents elements of a strategy to characterize and manage the uncertainties associated with demonstrating that an acceptable waste form product is achieved. Specific examples are provided within the context of statistical work performed by Pacific Northwest Laboratory (PNL).

  4. Russian low-level waste disposal program

    SciTech Connect

    Lehman, L.

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  5. Disposition Options for Hanford Site K-Basin Spent Nuclear Fuel Sludge

    SciTech Connect

    Mellinger, George B.; Delegard, Calvin H.; Gerber, Mark A.; Naft, Barry N.; Schmidt, Andrew J.; Walton, Terry L.

    2004-01-18

    This report provides summary-level information about a group of options that have been identified for the disposition of spent-nuclear-fuel sludge in the K-Basins at the Hanford Site. These options are representative of the range of likely candidates that may be considered for disposition of the sludge. The product of each treatment option would be treated sludge that would meet waste acceptance requirements for disposal as transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).

  6. Preliminary study of acrylamide monomer decomposition during methane fermentation of dairy waste sludge.

    PubMed

    Mroczek, Ewelina; Konieczny, Piotr; Lewicki, Andrzej; Waśkiewicz, Agnieszka; Dach, Jacek

    2016-07-01

    Polyacrylamide (PAM) used in sludge dewatering exists widely in high-solid anaerobic digestion. Acrylamide is registered in the list of chemicals demonstrating toxic, carcinogenic and mutagenic properties. Therefore, it is reasonable to ask about the mobility of such residual substances in the environment. The study was carried out to assess the impact of the mesophilic (39±1°C) and thermophilic (54±1°C) fermentation process on the level of acrylamide monomer (AMD) content in the dairy sludge. The material was analysed using high-performance liquid chromatography (HPLC) for quantification of AMD. The results indicate that the process of methane fermentation continues regardless of the temperature effects on the degradation of AMD in dairy sludge. The degree of reduction of acrylamide monomer for thermophilic fermentation is 100%, while for mesophilic fermentation it is 91%. In practice, this means that biogas technology eliminates the risk of AMD migration to plant tissue. Moreover, it should be stressed that 90% of cumulative biogas and methane production was reached one week earlier under thermophilic conditions - the dynamics of the methanisation process were over 20% faster. PMID:27372124

  7. Department of Energy pretreatment of high-level and low-level wastes

    SciTech Connect

    McGinnis, C.P.; Hunt, R.D.

    1995-12-31

    The remediation of the 1 {times} 10{sup 8} gal of highly radioactive waste in the underground storage tanks (USTs) at five US Department of Energy (DOE) sites is one of DOE`s greatest challenges. Therefore, the DOE Office of Environmental Management has created the Tank Focus Area (TFA) to manage an integrated technology development program that results in the safe and efficient remediation of UST waste. The TFA has divided its efforts into five areas, which are safety, characterization, retrieval/closure, pretreatment, and immobilization. All DOE pretreatment activities are integrated by the Pretreatment Technical Integration Manager of the TFA. For FY 1996, the 14 pretreatment tasks are divided into 3 systems: supernate separations, sludge treatment, and solid/liquid separation. The plans and recent results of these TFA tasks, which include two 25,000-gal demonstrations and two former TFA tasks on Cs removal, are presented. The pretreatment goals are to minimize the volume of high-level waste and the radioactivity in low-level waste.

  8. Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge.

    PubMed

    McMahon, Katherine D; Zheng, Dandan; Stams, Alfons J M; Mackie, Roderick I; Raskin, Lutgarde

    2004-09-30

    Microbial population dynamics were investigated during start-up and during periods of overload conditions in anaerobic co-digesters treating municipal solid waste and sewage sludge. Changes in community structure were monitored using ribosomal RNA-based oligonucleotide probe hybridization to measure the abundance of syntrophic propionate-oxidizing bacteria (SPOB), saturated fatty acid-beta-oxidizing syntrophs (SFAS), and methanogens. These changes were linked to traditional performance parameters such as biogas production and volatile fatty acid (VFA) concentrations. Digesters with high levels of Archaea started up successfully. Methanosaeta concilii was the dominant aceticlastic methanogen in these systems. In contrast, digesters that experienced a difficult start-up period had lower levels of Archaea with proportionally more abundant Methanosarcina spp. Syntrophic propionate-oxidizing bacteria and saturated fatty acid-beta-oxidizing syntrophs were present at low levels in all digesters, and SPOB appeared to play a role in stabilizing propionate levels during start-up of one digester. Digesters with a history of poor performance tolerated a severe organic overload event better than digesters that had previously performed well. It is hypothesized that higher levels of SPOB and SFAS and their methanogenic partners in previously unstable digesters are responsible for this behavior. PMID:15334409

  9. The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production.

    PubMed

    Lee, Ilgyu; Han, Jong-In

    2013-11-01

    Disintegration of waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion (AD) process to reduce sludge volume and increase methane yield. Hydrodynamic cavitation (HC), which shares a similar underlying principle with ultrasonication but is energy-efficient, was employed as a physical means to break up WAS. Compared with ultrasonic (180-3600 kJ/kg TS) and thermal methods (72,000 kJ/kg TS), HC (60-1200 kJ/kg TS) found to consume significantly low power. A synergetic effect was observed when HC was combined with alkaline treatment in which NaOH, KOH, and Ca(OH)2 were used as alkaline catalysts at pH ranging from 8 to 13. As expected, the production yield of CH4 gas increased proportionally as WAS disintegration proceeded. HC, when combined with alkaline pretreatment, was found to be a cost-effective substitute to conventional methods for WAS pretreatment. PMID:23618849

  10. Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production.

    PubMed

    Kavitha, S; Yukesh Kannah, R; Yeom, Ick Tae; Do, Khac-Uan; Banu, J Rajesh

    2015-12-01

    In the present study, there was an investigation about the impact of a new combined thermo-chemo-sonic disintegration of waste activated sludge (WAS) on biodegradability. The outcome of sludge disintegration reveals that maximum Suspended Solids (SS) reduction and Chemical Oxygen Demand (COD) solubilization effectuated at a specific energy input of 5290.5kJ/kgTS, and was found to be 20%, 16.4%, 15% and 27%, 22%, and 20%, respectively for the three alkalis (NaOH, KOH, and Ca(OH)2). The conversion coefficient of the Volatile Suspended Solids (VSS) to product Soluble COD (SCOD), calculated by nonlinear regression modeling, was found to be 0.5530gSCOD/gVSS, 0.4587gSCOD/gVSS, and 0.4195gSCOD/gVSS for NaOH, KOH, and Ca(OH)2, respectively. In the biodegradability studies, the parameter evaluation provides an estimate of parameter uncertainty and correlation, and elucidates that there is no significant difference in biodegradability (0.413gCOD/gCOD, 0.367gCOD/gCOD, and 0.342gCOD/gCOD) for three alkalis (NaOH, KOH, and Ca(OH)2). PMID:26356110

  11. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms.

    PubMed

    Su, Gaoqiang; Wang, Shuying; Yuan, Zhiguo; Peng, Yongzhen

    2016-03-01

    Volatile fatty acids (VFAs) are essential for removing biological nitrogen and phosphorus in wastewater treatment plants. The purpose of this work was to investigate whether and how the addition of NaCl could improve the production of VFAs from waste activated sludge (WAS). Sludge solubilization was efficiently improved by the addition of NaCl. Both protein and carbohydrate in the fermentation liquid increased with the dosage of NaCl, and it provided a larger amount of organic compounds for the production of the VFAs. NaCl had inhibitory effects on the production of methane and a high dosage of NaCl could severely suppress the growth of methanogens, which decreased the consumption of the VFAs. Consequently, the production of VFAs was significantly enhanced by the addition of NaCl. The maximum production of VFAs was achieved with the highest dosage of NaCl (3316 mg (COD)/L at the NaCl dosage 0.5 mol/L; 783 mg (COD)/L without the addition of NaCl). Therefore, this study indicates that using NaCl could be an efficient method for improving the production of VFAs from WAS. PMID:26320405

  12. Low-level waste forum meeting reports

    SciTech Connect

    Sternwheeler, W.D.E.

    1992-12-31

    This paper provides highlights from the 1992 winter meeting of the Low Level Radioactive Wastes Forum. Topics of discussion included: legal information; state and compact reports; freedom of information requests; and storage.

  13. Low-level waste forum meeting reports

    SciTech Connect

    1992-12-31

    This report provides highlights from the 1992 fall meeting of the Low LEvel Radioactive Waste Forum. Topics included: disposal options after 1992; interregional agreements; management alternatives; policy; and storage.

  14. 6:2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants.

    PubMed

    Wang, Ning; Liu, Jinxia; Buck, Robert C; Korzeniowski, Stephen H; Wolstenholme, Barry W; Folsom, Patrick W; Sulecki, Lisa M

    2011-02-01

    The aerobic biotransformation of 6:2 FTS salt [F(CF2)6CH2CH2SO3- K+] was determined in closed bottles for 90d in diluted activated sludge from three waste water treatment plants (WWTPs) to compare its biotransformation potential with that of 6:2 FTOH [F(CF2)6CH2CH2OH]. The 6:2 FTS biotransformation was relatively slow, with 63.7% remaining at day 90 and all observed transformation products together accounting for 6.3% of the initial 6:2 FTS applied. The overall mass balance (6:2 FTS plus observed transformation products) at day 90 in live and sterile treatments averaged 70% and 94%, respectively. At day 90, the stable transformation products observed were 5:3 acid [F(CF2)5CH2CH2COOH, 0.12%], PFBA [F(CF2)3COOH, 0.14%], PFPeA [F(CF2)4COOH, 1.5%], and PFHxA [F(CF2)5COOH 1.1%]. In addition, 5:2 ketone [F(CF2)5C(O)CH3] and 5:2 sFTOH [F(CF2)5CH(OH)CH3] together accounted for 3.4% at day 90. The yield of all the stable transformation products noted above (2.9%) was 19 times lower than that of 6:2 FTOH in aerobic soil. Thus 6:2 FTS is not likely to be a major source of PFCAs and polyfluorinated acids in WWTPs. 6:2 FTOH, 6:2 FTA [F(CF2)6CH2COOH], and PFHpA [F(CF2)6COOH] were not observed during the 90-d incubation. 6:2 FTS primary biotransformation bypassed 6:2 FTOH to form 6:2 FTUA [F(CF2)5CF=CHCOOH], which was subsequently degraded via pathways similar to 6:2 FTOH biotransformation. A substantial fraction of initially dosed 6:2 FTS (24%) may be irreversibly bound to diluted activated sludge catalyzed by microbial enzymes. The relatively slow 6:2 FTS degradation in activated sludge may be due to microbial aerobic de-sulfonation of 6:2 FTS, required for 6:2 FTS further biotransformation, being a rate-limiting step in microorganisms of activated sludge in WWTPs. PMID:21112609

  15. Demonstration of vitrification of surrogate F006 waste-water treatment sludges

    SciTech Connect

    Bennert, D.M.; Overcamp, T.J.; Bickford, D.F.; Jantzen, C.M.; Cicero, C.A.

    1994-12-31

    A demonstration program with the focus on vitrification of surrogate formulations of Savannah River Site M-Area wastewater treatment sludges has been completed. The program utilized commercially available melting equipment, supplied by EnVitCo, Inc., and Stir Melter, Inc., located at the Clemson University Environmental Systems Engineering Laboratories. Over 2000 kg of glass was manufactured in a series of five separate tests with four formulations. Glasses were characterized by Toxicity Characteristic Leaching Procedure (TCLP) and the Product Consistency Test (PCT), with all glasses showing leach characteristics better than Land Disposal Requirements (LDR) for corresponding F006 waste (TCLP) and benchmark environmental assessment glasses (PCT). Offgas sampling by EPA Method 5 was conducted, including chemical analysis of filter residue and impinger solution. Data is presented on glass leaching, offgas sampling, phase separation, and melter performance.

  16. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.

    PubMed

    Huang, Jingang; Zhou, Rongbing; Chen, Jianjun; Han, Wei; Chen, Yi; Wen, Yue; Tang, Junhong

    2016-07-01

    Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production. PMID:27003793

  17. Optimization of VFAs and ethanol production with waste sludge used as the denitrification carbon source.

    PubMed

    Guo, Liang; Zhang, Jiawen; Yin, Li; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2015-01-01

    An acidification metabolite such as volatile fatty acids (VFAs) and ethanol could be used as denitrification carbon sources for solving the difficult problem of carbon source shortages and low nitrogen removal efficiency. A proper control of environmental factors could be essential for obtaining the optimal contents of VFAs and ethanol. In this study, suspended solids (SS), oxidation reduction potential (ORP) and shaking rate were chosen to investigate the interactive effects on VFAs and ethanol production with waste sludge. It was indicated that T-VFA yield could be enhanced at lower ORP and shaking rate. Changing the SS, ORP and shaking rate could influence the distribution of acetic, propionic, butyric, valeric acids and ethanol. The optimal conditions for VFAs and ethanol production used as a denitrification carbon source were predicted by analyzing response surface methodology (RSM). PMID:26465305

  18. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge

    PubMed Central

    Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.

    2015-01-01

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678

  19. Analysis of the stability of high-solids anaerobic digestion of agro-industrial waste and sewage sludge.

    PubMed

    Aymerich, E; Esteban-Gutiérrez, M; Sancho, L

    2013-09-01

    The pilot-scale high-solids anaerobic digestion (HS-AD) of agro-industrial wastes and sewage sludge was analysed in terms of stability by monitoring the most common parameters used to check the performance of anaerobic digesters, i.e. Volatile Fatty Acids (VFA), ammonia nitrogen, pH, alkalinity and methane production. The results reflected similar evolution for the parameters analysed, except for an experiment that presented an unsuccessful start-up. The rest of the experiments ran successfully, although the threshold values proposed in the literature for the detection of an imbalance in wet processes were exceeded, proving the versatility of HS-AD to treat different wastes. The results evidence the need for understanding the dynamics of a high-solids system so as to detect periods of imbalance and to determine inhibitory levels for different compounds formed during anaerobic decomposition. Moreover, the findings presented here could be useful in developing an experimental basis to construct new control strategies for HS-AD. PMID:23859986

  20. Air emissions assessment and air quality permitting for a municipal waste landfill treating municipal sewage sludge

    SciTech Connect

    Koehler, J.

    1998-12-31

    This paper presents a case study into the air quality permitting of a municipal solid waste (MSW) landfill in the San Francisco Bay Area undergoing a proposed expansion in operations to increase the life of the landfill. The operations of this facility include MSW landfilling, the treatment and disposal of municipal sewage sludge, the aeration of petroleum-contaminated soils, the construction of a new on-site plant to manufacture soil amendment products from waste wood and other organic material diverted from the landfill, and the installation of a vaporator to create steam from leachate for injection into the landfill gas flare. The emissions assessment for each project component relied upon interpretation of source tests from similar operations, incorporation of on-site measurements into emissions models and mass balances, and use of AP-42 procedures for emissions sources such as wind-blown dust, material handling and transfer operations, and fugitive landfill gas. Air permitting issues included best available control technology (BACT), emission offset thresholds, new source performance standards (NSPS), potential air toxics health risk impacts, and compliance with federal Title V operating permit requirements. With the increasing difficulties of siting new landfills, increasing pressures to reduce the rate of waste placement into existing landfills, and expanding regulatory requirements on landfill operations, experiences similar to those described in this paper are likely to increase in the future as permitting scenarios become more complex.

  1. ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE

    SciTech Connect

    Martino, C.; King, W.; Ketusky, E.

    2012-07-10

    In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

  2. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    SciTech Connect

    RYAN GW

    2008-04-25

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

  3. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors.

    PubMed

    Fitamo, T; Boldrin, A; Boe, K; Angelidaki, I; Scheutz, C

    2016-04-01

    Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co-digesting sludge with food waste, grass clippings and garden waste with a corresponding %VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2), respectively. The methane yield remained constant at around 425 and 385 NmL CH4/g VS in R1 and R2, respectively, when the reactors were operated at HRTs of 15, 20 and 30 days. However, the methane yield dropped significantly to 356 (R1) and 315 (R2) NmL CH4/g VS when reducing the HRT to 10 days, indicating that the process was stressed. Since the methane production rate improved significantly with decreasing HRT, the trade-off between yield and productivity was obtained at 15 days HRT. PMID:26866760

  4. JET MIXING ANALYSIS FOR SRS HIGH-LEVEL WASTE RECOVERY

    SciTech Connect

    Lee, S.

    2011-07-05

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four slurry pumps located within the tank liquid. The slurry pump may be fixed in position or they may rotate depending on the specific mixing requirements. The high-level waste in Tank 48 contains insoluble solids in the form of potassium tetraphenyl borate compounds (KTPB), monosodium titanate (MST), and sludge. Tank 48 is equipped with 4 slurry pumps, which are intended to suspend the insoluble solids prior to transfer of the waste to the Fluidized Bed Steam Reformer (FBSR) process. The FBSR process is being designed for a normal feed of 3.05 wt% insoluble solids. A chemical characterization study has shown the insoluble solids concentration is approximately 3.05 wt% when well-mixed. The project is requesting a Computational Fluid Dynamics (CFD) mixing study from SRNL to determine the solids behavior with 2, 3, and 4 slurry pumps in operation and an estimate of the insoluble solids concentration at the suction of the transfer pump to the FBSR process. The impact of cooling coils is not considered in the current work. The work consists of two principal objectives by taking a CFD approach: (1) To estimate insoluble solids concentration transferred from Tank 48 to the Waste Feed Tank in the FBSR process and (2) To assess the impact of different combinations of four slurry pumps on insoluble solids suspension and mixing in Tank 48. For this work, several different combinations of a maximum of four pumps are considered to determine the resulting flow patterns and local flow velocities which are thought to be associated with sludge particle mixing. Two different elevations of pump nozzles are used for an assessment of the flow patterns on the tank mixing. Pump design and operating parameters used for the analysis are summarized in Table 1. The baseline

  5. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. PMID:26684056

  6. Chemically coupled microwave and ultrasonic pre-hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and anaerobic digestion.

    PubMed

    Tyagi, Vinay Kumar; Lo, Shang-Lien; Rajpal, Ankur

    2014-05-01

    The effects of alkali-enhanced microwave (MW; 50-175 °C) and ultrasonic (US) (0.75 W/mL, 15-60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW-alkali pretreatment (pH 12 + 175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US-alkali pretreatment (pH 12 + 60 min), respectively. The biogas yield for US 60 min-alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)-alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal-alkali treatment condition. PMID:24488518

  7. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    NASA Astrophysics Data System (ADS)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    Sewage sludges as well as ashes from waste incineration plants are known accumulation sinks of many elements that are either important nutrients for biological organisms (phosphorus, potassium, magnesium, etc.) or valuable metals when considered on their own in pure form (nickel, chrome, zinc, etc.); they are also serious pollutants when they occur in wild mixtures at localized anthropogenic end- of-stream points. Austria and many other countries have to import up to 90% of the material inputs of metals from abroad. These primary resources are becoming more expensive as they become more scarce and remaining deposits more difficult to mine, which is a serious concern for industrialized nations. Basic economic and strategic reasoning demands an increase in recycling activities and waste minimization. Technologies to recover metals in a reasonable and economically relevant manner from very diffuse sources are practically non-existent or require large amounts of energy and chemicals, which pose environmental risks. On the other hand agriculture uses large volumes of mineral fertilizers, which are often sourced from mines as well, and thus are also subject to the same principle of finiteness and potential shortage in supply. These converted biological nutrients are taken up by crops and through the food chain and human consumption end up in sewage systems and in wastewater treatment plants in great quantities. The metabolized nutrients mostly do not return to agriculture, but due to contamination with heavy metals are diverted to be used as construction aggregates or are thermally treated and end up rather uselessly in landfills. The project BIO-ORE aimed to explore new pathways to concentrate metals from diluted sources such as sewage sludge and wastewater by using highly efficient biological absorption and transport mechanisms. These enzymatic systems from plants work with very little energy input. The process is called bioaccumulation and can be most effectively

  8. Polyethylene solidification of low-level wastes

    SciTech Connect

    Kalb, P.D.; Colombo, P.

    1985-02-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive waste in polyethylene. Waste streams selected for this study included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment. Waste form property tests included water immersion, deformation under compressive load, thermal cycling and radionuclide leaching. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash, and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported. 37 refs., 33 figs., 22 tabs.

  9. Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge.

    PubMed

    Liu, Kun; Chen, Yinguang; Xiao, Naidong; Zheng, Xiong; Li, Mu

    2015-04-21

    Recently, the use of waste activated sludge to bioproduce short-chain fatty acids (SCFA) has attracted much attention as the sludge-derived SCFA can be used as a preferred carbon source to drive biological nutrient removal or biopolymer (polyhydroxyalkanoates) synthesis. Although large number of humic acid (HA) has been reported in sludge, the influence of HA on SCFA production has never been documented. This study investigated the effects on sludge-derived SCFA production of two commercially available humic acids (referred to as SHHA and SAHA purchased respectively from Shanghai Reagent Company and Sigma-Aldrich) that differ in chemical structure, hydrophobicity, surfactant properties, and degree of aromaticity. It was found that SHHA remarkably enhanced SCFA production (1.7-3.5 folds), while SAHA had no obvious effect. Mechanisms study revealed that all four steps (solubilization, hydrolysis, acidification, and methanogenesis) involved in sludge fermentation were unaffected by SAHA. However, SHHA remarkably improved the solubilization of sludge protein and carbohydrate and the activity of hydrolysis enzymes (protease and α-glucosidase) owing to its greater hydrophobicity and protection of enzyme activity. SHHA also enhanced the acidification step by accelerating the bioreactions of glyceradehyde-3P → d-glycerate 1,3-diphosphate, and pyruvate → acetyl-CoA due to its abundant quinone groups which served as electron acceptor. Further investigation showed that SHHA negatively influenced the activity of acetoclastic methanogens for its competition for electrons and inhibition on the reaction of acetyl-CoA → 5-methyl-THMPT, which caused less SCFA being consumed. All these observations were in correspondence with SHHA significantly enhancing the production of sludge derived SCFA. PMID:25825920

  10. High-Level Waste Melter Study Report

    SciTech Connect

    Perez Jr, Joseph M; Bickford, Dennis F; Day, Delbert E; Kim, Dong-Sang; Lambert, Steven L; Marra, Sharon L; Peeler, David K; Strachan, Denis M; Triplett, Mark B; Vienna, John D; Wittman, Richard S

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  11. Liquid low level waste management expert system

    SciTech Connect

    Ferrada, J.J.; Abraham, T.J. ); Jackson, J.R. )

    1991-01-01

    An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs.

  12. Anaerobic co-digestion of municipal biomass wastes and waste activated sludge: dynamic model and material balances.

    PubMed

    Sun, Yifei; Wang, Dian; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2013-10-01

    The organic matter degradation process during anaerobic co-digestion of municipal biomass waste (MBW) and waste-activated sludge (WAS) under different organic loading rates (OLRs) was investigated in bench-scale and pilot-scale semi-continuous stirred tank reactors. To better understand the degradation process of MBW and WAS co-digestion and provide theoretical guidance for engineering application, anaerobic digestion model No.1 was revised for the co-digestion of MBW and WAS. The results showed that the degradation of organic matter could be characterized into three different fractions, including readily hydrolyzable organics, easily degradable particulate organics, and recalcitrant particle organics. Hydrolysis was the rate-limiting step under lower OLRs, and methanogenesisis was the rate-limiting step for an OLR of 8.0 kg volatile solid (VS)/(m3 x day). The hydrolytic parameters of carbohydrate, protein, and lipids were 0.104, 0.083, and 0.084 kg chemical oxygen demand (COD)/(kg COD x hr), respectively, and the reaction rate parameters of lipid fermentation were 1 and 1.25 kg COD/(kg COD x hr) for OLRs of 4.0 and 6.0 kg VS/(m3 x day). A revised model was used to simulate methane yield, and the results fit well with the experimental data. Material balance data were acquired based on the revised model, which showed that 58.50% of total COD was converted to methane. PMID:24494499

  13. Co-composting of faecal sludge and organic solid waste for agriculture: process dynamics.

    PubMed

    Cofie, Olufunke; Kone, Doulaye; Rothenberger, Silke; Moser, Daya; Zubruegg, Chris

    2009-10-01

    This paper presents the potentials and performance of combined treatment of faecal sludge (FS) and municipal solid waste (SW) through co-composting. The objectives were to investigate the appropriate SW type, SW/FS mixing ratio and the effect of turning frequency on compost maturity and quality. Solid waste (SW, as market waste, MW, or household waste, HW) was combined with dewatered FS in mixing ratios of 2:1 and 3:1 by volume and aerobically composted for 90 days. Four composting cycles were monitored and characterised to establish appropriate SW type and mixing ratio. Another set of five composting cycles were monitored to test two different turning frequencies: (i) once in 3-4 days during the thermophilic phase and 10 days during maturation phase and (ii) once in every 10 days throughout the composting period. Samples were taken at every turning and analysed for total solids (TS), total volatile solids (TVS), total organic carbon (TOC), electrical conductivity (EC), pH, ammonium and nitrate nitrogen (NH(4)-N and NO(3)-N) and total Kjeldahl nitrogen (TKN). Temperature, C/N ratio, NO(3)-N/NH(4)-N ratio and cress planting trials were chosen as maturity indicators. Result showed a preference of MW over HW and mixing ratio of 2:1 over 3:1. There was no significant effect of different turning frequencies on the temperature changes and the quality of mature compost. The final product contained C/N ratio of 13 and NO(3)/NH(4)-ratio of about 7.8, while TVS was about 21% TS and the NH(4)-N content was reduced to 0.01%. A co-composting duration of 12 weeks was indicated by the cress test to achieve a mature and stable product. The turning frequency of 10 days is recommended as it saves labour and still reaches safe compost with fairly high nutrient content. PMID:19660779

  14. Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes.

    PubMed

    Pei, Jin; Yao, Hong; Wang, Hui; Ren, Jia; Yu, Xiaohua

    2016-08-01

    Biosolids from wastewater treatment plant (WWTP) are environmental reservoirs of antibiotic resistance genes, which attract great concerns on their efficient treatments. Anaerobic digestion (AD) is widely used for sewage sludge treatment but its effectiveness is limited due to the slow hydrolysis. Ozone and thermal hydrolysis pre-treatment were employed to improve AD efficiency and reduce antibiotic-resistant genes in municipal and pharmaceutical waste sludge (MWS and PWS, respectively) in this study. Sludge solubilization achieved 15.75-25.09% and 14.85-33.92% after ozone and thermal hydrolysis, respectively. Both pre-treatments improved cumulative methane production and the enhancements were greater on PWS than MWS. Five tetracycline-resistant genes (tet(A), tet(G), tet(Q), tet(W), tet(X)) and one mobile element (intI1) were qPCR to assess pre-treatments. AD of pre-treated sludge reduced more tet genes than raw sludge for both ozonation and thermal hydrolysis in PWS and MWS. Thermal hydrolysis pre-treatment was more efficient than ozone for reduction after AD. Results of this study help support management options for reducing the spread of antibiotic resistance from biosolids. PMID:27151286

  15. Locations, volumes, and characteristics of DOE's mixed low-level wastes

    SciTech Connect

    Ross, W.A.; Elmore, M.R. ); Warner, C.L. ); Wachter, L.J. . HAZWRAP Support Contractor Office); Carlson, W.L.; Devries, R.L. )

    1992-03-01

    The Mixed Waste Treatment Project (MWTP) has collected and analyzed mixed low-level waste data to assist in developing treatment capability for the US Department of Energy's (DOE) wastes. Initial data on the characteristics of mixed waste was obtained from the Waste Management Information System (WMIS) data base, and has been updated based on visits to DOE sites where most of the wastes are generated and stored. The streams of interest have a current inventory of about 70,000 m{sup 3} and a generation rate of about 7,700 m{sup 3}/yr. The twelve sites with the most significant processing needs are Fernald, Hanford, K-25 (Oak Ridge), Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, Rocky Flats Plant, Savannah River Site (SRS), and Y-12 (Oak Ridge). These twelve sites account for about 98% of the mixed waste volumes. The wastes have been assigned to specific waste characterization categories. The largest category in current interim storage is inorganic solids, with sludges, filter cakes, and residues the largest specific subcategory. Aqueous liquids are the largest currently generated stream. The other large categories are solid organics, metals wastes, and heterogeneous wastes. Organic liquids, which have been a major focus, are the smallest of the categories.

  16. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.

    PubMed

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

    2014-05-01

    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production. PMID:24632434

  17. Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed

    SciTech Connect

    Huber, Heinz J.

    2013-06-24

    The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

  18. C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Dahl, T.L.; Lay, A.C.; Taylor, S.A.; Moore, J.W.

    1999-05-01

    Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites.

  19. Twelfth annual US DOE low-level waste management conference

    SciTech Connect

    Not Available

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  20. Stabilization and solidification of waste phosphate sludge using Portland cement and fly ash as cement substitute

    SciTech Connect

    Vedat Pinarli; Gizem Karaca; Guray Salihoglu; Nezih Kamil Salihoglu

    2005-07-01

    Stabilization and solidification of the waste phosphate sludge (WPS) using Portland cement (PC) and fly ash (FA) were studied in the present work. The WPS content in the cement mortars varied from 5% to 15%. Setting times were measured, and unconfined compressive strengths (UCS) were determined for the mortars cured in water for 3, 7, 28, 56, and 90 days. Zinc and nickel leaching of the solidified products were measured according to the Toxicity Characteristic Leaching Procedure. Setting times were extended as the WPS content in the paste samples increased. The UCS values of the mortar containing 5% WPS solidified by using 95% PC were similar to the reference sample. Use of 10% FA as cement substitute increased the UCS values by 10% at the end of curing period of 56 days. The WPS contained initially 130.2 mg L{sup -1} of zinc and 22.7 mg L{sup -1} of nickel. The zinc and nickel leached from the 5% WPS solidified by using 95% PC were measured as 3.8 mg L{sup -1} and 0.4 mg L{sup -1}, respectively. These metal concentrations were below the limits given by the U.S. Environmental Protection Agency for landfilling the solidified wastes.

  1. Co-digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge.

    PubMed

    Borowski, Sebastian

    2015-01-01

    This study investigates the anaerobic digestion of the hydromechanically sorted organic fraction of municipal solid wastes (HS-OFMSW) co-digested with sewage sludge (SS). Eight laboratory-scale experiments were conducted under semi-continuous conditions at 15 and 20 days of solids retention time (SRT). The biogas yield from the waste reached 309 to 315 dm(3)/kgVS and 320 to 361 dm(3)/kgVS under mesophilic and thermophilic conditions, respectively. The addition of SS to HS-OFMSW (1:1 by weight) improved the C/N balance of the mixture, and the production of biogas through anaerobic mesophilic digestion increased to 494 dm(3)/kgVS, which corresponded to 316 dm(3)CH4/kgVS. However, when SS and HS-OFMSW were treated under thermophilic conditions, methanogenesis was inhibited by volatile fatty acids and free ammonia, which concentrations reached 5744 gCH3COOH/m(3) and 1009 gNH3/m(3), respectively. PMID:25262391

  2. Hydrochar from sewage sludge and urban wastes as a peat replacement in growing media preparation

    NASA Astrophysics Data System (ADS)

    Álvarez, Maria Luisa; Méndez, Ana; Paz-Ferreiro, Jorge; Soler-Rovira, Pedro; García-Gil, Juan Carlos; Plaza, César; Gascó, Gabriel

    2016-04-01

    Nowadays, there is an important trend in Europe for peat replacement with biochar in growing media formulation in order to reduce the environmental impact of peat exploitation. Hydrothermal carbonization (HTC) is a thermochemical process of converting organic feedstock into a high carbon rich solid product named hydrochar. It is performed in water mild temperature (180-260°C) under pressure conditions (2-6MPa) for 5-250 min. The reaction pressure is not controlled in the process and is autogenic with the saturation vapour pressure of water corresponding to the reaction temperature. In recent years, the possibility of subjecting organic wastes to HTC has attracted the scientific community attention due to their interesting advantages over other thermal treatments such as pyrolysis, torrefaction or gasification. The aim of the present paper is to study the possible use of two hydrochars produced by Ingelia (Spain) from sewage sludge and urban waste treatment as growing media material in horticulture. For this, thermal, chemical and hydrophysical properties were determined and compared with that of brown commercial peat.

  3. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  4. Co-treatment of fruit and vegetable waste in sludge digesters: Chemical and spectroscopic investigation by fluorescence and Fourier transform infrared spectroscopy.

    PubMed

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Cucina, Mirko; Massaccesi, Luisa; Gigliotti, Giovanni

    2016-04-01

    In a previous work co-digestion of food waste and sewage sludge was performed in a pilot apparatus reproducing operating conditions of an existing full scale digester and processing waste mixed sludge (WMS) and fruit and vegetable waste (FVW) at different organic loading rates. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity was conducted. In this paper we considered humification parameters and spectroscopic analysis. Humification parameters indicated a higher not humified fraction (NH) and a lower degree of humification (DH) of FVW with respect to WMS (NH=19.22 and 5.10%; DH=36.65 and 61.94% for FVW and WMS, respectively) associated with their different chemical compositions and with the stabilization process previously undergone by sludge. FVW additions seemed to be favourable from an agronomical point of view since a lower percentage of organic carbon was lost. Fourier transform infrared spectra suggested consumption of aliphatics associated with rising in bio-methane generation followed by accumulation of aliphatics and carboxylic acids when the biogas production dropped. The trend of peaks ratios can be used as an indicator of the process efficiency. Fluorescence intensity of peak B associated with tryptophan-like substances and peak D associated with humic-like substances observed on tridimensional Excitation Emission Matrix maps increased up to sample corresponding to the highest rate of biogas production. Overall spectroscopic results provided evidence of different chemical pathways of anaerobic digestion associated with increasing amount of FVW which led to different levels of biogas production. PMID:26946935

  5. Decline in PCDD and PCDF levels in sewage sludges from Catalonia (Spain)

    SciTech Connect

    Eljarrat, E.; Caixach, J.; Rivera, J. . Mass Spectrometry Lab.)

    1999-08-01

    Nineteen sewage sludges from rural and urban wastewater treatment plants (WWTPs) in Catalonia (Spain) were analyzed for PCDDs and PCDFs using HRGC-HRMS to determine the present levels of contamination. Total I-TEQ values for these samples ranged from 7 to 160 pg/g, with a mean value of 55 pg/g and a median value of 42 pg/g. Moreover, archived sewage sludge samples collected and stored between 1979 and 1987 from 15 WWTPs were analyzed to gain some insight into temporal trends and possible variations in source inputs. Total I-TEQ values for archived samples ranged from 29 to 8300 pg/g, with a mean value of 620 pg/g and a median value of 110 pg/g. The findings show that contemporary sewage sludge PCDD/F concentrations have declined since the 1980s. In addition to the variations in PCDD and PCDF concentrations, there were also some changes in the isomeric patterns. These variations in levels and isomeric patterns could reflect changes in PCDD and PCDF sources to the environment over time.

  6. High Level Waste Feed Certification in Hanford Double Shell Tanks

    SciTech Connect

    Thien, Micheal G.; Wells, Beric E.; Adamson, Duane J.

    2010-03-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE’s River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (1 million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing of HLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch to batch operational adjustments that reduces operating efficiency and has the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

  7. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste.

    PubMed

    Liu, Chuanyang; Li, Huan; Zhang, Yuyao; Liu, Can

    2016-11-01

    Anaerobic co-digestion of sewage sludge and food waste was tested at two different total solid (TS) concentrations. In the low-solids group with TS 4.8%, the biogas production increased linearly as the ratio of food waste in substrate increased from 0 to 100%, but no synergetic effect was found between the two substrates. Moreover, the additive food waste resulted in the accumulation of volatile fatty acids and decelerated biogas production. Thus, the blend ratio of food waste should be lower than 50%. While in the high-solids group with TS 14%, the weak alkaline environment with pH 7.5-8.5 avoided excessive acidification but high concentration of free ammonia was a potential risk. However, good synergetic effect was found between the two substrates because the added food waste improved mass transfer in sludge cake. Thus, 50% was recommended as the optimum ratio of food waste in substrate because of the best synergetic effect. PMID:27497086

  8. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    SciTech Connect

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  9. Solidification of low-level radioactive waste at the Savannah River Site

    SciTech Connect

    Langton, C.A.

    1989-01-01

    Aqueous-based process waste and other small volume wastes including basin sludge and incinerator ash will be solidified in cement-based wasteforms at SRS. A variety of inorganic solidifying agents are used depending on the chemistry, contaminants, and processing characteristics of the waste. In some cases, pre-treatment of the waste is used to reduce the activity of the waste and/or to remove the hazardous characteristics of the waste. In the case of DWPF saltstone, pretreatment is used to reduce 137 Cs and 90 Sr concentration to Class A levels and in-situ treatment (chemical reactions between the cementitious solids and waste) is used to remove the toxic metal characteristic of the waste. Chemical reduction of the Cr/sup +6/ to Cr/sup +3/ and subsequent precipitation of Cr(OH)/sub 3/, (low solubility) occurs as the result of reactions between the cementitious raw materials and the waste liquid. In summary waste treatment and solidification used at SRS is designed to meet both South Carolina and Federal requirements for maintaining the quality of the groundwater at the disposal site boundary. 2 refs.

  10. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis.

    PubMed

    Jin, Baodan; Wang, Shuying; Xing, Liqun; Li, Baikun; Peng, Yongzhen

    2016-05-01

    The effect of salinity on sludge alkaline fermentation at low temperature (20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride (NaCl, 0-25g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand (SCOD) increased with salinity. The hydrolysate (soluble protein, polysaccharide) and the acidification products (short chain fatty acids (SCFAs), NH4(+)-N, and PO4(3-)-P) increased with salinity initially, but slightly declined respectively at higher level salinity (20g/L or 20-25g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt. Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH4(+)-N on SCFA accumulation was increased. PMID:27155412

  11. In-tank pretreatment of high-level tank wastes: The SIPS system

    SciTech Connect

    Reich, M.; Powell, J.; Barletta, R.

    1996-03-01

    A new approach, termed SIPS (Small In-Tank Processing System), that enables the in-tank processing and separation of high-level tank wastes into high-level waste (HLW) and low-level waste (LLW) streams that are suitable for vitrification, is described. Presently proposed pretreatment systems, such as enhanced sludge washing (ESW) and TRUEX, require that the high-level tank wastes be retrieved and pumped to a large, centralized processing facility, where the various waste components are separated into a relatively small, radioactively concentrated stream (HLW), and a relatively large, predominantly non-radioactive stream (LLW). In SIPS, a small process module, typically on the order of 1 meter in diameter and 4 meters in length, is inserted into a tank. During a period of approximately six months, it processes the solid/liquid materials in the tank, separating them into liquid HLW and liquid LLW output streams that are pumped away in two small diameter (typically 3 cm o.d.) pipes. The SIPS concept appears attractive for pretreating high level wastes, since it would: (1) process waste in-situ in the tanks, (2) be cheaper and more reliable than a larger centralized facility, (3) be quickly demonstrable at full scale, (4) have less technical risk, (5) avoid having to transfer unstable slurries for long distances, and (6) be simple to decommission and dispose of. Further investigation of the SIPS concept appears desirable, including experimental testing and development of subscale demonstration units.

  12. Thermal behaviour of chrome shavings and of sludges recovered after digestion of tanned solid wastes with calcium hydroxide

    SciTech Connect

    Tahiri, S. . E-mail: t_soufiane@yahoo.fr; Albizane, A.; Messaoudi, A.; Azzi, M.; Bennazha, J.; Younssi, S. Alami; Bouhria, M.

    2007-07-01

    The thermal behaviour of chrome shavings and of sludges recovered after digestion of tanned wastes with Ca(OH){sub 2} was studied. Ashes obtained after incineration of wastes at various temperatures were analysed by X-ray diffraction and EDX method. The main crystallized phases present in the ash obtained at 600 deg. C are Cr{sub 2}O{sub 3} and NaCl. The diffractograms revealed an increase in the intensities of the chromium oxide peaks and a very notable decrease of the amount of sodium chloride at 1100 deg. C. EDX analysis revealed a total disappearance of the chlorine peak at this temperature. Scanning electron micrographs show that the waste lost its fibrous aspect when the temperature increases. Formation of aggregates was noted after 550 deg. C. Combustion of organic matters and decarbonation phenomenon are the main stages observed on GTA and DTA curves of sludges. These phenomena are, respectively, exothermic and endothermic. The diffractogram of sludges recorded at 550 deg. C, in the presence of a constant oxygen surplus, revealed the presence of CaCrO{sub 4} and CaCO{sub 3}.

  13. Modeling of Boehmite Leaching from Actual Hanford High-Level Waste Samples

    SciTech Connect

    Peterson, Reid A.; Lumetta, Gregg J.; Rapko, Brian M.; Poloski, Adam P.

    2007-06-27

    The Department of Energy plans to vitrify approximately 60,000 metric tons of high level waste sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of high level waste requiring treatment, a goal has been set to remove about 90 percent of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum in the form of gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic, but boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. In this work, the dissolution kinetics of aluminum species during caustic leaching of actual Hanford high level waste samples is examined. The experimental results are used to develop a shrinking core model that provides a basis for prediction of dissolution dynamics from known process temperature and hydroxide concentration. This model is further developed to include the effects of particle size polydispersity, which is found to strongly influence the rate of dissolution.

  14. Pretreatment of microbial sludges

    DOEpatents

    Rivard, Christopher J.; Nagle, Nicholas J.

    1995-01-01

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  15. Pretreatment of microbial sludges

    DOEpatents

    Rivard, C.J.; Nagle, N.J.

    1995-01-10

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  16. Definitional-mission report: Domestic and industrial waste-sludge management project, Istanbul, Turkey. Export trade information

    SciTech Connect

    Not Available

    1988-11-01

    The Istanbul Water and Sewerage Administration (ISKI) was formed in 1982, and since that time a phased program of sewage collection and treatment has been implemented. Fifteen waste treatment plants, ranging from full scale biological treatment to pre-treatment, are in the design or planning stage, and over 2,000 km of collection lines have been installed. Concurrent with the program is an increasing emphasis on industrial waste treatment, which results in the production of both non-hazardous and hazardous sludges.

  17. High-level radioactive wastes. Supplement 1

    SciTech Connect

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  18. Low-level waste forum meeting reports

    SciTech Connect

    1993-12-31

    This paper provides the results of the winter meeting of the Low Level Radioactive Waste Forum. Discussions were held on the following topics: new developments in states and compacts; adjudicatory hearings; information exchange on siting processes, storage surcharge rebates; disposal after 1992; interregional access agreements; and future tracking and management issues.

  19. ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES: SRNL GLASS SELECTION STRATEGY

    SciTech Connect

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-01-23

    The Department of Energy has authorized a team of glass formulation and processing experts at the Savannah River National Laboratory (SRNL), the Pacific Northwest National Laboratory (PNNL), and the Vitreous State Laboratory (VSL) at Catholic University of America to develop a systematic approach to increase high level waste melter throughput (by increasing waste loading with minimal or positive impacts on melt rate). This task is aimed at proof-of-principle testing and the development of tools to improve waste loading and melt rate, which will lead to higher waste throughput. Four specific tasks have been proposed to meet these objectives (for details, see WSRC-STI-2007-00483): (1) Integration and Oversight, (2) Crystal Accumulation Modeling (led by PNNL)/Higher Waste Loading Glasses (led by SRNL), (3) Melt Rate Evaluation and Modeling, and (4) Melter Scale Demonstrations. Task 2, Crystal Accumulation Modeling/Higher Waste Loading Glasses is the focus of this report. The objective of this study is to provide supplemental data to support the possible use of alternative melter technologies and/or implementation of alternative process control models or strategies to target higher waste loadings (WLs) for the Defense Waste Processing Facility (DWPF)--ultimately leading to higher waste throughputs and a reduced mission life. The glass selection strategy discussed in this report was developed to gain insight into specific technical issues that could limit or compromise the ability of glass formulation efforts to target higher WLs for future sludge batches at the Savannah River Site (SRS). These technical issues include Al-dissolution, higher TiO{sub 2} limits and homogeneity issues for coupled-operations, Al{sub 2}O{sub 3} solubility, and nepheline formation. To address these technical issues, a test matrix of 28 glass compositions has been developed based on 5 different sludge projections for future processing. The glasses will be fabricated and characterized based on

  20. Novel method for sludge blanket measurements.

    PubMed

    Schewerda, J; Förster, G; Heinrichmeier, J

    2014-01-01

    The most widely used methods for sludge blanket measurements are based on acoustic or optic principles. In operation, both methods are expensive and often maintenance-intensive. Therefore a novel, reliable and simple method for sludge blanket measurement is proposed. It is based on the differential pressure measurement in the sludge zone compared with the differential pressure in the clear water zone, so that it is possible to measure the upper and the lower sludge level in a tank. Full-scale tests of this method were done in the secondary clarifier at the waste water treatment plant in Hecklingen, Germany. The result shows a good approximation of the manually measured sludge level. PMID:24569276

  1. A pilot study of anaerobic membrane digesters for concurrent thickening and digestion of waste activated sludge (WAS).

    PubMed

    Dagnew, Martha; Parker, Wayne J; Seto, Peter

    2010-01-01

    The increased interest in biomass energy provides incentive for the development of efficient and high throughput digesters such as anaerobic membrane bioreactors (AnMBRs) to stabilize waste activated sludge (WAS). This paper presents the results of a pilot and short term filtration study that was conducted to assess the performance of AnMBRs when treating WAS at a 15 day hydraulic retention time (HRT) and 30 day sludge retention time (SRT) in comparison to two conventional digesters running at 15 (BSR-15) and 30 days (BSR-30) HRT/SRT. At steady state, the AnMBR digester showed a slightly higher volatile solids (VS) destruction of 48% in comparison to 44% and 35.3% for BSR-30 and BSR-15, respectively. The corresponding values of specific methane production were 0.32, 0.28 and 0.21 m(3) CH(4)/kg of VS fed. Stable membrane operation at an average flux of 40+/-3.6 LM(-2 )H(-1) (LMH) was observed when the digester was fed with a polymer-dosed thickened waste activated sludge (TWAS) and digester total suspended solids (TSS) concentrations were less than 15 gL(-1). Above this solids concentration a flux decline to 24.1+/-2.0 LM(-2) H(-1) was observed. Short term filtration tests conducted using sludge fractions of a 9.7 and 17.1 gL(-1) TSS sludge indicated 84 and 70% decline in filtration performance to be associated with the supernatant fraction of the sludge. At a higher sludge concentration, the introduction of unique fouling control strategy to tubular membranes, a relaxed mode of operation (i.e. 5 minutes permeation and 1 minute relaxation by) significantly increased the flux from 23.8+/-1.1 to 37.8+/-2.3 LMH for a neutral membrane and from 25.7+/-1.1 to 44.9+/-2.9 LMH for a negatively charged membrane. The study clearly indicates that it is technically feasible to employ AnMBRs to achieve a substantial reduction in digester volumes. PMID:20351424

  2. Composting of bio-waste, aerobic and anaerobic sludges--effect of feedstock on the process and quality of compost.

    PubMed

    Himanen, Marina; Hänninen, Kari

    2011-02-01

    In-vessel composting of three stocks with originally different degree of organic matter degradation was conducted for: (1) kitchen source-separated bio-waste (BW), (2) aerobic (AS) as well as (3) anaerobic sludges (AnS) from municipal wastewater treatment plant. Composting experiment lasted over a year. The highest activity of the process was in the BW compost. It was implied by the highest temperature, CO(2) release, ammonification and nitrification, intensive accumulation and removal of low-weight carboxylic acids (water- and NaOH-extractable). Between the sludges higher mineralization and CO2 release was in AnS, while ammonification and nitrification were higher in AS compost; no significant difference between sludge composts was noticed for dynamics of pH, conductivity, concentrations of LWCA, and some nutrient compounds and heavy metals. Nitrogen content of the final compost increased in BW, but decreased in AS and AnS. Phytotoxicity of Lepidium sativum was eliminated faster in sludge composts compared to BW compost. PMID:21095117

  3. Statistical key factors optimization of conditions for hydrogen production from S-TE (solubilization by thermophilic enzyme) waste sludge.

    PubMed

    Guo, Liang; Zhao, Jun; She, Zonglian; Lu, Mingmin; Zong, Yan

    2013-06-01

    Waste sludge can be solubilized after S-TE (solubilization by thermophilic enzyme) pretreatment as the cryptic growth occurs at the expense of the cell lysate. The hydrogen production from S-TE sludge is greatly influenced by many factors. In this study, factors including pH, C/N, C/P, and Fe(2+) affecting hydrogen production from S-TE sludge were optimized using uniform design. The optimum condition for maximum hydrogen yield of 68.4 ml H2/g VSS (volatile suspended solid) could be predicted from regression model, and the optimum conditions were pH of 6.4, C/N ratio of 38, C/P ratio of 265, and Fe(2+) concentration of 85 mg/L. There was interaction effect of factors on hydrogen production from S-TE sludge. Different pH, C/N, C/P and Fe(2+) conditions could influence the VSS removal rate, carbohydrate and protein utilization. When the highest compositions of acetate and ethanol and lowest propionate were observed in metabolites, effective hydrogen production was also achieved. PMID:23584408

  4. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. PMID:23792658

  5. Dielectric Properties of Low-Level Liquid Waste

    SciTech Connect

    L. E. Lagos; M. A. Ebadian

    1998-10-20

    The purpose of this study was to develop a data collection containing values for the dielectric properties of various low-level liquid waste (LLLW) simulants measured as a function of frequency, temperature, and composition. The investigation was motivated by current interest in the use of microwave processing for the treatment of radioactive waste. A large volume of transuranic liquid and sludge produced by the U.S. Department of Defense (DOD) during the production of nuclear fiel bars is stored at several U.S. Department of Energy (DOE) sites around the United States. Waste storage and disposal space is scarce, expensive, and must be minimized. Thus, several DOE sites are pursuing the use of microwave heating as a means of achieving volume reduction and solidification of low-level liquid wastes. It is important to know which microwave frequencies should be employed tc achieve the most efficient processing at a range of different temperatures. The dielectric properties of the LLLW simulants can be utilized to determine the optimum frequencies for use with a particular LLLW or with other LLLWS of similar composition. Furthermore, nonlinear thermal processes, such as thermal runaway, which occur in the material being treated cannot be modeled without a knowledge of the temperature dependence of the dielectric properties. Often, this data does not exist; however, when it does, only very limited data near room temperature are available. The data collection generated in this study can be used to predict the behavior of a variety of microwave thermal treatment technologies, which have the potential of substantially reducing the volume of the LLLWS that are currently stored at many DOE sites. This information should help the users of the microwave reduction and solidification technology to optimize microwave processes used in the treatment of LLLW. The microwave reduction and solidification technology has clear advantages over other methods of reducing LLLWS. These

  6. Foam testing of an alternative antifoam agent for the processing of radioactive sludge in the Defense Waste Processing Facility

    SciTech Connect

    Koopman, D.C.

    2000-01-26

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is responsible for immobilizing high level radioactive waste (HLW) as glass-filled steel canisters for permanent storage. In the DWPF facility, the HLW sludge undergoes chemical treatment to prepare it for vitrification in a melter. The generation of stable foams is possible during treatment. The current DWPF antifoam is ineffective in preventing and minimizing the formation of foam. The adverse consequences of excess foam can be severe enough to cause foam to exit the evaporator and collect in the condensate. A foamover will contaminate the relatively clean condensate with HLW solids. It can also potentially lead to the production of an unsuitable melter feed that would not make quality glass. Both of these consequences are costly and time consuming to correct. A new antifoam agent was developed by the Illinois Institute of Technology, IIT, for DWPF in an attempt to minimize or eliminate the frequency of these foamovers. This antifoam agent was demonstrated to be superior to the existing DWPF antifoam agent in laboratory scale experiments. However, the DWPF evaporation heat flux was not achievable in the laboratory scale equipment. A 1/240th-scale pilot facility was built to achieve this heat flux and determine whether the existing or new antifoam agent was superior. The pilot facility was built out of glass to allow observation of the foam formation during processing. The experiments used a non-radioactive simulant slurry similar to HLW. The IIT antifoam agent was found to be much more effective than the DWPF antifoam at the current conditions of maximum foam formation. The IIT antifoam agent was comparable or superior to the present DWPF antifoam under all conditions tested. This report summarizes the results of the antifoam agent comparison testing.

  7. Municipal treatment plant sludge management

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the papers given at a conference on the processing of municipal wastes. Topics considered at the conference included closed-loop thermal sludge processing, bioenergy, the Hyperion energy recovery system, sludge drying, fluidized bed sludge incineration with supplemental coal firing and power generation, a sludge to oil reactor system, and energy recovery from anaerobic digestion.

  8. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge.

    PubMed

    Li, Qian; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki; Shofie, Mohammad; Li, Yu-You

    2015-02-01

    This study was conducted to characterize the kinetics of an anaerobic process (hydrolysis, acetogenesis, acidogenesis and methanogenesis) under thermophilic (55 °C) and mesophilic (35 °C) conditions with coffee grounds and waste activated sludge (WAS) as the substrates. Special focus was given to the kinetics of propionic acid degradation to elucidate the accumulation of VFAs. Under the thermophilic condition, the methane production rate of all substrates (WAS, ground coffee and raw coffee) was about 1.5 times higher than that under the mesophilic condition. However, the effects on methane production of each substrate under the thermophilic condition differed: WAS increased by 35.8-48.2%, raw coffee decreased by 76.3-64.5% and ground coffee decreased by 74.0-57.9%. Based on the maximum reaction rate (Rmax) of each anaerobic stage obtained from the modified Gompertz model, acetogenesis was found to be the rate-limiting step for coffee grounds and WAS. This can be explained by the kinetics of propionate degradation under thermophilic condition in which a long lag-phase (more than 18 days) was observed, although the propionate concentration was only 500 mg/L. Under the mesophilic condition, acidogenesis and hydrolysis were found to be the rate-limiting step for coffee grounds and WAS, respectively. Even though reducing the particle size accelerated the methane production rate of coffee grounds, but did not change the rate-limiting step: acetogenesis in thermophilic and acidogenesis in mesophilic. PMID:25534040

  9. Production of glass-ceramics from sewage sludge and waste glass

    NASA Astrophysics Data System (ADS)

    Rozenstrauha, I.; Sosins, G.; Petersone, L.; Krage, L.; Drille, M.; Filipenkov, V.

    2011-12-01

    In the present study for recycling of sewage sludge and waste glass from JSC "Valmieras stikla skiedra" treatment of them to the dense glass-ceramic composite material using powder technology is estimated. The physical-chemical properties of composite materials were identified - density 2.19 g/cm3, lowest water absorption of 2.5% and lowest porosity of 5% for the samples obtained in the temperature range of sintering 1120 - 1140 °C. Regarding mineralogical composition of glass-ceramics the following crystalline phases were identified by XRD analysis: quartz (SiO2), anorthite (CaAl2Si2O8) and hematite (Fe2O3), which could ensure the high density of materials and improve the mechanical properties of material - compressive strength up to 60.31±5.09 - 52.67±19.18 MPa. The physical-chemical properties of novel materials corresponds to dense glass-ceramics composite which eventually could be used as a building material, e.g. for floor covering, road pavement, exterior tiles etc.

  10. Evaluation of surfactants on waste activated sludge fermentation by pyrosequencing analysis.

    PubMed

    Zhou, Aijuan; Liu, Wenzong; Varrone, Cristiano; Wang, Youzhao; Wang, Aijie; Yue, Xiuping

    2015-09-01

    The effects of three widely-used surfactants on waste activated sludge (WAS) fermentation and microbial community structures were investigated. Rhamnolipid bio-surfactants (RL) showed more positive effects on WAS hydrolysis and acidification compared to chemosynthetic surfactants, such as sodium dodecylsulphate (SDS) and sodium dodecyl benzene sulfonate (SDBS). The highest SCOD and VFAs concentrations obtained with RL were 1.15-fold and 1.16-fold that of SDS, and up to 1.73 and 3.63 times higher than those obtained with SDBS. Pyrosequencing analysis showed that an evident reduction in bacterial diversity in surfactant-treated WAS. Moreover, acid-producing bacteria (such as Megasphaera and Oscillibacter), detected with RL, were (6.8% and 6.4% in proportion) more abundant than with SDS, and were rarely found in SDBS and the control. The results also revealed that RL allowed efficient hydrolysis enhancement and was favorable to functional microorganisms for further acidification during WAS fermentation. PMID:26081163

  11. Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates

    SciTech Connect

    Powell, Brian; Powell, Brian A.; Rao, Linfeng; Nash, Kenneth. L.

    2008-06-10

    The dissolution of synthetic boehmite (?-AlOOH) by 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) was examined in a series of batch adsorption/dissolution experiments. Additionally, the leaching behavior of {sup 233}U(VI) from boehmite was examined as a function of pH and HEDPA concentration. The results are discussed in terms of sludge washing procedures that may be utilized during underground tank waste remediation. In the pH range 4 to 10, complexation of Al(III) by HEDPA significantly enhanced dissolution of boehmite. This phenomenon was especially pronounced in the neutral pH region where the solubility of aluminum, in the absence of complexants, is limited by the formation of sparsely soluble aluminum hydroxides. At pH higher than 10, dissolution of synthetic boehmite was inhibited by HEDPA, likely due to sorption of Al(III):HEDPA complexes. Addition of HEDPA to equilibrated U(VI)-synthetic boehmite suspensions yielded an increase in the aqueous phase uranium concentration. Partitioning of uranium between the solid and aqueous phase is described in terms of U(VI):HEDPA speciation and dissolution of the boehmite solid phase.

  12. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta).

    PubMed

    Sode, Sidsel; Bruhn, Annette; Balsby, Thorsten J S; Larsen, Martin Mørk; Gotfredsen, Annemarie; Rasmussen, Michael Bo

    2013-10-01

    Phosphorus and biologically active nitrogen are valuable nutrient resources. Bioremediation with macroalgae is a potential means for recovering nutrients from waste streams. In this study, reject water from anaerobically digested sewage sludge was successfully tested as nutrient source for cultivation of the green macroalgae Ulva lactuca. Maximal growth rates of 54.57±2.16% FW d(-1) were achieved at reject water concentrations equivalent to 50 μM NH4(+). Based on the results, the growth and nutrient removal was parameterised as function of NH4(+) concentration a tool for optimisation of any similar phycoremediation system. Maximal nutrient removal rates of 22.7 mg N g DW(-1) d(-1) and 2.7 mg P g DW(-1) d(-1) were achieved at reject water concentrations equivalent to 80 and 89 μM NH4(+), respectively. A combined and integrated use of the produced biomass in a biorefinery is thought to improve the feasibility of using Ulva for bioremediation of reject water. PMID:23954716

  13. Enhanced dewatering of waste-activated sludge by composite hydrolysis enzymes.

    PubMed

    Wu, Boran; Chai, Xiaoli; Zhao, Youcai

    2016-04-01

    The feasibility of composite hydrolysis enzymes in enhanced dewatering of waste-activated sludge (WAS) was verified in this study. A Pearson correlation analysis was conducted to explore the roles of different extracellular polymeric substance (EPS) fractions on WAS dewaterability. The results indicated that tightly bound EPS (TB-EPS) was released into the liquid phase consistently during enzymatic hydrolysis to form soluble EPS (S-EPS) and loosely bound EPS and that the TB-EPS content was positively correlated with the capillary suction time of WAS. A kinetic analysis was carried out to gain further insights into the kinetic variation in TB-EPS removal. It was found that TB-EPS reduction fit a first-order kinetic model and that mild temperature (25-30 °C) and a slightly acidic condition were favorable for the improvement of enzyme activity. Solid phase extraction combined with UV-Vis spectroscopy analysis was used to characterize the processes of migration and transformation of the hydrophobic (HPO), transphilic and hydrophilic (HPI) fractions in EPS during the enzymatic process. The results revealed that HPO and HPI were mainly composed of PN and PS, respectively, and that the enzymatic hydrolysis could enhance the transformation of HPI from TB-EPS to S-EPS, which was the dominant mechanism of improving WAS dewaterability. PMID:26815556

  14. Microbial community analysis during continuous fermentation of thermally hydrolysed waste activated sludge.

    PubMed

    Cirne, D G; Bond, P; Pratt, S; Lant, P; Batstone, D J

    2012-01-01

    Acidogenic fermentation of thermally hydrolysed waste activated sludge was carried out at laboratory scale in two reactors operated under different hydraulic retention times (HRT). Process performance was assessed in terms of volatile fatty acid (VFA) composition and yield. The diversity of the microbial population was investigated by constructing a 16S rRNA gene library and subsequent phylogenetic analysis of clones. Fluorescence in situ hybridization (FISH) was used to assess the relative abundance of different bacterial groups. Bacteroidetes and Firmicutes were the dominant taxonomic groups representing 93% of the total sequences obtained in the reactor with 4 d HRT. A similar VFA yield (0.4-0.5 g VFA(COD) g SCOD(-1)) was obtained for the HRTs tested (1-4 d), indicating that extended retention times were not useful. Within Firmicutes, Clostridia was the major group detected in the clone sequences. These had close affiliation to Sporanaerobacter acetigenes, suggesting organisms of this group were important for hydrolysis of the protein fraction of the substrate. However, FISH analysis failed to detect the major portion of the bacteria, and this is most likely due to the lack of appropriate probes. This work emphasizes the diversity of fermentative communities, and indicates that more work is needed to identify and detect the important members. PMID:22173402

  15. Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature.

    PubMed

    Beltrán, Carolina; Jeison, David; Fermoso, Fernando G; Borja, Rafael

    2016-08-23

    The microalgae Chlorella sorokiniana are used as co-substrate for waste activated sludge (WAS) anaerobic digestion. The specific objective of this research was to evaluate the feasibility of improving methane production from anaerobic digestion of WAS in co-digestion with this microalga, based on an optimized mixture percentage. Thus, the anaerobic co-digestion of both substrates aims to overcome the drawbacks of the anaerobic digestion of single WAS, simultaneously improving its management. Different co-digestion mixtures (0% WAS-100% microalgae; 25% WAS-75% microalgae; 50% WAS-50% microalgae; 75% WAS-25% microalgae; 100% WAS-0% microalgae) were studied. The highest methane yield (442 mL CH4/g VS) was obtained for the mixture with 75% WAS and 25% microalgae. This value was 22% and 39% higher than that obtained in the anaerobic digestion of the sole substrates WAS and microalgae, respectively, as well as 16% and 25% higher than those obtained for the co-digestion mixtures with 25% WAS and 75% microalgae and 50% WAS and 50% microalgae, respectively. The kinetic constant of the process increased 42%, 42% and 12%, respectively, for the mixtures with 25%, 50% and 75% of WAS compared to the substrate without WAS. Anaerobic digestion of WAS, together with C. sorokiniana, has been clearly improved by ensuring its viability, suitability and efficiency. PMID:27230742

  16. Recycling of Organic Waste Sludge by Hydrothermal Dry Steam Aiming for Adsorbent

    NASA Astrophysics Data System (ADS)

    Hoshikawa, Hisahiro; Hayakawa, Tomoki; Yamasaki, Nakamichi

    2006-05-01

    Global warming becomes more serious problem today. We have to develop new technology for new energy or fixation of carbon dioxide. Biomass is considered to be one of new energies. Methane fermentation is a method to make methane from biomass, such as garbage and fecal of farm animals, by methane fermentation bacteria. It has a problem, however, that bacteria are deactivated due to ammonia, which is made by itself. And much methane fermentation residue is incinerated. Therefore recycling methane fermentation residue is important for effective use of biomass. We research hydrothermal process. Dry steam means unsaturated vapor, we call. It demands a temperature less than 400 °C. And it is expected to accelerate dehydration effect, decompose and extract the organic matter, and make porous material. Thus, we try to apply the dry steam to recycling of organic waste sludge aiming for absorbent. Experiments were conducted at 250-350 °C in nitrogen atmosphere. The carbon products are analyzed by CHNS elemental analysis, and Thermogravimetry. The extractives are analyzed by gas chromatograph.

  17. Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release.

    PubMed

    Latif, Muhammad A; Mehta, Chirag M; Batstone, Damien J

    2015-09-15

    This paper assesses anaerobic digestion of waste activated sludge (WAS) at low pH to enhance phosphorous solubility. Batch biochemical methane potential tests were conducted at a pH range of 5 to 7.2 in two separate sets (two different WAS samples collected from municipal WWTP). Low pH (<5.7) caused a significant (p = 0.004) decrease in methane potential (B0) up to 33% and 3.6 times increase in phosphorus release compared to neutral pH (7-7.7), but with no major change in methane production rate coefficient (khyd). The loss in methane yield was mainly due to decrease in hydrolytic capability rather than inhibition of methanogenesis with volatile fatty acids being <300 mgCOD L(-1) and soluble COD <1300 mgCOD L(-1) even at low pH. While pH did not influence the acetoclastic community (Methanosaeta dominated), it was the primary driver for the remaining community (p = 0.004), and caused a loss of diversity and shift to Clostridia. PMID:26081435

  18. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    SciTech Connect

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  19. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. PMID:27038264

  20. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  1. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  2. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  3. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  4. State-of-the-art report on low-level radioactive waste treatment

    SciTech Connect

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  5. The effect of chemical composition on the PCT durability of mixed waste glasses from wastewater treatment sludges

    SciTech Connect

    Resce, J.L.; Ragsdale, R.G.; Overcamp, T.J.; Bickford, D.F.; Cicero, C.A.

    1995-01-25

    An experimental program has been designed to examine the chemical durability of glass compositions derived from the vitrification of simulated wastewater treatment sludges. These sludges represent the majority of low-level mixed wastes currently in need of treatment by the US DOE. The major oxides in these model glasses included SiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}, Na{sub 2}O, CaO and Fe{sub 2}O{sub 3}. In addition, three minor oxides, BaO, NiO, and PbO, were added as hazardous metals. The major oxides were each varied at two levels resulting in 32 experimental glasses. The chemical durability was measured by the 7-Day Product Consistency Test (PCT). The normalized sodium release rates (NRR{sub Na}) of these glasses ranged from 0.01 to 4.99 g/m{sup 2}. The molar ratio of the glass-former to glass-modifier (F/M) was found to have the greatest effect on PCT durability. Glass-formers included SiO{sub 2}, Al{sub 2}O{sub 3}, and B{sub 2}O{sub 3}, while Na{sub 2}O, CaO, BaO, NiO, and PbO were glass-modifiers. As this ratio increased from 0.75 to 2.0, NRR{sub Na} was found to decrease between one and two orders of magnitude. Another important effect on NRR{sub Na} was the Na{sub 2}O/CaO ratio. As this ratio increased from 0.5 to 2.0, NRR{sub Na} increased up to two orders of magnitude for the glasses with the low F/M ratio but almost no effect was observed for the glasses with the high F/M ratio. Increasing the iron oxide content from 2 to 18 mole% was found to decrease NRR{sub Na} one order of magnitude for the glasses with low F/M but iron had little effect on the glasses with the high F/M ratio. The durability also increased when 10 mole percent Al{sub 2}O{sub 3} was included in low iron oxide glasses but no effect was observed with the high iron glasses. The addition of B{sub 2}O{sub 3} had little effect on durability. The effects of other composition parameters on durability are discussed as well.

  6. Mixed Low-Level Radioactive Waste (MLLW) Primer

    SciTech Connect

    W. E. Schwinkendorf

    1999-04-01

    This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options.

  7. Low level tank waste disposal study

    SciTech Connect

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  8. The use of sewage sludge and horticultural waste to develop artificial soil for plant cultivation in Singapore.

    PubMed

    Stabnikova, O; Goh, W-K; Ding, H-B; Tay, J-H; Wang, J-Y

    2005-06-01

    Greenhouse pot experiments were performed with Ipomoea aquatica (Kang Kong) to evaluate artificial soil produced from poor fertility subsoil, horticultural compost, and sewage sludge. The addition of horticultural compost and sewage sludge to subsoil substantially improved plant growth, improved the physical properties of subsoil and enriched subsoil by essential nutrients for plants. The effect was enhanced when the two ingredients were added to subsoil together. The highest yield of biomass of I. aquatica was observed in artificial soil prepared by mixing subsoil with 4% (wet weight/wet weight) of horticultural compost and 2% (dry weight/wet weight) of sewage sludge. The contents of heavy metals in plants, grown in the artificial soil, were significantly lower than toxic levels. The artificial soil could be recommended for urban landscaping and gardening in Singapore. PMID:15668204

  9. Modeling of Boehmite Leaching from Actual Hanford High-Level Waste Samples

    SciTech Connect

    Snow, L.A.; Rapko, B.M.; Poloski, A.P.; Peterson, R.A.

    2007-07-01

    The U.S. Department of Energy plans to vitrify approximately 60,000 metric tons of high-level waste (HLW) sludge from underground storage tanks at the Hanford Site in Southwest Washington State. To reduce the volume of HLW requiring treatment, a goal has been set to remove a significant quantity of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum is found in the form of gibbsite and sodium aluminate, which can be easily dissolved by washing the waste stream with caustic, and boehmite, which comprises nearly half of the total aluminum, but is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. Chromium, which makes up a much smaller amount ({approx}3%) of the sludge, must also be removed because there is a low tolerance for chromium in the HLW immobilization process. In this work, the coupled dissolution kinetics of aluminum and chromium species during caustic leaching of actual Hanford HLW samples is examined. The experimental results are used to develop a model that provides a basis for predicting dissolution dynamics from known process temperature and hydroxide concentration. (authors)

  10. FLUE GAS DESULFURIZATION SLUDGE: ESTABLISHMENT OF VEGETATION ON PONDED AND SOIL-APPLIED WASTE

    EPA Science Inventory

    The report gives results of research to identify and evaluate forms of vegetation and methods of their establishment for reclaiming retired flue gas desulfurization sludge ponds. Also studied were the soil liming value of limestone scrubber sludge (LSS) and plant uptake and perco...

  11. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    PubMed

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity. PMID:26164919

  12. [Pilot study of thermal treatment/thermophilic anaerobic digestion process treating waste activated sludge of high solid content].

    PubMed

    Wu, Jing; Wang, Guang-qi; Cao, Zhi-ping; Li, Zhong-hua; Hu, Yu-ying; Wang, Kai-jun; Zu, Jian-e

    2014-09-01

    A pilot-scale experiment about the process of "thermal pretreatment at 70°C/thermophilic anaerobic digestion" of waste activated sludge of high solid content (8% -9% ) was conducted. The process employed thermal treatment of 3 days to accelerate the hydrolysis and thermophilic digestion to enhance anaerobic reaction. Thus it was good at organic removal and stabilization. When the solid retention time (SRT) was longer than 20 days, the VSS removal rate was greater than 42. 22% and it was linearly correlated to the SRT of the aerobic digestion with the R2 of 0. 915 3. It was suggested that SRT of anaerobic digestion was 25 days in practice. VSS removal rate and biogas production rate of the pilot experiment were similar to those of the run-well traditional full-scale sludge anaerobic digestion plants (solid content 3% -5% ) and the plant of high solid content using German technique. PMID:25518666

  13. Polyhydroxybutyrate production by direct use of waste activated sludge in phosphorus-limited fed-batch culture.

    PubMed

    Cavaillé, Laëtitia; Grousseau, Estelle; Pocquet, Mathieu; Lepeuple, Anne-Sophie; Uribelarrea, Jean-Louis; Hernandez-Raquet, Guillermina; Paul, Etienne

    2013-12-01

    Polyhydroxybutyrate (PHB) production directly by waste activated sludge (WAS) was investigated in aerobic fed-batch conditions using acetic acid as substrate. PHB production was induced by phosphorus limitation. WAS of different origin were tested with various degrees of phosphorus limitation and PHB contents of up to 70% (gCOD PHB/gCOD particulate) were obtained. This strategy showed the importance of maintaining cell growth for PHB production in order to increase PHB concentration and that the degree of phosphorus limitation has a direct impact on the quantity of PHB produced. Pyrosequencing of 16S rRNA transcripts showed changes in the active bacteria of the WAS microbial community as well as the acclimation of populations depending on sludge origin. The monitoring of the process appeared as the key factor for optimal PHB production by WAS. Different strategies are discussed and compared in terms of carbon yield and PHB content with the feast and famine selection process. PMID:24121372

  14. Vitrification of low-level waste using the plasma hearth process

    SciTech Connect

    Gillins, R.L.

    1996-03-01

    The Plasma Hearth Process (PHP) is a high temperature vitrification process using a plasma arc torch in a stationary, refractory lined chamber that destroys organics and stabilizes the residuals in a nonleaching, vitrified waste form. Plasma arc technology is an innovative technology that has exhibited commercial success, primarily in its use for production of high purity alloys and other specialty metals. The residual from the PHP provides a very stable vitrified final product of high integrity for most wastes without the need for glass formers. The final waste form will be volume-reduced to the maximum extent practical, because all organics will have been destroyed and inorganics will be in a high-density, low void-space form and little or no volume-increasing glass makers will have been added. Low volume and high integrity waste forms result in low disposal costs. The PHP technology is chiefly applicable to solid (DAW) or wet solid (sludge) wastes where volume reduction and a stabilized byproduct is desired for disposal. The technology is ideally suited for heterogeneous wastes of nearly any category that are difficult to treat by conventional thermal technologies. The application for which it is currently being developed is Department of Energy (DOE) solid mixed wastes, both low level and transuranic. DOE, through the Office of Technology Development`s Mixed Waste Focus Area (MWFA) is conducting a development and demonstration project to ready the PHP for implementation in the DOE complex.

  15. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    PubMed

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  16. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 6 QUALIFICATION SAMPLE

    SciTech Connect

    Click, D.; Jones, M.; Edwards, T.

    2010-06-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) confirms applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples.1 DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem (CC) Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICPAES). In addition to the CC method confirmation, the DWPF lab's mercury (Hg) digestion method was also evaluated for applicability to SB6 (see DWPF procedure 'Mercury System Operating Manual', Manual: SW4-15.204. Section 6.1, Revision 5, Effective date: 12-04-03). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 6 (SB6) SRAT Receipt and SB6 SRAT Product samples. For validation of the DWPF lab's Hg method, only SRAT receipt material was used and compared to AR digestion results. The SB6 SRAT Receipt and SB6 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB6 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 5 (SB5), to form the SB6 Blend composition. In addition to the 16 elements currently measured by the DWPF, this report includes Hg and thorium (Th) data (Th comprising {approx}2.5 - 3 Wt% of the total solids in SRAT Receipt and SRAT Product, respectively) and provides specific details of ICP-AES analysis of Th. Thorium was found to interfere with the U 367.007 nm emission line, and an inter-element correction (IEC) had to be applied to U data, which is also

  17. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    SciTech Connect

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  18. Artemia salina as a new index for assessment of acute cytotoxicity during co-composting of sewage sludge and lignocellulose waste.

    PubMed

    El Fels, Loubna; Hafidi, Mohamed; Ouhdouch, Yedir

    2016-04-01

    Considering the necessity to constantly monitor the safety of use of sewage sludge, we have focused on evaluating the toxicity of raw sludge and sludge treated by co-composting with date palm waste using an in vitro assessment of cytotoxicity based on Artemia salina larvae as a simple new sensitive and reliable routine test. The efficiency of co-composting in decreasing sludge toxicity was evaluated in terms of cytotoxicity abatement reaching 100% by the second month of composting for mixture A (1/3 sludge+2/3 date palm waste) and the third month for mixture B (1/2 sludge+1/2 date palm waste). Cytotoxicity abatement was confirmed by the increase of germination index, which reached over 100% with positive correlation for lettuce (R(2)=0.81 and 0.86) and for turnip (R(2)=0.87 and 0.74) for mixtures A and B respectively. A strong correlation between the proposed cytotoxicity test and the evolution of regulatory physical-chemical approaches was found, (R(2)=0.88 and 0.89) for NH4(+)/NO3(-) and (R(2)=0.80 and 0.88) for C/N respectively for mixture A and B. These findings allow the inexpensive bioassay reported to be used as a highly sensitive test to determine the cytotoxicity and maturity of composts. PMID:26868843

  19. Review of Corrosion Inhibition in High Level Radioactive Waste Tanks in the DOE Complex

    SciTech Connect

    Subramanian, K.H.

    2004-03-08

    Radioactive waste is stored in underground storage tanks at the Department of Energy (DOE) Savannah River Site (SRS). The waste tanks store supernatant liquid salts, consisting primarily of sodium nitrate, sodium nitrite, sodium hydroxide, and sludge. An assessment of the potential degradation mechanisms of the high level waste (HLW) tanks determined that nitrate- induced pitting corrosion and stress corrosion cracking were the two most significant degradation mechanisms. Controls on the solution chemistry (minimum nitrite and hydroxide concentrations) are in place to prevent the initiation and propagation of pitting and stress corrosion cracking in the tanks. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented.

  20. Multipurpose optimization models for high level waste vitrification

    SciTech Connect

    Hoza, M.

    1994-08-01

    Optimal Waste Loading (OWL) models have been developed as multipurpose tools for high-level waste studies for the Tank Waste Remediation Program at Hanford. Using nonlinear programming techniques, these models maximize the waste loading of the vitrified waste and optimize the glass formers composition such that the glass produced has the appropriate properties within the melter, and the resultant vitrified waste form meets the requirements for disposal. The OWL model can be used for a single waste stream or for blended streams. The models can determine optimal continuous blends or optimal discrete blends of a number of different wastes. The OWL models have been used to identify the most restrictive constraints, to evaluate prospective waste pretreatment methods, to formulate and evaluate blending strategies, and to determine the impacts of variability in the wastes. The OWL models will be used to aid in the design of frits and the maximize the waste in the glass for High-Level Waste (HLW) vitrification.

  1. Investigation of Rheological Impacts on the Defense Waste Processing Facility's Sludge Slurry Feed as Insoluble Solids and Wash Endpoints are Adjusted

    SciTech Connect

    Fellinger, T. L.; Howard, S.J.; Lee, M.C.; Galloway, R.H.

    2006-07-01

    The Savannah River Site (SRS) is currently pursuing an aggressive program to empty its High Level Waste (HLW) tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility (DWPF). To create a batch of feed for the DWPF, several tanks of radioactive sludge slurry are combined into one of the million gallon (i.e. 3.79 E06 liters) feed tanks for DWPF. Once these sludge slurries are combined, the soluble sodium and weight percent total solids are adjusted by a 'washing' process. The 'washing' process involves diluting the soluble sodium of the sludge slurry with inhibited water (0.015 M NaOH and 0.015 M NaNO{sub 2}) and allowing the sludge slurry to settle into two layers. The two layers in the tank consist of a clear supernate on top and a layer of settled sludge solids on the bottom. The clear supernate layer is then decanted to another hold tank. This 'washing' process is repeated until the desired wash endpoint (i.e. sodium concentration in the supernate) and weight percent total solids are achieved. A final washed batch of feed consists of approximately 500,000 gallons (i.e. 1.89 E06 liters). DWPF has already processed three batches of feed and is currently processing a fourth. Prior to processing a batch of feed in the DWPF, it must be well characterized. Samples of the prepared feed batch are sent to the Savannah River National Laboratory (SRNL) for this characterization. As a part of the SRNL characterization for the fourth batch, rheology measurements were performed. Measurements were performed at different weight percent insoluble solids loadings to mimic potential facility processing scenarios (i.e. mixing/pumping of concentrated sludge slurry). In order to determine the influence of the soluble Na on the rheological properties of the sample, the supernate of the 'as received' sample was adjusted from 1 M soluble Na to 0.5 M soluble Na by using a lab scale version of the 'washing' process. Rheology

  2. Deep Sludge Gas Release Event Analytical Evaluation

    SciTech Connect

    Sams, Terry L.

    2013-08-15

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical

  3. Microbial release of 226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes.

    PubMed Central

    Fedorak, P M; Westlake, D W; Anders, C; Kratochvil, B; Motkosky, N; Anderson, W B; Huck, P M

    1986-01-01

    226Ra2+ is removed from uranium mine effluents by coprecipitation with BaSO4. (Ba,Ra)SO4 sludge samples from two Canadian mine sites were found to contain active heterotrophic populations of aerobic, anaerobic, denitrifying, and sulfate-reducing bacteria. Under laboratory conditions, sulfate reduction occurred in batch cultures when carbon sources such as acetate, glucose, glycollate, lactate, or pyruvate were added to samples of (Ba,Ra)SO4 sludge. No external sources of nitrogen or phosphate were required for this activity. Further studies with lactate supplementation showed that once the soluble SO4(2-) in the overlying water was depleted, Ba2+ and 226Ra2+ were dissolved from the (Ba,Ra)SO4 sludge, with the concurrent production of S2-. Levels of dissolved 226Ra2+ reached approximately 400 Bq/liter after 10 weeks of incubation. Results suggest that the ultimate disposal of these sludges must maintain conditions to minimize the activity of the indigenous sulfate-reducing bacteria to ensure that unacceptably high levels of 226Ra2+ are not released to the environment. PMID:3752993

  4. Status Report on Phase Identification in Hanford Tank Sludges

    SciTech Connect

    BM Rapko; GJ Lumetta

    2000-12-18

    The US Department of Energy plans to vitrify Hanford's tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges.

  5. Issue briefs on low-level radioactive wastes

    SciTech Connect

    Not Available

    1981-01-01

    This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management.

  6. Vitrification and Product Testing of C-104 and AZ-102 Pretreated Sludge Mixed with Flowsheet Quantities of Secondary Wastes

    SciTech Connect

    Smith, Gary L.; Bates, Derrick J.; Goles, Ronald W.; Greenwood, Lawrence R.; Lettau, Ralph C.; Piepel, Gregory F.; Schweiger, Michael J.; Smith, Harry D.; Urie, Michael W.; Wagner, Jerome J.

    2001-02-01

    The U.S. Department of Energy (DOE) Office of River Protection (ORP) has acquired Hanford tank waste treatment services at a demonstration scale. The River Protection Project Waste Treatment Plant (RPP-WTP) team is responsible for producing an immobilized (vitrified) high-level waste (IHLW) waste form. Pacific Northwest National Laboratory, hereafter referred to as PNNL, has been contracted to produce and test a vitrified IHLW waste form from two Envelope D high-level waste (HLW) samples previously supplied to the RPP-WTP project by DOE.

  7. The chemistry of sludge washing and caustic leaching processes for selected Hanford tank wastes

    SciTech Connect

    Rapko, B.M.; Blanchard, D.L.; Colton, N.G.; Felmy, A.R.; Liu, J.; Lumetta, G.J.

    1996-03-01

    A broad-based study on washing and caustic leaching of Hanford tank sludges was performed in FY 1995 to gain a better understanding of the basic chemical processes that underlie this process. This approach involved testing of the baseline sludge washing and caustic leaching method on several Hanford tank sludges, and characterization of the solids both before and after testing by electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. A thermodynamically based model was employed to help understand the factors involved in individual specie distribution in the various stages of the sludge washing and caustic leaching treatment. The behavior of the important chemical and radiochemical components throughout the testing is summarized and reviewed in this report.

  8. SUMMARY REPORT ON CORROSIVITY STUDIES IN COINCINERATION OF SEWAGE SLUDGE AND SOLID WASTE

    EPA Science Inventory

    Corrosion probe exposures were conducted in the Harrisburg, Pennsylvania Incinerator to determine the effects of burning low-chloride sewage sludge with municipal refuse. Probes having controlled temperature gradients were used to measure corrosion rates for exposure times up to ...

  9. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    PubMed

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators. PMID:17331640

  10. Innovative sludge stabilization method

    SciTech Connect

    Riggenbach, J.D.

    1995-06-01

    Sludge is generated in many water and wastewater treatment processes, both biological and physical/chemical. Examples include biological sludges from sanitary and industrial wastewater treatment operations and chemical sludges such as those produced when metals are removed from metal plating wastewater. Even some potable water plants produce sludge, such as when alum is used as a flocculating agent to clarify turbid water. Because sludge is produced from such a variety of operations, different techniques have been developed to remove water from sludges and reduce the sludge volume and mass, thus making the sludge more suitable for recovery or disposal. These techniques include mechanical (e.g., filter presses), solar (sludge drying beds), and thermal. The least expensive of these methods, neglecting land costs, involves sludge drying beds and lagoons. The solar method was widely used in sewage treatment plants for many years, but has fallen in disfavor in the US; mechanical and thermal methods have been preferred. Since environmental remediation often requires managing sludges, this article presents a discussion of a variation of sludge lagoons known as evaporative sludge stabilization. Application of this process to the closure of two 2.5 acre (10117 m{sup 2}) hazardous waste surface impoundments will be discussed. 1 ref., 2 figs.

  11. Improvement of methane production from waste activated sludge by on-site photocatalytic pretreatment in a photocatalytic anaerobic fermenter.

    PubMed

    Liu, Chunguang; Shi, Wansheng; Li, Huifang; Lei, Zhongfang; He, Leilei; Zhang, Zhenya

    2014-03-01

    This paper reports a new technology that using on-site TiO2-photocatalytic pretreatment in the anaerobic digestion of waste activated sludge (WAS) can enhance WAS degradation and methane production in a novel photocatalytic anaerobic fermenter. The fermenter consists of a photocatalytic unit and a digestion unit. The photocatalytic unit can constantly supply soluble organics and has less negative effect on the activity of methanogens at the optimal photocatalytic time of 4h per day. After anaerobic digestion for 35days, 1266.7ml/l-sludge of methane, 67.4% of volatile solid (VS) reduction and 60.5% of total chemical oxygen demand (TCOD) removal were achieved in the photocatalytic anaerobic fermenter, compared with 923.2ml/l-sludge of methane, 48.9% of VS reduction and 43.5% TCOD removal in the control fermenter. The results indicate that timely utilization of solubilized organics by methanogens could avoid further mineralization by TiO2-photocatalysis, which not only improves methane production but also enhances WAS degradation. PMID:24462880

  12. Effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances from waste activated sludge.

    PubMed

    Zhang, Zhiqiang; Zhang, Jiao; Zhao, Jianfu; Xia, Siqing

    2015-02-01

    The effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances (EPSs) from waste activated sludge (WAS) was investigated. Bioflocculation of the EPS was found to be enhanced by 2∼6 h of WAS aerobic digestion under the conditions of natural sludge pH (about 7), high sludge concentration by gravity thickening, and dissolved oxygen of about 2 mg/L. With the same EPS extraction method, the total suspended solid content reduction of 0.20 and 0.36 g/L and the volatile suspended solid content reduction of 0.19 and 0.26 g/L were found for the WAS samples before and after aerobic digestion of 4 h. It indicates that more EPS is produced by short-time aerobic digestion of WAS. The scanning electron microscopy images of the WAS samples before and after aerobic digestion of 4 h showed that more EPS appeared on the surface of zoogloea by aerobic digestion, which reconfirmed that WAS aerobic digestion induced abundant formation of EPS. By WAS aerobic digestion, the flocculating rate of the EPS showed about 31 % growth, almost consistent with the growth of its yield (about 34 %). The EPSs obtained before and after the aerobic digestion presented nearly the same components, structures, and Fourier transform infrared spectra. These results revealed that short-time aerobic digestion of WAS enhanced the flocculation of the EPS by promoting its production. PMID:23771440

  13. Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants.

    PubMed

    Ning, Xun-An; Lin, Mei-Qing; Shen, Ling-Zhi; Zhang, Jian-Hao; Wang, Jing-Yu; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2014-07-01

    As components of synthetic dyes, polycyclic aromatic hydrocarbons (PAHs) are present as contaminants in textile dyeing sludge due to the recalcitrance in wastewater treatment process, which may pose a threat to environment in the process of sludge disposal. In order to evaluate PAHs in textile dyeing sludge, comprehensive investigation comprising 10 textile dyeing plants was undertaken. Levels, composition profiles and risk assessment of 16 EPA-priority PAHs were analyzed in this study. The total concentrations of 16 PAHs (∑16 PAHs) varied from 1463 ± 177 ng g(-1) to 16,714 ± 1,507 ng g(-1) with a mean value of 6386 ng g(-1). The composition profiles of PAHs were characterized by 3- and 4-ring PAHs, among which phenanthrene, anthracene and fluoranthene were the most dominant components. The mean benzo[a]pyrene equivalent (BaPeq) concentration of ∑16 PAHs in textile dyeing sludge was 423 ng g(-1), which was 2-3 times higher than concentrations reported for urban soil. According to ecological risk assessment, the levels of PAHs in the textile dyeing sludge may cause a significant risk to soil ecosystem after landfill or dumping on soil. PMID:24769559

  14. Solidification Tests for LLW Sludges

    SciTech Connect

    Taylor, Paul Allen

    2009-01-01

    Oak Ridge National laboratory has about 350,000 gallons of remote-handled (RH) sludge in ten liquid low-level waste (LLLW) tanks that must be solidified and stabilized for disposal at the Nevada Test Site. Samples of the waste sludge were collected from four tanks, and a total of 36 small-scale grouting tests were performed. The presence of free water during curing was evaluated, and the cured grouts were analyzed using the Toxicity Characteristic Leaching Procedure (TCLP) to determine if any of the hazardous metals in the sludge (Cd, Cr, Hg, Pb, etc.) would leach above the Resource Conservation and Recovery Act (RCRA) limits/ The grouting formulation used for these tests, with ratios of grout-forming additives weight to waste slurry weight ranging from 0.75:1 to 1.2:1, produced wet grout mixtures that were easy to stir and were self leveling. The grout mixtures cured with no free water visible at any time. The cured grout matrix was very effective at retaining the hazardous metals in the sludge, with TCLP leachate concentrations well below the RCRA limits. The addition of ferrous sulfide (FeS) to some of the sludge samples resulted in, at most, a minimal reduction in the amount of mercury that leached from the grout samples, and had no detectable impact on the other heavy metals present in the sludge (Cd, Cr, and Pb). The TCLP extraction was performed on three samples after 1 day and 7 days of curing, compared to the >28 days for the remaining samples. The metal concentrations for the short cure time samples were similar to the remaining samples, and were all well below the RCRA limits.

  15. Vitrification as an alternative to landfilling of tannery sewage sludge.

    PubMed

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  16. PROCESSING OF HIGH LEVEL WASTE: SPECTROSCOPIC CHARACTERIZATION OF REDOX REACTIONS IN SUPERCRITICAL WATER

    EPA Science Inventory

    Current efforts are focused on the oxidative dissolution of chromium compounds found in Hanford tank waste sludge. Samples of chromium oxides and hydroxides with varying degrees of hydration are being characterized using Raman, FTIR, and XPS spectroscopic techniques. Kinetics of ...

  17. Lid design for low level waste container

    DOEpatents

    Holbrook, Richard H.; Keener, Wendell E.

    1995-01-01

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

  18. Lid design for low level waste container

    DOEpatents

    Holbrook, R.H.; Keener, W.E.

    1995-02-28

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

  19. Phase I high-level waste pretreatment and feed staging plan

    SciTech Connect

    Manuel, A.F.

    1996-09-30

    This document updates the planning basis for the U.S. Department of Energy (DOE) to provide a sufficient quantity of high-level waste (HLW) feed to the privatization contractor during Phase I. The DOE has sufficient HLW feed to satisfy the minimum order quantity and, with the transfer system upgrades recommended by Galbraith (1996), the means to provide the feed to the private contractor`s facility during Phase I. Assuming the planned DST retrieval system (two 300-hp mixer pumps), the total sludge available as feed for Waste Envelope D is at least 130 percent of the minimum order quantity specified in the RFP, assuming dilute caustic washing. However, additional sources of feed will need to be identified to support the optional extension of HLW processing in Phase I. The maximum HLW sludge inventory available in the three DSTs identified for Phase I is less 1514 than the maximum order quantity (460 MT versus 465 MT). Assuming the anticipated efficiencies of the DST retrieval systems are achieved, the amount of waste available for feed would only be 70 to 80 percent of the maximum order quantity.

  20. Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations

    SciTech Connect

    Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

    1991-12-31

    The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy`s Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product.

  1. Assessment of nutritional value of single-cell protein from waste-activated sludge as a protein supplement in poultry feed.

    PubMed

    Nkhalambayausi-Chirwa, Evans M; Lebitso, Moses T

    2012-12-01

    The amount of protein wasted through sludge in Gauteng, South Africa, amounts to 95 000 metric tonne/yr, with the order of magnitude of the national protein requirement of approximately 145 000 metric tonne/yr. Waste-activated sludge (WAS) from wastewater treatment plants (WWTPs) that treat domestic wastewater contains protein in a ratio of 2:1 against fishmeal. This protein source has not been utilized because of the high content of toxic heavy metals and other potential carcinogenic pollutants in the sludge. In this study, a pretreatment method of modified aqua regia dilute acid wash was used to lower the metal content by approximately 60%. However, this resulted in a 33% loss of amino acids in the acid-washed WAS. A feed substitution test in poultry with different fishmeal-sludge ratios (0%, 25%, 50%, 75%, and 100% WAS as percent substitution of fishmeal) showed no impact of sludge single-cell protein (SCP) on mortality rate. However, sludge substitution in the feed yielded weight gains and cost savings up to 46%. PMID:23342942

  2. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    SciTech Connect

    W. Ebert

    2001-09-20

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M&O 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  3. Anaerobic Codigestion of Sludge: Addition of Butcher’s Fat Waste as a Cosubstrate for Increasing Biogas Production

    PubMed Central

    Martínez, E. J.; Gil, M. V.; Fernandez, C.; Rosas, J. G.

    2016-01-01

    Fat waste discarded from butcheries was used as a cosubstrate in the anaerobic codigestion of sewage sludge (SS). The process was evaluated under mesophilic and thermophilic conditions. The codigestion was successfully attained despite some inhibitory stages initially present that had their origin in the accumulation of volatile fatty acids (VFA) and adsorption of long-chain fatty acids (LCFA). The addition of a fat waste improved digestion stability and increased biogas yields thanks to the higher organic loading rate (OLR) applied to the reactors. However, thermophilic digestion was characterized by an effluent of poor quality and high VFA content. Results from spectroscopic analysis suggested the adsorption of lipid components onto the anaerobic biomass, thus disturbing the complete degradation of substrate during the treatment. The formation of fatty aggregates in the thermophilic reactor prevented process failure by avoiding the exposure of biomass to the toxic effect of high LCFA concentrations. PMID:27071074

  4. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    SciTech Connect

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  5. Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Van Geel, Maarten; Dewil, Raf; Lievens, Bart; Appels, Lise

    2016-06-01

    Comparative analyses of bacterial and archaeal community structures and dynamics in three biogas digesters during start-up and subsequent operation using microwaved, ultrasonicated or untreated waste activated sludge were performed based on 454 pyrosequencing datasets of part of 16S ribosomal RNA sequences and quantitative PCR. The pre-treatment increased the solubility, and thus the availability of the substrate for microbial degradation and significantly affected the succession of the anaerobic community structure over the course of the digestion. Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in all digesters throughout operation. Proteobacteria decreased in relative abundance from 23-26 % to 11-13 % in association with enhanced substrate availability. Negative correlations between relative abundance of Alpha-, Beta- and Gammaproteobacteria and the substrate availability and/or biogas production were disclosed in statistical analyses. Clostridiales was the dominant order in Firmicutes, and Clostridiales, Clostridia and Firmicutes relative abundance and richness were shown to positively correlate with substrate availability and biogas generation. Methanogenic communities had a fairly restricted structure, highly dominated by Methanosaeta and Methanobrevibacter phylotypes. A gradual decline in Methanobrevibacter and increased representation of Methanosaeta concilii over time were particularly apparent in the digester receiving untreated waste activated sludge, whereas more diversified archaeal communities were maintained in the pre-treatment digesters. The quantitative PCR analyses revealed a methanogenic community distribution that coincided with the 454 pyrosequencing data. PMID:26816092

  6. Upgrading of the anaerobic digestion of waste activated sludge by combining temperature-phased anaerobic digestion and intermediate ozonation.

    PubMed

    Kobayashi, T; Li, Y Y; Harada, H; Yasui, H; Noike, T

    2009-01-01

    Upgrading of the anaerobic digestion of waste activated sludge (WAS) by the combination of temperature-phased two-stage digestion and intermediate ozonation was investigated by a continuous experiment with two processes, TM and TOM. The TM process is a temperature-phased two-stage system, which consists of a thermophilic digester and a mesophilic digester in series. The TOM process is a temperature-phased two-stage process with the intermediate ozonation. Two processes were operated at hydraulic retention times of 30 days for over 123 days. Waste activated sludge taken from wastewater treatment plant was fed as a substrate. Microbial community structure in each digester was analysed with molecular tools. Despite of less amount of ozone dose in TOM than ozone pre-treatment process, better effect of ozonation on performance improvement was obtained in TOM. TOM had the highest methane yield and COD(Cr) reduction among comparative processes. Furthermore, flocculation efficiency of TOM followed that of mesophilic digestion. Quality of dewatered supernatant is comparable to mesophilic digestion. PMID:19151501

  7. Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.

    SciTech Connect

    Ehst, D.; Nuclear Engineering Division

    2010-08-04

    It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable

  8. Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration.

    PubMed

    Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2016-01-01

    An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. PMID:26479431

  9. Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration.

    PubMed

    Kavitha, S; Rajesh Banu, J; Vinoth Kumar, J; Rajkumar, M

    2016-10-01

    In this study, the influence of disperser induced microwave pretreatment was investigated to analyze the proficiency of floc disruption on subsequent disintegration and biodegradability process. Initially, the flocs in the sludge was disrupted through disperser at a specific energy input of 25.3kJ/kgTS. The upshot of the microwave disintegration presents that the solids reduction and solubilization of floc disrupted (disperser induced microwave pretreated) sludge was found to be 17.33% and 22% relatively greater than that achieved in microwave pretreated (9.3% and 16%) sludge alone. The biodegradability analysis, affords an evaluation of parameter confidence and correlation determination. The eventual biodegradability of microwave pretreated, and floc disrupted sludges were computed to be 0.15(gCOD/gCOD) and 0.28(gCOD/gCOD), respectively. An economic assessment of this study offers a positive net profit of about 104.8USD/ton of sludge in floc disrupted sample. PMID:26897472

  10. SPECIATION, DISSOLUTION, AND REDOX REACTIONS OF CHROMIUM RELEVANT TO PRETREATMENT AND SEPARATION OF HIGH-LEVEL TANK WASTES

    SciTech Connect

    Rai, Dhanpat; Rao, Linfeng; Clark, Sue B.

    2004-06-01

    Chromium, one of the problematic elements in tank sludges, is considered the most important constituent in defining the total volume of high-level radioactive waste (HLW) glass. Current sludge washing processes (e.g. caustic leaching, 3 M NaOH) are not effective in removing Cr. This inefficient removal would result in production of an unacceptably large volume of HLW glass and thus a tremendous increase in the cost of waste disposal. This proposed research seeks to develop fundamental data for chromium (Cr) reactions that are not currently available but are essential for developing effective methodologies for removing Cr form high-level waste (HLW). Our objectives are to study (1) the dissolution of several solid phases (e.g., CrOOH, Cr2O3(c), Cr(OH)3, and Fe and Cr, binary hydroxides, identified to be important from sludge leaching studies) in highly alkaline solutions and in the presence of other electrolytes (e.g., carbonate, phosphate, sulfate, nitrite), and (2) the effect of the nature of Cr solid phases and aqueous species on their redox reactivity with a variety of potential oxidants (e.g., H2O2, persulfate, O2, and ferrate). This information will provide critical support for developing enhanced pretreatment strategies for removing Cr from HLW and will achieve a major cost reduction in HLW disposal.

  11. Speciation, Dissolution, and Redox Reactions of Chromium Relevant to Pretreatment and Separation of High-Level Tank Wastes

    SciTech Connect

    Dhapat Rai; Linfeng Rao

    2006-06-01

    Chromium, one of the problematic elements in tank sludges, is considered the most important constituent in defining the total volume of high-level radioactive waste (HLW) glass. Current sludge-washing processes (e.g. caustic leaching, 3 M NaOH) are not effective in removing Cr. Such inefficient removal would result in the production of an unacceptably large volume of HLW glass and thus a tremendous increase in the cost of waste disposal. This proposed research seeks to develop fundamental data for chromium (Cr) reactions that are not currently available but are essential for developing effective methodologies for removing Cr form high-level waste (HLW). Our objectives are to study (1) the dissolution of several solid phases (e.g., CrOOH, Cr2O3(c), Cr(OH)3, and Fe and Cr, binary hydroxides, identified to be important from sludge leaching studies) in highly alkaline solutions and in the presence of other electrolytes (e.g., carbonate, phosphate, sulfate, nitrite), and (2) the effect of the nature of Cr solid phases and aqueous species on their redox reactivity with a variety of potential oxidants (H2O2, persulfate, hypochlorite, etc.). This information will provide critical support for developing enhanced pretreatment strategies for removing Cr from HLW and will achieve a major cost reduction in HLW disposal.

  12. Speciation, Dissolution, and Redox Reactions of Chromium Relevant to Pretreatment and Separation of High-Level Tank Wastes

    SciTech Connect

    Rai Dhanpat; Rao Linfeng

    2005-09-30

    Chromium, one of the problematic elements in tank sludges, is considered the most important constituent in defining the total volume of high-level radioactive waste (HLW) glass. Current sludge washing processes (e.g. caustic leaching, 3 M NaOH) are not effective in removing Cr. Such inefficient removal would result in the production of an unacceptably large volume of HLW glass and thus a tremendous increase in the cost of waste disposal. This proposed research seeks to develop fundamental data for chromium (Cr) reactions that are not currently available but are essential for developing effective methodologies for removing Cr form high-level waste (HLW). Our objectives are to study (1) the dissolution of several solid phases (e.g., CrOOH, Cr2O3(c), Cr(OH)3, and Fe and Cr, binary hydroxides, identified to be important from sludge leaching studies) in highly alkaline solutions and in the presence of other electrolytes (e.g., carbonate, phosphate, sulfate, nitrite), and (2) the effect of the nature of Cr solid phases and aqueous species on their redox reactivity with a variety of potential oxidants (H2O2, persulfate, hypochlorite, etc.). This information will provide critical support for developing enhanced pretreatment strategies for removing Cr from HLW and will achieve a major cost reduction in HLW disposal.

  13. Speciation, Dissolution, and Redox Reactions of Chromium Relevant to Pretreatment and Separation of High-Level Tank Wastes

    SciTech Connect

    Clark Sue B.; Dhanpat Rai; Linfeng Rao

    2005-04-20

    Chromium, one of the problematic elements in tank sludges, is considered the most important constituent in defining the total volume of high-level radioactive waste (HLW) glass. Current sludge washing processes (e.g. caustic leaching, 3 M NaOH) are not effective in removing Cr. This inefficient removal would result in production of an unacceptably large volume of HLW glass and thus a tremendous increase in the cost of waste disposal. This proposed research seeks to develop fundamental data for chromium (Cr) reactions that are not currently available but are essential for developing effective methodologies for removing Cr form high-level waste (HLW). Our objectives are to study (1) the dissolution of several solid phases (e.g., CrOOH, Cr2O3(c), Cr(OH)3, and Fe and Cr, binary hydroxides, identified to be important from sludge leaching studies) in highly alkaline solutions and in the presence of other electrolytes (e.g., carbonate, phosphate, sulfate, nitrite), and (2) the effect of the nature of Cr solid phases and aqueous species on their redox reactivity with a variety of potential oxidants (e.g., H2o2, persulfate, O2, and ferrate). This information will provide critical support for developing enhanced pretreatment strategies for removing Cr from HLW and will achieve a major cost reduction HLW disposal.

  14. The re-use of Waste-Activated Sludge as part of a "zero-sludge" strategy for wastewater treatments in the pulp and paper industry.

    PubMed

    Kaluža, Leon; Suštaršič, Matej; Rutar, Vera; Zupančič, Gregor D

    2014-01-01

    The possibility of introducing the thermo-alkali hydrolysis of Waste-Activated Sludge (WAS) was investigated, in order to enable the use of its solid residue as a raw material in cardboard production and the use of its liquid portion for anaerobic digestion in an UASB reactor. The evaluation of the hydrolysis at pH>12 and T=70°C showed that the microbe cells were disrupted with more than 90% efficiency in less than 2h. The solid portion was hygienised, therefore making it possible to integrate it into the cardboard production as a raw material for less demanding cardboards. Up to 6% addition of the liquid portion of hydrolysed WAS to wastewater decreased the specific biogas production in a pilot-scale UASB from 0.236 to 0.212 m(3)/kg(COD), while the efficiency of the COD removal decreased from 80.4% to 76.5%. These values still guarantee an adequate treatment of the wastewater and an increased biogas production by 16%. PMID:24215770

  15. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    SciTech Connect

    Holtzscheiter, E.W.; Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories.

  16. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge

    SciTech Connect

    Åmand, Lars-Erik; Kassman, Håkan

    2013-08-15

    Highlights: • Two strategies to reduce PCDD/F formation when co-firing solid recovered fuel (SRF) and biomass. • They were co-combustion with municipal sewage sludge (MSS) and addition of ammonium sulphate. • PCDD/Fs were significantly reduced for a biomass rich in chlorine when adding ammonium sulphate. • MSS had a suppressing effect on PCDD/F formation during co-combustion with SRF. • A link is presented between gaseous alkali chlorides, chlorine in deposits and PCDD/F formation. - Abstract: Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW{sub th} circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS

  17. VIRAL AND BACTERIAL LEVELS RESULTING FROM THE LAND APPLICATION OF DIGESTED SLUDGE

    EPA Science Inventory

    Surface and ground waters, sludge, soils and aerosols were sampled at a land reclamation site. The site has received large quantities of anaerobically digested sludge for several years. Samples were analyzed for viral and bacterial components to determine the impact of large scal...

  18. CHEMICALLY BONDED CEMENTS FROM BOILER ASH AND SLUDGE WASTES. PHASE II REPORT, SEPT.1998-JULY 1999.

    SciTech Connect

    SUGAMA,T.YAGER,K.A.BLANKENHORN,D.

    1999-08-01

    Based upon the previous Phase I research program aimed at looking for ways of recycling the KeySpan-generated wastes, such as waste water treatment sludge (WWTS) and bottom ash (BA), into the potentially useful cementitious materials called chemically bonded cement (CBC) materials, the emphasis of this Phase II program done at Brookhaven National Laboratory, in a period of September 1998 through July 1999, was directed towards the two major subjects: One was to assess the technical feasibility of WWTS-based CBC material for use as Pb-exchange adsorbent (PEA) which remediates Pb-contaminated soils in the field; and the other was related to the establishment of the optimum-packaging storage system of dry BA-based CBC components that make it a promising matrix material for the steam-cured concrete products containing sand and coarse aggregate. To achieve the goal of the first subject, a small-scale field demonstration test was carried out. Using the PEA material consisting of 30 wt% WWTS, 13 wt% Type I cement and 57 wt% water, the PES slurry was prepared using a rotary shear concrete mixer, and then poured on the Pb-contaminated soil. The PEA-to-soil ratio by weight was a factor of 2.0. The placed PEA slurry was blended with soil using hand mixing tools such as claws and shovels. The wettability of soils with the PEA was very good, thereby facilitating the soil-PEA mix procedures. A very promising result was obtained from this field test; in fact, the mount of Pb leached out from the 25-day-aged PEA-treated soil specimen was only 0.74 mg/l, meeting the requirement for EPA safe regulation of < 5 mg/l. In contrast, a large amount (26.4 mg/l) of Pb was detected from the untreated soil of the same age. Thus, this finding demonstrated that the WWTS-based CBC has a potential for use as PEA material. Regarding the second subject, the dry-packed storage system consisting of 68.7 wt% BA, 13.0 wt% calcium aluminate cement (CAC), 13.0 wt% Type I portland cement and 5.3 wt

  19. Long-Term High-Level Defense-Waste technology

    NASA Astrophysics Data System (ADS)

    1982-07-01

    In the residual liquid solidification effort, the primary alternative studied is the wiped film evaporator approach to solidifying salt well pumped liquids and returning the molten material to single shell tanks for microwave final stabilization to a hard dry product. Both systems analysis and experimental work are proceeding to evaluate this approach. The primary alternative for in situ stabilization of in-tank wastes is microwave drying of wet salt cake and unpumped sludges. Experimental work was successfully conducted on a 1/12 scale tank containing wet synthetic salt cake. Related systems analysis of a full scale system was initiated.

  20. Evaluation of Warm Acid Strike Treatment for Silicon Analysis in High Level Waste

    SciTech Connect

    Pennebaker, F.M.

    2003-03-20

    Savannah River Technology Center (SRTC) has developed a simpler, faster and more accurate method of analysis for the measurement of silicon in High Level Waste (HLW) supernate samples prior to evaporation. The warm acid strike method compared favorably to the current filtration method in the measurement of five samples from three different waste tanks. The technical enhancement of the warm acid strike method is that it will help dissolve small solid particles of silicon-bearing materials that contribute to the scatter in measurements. The method is not intended to measure silicon in samples that have significant quantities of entrained waste tank sludge or DWPF frit particles. Since the method is simple, multiple waste tank samples can be prepared and analyzed at the same time. This improvement should significantly reduce turnaround time for Evaporator Qualification samples at SRTC. Enhanced QC and blind standards have been incorporated into the method for better traceability and overall accuracy. ADS recommends that High Level Waste switch to the Acid Strike Methodology using 3 M acid and 4 hours of heating for Evaporator Qualification samples as soon as possible. Extra work is necessary before transfer of the method to C-Lab for routine measurements.

  1. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge.

    PubMed

    Åmand, Lars-Erik; Kassman, Håkan

    2013-08-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW(th) circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS as additional fuel. PMID:23684693

  2. Decision Document for Heat Removal from High Level Waste Tanks

    SciTech Connect

    WILLIS, W.L.

    2000-07-31

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein.

  3. Microbial community dynamics linked to enhanced substrate availability and biogas production of electrokinetically pre-treated waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Houtmeyers, Sofie; Meerbergen, Ken; Van Geel, Maarten; Lievens, Bart; Appels, Lise

    2016-10-01

    The restricted hydrolytic degradation rate of complex organic matter presents a considerable challenge in anaerobic digestion of waste activated sludge (WAS). Within this context, application of pre-treatment of digester substrate has potential for improved waste management and enhanced biogas production. Anaerobic degradation of untreated or electrokinetically pre-treated WAS was performed in two pilot-scale digesters for 132days. WAS electrokinetically pre-treated with energy input 0.066kJ/kg sludge was used in a first phase of operation and WAS pre-treated with energy input 0.091kJ/kg sludge was used in a second phase (each phase lasted at least three hydraulic retention times). Substrate characteristics before and after pre-treatment and effects on biogas digester performance were comprehensively analysed. To gain insights into influences of altered substrate characteristics on microbial communities, the dynamics within the bacterial and archaeal communities in the two digesters were investigated using 16S rRNA gene sequencing (pyrosequencing) and quantitative PCR (qPCR). Specific primers targeting dominant operation taxonomic units (OTUs) and members of the candidate phylum Cloacimonetes were designed to further evaluate their abundance and dynamics in the digesters. Electrokinetic pre-treatment significantly improved chemical oxygen demand (COD) and carbohydrate solubility and increased biogas production by 10-11% compared with untreated sludge. Compositional similarity of the bacterial community during initial operation and diversification during later operation indicated gradual adaptation of the community to the higher solubility of organic material in the pre-treated substrate. Further analyses revealed positive correlations between gene abundance of dominant OTUs related to Clostridia and Cloacimonetes and increased substrate availability and biogas production. Among the methanogens, the genus Methanosaeta dominated in both digesters. Overall, the

  4. Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste.

    PubMed

    Ros, M; Franke-Whittle, I H; Morales, A B; Insam, H; Ayuso, M; Pascual, J A

    2013-05-01

    This study evaluated the feasibility of obtaining methane in anaerobic digestion (AD) from the waste products generated by the processing of fruit and vegetables. During the first phase (0-55 d) of the AD using sludge from fruit and vegetable processing, an average value of 244±88 L kg(-1) dry matter d(-1)of biogas production was obtained, and methane content reached 65% of the biogas. Co-digestion with chopped fresh artichoke wastes in a second phase (55-71 d) enhanced biogas production, and resulted in an average value of 354±68 L kg(-1) dry matter d(-1), with higher methane content (more than 70%). The archaeal community involved in methane production was studied using the ANAEROCHIP microarray and real-time PCR. Results indicated that species of Methanosaeta and Methanosarcina were important during the AD process. Methanosarcina numbers increased after the addition of chopped fresh artichoke, while Methanosaeta numbers decreased. PMID:23548398

  5. Grout and Glass Performance in Support of Stabilization/Solidification of the MVST Tank Sludges

    SciTech Connect

    Gilliam, T.M.; Spence, R.D.

    1998-11-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) pending treatment for disposal. The waste separates into two phases: sludge and supematant. Some of the supematant from these tanks has been decanted, solidified into a grout, and stored for disposal as a solid low-level waste. The sludges in the tank bottoms have been accumulating ,for several years. Some of the sludges contain a high amount of gamma activity (e.g., `37CS concentration range of 0.01 3-11 MBq/g) and contain enough transuranic (TRU) radioisotopes to be classified as TRU wastes. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough in the available total constituent analysis for the MVST sludge to be classified as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste.

  6. Separation and determination of americium in low-level alkaline waste of NPP origin

    NASA Astrophysics Data System (ADS)

    Todorov, B.; Djingova, R.; Nikiforova, A.

    2006-01-01

    The aim of this work is to develop a short and cost-saving procedure for the determination of 241Am in sludge sample of the alkaline low-level radioactive waste (LL LRAW) collected from Nuclear Power Plant “Kozloduy”. The determination of americium was a part of a complex analytical approach, where group actinide separation was achieved. An anion exchange was used for separation of americium from uranium, plutonium and iron. For the separation of americium extraction with diethylhexyl phosphoric acid (DEHPA) was studied. The final radioactive samples were prepared by micro co-precipitation with NdF3, counted by alpha and gamma spectrometry. The procedure takes 2 hours. The recovery yield of the procedure amounts to (95 ± 1.5)% and the detection limit is 53 mBq/kg 241Am (t=150 000 s). The analytical procedure was applied for actual liquid wastes and results were compared to standard procedure.

  7. R and D needs -- Drying of sludges

    SciTech Connect

    Kasakura, T.; Hasatani, M.

    1996-10-01

    Sludge management is a very important environmental issue in many industrialized countries, because its generated volume is the largest in all generated wastes. In the sludge management field, the role of drying is becoming more important as sludge disposal becomes more difficult. In this paper, the present status of drying of construction sludge, food industry sludge and municipal sludge are mentioned as concrete examples. To respond to these needs, it is necessary to advance further R and D.

  8. [Characteristics of municipal sludge and vacuum filtration thickening process].

    PubMed

    Qiao, Wei; Wang, Wei; Yin, Ke-qing

    2008-04-01

    It was found that sludge total solid (TS) concentration was equal to chemical oxygen demand (COD), while volatile solid (VS) was 1.5 times of COD concentration. R2 of linear regression of TS and VS with COD was 0.9314 and 0.9228 respectively. Total COD in sludge was approximately 60% of that removed in water treatment process. Sludge contained high level protein and low fat. The TS of present gravity thickening sludge was universally lower than 3.3%. Efficiency of vacuum filtration process was determined by sludge type, sludge solid concentration, PAM molecular weight and PAM addition dose. Under - 34.7 kPa pressure, sludge dry solid filtration thickening rate of primary sludge was up to 31 kg/(m2 x h). While, for wasted actived sludge the rate was lower than 15 kg/(m2 x h). Rate of gravity thickening sludge was up to 43 kg/(m2 x h). TS of vacuum filtrate were lower than 1.5 g/L. PMID:18637370

  9. Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization

    SciTech Connect

    Jantzen, C.M.

    2001-10-05

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

  10. Sludge dewatering: Sewage and industrial wastes. January 1978-December 1989 (A Bibliography from Pollution Abstracts). Report for January 1978-December 1989

    SciTech Connect

    Not Available

    1990-03-01

    This bibliography contains citations concerning techniques and equipment used in sewage, as well as industrial, mining, petroleum, and municipal-waste sludge dewatering. Dewatering processes, device design, and performance evaluations are considered. (This updated bibliography contains 266 citations, 12 of which are new entries to the previous edition.)

  11. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect

    Not Available

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders.

  12. Influence of phosphate of the waste sludge on the hydration characteristics of eco-cement.

    PubMed

    Lin, Kae-Long; Lin, D F; Luo, H L

    2009-09-15

    This study investigated the effects of phosphate on the hydration characteristics of three eco-cement clinkers made utilizing water purification sludge ash, sewage sludge ash and industry sludge ash. Analytical results demonstrate that the eco-cement A (ECO-A) pastes had a similar setting times, final setting times, compressive strengths and degree of hydration as ordinary Portland cement (OPC) pastes. Analytical results also show no damage to the hydration existed during the clinkerization process when adding up to 20% sludge. Increasing the P(2)O(5) content in the investigated clinker resulted in the formation of alpha-C(2)S. Compressive strength, degree of hydration and delay in setting time observed in the ECO-B and ECO-C pastes may be attributed to large amounts of alpha-C(2)S. When the amount of phosphate in ECO-C exceeded 0.46%, the amount of C(3)S in the clinker decreased, setting time increased and the strength of the eco-cement decreased. PMID:19339111

  13. A REVIEW OF TECHNIQUES FOR INCINERATION OF SEWAGE SLUDGE WITH SOLID WASTES

    EPA Science Inventory

    This report discusses the state of the art of co-incineration of municipal refuse and sewage sludge. European and American practice is described. Four co-incineration techniques are evaluated for thermodynamic and economic feasibility; pyrolysis, multiple hearth, direct drying, a...

  14. SURVIVAL OF INDIGENOUS ENTERIC VIRUSES DURING STORAGE OF WASTE WATER SLUDGE SAMPLES

    EPA Science Inventory

    The stability of indigenous enteric viruses in samples of settled primary and mixed-liquor activated sludges was studied at 2, 23 and -70 deg C. Changes of virus titer which occurred in these samples were followed during an 84-day observation period, with rates of change then cal...

  15. Municipal incineration studies: Sludge, refuse, and solid wastes. January 1984-September 1991 (Citations from the NTIS Data Base). Rept. for Jan 84-Sep 91

    SciTech Connect

    Not Available

    1991-08-01

    The bibliography contains citations concerning the utilization of incineration processes for the destruction of municipal wastes including sewage sludge, refuse, and various solid wastes. Topics include systems design and management, combustion and emissions studies, pollution and toxicity studies, heat recovery operations, pollution control devices, and economic aspects. Analytical methods for pollution identification, marine vessel incinerators, catalytic incineration, and risk assessment studies are also considered. (Contains 177 citations with title list and subject index.)

  16. Reference commercial high-level waste glass and canister definition.

    SciTech Connect

    Slate, S.C.; Ross, W.A.; Partain, W.L.

    1981-09-01

    This report presents technical data and performance characteristics of a high-level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository. The borosilicate glass contained in the stainless steel canister represents the probable type of high-level waste product that will be produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high-level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  17. Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility

    SciTech Connect

    SCHULTZ, M.V.

    2000-08-22

    As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to

  18. Tank 241-Z-361 Sludge Retrieval and Treatment Alternatives

    SciTech Connect

    HAMPTON, B.K.

    2000-05-24

    The Plutonium Finishing Plant (PFP) Tank 241-Z-361 (Z-361) contains legacy sludge resulting from waste discharges from past missions at PFP. A sketch of the tank is shown in Figure 1. In this view various risers and penetrations are shown along with the sludge level depicted by the horizontal line halfway up the tank, and the ground level depicted by the horizontal line above the tank. The HEPA filter installed for breathing is also shown on one of the risers.

  19. Waste acceptance product specifications for vitrified high-level waste forms. Revision 1

    SciTech Connect

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-06-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form.{sup 1} In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies.

  20. Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII.

    PubMed

    Kong, Lingjun; Zhu, Yuting; Liu, Mingxiang; Chang, Xiangyang; Xiong, Ya; Chen, Diyun

    2016-09-01

    Permanently increasing in the amount of sludge resulted in the serious environment burden. This work reports a novel carbothermal process for converting the Fe-rich waste sludge into cleaner nano-flake Fenton-like catalyst to relieve the crisis. The transformation of Fe species at different carbothermal temperature was evaluated by XRD analysis. SEM and XPS analyses were involved to characterize the morphology and chemical bonds of the catalysts. Results shown that the resulted catalyst carbonized at 800 °C (Fe-SC-800) was composed of Fe(0) and Fe3O4, performing nano-flake-like structure. The Fe-SC-800 has the highest catalytic activity in degradation of AOII in C0 = 200 mg/L. The efficiency achieves at 98% within 30 min at neutral pH, which is ascribed to the hydroxyl radical oxidation. Moreover, no iron is leached and the Fe-SC-800 could be recycled for three times at least. Thus, the Fe rich sludge could be reutilized as a valuable source for eco-friendly catalyst production, constituting an ecological way to manage these sludge wastes and eliminate the sludge and organic pollution to environment. PMID:27321882

  1. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    SciTech Connect

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The

  2. Handbook of high-level radioactive waste transportation

    SciTech Connect

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

  3. Community Level Physiological Profiles (CLPP), Characterization and Microbial Activity of Soil Amended with Dairy Sewage Sludge

    PubMed Central

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy

    2012-01-01

    The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha−1 and 26 Mg·ha−1) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon–Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments. PMID:22737006

  4. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge

    PubMed Central

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS presence on SCFA production as well as the corresponding mechanisms have never been documented. This work therefore aims to provide such support. Experimental results showed that the combination of FNA and SDBS treatment not only improved SCFA accumulation but also shortened the fermentation time. The maximal SCFA accumulation of 334.5 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) was achieved at 1.54 mg FNA/L treatment and 0.02 g/g dry sludge, which was respectively 1.79-fold and 1.41-fold of that from FNA treatment and sludge containing SDBS alone. Mechanism investigations revealed that the combined FNA pretreatment and SDBS accelerated solubilization, hydrolysis, and acidification steps but inhibited the methanogenesis. All those observations were in agreement with SCFA enhancement. PMID:26868898

  5. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge.

    PubMed

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS presence on SCFA production as well as the corresponding mechanisms have never been documented. This work therefore aims to provide such support. Experimental results showed that the combination of FNA and SDBS treatment not only improved SCFA accumulation but also shortened the fermentation time. The maximal SCFA accumulation of 334.5 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) was achieved at 1.54 mg FNA/L treatment and 0.02 g/g dry sludge, which was respectively 1.79-fold and 1.41-fold of that from FNA treatment and sludge containing SDBS alone. Mechanism investigations revealed that the combined FNA pretreatment and SDBS accelerated solubilization, hydrolysis, and acidification steps but inhibited the methanogenesis. All those observations were in agreement with SCFA enhancement. PMID:26868898

  6. High-level waste program progress report, April 1, 1980-June 30, 1980

    SciTech Connect

    1980-08-01

    The highlights of this report are on: waste management analysis for nuclear fuel cycles; fixation of waste in concrete; study of ceramic and cermet waste forms; alternative high-level waste forms development; and high-level waste container development.

  7. Chemical Speciation of Americium, Curium and Selected Tetravalent Actinides in High Level Waste

    SciTech Connect

    Felmy, Andrew R.

    2004-06-01

    Large volumes of high-level waste (HLW) currently stored in tanks at DOE sites contain both sludges and supernatants. The sludges are composed of insoluble precipitates of actinides, radioactive fission products, and nonradioactive components. The supernatants are alkaline carbonate solutions, which can contain soluble actinides, fission products, metal ions, and high concentrations of major electrolytes including sodium hydroxide, nitrate, nitrite, phosphate, carbonate, aluminate, sulfate, and organic complexants. The organic complexants include several compounds that can form strong aqueous complexes with actinide species and fission products including ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), citrate, glycolate, gluconate, and degradation products, formate and oxalate. The goal of this project is to determine the effects of hydrolysis, carbonate complexation, and metal ion displacement on trivalent and selected tetravalent actinide speciation in the presence of organic chelates present in tank waste and to use these data to develop accurate predictive thermodynamic models for use in chemical engineering applications at Hanford and other DOE sites.

  8. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    SciTech Connect

    Rudisill, T.; King, W.; Hay, M.; Jones, D.

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  9. A new classification paradigm of extracellular polymeric substances (EPS) in activated sludge: separation and characterization of exopolymers between floc level and microcolony level.

    PubMed

    Wang, Bin-Bin; Chang, Qing; Peng, Dang-Cong; Hou, Yin-Ping; Li, Hui-Juan; Pei, Li-Ying

    2014-11-01

    Extracellular polymeric substances (EPS) play a crucial role in the formation of activated sludge flocs. However, until now, the EPS are rather classified by the method used for extraction than by a theoretical consideration of their function and composition. In this paper, a new classification paradigm of EPS was proposed, which offered a novel approach to identify the role of EPS in the formation of activated sludge flocs. The current study gave an exploration to distinguish the EPS in the floc level (extra-microcolony polymers, EMPS) and in the microcolony level (extra-cellular polymers, ECPS). It was found that cation exchange resin treatment is efficient to disintegrate the flocs for EMPS extraction, however, inefficient to disaggregate the microcolonies for ECPS harvesting. A two-steps extraction strategy (cation exchange resin treatment followed by ultrasonication-high speed centrifugation treatment) was suggested to separate these two types of EPS in activated sludge flocs and the physicochemical characteristics of EMPS and ECPS were compared. The protein/polysaccharide ratio of ECPS was higher than that of EMPS and the molecular weight of proteins in EMPS and ECPS were found to be different. The ECPS contained higher molecular weight proteins and more hydrophobic substances than the EMPS contained. The result of excitation-emission matrix fluorescence spectroscopy analysis also showed that the EMPS and the ECPS have different fluorescent expressions and the components of EMPS were more diverse than that of ECPS. All results reported herein demonstrated that two different types of exopolymers exist in the activated sludge flocs and the inter-particle forces for aggregation of activated sludge flocs are not identical between the floc level and the microcolony level. It suggested that cation bridging interactions are more crucial in floc level flocculation, while the entanglement and hydrophobic interactions are more important in microcolony level cohesion

  10. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    SciTech Connect

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates.

  11. CHEMICALLY BONDED CEMENTS FROM BOILER ASH AND SLUDGE WASTES. PHASE I REPORT AUGUST 1997 - JULY 1998

    SciTech Connect

    SUGAMA,T.; YAGER,K.A.

    2002-08-05

    In exploring methods to recycle boiler ash (BA) and waste water treatment sludge (WWTS), by-products generated from Keyspan's power plants, into commercially viable materials, we synthesized chemically bonded cements (CBC) offering the following three specific characteristics; (1) immobilization of hazardous heavy metals, such as Pb, Ni, and V, (2) rapid hardening and setting properties, and (3) development of high mechanical strength. The CBCs were prepared through an acid-base reaction between these by-products acting as the solid base reactants and the sodium polyphosphate solution as the cement-forming acid reactant, followed by a hydrating reaction. Furthermore, two additives, the calcium aluminate cements (CAC) and the calcium silicate cements (CSC) were incorporated into the CBC systems to improve their properties. Using a CBC formulation consisting of 53.8 wt% WWTS, 23.1 wt% CSC, and 23.1 wt% [40 wt% -(-NaPO{sub 3}-)-{sub n}]{sub 2} the Toxicity Characteristics Leaching Procedure (TCLP) tests showed that the concentrations of Pb, Ni, and V metals leached out from the specimens were minimal. This formulation originally contained {approx} 28800 mg/kg of Pb, {approx} 6300 mg/kg of Ni, and {approx} 11130 mg/kg of V; the amounts leaching into the acid extraction fluid were only 0.15 mg/L of Pb, 0.15 mg/L of Ni, and 4.63 mgiL of V. On the other hand, CBC specimens derived from a formulation consisting of 42 wt% BA, 18 wt% CAC and 40 wt% [40 wt% -(-NaPO{sub 3}-)-{sub n}] displayed an excellent compressive strength of 10.8 MPa at an early curing age of 2 hours after mixing at room temperature. The reason for its rapid hardening was due to a high exothermic energy evolved by the acid-base reaction. Furthermore, when these specimens were immersed for 28 days in water at 25 C, and exposed for 20 hours to steam at 80 C, a very high compressive strength of 3.32 MPa developed. Two physico-chemical factors played an important role in improving the mechanical strength of

  12. High-Level waste process and product data annotated bibliography

    SciTech Connect

    Stegen, G.E.

    1996-02-13

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references.

  13. High-Level Waste Tank Cleaning and Field Characterization at the West Valley Demonstration Project

    SciTech Connect

    Drake, J. L.; McMahon, C. L.; Meess, D. C.

    2002-02-26

    The West Valley Demonstration Project (WVDP) is nearing completion of radioactive high-level waste (HLW) retrieval from its storage tanks and subsequent vitrification of the HLW into borosilicate glass. Currently, 99.5% of the sludge radioactivity has been recovered from the storage tanks and vitrified. Waste recovery of cesium-137 (Cs-137) adsorbed on a zeolite media during waste pretreatment has resulted in 97% of this radioactivity being vitrified. Approximately 84% of the original 1.1 x 1018 becquerels (30 million curies) of radioactivity was efficiently vitrified from July 1996 to June 1998 during Phase I processing. The recovery of the last 16% of the waste has been challenging due to a number of factors, primarily the complex internal structural support system within the main 2.8 million liter (750,000 gallon) HLW tank designated 8D-2. Recovery of this last waste has become exponentially more challenging as less and less HLW is available to mobilize and transfer to the Vitrification Facility. This paper describes the progressively more complex techniques being utilized to remove the final small percentage of radioactivity from the HLW tanks, and the multiple characterization technologies deployed to determine the quantity of Cs-137, strontium-90 (Sr-90), and alpha-transuranic (alpha-TRU) radioactivity remaining in the tanks.

  14. Leaching studies of low-level radioactive waste forms

    SciTech Connect

    Dayal, R.; Arora, H.; Milian, L.; Clinton, J.

    1985-01-01

    A research program has been underway at the Brookhaven National Laboratory to investigate the release of radionuclides from low-level waste forms under laboratory conditions. This paper describes the leaching behavior of Cs-137 from two major low-level waste streams, that is, ion exchange bead resin and boric acid concentrate, solidified in Portland cement. The resultant leach data are employed to evaluate and predict the release behavior of Cs-137 from low-level waste forms under field burial conditions.

  15. Evaluation and selection of candidate high-level waste forms

    SciTech Connect

    Bernadzikowski, T. A.; Allender, J. S.; Butler, J. L.; Gordon, D. E.; Gould, Jr., T. H.; Stone, J. A.

    1982-03-01

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms.

  16. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells.

    PubMed

    Sun, Rui; Zhou, Aijuan; Jia, Jianna; Liang, Qing; Liu, Qian; Xing, Defeng; Ren, Nanqi

    2015-01-01

    Microbial electrolysis cell (MECs) were investigated as a promising technology to manage waste activated sludge (WAS) reduction and bio-methane generation. The effect of WAS concentration on the MECs performance was discussed. At the optimal concentration of 15gCOD/L, maximum methane yield of MECs fed with alkaline pretreated WAS (A-WAS) were achieved with the value of 77.13±2.52LCH4/kg-COD on Day 3, which had been improved by 1.5-fold compared with MECs fed with raw WAS (R-WAS), while that was negligible in open circuit controls. Efficient sludge reduction was also obtained in terms of TCOD, total protein, TSS and VSS removal. Pyrosequencing revealed the dominance of exoelectrogen Geobacter and hydrogen-producing bacteria Petrimonas in MECs fed with WAS. Methanocorpusculum with the capacity of methane generation using CO2 and H2 also showed overwhelming dominance (96.01%). The large proportions of Petrimonas and Methanocorpusculum indicated the occurrence of hydrogenotrophic methanogenesis in our methane-producing MECs. PMID:25459805

  17. Innovative ammonia stripping with an electrolyzed water system as pretreatment of thermally hydrolyzed wasted sludge for anaerobic digestion.

    PubMed

    Park, Seyong; Kim, Moonil

    2015-01-01

    In this study, the anaerobic digestion of thermally hydrolyzed wasted sludge (THWS) with a high concentration of ammonia was carried out through combining with an ammonia stripping and an electrolyzed water system (EWS). The EWS produced acidic water (pH 2-3) at the anode and alkaline water (pH 11-12) at the cathode with an electro-diaphragm between the electrodes that could be applied to ammonia stripping. The ammonia stripping efficiency was strongly dependent on the pH and aeration rate, and the ammonium ion removal rate followed pseudo-first-order kinetics. From the BMP test, the methane yield of THWS after ammonia stripping using the EWS was 2.8 times higher than that of the control process (raw THWS without ammonia stripping). Furthermore, both methane yield and ammonium removal efficiency were higher in this study than in previous studies. Since ammonia stripping with the EWS does not require any chemicals for pH control, no precipitated sludge is produced and anaerobic microorganisms are not inhibited by cations. Therefore, ammonia stripping using the EWS could be an effective method for digestion of wastewater with a high concentration of ammonium nitrogen. PMID:25462764

  18. Sludge organics bioavailability

    SciTech Connect

    Eiceman, G.E.; Bellin, C.A.; Ryan, J.A.; O'Connor, G.A.

    1991-01-01

    Concern over the bioavailability of toxic organics that can occur in municipal sludges threatens routine land application of sludge. Available data, however, show that concentrations of priority organics in normal sludges are low. Sludges applied at agronomic rates yield chemical concentrations in soil-sludge mixtures 50 to 100 fold lower. Plant uptake at these pollutant concentrations (and at much higher concentrations) is minimal. Chemicals are either (1) accumulated at extremely low levels (PCBs), (2) possibly accumulated, but then rapidly metabolized within plants to extremely low levels (DEHP), or (3) likely degraded so rapidly in soil that only minor contamination occurs (PCP and 2,4-DNP).

  19. Zinc movement in sewage-sludge-treated soils as influenced by soil properties, irrigation water quality, and soil moisture level

    USGS Publications Warehouse

    Welch, J.E.; Lund, L.J.

    1989-01-01

    A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found

  20. Stability of High-Level Waste Forms

    SciTech Connect

    Besmann, Theodore M.; Vienna, John D.

    2005-09-30

    The objective of the proposed effort is to use a new approach to develop solution models of complex waste glass systems and spent fuel that are predictive with regard to composition, phase separation, and volatility. The effort will also yield thermodynamic values for waste components that are fundamentally required for corrosion models used to predict the leaching/corrosion behavior for waste glass and spent fuel material. This basic information and understanding of chemical behavior can subsequently be used directly in computational models of leaching and transport in geologic media, in designing and engineering waste forms and barrier systems, and in prediction of chemical interactions.