Sample records for leydig cells express

  1. Zearalenone Delays Rat Leydig Cell Regeneration.

    PubMed

    Zhou, Songyi; Wang, Yiyan; Ma, Leikai; Chen, Xianwu; Lü, Yao; Ge, Fei; Chen, Yong; Chen, Xiaofang; Lian, Qingquan; Jin, Xiao-Dong; Ge, Ren-Shan

    2018-04-16

    Zearalenone (ZEA), a fungal mycotoxin, is present in a wide range of human foods. By virtual screening, we have identified that ZEA is a potential endocrine disruptor of Leydig cells. The effect of ZEA on Leydig cell development is still unclear. The objective of the present study was to explore whether ZEA affected Leydig cell developmental process and to clarify the underlying mechanism. Adult male Sprague Dawley rats (60 days old) were randomly divided into three groups and these rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all Leydig cells. Seven days after EDS treatment, rats intratesticularly received normal saline (control) or 150 or 300 ng/testis/day ZEA for 21 days. Immature Leydig cells isolated from 35-day-old rats were treated with ZEA (0.05-50 μM) for 24 h in vitro. In vivo ZEA exposure lowered serum testosterone levels, reduced Leydig cell number, and decreased Leydig cell specific gene or protein expression levels possibly via downregulating the steroidogenic factor 1 (Nr5a1) expression. ZEA in vitro inhibited androgen production and steroidogenic enzyme activities in immature Leydig cells by downregulating expression levels of cholesterol side cleavage enzyme (Cyp11a1), 3β-hydroxysteroid dehydrogenase 1 (Hsd3b1), and steroid 5α-reductase 1 (Srd5a1) at a concentration as low as 50 nM. In conclusion, ZEA exposure disrupts Leydig cell development and steroidogenesis possibly via downregulating Nr5a1.

  2. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration.

    PubMed

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful information for developing new potential therapies for PADAM (Partial Androgen Deficiency in the Aging Male). Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    PubMed

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  4. Establishment and evaluation of a stable steroidogenic goat Leydig cell line.

    PubMed

    Zhou, Jinhua; Dai, Rui; Lei, Lanjie; Lin, Pengfei; Lu, Xiaolong; Wang, Xiangguo; Tang, Keqiong; Wang, Aihua; Jin, Yaping

    2016-04-01

    Leydig cells play a key role in synthesizing androgen and regulating spermatogenesis. The dysfunction of Leydig cells may lead to various male diseases. Although primary Leydig cell cultures have been used, their finite lifespan hinders the assessment of long-term effects. In the present study, primary goat Leydig cells (GLCs) were immortalized via the transfection of a plasmid containing the human telomerase reverse transcriptase (hTERT) gene. The expressions of hTERT and telomerase activity were evaluated in transduced GLCs (hTERT-GLCs). These cells steadily expressed the hTERT gene and exhibited longer telomere lengths at passage 55 that were similar to those of HeLa cells. The hTERT-GLCs at passages 30 and 50 expressed genes that encoded key proteins, enzymes and receptors that are inherent to normal Leydig cells, for example, steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and LH-receptor (LH-R). Additionally, the immortalized goat Leydig cells secreted detectable quantities of testosterone in response to hCG stimulation. Furthermore, this cell line appeared to proliferate more quickly than the control cells, although no neoplastic transformation occurred in vitro. We concluded that the GLCs immortalized with hTERT retained their original characteristics and might provide a useful model for the study of Leydig cell function. © 2015 Japanese Society of Animal Science.

  5. Sertoli-Leydig cell tumor

    MedlinePlus

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... The Sertoli cells are normally located in the male reproductive glands (the testes). They feed sperm cells. The Leydig cells, also ...

  6. Leydig cell tumor

    MedlinePlus

    Tumor - Leydig cell; Testicular tumor - Leydig; Testicular neoplasm ... your provider if you have symptoms of testicular cancer. ... Philadelphia, PA: Elsevier Saunders; 2014:chap 86. National Cancer ... cancer treatment (PDQ) - health professional version. www.cancer. ...

  7. Interleukin 6 inhibits the differentiation of rat stem Leydig cells.

    PubMed

    Wang, Yiyan; Chen, Lanlan; Xie, Lubin; Li, Linchao; Li, Xiaoheng; Li, Huitao; Liu, Jianpeng; Chen, Xianwu; Mao, Baiping; Song, Tiantian; Lian, Qingquan; Ge, Ren-Shan

    2018-09-05

    Inflammation causes male hypogonadism. Several inflammatory cytokines, including interleukin 6 (IL-6), are released into the blood and may suppress Leydig cell development. The objective of the present study was to investigate whether IL-6 affected the proliferation and differentiation of rat stem Leydig cells. Leydig cell-depleted rat testis (in vivo) and seminiferous tubules (in vitro) with ethane dimethane sulfonate (EDS) were used to explore the effects of IL-6 on stem Leydig cell development. Intratesticular injection of IL-6 (10 and 100 ng/testis) from post-EDS day 14 to 28 blocked the regeneration of Leydig cells, as shown by the lower serum testosterone levels (21.6% of the control at 100 ng/testis dose), the down-regulated Leydig cell gene (Lhcgr, Star, Cyp11a1, Cyp17a1, and Hsd17b3) expressions, and the reduced Leydig cell number. Stem Leydig cells on the surface of the seminiferous tubules were induced to enter the Leydig cell lineage in vitro in the medium containing luteinizing hormone and lithium. IL-6 (1, 10, and 100 ng/ml) concentration-dependently decreased testosterone production and Lhcgr, Cyp11a1, Cyp17a1, Hsd17b3 and Insl3 mRNA levels. The IL-6 mediated effects were antagonized by Janus kinase 1 (JAK) inhibitor (filgotinib) and Signal Transducers and Activators of Transcription 3 (STAT3) inhibitor (S3I-201), indicating that a JAK-STAT3 signaling pathway is involved. In conclusion, our results demonstrated that IL-6 was an inhibitory factor of stem Leydig cell development. Copyright © 2017. Published by Elsevier B.V.

  8. Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity.

    PubMed

    Basciani, Sabrina; Brama, Marina; Mariani, Stefania; De Luca, Gabriele; Arizzi, Mario; Vesci, Loredana; Pisano, Claudio; Dolci, Susanna; Spera, Giovanni; Gnessi, Lucio

    2005-03-01

    Leydig cell tumors are usually benign tumors of the male gonad. However, if the tumor is malignant, no effective treatments are currently available. Leydig cell tumors express platelet-derived growth factor (PDGF), kit ligand and their respective receptors, PDGFR and c-kit. We therefore evaluated the effects of imatinib mesylate (imatinib), a selective inhibitor of the c-kit and PDGFR tyrosine kinases, on the growth of rodent Leydig tumor cell lines in vivo and in vitro, and examined, in human Leydig cell tumor samples, the expression of activated PDGFR and c-kit and the mutations in exons of the c-kit gene commonly associated with solid tumors. Imatinib caused concentration-dependent decreases in the viability of Leydig tumor cell lines, which coincided with apoptosis and inhibition of proliferation and ligand-stimulated phosphorylation of c-kit and PDGFRs. Mice bearing s.c. allografts of a Leydig tumor cell line treated with imatinib p.o., had an almost complete inhibition of tumor growth, less tumor cell proliferation, increased apoptosis, and a lesser amount of tumor-associated mean vessel density compared with controls. No drug-resistant tumors appeared during imatinib treatment but tumors regrew after drug withdrawal. Human Leydig cell tumors showed an intense expression of the phosphorylated form of c-kit and a less intense expression of phosphorylated PDGFRs. No activating mutations in common regions of mutation of the c-kit gene were found. Our studies suggest that Leydig cell tumors might be a potential target for imatinib therapy.

  9. DD-RT-PCR identifies 7-dehydrocholesterol reductase as a key marker of early Leydig cell steroidogenesis.

    PubMed

    Anbalagan, M; Yashwanth, R; Jagannadha Rao, A

    2004-04-30

    Postnatal Leydig cell development in rat involves an initial phase of proliferation of progenitor Leydig cells (PLCs) and subsequent differentiation of these cells into immature Leydig cells (ILCs) and adult Leydig cells (ALCs). With an objective to identify the molecular changes associated with Leydig cell differentiation, the mRNA population in PLCs and ILCs were analyzed by the technique of differential display reverse transcription polymerase chain reaction (DD-RT-PCR). Results revealed differential expression of several transcripts in PLCs and ILCs. Of the several differentially expressed transcripts, the expression of transcripts corresponding to collagen IV alpha6 (Col IV alpha6) and ribosomal protein L 41 (RpL41) decreased during the differentiation of PLC to ILC. Also there was an increase in the expression of transcripts encoding enzymes such as microsomal glutathione-S-transferase (mGST 1) and 7-dehydrocholesterol reductase (7-DHCR) during this process. While Col IV alpha6 and RpL41 are known to be involved in cellular proliferation, mGST 1 and 7-DHCR are essential for normal Leydig cell steroidogenesis. A detailed study on 7-DHCR expression in Leydig cells revealed that this enzyme plays a crucial role in steroidogenesis. Interestingly expression of this enzyme is not under acute regulation by Luteinizing hormone (LH). Copyright 2004 Elsevier Ireland Ltd.

  10. Insights into GABA receptor signalling in TM3 Leydig cells.

    PubMed

    Doepner, Richard F G; Geigerseder, Christof; Frungieri, Monica B; Gonzalez-Calvar, Silvia I; Calandra, Ricardo S; Raemsch, Romi; Fohr, Karl; Kunz, Lars; Mayerhofer, Artur

    2005-01-01

    Gamma-aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A )receptor subunits, but also bind the GABA agonist [(3)H]muscimol with a binding affinity in the range reported for other endocrine cells (K(d) = 2.740 +/- 0.721 nM). However, they exhibit a low B(max) value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl(-) currents, changes in resting membrane potential, intracellular Ca(2+) or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an atypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Basel.

  11. Probing GATA factor function in mouse Leydig cells via testicular injection of adenoviral vectors.

    PubMed

    Penny, Gervette M; Cochran, Rebecca B; Pihlajoki, Marjut; Kyrönlahti, Antti; Schrade, Anja; Häkkinen, Merja; Toppari, Jorma; Heikinheimo, Markku; Wilson, David B

    2017-10-01

    Testicular Leydig cells produce androgens essential for proper male reproductive development and fertility. Here, we describe a new Leydig cell ablation model based on Cre/Lox recombination of mouse Gata4 and Gata6 , two genes implicated in the transcriptional regulation of steroidogenesis. The testicular interstitium of adult Gata4 flox/flox ; Gata6 flox/flox mice was injected with adenoviral vectors encoding Cre + GFP (Ad-Cre-IRES-GFP) or GFP alone (Ad-GFP). The vectors efficiently and selectively transduced Leydig cells, as evidenced by GFP reporter expression. Three days after Ad-Cre-IRES-GFP injection, expression of androgen biosynthetic genes ( Hsd3b1 , Cyp17a1 and Hsd17b3 ) was reduced, whereas expression of another Leydig cell marker, Insl3 , was unchanged. Six days after Ad-Cre-IRES-GFP treatment, the testicular interstitium was devoid of Leydig cells, and there was a concomitant loss of all Leydig cell markers. Chromatin condensation, nuclear fragmentation, mitochondrial swelling, and other ultrastructural changes were evident in the degenerating Leydig cells. Liquid chromatography-tandem mass spectrometry demonstrated reduced levels of androstenedione and testosterone in testes from mice injected with Ad-Cre-IRES-GFP. Late effects of treatment included testicular atrophy, infertility and the accumulation of lymphoid cells in the testicular interstitium. We conclude that adenoviral-mediated gene delivery is an expeditious way to probe Leydig cell function in vivo Our findings reinforce the notion that GATA factors are key regulators of steroidogenesis and testicular somatic cell survival.Free Finnish abstract: A Finnish translation of this abstract is freely available at http://www.reproduction-online.org/content/154/4/455/suppl/DC2. © 2017 Society for Reproduction and Fertility.

  12. ESR1 inhibits hCG-induced steroidogenesis and proliferation of progenitor Leydig cells in mice.

    PubMed

    Oh, Yeong Seok; Koh, Il Kyoo; Choi, Bomi; Gye, Myung Chan

    2017-03-07

    Oestrogen is an important regulator in reproduction. To understand the role of oestrogen receptor 1 (ESR1) in Leydig cells, we investigated the expression of ESR1 in mouse Leydig cells during postnatal development and the effects of oestrogen on steroidogenesis and proliferation of progenitor Leydig cells (PLCs). In Leydig cells, the ESR1 expression was low at birth, increased until postnatal day 14 at which PLCs were predominant, and then decreased until adulthood. In foetal Leydig cells, ESR1 immunoreactivity increased from birth to postnatal day 14. These suggest that ESR1 is a potential biomarker of Leydig cell development. In PLCs, 17β-estradiol and the ESR1-selective agonist propylpyrazoletriol suppressed human chorionic gonadotropin (hCG)-induced progesterone production and steroidogenic gene expression. The ESR2-selective agonist diarylpropionitrile did not affect steroidogenesis. In PLCs from Esr1 knockout mice, hCG-stimulated steroidogenesis was not suppressed by 17β-estradiol, suggesting that oestrogen inhibits PLC steroidogenesis via ESR1. 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile decreased bromodeoxyuridine uptake in PLCs in the neonatal mice. In cultured PLCs, 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile reduced hCG-stimulated Ki67 and Pcna mRNA expression and the number of KI67-positive PLCs, suggesting that oestrogen inhibits PLC proliferation via both ESR1 and ESR2. In PLCs, ESR1 mediates the oestrogen-induced negative regulation of steroidogenesis and proliferation.

  13. ESR1 inhibits hCG-induced steroidogenesis and proliferation of progenitor Leydig cells in mice

    PubMed Central

    Oh, Yeong Seok; Koh, Il Kyoo; Choi, Bomi; Gye, Myung Chan

    2017-01-01

    Oestrogen is an important regulator in reproduction. To understand the role of oestrogen receptor 1 (ESR1) in Leydig cells, we investigated the expression of ESR1 in mouse Leydig cells during postnatal development and the effects of oestrogen on steroidogenesis and proliferation of progenitor Leydig cells (PLCs). In Leydig cells, the ESR1 expression was low at birth, increased until postnatal day 14 at which PLCs were predominant, and then decreased until adulthood. In foetal Leydig cells, ESR1 immunoreactivity increased from birth to postnatal day 14. These suggest that ESR1 is a potential biomarker of Leydig cell development. In PLCs, 17β-estradiol and the ESR1-selective agonist propylpyrazoletriol suppressed human chorionic gonadotropin (hCG)-induced progesterone production and steroidogenic gene expression. The ESR2-selective agonist diarylpropionitrile did not affect steroidogenesis. In PLCs from Esr1 knockout mice, hCG-stimulated steroidogenesis was not suppressed by 17β-estradiol, suggesting that oestrogen inhibits PLC steroidogenesis via ESR1. 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile decreased bromodeoxyuridine uptake in PLCs in the neonatal mice. In cultured PLCs, 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile reduced hCG-stimulated Ki67 and Pcna mRNA expression and the number of KI67-positive PLCs, suggesting that oestrogen inhibits PLC proliferation via both ESR1 and ESR2. In PLCs, ESR1 mediates the oestrogen-induced negative regulation of steroidogenesis and proliferation. PMID:28266530

  14. Fluoride-Induced Autophagy via the Regulation of Phosphorylation of Mammalian Targets of Rapamycin in Mice Leydig Cells.

    PubMed

    Zhang, Jianhai; Zhu, Yuchen; Shi, Yan; Han, Yongli; Liang, Chen; Feng, Zhiyuan; Zheng, Heping; Eng, Michelle; Wang, Jundong

    2017-10-11

    Fluoride is known to impair testicular function and decrease testosterone levels, yet the underlying mechanisms remain inconclusive. The objective of this study is to investigate the roles of autophagy in fluoride-induced male reproductive toxicity using both in vivo and in vitro Leydig cell models. Using transmission electron microscopy and monodansylcadaverine staining, we observed increasing numbers of autophagosomes in testicular tissue, especially in Leydig cells of fluoride-exposed mice. Further study revealed that fluoride increased the levels of mRNA and protein expression of autophagy markers LC3, Beclin1, and Atg 5 in primary Leydig cells. Furthermore, fluoride inhibited the phosphorylation of mammalian targets of rapamycin and 4EBP1, which in turn resulted in a decrease in the levels of AKT and PI3K mRNA expression, as well as an elevation of the level of AMPK expression in both testes and primary Leydig cells. Additionally, fluoride exposure significantly changed the mRNA expression of the PDK1, TSC, and Atg13 regulator genes in primary Leydig cells but not in testicular cells. Taken together, our findings highlight the roles of autophagy in fluoride-induced testicular and Leydig cell damage and contribute to the elucidation of the underlying mechanisms of fluoride-induced male reproductive toxicity.

  15. Genetics Home Reference: Leydig cell hypoplasia

    MedlinePlus

    ... Twitter Home Health Conditions Leydig cell hypoplasia Leydig cell hypoplasia Printable PDF Open All Close All Enable ... consumer genetic testing? What are genome editing and CRISPR-Cas9? What is precision medicine? What is newborn ...

  16. Circadian rhythm of the Leydig cells endocrine function is attenuated during aging.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Bjelic, Maja M; Radovic, Sava M; Andric, Silvana A; Kostic, Tatjana S

    2016-01-01

    Although age-related hypofunction of Leydig cells is well illustrated across species, its circadian nature has not been analyzed. Here we describe changes in circadian behavior in Leydig cells isolated from adult (3-month) and aged (18- and 24-month) rats. The results showed reduced circadian pattern of testosterone secretion in both groups of aged rats despite unchanged LH circadian secretion. Although arrhythmic, the expression of Insl3, another secretory product of Leydig cells, was decreased in both groups. Intracellular cAMP and most important steroidogenic genes (Star, Cyp11a1 and Cyp17a1), together with positive steroidogenic regulator (Nur77), showed preserved circadian rhythm in aging although rhythm robustness and expression level were attenuated in both aged groups. Aging compromised cholesterol mobilization and uptake by Leydig cells: the oscillatory transcription pattern of genes encoding HDL-receptor (Scarb1), hormone sensitive lipase (Lipe, enzyme that converts cholesterol esters from lipid droplets into free cholesterol) and protein responsible for forming the cholesterol esters (Soat2) were flattened in 24-month group. The majority of examined clock genes displayed circadian behavior in expression but only a few of them (Bmal1, Per1, Per2, Per3 and Rev-Erba) were reduced in 24-month-old group. Furthermore, aging reduced oscillatory expression pattern of Sirt1 and Nampt, genes encoding key enzymes that connect cellular metabolism and circadian network. Altogether circadian amplitude of Leydig cell's endocrine function decreased during aging. The results suggest that clock genes are more resistant to aging than genes involved in steroidogenesis supporting the hypothesis about peripheral clock involvement in rhythm maintenance during aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Leydig Cell Aging and Hypogonadism

    PubMed Central

    Beattie, M.C.; Adekola, L.; Papadopoulos, V.; Chen, H.; Zirkin, B.R.

    2015-01-01

    Leydig cell testosterone (T) production is reduced with age, resulting in reduced serum T levels (hypogonadism). A number of cellular changes have been identified in the steroidogenic pathway of aged Leydig cells that are associated with reduced T formation, including reductions in luteinizing hormone (LH)-stimulated cAMP production, the cholesterol transport proteins steroidogenic acute regulatory (STAR) protein and translocator protein (TSPO), and downstream steroidogenic enzymes of the mitochondria and smooth endoplasmic reticulum. Many of the changes in steroid formation that characterize aged Leydig cells can be elicited by the experimental alteration of the redox environment of young cells, suggesting that changes in the intracellular redox balance may cause reduced T production. Hypogonadism is estimated to affect about 5 million American men, including both aged and young. This condition has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass, reduced bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Exogenous T administration is now used widely to elevate serum T levels in hypogonadal men and thus to treat symptoms of hypogonadism. However, recent evidence suggests that men who take exogenous T may face increased risk of stroke, heart attack, and prostate tumorigenesis. Moreover, it is well established that administered T can have suppressive effects on LH, resulting in lower Leydig cell T production, reduced intratesticular T concentration, and reduced spermatogenesis. This makes exogenous T administration inappropriate for men who wish to father children. There are promising new approaches to increase serum T by directly stimulating Leydig cell T production rather than by exogenous T therapy, thus potentially avoiding some of its negative consequences. PMID:25700847

  18. Leydig cell aging and hypogonadism.

    PubMed

    Beattie, M C; Adekola, L; Papadopoulos, V; Chen, H; Zirkin, B R

    2015-08-01

    Leydig cell testosterone (T) production is reduced with age, resulting in reduced serum T levels (hypogonadism). A number of cellular changes have been identified in the steroidogenic pathway of aged Leydig cells that are associated with reduced T formation, including reductions in luteinizing hormone (LH)-stimulated cAMP production, the cholesterol transport proteins steroidogenic acute regulatory (STAR) protein and translocator protein (TSPO), and downstream steroidogenic enzymes of the mitochondria and smooth endoplasmic reticulum. Many of the changes in steroid formation that characterize aged Leydig cells can be elicited by the experimental alteration of the redox environment of young cells, suggesting that changes in the intracellular redox balance may cause reduced T production. Hypogonadism is estimated to affect about 5 million American men, including both aged and young. This condition has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass, reduced bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Exogenous T administration is now used widely to elevate serum T levels in hypogonadal men and thus to treat symptoms of hypogonadism. However, recent evidence suggests that men who take exogenous T may face increased risk of stroke, heart attack, and prostate tumorigenesis. Moreover, it is well established that administered T can have suppressive effects on LH, resulting in lower Leydig cell T production, reduced intratesticular T concentration, and reduced spermatogenesis. This makes exogenous T administration inappropriate for men who wish to father children. There are promising new approaches to increase serum T by directly stimulating Leydig cell T production rather than by exogenous T therapy, thus potentially avoiding some of its negative consequences. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    PubMed Central

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  20. A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis

    PubMed Central

    Wu, Xiaolong; Liu, Jianpeng; Duan, Yue; Gao, Shiyu; Lü, Yao; Li, Xiaoheng; Zhu, Qiqi; Chen, Xianwu; Lin, Jing; Ye, Leping; Ge, Ren-Shan

    2017-01-01

    Background: Tributyltin (TBT) is widely used as an antifouling agent that may cause reproductive toxicity. The mechanism of TBT on Leydig cell development is still unknown. The objective of the present study was to investigate whether a brief exposure to low doses of TBT permanently affects Leydig cell development and to clarify the underlying mechanism. Methods: Adult male Sprague Dawley rats were randomly assigned into four groups and gavaged normal saline (control), 0.1, 1.0, or 10.0 mg/kg/day TBT for a consecutive 10 days, respectively. At the end of TBT treatment, all rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all of adult Leydig cells. Leydig cells began a developmental regeneration process on post-EDS day 35. The Leydig cell regeneration was evaluated by measuring serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels on post-EDS day 7, 35, and 56, the expression levels of Leydig cell genes, Leydig cell morphology and number and proliferation on post-EDS day 56. Results: TBT significantly reduced serum testosterone levels on post-EDS day 35 and 56 and increased serum luteinizing hormone and follicle-stimulating hormone levels on post-EDS day 56 at ≥1 mg/kg/day. Immunohistochemical staining showed that there were fewer regenerated Leydig cells in the TBT-treated testis on post-EDS day 56. Further study demonstrated that the mRNA or protein levels of Leydig (Lhcgr, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3) and Sertoli cells (Fshr, Dhh, and Sox9) were significantly down-regulated in the TBT-treated testes when compared to the control. Immunofluorescent staining showed that TBT inhibited Leydig cell proliferation as judged by the reduced number of proliferating cyclin nuclear antigen-positive Leydig cells on post-EDS day 35. Conclusion: The present study demonstrated that a short-term TBT exposure blocked Leydig cell developmental regeneration process via down

  1. A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis.

    PubMed

    Wu, Xiaolong; Liu, Jianpeng; Duan, Yue; Gao, Shiyu; Lü, Yao; Li, Xiaoheng; Zhu, Qiqi; Chen, Xianwu; Lin, Jing; Ye, Leping; Ge, Ren-Shan

    2017-01-01

    Background: Tributyltin (TBT) is widely used as an antifouling agent that may cause reproductive toxicity. The mechanism of TBT on Leydig cell development is still unknown. The objective of the present study was to investigate whether a brief exposure to low doses of TBT permanently affects Leydig cell development and to clarify the underlying mechanism. Methods: Adult male Sprague Dawley rats were randomly assigned into four groups and gavaged normal saline (control), 0.1, 1.0, or 10.0 mg/kg/day TBT for a consecutive 10 days, respectively. At the end of TBT treatment, all rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all of adult Leydig cells. Leydig cells began a developmental regeneration process on post-EDS day 35. The Leydig cell regeneration was evaluated by measuring serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels on post-EDS day 7, 35, and 56, the expression levels of Leydig cell genes, Leydig cell morphology and number and proliferation on post-EDS day 56. Results: TBT significantly reduced serum testosterone levels on post-EDS day 35 and 56 and increased serum luteinizing hormone and follicle-stimulating hormone levels on post-EDS day 56 at ≥1 mg/kg/day. Immunohistochemical staining showed that there were fewer regenerated Leydig cells in the TBT-treated testis on post-EDS day 56. Further study demonstrated that the mRNA or protein levels of Leydig ( Lhcgr , Cyp11a1, Hsd3b1, Cyp17a1 , and Hsd17b3 ) and Sertoli cells ( Fshr , Dhh , and Sox9 ) were significantly down-regulated in the TBT-treated testes when compared to the control. Immunofluorescent staining showed that TBT inhibited Leydig cell proliferation as judged by the reduced number of proliferating cyclin nuclear antigen-positive Leydig cells on post-EDS day 35. Conclusion: The present study demonstrated that a short-term TBT exposure blocked Leydig cell developmental regeneration process via down

  2. Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction

    PubMed Central

    Jiang, Mei Hua; Cai, Bing; Tuo, Ying; Wang, Jiancheng; Zang, Zhi Jun; Tu, Xiang'an; Gao, Yong; Su, Zhijian; Li, Weiqiang; Li, Guilan; Zhang, Min; Jiao, Jianwei; Wan, Zi; Deng, Chunhua; Lahn, Bruce T; Xiang, Andy Peng

    2014-01-01

    The ability to identify and isolate lineage-specific stem cells from adult tissues could facilitate cell replacement therapy. Leydig cells (LCs) are the primary source of androgen in the mammalian testis, and the prospective identification of stem Leydig cells (SLCs) may offer new opportunities for treating testosterone deficiency. Here, in a transgenic mouse model expressing GFP driven by the Nestin (Nes) promoter, we observed Nes-GFP+ cells located in the testicular interstitial compartment where SLCs normally reside. We showed that these Nes-GFP+ cells expressed LIFR and PDGFR-α, but not LC lineage markers. We further observed that these cells were capable of clonogenic self-renewal and extensive proliferation in vitro and could differentiate into neural or mesenchymal cell lineages, as well as LCs, with the ability to produce testosterone, under defined conditions. Moreover, when transplanted into the testes of LC-disrupted or aging models, the Nes-GFP+ cells colonized the interstitium and partially increased testosterone production, and then accelerated meiotic and post-meiotic germ cell recovery. In addition, we further demonstrated that CD51 might be a putative cell surface marker for SLCs, similar with Nestin. Taken together, these results suggest that Nes-GFP+ cells from the testis have the characteristics of SLCs, and our study would shed new light on developing stem cell replacement therapy for testosterone deficiency. PMID:25418539

  3. Triiodothyronine stimulates VEGF expression and secretion via steroids and HIF-1α in murine Leydig cells.

    PubMed

    Dhole, Bodhana; Gupta, Surabhi; Venugopal, Senthil Kumar; Kumar, Anand

    2018-06-01

    Leydig cells are the principal steroidogenic cells of the testis. Leydig cells also secrete a number of growth factors including vascular endothelial growth factor (VEGF) which has been shown to regulate both testicular steroidogenesis and spermatogenesis. The thyroid hormone, T 3, is known to stimulate steroidogenesis in Leydig cells. T 3 has also been shown to stimulate VEGF production in a variety of cell lines. However, studies regarding the effect of T 3 on VEGF synthesis and secretion by the Leydig cells were lacking. Therefore, we investigated the effect of T 3 on VEGF synthesis and secretion in a mouse Leydig tumour cell line, MLTC-1. The effect of T 3 was compared with that of LH/cAMP and hypoxia, two known stimulators of Leydig cell functions. The cells were treated with T 3 , 8-Br-cAMP (a cAMP analogue), or CoCl 2 (a hypoxia mimetic) and VEGF secreted in the cell supernatant was measured using ELISA. The mRNA levels of VEGF were measured by quantitative RT-PCR. In the MLTC-1 cells, T 3 , 8-Br-cAMP, and CoCl 2 stimulated VEGF mRNA levels and the protein secretion. T 3 also increased steroid secretion as well as HIF-1α protein levels, two well-established upstream regulators of VEGF. Inhibitors of steroidogenesis as well as HIF-1α resulted in inhibition of T 3 -stimulated VEGF secretion by the MLTC-1 cells. This suggested a mediatory role of steroids and HIF-1α protein in T 3 -stimulated VEGF secretion by MLTC-1 cells. The mediation by steroids and HIF-1α were independent of each other. 8-Br-cAMP: 8-bromo - 3', 5' cyclic adenosine monophosphate; CoCl 2 : cobalt chloride; HIF-1α: hypoxia inducible factor -1α; LH: luteinizing hormone; T 3 : 3, 5, 3'-L-triiodothyronine; VEGF: vascular endothelial growth factor.

  4. Apoptosis Process in Mouse Leydig Cells during Postnatal Development

    NASA Astrophysics Data System (ADS)

    Salles Faria, Maria José; Simões, Zilá Paulino; Luz; Orive Lunardi, Laurelucia; Hartfelder, Klaus

    2003-02-01

    The development of Leydig cells in mammals has been widely described as a biphasic pattern with two temporally mature Leydig cell populations, fetal stage followed by the adult generation beginning at puberty. In the present study, mouse Leydig cells were examined for apoptosis during postnatal testis development using electron microscopy and in situ DNA fragmentation by terminal deoxynucleotidyl transferase staining (TdT). Both the morphological study and the DNA fragmentation analysis showed that cellular death by apoptosis did not occur in Leydig cells during the neonatal, prepubertal, puberty, and adult periods. From these results, we suggest that the remaining fetal Leydig cells in the neonatal testis are associated with the involution or degeneration processes. In contrast, in the prepubertal and puberty stages, fragmentation of apoptotic DNA was detected in germ cells present in some seminiferous tubules.

  5. Adiponectin influences progesterone production from MA-10 Leydig cells in a dose-dependent manner.

    PubMed

    Landry, David; Paré, Aurélie; Jean, Stéphanie; Martin, Luc J

    2015-04-01

    Obesity in men is associated with lower testosterone levels, related to reduced sperm concentration and the development of various diseases with aging. Hormones produced by the adipose tissue may have influences on both metabolism and reproductive function. Among them, the production and secretion of adiponectin is inversely correlated to total body fat. Adiponectin receptors (AdipoR1 and AdipoR2) have been found to be expressed in testicular Leydig cells (producing testosterone). Since StAR and Cyp11a1 are essential for testosterone synthesis and adiponectin has been shown to regulate StAR mRNA in swine granulosa cells, we hypothesized that adiponectin might also regulate these genes in Leydig cells. Our objective was to determine whether adiponectin regulates StAR and Cyp11a1 genes in Leydig cells and to better define its mechanisms of action. Methods used in the current study are qPCR for the mRNA levels, transfections for promoter activities, and enzyme-linked immunosorbent assay for the progesterone concentration. We have found that adiponectin cooperates with cAMP-dependent stimulation to activate StAR and Cyp11a1 mRNA expressions in a dose-dependent manner in MA-10 Leydig cells as demonstrated by transfection of a luciferase reporter plasmid. These results led to a significant increase in progesterone production from MA-10 cells. Thus, our data suggest that high doses of adiponectin typical of normal body weight may promote testosterone production from Leydig cells.

  6. Identification of ADAM 31: a protein expressed in Leydig cells and specialized epithelia.

    PubMed

    Liu, L; Smith, J W

    2000-06-01

    A family of proteins containing a disintegrin and metalloproteinase domain (ADAMs) has been identified recently. Here, we report the identification of a novel member of the ADAM protein family from mouse. This protein is designated ADAM 31. The complementary DNA sequence of ADAM 31 predicts a transmembrane protein with metalloproteinase, disintegrin, cysteine-rich, and cytoplasmic domains. Messenger RNA encoding ADAM 31 was most abundant in testes, but was also detected in many other tissues. More significantly, the antibodies raised against ADAM 31 reveal that the protein has a unique and restricted expression pattern. ADAM 31 is expressed in Leydig cells of the testes, but unlike many other ADAMs, it is not found on developing sperm. Furthermore, ADAM 31 is highly expressed on four types of specialized epithelia: the cauda epididymidis, the vas deferens, the convoluted tubules of the kidney, and the parietal cells of the stomach.

  7. Effects of butylated hydroxyanisole on the steroidogenesis of rat immature Leydig cells.

    PubMed

    Li, Xiaoheng; Cao, Shuyan; Mao, Baiping; Bai, Yanfang; Chen, Xiaomin; Wang, Xiudi; Wu, Ying; Li, Linxi; Lin, Han; Lian, Qingquan; Huang, Ping; Ge, Ren-Shan

    2016-09-01

    Butylated hydroxyanisole (BHA) is a synthetic antioxidant used for food preservation. Whether BHA affects testosterone biosynthesis is still unclear. The effects of BHA on the steroidogenesis in rat immature Leydig cells were investigated. Rat immature Leydig cells were isolated from 35-old-day rats and cultured with BHA (50 μM) for 3 h in combination with 22R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone or dihydrotestosterone, and the concentrations of 5α-androstanediol and testosterone in the media were measured. Leydig cells were cultured with BHA (0.05-50 μM) for 3 h. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1 and Akr1c14. The testis microsomes were prepared to detect the direct action of BHA on 3β-hydroxysteroid dehydrogenase 1 (HSD3B1), 17α-hydroxylase (CYP17A1) and 17β-hydroxysteroid dehydrogenase 3 activities. In Leydig cells, BHA (50 μM) significantly inhibited LH- and 8Br-cAMP-mediated androgen production. BHA directly inhibited rat testis CYP17A1 and HSD3B1 activities. At 50 μM, it also reduced the expression levels of Hsd17b3 and Srd5a1 and their protein levels. In conclusion, BHA directly inhibits the activities of CYP17A1 and HSD3B1, and the expression levels of Hsd17b3 and Srd5a1, leading to the lower production of androgen in Leydig cells.

  8. Effects of Etomidate on the Steroidogenesis of Rat Immature Leydig Cells

    PubMed Central

    Liu, Hua-Cheng; Zhu, Danyan; Wang, Chan; Guan, Hongguo; Li, Senlin; Hu, Cong; Chen, Zhichuan; Hu, Yuanyuan; Lin, Han; Lian, Qing-Quan; Ge, Ren-Shan

    2015-01-01

    Background Etomidate is a rapid hypnotic intravenous anesthetic agent. The major side effect of etomidate is the reduced plasma concentration of corticosteroids, leading to the abnormal reaction of adrenals. Cortisol and testosterone biosynthesis has similar biosynthetic pathway, and shares several common steroidogenic enzymes, such as P450 side chain cleavage enzyme (CYP11A1) and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1). The effect of etomidate on Leydig cell steroidogenesis during the cell maturation process is not well established. Methodology Immature Leydig cells isolated from 35 day-old rats were cultured with 30 μM etomidate for 3 hours in combination with LH, 8Br-cAMP, 25R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone and dihydrotestosterone, respectively. The concentrations of 5α-androstanediol and testosterone in the media were measured by radioimmunoassay. Leydig cells were cultured with various concentrations of etomidate (0.3–30 μM) for 3 hours, and total RNAs were extracted. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1, and Akr1c14. The testis mitochondria and microsomes from 35-day-old rat testes were prepared and used to detect the direct action of etomidate on CYP11A1 and HSD3B1 activity. Results and Conclusions In intact Leydig cells, 30 μM etomidate significantly inhibited androgen synthesis. Further studies showed that etomidate also inhibited the LH- stimulated androgen production. On purified testicular mitochondria and ER fractions, etomidate competitively inhibited both CYP11A1 and HSD3B1 activities, with the half maximal inhibitory concentration (IC50) values of 12.62 and 2.75 μM, respectively. In addition, etomidate inhibited steroidogenesis-related gene expression. At about 0.3 μM, etomidate significantly inhibited the expression of Akr1C14. At the higher concentration (30 μM), it also reduced the expression levels of

  9. Effects of Etomidate on the Steroidogenesis of Rat Immature Leydig Cells.

    PubMed

    Liu, Hua-Cheng; Zhu, Danyan; Wang, Chan; Guan, Hongguo; Li, Senlin; Hu, Cong; Chen, Zhichuan; Hu, Yuanyuan; Lin, Han; Lian, Qing-Quan; Ge, Ren-Shan

    2015-01-01

    Etomidate is a rapid hypnotic intravenous anesthetic agent. The major side effect of etomidate is the reduced plasma concentration of corticosteroids, leading to the abnormal reaction of adrenals. Cortisol and testosterone biosynthesis has similar biosynthetic pathway, and shares several common steroidogenic enzymes, such as P450 side chain cleavage enzyme (CYP11A1) and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1). The effect of etomidate on Leydig cell steroidogenesis during the cell maturation process is not well established. Immature Leydig cells isolated from 35 day-old rats were cultured with 30 μM etomidate for 3 hours in combination with LH, 8Br-cAMP, 25R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone and dihydrotestosterone, respectively. The concentrations of 5α-androstanediol and testosterone in the media were measured by radioimmunoassay. Leydig cells were cultured with various concentrations of etomidate (0.3-30 μM) for 3 hours, and total RNAs were extracted. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1, and Akr1c14. The testis mitochondria and microsomes from 35-day-old rat testes were prepared and used to detect the direct action of etomidate on CYP11A1 and HSD3B1 activity. In intact Leydig cells, 30 μM etomidate significantly inhibited androgen synthesis. Further studies showed that etomidate also inhibited the LH- stimulated androgen production. On purified testicular mitochondria and ER fractions, etomidate competitively inhibited both CYP11A1 and HSD3B1 activities, with the half maximal inhibitory concentration (IC50) values of 12.62 and 2.75 μM, respectively. In addition, etomidate inhibited steroidogenesis-related gene expression. At about 0.3 μM, etomidate significantly inhibited the expression of Akr1C14. At the higher concentration (30 μM), it also reduced the expression levels of Cyp11a1, Hsd17b3 and Srd5a1. In conclusion

  10. MEF2 Cooperates With Forskolin/cAMP and GATA4 to Regulate Star Gene Expression in Mouse MA-10 Leydig Cells.

    PubMed

    Daems, Caroline; Di-Luoffo, Mickaël; Paradis, Élise; Tremblay, Jacques J

    2015-07-01

    In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.

  11. Mouse Leydig Cells with Different Androgen Production Potential Are Resistant to Estrogenic Stimuli but Responsive to Bisphenol A Which Attenuates Testosterone Metabolism

    PubMed Central

    Savchuk, Iuliia; Söder, Olle; Svechnikov, Konstantin

    2013-01-01

    It is well known that estrogens and estrogen-like endocrine disruptors can suppress steroidogenic gene expression, attenuate androgen production and decrease differentiation of adult Leydig cell lineage. However, there is no information about the possible link between the potency of Leydig cells to produce androgens and their sensitivity to estrogenic stimuli. Thus, the present study explored the relationship between androgen production potential of Leydig cells and their responsiveness to estrogenic compounds. To investigate this relationship we selected mouse genotypes contrasting in sex hormone levels and differing in testosterone/estradiol (T/E2) ratio. We found that two mouse genotypes, CBA/Lac and C57BL/6j have the highest and the lowest serum T/E2 ratio associated with increased serum LH level in C57BL/6j compared to CBA/Lac. Analysis of steroidogenic gene expression demonstrated significant upregulation of Cyp19 gene expression but coordinated suppression of LHR, StAR, 3βHSDI and Cyp17a1 in Leydig cells from C57BL/6j that was associated with attenuated androgen production in basal and hCG-stimulated conditions compared to CBA/Lac mice. These genotype-dependent differences in steroidogenesis were not linked to changes in the expression of estrogen receptors ERα and Gpr30, while ERβ expression was attenuated in Leydig cells from C57BL/6j compared to CBA/Lac. No effects of estrogenic agonists on steroidogenesis in Leydig cells from both genotypes were found. In contrast, xenoestrogen bisphenol A significantly potentiated hCG-activated androgen production by Leydig cells from C57BL/6j and CBA/Lac mice by suppressing conversion of testosterone into corresponding metabolite 5α-androstane-3α,17β-diol. All together our data indicate that developing mouse Leydig cells with different androgen production potential are resistant to estrogenic stimuli, while xenoestrogen BPA facilitates hCG-induced steroidogenesis in mouse Leydig cells via attenuation of

  12. Loss of Smad4 in Sertoli and Leydig Cells Leads to Testicular Dysgenesis and Hemorrhagic Tumor Formation in Mice1

    PubMed Central

    Archambeault, Denise R.; Yao, Humphrey Hung-Chang

    2014-01-01

    ABSTRACT As the central component of canonical TGFbeta superfamily signaling, SMAD4 is a critical regulator of organ development, patterning, tumorigenesis, and many other biological processes. Because numerous TGFbeta superfamily ligands are expressed in developing testes, there may exist specific requirements for SMAD4 in individual testicular cell types. Previously, we reported that expansion of the fetal testis cords requires expression of SMAD4 by the Sertoli cell lineage. To further uncover the role of Smad4 in murine testes, we produced conditional knockout mice lacking Smad4 in either Leydig cells or in both Sertoli and Leydig cells simultaneously. Loss of Smad4 concomitantly in Sertoli and Leydig cells led to underdevelopment of the testis cords during fetal life and mild testicular dysgenesis in young adulthood (decreased testis size, partially dysgenic seminiferous tubules, and low sperm production). When the Sertoli/Leydig cell Smad4 conditional knockout mice aged (56- to 62-wk old), the testis phenotypes became exacerbated with the appearance of hemorrhagic tumors, Leydig cell adenomas, and a complete loss of spermatogenesis. In contrast, loss of Smad4 in Leydig cells alone did not appreciably alter fetal and adult testis development. Our findings support a cell type-specific requirement of Smad4 in testis development and suppression of testicular tumors. PMID:24501173

  13. Numeric and volumetric changes in Leydig cells during aging of rats.

    PubMed

    Neves, Bruno Vinicius Duarte; Lorenzini, Fernando; Veronez, Djanira; Miranda, Eduardo Pereira de; Neves, Gabriela Duarte; Fraga, Rogério de

    2017-10-01

    To analyze the effects of aging in rats on the nuclear volume, cytoplasmic volume, and total volume of Leydig cells, as well as their number. Seventy-two Wistar rats were divided into six subgroups of 12 rats, which underwent right orchiectomy at 3, 6, 9, 12, 18, and 24 months of age. The weight and volume of the resected testicles were assessed. A stereological study of Leydig cells was conducted, which included measurements of cell number and nuclear, cytoplasmic, and total cell volumes. The weight and volume of the resected testicles showed reductions with age. Only the subgroup composed of 24-month old rats showed a decrease in the nuclear volume of Leydig cells. Significant reductions in the cytoplasmic volume and total volume of Leydig cells were observed in 18- and 24-month old rats. The number of Leydig cells did not vary significantly with age. Aging in rats resulted in reduction of the nuclear, cytoplasmic, and total cell volumes of Leydig cells. There was no change in the total number of these cells during aging.

  14. Annexin V-induced rat Leydig cell proliferation involves Ect2 via RhoA/ROCK signaling pathway.

    PubMed

    Jing, Jun; Chen, Li; Fu, Hai-Yan; Fan, Kai; Yao, Qi; Ge, Yi-Feng; Lu, Jin-Chun; Yao, Bing

    2015-03-24

    This study investigated the effect of annexin V on the proliferation of primary rat Leydig cells and the potential mechanism. Our results showed that annexin V promoted rat Leydig cell proliferation and cell cycle progression in a dose- and time-dependent manner. Increased level of annexin V also enhanced Ect2 protein expression. However, siRNA knockdown of Ect2 attenuated annexin V-induced proliferation of rat Leydig cells. Taken together, these data suggest that increased level of annexin V induced rat Leydig cell proliferation and cell cycle progression via Ect2. Since RhoA activity was increased following Ect2 activation, we further investigated whether Ect2 was involved in annexin V-induced proliferation via the RhoA/ROCK pathway, and the results showed that annexin V increased RhoA activity too, and this effect was abolished by the knockdown of Ect2. Moreover, inhibition of the RhoA/ROCK pathway by a ROCK inhibitor, Y27632, also attenuated annexin V-induced proliferation and cell cycle progression. We thus conclude that Ect2 is involved in annexin V-induced rat Leydig cell proliferation through the RhoA/ROCK pathway.

  15. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    PubMed Central

    Di Fiore, Maria Maddalena; Santillo, Alessandra; Falvo, Sara; Longobardi, Salvatore; Chieffi Baccari, Gabriella

    2016-01-01

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation. PMID:27428949

  16. hCG-induced endoplasmic reticulum stress triggers apoptosis and reduces steroidogenic enzyme expression through activating transcription factor 6 in Leydig cells of the testis

    PubMed Central

    Park, Sun-Ji; Kim, Tae-Shin; Park, Choon-Keun; Lee, Sang-Hee; Kim, Jin-Man; Lee, Kyu-Sun; Lee, In-kyu; Park, Jeen-Woo; Lawson, Mark A; Lee, Dong-Seok

    2014-01-01

    Endoplasmic reticulum (ER) stress generally occurs in secretory cell types. It has been reported that Leydig cells, which produce testosterone in response to human chorionic gonadotropin (hCG), express key steroidogenic enzymes for the regulation of testosterone synthesis. In this study, we analyzed whether hCG induces ER stress via three unfolded protein response (UPR) pathways in mouse Leydig tumor (mLTC-1) cells and the testis. Treatment with hCG induced ER stress in mLTC-1 cells via the ATF6, IRE1a/XBP1, and eIF2α/GADD34/ATF4 UPR pathways, and transient expression of 50 kDa protein activating transcription factor 6 (p50ATF6) reduced the expression level of steroidogenic 3β-hydroxy-steroid dehydrogenase Δ5-Δ4-isomerase (3β-HSD) enzyme. In an in vivo model, high-level hCG treatment induced expression of p50ATF6 while that of steroidogenic enzymes, especially 3β-HSD, 17α-hydroxylase/C17–20 lyase (CYP17), and 17β-hydrozysteroid dehydrogenase (17β-HSD), was reduced. Expression levels of steroidogenic enzymes were restored by the ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Furthermore, lentivirus-mediated transient expression of p50ATF6 reduced the expression level of 3β-HSD in the testis. Protein expression levels of phospho-JNK, CHOP, and cleaved caspases-12 and -3 as markers of ER stress-mediated apoptosis markedly increased in response to high-level hCG treatment in mLTC-1 cells and the testis. Based on transmission electron microscopy and H&E staining of the testis, it was shown that abnormal ER morphology and destruction of testicular histology induced by high-level hCG treatment were reversed by the addition of TUDCA. These findings suggest that hCG-induced ER stress plays important roles in steroidogenic enzyme expression via modulation of the ATF6 pathway as well as ER stress-mediated apoptosis in Leydig cells. PMID:23256993

  17. Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death

    PubMed Central

    Morgan, Jessica A.; Lynch, John; Panetta, John C.; Wang, Yao; Frase, Sharon; Bao, Ju; Zheng, Jie; Opferman, Joseph T.; Janke, Laura; Green, Daniel M.; Chemaitilly, Wassim; Schuetz, John D.

    2015-01-01

    Leydig cells are crucial to the production of testosterone in males. It is unknown if the cancer chemotherapeutic drug, 6-mercaptopurine (6 MP), produces Leydig cell failure among adult survivors of childhood acute lymphoblastic leukemia. Moreover, it is not known whether Leydig cell failure is due to either a loss of cells or an impairment in their function. Herein, we show, in a subset of childhood cancer survivors, that Leydig cell failure is related to the dose of 6 MP. This was extended, in a murine model, to demonstrate that 6 MP exposure induced caspase 3 activation, and the loss of Leydig cells was independent of Bak and Bax activation. The death of these non-proliferating cells was triggered by 6 MP metabolism, requiring formation of both cytosolic reactive oxygen species and thiopurine nucleotide triphosphates. The thiopurine nucleotide triphosphates (with physiological amounts of dATP) uniquely activated the apoptosome. An ABC transporter (Abcc4/Mrp4) reduced the amount of thiopurines, thereby providing protection for Leydig cells. The studies reported here demonstrate that the apoptosome is uniquely activated by thiopurine nucleotides and suggest that 6 MP induced Leydig cell death is likely a cause of Leydig cell failure in some survivors of childhood cancer. PMID:26576726

  18. Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death.

    PubMed

    Morgan, Jessica A; Lynch, John; Panetta, John C; Wang, Yao; Frase, Sharon; Bao, Ju; Zheng, Jie; Opferman, Joseph T; Janke, Laura; Green, Daniel M; Chemaitilly, Wassim; Schuetz, John D

    2015-11-18

    Leydig cells are crucial to the production of testosterone in males. It is unknown if the cancer chemotherapeutic drug, 6-mercaptopurine (6 MP), produces Leydig cell failure among adult survivors of childhood acute lymphoblastic leukemia. Moreover, it is not known whether Leydig cell failure is due to either a loss of cells or an impairment in their function. Herein, we show, in a subset of childhood cancer survivors, that Leydig cell failure is related to the dose of 6 MP. This was extended, in a murine model, to demonstrate that 6 MP exposure induced caspase 3 activation, and the loss of Leydig cells was independent of Bak and Bax activation. The death of these non-proliferating cells was triggered by 6 MP metabolism, requiring formation of both cytosolic reactive oxygen species and thiopurine nucleotide triphosphates. The thiopurine nucleotide triphosphates (with physiological amounts of dATP) uniquely activated the apoptosome. An ABC transporter (Abcc4/Mrp4) reduced the amount of thiopurines, thereby providing protection for Leydig cells. The studies reported here demonstrate that the apoptosome is uniquely activated by thiopurine nucleotides and suggest that 6 MP induced Leydig cell death is likely a cause of Leydig cell failure in some survivors of childhood cancer.

  19. Preorchiectomy Leydig Cell Dysfunction in Patients With Testicular Cancer.

    PubMed

    Bandak, Mikkel; Jørgensen, Niels; Juul, Anders; Lauritsen, Jakob; Gundgaard Kier, Maria Gry; Mortensen, Mette Saksø; Daugaard, Gedske

    2017-02-01

    Little is known about preorchiectomy Leydig cell function in patients with testicular germ cell cancer (TGCC). The aim was to estimate the prevalence of preorchiectomy Leydig cell dysfunction and evaluate factors associated with this condition in a cohort of patients with TGCC. We evaluated luteinizing hormone (LH), total testosterone (TT), calculated free T (cFT), estradiol, and sex hormone-binding globulin (SHBG) preorchiectomy in 561 patients with TGCC and compared with 561 healthy controls. We calculated TT/LH and cFT/LH ratios and constructed bivariate charts of TT/LH and cFT/LH from the controls. Logistic regression analysis with an abnormal cFT/LH ratio as outcome and clinical stage, tumor size, age, histology, presence of contralateral germ cell neoplasia in situ (GCNIS), and bilateral tumors as covariates was performed. In patients who were negative for human chorionic gonadotropin (hCG) (n = 374), TT (P = .004), cFT (P < .001), TT/LH ratio (P = .003), and cFT/LH ratio (P = .002) were lower than in controls. A total of 95 (25%) and 91 (24%) of hCG-negative patients had abnormal values when using combined evaluation of TT/LH and cFT/LH, respectively. Increasing tumor size, contralateral GCNIS, and increasing age were associated with Leydig cell dysfunction. In patients positive for hCG (n = 187), all reproductive hormones except SHBG were different from controls (P < .001). Patients with TGCC are at increased risk of Leydig cell dysfunction before orchiectomy. Contralateral GCNIS, increasing age, and increasing tumor size are associated with Leydig cell dysfunction. We hypothesize that patients with preexisting Leydig cell dysfunction are at increased risk of testosterone deficiency following treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. ROS generation and MAPKs activation contribute to the Ni-induced testosterone synthesis disturbance in rat Leydig cells.

    PubMed

    Han, Aijie; Zou, Lingyue; Gan, Xiaoqin; Li, Yu; Liu, Fangfang; Chang, Xuhong; Zhang, Xiaotian; Tian, Minmin; Li, Sheng; Su, Li; Sun, Yingbiao

    2018-06-15

    Nickel (Ni) can disorder testosterone synthesis in rat Leydig cells, whereas the mechanisms remain unclear. The aim of this study was to investigate the role of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) in Ni-induced disturbance of testosterone synthesis in rat Leydig cells. The testosterone production and ROS levels were detected in Leydig cells. The mRNA and protein levels of testosterone synthetase, including StAR, CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD, were determined. Effects of Ni on the ERK1/2, p38 and JNK MAPKs were also investigated. The results showed that Ni triggered ROS generation, consequently resulted in the decrease of testosterone synthetase expression and testosterone production in Leydig cells, which were then attenuated by ROS scavengers of N-acetylcysteine (NAC) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), indicating that ROS are involved in the Ni-induced testosterone biosynthesis disturbance. Meanwhile Ni activated the ERK1/2, p38 and JNK MAPKs. Furthermore, Ni-inhibited testosterone synthetase expression levels and testosterone secretion were all alleviated by co-treatment with MAPK specific inhibitors (U0126 and SB203580, respectively), implying that Ni inhibited testosterone synthesis through activating ERK1/2 and p38 MAPK signal pathways in Leydig cells. In conclusion, these findings suggest that Ni causes testosterone synthesis disorder, partly, via ROS and MAPK signal pathways. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Evidence for Leydig cell dysfunction in rats with seminiferous tubule damage.

    PubMed

    Rich, K A; Kerr, J B; de Kretser, D M

    1979-02-01

    To study the effects of seminiferous tubule damage on Leydig cell function and morphology, rats were treated by fetal irradiation (to induce Sertoli cell-only syndrome, SCO), 3 months administration of hydroxyurea (HU), or chronic feeding of a vitamin A-deficient diet (VAD). Leydig cell function was assessed by the measurement of serum LH and testosterone and the response of serum testosterone to hCG stimulation, while morphology was studied by electron microscopy after perfusion fixation. Serum LH was significantly elevated in each experimental group, while basal serum testosterone was significantly lower only in SCO rats. In all treatment groups, the serum testosterone response to hCG was significantly decreased when measureed as the area under the response curve. Despite a decreased response to hCG, the Leydig cells were larger than normal and showed striking increases in quantities of smooth endoplasmic reticulum, mitochondria and Golgi complex. Leydig cell dysfunction has been demonstrated in animals with varying degrees of seminiferous tubule damage, but paradoxically the cytological features of the Leydig cells were indicative of hypertrophy.

  2. Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Andric, Silvana A; Kostic, Tatjana S

    2017-05-01

    The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.

  3. Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro.

    PubMed

    Shi, Lei; Song, Ruigao; Yao, Xiaolei; Ren, Youshe

    2017-04-15

    The objective of this study was to investigate the effects of selenium (Se) on in vitro proliferation, apoptosis and testosterone production of sheep Leydig cells and its underlying mechanism. Leydig cells were collected from 8-month-old sheep and divided into four treatment groups (0, 2.0, 4.0 and 8.0 μmol/L Se). After treatment with Se for 48 h, the MTT and flow cytometric assay were used to detect cell proliferation and apoptosis. Testosterone level in the culture medium was determined by ELISA. The mRNA expression and protein abundance of cell cycle, apoptosis and testosterone synthesis-related genes were detected using real-time PCR and western blot analysis. The results showed that the highest percentage of live and apoptotic cells was obtained in the 2.0 and 8.0 μmol/L group, respectively. In the Se treatment groups, the proliferation rate of Leydig cells and the expression of cell cycle-related genes were decreased with the increasing Se supplementation in the culture medium. The percentage of apoptotic cells was increased with the increasing Se level, which was consistent with the expression of pro-apoptosis genes. The highest GSH-Px activity and lowest ROS content were also observed in the 2.0 μmol/L group. Appropriate Se level (2.0 μmol/L) can significantly increase the expression of p-ERK1/2, StAR and 3β-HSD, and improve the testosterone synthesis. Compared with the control group, PD0325901 could significantly inhibit the production of testosterone and the protein abundance of p-ERK1/2, StAR and 3β-HSD. Se treatment can mitigate the inhibition effect of PD0325901 and the testosterone secretion between the 2.0 μmol/L and control group was not significantly different. These results demonstrate that Se can affect the proliferation and apoptosis of Leydig cells by regulating cellular oxidative stress and the expressions of cell cycle and apoptosis-related genes. Se can also enhance the testosterone production of Leydig cells by activating the

  4. Autoantibodies against Leydig cells in patients after spermatic cord torsion.

    PubMed Central

    Zanchetta, R; Mastrogiacomo, I; Graziotti, P; Foresta, C; Betterle, C

    1984-01-01

    This study is aimed at searching for the presence of circulating antibodies against frozen sections of human testis, ovary and trophoblast in patients that had spermatic cord torsion. Sixty-eight sera samples were studied. Nine patients (13.2%) were positive for organ specific anti-testis autoantibodies. Six patients were positive for antibodies against Leydig cells: five were positive only with the indirect immunofluorescence technique of complement fixing (ITT/CF), the sixth patient was positive only with the indirect immunofluorescence technique (ITT). The other three patients were positive for antibodies against germ line cells: two patients were positive with both techniques, the third was positive only with indirect immunofluorescence technique. Eight of these patients were negative for antibodies against adrenal cortex while only one case was positive with indirect immunofluorescence technique both on adrenal cortex and Leydig cells. Human lyophilized testis absorbed the reactive antibodies against Leydig cells and germ line cells, while adrenal cortex and lyophilized testosterone were ineffective. This study shows the identification of a specific antibody against Leydig cells and germ line cells in patients after spermatic cord torsion. PMID:6362937

  5. Atrazine activates multiple signaling pathways enhancing the rapid hCG-induced androgenesis in rat Leydig cells.

    PubMed

    Pogrmic-Majkic, Kristina; Fa, Svetlana; Samardzija, Dragana; Hrubik, Jelena; Kaisarevic, Sonja; Andric, Nebojsa

    2016-08-10

    Atrazine (ATR) is an endocrine disruptor that affects steroidogenic process, resulting in disruption of reproductive function of the male and female gonads. In this study, we used the primary culture of peripubertal Leydig cells to investigate the effect of ATR on the rapid androgen production stimulated by human chorionic gonadotropin (hCG). We demonstrated that ATR activated multiple signaling pathways enhancing the rapid hCG-stimulated androgen biosynthesis in Leydig cells. Low hCG concentration (0.25ng/mL) caused cAMP-independent, but ERK1/2-dependent increase in androgen production after 60min of incubation. Co-treatment with ATR for 60min enhanced the cAMP production in hCG-stimulated cells. Accumulation of androgens was prevented by addition of U0126, N-acetyl-l-cysteine and AG1478. Co-treatment with hCG and ATR for 60min did not alter steroidogenic acute regulatory protein (Star) mRNA level in Leydig cells. After 120min, hCG further increased androgenesis in Leydig cells that was sensitive to inhibition of the cAMP/PKA, ERK1/2 and ROS signaling pathways. Co-treatment with ATR for 120min further enhanced the hCG-induced androgen production, which was prevented by inhibition of the calcium, PKC and EGFR signaling cascades. After 120min, ATR enhanced the expression of Star mRNA in hCG-stimulated Leydig cells through activation of the PKA and PKC pathway. Collectively, these data suggest that exposure to ATR caused perturbations in multiple signaling pathways, thus enhancing the rapid hCG-dependent androgen biosynthesis in peripubertal Leydig cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. A potential role for zinc transporter 7 in testosterone synthesis in mouse Leydig tumor cells.

    PubMed

    Chu, Qingqing; Chi, Zhi-Hong; Zhang, Xiuli; Liang, Dan; Wang, Xuemei; Zhao, Yue; Zhang, Li; Zhang, Ping

    2016-06-01

    Previous studies have demonstrated that zinc (Zn) is an essential trace element which is involved in male reproduction. The zinc transporter (ZnT) family, SLC30a, is involved in the maintenance of Zn homeostasis and in mediating intracellular signaling events; however, relatively little is known regarding the effect of ZnTs on testosterone synthesis. Thus, in the present study, we aimed to determine the effect of Zn transporter 7 (ZnT7) on testosterone synthesis in male CD-1 mice and mouse Leydig cells. The findings of the present study revealed that the concentrations of Zn in the testes and Leydig cells were significantly lower in mice fed a Zn-deficient diet compared with the control mice fed a Zn-adequate diet. In addition, ZnT7 was principally expressed and colocalized with steroidogenic acute regulatory protein (StAR) in the Leydig cells of male CD-1 mice. ZnT7 expression was downregulated in the mice fed a Zn-deficient diet, which led to decreases in the expression of the enzymes involved in testosterone synthesis namely cholesterol side‑chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase/D5-D4 isomerase (3β-HSD) as well as decreased serum testosterone levels. These results suggested that Znt7 may be involved in testosterone synthesis in the mouse testes. To examine this hypothesis, we used the mouse Leydig tumor cell line (MLTC-1 cell line) in which the ZnT7 gene had been silenced, in order to gauge the impact of changes in ZnT7 expression on testosterone secretion and the enzymes involved in testosterone synthesis. The results demonstrated that ZnT7 gene silencing downregulated the expression of StAR, P450scc and 3β-HSD as well as progesterone concentrations in the human chorionic gonadotrophin (hCG)-stimulated MLTC-1 cells. Taken together, these findings reveal that ZnT7 may play an important role in the regulation of testosterone synthesis by modulating steroidogenic enzymes, and may represent a therapeutic target in

  7. [Effects of tributyltin chloride (TBT) and triphenyltin chloride (TPT) on rat testicular Leydig cells].

    PubMed

    Wang, Bao-an; Li, Ming; Mu, Yi-ming; Lu, Zhao-hui; Li, Jiang-yuan

    2006-06-01

    To investigate the effects of tributyltin chloride (TBT) and triphenyltin chloride (TPT) on rat testicular Leydig cells. The rat Leydig cells (LC-540) were incubated with 0 to 80 nmol/L TBT and TPT for 24 to approximately 96 h, and then the cell viability was determined by MTT. DNA fragmentation ladder formation of cell apoptosis was examined by agarose electrophoresis. Effects of chelator of intracellular Ca2+ (BAPTA) and the inhibitors of PKA, PKC and TPK on cell apoptosis induced by TBT were observed. Effects of TBT on testosterone production in primary cultured rat Leydig cells treated with or without hCG were detected. TBT and TPT suppressed Leydig cell survival in a time- and dose-dependent manner. The suppressive effects of TBT and TPT on the cell survival was caused by apoptosis which was determined by DNA ladder formation. The apoptotic effect of TBT was possibly mediated by the rise in intracellular Ca2+ because it could be blocked by BAPTA, the chelator of intracellular Ca2+; PKA, PKC and TPK inhibitors did not prevent the apoptotic effects induced by TBT. TBT markedly suppressed testosterone production of primary cultured rat Leydig cells with or without hCG stimulation. TBT and TPT induced apoptosis in rat testicular Leydig cells possibly through increasing intracellular Ca2+. TBT reduced the testosterone production of rat Leydig cells.

  8. Squid ink polysaccharide prevents autophagy and oxidative stress affected by cyclophosphamide in Leydig cells of mice: a pilot study

    PubMed Central

    Gu, Yi-Peng; Yang, Xiao-Mei; Duan, Zhen-Hua; Shang, Jiang-Hua; Luo, Ping; Xiao, Wei; Zhang, Da-Yan; Liu, Hua-Zhong

    2017-01-01

    Objective(s): The aim of this study was to explore the effects of Squid ink polysaccharide (SIP) on prevention of autophagy and oxidative stress induced by cyclophosphamide (CP) in Leydig cells of mice. Materials and Methods: Examination of reproductive organ exponents, abnormal sperm rate, activities of superoxide dismutase (SOD), catalase (CAT), contents of malondialdehyde (MDA), and histological structure were performed to detect the optimal dose of SIP against oxidative stress damage in vivo, and autophagy-associated protein LC3 and Beclin-1 were examined by immunofluorescence, and their expression was detected by Western blot analysis. Leydig cells ultrastructural changes were observed by transmission fluorescent microscope. Results: SIP significantly inhibited sperm aberration, histological structure and injury of seminiferous tubules caused by CP, as well as the antioxidant activity of SOD and CAT were increased; contents of MDA were decreased. The optimal dose of SIP for prevention of oxidative stress injury by CP was 80 mg/kg. In addition, LC3 and Beclin-1 fluorescent granules were much less in the Leydig cell layer after treatment via SIP compared with the CP-treated group, and the expression levels of LC3 and Beclin-1 were also decreased. Furthermore, characteristics of cell autophagy such as mitochondrial swelling, autophagic vacuoles, and chromatin pyknosis were observed in CP-treated Leydig cells, but SIP could effectively weaken injury of Leydig cell ultrastructure by CP. Conclusion: SIP, as an antioxidant, prevents the cytoskeleton damage through up-regulation antioxidant capacity and inhibition autophagy caused by CP. PMID:29299195

  9. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATPmore » level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in

  10. Glycidamide inhibits progesterone production through reactive oxygen species-induced apoptosis in R2C Rat Leydig Cells.

    PubMed

    Li, Mingwei; Sun, Jianxia; Zou, Feiyan; Bai, Shun; Jiang, Xinwei; Jiao, Rui; Ou, Shiyi; Zhang, Hui; Su, Zhijian; Huang, Yadong; Bai, Weibin

    2017-10-01

    The food contaminant acrylamide (AA) is usually recognized as a probable human carcinogen. In addition, AA has also been found able to induce male infertility in animals. Interestingly, resent research work revealed that the toxic effect of AA on the ability of male reproduction in vivo may due to glycidamide (GA) which is the metabolite of AA. In this study, R2C Leydig cells was used to investigate the toxic effects of GA on progesterone production. GA caused dose-dependent inhibition on the cell growth, with IC 25 , IC 50, and IC 75 values found at 0.635, 0.872, and 1.198 mM, respectively. The results of single cell gel/Comet assay showed that GA significantly induced early-phase cell apoptosis, reduced progesterone production, as well as decreasing the protein expression of steroidogenic acute regulatory (StAR) in R2C cells. Furthermore, GA induced overproduction of intracellular reactive oxygen species (ROS), upregulated Bax expression, decreased mitochondrial membrane potential, and triggered mitochondria-mediated cell apoptosis. Consequently, the downstream effector caspase-3 was activated, resulting in Leydig cells apoptosis. Overall, our results showed that GA could damage R2C Leydig cells by the lesion of the ability of progesterone genesis and inducing cells apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Lipophagy Contributes to Testosterone Biosynthesis in Male Rat Leydig Cells.

    PubMed

    Ma, Yi; Zhou, Yan; Zhu, Yin-Ci; Wang, Si-Qi; Ping, Ping; Chen, Xiang-Feng

    2018-02-01

    In recent years, autophagy was found to regulate lipid metabolism through a process termed lipophagy. Lipophagy modulates the degradation of cholesteryl esters to free cholesterol (FC), which is the substrate of testosterone biosynthesis. However, the role of lipophagy in testosterone production is unknown. To investigate this, primary rat Leydig cells and varicocele rat models were administered to inhibit or promote autophagy, and testosterone, lipid droplets (LDs), total cholesterol (TC), and FC were evaluated. The results demonstrated that inhibiting autophagy in primary rat Leydig cells reduced testosterone production. Further studies demonstrated that inhibiting autophagy increased the number and size of LDs and the level of TC, but decreased the level of FC. Furthermore, hypoxia promoted autophagy in Leydig cells. We found that short-term hypoxia stimulated testosterone secretion; however, the inhibition of autophagy abolished stimulated testosterone release. Hypoxia decreased the number and size of LDs in Leydig cells, but the changes could be largely rescued by blocking autophagy. In experimental varicocele rat models, the administration of autophagy inhibitors substantially reduced serum testosterone. These data demonstrate that autophagy contributes to testosterone biosynthesis at least partially through degrading intracellular LDs/TC. Our observations might reveal an autophagic regulatory mode regarding testosterone biosynthesis. Copyright © 2018 Endocrine Society.

  12. Nandrolone and stanozolol induce Leydig cell tumor proliferation through an estrogen-dependent mechanism involving IGF-I system.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Zolea, Fabiana; De Luca, Arianna; Lanzino, Marilena; Catalano, Stefania; Andò, Sebastiano; Pezzi, Vincenzo

    2012-05-01

    Several substances such as anabolic androgenic steroids (AAS), peptide hormones like insulin-like growth factor-I (IGF-I), aromatase inhibitors and estrogen antagonists are offered via the Internet, and are assumed without considering the potential deleterious effects that can be caused by their administration. In this study we aimed to determine if nandrolone and stanozolol, two commonly used AAS, could have an effect on Leydig cell tumor proliferation and if their effects could be potentiated by the concomitant use of IGF-I. Using a rat Leydig tumor cell line, R2C cells, as experimental model we found that nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and estradiol (E2) production. When used in combination with IGF-I they were more effective than single molecules in inducing aromatase expression. AAS exhibited estrogenic activity and induced rapid estrogen receptor (ER)-dependent pathways involving IGF1R, AKT, and ERK1/2 phosphorylation. Inhibitors for these kinases decreased AAS-dependent aromatase expression. Up-regulated aromatase levels and related E2 production increased cell proliferation as a consequence of increased cyclin E expression. The observation that ER antagonist ICI182,780 was also able to significantly reduce ASS- and AAS + IGF-induced cell proliferation, confirmed a role for estrogens in AAS-dependent proliferative effects. Taken together these data clearly indicate that the use of high doses of AAS, as it occurs in doping practice, enhances Leydig cell proliferation, increasing the risk of tumor development. This risk is higher when AAS are used in association with IGF-I. To our knowledge this is the first report directly associating AAS and testicular cancer. Copyright © 2011 Wiley Periodicals, Inc.

  13. Phthalate-induced testicular dysgenesis syndrome: Leydig cell influence.

    PubMed

    Hu, Guo-Xin; Lian, Qing-Quan; Ge, Ren-Shan; Hardy, Dianne O; Li, Xiao-Kun

    2009-04-01

    Phthalates, the most abundantly produced plasticizers, leach out from polyvinyl chloride plastics and disrupt androgen action. Male rats that are exposed to phthalates in utero develop symptoms characteristic of the human condition referred to as testicular dysgenesis syndrome (TDS). Environmental influences have been suspected to contribute to the increasing incidence of TDS in humans (i.e. cryptorchidism and hypospadias in newborn boys and testicular cancer and reduced sperm quality in adult males). In this review, we discuss the recent findings that prenatal exposure to phthalates affects Leydig cell function in the postnatal testis. This review also focuses on the recent progress in our understanding of how Leydig cell factors contribute to phthalate-mediated TDS.

  14. [In utero exposure to dichlorvos induces apoptosis of Leydig cells in rats].

    PubMed

    Zeng, Li; Wang, Yu-Yun; Zhang, Jie; Lin, Ping; Gong, Xue-De; Huang, Lu-Gang

    2009-11-01

    To observe the influence of the organophosphate insecticide dichlorvos on the apoptosis of Leydig cells in the male offspring of the SD rats exposed to dichlorvos, and to investigate the role of the changes of Leydig cells in genitourinary malformation. Twenty-one pregnant SD rats were divided into a corn oil control group and 6 dichlorvos groups, the former given by gavage 1.0 ml corn oil daily, and the latter dichlorvos at the dose of 1, 4, 8, 16, 20 and 24 mg/kg daily from the 12th to 17th day of conception. After birth, 5 male neonates were randomly selected from each of the control and dichlorvos groups, and their testes were harvested to be analyzed by HE staining, immunohistochemistry with anti-caspase-3 antibodies and DAPI fluorescent staining. At 90 days after birth, another 5 of the male offspring were taken from each group and their testes were collected for the same analyses. Statistically significant differences were found in the number of both the caspase-3 positive and DAPI labeled Leydig cells in the testes of the rat offspring between the corn oil and the 4, 8, 16, 20 and 24 mg/kg dichlorvos groups (P < 0.05), but not between the control and the 1 mg/kg dichlorvos groups (P > 0.05). The apoptosis of Leydig cells was increased in the male offspring of the dichlorvos-exposed SD rats in a dose-dependent manner. Exposure of pregnant rats to dichlorvos can increase the apoptosis of Leydig cells in the male offspring, which, in turn, may reduce the number of Leydig cells, interfere with the testis function during the embryonic period, and damage the development of the genitourinary system.

  15. The Industrial Chemical Bisphenol A (BPA) Interferes with Proliferative Activity and Development of Steroidogenic Capacity in Rat Leydig Cells1

    PubMed Central

    Nanjappa, Manjunatha K.; Simon, Liz; Akingbemi, Benson T.

    2012-01-01

    ABSTRACT The presence of bisphenol A (BPA) in consumer products has raised concerns about potential adverse effects on reproductive health. Testicular Leydig cells are the predominant source of the male sex steroid hormone testosterone, which supports the male phenotype. The present report describes the effects of developmental exposure of male rats to BPA by gavage of pregnant and lactating Long-Evans dams at 2.5 and 25 μg/kg body weight from Gestational Day 12 to Day 21 postpartum. This exposure paradigm stimulated Leydig cell division in the prepubertal period and increased Leydig cell numbers in the testes of adult male rats at 90 days. Observations from in vitro experiments confirmed that BPA acts directly as a mitogen in Leydig cells. However, BPA-induced proliferative activity in vivo is possibly mediated by several factors, such as 1) protein kinases (e.g., mitogen-activated protein kinases or MAPK), 2) growth factor receptors (e.g., insulin-like growth factor 1 receptor-beta and epidermal growth factor receptors), and 3) the Sertoli cell-secreted anti-Mullerian hormone (also called Mullerian inhibiting substance). On the other hand, BPA suppressed protein expression of the luteinizing hormone receptor (LHCGR) and the 17beta-hydroxysteroid dehydrogenase enzyme (HSD17B3), thereby decreasing androgen secretion by Leydig cells. We interpret these findings to mean that the likely impact of deficits in androgen secretion on serum androgen levels following developmental exposure to BPA is alleviated by increased Leydig cell numbers. Nevertheless, the present results reinforce the view that BPA causes biological effects at environmentally relevant exposure levels and its presence in consumer products potentially has implication for public health. PMID:22302688

  16. Comparison of the Effects of Dibutyl and Monobutyl Phthalates on the Steroidogenesis of Rat Immature Leydig Cells

    PubMed Central

    Li, Linxi; Chen, Xiaomin; Hu, Guoxin; Wang, Sicong; Xu, Renai; Zhu, Qiqi; Li, Xiaoheng; Wang, Mingcang; Lian, Qing-Quan; Ge, Ren-Shan

    2016-01-01

    Dibutyl phthalate (DBP) is a widely used synthetic phthalic diester and monobutyl phthalate (MBP) is its main metabolite. DBP can be released into the environment and potentially disrupting mammalian male reproductive endocrine system. However, the potencies of DBP and MBP to inhibit Leydig cell steroidogenesis and their possible mechanisms are not clear. Immature Leydig cells isolated from rats were cultured with 0.05–50 μM DBP or MBP for 3 h in combination with testosterone synthesis regulator or intermediate. The concentrations of 5α-androstanediol and testosterone in the media were measured, and the mRNA levels of the androgen biosynthetic genes were detected by qPCR. The direct actions of DBP or MBP on CYP11A1, CYP17A1, SRD5A1, and AKR1C14 activities were measured. MBP inhibited androgen production by the immature Leydig cell at as low as 50 nM, while 50 μM was required for DBP to suppress its androgen production. MBP mainly downregulated Cyp11a1 and Hsd3b1 expression levels at 50 nM. However, 50 μM DBP downregulated Star, Hsd3b1, and Hsd17b3 expression levels and directly inhibited CYP11A1 and CYP17A1 activities. In conclusion, DBP is metabolized to more potent inhibitor MBP that downregulated the expression levels of some androgen biosynthetic enzymes. PMID:27148549

  17. Hypoxia reduces testosterone synthesis in mouse Leydig cells by inhibiting NRF1-activated StAR expression

    PubMed Central

    Zou, Zhiran; Wang, Dan; Lu, Yapeng; Dong, Zhangji; Zhu, Li

    2017-01-01

    Male fertility disorders play a key role in half of all infertility cases. Reduction in testosterone induced by hypoxia might cause diseases in reproductive system and other organs. Hypoxic exposure caused a significant decrease of NRF1. Software analysis reported that the promoter region of steroidogenic acute regulatory protein (StAR) contained NRF1 binding sites, indicating NRF1 promoted testicular steroidogenesis. The purpose of this study is to determine NRF1 is involved in testosterone synthesis; and under hypoxia, the decrease of testosterone synthesis is caused by lower expression of NRF1. We designed both in vivo and in vitro experiments. Under hypoxia, the expressions of NRF1 in Leydig cells and testosterone level were significantly decreased both in vivo and in vitro. Overexpression and interference NRF1 could induced StAR and testosterone increased and decreased respectively. ChIP results confirmed the binding of NRF1 to StAR promoter region. In conclusion, decline of NRF1 expression downregulated the level of StAR, which ultimately resulted in a reduction in testosterone synthesis. PMID:28146428

  18. PPARα-dependent cholesterol/testosterone disruption in Leydig cells mediates 2,4-dichlorophenoxyacetic acid-induced testicular toxicity in mice.

    PubMed

    Harada, Yukiko; Tanaka, Naoki; Ichikawa, Motoki; Kamijo, Yuji; Sugiyama, Eiko; Gonzalez, Frank J; Aoyama, Toshifumi

    2016-12-01

    It was reported that 2,4-dichlorophenoxyacetic acid (2,4-D), a commonly used herbicide and a possible endocrine disruptor, can disturb spermatogenesis, but the precise mechanism is not understood. Since 2,4-D is a weak peroxisome proliferator in hepatocytes and peroxisome proliferator-activated receptor α (PPARα) is also expressed in Leydig cells, this study aimed to investigate the link between PPARα and 2,4-D-mediated testicular dysfunction. 2,4-D (130 mg/kg/day) was administered to wild-type and Ppara-null mice for 2 weeks, and the alterations in testis and testosterone/cholesterol metabolism in Leydig cells were examined. Treatment with 2,4-D markedly decreased testicular testosterone in wild-type mice, leading to degeneration of spermatocytes and Sertoli cells. The 2,4-D decreased cholesterol levels in Leydig cells of wild-type mice through down-regulating the expression of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 and reductase, involved in de novo cholesterogenesis. However, the mRNAs encoding the important proteins involved in testosterone synthesis were unchanged by 2,4-D except for CYP17A1, indicating that exhausted cholesterol levels in the cells is a main reason for reduced testicular testosterone. Additionally, pregnancy rate and the number of pups between 2,4-D-treated wild-type male mice and untreated female mice were significantly lower compared with those between untreated couples. These phenomena were not observed in 2,4-D-treated Ppara-null males. Collectively, these results suggest a critical role for PPARα in 2,4-D-induced testicular toxicity due to disruption of cholesterol/testosterone homeostasis in Leydig cells. This study yields novel insights into the possible mechanism of testicular dysfunction and male infertility caused by 2,4-D.

  19. Benzo[a]pyrene Reduces Testosterone Production in Rat Leydig Cells via a Direct Disturbance of Testicular Steroidogenic Machinery

    PubMed Central

    Chung, Jin-Yong; Lee, Seung Gee; Park, Ji-Eun; Yoon, Yong-Dal; Yoo, Ki Soo; Yoo, Young Hyun

    2011-01-01

    Background: Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH), is a ubiquitous environmental pollutant that is currently suspected of being an endocrine disruptor. The testis is an important target for PAHs, yet insufficient attention has been paid to their effects on steroidogenesis in Leydig cells. Objective: We hypothesized that long-term exposure to low concentrations of B[a]P might disrupt testosterone production in Leydig cells via an alteration of steroidogenic proteins. Results: Oral exposure to B[a]P reduced serum and intratesticular fluid testosterone levels in rats. However, we did not observe serious testicular atrophy or azoospermia, although spermatogonial apoptosis was significantly increased. Compared with control cells, Leydig cells primed with B[a]P in vivo produced less testosterone in response to human chorionic gonadotropin (hCG) or dibutyl cyclic adenosine monophosphate in vitro. Of note, the reduction of testosterone levels was accompanied by decreased expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD), as well as increased levels of cytochrome P450 side chain cleavage (P450scc), in Leydig cells. The up-regulation of P450scc expression after exposure to B[a]P appears to be associated with a compensatory mechanism for producing the maximum amount of pregnenolone with the minimum amount of transported cholesterol by StAR; the down-regulation of 3β-HSD may occur because B[a]P can negatively target 3β-HSD, which is required for testosterone production. Conclusions: B[a]P exposure can decrease epididymal sperm quality, possibly by disturbing testosterone levels, and StAR may be a major steroidogenic protein that is targeted by B[a]P or other PAHs. PMID:21737371

  20. Sertoli cell androgen receptor expression regulates temporal fetal and adult Leydig cell differentiation, function, and population size.

    PubMed

    Hazra, Rasmani; Jimenez, Mark; Desai, Reena; Handelsman, David J; Allan, Charles M

    2013-09-01

    We recently created a mouse model displaying precocious Sertoli cell (SC) and spermatogenic development induced by SC-specific transgenic androgen receptor expression (TgSCAR). Here we reveal that TgSCAR regulates the development, function, and absolute number of Leydig cells (LCs). Total fetal and adult type LC numbers were reduced in postnatal and adult TgSCAR vs control testes, despite normal circulating LH levels. Normal LC to SC ratios found in TgSCAR testes indicate that SC androgen receptor (SCAR)-mediated activity confers a quorum-dependent relationship between total SC and LC numbers. TgSCAR enhanced LC differentiation, shown by elevated ratios of advanced to immature LC types, and reduced LC proliferation in postnatal TgSCAR vs control testes. Postnatal TgSCAR testes displayed up-regulated expression of coupled ligand-receptor transcripts (Amh-Amhr2, Dhh-Ptch1, Pdgfa-Pdgfra) for potential SCAR-stimulated paracrine pathways, which may coordinate LC differentiation. Neonatal TgSCAR testes displayed normal T and dihydrotestosterone levels despite differential changes to steroidogenic gene expression, with down-regulated Star, Cyp11a1, and Cyp17a1 expression contrasting with up-regulated Hsd3b1, Hsd17b3, and Srd5a1 expression. TgSCAR males also displayed elevated postnatal and normal adult serum testosterone levels, despite reduced LC numbers. Enhanced adult-type LC steroidogenic output was revealed by increased pubertal testicular T, dihydrotestosterone, 3α-diol and 3β-diol levels per LC and up-regulated steroidogenic gene (Nr5a1, Lhr, Cyp11a1, Cyp17a1, Hsd3b6, Srd5a1) expression in pubertal or adult TgSCAR vs control males, suggesting regulatory mechanisms maintain androgen levels independently of absolute LC numbers. Our unique gain-of-function TgSCAR model has revealed that SCAR activity controls temporal LC differentiation, steroidogenic function, and population size.

  1. Levels of Leydig cell autophagy regulate the fertility of male naked mole-rats.

    PubMed

    Yang, Wenjing; Li, Li; Huang, Xiaofeng; Kan, Guanghan; Lin, Lifang; Cheng, Jishuai; Xu, Chen; Sun, Wei; Cong, Wei; Zhao, Shanmin; Cui, Shufang

    2017-11-17

    Fertility is abolished in nonbreeding males in colonies of natal naked mole-rats (NMRs). Although spermatogenesis occurs in both breeding and nonbreeding male NMRs, the mechanisms underlying the differences in fertility between breeders and nonbreeders remain unexplored. In this study, a significant decrease in autophagy was observed in Leydig cells of the testis from nonbreeding male NMRs. This alteration was visualised as a significant decrease in the levels of autophagy-related gene 7 (Atg7), Atg5, microtubule-associated protein 1A/B light chain 3 (LC3-II/I) and the number of autophagosomes and an increase in P62 levels using Western blotting analyses. Furthermore, monodansylcadaverine (MDC) staining and Western blot analyses revealed that testosterone production decreased in nonbreeding male NMR Leydig cells, this decrease was associated with a reduction in autophagy. Primary Leydig cells from breeding and nonbreeding male NMRs were processed to investigate the effect of an autophagy inhibitor (3-MA, 3-methyladenine) or an autophagy activator (rapamycin) on testosterone production. Rapamycin induced an increase in testosterone production in NMR Leydig cells, whereas 3-MA had the opposite effect. Consequently, spermatogenesis, the weight of the testis, and androgen levels were dramatically reduced in nonbreeding male NMRs. While rapamycin treatment restored the fertility of nonbreeding male NMRs. Based on these results, inadequate autophagy correlates with a decrease in steroid production in nonbreeding male NMR Leydig cells, which may ultimately influence the spermatogenesis and fertilities of these animals.

  2. RODENT LEYDIG CELL TUMORIGENESIS: A REVIEW OF THE PHYSIOLOGY, PATHOLOGY, MECHANISMS, AND RELEVANCE TO HUMANS

    EPA Science Inventory

    Leydig cells (LCs) are the cells of the testis that have as their primary function the production of testosterone. LCs are a common target of compounds tested in rodent carcinogenicity bioassays. The number of reviews on Leydig cell tumors (LCTs) has increased in recent years bec...

  3. Modulation of mouse Leydig cell steroidogenesis through a specific arginine-vasopressin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahri-Joutei, A.; Pointis, G.

    1988-01-01

    Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (/sup 3/H)-AVP was found to bind to a single class of sites with high affinity and low capacity. Binding displacements with specific selection analogs of AVP indicated the presence of V/sub 1/ subtype receptors on Leydig cells. The ability of AVP to displace (/sup 3/H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (/sup 3/H)-AVP binding. The time-coursemore » effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells. This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation. AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation. This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels.« less

  4. Effect of differential photoperiod treatment on Leydig cell ultrastructure in the bank vole (Clethrionomys glareolus, S.).

    PubMed

    Tähkä, K M

    1988-08-01

    Juvenile bank voles (18-22 days of age) born and reared in a stimulatory long photoperiod (18L:6D, lights on 0600-2400 hr) were subjected either to a long photoperiod (18L:6D, Group L) or to a short photoperiod (6L:18D, lights on 0800-1400 hr, Group S) for 6 to 8 weeks whereafter the animals were killed by decapitation. Possible photoperiod-induced changes in Leydig cell ultrastructure were studied by conventional transmission electron microscopy and stereological methods. Striking differences in Leydig cell ultrastructure between the experimental groups were encountered. Light deprivation induced a marked decrease in the cytoplasmic and nuclear volume as well as in the amounts of smooth endoplasmic reticulum (SER), rough endoplasmic reticulum, mitochondria, and lipid inclusions in the Leydig cells. The number of myelin bodies and dense bodies seemed to be somewhat higher in the regressive Group S Leydig cells. These results are in good agreement with our previous histological and biochemical studies on the effects of photoperiod on Leydig cell function and suggest that in the bank vole the volume of mitochondria and SER in particular correlates positively with the steroidogenic capacity (the activity of C20 alpha 22-C27 desmolase, 17 alpha-hydroxylase, and C17-20 lyase in particular) in the Leydig cell.

  5. Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis.

    PubMed

    Wen, Qing; Zheng, Qiao-Song; Li, Xi-Xia; Hu, Zhao-Yuan; Gao, Fei; Cheng, C Yan; Liu, Yi-Xun

    2014-12-15

    Wilms' tumor 1 (Wt1) is a tumor suppressor gene encoding ∼24 zinc finger transcription factors. In the mammalian testis, Wt1 is expressed mostly by Sertoli cells (SCs) involved in testis development, spermatogenesis, and adult Leydig cell (ALC) steroidogenesis. Global knockout (KO) of Wt1 is lethal in mice due to defects in embryogenesis. Herein, we showed that Wt1 is involved in regulating fetal Leydig cell (FLC) degeneration and ALC differentiation during testicular development. Using Wt1(-/flox);Amh-Cre mice that specifically deleted Wt1 in the SC vs. age-matched wild-type (WT) controls, FLC-like-clusters were found in Wt1-deficient testes that remained mitotically active from postnatal day 1 (P1) to P56, and no ALC was detected at these ages. Leydig cells in mutant adult testes displayed morphological features of FLC. Also, FLC-like cells in adult mutant testes had reduced expression in ALC-associated genes Ptgds, Sult1e1, Vcam1, Hsd11b1, Hsd3b6, and Hsd17b3 but high expression of FLC-associated genes Thbs2 and Hsd3b1. Whereas serum LH and testosterone level in mutant mice were not different from controls, intratesticular testosterone level was significantly reduced. Deletion of Wt1 gene also perturbed the expression of steroidogenic enzymes Star, P450c17, Hsd3b6, Hsd3b1, Hsd17b1, and Hsd17b3. FLCs in adult mutant testes failed to convert androstenedione to testosterone due to a lack of Hsd17b3, and this defect was rescued by coculturing with fetal SCs. In summary, FLC-like cells in mutant testes are putative FLCs that remain mitotically active in adult mice, illustrating that Wt1 dictates the fate of FLC and ALC during postnatal testis development. Copyright © 2014 the American Physiological Society.

  6. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules.

    PubMed

    Clark, A M; Garland, K K; Russell, L D

    2000-12-01

    Testes from adult and prepubertal mice lacking the Desert hedgehog (DHH:) gene were examined in order to describe further the role of Dhh in spermatogenesis because, in a previous report, DHH:-null male mice were shown to be sterile. Dhh is a signaling molecule expressed by Sertoli cells. Its receptor, patched (Ptc), has been previously localized to Leydig cells and is herein described as being localized also to peritubular cells. Two phenotypes of the mice were observed: masculinized (7.5% of DHH:-null males) and feminized (92.5%), both of which displayed abnormal peritubular tissue and severely restricted spermatogenesis. Testes from adult feminized animals lacked adult-type Leydig cells and displayed numerous undifferentiated fibroblastic cells in the interstitium that produced abundant collagen. The basal lamina, normally present between the myoid cells and Sertoli cells, was focally absent. We speculate that the abnormal basal lamina contributed to other characteristics, such as extracordal gonocytes, apolar Sertoli cells, and anastomotic seminiferous tubules. The two DHH:-null phenotypes described have common peritubular cell defects that may be indicative of the essential role of peritubular cells in development of tubular morphology, the differentiation of Leydig cells, and the ultimate support of spermatogenesis.

  7. RITA--Registry of Industrial Toxicology Animal data: the application of historical control data for Leydig cell tumors in rats.

    PubMed

    Nolte, Thomas; Rittinghausen, Susanne; Kellner, Rupert; Karbe, Eberhard; Kittel, Birgit; Rinke, Matthias; Deschl, Ulrich

    2011-11-01

    Historical data for Leydig cell tumors from untreated or vehicle treated rats from carcinogenicity studies collected in the RITA database are presented. Examples are given for analyses of these data for dependency on variables considered to be of possible influence on the spontaneous incidence of Leydig cell tumors. In the 7453 male rats available for analysis, only one case of a Leydig cell carcinoma was identified. The incidence of Leydig cell adenomas differed markedly between strains. High incidences of close to 100% have been found in F344 rats, while the mean incidence was 4.2% in Sprague-Dawley rats and 13.7% in Wistar rats. Incidences in Wistar rats were highly variable, primarily caused by different sources of animals. Mean incidences per breeder varied from 2.8 to 39.9%. Analyses for the dependency on further parameters have been performed in Wistar rats. In breeders G and I, the Leydig cell tumor incidence decreased over the observation period and with increasing mean terminal body weight. The incidence of Leydig cell tumors increased with mean age at necropsy and was higher in studies with dietary admixture compared to gavage studies. These parameters had no effect on Leydig cell tumor incidence in breeders A and B. Animals from almost all breeders had a considerably higher mean age at necropsy when bearing a Leydig cell adenoma than animals without a Leydig cell adenoma. Studies with longitudinal trimming of the testes had a higher incidence than studies with transverse trimming. The observed dependencies and breeder differences are discussed and explanations are given. Consequences for the use of historical control data are outlined. With the retrospective analyses presented here we were able to confirm the published features of Leydig cell adenomas and carcinomas. This indicates that the RITA database is a valuable tool for analyses of tumors for their biological features. Furthermore, it demonstrates that the RITA database is highly beneficial for

  8. [Effect of electromagnetic pulse irradiation on structure and function of Leydig cells in mice].

    PubMed

    Wang, Shui-Ming; Wang, De-Wen; Peng, Rui-Yun; Gao, Ya-Bing; Yang, Yi; Hu, Wen-Hua; Chen, Hao-Yu; Zhang, You-Ren; Gao, Yan

    2003-08-01

    To explore the effect of electromagnetic pulse (EMP) irradiation on structure and function of Leydig cells in mice. One hundred and fourteen male Kunming mice were randomly divided into irradiated and control group, the former radiated generally by 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP respectively five times within two minutes. Pathological changes of Leydig cells were observed by light and electron microscope. Serum testosterone (T), luteinizing hormone (LH) and estradiol (E2) were measured dynamically by radioimmunoassay at 6 h, 1 d, 3 d, 7 d, 14 d and 28 d after irradiation. Main pathological changes were edema and vacuolation, swelling of cytoplasmic mitochondria, reduce of lipid droplets, pale staining of most of lipid droplets, and partial or complete cavitation of lipid droplets in Leydig cells within 28 days after EMP radiation. Compared with normal controls, serum T decreased in all in different degrees within 28 days, and dropped significantly at 6 h-14 d, 6 h-7 d and 1 d-28 d after 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP irradiation(P < 0.05 or P < 0.01). EMP irradiation caused no significant changes in serum LH and E2. Leydig cells are among those that are the most susceptible to EMP irradiation. EMP irradiation may cause significant injury in structure and function of Leydig cells in mice, whose earlier and continuous effect is bound to affect sexual function and sperm production.

  9. True Precocious Puberty Following Treatment of a Leydig Cell Tumor: Two Case Reports and Literature Review.

    PubMed

    Verrotti, Alberto; Penta, Laura; Zenzeri, Letizia; Lucchetti, Laura; Giovenali, Paolo; De Feo, Pierpaolo

    2015-01-01

    Leydig cell testicular tumors are a rare cause of precocious pseudopuberty in boys. Surgery is the main therapy and shows good overall prognosis. The physical signs of precocious puberty are expected to disappear shortly after surgical removal of the mass. We report two children, 7.5 and 7.7 year-old boys, who underwent testis-sparing surgery for a Leydig cell testicular tumor causing precocious pseudopuberty. During follow-up, after an immediate clinical and laboratory regression, both boys presented signs of precocious puberty and ultimately developed central precocious puberty. They were successfully treated with gonadotropin-releasing hormone (GnRH) analogs. Only six other cases have been described regarding the development of central precocious puberty after successful treatment of a Leydig cell tumor causing precocious pseudopuberty. Gonadotropin-dependent precocious puberty should be considered in children treated for a Leydig cell tumor presenting persistent or recurrent physical signs of puberty activation. In such cases, therapy with GnRH analogs appears to be the most effective medical treatment.

  10. Ascorbic acid supplementation enhances recovery from ethanol induced inhibition of Leydig cell steroidogenesis than abstention in male guinea pigs.

    PubMed

    Radhakrishnakartha, Harikrishnan; Appu, Abhilash Puthuvelvippel; Indira, Madambath

    2014-01-15

    The impact of ascorbic acid supplementation against ethanol induced Leydig cell toxicity was studied in guinea pigs. Male guinea pigs were exposed to ethanol (4g/kgb.wt.) for 90 days. After 90 days, ethanol administration was completely stopped and animals in the ethanol group were divided into abstention group and ascorbic acid supplemented group (25mg/100gb.wt.) and those in control group were maintained as control and control+ascorbic acid group. Ethanol administration reduced the serum testosterone and LH (luteinising hormone) levels and elevated estradiol levels. Cholesterol levels in Leydig cell were increased whereas the mRNA and protein expressions of StAR (steroidogenic acute regulatory) protein, cytochrome P450scc (cytochrome p450side chain cleavage enzyme), 3β-HSD (3β-hydroxysteroid dehydrogenase), 17β-HSD (17β-hydroxysteroid dehydrogenase) and LH receptor were drastically reduced. Administration of ascorbic acid resulted in alteration of all these parameters indicating enhanced recovery from ethanol induced inhibition of Leydig cell steroidogenesis. Although abstention could also reduce the inhibition of steroidogenesis, this was lesser in comparison with ascorbic acid supplemented group. © 2013 Published by Elsevier B.V.

  11. BLTK1 murine Leydig cells: a novel steroidogenic model for evaluating the effects of reproductive and developmental toxicants.

    PubMed

    Forgacs, Agnes L; Ding, Qi; Jaremba, Rosemary G; Huhtaniemi, Ilpo T; Rahman, Nafis A; Zacharewski, Timothy R

    2012-06-01

    Leydig cells are the primary site of androgen biosynthesis in males. Several environmental toxicants target steroidogenesis resulting in both developmental and reproductive effects including testicular dysgenesis syndrome. The aim of this study was to evaluate the effect of several structurally diverse endocrine disrupting compounds (EDCs) on steroidogenesis in a novel BLTK1 murine Leydig cell model. We demonstrate that BLTK1 cells possess a fully functional steroidogenic pathway that produces low basal levels of testosterone (T) and express all the necessary steroidogenic enzymes including Star, Cyp11a1, Cyp17a1, Hsd3b1, Hsd17b3, and Srd5a1. Recombinant human chorionic gonadotropin (rhCG) and forskolin (FSK) elicited concentration- and time-dependent induction of 3',5'-cyclic adenosine monophosphate, progesterone (P), and T, as well as the differential expression of Star, Hsd3b6, Hsd17b3, and Srd5a1 messenger RNA levels. The evaluation of several structurally diverse male reproductive toxicants including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), atrazine, prochloraz, triclosan, monoethylhexyl phthalate (MEHP), glyphosate, and RDX in BLTK1 cells suggests different modes of action perturb steroidogenesis. For example, prochloraz and triclosan antifungals reduced rhCG induction of T, consistent with published in vivo data but did not alter basal T levels. In contrast, atrazine and MEHP elicited modest induction of basal T but antagonized rhCG-mediated induction of T levels, whereas TCDD, glyphosate, and RDX had no effect on basal or rhCG induction of T in BLTK1 cells. These results suggest that BLTK1 cells maintain rhCG-inducible steroidogenesis and are a viable in vitro Leydig cell model to evaluate the effects of EDCs on steroidogenesis. This model can also be used to elucidate the different mechanisms underlying toxicant-mediated disruption of steroidogenesis.

  12. The changes of stage distribution of seminiferous epithelium cycle and its correlations with Leydig cell stereological parameters in aging men.

    PubMed

    Huang, Rui; Zhu, Wei-Jie; Li, Jing; Gu, Yi-Qun

    2014-12-01

    To evaluate the changes of stage distribution of seminiferous epithelium cycle and its correlations with Leydig cell stereological parameters in aging men. Point counting method was used to analyze the stereological parameters of Leydig cells. The stage number of seminiferous epithelium cycle was calculated in the same testicular tissue samples which were used for Leydig cell stereological analysis. The aging group had shown more severe pathological changes as well as higher pathologic scores than the young group. Compared with the control group, the volume density (VV) and surface density (NA) of Leydig cells in the aging group were increased significantly. The stage number of seminiferous epithelium cycle in the aging group was decreased coincidently compared to the young group. Leydig cell Vv in the young group has a positive relationship with stages I, II, III, V and VI of seminiferous epithelium cycle, and Leydig cell NA and numerical density (NV) were positively related to stage IV. However, only the correlation between NV and stage II was found in the aging group. The stage number of seminiferous epithelium cycle was decreased in aging testes. Changes in the stage distribution in aging testes were related to the Leydig cell stereological parameters which presented as a sign of morphological changes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro.

    PubMed

    Riccetti, Laura; De Pascali, Francesco; Gilioli, Lisa; Potì, Francesco; Giva, Lavinia Beatrice; Marino, Marco; Tagliavini, Simonetta; Trenti, Tommaso; Fanelli, Flaminia; Mezzullo, Marco; Pagotto, Uberto; Simoni, Manuela; Casarini, Livio

    2017-01-05

    Human luteinizing hormone (LH) and chorionic gonadotropin (hCG) are glycoprotein hormones regulating development and reproductive functions by acting on the same receptor (LHCGR). We compared the LH and hCG activity in gonadal cells from male mouse in vitro, i.e. primary Leydig cells, which is a common tool used for gonadotropin bioassay. Murine Leydig cells are naturally expressing the murine LH receptor (mLhr), which binds human LH/hCG. Cultured Leydig cells were treated by increasing doses of recombinant LH and hCG, and cell signaling, gene expression and steroid synthesis were evaluated. We found that hCG is about 10-fold more potent than LH in cAMP recruitment, and slightly but significantly more potent on cAMP-dependent Erk1/2 phosphorylation. However, no significant differences occur between LH and hCG treatments, measured as activation of downstream signals, such as Creb phosphorylation, Stard1 gene expression and testosterone synthesis. These data demonstrate that the responses to human LH/hCG are only quantitatively and not qualitatively different in murine cells, at least in terms of cAMP and Erk1/2 activation, and equal in activating downstream steroidogenic events. This is at odds with what we previously described in human primary granulosa cells, where LHCGR mediates a different pattern of signaling cascades, depending on the natural ligand. This finding is relevant for gonadotropin quantification used in the official pharmacopoeia, which are based on murine, in vivo bioassay and rely on the evaluation of long-term, testosterone-dependent effects mediated by rodent receptor.

  14. TROPHIC EFFECT OF LUTEINIZING HORMONE ON THE RAT LEYDIG CELL

    EPA Science Inventory

    Little is known about the factors controlling Leydig cell growth and differentiation. owever, unique correlations exist between specific testicular compartments and the testosterone-secreting capacity of the testes. elected experimental findings from three common laboratory anima...

  15. 4-Nitrophenol induces Leydig cells hyperplasia, which may contribute to the differential modulation of the androgen receptor and estrogen receptor-α and -β expression in male rat testes.

    PubMed

    Zhang, Yonghui; Piao, Yuanguo; Li, Yansen; Song, Meiyan; Tang, Pingli; Li, Chunmei

    2013-11-25

    4-Nitrophenol (PNP) is generally regarded as an environmental endocrine disruptor capable of estrogenic and anti-androgenic activities. To investigate PNP-induced reproductive effects, immature male rats were injected subcutaneously with PNP (0.1, 1, 10mg/kg body weight or vehicle) daily for 4 weeks. We assessed reproductive tract alterations, sex hormone balance in the serum and estrogen receptor (ER)-α, -β and androgen receptor (AR) expression in testes. Although no significant difference was observed in body weight or testes weights of PNP-treated rats compared with the controls, the serum concentrations of testosterone in the 10mg/kg PNP-treated group were significantly elevated. This effect was accompanied by Leydig cells hyperplasia in the testes. Conversely, there was a significant decrease in estradiol concentration and aromatase expression in the testes of the 10mg/kg PNP-treated group. Furthermore, we observed a significant increase in ERα expression in the testes of the 10mg/kg PNP-treated group compared with the control group. Conversely, ERβ expression displayed a significant reduction. Moreover, AR expression was significantly increased in the 10mg/kg PNP-treated group compared with the control group. The existence of AR, ER-α and -β in the testes suggests that estradiol and testosterone directly affect germ cells and that differential modulation of AR, ER-α and -β in the testis may be involved in the direct effects of PNP or either the indirect effects of PNP-induced disruption of the estradiol-to-testosterone balance or the Leydig cells hyperplasia. Thus, the measurement of many endpoints is necessary for good risk assessment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Regulation of gonadotropin receptors on cultured porcine Leydig and Sertoli cells: effect of potassium depletion.

    PubMed

    Bernier, M; Laferrere, B; Jaillard, C; Clerget, M; Saez, J M

    1986-06-01

    We have examined the role of the NaK-ATPase pump activity on the ligand-induced down-regulation of gonadotropin receptors in cultured porcine Leydig and Sertoli cells. In both cells, inhibition of the NaK pump by ouabain produced a depletion of intracellular K+ levels (ID50, 10(-7) M) after a lag period of about 8 h. In the absence of ligand, the number of FSH receptors in ouabain-treated Sertoli cells was unaffected or slightly reduced, whereas a 2-fold increase in the number of human CG (hCG)/LH receptors with small changes in the binding affinity was observed in Leydig cells treated by ouabain. The effect of ouabain was dose dependent. Differences were also observed in the down-regulation process of gonadotropin receptors in ouabain-treated cells. The hCG-induced receptor loss in Leydig cells was completely reversed by ouabain whereas the drug had no effect on ligand-induced loss of FSH receptors in Sertoli cells. Similar results were observed when the cells were incubated in K+-free medium. Kinetics studies with labeled hCG have shown that ouabain treatment slows down significantly the rate of [125I]iodo-hCG internalization (t 1/2, 18 h; control cells, t 1/2, 6 h), but had no effect on the degradation of internalized hormone. The internalization of receptor-bound [125I]iodo-hCG was also reduced when Leydig cells were incubated in K+-free medium, but was restored when this medium was supplemented with rubidium. The influence of the NaK pump on the receptor regulation of a ligand common to both types of cells, such as epidermal growth factor, was studied under the same experimental conditions. Neither ouabain nor K+-free medium were able to prevent the epidermal growth factor-induced reduction of receptor levels in Leydig and Sertoli cells. Thus, it appears that modulation of ligand-induced receptor loss by depletion of cellular K+ levels is not dependent on the cell type, but on the ligand-receptor complex. The data also show a striking difference in the

  17. Foetal exposure to Panax ginseng extract reverts the effects of prenatal dexamethasone in the synthesis of testosterone by Leydig cells of the adult rat.

    PubMed

    Wanderley, Maria I; Saraiva, Karina L A; César Vieira, Juliany S B; Peixoto, Christina A; Udrisar, Daniel P

    2013-06-01

    The aim of this study was to examine the effect of maternal exposure to Panax ginseng extract (GE) on the prenatal dexamethasone (DEXA)-induced increase in testosterone production by isolated Leydig cells in adult rats. Pregnant rats were treated with (i) GE (200 mg/kg) or vehicle on days 10-21; (ii) DEXA (100 μg/kg) or vehicle on days 14-21; or (iii) a combination of GE plus DEXA at the same doses and with the same regimen. Testosterone production was induced either by the activator of protein kinase A (dbcAMP) or substrates of steroidogenesis [22(R)-hydroxycholesterol (22(R)-OH-C)] and pregnenolone. The capacity of rat Leydig cells exposed to DEXA to synthesize testosterone induced by dbcAMP, 22(R)-OH-C or pregnenolone was increased in comparison with the control group. Combined exposure to DEXA + GE prevented the effect of DEXA on the responsiveness of Leydig cells to all inductors of testosterone synthesis, whereas GE alone did not modify the response to inductors. No modifications in testosterone production were observed under basal conditions. StAR immunoexpression in Leydig cells was not modified by prenatal exposure to DEXA, GE or DEXA + GE. P450scc and glucocorticoid receptor immunoexpression was higher in offspring exposed to DEXA in comparison with the control group. This increased expression was prevented by combined treatment with DEXA + GE. The present findings demonstrate that GE is capable of reversing the effect of DEXA on testosterone synthesis by rat Leydig cells. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  18. Characterization of the homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase.

    PubMed

    Dix, C J; Habberfield, A D; Cooke, B A

    1984-06-15

    The homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase induced by lutropin (LH) was characterized with the aid of forskolin and cholera toxin. Forskolin stimulated cyclic AMP production in a dose-dependent manner, with linear kinetics up to 2h. Forskolin also potentiated the action of LH on cyclic AMP production, but was only additive with cholera toxin. Preincubation of rat Leydig tumour cells with LH (1.0 micrograms/ml) for 1 h produced a desensitization of the subsequent LH (1.0 micrograms/ml)-stimulated cyclic AMP production, whereas the responses to cholera toxin (5.0 micrograms/ml), forskolin (100 microM), LH plus forskolin or cholera toxin plus forskolin were unaltered. In contrast, preincubation with LH for 20h produced a desensitization to all the stimuli tested. When rat Leydig tumour cells were preincubated for 1h with forskolin or dibutyryl cyclic AMP, the only subsequent response that was significantly altered was that to LH plus forskolin after preincubation with forskolin. However, preincubation for 20h with forskolin or dibutyryl cyclic AMP induced a desensitization to all stimuli subsequently tested. LH produced a rapid (0-1h) homologous desensitization, which was followed by a slower (2-8h)-onset heterologous desensitization. Forskolin and dibutyryl cyclic AMP were only able to induce heterologous desensitization. The rate of desensitization induced by either forskolin or dibutyryl cyclic AMP was similar to the rate of heterologous desensitization induced by LH. These results demonstrate that in purified rat Leydig tumour cells LH produces an initial homologous desensitization of adenylate cyclase that involves a cyclic AMP-independent lesion at or proximal to the guanine nucleotide regulatory protein (G-protein). This is followed by heterologous desensitization, which can also be induced by forskolin or dibutyryl cyclic AMP, thus indicating that LH-induced heterologous desensitization of rat Leydig-tumour-cell

  19. Characterization of rat leydig cell gonadotropin receptor structure by affinity cross-linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.Y.; Hwang, J.; Menon, K.M.J.

    1986-05-01

    The gonadotropin receptor from rat leydig cell has been characterized with respect to binding kinetics and physiological regulation. The present study was intended to examine the structure of the receptor. Leydig cell suspension was prepared by either collagenase digestion or by mechanical disruption of the testis. The cells were incubated with /sup 125/I-hCG and the unreacted hCG was removed by centrifugation. The /sup 125/I-hCG was then covalently linked to the cell surface receptor using cleavable (dithiobis (succinimidyl propionate)) and non-cleavable (disuccinimidyl suberate) cross-linking reagents. The extracted cross-linked membrane proteins were resolved on SDS-polyacrylamide gels under reducing and non-reducing conditions andmore » subjected to autoradiographic analysis. Under non-reducing conditions, two labeled species with M/sub r/ = 87,000 and 120,000 were detected. However, only one labeled band was detected under reducing conditions with M/sub r/ = 64,000. The binding of /sup 125/I-hCG to the receptor was inhibited by hCG and LH, but not by a number of peptides and proteins. The data suggest that hCG receptor in leydig cell is an oligomeric complex consisting of four subunits, ..cap alpha cap alpha beta gamma... The ..beta.. and ..gamma.. subunits are each linked to an ..cap alpha.. subunit through disulfide linkage and the hormone binds to each ..cap alpha.. subunit. The two dimers formed (..cap alpha beta cap alpha gamma..) are associated by noncovalent interactions.« less

  20. The natural history of Leydig cell testicular tumours: an analysis of the National Cancer Registry.

    PubMed

    Nason, G J; Redmond, E J; Considine, S W; Omer, S I; Power, D; Sweeney, P

    2018-05-01

    Leydig cell tumour (LCT) of the testis is a rare histological subtype of stromal tumours, accounting for 1 to 3% of testicular neoplasms. The natural history of LCT is poorly understood. The aim of this study was to assess the incidence and natural history of Leydig cell tumours (LCT) of the testes. A search of the National Cancer Registry of Ireland database was performed regarding Leydig cell testicular tumours. Recurrence free survival (RFS) and disease-specific survival (DSS) were analysed. Between 1994 and 2013, 2755 new cases of testicular cancer were diagnosed in Ireland. Of these, 22 (0.79%) were Leydig cell tumours. Nineteen were invasive (stage T1) and three were in situ (stage Tis). One patient developed a local recurrence following an organ preserving procedure and underwent a completion orchidectomy 107 days after initial diagnosis. No further treatment was required. There have been no disease-specific deaths. The 1-, 3- and 5-year overall survival (OS) rates were 95.5, 88.2 and 73.3%, respectively. The 5-year disease-specific survival (DSS) was 100% and the 5-year recurrence free survival (RFS) was 93.3%. From the National Cancer Registry, LCT has been shown to be a rare subtype of testicular tumour. Due to the relatively favourable natural history, it may be possible to tailor less aggressive surveillance regimens in these patients.

  1. Differential Susceptibility of Germ and Leydig Cells to Cadmium-Mediated Toxicity: Impact on Testis Structure, Adiponectin Levels, and Steroidogenesis

    PubMed Central

    Cupertino, Marli C.; Neves, Ana C.; Oliveira, Juraci A.

    2017-01-01

    This study investigated the relationship between germ and Leydig cell death, testosterone, and adiponectin levels in cadmium-mediated acute toxicity. Cadmium chloride was administered in a single dose to five groups of rats: G1 (0.9% NaCl) and G2 to G5 (0.67, 0.74, 0.86, and 1.1 mg Cd/kg). After 7 days, the animals were euthanized, and the testosterone and testes were analyzed. Dose-dependent Cd accumulation in the testes was identified. At 0.86 and 1.1 mg/kg, animals exhibited marked inflammatory infiltrate and disorganization of the seminiferous epithelium. While Leydig cells were morphologically resistant to Cd toxicity, massive germ cell death and DNA oxidation and fragmentation were observed. Although numerical density of Leydig cells was unchanged, testosterone levels were significantly impaired in animals exposed to 0.86 and 1.1 mg Cd/kg, occurring in parallel with the reduction in total adiponectins and the increase in high-molecular weight adiponectin levels. Our findings indicated that Leydig and germ cells exhibit differential microstructural resistance to Cd toxicity. While germ cells are a primary target of Cd-induced toxicity, Leydig cells remain resistant to death even when exposed to high doses of Cd. Despite morphological resistance, steroidogenesis was drastically impaired by Cd exposure, an event potentially related to the imbalance in adiponectin production. PMID:29422988

  2. [Gefitineb inhibits the growth and induces the apoptosis of mouse I-10 Leydig testicular cancer cells in vitro].

    PubMed

    Ji, Jie; Tong, Xu-hui; Zhang, Xin-yu; Gao, Qin; Li, Bei-bei; Wu, Xiao-xiang

    2015-09-01

    To observe the inhibitory effect of gefitineb on the proliferation and its inducing effect on the apoptosis of mouse I-10 Leydig testicular cancer cells in vitro. We treated I-10 Leydig testicular cancer cells of mice with gefitineb at 0, 1.25, 2.5, 5, 10, 20, and 40 µmol/L. Then we determined the inhibitory effect of gefitineb on the growth of the cells by MTT, detected their early and late apoptosis by Annexin V-FITC/propidium iodide double staining and Hoechst 33258 nuclear staining, respectively, and observed the expressions of apoptosis-related proteins Bcl-2, Bax and caspase 3/9 by Western blot. Compared with the blank control group, gefitineb significantly inhibited the proliferation of the I-10 cells at 10 and 20 µmol/L (P < 0.05). The survival rate of the cells was (32.4 ± 2.8)% (P < 0.01) and their early and late apoptosis rates were (26.7 ± 4.2)% and (59.33 ± 10.2)% in the 40 µmol/L group, significantly different from those in the control (P < 0.05 and P <0.01). In comparison with the blank control group, gefitineb at 10, 20, and 40 µmol/L increased the expression of pro-apoptotic protein Bax by (41.9 ± 7.1), (60.1 ± 9.8), and (69.0 ± 11.3)% (all P < 0.05), decreased that of apoptosis-inhibitory protein Bcl-2 by (50.3 ± 8.9), (63.9 ± 6.9), and (88.7 ± 13.9)% (all P < 0.05), and elevated that of the cleft proteins caspase-3 by (69.0 ± 6.9)% (P < 0.05), (71.5 ± 8.1)% (P < 0.05), and (110.9 ± 14.2)% (P < 0.01) and caspase-9 by (51.8 ± 4.9), (54.7 ± 6.7), and (43.8 ± 11.8)% (all P < 0.05). Gefitineb can increase the cytotoxicity of I-10 Leydig testicular cancer cells of mice and induce their apoptosis via the mitochondria-mediated apoptosis signaling pathway.

  3. Role of gap junction intercellular communication in testicular leydig cell apoptosis induced by oxaliplatin via the mitochondrial pathway.

    PubMed

    Tong, Xuhui; Han, Xi; Yu, Binbin; Yu, Meiling; Jiang, Guojun; Ji, Jie; Dong, Shuying

    2015-01-01

    Platinum agents are widely used in the chemotherapy of testicular cancer. However, adverse reactions and resistance to such agents have limited their application in antineoplastic treatment. The aim of the present study was to determine the role of gap junction intercellular communication (GJIC) composed of Cx43 on oxaliplatin‑induced survival/apoptosis in mouse leydig normal and cancer cells using MTT, Annexin V/PI double staining assays and western blot analysis. The results showed that GJIC exerted opposite effects on the mouse leydig cancer (I-10) and normal (TM3) cell apoptosis induced by oxaliplatin. In leydig cancer cells, survival of cells exposed to oxaliplatin was substantially reduced when gap junctions formed as compared to no gap junctions. Pharmacological inhibition of gap junctions by oleamide and 18-α-glycyrrhetinic acid resulted in enhanced survival/decreased apoptosis while enhancement of gap junctions by retinoic acid led to decreased survival/increased apoptosis. These effects occurred only in high‑density cultures (gap junction formed), while the pharmacological modulations had no effects when there was no opportunity for gap junction formation. Notably, GJIC played an opposite (protective) role in normal leydig cells survival/apoptosis following exposure to oxaliplatin. Furthermore, this converse oxaliplatin‑inducing apoptosis exerted through the functional gap junction was correlated with the mitochondrial pathway‑related protein Bcl-2/Bax and caspase‑3/9. These results suggested that in testicular leydig normal/cancer cells, GJIC plays an opposite role in oxaliplatin‑induced apoptosis via the mitochondrial pathway.

  4. PURIFICATION OF RAT LEYDIG CELLS: INCREASED YIELDS AFTER UNIT-GRAVITY SEDIMENTATION OF COLLAGENASE-DISPERSED INTERSTITIAL CELLS

    EPA Science Inventory

    Abstract

    Procedures for purification of Leydig cells have facilitated studies of their regulatory biology. A multistep procedure, that includes a filtration with nylon mesh (100 micron pore size) to separate interstitial cells from the seminiferous tubules, combining centr...

  5. Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells.

    PubMed

    Guo, Yichen; Shen, Ouxi; Han, Jingjing; Duan, Hongyu; Yang, Siyuan; Zhu, Zhenghong; Tong, Jian; Zhang, Jie

    2017-01-01

    Fenvalerate (Fen), a widely used pesticide, is known to impair male reproductive functions by mechanisms that remain to be elucidated. Recent studies indicated that circadian clock genes may play an important role in successful male reproduction. The aim of this study was to determine the effects of Fen on circadian clock genes involved in the biosynthesis of testosterone using TM3 cells derived from mouse Leydig cells. Data demonstrated that the circadian rhythm of testosterone synthesis in TM3 cells was disturbed following Fen treatment as evidenced by changes in the circadian rhythmicity of core clock genes (Bmal1, Rev-erbα, Rorα). Further, the observed altered rhythms were accompanied by increased intracellular Ca 2+ levels and modified steroidogenic acute regulatory (StAR) mRNA expression. Thus, data suggested that Fen inhibits testosterone synthesis via pathways involving intracellular Ca 2+ and clock genes (Bmal1, Rev-Erbα, Rorα) as well as StAR mRNA expression in TM3 cells.

  6. Feeding hydroalcoholic extract powder of Lepidium meyenii (maca) increases serum testosterone concentration and enhances steroidogenic ability of Leydig cells in male rats.

    PubMed

    Ohta, Y; Yoshida, K; Kamiya, S; Kawate, N; Takahashi, M; Inaba, T; Hatoya, S; Morii, H; Takahashi, K; Ito, M; Ogawa, H; Tamada, H

    2016-04-01

    Although Lepidium meyenii (maca), a plant growing in Peru's central Andes, has been traditionally used for enhancing fertility and reproductive performance in domestic animals and human beings, effects of maca on reproductive organs are still unclear. This study examined whether feeding the hydroalcoholic extract powder of maca for 6 weeks affects weight of the reproductive organs, serum concentrations of testosterone and luteinising hormone (LH), number and cytoplasmic area of immunohistochemically stained Leydig cells, and steroidogenesis of cultured Leydig cells in 8-week-old male rats. Feeding the extract powder increased weight of seminal vesicles, serum testosterone level and cytoplasmic area of Leydig cells when compared with controls. Weight of prostate gland, serum LH concentration and number of Leydig cells were not affected by the maca treatment. The testosterone production by Leydig cells significantly increased when cultured with 22R-hydroxycholesterol or pregnenolone and tended to increase when cultured with hCG by feeding the extract powder. The results show that feeding the hydroalcoholic extract powder of maca for 6 weeks increases serum testosterone concentration associated with seminal vesicle stimulation in male rats, and this increase in testosterone level may be related to the enhanced ability of testosterone production by Leydig cells especially in the metabolic process following cholesterol. © 2015 Blackwell Verlag GmbH.

  7. Pig StAR: mRNA expression and alternative splicing in testis and Leydig cells, and association analyses with testicular morphology traits.

    PubMed

    Zhang, Yanghai; Cui, Yang; Zhang, Xuelian; Wang, Yimin; Gao, Jiayang; Yu, Ting; Lv, Xiaoyan; Pan, Chuanying

    2018-05-31

    Steroidogenic acute regulatory protein (StAR), primarily expressed in Leydig cells (LCs) in the mammalian testes, is essential for testosterone biosynthesis and male fertility. However, no previous reports have explored the expression profiles, alternative splicing and genetic variations of StAR gene in pig. The aim of current study was to explore the expression profiles in different tissues and different types of testicular cells (LCs; spermatogonial stem cells, SSCs; Sertoli cells, SCs), to identify different splice variants and their expression levels, as well as to detect the indel polymorphism in pig StAR gene. Expression analysis results revealed that StAR was widely expressed in all tested tissues and the expression level in testis was significantly higher than that in other tissues (P < 0.01); among different types of testicular cells, the StAR mRNA expression level was significantly higher in LCs than others (P < 0.05). Furthermore, three splice variants, StAR-a, StAR-b and StAR-c, were first found in pig. Further study showed StAR-a was highly expressed in both testis and LCs when compared with other variants (P < 0.01), suggesting StAR-a was the primary variant at StAR gene post-transcription and may facilitate the combination and transportation of cholesterol with StAR. In addition, a 5-bp duplicated deletion (NC_010457.5:g.5524-5528 delACTTG) was verified in the porcine StAR gene, which was closely related to male testicular morphology traits (P < 0.05), and we speculated that the allele "D" of StAR gene might be a positive allele. Briefly, the current findings suggest that StAR and StAR-a play imperative roles in male fertility and the 5-bp indel can be a potential DNA marker for the marker-assisted selection in boar. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Roles of leptin, adiponectin and resistin in the transcriptional regulation of steroidogenic genes contributing to decreased Leydig cells function in obesity.

    PubMed

    Roumaud, Pauline; Martin, Luc J

    2015-10-01

    The increase in obesity rate is a major public health issue associated with increased pathological conditions such as type 2 diabetes or cardiovascular diseases. Obesity also contributes to decreased testosterone levels in men. Indeed, the adipose tissue is an endocrine organ which produces hormones such as leptin, adiponectin and resistin. Obesity results in pathological accumulations of leptin and resistin, whereas adiponectin plasma levels are markedly reduced, all having a negative impact on testosterone synthesis. This review focuses on current knowledge related to transcriptional regulation of Leydig cells' steroidogenesis by leptin, adiponectin and resistin. We show that there are crosstalks between the regulatory mechanisms of these hormones and androgen production which may result in a dramatic negative influence on testosterone plasma levels. Indeed leptin, adiponectin and resistin can impact expression of different steroidogenic genes such as Star, Cyp11a1 or Sf1. Further investigations will be required to better define the implications of adipose derived hormones on regulation of steroidogenic genes expression within Leydig cells under physiological as well as pathological conditions.

  9. Long-term maintenance of luteinizing hormone-responsive testosterone formation by primary rat Leydig cells in vitro.

    PubMed

    Wang, Yiyan; Huang, Shengsong; Wang, Zhao; Chen, Fenfen; Chen, Panpan; Zhao, Xingxing; Lin, Han; Ge, Renshan; Zirkin, Barry; Chen, Haolin

    2018-04-24

    The inability of cultured primary Leydig cells to maintain luteinizing hormone (LH)-responsive testosterone formation in vitro for more than 3-5 days has presented a major challenge in testing trophic effects of regulatory factors or environmental toxicants. Our primary objective was to establish culture conditions sufficient to maintain LH-responsive testosterone formation by Leydig cells for at least a month. When isolated rat adult Leydig cells were cultured in DMEM/F12 and M199 culture medium containing insulin (10μg/ml), PDGFAA (10 ng/ml), lipoprotein (0.25 mg/ml), horse serum (1%) and a submaximal concentration of LH (0.2 ng/ml), the cells retained the ability to produce testosterone in vitro for at least 4 weeks. By using the longer-term culture conditions of this system, we were able to detect suppressive effects on testosterone production by low levels of the toxicant MEHP (mono-(2-ethylhexyl) phthalate), an active metabolite of the plasticizer DEHP, that were not detected by short-term culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Fine structure of the epidermal Leydig cells in the axolotl Ambystoma mexicanum in relation to their function.

    PubMed Central

    Jarial, M S

    1989-01-01

    The fine structure of the Leydig cells in the epidermis of the strictly aquatic adult axolotl Ambystoma mexicanum resembles that of similar cells in larval salamanders. The major finding of this study is that the mucous secretion of the Leydig cells is released into the intercellular spaces from which it is discharged through pores onto the surface of the epidermis where it forms a mucous layer to protect the skin. Images Figs. 1-2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Figs. 11-13 PMID:2630544

  11. 1,3-Dichloro-2-propanol inhibits progesterone production through the expression of steroidogenic enzymes and cAMP concentration in Leydig cells.

    PubMed

    Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Li, Guoqiang; Hu, Yunfeng; Li, Mingwei; Yan, Rian; Su, Zhijian; Huang, Yadong

    2014-07-01

    1,3-Dichloro-2-propanol (1,3-DCP) is a well-known food processing contaminant that has been shown to impede male reproductive function. However, its mechanism of action remains elusive. In this study, the effects of 1,3-DCP on progesterone production were investigated using the R2C Leydig cell model. 1,3-DCP significantly reduced cell viability from 7.48% to 97.4% at doses comprised between 0.5 and 6mM. Single cell gel/comet assays and atomic force microscopy assays showed that 1,3-DCP induced early phase cell apoptosis. In addition, 1,3-DCP significantly reduced progesterone production detected by radioimmunoassay (RIA). The results from quantitative polymerase chain reaction and western blotting demonstrated that the mRNA expression levels of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase were significantly down-regulated in R2C cells. Particularly, the change rhythm of Star expression was highly consistent with progesterone production. Furthermore, the cyclic adenosine monophosphate (cAMP) and the mitochondrial membrane potential mediated by ROS, which are involved in regulating progesterone synthesis were also decreased in response to the 1,3-DCP treatment. Overall, the data presented here suggested that 1,3-DCP interferes with the male steroidogenic capacity mainly by down-regulating the level of cAMP and the key enzymes involved in the androgen synthesis pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Inter-relationship between testicular dysgenesis and Leydig cell function in the masculinization programming window in the rat.

    PubMed

    van den Driesche, Sander; Kolovos, Petros; Platts, Sophie; Drake, Amanda J; Sharpe, Richard M

    2012-01-01

    The testicular dysgenesis syndrome (TDS) hypothesis proposes that maldevelopment of the testis, irrespective of cause, leads to malfunction of the somatic (Leydig, Sertoli) cells and consequent downstream TDS disorders. Studies in rats exposed in utero to di(n-butyl) phthalate (DBP) have strongly supported the TDS concept, but so far no direct evidence has been produced that links dysgenesis per se to somatic cell dysfunction, in particular to androgen production/action during the 'masculinization programming window' (MPW; e15.5-e18.5). Normal reproductive tract development and anogenital distance (AGD) are programmed within the MPW, and TDS disorders arise because of deficiencies in this programming. However, DBP-induced focal testicular dysgenesis (Leydig cell aggregation, ectopic Sertoli cells, malformed seminiferous cords) is not evident until after the MPW. Therefore, we used AGD as a read-out of androgen exposure in the MPW, and investigated if this measure was related to objectively quantified dysgenesis (Leydig cell aggregation) at e21.5 in male fetuses exposed to vehicle, DBP (500 or 750 mg/kg/day) or the synthetic glucocorticoid dexamethasone (Dex; alone or plus DBP-500) from e15.5-e18.5 (MPW), e13.5-e20.5 or e19.5-e20.5 (late window). Dysgenesis was found only in animals exposed to DBP during the MPW, and was negatively correlated (R² = -0.5) with AGD at e21.5 and at postnatal day 8, irrespective of treatment period. Dysgenesis was also negatively correlated (R² = -0.5) with intratesticular testosterone (ITT) at e21.5, but only when treatments in short windows (MPW, late window) were excluded; the same was true for correlation between AGD and ITT. We conclude that AGD, reflecting Leydig cell function solely within the MPW, is strongly related to focal dysgenesis. Our results point to this occurring because of a common early mechanism, targeted by DBP that determines both dysgenesis and early (during the MPW) fetal Leydig cell dysfunction. The

  13. Influence of long-term dietary administration of procymidone, a fungicide with anti-androgenic effects, or the phytoestrogen genistein to rats on the pituitary-gonadal axis and Leydig cell steroidogenesis.

    PubMed

    Svechnikov, K; Supornsilchai, V; Strand, M-L; Wahlgren, A; Seidlova-Wuttke, D; Wuttke, W; Söder, O

    2005-10-01

    Procymidone is a fungicide with anti-androgenic properties, widely used to protect fruits from fungal infection. Thereby it contaminates fruit products prepared for human consumption. Genistein-containing soy products are increasingly used as food additives with health-promoting properties. Therefore we examined the effects of long-term dietary administration (3 months) of the anti-androgen procymidone (26.4 mg/animal per day) or the phytoestrogen genistein (21.1 mg/animal per day) to rats on the pituitary-gonadal axis in vivo, as well as on Leydig cell steroidogenesis and on spermatogenesis ex vivo. The procymidone-containing diet elevated serum levels of LH and testosterone and, furthermore, Leydig cells isolated from procymidone-treated animals displayed an enhanced capacity for producing testosterone in response to stimulation by hCG or dibutyryl cAMP, as well as elevated expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450 scc) and cytochrome P450 17alpha (P450c17). In contrast, the rate of DNA synthesis during stages VIII and IX of spermatogenesis in segments of seminiferous tubules isolated from genistein-treated rats was decreased without accompanying changes in the serum level of either LH or testosterone. Nonetheless, genistein did suppress the ex vivo steroidogenic response of Leydig cells to hCG or dibutyryl cAMP by down-regulating their expression of P450 scc. Considered together, our present findings demonstrate that long-term dietary administration of procymidone or genistein to rats exerts different effects on the pituitary-gonadal axis in vivo and on Leydig cell steroidogenesis ex vivo. Possibly as a result of disruption of hormonal feedback control due to its anti-androgenic action, procymidone activates this endocrine axis, thereby causing hyper-gonadotropic activation of testicular steroidogenesis. In contrast, genistein influences spermatogenesis and significantly inhibits Leydig cell

  14. Ovarian Sertoli-Leydig cell tumor with heterologous elements of gastrointestinal type associated with elevated serum alpha-fetoprotein level: an unusual case and literature review

    PubMed Central

    Horta, Mariana; Cunha, Teresa Margarida; Marques, Rita Canas; Félix, Ana

    2014-01-01

    Here we describe the case of a 19-year-old woman with a poorly differentiated ovarian Sertoli-Leydig cell tumor and an elevated serum alpha-fetoprotein level. The patient presented with diffuse abdominal pain and bloating. Physical examination, ultrasound, and magnetic resonance imaging revealed a right ovarian tumor that was histopathologically diagnosed as a poorly differentiated Sertoli-Leydig cell tumor with heterologous elements. Her alpha-fetoprotein serum level was undetectable after tumor resection. Sertoli-Leydig cell tumors are rare sex cord-stromal tumors that account for 0.5% of all ovarian neoplasms. Sertoli-Leydig cell tumors tend to be unilateral and occur in women under 30 years of age. Although they are the most common virilizing tumor of the ovary, about 60% are endocrine-inactive tumors. Elevated serum levels of alpha-fetoprotein are rarely associated with Sertoli-Leydig cell tumors, with only approximately 30 such cases previously reported in the literature. The differential diagnosis should include common alpha-fetoprotein-producing ovarian entities such as germ cell tumors, as well as other non-germ cell tumors that have been rarely reported to produce this tumor marker. PMID:25926909

  15. Ovarian Sertoli-Leydig cell tumor with heterologous elements of gastrointestinal type associated with elevated serum alpha-fetoprotein level: an unusual case and literature review.

    PubMed

    Horta, Mariana; Cunha, Teresa Margarida; Marques, Rita Canas; Félix, Ana

    2014-11-01

    Here we describe the case of a 19-year-old woman with a poorly differentiated ovarian Sertoli-Leydig cell tumor and an elevated serum alpha-fetoprotein level. The patient presented with diffuse abdominal pain and bloating. Physical examination, ultrasound, and magnetic resonance imaging revealed a right ovarian tumor that was histopathologically diagnosed as a poorly differentiated Sertoli-Leydig cell tumor with heterologous elements. Her alpha-fetoprotein serum level was undetectable after tumor resection. Sertoli-Leydig cell tumors are rare sex cord-stromal tumors that account for 0.5% of all ovarian neoplasms. Sertoli-Leydig cell tumors tend to be unilateral and occur in women under 30 years of age. Although they are the most common virilizing tumor of the ovary, about 60% are endocrine-inactive tumors. Elevated serum levels of alpha-fetoprotein are rarely associated with Sertoli-Leydig cell tumors, with only approximately 30 such cases previously reported in the literature. The differential diagnosis should include common alpha-fetoprotein-producing ovarian entities such as germ cell tumors, as well as other non-germ cell tumors that have been rarely reported to produce this tumor marker.

  16. Oxidative Stress and Phthalate-Induced Down-Regulation of Steroidogenesis in MA-10 Leydig Cells*

    PubMed Central

    Zhou, Liang; Beattie, Matthew C.; Lin, Chieh-Yin; Liu, June; Traore, Kassim; Papadopoulos, Vassilios; Zirkin, Barry R.; Chen, Haolin

    2013-01-01

    Previous studies have shown that phthalate exposure can suppress steroidogenesis. However, the affected components of the steroidogenic pathway, and the mechanisms involved, remain uncertain. We show that incubating MA-10 Leydig cells with mono-(2-ethylhexyl) phthalate (MEHP) resulted in reductions in luteinizing hormone (LH)-stimulated cAMP and progesterone productions. cAMP did not decrease in response to MEHP when the cells were incubated with cholera toxin or forskolin. Incubation of MEHP-treated cells with dibutyryl-cAMP, 22-hydroxycholesterol or pregnenolone inhibited the reductions in progesterone. Increased levels of reactive oxygen species (ROS) occurred in response to MEHP. In cells in which intracellular glutathione was depleted by buthionine sulfoximine pretreatment, the increases in ROS and decreases in progesterone in response to MEHP treatment were exacerbated. These results indicate that MEHP inhibits MA-10 Leydig cell steroidogenesis by targeting LH-stimulated cAMP production and cholesterol transport, and that a likely mechanism by which MEHP acts is through increased oxidative stress. PMID:23969005

  17. Transplantation of CD51+ Stem Leydig Cells: A New Strategy for the Treatment of Testosterone Deficiency.

    PubMed

    Zang, Zhi Jun; Wang, Jiancheng; Chen, Zhihong; Zhang, Yan; Gao, Yong; Su, Zhijian; Tuo, Ying; Liao, Yan; Zhang, Min; Yuan, Qunfang; Deng, Chunhua; Jiang, Mei Hua; Xiang, Andy Peng

    2017-05-01

    Stem Leydig cell (SLC) transplantation could provide a new strategy for treating the testosterone deficiency. Our previous study demonstrated that CD51 (also called integrin αv) might be a putative cell surface marker for SLCs, but the physiological function and efficacy of CD51 + SLCs treatment remain unclear. Here, we explore the potential therapeutic benefits of CD51 + SLCs transplantation and whether these transplanted cells can be regulated by the hypothalamic-pituitary-gonadal (HPG) axis. CD51 + cells were isolated from the testes of 12-weeks-old C57BL/6 mice, and we showed that such cells expressed SLC markers and that they were capable of self-renewal, extensive proliferation, and differentiation into multiple mesenchymal cell lineages and LCs in vitro. As a specific cytotoxin that eliminates Leydig cells (LCs) in adult rats, ethane dimethanesulfonate (EDS) was used to ablate LCs before the SLC transplantation. After being transplanted into the testes of EDS-treated rats, the CD51 + cells differentiated into mature LCs, and the recipient rats showed a partial recovery of testosterone production and spermatogenesis. Notably, a testosterone analysis revealed a circadian rhythm of testosterone secretion in cell-transplanted rats, and these testosterone secretions could be suppressed by decapeptyl (a luteinizing hormone-releasing hormone agonist), suggesting that the transplanted cells might be regulated by the HPG axis. This study is the first to demonstrate that CD51 + SLCs can restore the neuroendocrine regulation of testicular function by physiologically recovering the expected episodic changes in diurnal testosterone serum levels and that SLC transplantation may provide a new tool for the studies of testosterone deficiency treatment. Stem Cells 2017;35:1222-1232. © 2017 AlphaMed Press.

  18. MODULATION OF RAT LEYDIG CELL STEROIDOGENIC FUNCTION BY DI(2-ETHYLHEXYL)PHTHALATE

    EPA Science Inventory

    Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate.

    Akingbemi BT, Youker RT, Sottas CM, Ge R, Katz E, Klinefelter GR, Zirkin BR, Hardy MP.

    Center for Biomedical Research, Population Council, New York, New York 10021, USA. benson@popcbr...

  19. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamdar, Ambreen; Xi, Guochen

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Sincemore » H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.« less

  20. High-fat diet aggravates 2,2′,4,4′-tetrabromodiphenyl ether-inhibited testosterone production via DAX-1 in Leydig cells in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhan; Yu, Yongquan

    Growing evidence has revealed that a high-fat diet (HFD) could lead to disorders of glycolipid metabolism and insulin-resistant states, and HFDs have been associated with the inhibition of testicular steroidogenesis. Our previous study demonstrated that 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) could increase the risk of diabetes in humans and reduce testosterone production in rats. However, whether the HFD affects BDE47-inhibited testosterone production by elevating insulin levels and inducing related pathways remains unknown. In male rats treated with BDE47 by gavage for 12 weeks, the HFD significantly increased the BDE47 content of the liver and testis and increased the weight of the adiposemore » tissue; increased macrovesicular steatosis in the liver and the levels of triglycerides, fasting glucose and insulin; further aggravated the disruption of the seminiferous epithelium; and lowered the level of testosterone, resulting in fewer sperm in the epididymis. Of note, the HFD enhanced BDE47-induced DAX-1 expression and decreased the expression levels of StAR and 3β-HSD in the testicular interstitial compartments in rats. In isolated primary Leydig cells from rats, BDE47 or insulin increased DAX-1 expression, decreased the expression of StAR and 3β-HSD, and reduced testosterone production, which was nearly reversed by knocking down DAX-1. These results indicated that the HFD aggravates BDE47-inhibited testosterone production through hyperinsulinemia, and the accumulation of testicular BDE47 that induces the up-regulation of DAX-1 and the subsequent down-regulation of steroidogenic proteins, i.e., StAR and 3β-HSD, in Leydig cells. - Highlights: • High-fat diet (HFD) aggravates the accumulation of BDE47 in liver and testis in rats. • HFD aggravates BDE47-inhibited testosterone production via DAX-1 in Leydig cells. • HFD enhances BDE47-induced the disorder of glycolipid metabolism and hyperinsulinemia. • Both hyperinsulinemia and accumulation of

  1. Growth suppression of Leydig TM3 cells mediated by aryl hydrocarbon receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iseki, Minoru; Department of Regulation Biology, Faculty of Science, Saitama University, Saitama; Ikuta, Togo

    2005-06-17

    Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces developmental toxicity in reproductive organs. To elucidate the function of AhR, we generated stable transformants of TM3 cells overexpressing wild-type aryl hydrocarbon receptor (AhR) or its mutants which carried mutations in nuclear localization signal or nuclear export signal. In the presence of 3-methylcholanthrene (MC), proliferation of the cells transfected with wild-type AhR was completely suppressed, whereas cells expressing AhR mutants proliferated in a manner equivalent to control TM3 cells, suggesting AhR-dependent growth inhibition. The suppression was associated with up-regulation of cyclin-dependent kinase inhibitor p21{sup Cip1}, which was abolished by pretreatment with actinomycin D. A p38 MAPKmore » specific inhibitor, SB203580, blocked the increase of p21{sup Cip1} mRNA in response to MC. Treatment with indigo, another AhR ligand, failed to increase of p21{sup Cip1} mRNA, although up-regulation of mRNA for CYP1A1 was observed. These data suggest AhR in Leydig cells mediates growth inhibition by inducing p21{sup Cip1}.« less

  2. Expression patterns of DLK1 and INSL3 identify stages of Leydig cell differentiation during normal development and in testicular pathologies, including testicular cancer and Klinefelter syndrome.

    PubMed

    Lottrup, G; Nielsen, J E; Maroun, L L; Møller, L M A; Yassin, M; Leffers, H; Skakkebæk, N E; Rajpert-De Meyts, E

    2014-08-01

    What is the differentiation stage of human testicular interstitial cells, in particular Leydig cells (LC), within micronodules found in patients with infertility, testicular cancer and Klinefelter syndrome? The Leydig- and peritubular-cell populations in testes with dysgenesis contain an increased proportion of undifferentiated cells when compared with control samples, as demonstrated by increased delta-like homolog 1 (DLK1) and decreased insulin-like peptide 3 (INSL3) expression. Normal LC function is essential for male development and reproduction. Signs of LC failure, including LC micronodules, are often observed in patients with reproductive disorders. In this retrospective study, a panel of markers and factors linked to the differentiation of LCs was investigated in 33 fetal and prepubertal human specimens and in 58 adult testis samples from patients with testicular germ cell tumours, including precursor carcinoma in situ (CIS), infertility or Klinefelter syndrome. The expression patterns of DLK1, INSL3, chicken ovalbumin upstream promoter transcription factor 2 (COUP-TFII), cytochrome P450, family 11, subfamily A, polypeptide 1 (CYP11A1) and smooth muscle actin (SMA) were investigated by immunohistochemistry and quantitative RT-PCR. The percentage of positive LCs was estimated and correlated to total LC numbers and serum levels of reproductive hormones. DLK1, INSL3 and COUP-TFII expression changed during normal development and was linked to different stages of LC differentiation: DLK1 was expressed in all fetal LCs, but only in spindle-shaped progenitor cells and in a small subset of polygonal LCs in the normal adult testis; INSL3 was expressed in a subset of fetal LCs, but in the majority of adult LCs; and COUP-TFII was expressed in peritubular and mesenchymal stroma cells at all ages, in fetal LCs early in gestation and in a subset of adult LCs. CYP11A1 was expressed in the majority of LCs regardless of age and pathology and was the best general LC marker

  3. Apoptosis inducing factor gene depletion inhibits zearalenone-induced cell death in a goat Leydig cell line.

    PubMed

    Yang, Diqi; Jiang, Tingting; Lin, Pengfei; Chen, Huatao; Wang, Lei; Wang, Nan; Zhao, Fan; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2017-01-01

    Zearalenone (ZEA) is a contaminant of human food and animal feedstuffs that causes health hazards. However, the signal pathways underlying ZEA toxicity remain elusive. The aims of this study were to determine which pathways are involved in ZEA-induced cell death and investigate the effect of apoptosis inducing factor (AIF) on cell death during ZEA treatment in the immortalized goat Leydig cell line hTERT-GLC. This study showed that ZEA-induced cell death in hTERT-GLCs works via endoplasmic reticulum (ER) stress, the caspase-dependent pathway, the caspase-independent pathway and autophagy. Recombinant lentiviral vectors were constructed to silence AIF expression in hTERT-GLCs. Flow cytometry results showed that knockdown of AIF diminished ZEA-induced cell apoptosis in hTERT-GLCs. Furthermore, we found AIF depletion down-regulated phosphoIRE1α, GRP78, CHOP and promoted the switch of LC3-I to LC3-II. Therefore, ZEA induces cytotoxicity in hTERT-GLCs via different pathways, while AIF-mediated signaling plays a critical role in ZEA-induced cell death in hTERT-GLCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauner, R.; Czernichow, P.; Cramer, P.

    To assess the effect of testicular irradiation on testicular endocrine function, we studied 12 boys with acute lymphoblastic leukemia who had been treated with direct testicular irradiation 10 months to 8 1/2 years earlier. Insufficient Leydig-cell function, manifested by a low response of plasma testosterone to chorionic gonadotropin or an increased basal level of plasma luteinizing hormone (or both), was observed in 10 patients, 7 of whom were pubertal. Two of these patients had a compensated testicular endocrine insufficiency with only high plasma concentrations of luteinizing hormone. Testosterone secretion was severely impaired in three pubertal boys studied more than fourmore » years after testicular irradiation. A diminished testicular volume indicating tubular atrophy was found in all pubertal patients, including three who had not received cyclophosphamide or cytarabine. These data indicate that testosterone insufficiency is a frequent complication of testicular irradiation, although some patients continue to have Leydig-cell activity for several years after therapy.« less

  5. [The ultrastructure of Leydig cells under the influence of drinking mineral water and electromagnetic radiation under the stress conditions in the rats].

    PubMed

    Geniatulina, M S; Korolev, Yu N; Nikulina, L A

    The objective of the present study was elucidate the peculiar features of low-intensity electromagnetic radiation (LI EMR) and mineral water (MW) on the ultrastructure of rat Leydig cells under conditions of immobilization stress. The experiments were carried out on outbred male rats with the use of electron microscopy. It has been demonstrated that the prophylactic consumption of drinking sulfate-containing mineral water and the application low-intensity electromagnetic radiation (with the flow power density of 1 mcW/cm2 and frequency around 1,000 Hz) or the combination of these two modalities under conditions of immobilization stress reduced the degree of ultrastructural derangement in the rat Leydig cells and stimulated the development of regenerative processes. In the cases of the single-factor impact, drinking mineral water exerted more pronounced action than low-intensity electromagnetic radiation on mitochondrial regeneration. In case of the simultaneous application of the two factors their protective action on the Leydig cells was much more conspicuous than that of either of them applied alone. It is concluded that drinking sulfate-containing mineral water in combination with the application of low-intensity electromagnetic radiation enhances resistance of the rat Leydig cells to stress.

  6. Toxic mechanisms of 3-monochloropropane-1,2-diol on progesterone production in R2C rat leydig cells.

    PubMed

    Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Su, Zhijian; Zhang, Qihao; Ou, Shiyi; Huang, Yadong

    2013-10-16

    3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been shown to impede the male reproductive function. However, its mechanism of action remains to be elucidated. In this study, the effects of 3-MCPD on progesterone production were investigated using R2C Leydig cells. 3-MCPD caused concentration-dependent inhibition of cell viability at the IC25, IC50, and IC75 levels of 1.027, 1.802, and 3.160 mM, respectively. Single cell gel/comet assay and atomic force microscopy assay showed that 3-MCPD significantly induced early apoptosis. In addition, 3-MCPD significantly reduced progesterone production by reducing the expression of cytochrome P450 side-chain cleavage enzyme, steroidogenic acute regulatory protein, and 3β-hydroxysteroid dehydrogenase in R2C cells. The change in steroidogenic acute regulatory protein expression was highly consistent with progesterone production. Furthermore, the mitochondrial membrane potential and cAMP significantly decreased.

  7. Activation of GPER-1 estradiol receptor downregulates production of testosterone in isolated rat Leydig cells and adult human testis.

    PubMed

    Vaucher, Laurent; Funaro, Michael G; Mehta, Akanksha; Mielnik, Anna; Bolyakov, Alexander; Prossnitz, Eric R; Schlegel, Peter N; Paduch, Darius A

    2014-01-01

    Estradiol (E2) modulates testicular functions including steroidogenesis, but the mechanisms of E2 signaling in human testis are poorly understood. GPER-1 (GPR30), a G protein-coupled membrane receptor, mediates rapid genomic and non-genomic response to estrogens. The aim of this study was to evaluate GPER-1 expression in the testis, and its role in estradiol dependent regulation of steroidogenesis in isolated rat Leydig cells and human testis. Isolated Leydig cells (LC) from adult rats and human testicular tissue were used in this study. Expression and localization studies of GPER-1 were performed with qRT-PCR, immunofluorescence, immunohistochemistry and Western Blot. Luteinizing Hormone (LH) -stimulated, isolated LC were incubated with estradiol, G-1 (GPER-1-selective agonist), and estrogen receptor antagonist ICI 182,780. Testosterone production was measured with radioimmunoassay. LC viability after incubation with G-1 was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. GPER-1 mRNA is abundantly expressed in rat LC and human testis. Co-localization experiments showed high expression levels of GPER-1 protein in LC. E2-dependent activation of GPER-1 lowers testosterone production in isolated rats LCs and in human testis, with statistically and clinically significant drops in testosterone production by 20-30% as compared to estradiol-naïve LC. The exposure to G-1 does not affect viability of isolated LCs. Our results indicate that activation of GPER-1 lowers testosterone levels in the rat and human testis. The expression of GPER-1 in human testis, which lack ERα, makes it an exciting target for developing new agents affecting testosterone production in men.

  8. Lead induces apoptosis in mouse TM3 Leydig cells through the Fas/FasL death receptor pathway.

    PubMed

    He, Xiuyuan; Wu, Jing; Yuan, Liyun; Lin, Feng; Yi, Jine; Li, Jing; Yuan, Hui; Shi, Jinling; Yuan, Tingting; Zhang, Shufang; Fan, Yongheng; Zhao, Zhihang

    2017-12-01

    The study was aimed to investigate the effect of Pb toxicity on mouse Leydig cells and its molecular mechanism. The TM3 cells were cultured in vitro and exposed to Pb at different concentrations for 24h. The effects of Pb on cell proliferation and apoptosis were analyzed with MTT and Annexin V-FITC/PI via flow cytometry, respectively. Expression levels of Fas, Fas-L and caspase-8 in TM3 cells were determined by western blot. As well as the inhibitory effect of the caspase-8 inhibitor Z-IETD-FMK on cell apoptosis. We found that Pb treatment significantly decreased the cellar viability (P<0.05), increased the apoptosis (P<0.01) and the Fas, FasL, and caspase-8 expression levels in Pb-treated cells as compared to the control cells (P<0.05 or P<0.01). Furthermore, the caspase-8 inhibitor effectively block the Pb-induced cell apoptosis. Taken together, our data suggest that Pb-induced TM3 cell toxic effect may involve in the Fas/FasL death receptor signaling pathway. Copyright © 2017. Published by Elsevier B.V.

  9. Consequences of tributyltin chloride induced stress in Leydig cells: an ex-vivo approach.

    PubMed

    Mitra, Sumonto; Srivastava, Ankit; Khanna, Smita; Khandelwal, Shashi

    2014-03-01

    Tributyltin (TBT), a member of the organotin family, is a known endocrine disruptor. It persists long in the environment and is widely used in various industrial applications. This study was planned to understand its toxic influence on Leydig cells isolated from 28 day old wistar rats. In-vitro exposure to TBT-Chloride (TBTC) (300-3000 nM) reduced cell viability (DNA fragmentation, nuclear condensation and MTT assay) and affected testosterone production. TBTC induced both apoptotic and necrotic cell death (AnnexinV/PI binding assay). Involvement of calcium (Ca(2+)), redox imbalance (ROS, GSH and TBARS) and mitochondria in TBTC toxicity was evaluated by using Ca(2+) inhibitors (BAPTA-AM, EGTA, Ruthenium Red), free radical scavengers (NAC, C-Phycocyanin) and mitochondrial permeability transition pore inhibitor (Cyclosporine A). Protein expression analysis of phosphorylated MAPKinases (ERK1/2, JNK1/2, & p38), steroidogenic proteins (3β-HSD, StAR & TSPO) and apoptotic proteins (Bax, Bcl2) illustrates the cytotoxic and anti-steroidogenic activity of TBTC. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. EFFECT OF CADMIUM AND OTHER METAL CATIONS ON IN VITRO LEYDIG CELL TESTOSTERONE PRODUCTION

    EPA Science Inventory

    In vivo assessment of toxicant action on Leydig cell function is subject to homeostatic mechanisms which make it difficult to determine whether any changes seen in serum testosterone (T) concentration are due to extragonadal endocrine alternations or to a direct effect on the Ley...

  11. Binding and internalization in vivo of (/sup 125/I)hCG in Leydig cells of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermo, L.; Lalli, M.

    1988-01-01

    The present study was performed to demonstrate the binding, mode of uptake, pathway and fate of iodinated human chorionic gonadotropin ((/sup 125/I)hCG) by Leydig cells in vivo using electron microscope radioautography. Following a single injection of (/sup 125/I)hCG into the interstitial space of the testis, the animals were fixed by perfusion with glutaraldehyde at 20 minutes, 1, 3, 6 and 24 hours. The electron microscope radioautographs demonstrated a prominent and qualitatively similar binding of the labeled hCG on the microvillar processes of the Leydig cells at 20 minutes, 1, 3, and 6 hours. The specificity of the (/sup 125/I)hCG bindingmore » was determined by injecting a 100-fold excess of unlabeled hormone concurrently with the labeled hormone. Under these conditions, the surface, including the microvillar processes of Leydig cells, was virtually unlabeled, indicating that the binding was specific and receptor-mediated. In animals injected with labeled hCG and sacrificed 20 minutes later, silver grains were also seen overlying the limiting membrane of large, uncoated surface invaginations and large subsurface vacuoles with an electron-lucent content referred to as endosomes. A radioautographic reaction was also seen within multivesicular bodies with a pale stained matrix. At 1 hour, silver grains appeared over dense multivesicular bodies and occasionally over secondary lysosomes, in addition to the structures mentioned above, while at 3 and 6 hours, an increasing number of secondary lysosomes became labeled. At 24 hours, binding of (/sup 125/I)hCG to the microvillar processes of Leydig cells persisted but was diminished, although a few endosomes, multivesicular bodies and secondary lysosomes still showed a radioautographic reaction. No membranous tubules that were seen in close proximity to, or in continuity with, endosomes and multivesicular bodies were observed to be labeled at any time interval.« less

  12. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation.

    PubMed

    Alamdar, Ambreen; Xi, Guochen; Huang, Qingyu; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2017-07-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cervical embryonal rhabdomyosarcoma and ovarian Sertoli–Leydig cell tumour: a more than coincidental association of two rare neoplasms?

    PubMed Central

    McClean, Gareth E; Kurian, Susy; Walter, Noel; Kekre, A; McCluggage, W Glenn

    2007-01-01

    A case in which an embryonal rhabdomyosarcoma of the cervix and an ovarian Sertoli–Leydig cell tumour of intermediate differentiation occurred in a 13‐year‐old girl is described. Although initially considered as a chance association, a review of the literature showed the co‐occurrence of these two uncommon neoplasms in three previous cases. The reason for this association, which is thought to be more than coincidental, is not known, although an underlying genetic abnormality is a possibility. The ovarian tumour in this case was characterised by the presence of foci of cells with extremely pleomorphic nuclei, which initially raised the possibility of metastatic rhabdomyosarcoma. These were interpreted as foci of bizarre nuclei within the Sertoli–Leydig cell tumour. PMID:17347287

  14. Regulation of gonadotropin receptors, gonadotropin responsiveness, and cell multiplication by somatomedin-C and insulin in cultured pig Leydig cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernier, M.; Chatelain, P.; Mather, J.P.

    1986-11-01

    The author have investigated the effects of insulin and somatomedin-C/insulin like growth factor I(Sm-C) in purified porcine Leydig cells in vitro on gonadotrophins (hCG) receptor number, hCG responsiveness (cAMP and testosterone production), and thymidine incorporation into DNA. Leydig cells cultured in a serum-free medium containing transferrin, vitamin E, and insulin (5 ..mu..g/ml) maintained fairly constant both hCG receptors and hCG responsiveness. When they were cultured for 3 days in the same medium without insulin, there was a dramatic decline (more than 80%) in both hCG receptor number and hCG responsiveness. However the cAMP but not the testosterone response to forskolinmore » was normal. Both insulin and Sm-C at nanomolar concentrations prevent the decline of both hCG receptors and hCG-induced cAMP production. At nanomolar concentrations, Sm-C and insulin enhanced hCG-induced testosterone production but the effect of Sm-C was significantly higher than that of insulin. However, the effect of insulin at higher concentrations (5 ..mu..g/ml) was significantly higher than that of Sm-C at 50 ng/ml. In contrast, at nanomolar concentrations only Sm-C stimulated (/sup 3/H)-thymidine incorporation into DNA and cell multiplication, the stimulatory effect of insulin on these parameters, was seen only at micromolar concentrations. These results indicate that both Sm-C and insulin acting through the receptors increase Leydig cell steroidogenic responsiveness to hCG by increasing hCG receptor number and improving some step beyond cAMP formation. In contrast, the mitogenic effects of insulin are mediated only through Sm-C receptors.« less

  15. Estrogenic compounds inhibit gap junctional intercellular communication in mouse Leydig TM3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwase, Yumiko; Fukata, Hideki; Mori, Chisato

    2006-05-01

    Some estrogenic compounds are reported to cause testicular disorders in humans and/or experimental animals by direct action on Leydig cells. In carcinogenesis and normal development, gap junctional intercellular communication (GJIC) plays an essential role in maintaining homeostasis. In this study, we examine the effects of diethylstilbestrol (DES, a synthetic estrogen), 17{beta}-estradiol (E{sub 2}, a natural estrogen), and genistein (GEN, a phytoestrogen) on GJIC between mouse Leydig TM3 cells using Lucifer yellow microinjection. The three compounds tested produced GJIC inhibition in the TM3 cells after 24 h. Gradually, 10 {mu}M DES began to inhibit GJIC for 24 h and this effectmore » was observed until 72 h. On the other hand, both 20 {mu}M E{sub 2} and 25 {mu}M GEN rapidly inhibited GJIC in 6 h and 2 h, respectively. The effects continued until 24 h, but weakened by 72 h. Furthermore, a combined effect at {mu}M level between DES and E{sub 2} on GJIC inhibition was observed, but not between GEN and E{sub 2}. DES and E{sub 2} showed GJIC inhibition at low dose levels (nearly physiological estrogen levels) after 72 h, but GEN did not. DES-induced GJIC inhibition at 10 pM and 10 {mu}M was completely counteracted by ICI 182,780 (ICl), an estrogen receptor antagonist. On the other hand, the inhibitory effects on GJIC with E{sub 2} (10 pM and 20 {mu}M) and GEN (25 {mu}M) were partially blocked by ICI or calphostin C, a protein kinase C (PKC) inhibitor, and were completely blocked by the combination of ICI and calphostin C. These results demonstrate that DES inhibits GJIC between Leydig cells via the estrogen receptor (ER), and that E{sub 2} and GEN inhibit GJIC via ER and PKC. These estrogenic compounds may have different individual nongenotoxic mechanism including PKC pathway on testicular carcinogenesis or development.« less

  16. Inhibition of transcription affects synthesis of steroidogenic acute regulatory protein and steroidogenesis in MA-10 mouse Leydig tumor cells.

    PubMed

    Clark, B J; Combs, R; Hales, K H; Hales, D B; Stocco, D M

    1997-11-01

    Hormonal induction of steroidogenesis in the adrenal and gonads is dependent on the synthesis and function of the steroidogenic acute regulatory protein (StAR). As a first approach to investigate the role of translation in the control of StAR expression, we examined StAR protein synthesis and steroid production in MA-10 mouse Leydig tumor cells in the presence of the transcriptional inhibitor, actinomycin D. We show that human CG (hCG)-induced StAR synthesis, as determined by radiolabeling MA-10 cells with [35S]methionine and immunoprecipitation of StAR, is blocked by actinomycin D. The rate of hCG-stimulated progesterone production is also decreased, but not completely blocked, suggesting a possible StAR-independent mechanism that may contribute approximately 10-20% of the acute steroidogenic potential of the cells. When MA-10 cells were pretreated with hCG to increase StAR messenger RNA levels and then the proteins radiolabeled in the presence of hCG or hCG plus actinomycin D, no difference was observed in the amount of the 30-kDa StAR protein synthesized. However, a 50% increase in the precursor form of StAR protein was detected with hCG treatment alone. These data suggest that ongoing StAR protein synthesis is not inhibited by actinomycin D, but that continued synthesis requires transcriptional activity. Progesterone production was inhibited by actinomycin D in the hCG-pretreated cells, supporting the proposal that maintaining StAR protein synthesis is required for optimal steroid production in MA-10 mouse Leydig tumor cells.

  17. A METABOLITE OF METHOXYCHLOR,2,2-BIS(P-HYDOXYPHENYL)-1,1,1- TRICHLOROETHANE REDUCES TESTOSTERONE BIOSYNTHESIS IN RAT LEYDIG CELLS THROUGH SUPPRESSION OF STEADY-STATE MESSENGER RIBONUCLEIC ACID LEVELS OF THE CHOLESTEROL SIDE-CHAIN CLEAVAGE ENZYME

    EPA Science Inventory

    Postnatal development of Leydig cells involves transformation through three stages: progenitor, immature, and adult Leydig cells. The process of differentiation is accompanied by a progressive increase in the capacity of Leydig cells to produce testosterone (T). T promotes the ma...

  18. High-fat diet aggravates 2,2',4,4'-tetrabromodiphenyl ether-inhibited testosterone production via DAX-1 in Leydig cells in rats.

    PubMed

    Zhang, Zhan; Yu, Yongquan; Xu, Hengsen; Wang, Chao; Ji, Minghui; Gu, Jun; Yang, Lu; Zhu, Jiansheng; Dong, Huibin; Wang, Shou-Lin

    2017-05-15

    Growing evidence has revealed that a high-fat diet (HFD) could lead to disorders of glycolipid metabolism and insulin-resistant states, and HFDs have been associated with the inhibition of testicular steroidogenesis. Our previous study demonstrated that 2,2',4,4'-tetrabromodiphenyl ether (BDE47) could increase the risk of diabetes in humans and reduce testosterone production in rats. However, whether the HFD affects BDE47-inhibited testosterone production by elevating insulin levels and inducing related pathways remains unknown. In male rats treated with BDE47 by gavage for 12 weeks, the HFD significantly increased the BDE47 content of the liver and testis and increased the weight of the adipose tissue; increased macrovesicular steatosis in the liver and the levels of triglycerides, fasting glucose and insulin; further aggravated the disruption of the seminiferous epithelium; and lowered the level of testosterone, resulting in fewer sperm in the epididymis. Of note, the HFD enhanced BDE47-induced DAX-1 expression and decreased the expression levels of StAR and 3β-HSD in the testicular interstitial compartments in rats. In isolated primary Leydig cells from rats, BDE47 or insulin increased DAX-1 expression, decreased the expression of StAR and 3β-HSD, and reduced testosterone production, which was nearly reversed by knocking down DAX-1. These results indicated that the HFD aggravates BDE47-inhibited testosterone production through hyperinsulinemia, and the accumulation of testicular BDE47 that induces the up-regulation of DAX-1 and the subsequent down-regulation of steroidogenic proteins, i.e., StAR and 3β-HSD, in Leydig cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Gonadotropin stimulation of cyclic adenosine monophosphate and testosterone production without detectable high-affinity binding sites in purified Leydig cells from rat testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, E.S.; Bhalla, V.K.

    1991-02-01

    Rat testicular interstitial cells were separated by three different gradient-density procedures and, with each, two biochemically and morphologically distinct cell fractions were isolated. The lighter density cells in fraction-I bound iodine 125-labeled human chorionic gonadotropin (hCG) with high-affinity (apparent equilibrium dissociation constant, Kd, approximately 10{sup {minus} 10} M) without producing either cyclic adenosine monophosphate or testosterone in response to hormone action. The heavier-density cells displayed morphologic features typical of Leydig cells and produced cyclic adenosine monophosphate and testosterone in the presence of hCG without detectable {sup 125}I-labeled hCG high-affinity binding. These cell fractions were further characterized by studies using deglycosylatedmore » hCG, a known antagonist to hCG action. Cell concentration-dependent studies with purified Leydig cells revealed that maximal testosterone production was achieved when lower cell concentrations (0.5 x 10(6) cells/250 microliters) were used for in vitro hCG stimulation assays. Under these conditions, the {sup 125}I-labeled hCG binding was barely detectable (2.24 fmol; 2,698 sites/cell). Furthermore, these studies revealed that the hCG-specific binding in Leydig cells is overestimated by the classic method for nonspecific binding correction using excess unlabeled hormone. An alternate method is presented.« less

  20. Bilateral Leydig cell tumor in a six-year-old intersex goat affected by Polled Intersex Syndrome.

    PubMed

    Monteagudo, L V; Arruga, M V; Bonafonte, J I; Ordás, M; Whyte, A; Gallego, M; Bascuas, J A; Sierra, I

    2008-01-01

    A 6-year-old, sterile, Blanca Celtibérica breed adult doe was referred to our faculty. The doe had external female genitalia, a short anogenital distance, and normally shaped udders. Masculinization signs in the head shape and male behavior were also noted at the time of referral. Genetic analysis demonstrated normal 2n = 60 XX karyotype and an absence of the sex-determining region Y (SRY). The animal was homozygous for a DNA deletion responsible for the Polled Intersex Syndrome (PIS). A uterus and 2 uterine horns were present at the postmortem examination. Gartner's ducts and degenerated Wolffian derivatives persisted. There were 2 intra-abdominal testicle-like structures, one of which consisted of epididymal and deferent ducts. An advanced Leydig cell tumor, resulting in almost total destruction of the intratesticular structures, was also observed. Leydig cell tumors usually produce testosterone. Thus, these histologic findings are compatible with the evident virilization.

  1. A randomized double-blind study of testosterone replacement therapy or placebo in testicular cancer survivors with mild Leydig cell insufficiency (Einstein-intervention).

    PubMed

    Bandak, Mikkel; Jørgensen, Niels; Juul, Anders; Lauritsen, Jakob; Kreiberg, Michael; Oturai, Peter Sandor; Helge, Jørn Wulff; Daugaard, Gedske

    2017-07-03

    Elevated serum levels of luteinizing hormone and slightly decreased serum levels of testosterone (mild Leydig cell insufficiency) is a common hormonal disturbance in testicular cancer (TC) survivors. A number of studies have shown that low serum levels of testosterone is associated with low grade inflammation and increased risk of metabolic syndrome. However, so far, no studies have evaluated whether testosterone substitution improves metabolic dysfunction in TC survivors with mild Leydig cell insufficiency. This is a single-center, randomized, double-blind, placebo-controlled study, designed to evaluate the effect of testosterone replacement therapy in TC survivors with mild Leydig cell insufficiency. Seventy subjects will be randomized to receive either testosterone replacement therapy or placebo. The subjects will be invited for an information meeting where informed consent will be obtained. Afterwards, a 52-weeks treatment period begins in which study participants will receive a daily dose of transdermal testosterone or placebo. Dose adjustment will be made three times during the initial 8 weeks of the study to a maximal daily dose of 40 mg of testosterone in the intervention arm. Evaluation of primary and secondary endpoints will be performed at baseline, 26 weeks post-randomization, at the end of treatment (52 weeks) and 3 months after completion of treatment (week 64). This study is the first to investigate the effect of testosterone substitution in testicular cancer survivors with mild Leydig cell insufficiency. If positive, it may change the clinical handling of testicular cancer survivors with borderline low levels of testosterone. ClinicalTrials.gov : NCT02991209 (November 25, 2016).

  2. 1950MHz Radio Frequency Electromagnetic Radiation Inhibits Testosterone Secretion of Mouse Leydig Cells

    PubMed Central

    Lin, Yan-Yun; Wu, Tao; Liu, Jun-Ye; Gao, Peng; Li, Kang-Chu; Guo, Qi-Yan; Yuan, Meng; Lang, Hai-Yang; Zeng, Li-Hua; Guo, Guo-Zhen

    2017-01-01

    More studies that are focused on the bioeffects of radio-frequency (RF) electromagnetic radiation that is generated from the communication devices, but there were few reports with confirmed results about the bioeffects of RF radiation on reproductive cells. To explore the effects of 1950 MHz RF electromagnetic radiation (EMR) on mouse Leydig (TM3) cells. TM3 cells were irradiated or sham-irradiated continuously for 24 h by the specific absorption rate (SAR) 3 W/kg radiation. At 0, 1, 2, 3, 4, and 5 days after irradiation, cell proliferation was detected by cell counting kit-8 (CCK-8) method, cell cycle distribution, percentage of apoptosis, and cellular reactive oxygen species (ROS) were examined by flow cytometry, Testosterone level was measured using enzyme-linked immunosorbent assay (ELISA) assay, messenger ribonucleic acid (mRNA) expression level of steroidogenic acute regulatory protein (StAR) and P450scc in TM3 cells was detected by real-time polymerase chain reaction (PCR). After being irradiated for 24 h, cell proliferation obviously decreased and cell cycle distribution, secretion capacity of Testosterone, and P450scc mRNA level were reduced. While cell apoptosis, ROS, and StAR mRNA level did not change significantly. The current results indicated that 24 h of exposure at 1950 MHz 3 W/kg radiation could cause some adverse effects on TM3 cells proliferation and Testosterone secretion, further studies about the biological effects in the reproductive system that are induced by RF radiation are also needed. PMID:29295490

  3. 1950MHz Radio Frequency Electromagnetic Radiation Inhibits Testosterone Secretion of Mouse Leydig Cells.

    PubMed

    Lin, Yan-Yun; Wu, Tao; Liu, Jun-Ye; Gao, Peng; Li, Kang-Chu; Guo, Qi-Yan; Yuan, Meng; Lang, Hai-Yang; Zeng, Li-Hua; Guo, Guo-Zhen

    2017-12-23

    More studies that are focused on the bioeffects of radio-frequency (RF) electromagnetic radiation that is generated from the communication devices, but there were few reports with confirmed results about the bioeffects of RF radiation on reproductive cells. To explore the effects of 1950 MHz RF electromagnetic radiation (EMR) on mouse Leydig (TM3) cells. TM3 cells were irradiated or sham-irradiated continuously for 24 h by the specific absorption rate (SAR) 3 W/kg radiation. At 0, 1, 2, 3, 4, and 5 days after irradiation, cell proliferation was detected by cell counting kit-8 (CCK-8) method, cell cycle distribution, percentage of apoptosis, and cellular reactive oxygen species (ROS) were examined by flow cytometry, Testosterone level was measured using enzyme-linked immunosorbent assay (ELISA) assay, messenger ribonucleic acid (mRNA) expression level of steroidogenic acute regulatory protein (StAR) and P450scc in TM3 cells was detected by real-time polymerase chain reaction (PCR). After being irradiated for 24 h, cell proliferation obviously decreased and cell cycle distribution, secretion capacity of Testosterone, and P450scc mRNA level were reduced. While cell apoptosis, ROS, and StAR mRNA level did not change significantly. The current results indicated that 24 h of exposure at 1950 MHz 3 W/kg radiation could cause some adverse effects on TM3 cells proliferation and Testosterone secretion, further studies about the biological effects in the reproductive system that are induced by RF radiation are also needed.

  4. Sertoli Cell Wt1 Regulates Peritubular Myoid Cell and Fetal Leydig Cell Differentiation during Fetal Testis Development.

    PubMed

    Wen, Qing; Wang, Yuqian; Tang, Jixin; Cheng, C Yan; Liu, Yi-Xun

    2016-01-01

    Sertoli cells play a significant role in regulating fetal testis compartmentalization to generate testis cords and interstitium during development. The Sertoli cell Wilms' tumor 1 (Wt1) gene, which encodes ~24 zinc finger-containing transcription factors, is known to play a crucial role in fetal testis cord assembly and maintenance. However, whether Wt1 regulates fetal testis compartmentalization by modulating the development of peritubular myoid cells (PMCs) and/or fetal Leydig cells (FLCs) remains unknown. Using a Wt1-/flox; Amh-Cre mouse model by deleting Wt1 in Sertoli cells (Wt1SC-cKO) at embryonic day 14.5 (E14.5), Wt1 was found to regulate PMC and FLC development. Wt1 deletion in fetal testis Sertoli cells caused aberrant differentiation and proliferation of PMCs, FLCs and interstitial progenitor cells from embryo to newborn, leading to abnormal fetal testis interstitial development. Specifically, the expression of PMC marker genes α-Sma, Myh11 and Des, and interstitial progenitor cell marker gene Vcam1 were down-regulated, whereas FLC marker genes StAR, Cyp11a1, Cyp17a1 and Hsd3b1 were up-regulated, in neonatal Wt1SC-cKO testes. The ratio of PMC:FLC were also reduced in Wt1SC-cKO testes, concomitant with a down-regulation of Notch signaling molecules Jag 1, Notch 2, Notch 3, and Hes1 in neonatal Wt1SC-cKO testes, illustrating changes in the differentiation status of FLC from their interstitial progenitor cells during fetal testis development. In summary, Wt1 regulates the development of FLC and interstitial progenitor cell lineages through Notch signaling, and it also plays a role in PMC development. Collectively, these effects confer fetal testis compartmentalization.

  5. Disrupting androgen production of Leydig cells by resveratrol via direct inhibition of human and rat 3β-hydroxysteroid dehydrogenase.

    PubMed

    Li, Ling; Chen, Xiaomin; Zhu, Qiqi; Chen, Dongxin; Guo, Jingjing; Yao, Wenwen; Dong, Yaoyao; Wei, Jia; Lian, Qingquan; Ge, Ren-Shan; Yuan, Bo

    2014-04-07

    Resveratrol is a polyphenol produced by several plants. It has been demonstrated that it has anti-inflammatory, antitumor, and anti-diabetic effects in animal models. However, its side effects are generally unclear. In the present study, we reported that resveratrol inhibited luteinizing hormone-stimulated androgen production in rat immature Leydig cells. Further analysis demonstrated that it was a competitive inhibitor of rat and human 3β-hydroxysteroid dehydrogenase with IC₆₀ values of 3.87 ± 0.06 and 8.48 ± 0.04 μM, respectively. The inhibition on 3β-hydroxysteroid dehydrogenase was specific since it did not inhibit another hydroxysteroid dehydrogenase 17β-hydroxysteroid dehydrogenase 3 at the highest concentration (100 μM) tested. In conclusion, resveratrol potentially interferes with androgen biosynthesis of rat Leydig cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Localization and expression of Orexin A and its receptor in mouse testis during different stages of postnatal development.

    PubMed

    Joshi, Deepanshu; Singh, Shio Kumar

    2017-01-15

    Orexin A (OXA), a hypothalamic neuropeptide, is involved in regulation of various biological functions and its actions are mediated through G-protein-coupled receptor, OX1R. This neuropeptide has emerged as a central neuroendocrine modulator of reproductive functions. Both OXA and OX1R have been shown to be expressed in peripheral organs such as gastrointestinal and genital tracts. In the present study, localization and expression of OXA and OX1R in mouse testis during different stages of postnatal development have been investigated. Immunohistochemical results demonstrated localization of OXA and OX1R in both the interstitial and the tubular compartments of the testis throughout the period of postnatal development. In testicular sections on 0day postpartum (dpp), gonocytes, Sertoli cells and foetal Leydig cells showed OXA and OX1R-immunopositive signals. At 10dpp, Sertoli cells, spermatogonia, early spermatocytes and Leydig cells showed immunopositive signals for both, the ligand and the receptor. On 30 and 90dpp, the spermatogonia, Sertoli cells, spermatocytes, spermatids and Leydig cells showed the OXA and OX1R-immunopositive signals. At 90dpp, strong OXA-positive signals were seen in Leydig cells, primary spermatocytes and spermatogonia, while OX1R-immunopositive intense signals were observed in Leydig cells and elongated spermatids. Further, semiquantitative RT-PCR and immunoblot analyses showed that OXA and OX1R were expressed in the testis both at transcript and protein levels during different stages of postnatal development. The expression of OXA and OX1R increased progressively from day of birth (0dpp) until adulthood (90dpp), with maximal expression at 90 dpp. The results suggest that OXA and OX1R are expressed in the testis and that they may help in proliferation and development of germ cells, Leydig cells and Sertoli cells, and in the spermatogenic process and steroidogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Functional cooperation between GATA factors and cJUN on the star promoter in MA-10 Leydig cells.

    PubMed

    Martin, Luc J; Bergeron, Francis; Viger, Robert S; Tremblay, Jacques J

    2012-01-01

    Steroid hormone biosynthesis requires the steroidogenic acute regulatory protein (STAR). STAR is part of a protein complex that transports cholesterol through the mitochondrial membrane where steroidogenesis begins. Several transcription factors participate to direct the proper spatiotemporal and hormonal regulation of the Star gene in Leydig cells. Mechanistically, this is believed to involve the functional interplay between many of these factors. Here we report a novel transcriptional cooperation between GATA factors and cJUN on the mouse Star and human STAR promoters in MA-10 Leydig cells. This cooperation was observed with different GATA members (GATA1, 4, and 6), whereas only cJUN could cooperate with GATA factors. GATA/cJUN transcriptional cooperation on the Star promoter is mediated via closely juxtaposed GATA and AP-1 binding motifs. Mutation of all functional GATA and cJUN elements abolished GATA/cJUN cooperation, which is in agreement with previous data reporting a direct interaction between GATA4 and cJUN in a heterologous system. These data add valuable new insights that further define the molecular mechanisms that govern Star transcription in steroidogenic cells of the testis.

  8. Mechanism of bisphenol AF-induced progesterone inhibition in human chorionic gonadotrophin-stimulated mouse Leydig tumor cell line (mLTC-1) cells.

    PubMed

    Feng, Yixing; Shi, Jiachen; Jiao, Zhihao; Duan, Hejun; Shao, Bing

    2018-06-01

    Bisphenol AF (BPAF) has been shown to inhibit testicular steroidogenesis in male rats. However, the precise mechanisms related to the toxic effects of BPAF on reproduction remain poorly understood. In the present study, a mouse Leydig tumor cell line (mLTC-1) was used as a model to investigate the mechanism of steroidogenic inhibition and to identify the molecular target of BPAF. Levels of progesterone and the concentration of cyclic adenosine monophosphate (cAMP) in cells exposed to BPAF were detected, and expression of key genes and proteins in steroid biosynthesis was assessed. The results showed that BPAF exposure decreased human chorionic gonadotrophin (hCG)-stimulated progesterone production in a dose-dependent manner. The 24-h IC 50 (half maximal inhibitory concentration) value for BPAF regarding progesterone production was 70.2 µM. A dramatic decrease in cellular cAMP concentration was also observed. Furthermore, BPAF exposure inhibited expression of genes and proteins involved in cholesterol transport and progesterone biosynthesis. Conversely, the protein levels of steroidogenic acute regulatory protein (StAR) were not altered, and those of progesterone were still decreased upon 22R-hydroxycholesterol treatment of cells exposed to higher doses of BPAF. Together, these data indicate that BPAF exposure inhibits progesterone secretion in hCG-stimulated mLTC-1 cells by reducing expression of scavenger receptor class B type I (SR-B1) and cytochrome P450 (P450scc) due to the adverse effects of cAMP. However, StAR might not be the molecular target in this process. © 2018 Wiley Periodicals, Inc.

  9. Long-term feeding of hydroalcoholic extract powder of Lepidium meyenii (maca) enhances the steroidogenic ability of Leydig cells to alleviate its decline with ageing in male rats.

    PubMed

    Yoshida, K; Ohta, Y; Kawate, N; Takahashi, M; Inaba, T; Hatoya, S; Morii, H; Takahashi, K; Ito, M; Tamada, H

    2018-02-01

    This study examined whether feeding hydroalcoholic extract of Lepidium meyenii (maca) to 8-week-old (sexually maturing) or 18-week-old (mature) male rats for more than a half year affects serum testosterone concentration and testosterone production by Leydig cells cultured with hCG, 22R-hydroxycholesterol or pregnenolone. Testosterone concentration was determined in the serum samples obtained before and 6, 12, 18 and 24 weeks after the feeding, and it was significantly increased only at the 6 weeks in the group fed with the maca extract to maturing rats when it was compared with controls. Testosterone production by Leydig cells significantly increased when cultured with hCG by feeding the maca extract to maturing rats for 27 weeks (35 weeks of age) and when cultured with 22R-hydroxycholesterol by feeding it to mature rats for 30 weeks (48 weeks of age). Overall testosterone production by cultured Leydig cells decreased to about a half from 35 to 48 weeks of age. These results suggest that feeding the maca extract for a long time to male rats may enhance the steroidogenic ability of Leydig cells to alleviate its decline with ageing, whereas it may cause only a transient increase in blood testosterone concentration in sexually maturing male rats. © 2017 Blackwell Verlag GmbH.

  10. Arachidonic acid is involved in the regulation of hCG induced steroidogenesis in rat Leydig cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Didolkar, A.K.; Sundaram, K.

    1987-07-27

    Phospholipase C (PLC), an enzyme involved in the hydrolysis of membrane phospholipid- phosphatidylinositol-bisphosphate to insositol triphosphate and diacylglycerol, and Phorbol 12, myristate 13, acetate (PMA) could significantly stimulate testosterone (T) secretion from Leydig cells. Arachidonic acid (AA) stimulated T secretion by about 2 fold. The steroidogenic effect of PLC and AA was biphasic. At low concentrations both PLC and AA augmented hCG induced T secretion, while at higher concentrations they inhibited steroid production. AA also had a biphasic effect on hCG induced cyclic AMP secretion. 5,8,11,14 Eicosatetrayenoic acid, a general inhibitor of AA metabolism, and Nordihydroguaiaretic acid, an inhibitor ofmore » the lipoxygenase pathway of AA metabolism, inhibited hCG induced T secretion while indomethacin, an inhibitor of cyclo-oxygenase pathway, had no effect on hCG induced T secretion. The authors conclude from these data that AA plays a role in the regulation of hCG induced steroidogenic responses in rat Leydig cells and that the metabolite(s) of AA that are involved are not cyclo-oxygenase products. 28 references, 4 figures, 2 tables.« less

  11. Franz von Leydig (1821-1908), pioneer of comparative histology.

    PubMed

    Schneider, Marlon R

    2012-05-01

    Franz von Leydig, a German histologist and zoologist, is known to every student of human or animal anatomy because of the testicular testosterone-producing cells carrying his name. However, he made many contributions to our knowledge of the fine structure of animal tissues, including more than 200 scientific articles and several books. His most important work, the book Lehrbuch der Histologie des Menschen und der Thiere, established him as a pioneer if not the founder of comparative histology. Leydig taught at three different universities (Würzburg, Tübingen and Bonn) and received many honours from scientific organizations worldwide, including the Royal Society. He died in Rothenburg ob der Tauber, the town of his birth, aged 86 years.

  12. Morphological and functional maturation of Leydig cells: from rodent models to primates.

    PubMed

    Teerds, Katja J; Huhtaniemi, Ilpo T

    2015-01-01

    Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of

  13. Retarded differentiation of Leydig cells and increased apoptosis of germ cells in the initial round of spermatogenesis of rats with lethal dwarf and epilepsy (lde/lde) phenotypes.

    PubMed

    Takenaka, Motoo; Yagi, Mio; Amakasu, Kohei; Suzuki, Katsushi; Suzuki, Hiroetsu

    2008-01-01

    The lde/lde rats show a severe dwarf phenotype with early postnatal lethality and a high incidence of epileptic seizure. Seizures are first detected in this model between 16 and 63 days of age, and mostly begin as wild running and progress to generalized tonic-clonic convulsions. Because our histological examination detected many extracellular vacuoles in the hippocampus and amygdaloid bodies of these animals at 28 days of age, these pathological alterations may be related to the epileptogenesis in lde/lde rats. In addition to these defects, male lde/lde rats have apparently smaller testes with reduced number of germ cells and poorly matured adult-type Leydig cells in comparison with wild-type controls. In the present study, we performed anatomical, histological, and endocrinologic examinations to characterize the testicular phenotype of lde/lde rats at 21, 28, 35, and 56 days of age. Male lde/lde rats showed severely retarded growth of the testes and accessory sex organs. Their seminiferous tubules were significantly smaller and contained markedly fewer germ cells at all time points examined as compared with controls. Significantly fewer Sertoli cells at 21 and 28 days of age, markedly decreased spermatocyte number at 28 days of age, and delayed appearance of spermatids at 56 days of age were observed in the testes of lde/lde rats. More TUNEL (T&T-mediated duTP-biotin nick-end labeling)-positive cells were detected in lde/lde seminiferous tubules, and the largest number of apoptotic cells was recorded at 28 days of age. The increases in 3beta-hydroxysteroid dehydrogenase-positive adult-type Leydig cells and 11beta-hydroxysteroid dehydrogenase-positive mature adult-type Leydig cells were also severely retarded in the testes of lde/lde rats. Consistent with these defects, significantly lower plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone concentrations were detected in lde/lde males at 28 days of age, and weak immunostaining

  14. A case of hirsutism due to bilateral diffuse ovarian Leydig cell hyperplasia in a post-menopausal woman.

    PubMed

    Ali, F S.M.; Stanaway, S E.R.S.; Zakhour, H D.; Spearing, G; Bowen-Jones, D

    2003-11-01

    Hyperandrogenism in females usually results from ovarian or adrenal pathology. We present a case of virilizaton due to very rare bilateral ovarian diffuse interstitial proliferation of Leydig cells with no tumour or hilar cell hyperplasia identified. Interestingly, the case was further complicated by the finding of high levels of testosterone in one adrenal vein on selective venous sampling (SVS), resulting in an unnecessary unilateral adrenalectomy. Further sampling found high levels also in the ovarian veins, and the condition was finally cured by bilateral oophorectomy.

  15. Stimulation of progesterone production by phorbol-12-myristate 13-acetate (PMA) in cultured Leydig tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, L.R.; Raju, V.S.; Stocco, D.M.

    1987-05-01

    It has been shown that addition of hCG or c-AMP to cultured Leydig tumor cells (MA-10) increases synthesis of progesterone as the major steroid. To investigate the possible involvement of protein kinase C (PK-C) in the regulation of steroid synthesis, the authors have studied the effect of PMA, an activator of PK-C, on progesterone production in MA-10 cells. The addition of PMA (100 ng/ml) stimulated steroid production whereas 4 -phorbol-12,13-didecanoate, an inactive phorbol ester, did not have any effects. Like hCG and c-AMP, PMA-stimulated progesterone production was inhibited by cycloheximide. hCG-stimulated steroid synthesis was inhibited by PMA. The addition ofmore » PMA to MA-10 Leydig cells further increased the c-AMP-stimulated progesterone production. To determine whether c-AMP has a obligatory role in the regulation of steroid production, the effect of adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (TFA), was studied on progesterone production in the presence of hCG. At lower dose (17 ng/ml) hCG-stimulated intracellular c-AMP levels and steroid production were inhibited by TFA (300 M). At higher dose of hCG (34 ng/ml) TFA did not inhibit the hCG-stimulated intracellular c-AMP levels, however, progesterone production was inhibited. Results suggest that the action of hCG, c-AMP and PMA in controlling steroidogenesis might be regulated by similar but different mechanisms.« less

  16. Combined Leydig cell and Sertoli cell dysfunction in 46,XX males lacking the sex determining region Y gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, B.; Vordermark, J.S.; Fechner, P.Y.

    1995-07-03

    We have evaluated 3 individuals with a rare form of 46,XX sex reversal. All of them had ambiguous external genitalia and mixed wolffian and muellerian structures, indicating both Leydig cell and Sertoli cell dysfunction, similar to that of patients with true hermaphroditism. However, gonadal tissue was not ovotesticular but testicular with varying degrees of dysgenesis. SRY sequences were absent in genomic DNA from peripheral leukocytes in all 3 subjects. Y centromere sequences were also absent, indicating that testis development did not occur because of a low level mosaicism of Y-bearing cells. The subjects in this report demonstrate that there ismore » a continuum in the extent of the testis determination in SRY-negative 46,XX sex reversal, ranging from nearly normal to minimal testicular development. 20 refs.« less

  17. Effect of brominated flame retardant BDE-47 on androgen production of adult rat Leydig cells.

    PubMed

    Zhao, Yan; Ao, Hong; Chen, Li; Sottas, Chantal M; Ge, Ren-Shan; Zhang, Yunhui

    2011-08-28

    As one of the most abundant polybrominated diphenylethers (PBDEs) detected in adipose tissue and breast milk of humans, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is considered as a potential endocrine disruptor. The objective of this study is to explore whether environment-related level of BDE-47 could affect the androgen production in rat Leydig cells. Rat adult Leydig cells (ALCs) were treated with 10(-8) to 10(-4)M BDE-47 in vitro, the production of testosterone (T) and steroidogenic acute regulatory (StAR) protein level were determined. BDE-47 significantly increased basal T production and steroidogenic acute regulatory protein (StAR) level of ALCs after treatment with 10(-4)M BED-47. Overall, LH (0.1ng/ml) stimulated T production in ALCs by 6 folds, however it did not increase T production in BDE-47-treated ALCs when compared to untreated ALC. Both 8-Br-cAMP (for cAMP signaling) and 22R-hydroxycholesterol (22-diol, for P450 cholesterol side chain cleavage enzyme P450scc activity) significantly increased T production in ALCs treated with BDE-47 from 10(-7) to 10(-5)M. The results of this study indicate that environment-related level of BDE-47 in vitro increased T production in a dose-dependent manner. The stimulated effects of BDE-47 on StAR and P450scc might play key roles in BDE-47-mediated stimulation of T production. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. A Rare Case of Intra-Endometrial Leiomyoma of Uterus Simulating Degenerated Submucosal Leiomyoma Accompanied by a Large Sertoli-Leydig Cell Tumor.

    PubMed

    Jeong, Kyungah; Lee, Sa Ra; Park, Sanghui

    2016-03-01

    A 50-year-old peri-menopausal woman presented with hard palpable mass on her lower abdomen and anemia from heavy menstrual bleeding. Ultrasonography showed a 13×12 cm sized hypoechoic solid mass in pelvis and a 2.5×2 cm hypoechoic cystic mass in uterine endometrium. Abdomino-pelvic computed tomography revealed a hypodense pelvic mass without enhancement, suggesting a leiomyoma of intraligamentary type or sex cord tumor of right ovary with submucosal myoma of uterus. Laparoscopy revealed a large Sertoli-Leydig cell tumor of right ovary with a very rare entity of intra-endometrial uterine leiomyoma accompanied by adenomyosis. The final diagnosis of ovarian sex-cord tumor (Sertoli-Leydig cell), stage Ia with intra-endometrial leiomyoma with adenomyosis, was made. Considering the large size of the tumor and poorly differentiated nature, 6 cycles of chemotherapy with Taxol and Carboplatin regimen were administered. There is neither evidence of major complications nor recurrence during 20 months' follow-up.

  19. Nestin in the epididymis is expressed in vascular wall cells and is regulated during postnatal development and in case of testosterone deficiency.

    PubMed

    Reckmann, Ansgar N; Tomczyk, Claudia U M; Davidoff, Michail S; Michurina, Tatyana V; Arnhold, Stefan; Müller, Dieter; Mietens, Andrea; Middendorff, Ralf

    2018-01-01

    Vascular smooth muscle cells (SMCs), distinguished by the expression of the neuronal stem cell marker nestin, may represent stem cell-like progenitor cells in various organs including the testis. We investigated epididymal tissues of adult nestin-GFP mice, rats after Leydig cell depletion via ethane dimethane sulfonate (EDS), rats and mice during postnatal development and human tissues. By use of Clarity, a histochemical method to illustrate a three-dimensional picture, we could demonstrate nestin-GFP positive cells within the vascular network. We localized nestin in the epididymis in proliferating vascular SMCs by colocalization with both smooth muscle actin and PCNA, and it was distinct from CD31-positive endothelial cells. The same nestin localization was found in the human epididymis. However, nestin was not found in SMCs of the epididymal duct. Nestin expression is high during postnatal development of mouse and rat and down-regulated towards adulthood when testosterone levels increase. Nestin increases dramatically in rats after Leydig cell ablation with EDS and subsequently low testosterone levels. Interestingly, during this period, the expression of androgen receptor in the epididymis is low and increases until nestin reaches normal levels of adulthood. Here we show that nestin, a common marker for neuronal stem cells, is also expressed in the vasculature of the epididymis. Our results give new insights into the yet underestimated role of proliferating nestin-expressing vascular SMCs during postnatal development and repair of the epididymis.

  20. An Evaluation of LH-Stimulated Testosterone Production by Highly Purified Rat Leydig Cells : A Complementary Screen for Steroidogenesis in the Testis

    EPA Science Inventory

    An Evaluation of LH-Stimulated Testosterone Production by Highly Purified Rat Leydig Cells: A Complementary Screen for Steroidogenesis in the Testis. 1Botteri, N., 2Suarez, J., 2Laws, S., 2Klinefelter, G.1Oak Ridge Institute for Science and Education, Oak Ridge, TN, 2 U.S. Env...

  1. Conazole fungicides inhibit Leydig cell testosterone secretion and androgen receptor activation in vitro.

    PubMed

    Roelofs, Maarke J E; Temming, A Roberto; Piersma, Aldert H; van den Berg, Martin; van Duursen, Majorie B M

    2014-01-01

    Conazole fungicides are widely used in agriculture despite their suspected endocrine disrupting properties. In this study, the potential (anti-)androgenic effects of ten conazoles were assessed and mutually compared with existing data. Effects of cyproconazole (CYPRO), fluconazole (FLUC), flusilazole (FLUS), hexaconazole (HEXA), myconazole (MYC), penconazole (PEN), prochloraz (PRO), tebuconazole (TEBU), triadimefon (TRIA), and triticonazole (TRIT) were examined using murine Leydig (MA-10) cells and human T47D-ARE cells stably transfected with an androgen responsive element and a firefly luciferase reporter gene. Six conazoles caused a decrease in basal testosterone (T) secretion by MA-10 cells varying from 61% up to 12% compared to vehicle-treated control. T secretion was concentration-dependently inhibited after exposure of MA-10 cells to several concentrations of FLUS (IC 50 = 12.4 μM) or TEBU (IC 50 = 2.4 μM) in combination with LH. The expression of steroidogenic and cholesterol biosynthesis genes was not changed by conazole exposure. Also, there were no changes in reactive oxygen species (ROS) formation that could explain the altered T secretion after exposure to conazoles. Nine conazoles decreased T-induced AR activation (IC 50 s ranging from 10.7 to 71.5 μM) and effect potencies (REPs) were calculated relative to the known AR antagonist flutamide (FLUT). FLUC had no effect on AR activation by T. FLUS was the most potent (REP = 3.61) and MYC the least potent (REP = 0.03) AR antagonist. All other conazoles had a comparable REP from 0.12 to 0.38. Our results show distinct in vitro anti-androgenic effects of several conazole fungicides arising from two mechanisms: inhibition of T secretion and AR antagonism, suggesting potential testicular toxic effects. These effects warrant further mechanistic investigation and clearly show the need for accurate exposure data in order to perform proper (human) risk assessment of this class of compounds.

  2. Constitutive luteinizing hormone receptor signaling causes sexual dysfunction and Leydig cell adenomas in male mice.

    PubMed

    Hai, Lan; Hiremath, Deepak S; Paquet, Marilène; Narayan, Prema

    2017-05-01

    The luteinizing hormone receptor (LHCGR) is necessary for fertility, and genetic mutations cause defects in reproductive development and function. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP). We have previously characterized a mouse model (KiLHRD582G) for FMPP that exhibits the same phenotype of precocious puberty, Leydig cell hyperplasia, and elevated testosterone as boys with the disorder. We observed that KiLHRD582G male mice became infertile by 6 months of age, although sperm count and motility were normal. In this study, we sought to determine the reason for the progressive infertility and the long-term consequences of constant LHCGR signaling. Mating with superovulated females showed that infertile KiLHRD582G mice had functional sperm and normal accessory gland function. Sexual behavior studies revealed that KiLHRD582G mice mounted females, but intromission was brief and ejaculation was not achieved. Histological analysis of the reproductive tract showed unique metaplastic changes resulting in pseudostratified columnar epithelial cells with cilia in the ampulla and chondrocytes in the penile body of the KiLHRD582G mice. The infertile KiLHRD582G exhibited enlarged sinusoids and a decrease in smooth muscle content in the corpora cavernosa of the penile body. However, collagen content was unchanged. Leydig cell adenomas and degenerating seminiferous tubules were seen in 1-year-old KiLHRD582G mice. We conclude that progressive infertility in KiLHRD582G mice is due to sexual dysfunction likely due to functional defects in the penis. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.

  3. Effects of Nandrolone Stimulation on Testosterone Biosynthesis in Leydig Cells

    PubMed Central

    Barone, Rosario; Marino Gammazza, Antonella; Sangiorgi, Claudia; Barone, Fulvio; Pitruzzella, Alessandro; Locorotondo, Nicola; Di Gaudio, Francesca; Salerno, Monica; Maglietta, Francesca; Sarni, Antonio Luciano; Di Felice, Valentina; Cappello, Francesco; Turillazzi, Emanuela

    2015-01-01

    Anabolic androgenic steroids (AAS) are among the drugs most used by athletes for improving physical performance, as well as for aesthetic purposes. A number of papers have showed the side effects of AAS in different organs and tissues. For example, AAS are known to suppress gonadotropin‐releasing hormone, luteinizing hormone, and follicle‐stimulating hormone. This study investigates the effects of nandrolone on testosterone biosynthesis in Leydig cells using various methods, including mass spectrometry, western blotting, confocal microscopy and quantitative real‐time PCR. The results obtained show that testosterone levels increase at a 3.9 μM concentration of nandrolone and return to the basal level a 15.6 μM dose of nandrolone. Nandrolone‐induced testosterone increment was associated with upregulation of the steroidogenic acute regulatory protein (StAR) and downregulation of 17a‐hydroxylase/17, 20 lyase (CYP17A1). Instead, a 15.6 µM dose of nandrolone induced a down‐regulation of CYP17A1. Further in vivo studies based on these data are needed to better understand the relationship between disturbed testosterone homeostasis and reproductive system impairment in male subjects. J. Cell. Physiol. 231: 1385–1391, 2016. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:26626779

  4. Parallel effect of 4-octylphenol and cyclic adenosine monophosphate (cAMP) alters steroidogenesis, cell viability and ROS production in mice Leydig cells.

    PubMed

    Jambor, Tomas; Greifova, Hana; Kovacik, Anton; Kovacikova, Eva; Tvrda, Eva; Forgacs, Zsolt; Massanyi, Peter; Lukac, Norbert

    2018-05-01

    Over the last decade, there is growing incidence of male reproductive malfunctions. It has been documented that numerous environmental contaminants, such as endocrine disruptors (EDs) may adversely affect the reproductive functions of humans as well as wildlife species. The aim of this in vitro study was to examine the effects of 4-octylphenol (4-OP) on the steroidogenesis in mice Leydig cells. We evaluated the impact of this endocrine disruptor on the cholesterol levels and hormone secretion in a primary culture. Subsequently, we determined the cell viability and generation of reactive oxygen species (ROS) following 4-OP treatment. Isolated mice Leydig cells were cultured in the presence of different 4-OP concentrations (0.04-5.0 μg/mL) and 1 mM cyclic adenosine-monophosphate during 44 h. Cholesterol levels were determined from the culture medium using photometry. Quantification of steroid secretion was performed by enzyme-linked immunosorbent assay. The cell viability was assessed using the metabolic activity assay, while ROS production was assessed by the chemiluminescence technique. Slightly increased cholesterol levels were recorded following exposure to the whole applied range of 4-OP, without significant changes (P>0.05). In contrast, the secretion of steroid hormones, specifically dehydroepiandrosterone, androstenedione, and testosterone was decreased following exposure to 4-OP. Experimental doses of 4-OP did not affect cell viability significantly; however a moderate decrease was recorded following the higher doses (2.5 and 5.0 μg/mL) of 4-OP. Furthermore, relative treatment of 4-OP (5.0 μg/mL) caused a significant (P < 0.001) ROS overproduction in the exposed cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Structural organization of the porcine and human genes coding for a leydig cell-specific insulin-like peptide (LEY I-L) and chromosomal localization of the human gene (INSL3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhardt E.; Adham, I.M.; Brosig, B.

    1994-03-01

    Leydig insulin-like protein (LEY I-L) is a member of the insulin-like hormone superfamily. The LEY I-L gene (designated INSL3) is expressed exclusively in prenatal and postnatal Leydig cells. The authors report here the cloning and nucleotide sequence of porcine and human LEY I-L genes including the 5[prime] regions. Both genes consist of two exons and one intron. The organization of the LEY I-L gene is similar to that of insulin and relaxin. The transcription start site in the porcine and human LEY I-L gene is localized 13 and 14 bp upstream of the translation start site, respectively. Alignment of themore » 5[prime] flanking regions of both genes reveals that the first 107 nucleotides upstream of the transcription start site exhibit an overall sequence similarity of 80%. This conserved region contains a consensus TATAA box, a CAAT-like element (GAAT), and a consensus SP1 sequence (GGGCGG) at equivalent positions in both genes and therefore may play a role in regulation of expression of the LEY I-L gene. The porcine and human genome contains a single copy of the LEY I-L gene. By in situ hybridization, the human gene was assigned to bands p13.2-p12 of the short arm of chromosome 19. 25 refs., 6 figs.« less

  6. Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor.

    PubMed

    Roelofs, Maarke J E; van den Berg, Martin; Bovee, Toine F H; Piersma, Aldert H; van Duursen, Majorie B M

    2015-03-02

    Although much information on the endocrine activity of bisphenol A (BPA) is available, a proper human hazard assessment of analogues that are believed to have a less harmful toxicity profile is lacking. Here the possible effects of BPA, bisphenol F (BPF), bisphenol S (BPS), as well as the brominated structural analogue and widely used flame retardant tetrabromobisphenol A (TBBPA) on human glucocorticoid and androgen receptor (GR and AR) activation were assessed. BPA, BPF, and TBBPA showed clear GR and AR antagonism with IC50 values of 67 μM, 60 μM, and 22 nM for GR, and 39 μM, 20 μM, and 982 nM for AR, respectively, whereas BPS did not affect receptor activity. In addition, murine MA-10 Leydig cells exposed to the bisphenol analogues were assessed for changes in secreted steroid hormone levels. Testicular steroidogenesis was altered by all bisphenol analogues tested. TBBPA effects were more directed towards the male end products and induced testosterone synthesis, while BPF and BPS predominantly increased the levels of progestagens that are formed in the beginning of the steroidogenic pathway. The MA-10 Leydig cell assay shows added value over the widely used H295R steroidogenesis assay because of its fetal-like characteristics and specificity for the physiologically more relevant testicular Δ4 steroidogenic pathway. Therefore, adding an in vitro assay covering fetal testicular steroidogenesis, such as the MA-10 cell line, to the panel of tests used to screen potential endocrine disruptors, is highly recommendable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Hyperandrogenism due to a testosterone-secreting Sertoli-Leydig cell tumor associated with a dehydroepiandrosterone sulfate-secreting adrenal adenoma in a postmenopausal woman: case presentation and review of literature.

    PubMed

    Herrera, Jorge D; Davidson, Jaime A; Mestman, Jorge H

    2009-03-01

    To report a case of hyperandrogenism attributable to the presence of an adrenal adenoma secreting dehydroepiandrosterone sulfate (DHEA-S) and an ovarian Sertoli-Leydig cell tumor secreting testosterone in a postmenopausal woman. The laboratory, radiologic, and pathologic findings in our case are described. In addition, the pertinent literature is reviewed. A 56-year-old woman presented with a history of gradual increase in facial and body hair, scalp hair loss, male pattern baldness, and deepening of her voice, beginning a few years after spontaneous menopause at age 49 years. She had hypertension, obesity, and type 2 diabetes mellitus. Laboratory tests showed elevated levels of total testosterone (348 ng/dL) and DHEA-S (2,058 microg/dL), and a left adrenal tumor (3 by 4 cm) was detected on abdominal computed tomographic scan. Laparoscopic left adrenalectomy was performed, and the pathologic diagnosis was adrenal adenoma. The DHEA-S returned to normal levels, but the serum testosterone concentration remained elevated. Transvaginal ultrasonography disclosed an ovarian tumor. Bilateral oophorectomy was performed, and an ovarian Sertoli-Leydig cell tumor was diagnosed. The hormonal and clinical picture normalized after this surgical intervention. After extensive review of the literature, we believe that this is the first reported case of a coincidental DHEA-S-secreting adrenal adenoma and a testosterone- secreting ovarian Leydig cell tumor causing signs of virilization.

  8. Effects of Monobutyl and Di(n-butyl) Phthalate in Vitro on Steroidogenesis and Leydig Cell Aggregation in Fetal Testis Explants from the Rat: Comparison with Effects in Vivo in the Fetal Rat and Neonatal Marmoset and in Vitro in the Human

    PubMed Central

    Hallmark, Nina; Walker, Marion; McKinnell, Chris; Mahood, I. Kim; Scott, Hayley; Bayne, Rosemary; Coutts, Shiona; Anderson, Richard A.; Greig, Irene; Morris, Keith; Sharpe, Richard M.

    2007-01-01

    Background Certain phthalates can impair Leydig cell distribution and steroidogenesis in the fetal rat in utero, but it is unknown whether similar effects might occur in the human. Objectives Our aim in this study was to investigate the effects of di(n-butyl) phthalate (DBP), or its metabolite monobutyl phthalate (MBP), on testosterone production and Leydig cell aggregation (LCA) in fetal testis explants from the rat and human, and to compare the results with in vivo findings for DBP-exposed rats. We also wanted to determine if DBP/MBP affects testosterone production in vivo in the neonatal male marmoset. Methods Fetal testis explants obtained from the rat [gestation day (GD)19.5] and from the human (15–19 weeks of gestation) were cultured for 24–48 hr with or without human chorionic gonadotropin (hCG) or 22R-hydroxycholesterol (22R-OH), and with or without DBP/MBP. Pregnant rats and neonatal male marmosets were dosed with 500 mg/kg/day DBP or MBP. Results Exposure of rats in utero to DBP (500 mg/kg/day) for 48 hr before GD21.5 induced major suppression of intratesticular testosterone levels and cytochrome P450 side chain cleavage enzyme (P450scc) expression; this short-term treatment induced LCA, but was less marked than longer term (GD13.5–20.5) DBP treatment. In vitro, MBP (10−3 M) did not affect basal or 22R-OH-stimulated testosterone production by fetal rat testis explants but slightly attenuated hCG-stimulated steroidogenesis; MBP induced minor LCA in vitro. None of these parameters were affected in human fetal testis explants cultured with 10−3 M MBP for up to 48 hr. Because the in vivo effects of DBP/MBP were not reproduced in vitro in the rat, the absence of MBP effects in vitro on fetal human testes is inconclusive. In newborn (Day 2–7) marmosets, administration of a single dose of 500 mg/kg MBP significantly (p = 0.019) suppressed blood testosterone levels 5 hr later. Similar treatment of newborn co-twin male marmosets for 14 days resulted in

  9. Evaluation of cytotoxicity and oxidative DNA damaging effects of di(2-ethylhexyl)-phthalate (DEHP) and mono(2-ethylhexyl)-phthalate (MEHP) on MA-10 Leydig cells and protection by selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkekoglu, Pinar; Hacettepe University, Faculty of Pharmacy, Department of Toxicology, 06100 Ankara; Rachidi, Walid

    2010-10-01

    Di(2-ethylhexyl)-phthalate (DEHP) is the most abundantly used phthalate derivative, inevitable environmental exposure of which is suspected to contribute to the increasing incidence of testicular dysgenesis syndrome in humans. Oxidative stress and mitochondrial dysfunction in germ cells are suggested to contribute to phthalate-induced disruption of spermatogenesis in rodents, and Leydig cells are one of the main targets of phthalates' testicular toxicity. Selenium is known to be involved in the modulation of intracellular redox equilibrium, and plays a critical role in testis, sperm, and reproduction. This study was aimed to investigate the oxidative stress potential of DEHP and its consequences in testicularmore » cells, and examine the possible protective effects of selenium using the MA-10 mouse Leydig tumor cell line as a model. In the presence and absence of selenium compounds [30 nM sodium selenite (SS), and 10 {mu}M selenomethionine (SM)], the effects of exposure to DEHP and its main metabolite mono(2-ethylhexyl)-phthalate (MEHP) on the cell viability, enzymatic and non-enzymatic antioxidant status, ROS production, p53 expression, and DNA damage by alkaline Comet assay were investigated. The overall results of this study demonstrated the cytotoxicity and genotoxicity potential of DEHP, where MEHP was found to be more potent than the parent compound. SS and SM produced almost the same level of protection against antioxidant status modifying effects, ROS and p53 inducing potentials, and DNA damaging effects of the two phthalate derivatives. It was thus shown that DEHP produced oxidative stress in MA-10 cells, and selenium supplementation appeared to be an effective redox regulator in the experimental conditions used in this study, emphasizing the critical importance of the appropriate selenium status.« less

  10. Tetrahydroisoquinoline alkaloids mimic direct but not receptor-mediated inhibitory effects of estrogens and phytoestrogens on testicular endocrine function. Possible significance for Leydig cell insufficiency in alcohol addiction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stammel, W.; Thomas, H.; Staib, W.

    1991-01-01

    Possible effects of various tetrahydroisoquinolines (TIQs) on rat testicular endocrine function were tested in vitro in order to prove whether these compounds may be mediators of the development of Leydig cell insufficiency. TIQ effects on different levels of regulation of testis function were compared in vitro with estrogen effects, since both classes of compounds have structural similarities. Gonadotropin-stimulated testosterone production by testicular Leydig cells was inhibited by tetrahydropapaveroline and isosalsoline, the IC{sub 50} values being comparable to those of estradiol, 2-hydroxyestradiol, and the phytoestrogens, coumestrol and genistein; salsolinol and salsoline were less effective, and salsolidine was ineffective. None of thesemore » TIQs interacted significantly with testicular estrogen receptor as analyzed by estradiol displacement. However, tetrahydropapaveroline, isosalsoline and salsolinol competitively inhibited substrate binding to cytochrome P45OXVII, with similar efficiency as the estrogens did; salsoline and salsolidine were again much less effective.« less

  11. Effects of Nandrolone Stimulation on Testosterone Biosynthesis in Leydig Cells.

    PubMed

    Pomara, Cristoforo; Barone, Rosario; Marino Gammazza, Antonella; Sangiorgi, Claudia; Barone, Fulvio; Pitruzzella, Alessandro; Locorotondo, Nicola; Di Gaudio, Francesca; Salerno, Monica; Maglietta, Francesca; Sarni, Antonio Luciano; Di Felice, Valentina; Cappello, Francesco; Turillazzi, Emanuela

    2016-06-01

    Anabolic androgenic steroids (AAS) are among the drugs most used by athletes for improving physical performance, as well as for aesthetic purposes. A number of papers have showed the side effects of AAS in different organs and tissues. For example, AAS are known to suppress gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone. This study investigates the effects of nandrolone on testosterone biosynthesis in Leydig cells using various methods, including mass spectrometry, western blotting, confocal microscopy and quantitative real-time PCR. The results obtained show that testosterone levels increase at a 3.9 μM concentration of nandrolone and return to the basal level a 15.6 μM dose of nandrolone. Nandrolone-induced testosterone increment was associated with upregulation of the steroidogenic acute regulatory protein (StAR) and downregulation of 17a-hydroxylase/17, 20 lyase (CYP17A1). Instead, a 15.6 µM dose of nandrolone induced a down-regulation of CYP17A1. Further in vivo studies based on these data are needed to better understand the relationship between disturbed testosterone homeostasis and reproductive system impairment in male subjects. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  12. Effects of thyroid hormone on Leydig cell regeneration in the adult rat following ethane dimethane sulphonate treatment.

    PubMed

    Ariyaratne, H B; Mills, N; Mason, J I; Mendis-Handagama, S M

    2000-10-01

    We tested the effects of thyroid hormone on Leydig cell (LC) regeneration in the adult rat testis after ethane dimethyl sulphonate (EDS) treatment. Ninety-day-old, thyroid-intact (n = 96) and thyroidectomized (n = 5) male Sprague-Dawley rats were injected intraperitoneally (single injection) with EDS (75 mg/kg) to destroy LC. Thyroid-intact, EDS-treated rats were equally divided into three groups (n = 32 per group) and treated as follows: control (saline-injected), hypothyroid (provided 0.1% propyl thiouracil in drinking water), and hyperthyroid (received daily subcutaneous injections of tri-iodothyronine, 100 microg/kg). Testing was done at Days 2, 7, 14, and 21 for thyroid-intact rats and at Day 21 for thyroidectomized rats after the EDS treatment. Leydig cells were absent in control and hyperthyroid rats at Days 2, 7, and 14; in hypothyroid rats at all ages; and in thyroidectomized rats at Day 21. The LC number per testis in hyperthyroid rats was twice as those of controls at Day 21. 3beta-Hydroxysteroid dehydrogenase (LC marker) immunocytochemistry results agreed with these findings. Mesenchymal cell number per testis was similar in the three treatment groups of thyroid-intact rats on Days 2 and 7, but it was different on Days 14 and 21. The highest number was in the hypothyroid rats, and the lowest was in the hyperthyroid rats. Serum testosterone levels could be measured in control rats only on Day 21, were undetectable in hypothyroid rats at all stages, and were detected in hyperthyroid rats on Days 14 and 21. These levels in hyperthyroid rats were twofold greater than those of controls on Day 21. Serum androstenedione levels could be measured only in the hyperthyroid rats on Day 21. Testosterone and androstenedione levels in the incubation media showed similar patterns to those in serum, but with larger values. These findings indicate that hypothyroidism inhibits LC regeneration and hyperthyroidism results in accelerated differentiation of more mesenchymal

  13. Different processing of LH/hCG receptors in cultured rat luteal cells and murine Leydig tumor cells (MLTC-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellokumpu, S.

    1987-02-01

    The metabolic fate of LH/hCG receptors after exposure to human chorionic gonadotropin (hCG) was examined in cultured rat luteal cells and murine Leydig tumor cells (MLTC-1). Kinetic studies performed after pulse-labelling of the cells with (/sup 125/I)hCG indicated that the bound hormone was lost much more rapidly from the tumor cells than from the luteal cells. The tumor cells were also found to internalize and degrade the hormone more effectively than the luteal cells. Chemical cross-linking and analyses by SDS-PAGE of this material revealed that both cell types also released, in addition to intact hCG, two previously characterized receptor fragment-(/supmore » 125/I)hCG complexes (M/sub r/ 96,000 and 74,000) into the medium, although their amount was negligible in MLTC-1 cells. Possibly due to rapid discharge of the ligand from its receptor, no similar complexes could be detected inside the MLTC-1 cells, suggesting that they were released directly from the cell surface. However, the M/sub r/ 74,000 complex was observed inside MLTC-1 cells if chloroquine, a lysosomotropic agent, was present during the incubations. This suggests that the internalized receptor also becomes degraded, at least when complexed to hCG. The results thus provide evidence that there exist two different mechanisms for proteolytic processing of LH/hCG receptors in these target cells. In tumor cells, the degradation seems to occur almost exclusively intracellularly, whereas in luteal cells a substantial portion of the receptors is also degraded at the cell surface.« less

  14. Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire

    NASA Technical Reports Server (NTRS)

    Miracle, A. L.; Anderson, M. K.; Litman, R. T.; Walsh, C. J.; Luer, C. A.; Rothenberg, E. V.; Litman, G. W.

    2001-01-01

    Cartilaginous fish express canonical B and T cell recognition genes, but their lymphoid organs and lymphocyte development have been poorly defined. Here, the expression of Ig, TCR, recombination-activating gene (Rag)-1 and terminal deoxynucleosidase (TdT) genes has been used to identify roles of various lymphoid tissues throughout development in the cartilaginous fish, Raja eglanteria (clearnose skate). In embryogenesis, Ig and TCR genes are sharply up-regulated at 8 weeks of development. At this stage TCR and TdT expression is limited to the thymus; later, TCR gene expression appears in peripheral sites in hatchlings and adults, suggesting that the thymus is a source of T cells as in mammals. B cell gene expression indicates more complex roles for the spleen and two special organs of cartilaginous fish-the Leydig and epigonal (gonad-associated) organs. In the adult, the Leydig organ is the site of the highest IgM and IgX expression. However, the spleen is the first site of IgM expression, while IgX is expressed first in gonad, liver, Leydig and even thymus. Distinctive spatiotemporal patterns of Ig light chain gene expression also are seen. A subset of Ig genes is pre-rearranged in the germline of the cartilaginous fish, making expression possible without rearrangement. To assess whether this allows differential developmental regulation, IgM and IgX heavy chain cDNA sequences from specific tissues and developmental stages have been compared with known germline-joined genomic sequences. Both non-productively rearranged genes and germline-joined genes are transcribed in the embryo and hatchling, but not in the adult.

  15. Hormone-induced 14-3-3γ Adaptor Protein Regulates Steroidogenic Acute Regulatory Protein Activity and Steroid Biosynthesis in MA-10 Leydig Cells*

    PubMed Central

    Aghazadeh, Yasaman; Rone, Malena B.; Blonder, Josip; Ye, Xiaoying; Veenstra, Timothy D.; Hales, D. Buck; Culty, Martine; Papadopoulos, Vassilios

    2012-01-01

    Cholesterol is the sole precursor of steroid hormones in the body. The import of cholesterol to the inner mitochondrial membrane, the rate-limiting step in steroid biosynthesis, relies on the formation of a protein complex that assembles at the outer mitochondrial membrane called the transduceosome. The transduceosome contains several mitochondrial and cytosolic components, including the steroidogenic acute regulatory protein (STAR). Human chorionic gonadotropin (hCG) induces de novo synthesis of STAR, a process shown to parallel maximal steroid production. In the hCG-dependent steroidogenic MA-10 mouse Leydig cell line, the 14-3-3γ protein was identified in native mitochondrial complexes by mass spectrometry and immunoblotting, and its levels increased in response to hCG treatment. The 14-3-3 proteins bind and regulate the activity of many proteins, acting via target protein activation, modification and localization. In MA-10 cells, cAMP induces 14-3-3γ expression parallel to STAR expression. Silencing of 14-3-3γ expression potentiates hormone-induced steroidogenesis. Binding motifs of 14-3-3γ were identified in components of the transduceosome, including STAR. Immunoprecipitation studies demonstrate a hormone-dependent interaction between 14-3-3γ and STAR that coincides with reduced 14-3-3γ homodimerization. The binding site of 14-3-3γ on STAR was identified to be Ser-194 in the STAR-related sterol binding lipid transfer (START) domain, the site phosphorylated in response to hCG. Taken together, these results demonstrate that 14-3-3γ negatively regulates steroidogenesis by binding to Ser-194 of STAR, thus keeping STAR in an unfolded state, unable to induce maximal steroidogenesis. Over time 14-3-3γ homodimerizes and dissociates from STAR, allowing this protein to induce maximal mitochondrial steroid formation. PMID:22427666

  16. Inhibitory effect of tributyltin on expression of steroidogenic enzymes in mouse testis.

    PubMed

    Kim, Suel-Kee; Kim, Jong-Hoon; Han, Jung Ho; Yoon, Yong-Dal

    2008-01-01

    Tributyltin (TBT) is known to disrupt the development of reproductive organs, thereby reducing fertility. The aim of this study was to evaluate the acute toxicity of TBT on the testicular development and steroid hormone production. Immature (3-week-old) male mice were given a single administration of 25, 50, or 100 mg/kg of TBT by oral gavage. Lumen formation in seminiferous tubule was remarkably delayed, and the number of apoptotic germ cells found inside the tubules was increased in the TBT-exposed animals, whereas no apoptotic signal was observed in interstitial Leydig cells. Reduced serum testosterone concentration and down-regulated expressions of the mRNAs for cholesterol side-chain cleavage enzyme (P450scc), 17alpha -hydroxylase/C(17-20) lyase (P450(17alpha)), 3beta -hydroxysteroid-dehydrogenase (3beta -HSD), and 17beta -hydroxysteroid-dehydrogenase (17beta -HSD) were also observed after TBT exposure. Altogether, these findings demonstrate that exposure to TBT is associated with induced apoptosis of testicular germ cells and inhibition of steroidogenesis by reduction in the expression of steroidogenic enzymes in interstitial Leydig cells. These adverse effects of TBT would cause serious defects in testicular development and function.

  17. Microcystin-leucine arginine mediates apoptosis and engulfment of Leydig cell by testicular macrophages resulting in reduced serum testosterone levels.

    PubMed

    Chen, Yabing; Wang, Jing; Chen, Xiang; Li, Dongmei; Han, Xiaodong

    2018-06-01

    Microcystin-leucine arginine (MC-LR) causes decline of serum testosterone levels resulting in impaired spermatogenesis; however, the underlying molecular mechanisms are not fully understood. In this study, we aimed to investigate the effects of MC-LR exposure on the number of Leydig cells (LCs) in testis. Following chronic low dose exposure to MC-LR, the number of LCs was markedly decreased while macrophages were significantly increased. Then, we established a co-culture system to study the interaction between macrophages and LCs in the presence of MC-LR. No significant apoptosis of LCs cultured alone was observed after MC-LR (< 5 000 nM) treatment; however, apoptosis was robustly increased when LCs were co-cultured with macrophages in the presence of MC-LR. Further studies identified that MC-LR could stimulate macrophage to produce TNF-α, and secreted TNF-α induced LC apoptosis by binding to the tumor necrosis factor receptor 1 (TNFR1) on the LCs and thus activating reactive oxygen species (ROS)-p38MAPK signaling pathway. Furthermore, we also examined increased expression of Axl receptor and growth arrest-specific 6 (Gas6) in macrophages after MC-LR treatment. GAS6 mediates phagocytosis of apoptotic LCs by binding to the Axl receptor on macrophages and phosphatidylserine (PtdSer) on apoptotic LCs. Together, these results suggested that reduced serum testosterone levels may be associated with decrease of LCs as a result of LC apoptosis and phagocytosis by immune cells in MC-LR-treated mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Wang, Huaxi; Yang, Yan

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was tomore » examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful

  19. Human Chorionic Gonadotropin Stimulation Test in Prepubertal Children with Micropenis Can Accurately Predict Leydig Cell Function in Pubertal or Postpubertal Adolescents.

    PubMed

    Ishii, Tomohiro; Matsuo, Nobutake; Sato, Seiji; Ogata, Tsutomu; Tamai, Shinya; Anzo, Makoto; Kamimaki, Tsutomu; Sasaki, Goro; Inokuchi, Mikako; Hori, Naoaki; Amano, Naoko; Narumi, Satoshi; Shibata, Hironori; Hasegawa, Tomonobu

    2015-01-01

    To evaluate the accuracy of the human chorionic gonadotropin (hCG) stimulation test in children with micropenis in predicting later Leydig cell function. We conducted a retrospective investigation of testosterone response to a 3-day hCG test (3,000 IU/m2/day) in prepuberty to indicate the need for hormone replacement therapy (HRT) in adolescence. Fifty Japanese boys (range, 0.8-15.4 years of age; median, 8.9) with micropenis were enrolled. Thirty-four spontaneously developed puberty and preserved the ability of testosterone production (group 1), while 16 did not develop any pubertal signs without HRT (group 2). Serum testosterone levels after the hCG test (post-hCG T) in group 2 (range, <0.05-1.1 ng/ml; median, 0.24) were significantly lower than in group 1 (range, 0.5-8.7 ng/ml; median, 2.4; p < 0.0001). Based on true positives who required continuous HRT, the area under the receiver-operating characteristics curve for post-hCG T was 0.983 [95% confidence interval (CI), 0.90-1.00]. The post-hCG T cut-off level corresponding to the Youden index was 1.1 ng/ml (95% CI, 1.0-1.1), with a sensitivity of 100.0% (95% CI, 79.4-100.0) and a specificity of 94.1% (95% CI, 80.3-99.3). The hCG test in prepubertal children with micropenis can be useful for predicting Leydig cell function in pubertal or postpubertal adolescents. The post-hCG T cut-off level of 1.1 ng/ml is recommended to screen for those who will likely require HRT for pubertal development. © 2015 S. Karger AG, Basel.

  20. Production of Macrophage Inhibitory Factor (MIF) by Primary Sertoli Cells; Its Possible Involvement in Migration of Spermatogonial Cells.

    PubMed

    Huleihel, Mahmoud; Abofoul-Azab, Maram; Abarbanel, Yael; Einav, Iris; Levitas, Elyahu; Lunenfeld, Eitan

    2017-10-01

    Macrophage migration inhibitory factor (MIF) is a multifunctional molecule. MIF was originally identified as a T-cell-derived factor responsible for the inhibition of macrophage migration. In testicular tissue of adult rats, MIF is constitutively expressed by Leydig cells under physiological conditions. The aim of this study was to examine MIF levels in testicular homogenates from different aged mice, and the capacity of Sertoli cells to produce it. We also examined MIF involvement in spermatogonial cell migration. Similar levels of MIF protein were detected in testicular homogenates of mice of different ages (1-8-week-old). However, the RNA expression levels of MIF were high in 1-week-old mice and significantly decreased with age compared to 1-week-old mice. MIF was stained in Sertoli, Leydig cells, and developed germ cells in the seminiferous tubules. Isolated Sertoli cells from 1-week-old mice stained to MIF. Cultures of Sertoli cells from 1-week-old mice produced and expressed high levels of MIF which significantly decreased with age. MIF was localized in the cytoplasm and nucleus of Sertoli cell cultures isolated from 1-week-old mice; however, it was localized only in the cytoplasm and branches of cultures isolated from 8-week-old mice. MIFR was detected in GFRα1 and Sertoli cells. MIF could induce migration of spermatogonial cells, and this effect was synergistic with glial cell-line neurotrophic factor. Our results show, for the first time, the capacity of Sertoli cells to produce MIF under normal conditions and that MIFR expressed in GFRα1 and Sertoli cells. We also showed that MIF induced spermatogonial cell migration. J. Cell. Physiol. 232: 2869-2877, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Low reversibility of intracellular cAMP accumulation in mouse Leydig tumor cells (MLTC-1) stimulated by human Luteinizing Hormone (hLH) and Chorionic Gonadotropin (hCG).

    PubMed

    Klett, Danièle; Meslin, Philippine; Relav, Lauriane; Nguyen, Thi Mong Diep; Mariot, Julie; Jégot, Gwenhaël; Cahoreau, Claire; Combarnous, Yves

    2016-10-15

    In order to study the intracellular cAMP response kinetics of Leydig cells to hormones with LH activity, we used MLTC-1 cells transiently expressing a chimeric cAMP-responsive luciferase so that real-time variations of intracellular cAMP concentration could be followed using oxiluciferin luminescence produced from catalyzed luciferin oxidation. The potencies of the different LHs and CGs were evaluated using areas under the curves (AUC) of their kinetics over 60 min stimulation. All mammalian LHs and CGs tested were found to stimulate cAMP accumulation in these cells. The reversibility of this stimulation was studied by removing the hormone from the culture medium after 10 min of incubation. The ratios of kinetics AUC after removing or not the hormone were used to evaluate the stimulation reversibility of each hormone. Natural and recombinant hLHs and hCGs were found to exhibit slowly reversible activation compared to pituitary rat, ovine, porcine, camel and equine LHs, serum-derived eCG (PMSG) and recombinant eLH/CGs. Carbohydrate side chains are not involved in this phenomenon since natural and recombinant homologous hormones exhibit the same reversibility rates. It is still unknown whether only one human subunit, α or β, is responsible for this behaviour or whether it is due to a particular feature of the hLH and hCG quaternary structure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. High androgen receptor immunoexpression in human "Sertoli cell only" testis.

    PubMed

    Loukil, L Hadjkacem; Boudawara, T Sellami; Ayadi, I; Bahloul, A; Jlidi, R; Ayadi, H; Keskes, L Ammar

    2005-01-01

    Our purpose was to evaluate cellular androgen receptor (AR) distribution and intensity of immunostaining in the human azoospermic testis. Thirty six biopsy specimens from azoospermic men were immunostained, using a monoclonal antibody of human AR. The localization and the intensity of AR immunostaining was evaluated in Sertoli Cell Only (SCO) testis (G1, n = 21), in spermatogenesis arrest testis (G2, n = 11) and in histologically normal testis (G3, n = 4). We found an AR immunostaining in Sertoli, peritubular myoid and Leydig cells, but not in germ cells. The intensity of the immunostaining varied substantially between biopsy specimens of different patients. Sertoli and Leydig cells AR immunostaining (score and intensity) in SCO group was higher than in the other groups. For Sertoli cells, the score means of AR immunoreactivity were 20 +/- 2.36, 10.18 +/- 1.0 and 1 +/- 1, for G1, G2 and G3 groups, respectively. For Leydig cells, the score means were 10.24 +/- 1.37, 6 +/- 0.71 and 0, for G1, G2 and G3 groups, respectively. We found significant differences between G1 and G2 (p = 0.0008), between G1 and G3 (p = 1.54 10-7) and G2 and G3 (p = 0.00032). These results suggest that in the testis AR is located exclusively in somatic cells and its expression is higher in SCO syndrome than in normal and in arrest spermatogenesis testes.

  3. Cyanidin-3-O-Glucoside Protects against 1,3-Dichloro-2-Propanol-Induced Reduction of Progesterone by Up-regulation of Steroidogenic Enzymes and cAMP Level in Leydig Cells

    PubMed Central

    Sun, Jianxia; Xu, Wei; Zhu, Cuijuan; Hu, Yunfeng; Jiang, Xinwei; Ou, Shiyi; Su, Zhijian; Huang, Yadong; Jiao, Rui; Bai, Weibin

    2016-01-01

    1,3-Dichloro-2-propanol (1,3-DCP) is a food processing contaminant and has been shown to perturb male reproductive function. Cyanidin-3-O-glucoside (C3G), an anthocyanin antioxidant, is reported to have protective effects on many organs. However, it remains unclear whether C3G protects against chemical-induced reproductive toxicity. The present study was therefore to investigate the intervention of C3G on 1,3-DCP-induced reproductive toxicity in R2C Leydig cells. Results demonstrated that C3G inhibited the 1,3-DCP-induced cytotoxicity and cell shape damage with the effective doses being ranging from 10 to 40 μmol/L. In addition, 1,3-DCP (2 mmol/L) exposure significantly increased the ROS level and mitochondrial membrane potential damage ratio, leading to a decrease in progesterone production, while C3G intervention reduced the ROS level, and increased the progesterone production after 24 h treatment. Most importantly, C3G intervention could up-regulate the cyclic adenosine monophosphate (cAMP) level and protein expression of steroidogenic acute regulatory protein and 3β-hydroxysteroid dehydrogenase. It was concluded that C3G is effective in reducing 1,3-DCP-induced reproductive toxicity via activating steroidogenic enzymes and cAMP level. PMID:27867356

  4. Cyanidin-3-O-Glucoside Protects against 1,3-Dichloro-2-Propanol-Induced Reduction of Progesterone by Up-regulation of Steroidogenic Enzymes and cAMP Level in Leydig Cells.

    PubMed

    Sun, Jianxia; Xu, Wei; Zhu, Cuijuan; Hu, Yunfeng; Jiang, Xinwei; Ou, Shiyi; Su, Zhijian; Huang, Yadong; Jiao, Rui; Bai, Weibin

    2016-01-01

    1,3-Dichloro-2-propanol (1,3-DCP) is a food processing contaminant and has been shown to perturb male reproductive function. Cyanidin-3- O -glucoside (C3G), an anthocyanin antioxidant, is reported to have protective effects on many organs. However, it remains unclear whether C3G protects against chemical-induced reproductive toxicity. The present study was therefore to investigate the intervention of C3G on 1,3-DCP-induced reproductive toxicity in R2C Leydig cells. Results demonstrated that C3G inhibited the 1,3-DCP-induced cytotoxicity and cell shape damage with the effective doses being ranging from 10 to 40 μmol/L. In addition, 1,3-DCP (2 mmol/L) exposure significantly increased the ROS level and mitochondrial membrane potential damage ratio, leading to a decrease in progesterone production, while C3G intervention reduced the ROS level, and increased the progesterone production after 24 h treatment. Most importantly, C3G intervention could up-regulate the cyclic adenosine monophosphate (cAMP) level and protein expression of steroidogenic acute regulatory protein and 3β-hydroxysteroid dehydrogenase. It was concluded that C3G is effective in reducing 1,3-DCP-induced reproductive toxicity via activating steroidogenic enzymes and cAMP level.

  5. Simvastatin and Dipentyl Phthalate Lower Ex vivo Testicular Testosterone Production and Exhibit Additive Effects on Testicular Testosterone and Gene Expression Via Distinct Mechanistic Pathways in the Fetal Rat

    EPA Science Inventory

    Sex differentiation of the male reproductive tract in mammals is driven, in part, by fetal androgen production. In utero, some phthalate esters (PEs) alter fetal Leydig cell differentiation, reducing the expression of several genes associated with steroid synthesis/transport, and...

  6. Complex modulation of androgen responsive gene expression by methoxyacetic acid

    PubMed Central

    2011-01-01

    Background Optimal androgen signaling is critical for testicular development and spermatogenesis. Methoxyacetic acid (MAA), the primary active metabolite of the industrial chemical ethylene glycol monomethyl ether, disrupts spermatogenesis and causes testicular atrophy. Transcriptional trans-activation studies have indicated that MAA can enhance androgen receptor activity, however, whether MAA actually impacts the expression of androgen-responsive genes in vivo, and which genes might be affected is not known. Methods A mouse TM3 Leydig cell line that stably expresses androgen receptor (TM3-AR) was prepared and analyzed by transcriptional profiling to identify target gene interactions between MAA and testosterone on a global scale. Results MAA is shown to have widespread effects on androgen-responsive genes, affecting processes ranging from apoptosis to ion transport, cell adhesion, phosphorylation and transcription, with MAA able to enhance, as well as antagonize, androgenic responses. Moreover, testosterone is shown to exert both positive and negative effects on MAA gene responses. Motif analysis indicated that binding sites for FOX, HOX, LEF/TCF, STAT5 and MEF2 family transcription factors are among the most highly enriched in genes regulated by testosterone and MAA. Notably, 65 FOXO targets were repressed by testosterone or showed repression enhanced by MAA with testosterone; these include 16 genes associated with developmental processes, six of which are Hox genes. Conclusions These findings highlight the complex interactions between testosterone and MAA, and provide insight into the effects of MAA exposure on androgen-dependent processes in a Leydig cell model. PMID:21453523

  7. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics.

    PubMed

    Baert, Yoni; Braye, Aude; Struijk, Robin B; van Pelt, Ans M M; Goossens, Ellen

    2015-11-01

    To assess whether testicular cell dynamics are altered during long-term culture after testicular tissue cryopreservation. Experimental basic science study. Reproductive biology laboratory. Testicular tissue with normal spermatogenesis was obtained from six donors. None. Detection and comparison of testicular cells from fresh and frozen tissues during long-term culture. Human testicular cells derived from fresh (n = 3) and cryopreserved (n = 3) tissues were cultured for 2 months and analyzed with quantitative reverse-transcription polymerase chain reaction and immunofluorescence. Spermatogonia including spermatogonial stem cells (SSCs) were reliably detected by combining VASA, a germ cell marker, with UCHL1, a marker expressed by spermatogonia. The established markers STAR, ACTA2, and SOX9 were used to analyze the presence of Leydig cells, peritubular myoid cells, and Sertoli cells, respectively. No obvious differences were found between the cultures initiated from fresh or cryopreserved tissues. Single or small groups of SSCs (VASA(+)/UCHL1(+)) were detected in considerable amounts up to 1 month of culture, but infrequently after 2 months. SSCs were found attached to the feeder monolayer, which expressed markers for Sertoli cells, Leydig cells, and peritubular myoid cells. In addition, VASA(-)/UCHL1(+) cells, most likely originating from the interstitium, also contributed to this monolayer. Apart from Sertoli cells, all somatic cell types could be detected throughout the culture period. Testicular tissue can be cryopreserved before long-term culture without modifying its outcome, which encourages implementation of testicular tissue banking for fertility preservation. However, because of the limited numbers of SSCs available after 2 months, further exploration and optimization of the culture system is needed. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Undifferentiated embryonic cell transcription factor 1 (UTF1) and deleted in azoospermia-like (DAZL) expression in the testes of donkeys.

    PubMed

    Lee, Y S; Jung, H J; Yoon, M J

    2017-04-01

    Putative markers for each specific germ cell stage can be a useful tool to study the fate and functions of these cells. Undifferentiated embryonic cell transcription factor 1 (UTF1) is a putative marker for undifferentiated spermatogonia in humans, rats and horses. The deleted in azoospermia-like (DAZL) protein is also expressed by differentiated spermatogonia and primary spermatocytes in several species. However, whether the expression patterns of these molecular markers are identical and applicable to donkeys remains to be elucidated. The objective of this study was to investigate the expression patterns of UTF1 and DAZL in donkey testicular tissue, using immunohistochemistry (IHC). Testicular samples were collected from routine field castration of donkeys in Korea. The reproductive stages (pre- or post-puberty) of the testes were determined from the morphological characteristics of cross-sections of the seminiferous tubules. For IHC, the UTF1 and DAZL primary antibodies were diluted at 1:100 and 1:200, respectively. The immunolabelling revealed that UTF1 was expressed in approximately 50% of spermatogonia in the pre-pubertal stage, whereas its expression was limited to an early subset of spermatogonia in the post-pubertal stage. DAZL was expressed in some, but not all, spermatogonia in the pre-pubertal spermatogonia, and interestingly, its expression was also observed in spermatogonia and primary spermatocytes in the post-pubertal stage. Co-immunolabelling of the germ cells with both UTF1 and DAZL revealed three types of protein expression patterns at both reproductive stages, namely UTF1 only, DAZL only and both UTF1 and DAZL. These protein molecules were not expressed in Sertoli and Leydig cells. In conclusion, a co-immunolabelling system with UTF1 and DAZL antibodies may be used to identify undifferentiated (UTF1 only), differentiating (UTF1 and DAZL), and differentiated spermatogonia (DAZL only) in donkey testes. © 2017 Blackwell Verlag GmbH.

  9. Gynaecomastia with hypergonadotrophic hypogonadism and Leydig cell insufficiency in recipients of high-dose chemotherapy or chemo-radiotherapy.

    PubMed

    Harris, E; Mahendra, P; McGarrigle, H H; Linch, D C; Chatterjee, R

    2001-12-01

    Late side-effects of stem cell transplantation include hypogonadism with infertility and sexual dysfunction, but gynaecomastia is less well recognised. We report five cases of gynaecomastia with features of hypergonadotrophic hypogonadism (primary testicular failure), who received either a TBI/cyclophosphamide conditioned allograft (n = 3) or a BEAM autograft (n = 2). Patients receiving an allograft had gynaecomastia, Leydig cell insufficiency (LCI) diminished libido and erectile dysfunction. Surgery was required in one case, while in two cases the gynaecomastia resolved spontaneously after 6 months. Two patients also had gynaecomastia and sexual dysfunction, severe hypogonadism, very low testosterone levels and marked hyperprolactinaemia following autoBMT. Both responded well to testosterone replacement therapy (TRT). As a group, all patients had primary testicular failure and all except one, had LCI (compensated or frank). However, there was no correlation between the severity of gynaecomastia and the degree of endocrine dysfunction. This preliminary study is the first to suggest that gynaecomastia, due to primary hypogonadism and LCI, may be a significant complication of myeloablative conditioning therapy. Therefore gynaecomastia in BMT recipients must always be treated as a pathological entity as it may be the external manifestation of a complex endocrine pathology. It is a potentially treatable condition. Although spontaneously reversible, some patients may require TRT or even surgery. We recommend comprehensive endocrine testing in conjunction with a reproductive endocrinologist and prompt intervention to alleviate embarrassment and anxiety in afflicted BMT recipients.

  10. Immunohistochemical Analysis of Connexin43 Expression in Infertile Human Testes

    PubMed Central

    Matsuo, Yuzo; Nomata, Koichiro; Eguchi, Jiro; Aoki, Daiyu; Hayashi, Tomayoshi; Hishikawa, Yoshitaka; Kanetake, Hiroshi; Shibata, Yoshisada; Koji, Takehiko

    2007-01-01

    Connexin43 (Cx43) is abundantly expressed in mammalian testes and implicated in the regulation of cell-to-cell interaction between germ cells and Sertoli cells, which is essential to the normal process of spermatogenesis. In the present study, we investigated the relation between Cx43 expression and the degree of spermatogenesis in infertile human testes. Immunohistochemical analysis of Cx43 was performed on testicular biopsies from 29 patients with azoospermia (n=23) and severe oligospermia (n=6), who gave informed consent to this experiment. The degree of testicular spermatogenesis was evaluated by Johnsen score. In the interstitium, immunostaining for Cx43 was localized to some focal parts of plasma membrane between neighboring Leydig cells. In seminiferous tubules with normal spermatogenesis, Cx43 expression was found between Sertoli cells and germ cells. However, Cx43 expression in maturation arrest was decreased and located mainly in the basal compartment of seminiferous tubules. Finally, there was a significant positive correlation between histological score of spermatogenesis and intensity of Cx43 (p=0.0294). These data suggest that the alteration of Cx43 expression may be involved in spermatogenic impairment, and that the communication between Sertoli cells and germ cells through Cx43 may be important for maturation of spermatogenesis. PMID:17653298

  11. Role of 11β-OH-C(19) and C(21) steroids in the coupling of 11β-HSD1 and 17β-HSD3 in regulation of testosterone biosynthesis in rat Leydig cells.

    PubMed

    Latif, Syed A; Shen, Mae; Ge, Ren-Shan; Sottas, Chantal M; Hardy, Matthew P; Morris, David J

    2011-06-01

    Here we describe further experiments to support our hypothesis that bidirectional 11β-HSD1-dehydrogenase in Leydig cells is a NADP(H) regenerating system. In the absence of androstenedione (AD), substrate for 17β-HSD3, incubation of Leydig cells with corticosterone (B) or several C(19)- and C(21)-11β-OH-steroids, in the presence of [(3)H]-11-dehydro-corticosterone (A), stimulated 11β-HSD1-reductase activity. However, in presence of 30 μM AD, testosterone (Teso) synthesis is stimulated from 4 to 197 picomole/25,000 cells/30 min and concomitantly inhibited 11β-HSD1-reductase activity, due to competition for the common cofactor NADPH needed for both reactions. Testo production was further significantly increased (p<0.05) to 224-267 picomole/25,000 cells/30 min when 10 μM 11β-OH-steroids (in addition to 30 μM AD) were also included. Similar results were obtained in experiments conducted with lower concentrations of AD (5 μM), and B or A (500 nM). Incubations of 0.3-6.0 μM of corticosterone (plus or minus 30 μM AD) were then performed to test the effectiveness of 17β-HSD3 as a possible NADP(+) regenerating system. In the absence of AD, increasing amounts (3-44 pmol/25,000 cells/30 min) of 11-dehydro-corticosterone were produced with increasing concentrations of corticosterone in the medium. When 30 μM AD was included, the rate of 11-dehydro-corticosterone formation dramatically increased 1.3-5-fold producing 4-210 pmol/25,000 cells/30 min of 11-dehydro-corticosterone. We conclude that 11β-HSD1 is enzymatically coupled to 17β-HSD3, utilizing NADPH and NADP in intermeshed regeneration systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Hydrodynamic properties of the gonadotropin receptor from a murine Leydig tumor cell line are altered by desensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebois, R.V.; Bradley, R.M.; Titlow, C.C.

    1987-10-06

    The murine Leydig tumor cell line 1 (MLTC-1) contains gonadotropin receptors (GR) that are coupled to adenylate cyclase through the stimulatory guanine nucleotide binding protein (G/sub s/). The binding of human choriogonadotropin (hGC) causes MLTC-1 cells to accumulate cAMP. With time, the ability of MLTC-1 cells to respond to hCG is attenuated by a process called desensitization. The hydrodynamic properties of GR from control and desensitized MLTC-1 cells were studied. Sucrose density gradient sedimentation in H/sub 2/O and D/sub 2/O and gel filtration chromatography were used to estimate the Stokes radius (a), partial specific volume (v/sub c/), sedimentation coefficient (s/submore » 20,w/), and molecular weight (M/sub r/) of the detergent-solubilized hormone-receptor complex (hCG-GR). (/sup 125/I)hCG was bound to MLTC-1 cells under conditions that allow (37/sup 0/C) or prevent (0/sup 0/C) desensitization, and hCG-GR was solubilized in Triton X-100. In the absence of desensitization, control hCG-GR had a M/sub r/ of 213,000, whereas desensitized hCG-GR had a M/sub r/ of 158,000. Deglycosylated hCG (DG-HCG) is an antagonist that binds to GR with high affinity but fails to stimulate adenylate cyclase or cause desensitization. (/sup 125/I)DG-hCG was bound to MLTC-1 cells and DG-hCG-GR solubilized in Triton X-100. The hydrodynamic properties of DG-hCG-GR were the same as that for control hCG-GR. There was no evidence for the association of adenylate cyclase or G/sub s/ with GR in Triton X-100 solubilized preparations. When hCG was cross-linked to GR and solubilized with sodium dodecyl sulfate (SDS), the M/sub r/ was found to be 116,000, which was similar to that determined by SDS-polyacrylamide gel electrophoresis and less than that of the Triton X-100 solubilized control hCG-GR.« less

  13. Cimetidine-induced Leydig cell apoptosis and reduced EG-VEGF (PK-1) immunoexpression in rats: Evidence for the testicular vasculature atrophy.

    PubMed

    Beltrame, Flávia L; Cerri, Paulo S; Sasso-Cerri, Estela

    2015-11-01

    The antiulcer drug cimetidine has shown to cause changes in the testicular microvasculature of adult rats. Since Leydig cells (LCs) produce the pro-angiogenic factor, EG-VEGF (endocrine gland-derived vascular endothelial growth factor), also known as prokineticin 1 (PK-1), this study examined the effect that cimetidine might have on LCs in testes with damaged vasculature. Rats received intraperitoneal injections of 100mg/kg of cimetidine (cimetidine group) or saline vehicle (control group) for 50 days. Serum testosterone levels were measured by chemiluminescence immunoassay and testicular sections were subjected to TUNEL and immunohistochemical reactions for caspase-3, 17β-HSD6, CD163 (ED2 macrophage), PK-1 and androgen receptor (AR). LCs in the cimetidine group showed TUNEL and caspase-3 positive labeling and apoptotic ultrastructural features. Moreover, the presence of 17β-HSD6-positive inclusions inside macrophages and the reduced number of LCs, AR immunoreactivity and serum testosterone levels correlated with a decrease in either the number of PK-1-immunostained LCs or PK-1 immunoreactivity. Although it is not clear which cell type is the primary target of cimetidine in the testicular interstitial compartment, these findings support a direct link between cimetidine-induced testicular vascular atrophy and LCs damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Characteristics of Patients With Sertoli and Leydig Cell Testis Neoplasms From a National Population-Based Registry.

    PubMed

    Osbun, Nathan; Winters, Brian; Holt, Sarah K; Schade, George R; Lin, Daniel W; Wright, Jonathan L

    2017-04-01

    Sertoli and Leydig cell tumors (SCT and LCT) are uncommon testis neoplasms. Data regarding patient demographics and outcomes are limited to small series. We further characterized these tumors using a large cancer database. The Surveillance, Epidemiology, and End Results (SEER) database was queried from 2004 to 2012. International Classification of Diseases for Oncology (ICD-O) codes identified SCT and LCT. Common germ cell tumors (GCT) provided a reference group. Age, race, histology, tumor size, stage, and cancer-specific mortality (CSM) were compared. Thirty-one men had SCT, 76 had LCT, and 17,998 had GCTs. Median follow-up for SCT, LCT, and GCTs was 46, 38, and 50 months, respectively. Median ages for SCT and LCT were 39 and 47, respectively, which was older than those with GCT (34 years; P < .001). African American race was more common in SCT (23%) and LCT (24%) patients compared to GCT (3%, P < .001). LCT most commonly presented with stage I disease (98.5%), while patients with SCT presented at higher stages (35% with stage II/III). CSM was highest in patients with SCT (32% vs. 2% LCT and 7% GCT, P < .001). Median survival of those with CSM was similar between SCT, LCT, and GCTs (15, 12, and 14 months, respectively). Compared to GCT, SCT and LCT present at older ages and are more common in African Americans. Metastasic disease at presentation and CSM rates are higher in SCT compared to LCT and GCT, suggesting a clinically relevant distinction between these histologies. Better characterization of these rare neoplasms will continue to inform patient counseling and management. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Somatic and germinal cells' interrelationship in the course of seminiferous tubule maturation in man.

    PubMed

    Kula, K; Romer, T E; Wlodarczyk, W P

    1980-02-01

    Certain successive phases of seminiferous tubule maturation were observed in a transsection of a Leydig cell adenoma-bearing testis of a boy with precocious puberty. Massively accumulated Leydig cells may stimulate the maturation of Sertoli cells, as indicated by progressive replacement of Sertoli cell precursors by mature Sertoli cells at a distance closer to the adenoma. On the other hand, tubules less advanced in maturation contained a higher number of somatic cells than those more advanced in maturation. Leydig-cell-dependent maturation of Sertoli cells may be in competition with Certoli cell multiplication, or numerous undifferentiated somatic cells may undergo a natural elimination in the course of tubular maturation. An inverse relation between the number of Sertoli cell precursors and the number of meiotic spermatocytes suggests that quantitative reduction of Sertoli cell precursors may be important for the intratubular milieu necessary for the onset of the first meiosis in man.

  16. Zearalenone and 17 β-estradiol induced damages in male rats reproduction potential; evidence for ERα and ERβ receptors expression and steroidogenesis.

    PubMed

    Adibnia, Elmira; Razi, Mazdak; Malekinejad, Hassan

    2016-09-15

    The estrogen receptors (ERs)-dependent effects of Zearalenone (ZEA) on structure and function of the testis as well as sperm parameters were compared with 17-β estradiol as endogenous substance. For this purpose, 30 mature male rats were assigned into five groups as; control (appropriate volume of normal saline, i. p.), ZEA-received (1, 2 and 4 mg/kg, b. w., i. p.) and 17 β-estradiol (E2)-received (appropriate dose of 0.1 mg/kg, i. p.). Following 28 days, the mRNA levels of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in the testis and sperms and the expression of them at protein levels in testicles were estimated. Mitochondrial content of germinal epithelium, Leydig cells steroid foci, sperm quality parameters and serum level of testosterone were assessed. Fluorescent techniques were used for analyzing apoptosis and mRNA damage in necrotic cells. ZEA reduced the mRNA and protein levels of ERα in testicles while up-regulated the ERβ expression. The mRNA level of ERα decreased in sperms of ZEA and E2-received animals. No remarkable changes were found for ERβ expression in sperms from ZEA and E2-received animals. ZEA reduced the Leydig cells steroidogenesis, mitochondrial content of germinal cells and elevated cellular apoptosis and necrosis dose-dependently. E2 reduced the testosterone concentration, enhanced the apoptosis and reduced sperm quality. Our data suggest that ZEA-induced detrimental effects in the structure and function of testis, may attribute to changing the ERs expression at mRNA and translational level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The expression of epidermal growth factor (EGF) and its receptor (EGFR) during post-natal testes development in the yak.

    PubMed

    Pan, Y; Cui, Y; Yu, S; Zhang, Q; Fan, J; Abdul Rasheed, B; Yang, K

    2014-12-01

    Growth factors play critical role in cell proliferation, regulate tissue differentiation and modulate organogenesis. Several growth factors have been identified in the testes of various mammalian species in last few years. In present investigation, the objective was to determine the expression of epidermal growth factor (EGF) and the epidermal growth factor receptor (EGFR) in yak testicular tissue by relative quantitative real time polymerase chain reaction (RT-PCR), Western blot (WB) and immunohistochemistry (IHC) from mRNA and protein levels. The testicular tissues were collected from male yak at 6 and 24 months old. Results of RT-PCR and WB showed that the expression quantity of EGF and EGFR at 24 months of age was higher than at 6 months, and the increase rate of EGFR on mRNA and protein levels was higher than the increase rate EGF during post-natal testes development. Positive staining for EGF and EGFR was very low and mainly localized to Leydig cells testes at 6 months of age with immunohistochemistry, and seminiferous tubules were not observed. At 24 month of age, both the EGF and EGFR could be detected in Leydig cells, peritubular myoid cells, sertoli cells and germ cells of the yak testes. However, EGF and EGFR were localized to preferential adluminal compartment and basal compartment in the seminiferous tubules, respectively. In conclusion, the findings in present studies suggest that EGF and EGFR as important paracrine and/or autocrine regulators in yak testes development and spermatogenesis. © 2014 Blackwell Verlag GmbH.

  18. Selective deletion of Smad4 in postnatal germ cells does not affect spermatogenesis or fertility in mice.

    PubMed

    Hao, Xiao-Xia; Chen, Su-Ren; Tang, Ji-Xin; Li, Jian; Cheng, Jin-Mei; Jin, Cheng; Wang, Xiu-Xia; Liu, Yi-Xun

    2016-07-01

    SMAD4 is the central component of canonical signaling in the transforming growth factor beta (TGFβ) superfamily. Loss of Smad4 in Sertoli cells affects the expansion of the fetal testis cords, whereas selective deletion of Smad4 in Leydig cells alone does not appreciably alter fetal or adult testis development. Loss of Smad4 in Sertoli and Leydig cells, on the other hand, leads to testicular dysgenesis, and tumor formation in mice. Within the murine testes, Smad4 is also expressed in germ cells of the seminiferous tubules. We therefore, crossed Ngn3-Cre or Stra8-Cre transgenic mice with Smad4-flox mice to generate conditional knockout animals in which Smad4 was specifically deleted in postnatal germ cells to further uncover cell type-specific requirement of Smad4. Unexpectedly, these germ-cell-knockout mice were fertile and did not exhibit any detectable abnormalities in spermatogenesis, indicating that Smad4 is not required for the production of sperm; instead, these data indicate a cell type-specific requirement of Smad4 primarily during testis development. Mol. Reprod. Dev. 83: 615-623, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Rapid down-regulation of testicular androgen biosynthesis at increased environmental temperature is due to cytochrome P450c17 (CYP17) thermolability in Leydig cells, but not in endoplasmic reticulum membranes.

    PubMed

    Kühn-Velten, W N

    1996-01-01

    To identify possible molecular targets in moderate heat-induced, short-term derangements of rat testicular endocrine function, rates of androgen and precursor biosynthesis and key enzyme concentrations were compared at 38 degrees C (normal body core temperature) and 31 degrees C (normal scrotal temperature) in three in-vitro models of decreasing complexity and increasing specificity. In purified Leydig cells and similarly in decapsulated testes, gross testosterone secretion was by 20% higher at 38 degrees C under basal conditions and during the initial phase of stimulation with hCG or cAMP; longer (> 1 hour) exposure to the elevated temperature resulted in a marked decrease (52% after 3 hours) of testosterone response to hCG or cAMP as compared to the corresponding rates at 31 degrees C. This phenomenon was neither due to the development of hormone resistance at the receptor level nor to restricted cholesterol supply and turnover nor to increased testosterone accumulation. Whereas mitochondrial CYP11A (cytochrome P450cscc: cholesterol monooxygenase) was absolutely temperature-insensitive in all systems tested, CYP17 (cytochrome P450c17: steroid-17 alpha-monooxygenase/C17, 20-aldolase) in the smooth endoplasmic reticulum responded with a 57% loss in whole testes and 39% loss in purified Leydig cells upon a 3-hour temperature elevation from 31 degrees C to 38 degrees C. In contrast, CYP17 was stable (4% loss) when tested directly in microsomal membranes. It is concluded that CYP17, but not CYP11A, is very sensitive towards even moderate elevation of environmental temperature, and that this apparent lability is not an intrinsic property of the enzyme protein but rather mediated by heat-activated intracellular factors.

  20. B cell receptor accessory molecule CD79α: Characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias)

    PubMed Central

    Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J.

    2013-01-01

    CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5′ flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. PMID:23454429

  1. B cell receptor accessory molecule CD79α: characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias).

    PubMed

    Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J

    2013-06-01

    CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Pod-1/Capsulin shows a sex- and stage-dependent expression pattern in the mouse gonad development and represses expression of Ad4BP/SF-1.

    PubMed

    Tamura, M; Kanno, Y; Chuma, S; Saito, T; Nakatsuji, N

    2001-04-01

    Mammalian sex-determination and differentiation are controlled by several genes, such as Sry, Sox-9, Dax-1 and Mullerian inhibiting substance (MIS), but their upstream and downstream genes are largely unknown. Ad4BP/SF-1, encoding a zinc finger transcription factor, plays important roles in gonadogenesis. Disruption of this gene caused disappearance of the urogenital system including the gonad. Ad4BP/SF-1, however, is also involved in the sex differentiation of the gonad at later stages, such as the regulation of steroid hormones and MIS. Pod-1/Capsulin, a member of basic helix-loop-helix transcription factors, is expressed in a pattern closely related but mostly complimentary to that of the Ad4BP/SF-1 expression in the developing gonad. In the co-transfection experiment using cultured cells, overexpression of Pod-1/Capsulin repressed expression of a reporter gene that carried the upstream regulatory region of the Ad4BP/SF-1 gene. Furthermore, forced expression of Pod-1/Capsulin repressed expression of Ad4BP/SF-1 in the Leydig cell-derived I-10 cells. These results suggest that Pod-1/Capsulin may play important roles in the development and sex differentiation of the mammalian gonad via transcriptional regulation of Ad4BP/SF-1.

  3. Differential tissue expression of enhanced green fluorescent protein in 'green mice'.

    PubMed

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-06-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.

  4. In vitro effect of 4-nonylphenol on human chorionic gonadotropin (hCG) stimulated hormone secretion, cell viability and reactive oxygen species generation in mice Leydig cells.

    PubMed

    Jambor, Tomáš; Tvrdá, Eva; Tušimová, Eva; Kováčik, Anton; Bistáková, Jana; Forgács, Zsolt; Lukáč, Norbert

    2017-03-01

    Nonylphenol is considered an endocrine disruptor and has been reported to affect male reproductive functions. In our in vitro study, we evaluated the effects of 4-nonylphenol (4-NP) on cholesterol levels, hormone formation and viability in cultured Leydig cells from adult ICR male mice. We also determined the potential impact of 4-NP on generation of reactive oxygen species (ROS) after 44 h of cultivation. The cells were cultured with addition of 0.04; 0.2; 1.0; 2.5 and 5.0 μg/mL of 4-NP in the present of 1 IU/mL human chorionic gonadotropin (hCG) and compared to the control. The quantity of cholesterol was determined from culture medium using photometry. Determination of hormone production was performed by enzyme-linked immunosorbent assay. Metabolic activity assay was used for quantification of cell viability. The chemiluminescence technique, which uses a luminometer to measure reactive oxygen species, was employed. Applied doses of 4-NP (0.04-5.0 μg/mL) slight increase cholesterol levels and decrease production of dehydroepiandrosterone after 44 h of cultivation, but not significantly. Incubation of 4-NP treated cells with hCG significantly (P < 0.001) inhibited androstenedione, but not testosterone, formation at the highest concentration (5.0 μg/mL). The viability was significantly (P < 0.05); (P < 0.001) increased at 1.0; 2.5 and 5.0 μg/mL of 4-NP after 44 h treatment. Furthermore, 44 h treatment of 4-NP (0.04-5.0 μg/mL) caused significant (P < 0.001) intracellular accumulation of ROS in exposed cells. Taken together, the results of our in vitro study reported herein is consistent with the conclusion that 4-nonylphenol is able to influence hormonal profile, cell viability and generate ROS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Expression of Basigin in Reproductive Tissues of Oestrogen Receptor-α or –β Null Mice

    PubMed Central

    Chen, Li; Bi, Jiajia; Nakai, Masaaki; Bunick, David; Couse, John F.; Korach, Kenneth S.; Nowak, Romana A.

    2016-01-01

    Basigin plays important roles in both male and female reproduction because basigin (Bsg) null male and female mice are infertile. The aim of the present study was to determine whether basigin expression in reproductive organs requires oestrogen receptor (ER) α or ERβ. Expression of basigin protein in the testis, ovary and male and female reproductive tracts was studied in adult wild type, ERα-null (αERKO) and ERβ-null (βERKO) mice by immunohistochemistry and immunoblotting. Basigin mRNA levels in ovary and uterus were examined by quantitative RT-PCR. In females, basigin protein expression was observed mainly in granulosa and interstitial cells of the ovary and epithelial cells of the proximal oviduct in all genotypes. Basigin protein was also expressed in the uterine epithelium at prooestrus and oestrus in WT and βERKO mice but not in αERKO mice. However, a higher level of basigin mRNA was observed in uteri of αERKO mice compared with WT and βERKO mice. In males, basigin was expressed in Leydig cells and all germ cells except spermatogonia in all genotypes. Basigin was present in epithelial cells lining the efferent ductules in WT and βERKO mice but expression was greatly reduced in αERKO mice. In epididymal ducts, basigin expression was observed in epithelial cells in the caput and cauda in all genotypes. These data suggest that expression of basigin protein requires ERα, but not ERβ, in the uterus and efferent ductules, but is independent of ER in the ovary, oviduct, testis and epididymis. PMID:20388736

  6. Molecular cloning and preliminary expression analysis of banded dogfish (Triakis scyllia) TNF decoy receptor 3 (TNFRSF6B).

    PubMed

    Inoue, Yuuki; Morinaga, Akihiro; Takizawa, Fumio; Saito, Tsubasa; Endo, Mariko; Haruta, Chiaki; Nakai, Takeshi; Moritomo, Tadaaki; Nakanishi, Teruyuki

    2008-03-01

    Decoy receptor 3 (DcR3), a member of TNF receptor superfamily, is a soluble receptor without death domain and cytoplasmic domain, and secreted by cells and binds with FasL, LIGHT and TL1A. The principal function of DcR3 is the inhibition of apoptosis by the binding cytotoxic ligands. Expression of DcR3 has been reported in a wide array of normal human tissues as well as tumors and tumor cell lines. Recently, DcR3 was reported to modulate a variety of immune responses in mammals. TNFR or DcR3 has been identified in some teleost fishes. However, DcR3 is not reported in cartilaginous fish which is the lowest vertebrate possessing the adaptive immune system. Here we identified DcR3 cDNA in shark (Trsc-DcR3) from an SSH library prepared from peripheral white blood cells stimulated with PMA. Four cysteine-rich domains (CRDs) in common with TNF receptor family members are present in the Trsc-DcR3 sequence. The deduced amino acid sequence of Trsc-DcR3 showed highest identity with the chicken (50.4%), followed by human (46.8%) and rainbow trout (36.5%) DcR3. In a phylogenetic tree of known TNFRSF sequences, the Trsc-DcR3 grouped with the chicken and human DcR3. Trsc-DcR3 mRNA was detected strongly in the gill, moderately in the brain, and weakly in the kidney, thymus and leydig. These data strongly suggest that the gene encoding Trsc-DcR3 in banded dogfish is a homolog of the human gene. mRNA expression of Trsc-DcR3 in the thymus and leydig suggests that DcR3 may act as a modulator in the immune system even at the phylogenetic level of cartilaginous fish.

  7. [Effects of glycosides of Tripterygium wilfordii, methyltestosterone and zhuanggushenjin capsule on nitric oxide synthase in rat testes].

    PubMed

    Ren, Ya-Ping; Sun, Li; Jiang, Wei; Hu, Chun-Ping

    2005-05-01

    To investigate the effects of glycosides of tripterygium wilfordii (GTW), methyltestosterone and Zhuanggushenjin capsule on nitric oxide synthase (NOS) in rat testes. Forty-five rats were equally divided into 5 groups, and respectively given GTW [10 mg/(kg x d)], methyltestosterone [2 mg/(kg x d)], Zhuanggushenjin capsule [0.3 g/(kg x d)], distilled water plus Tween 80 (control I), and distilled water alone (control II) for 4 weeks. At the end of the 5th week, the immunochemical ABC method was used to observe the effects of the three drugs on the NOS positive Leydig cells of the rats. Compared with control II, the GTW group had a significant decrease in the numbers of nNOS and eNOS positive Leydig cells, the methyltestosterone group showed an increase in the number of nNOS but a decrease in that of eNOS positive Leydig cells, and the Zhuanggushenjin group had an increase in the numbers of both nNOS and eNOS positive Leydig cells. GTW can reduce NO production by inhibiting eNOS and nNOS, and hence influence the spermatogenic process. Zhuanggushenjin capsule plays an important role in improving male sexual function by enhancing nNOS and eNOS expression and NO synthesis.

  8. Expression of peroxisome proliferator-activated receptor alpha messenger ribonucleic acid and protein in human and rat testis.

    PubMed

    Schultz, R; Yan, W; Toppari, J; Völkl, A; Gustafsson, J A; Pelto-Huikko, M

    1999-07-01

    Peroxisome proliferator-activated receptor a (PPARalpha), a member of the steroid hormone receptor superfamily, has been linked to lipid homeostasis and tumorigenesis in tissues with high expression of receptor protein. On the other hand, the role of PPARalpha in tissues with a lower expression is not well known. Here we demonstrate the localization of PPARalpha messenger RNA (mRNA) and protein in developing and adult rat testis. Additionally, we demonstrate the expression of PPARalpha protein in adult human testis. Our experiments with Northern analysis, in situ hybridization and immunocytochemistry reveal a complex distribution of PPARalpha in tubular and interstitial cells of both adult and developing rat testis. The overall expression is rather low but may be modified by exogenous or endogenous stimuli. An up-regulation of PPARalpha mRNA could be observed after stimulation with FSH. In the developing rat testis, a clear expression of PPARalpha mRNA was present from the first days after birth. Additionally, PPARalpha mRNA and protein increased toward adulthood. In adult human testis PPARalpha immunoreactivity (IR) was present in interstitial Leydig cells and tubular cells. In the seminiferous epithelium of adult human testis the expression of PPARalpha-IR could be seen in meiotic spermatocytes, spermatids and myoid peritubular cells. The findings of our study suggest that PPARalpha may be involved in the regulation of growth and differentiation of tubular and interstitial cells in rat and human testis.

  9. Sertoli-Leydig cell tumors: hormonal profile after dynamic test with GnRH analogue: triptorelin represents a useful tool to evaluate tumoral hyperandrogenism.

    PubMed

    Turra, J; Granzotto, M; Gallea, M; Faggian, D; Conte, L; Litta, P; Vettor, R; Mioni, R

    2015-01-01

    We report the case of a 15-year-old woman with signs of hyperandrogenism affected by a Sertoli-Leydig cell tumor (SLCT). In our patient, blood analysis showed a high testosterone (T) level (T: 8.53 nmol/L; nv < 1.87 nmol/L) while the GnRH-analogue test demonstrated an exaggerated secretion of 17-hydroxyprogesterone (OHP), T, and androstenedione (A) by the ovary after stimulation. We compared the GnRH-analogue test of our patient with that obtained in a group of normal and healthy women (no. 8 subjects, 16-26 years old), men (no. 4 subjects, 18-28 years old), and in a group of PCOS patients with age and body weight compared. We found in our patient a value of OHP, 17-beta estradiol (E2) and T, from 2 to 18 times higher than healthy women. When we compared our patient with healthy men, we differently observed a comparable response of T. The response of our patient was also comparable with that observed in the PCOS group for E2. During the post-surgical follow up, the GnRH-analogue test of our patient showed a response of OHP, T, and E2 comparable with that of the PCOS group. The GnRH-analogue test is a useful tool to characterize steroidogenesis in SLCT.

  10. Treatment of leydig cell tumours of the testis: Can testis-sparing surgery replace radical orchidectomy? Results of a systematic review.

    PubMed

    Bozzini, G; Ratti, D; Carmignani, L

    2017-04-01

    The gold standard for Leydig cell tumours (LCTs) is still considered radical orchidectomy, but testis sparing surgery (TSS) in conjunction with intraoperative frozen section (FSE) has been recently attempted with promising results. Studies were identified by searching electronic databases. A bibliographic search covering the period from January 1980 to December 2012 was conducted using PubMed/MEDLINE and EMBASE database. Studies were excluded if they were single case reports, meeting abstracts and conference proceedings. The present analysis is based on a total of 13 studies that fulfilled the predefined inclusion criteria. A total of 247 participants were included in the 13 studies examined in this systematic review. 145 were treated with radical orchiectomy and 102 with TSS. In the radical surgery group, the follow-up varied from 6 to 249 months). In the TSS group, the follow-up varied from 6 to 192 months. Frozen section was performed in a total of 96 patients. Sensitivity was 87.5%. None of the patients treated with TSS presented a metastatic recurrence, while in patients treated with radical orchiectomy three patients presented with metastatic recurrence In selected cases radical surgery appears excessive and the potential for a shift to TSS as the standard management is gathering momentum. The results confirm the favourable course of LCT treated with TSS. The results obtained are encouraging and the concept is attractive to become the standard therapy in all patients and not only in people affected by (sub)fertility or with solitary testis. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and testicular steroidogenesis-related gene expression of their male kids in Taihang Black Goats.

    PubMed

    Shi, Lei; Song, Ruigao; Yao, Xiaolei; Duan, Yunli; Ren, Youshe; Zhang, Chunxiang; Yue, Wenbin; Lei, Fulin

    2018-07-01

    To investigate the effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and steroidogenesis-related gene expression in testis of their male kids, selected pregnant Taihang Black Goats were randomly allotted to four treatment groups. They were fed the basal gestation and lactation diets supplemented with 0 (control), 0.5, 2.0 and 4.0 mg of Se/kg DM. Thirty days after weaning, testes were collected from the kids. After the morphological development status of testis was examined, tissue samples were collected for analyzing testosterone concentration and histological parameters. Testosterone synthesis-related genes were detected using real-time PCR. Localization and quantification of androgen receptor (AR) in testis of goats were determined by immunohistochemical and western blot analysis. The results show that Se supplementation in the diet of dams led to higher (p < 0.05) testicular weight, volume, length, width, transverse and vertical grith of their male kids. Excessive Se (4.0 mg/kg) can inhibit the development of testis by decreasing testicular weight and volume. The density of spermatogenic cells and Leydig cells in the Se treatment groups was significantly (p < 0.05) higher than that in the control. Maternal dietary Se did not affect the thickness of testes, thickness of germinal epithelium and diameter of seminiferous tubule. Se supplemented in the diet of dams improved the testosterone level in testis tissue and serum, and promote the expression of testosterone-related genes. The mRNA expression of StAR, 3β-HSD and CYP11A1 was decreased with the increasing dietary Se levels of dams. Maternal dietary Se can improve the AR protein abundance in testis of their offspring. AR immunopositive product was detected in Leydig cells, peritubular myoid cells, perivascular smooth muscle cells, primary spermatocytes and spermatids. The expression of AR in spermatogenetic cells is stage specific. This study suggests

  12. Testicular cell population dynamics following palmitine hydroxide treatment in male dogs.

    PubMed

    Gupta, R S; Dixit, V P

    1989-04-01

    Palmitine hydroxide isolated from the roots of Berberis chitria administered orally to dogs 30 mg/kg per day for 60 days brings about a consistent impairment of primary and secondary spermatocytes and elongated spermatids (Stages IV-VIII). The primary and secondary spermatocytes were reduced by 60 and 68%, respectively, and the elongated spermatids were decreased by 58%. The number of spermatogonia and Sertoli cells remained unaltered. The production of immature and mature Leydig cells decreased by 66% and 27%, respectively. Protein, sialic acid and glycogen content and acid phosphatase activity of testes and epididymides were lowered to varying extents. Testicular cholesterol was elevated significantly. Weights of the testes and epididymides were significantly reduced. The antispermatogenic action of palmitine hydroxide may be mediated by disturbances in Leydig cell function.

  13. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  14. Cell and region specificity of Aryl hydrocarbon Receptor (AhR) system in the testis and the epididymis.

    PubMed

    Wajda, A; Łapczuk, J; Grabowska, M; Pius-Sadowska, E; Słojewski, M; Laszczynska, M; Urasinska, E; Machalinski, B; Drozdzik, M

    2017-04-01

    Aryl hydrocarbon receptor (AhR) plays multiple important functions in adaptive responses. Exposure to AhR ligands may produce an altered metabolic activity controlled by the AhR pathways, and consequently affect drug/toxin responses, hormonal status and cellular homeostasis. This research revealed species-, cell- and region-specific pattern of the AhR system expression in the rat and human testis and epididymis, complementing the existing knowledge, especially within the epididymal segments. The study showed that AhR level in the rat and human epididymis is higher than in the testis. The downregulation of AhR expression after TCDD treatment was revealed in the spermatogenic cells at different stages and the epididymal epithelial cells, but not in the Sertoli and Leydig cells. Hence, this basic research provides information about the AhR function in the testis and epididymis, which may provide an insight into deleterious effects of drugs, hormones and environmental pollutants on male fertility. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Prenatal and early postnatal NOAEL-dose clothianidin exposure leads to a reduction of germ cells in juvenile male mice

    PubMed Central

    YANAI, Shogo; HIRANO, Tetsushi; OMOTEHARA, Takuya; TAKADA, Tadashi; YONEDA, Naoki; KUBOTA, Naoto; YAMAMOTO, Anzu; MANTANI, Youhei; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko

    2017-01-01

    Neonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates. Here, we investigated the male reproductive toxicity of prenatal and early postnatal exposure to CTD, because it is likely that developmental exposure more severely affects the testis compared to adults due to the absence of the blood-testis barrier. Pregnant C57BL/6 mice were given water gel blended with CTD (0, 10 or 50 mg/kg/day; no-observed-adverse-effect-level [NOAEL for mice]: 47.2 mg/kg/day) between gestational day 1 and 14 days post-partum. We then examined the testes of male offspring at postnatal day 14. The testis weights and the numbers of germ cells per seminiferous tubule were decreased in the CTD-50 group, and abnormal tubules containing no germ cells appeared. Nevertheless, the apoptotic cell number and proliferative activity were not significantly different between the control and CTD-exposed groups. There were no significant differences in the androgen-related parameters, such as the Leydig cell volume per testis, the Sertoli cell number and the tubule diameter. The present study is the first demonstration that in utero and lactational exposures to CTD at around the NOAEL for mice reduce the germ cell number, but our findings suggest that these exposures do not affect steroidogenesis in Leydig cells during prenatal or early postnatal life. PMID:28579575

  16. In Utero Exposure to the Antiandrogen Di-(2-Ethylhexyl) Phthalate Decreases Adrenal Aldosterone Production in the Adult Rat1

    PubMed Central

    Martinez-Arguelles, Daniel B.; Guichard, Theodore; Culty, Martine; Zirkin, Barry R.; Papadopoulos, Vassilios

    2011-01-01

    We previously reported that in utero exposure of the male fetus to the plasticizer di-(2-ethylhexyl) phthalate (DEHP) resulted in decreased circulating levels of testosterone in the adult without affecting Leydig cell numbers, luteinizing hormone levels, or steroidogenic enzyme expression. Fetal exposure to DEHP resulted in reduced mineralocorticoid receptor (MR; NR3C2) expression in adult Leydig cells. In the present studies, treatment of pregnant Sprague-Dawley dams from Gestational Day 14 until birth with 20, 50, 100, 300, or 750 mg kg−1 day−1 of DEHP resulted in significant sex-specific decreases in serum aldosterone but not corticosterone levels at Postnatal Day 60 (PND60) but not at PND21. There was no effect on circulating levels of potassium, angiotensin II or adrenocorticotropin hormone (ACTH). However, there was reduced expression of AT receptor Agtr1a, Agtr1b, and Agtr2 mRNAs. The mRNA levels of proteins and enzymes implicated in aldosterone biosynthesis were not affected by in utero DEHP treatment except for Cyp11b2, which was decreased at high (≥500 mg kg−1 day−1) doses. The data presented herein, together with our previous observation that aldosterone stimulates testosterone production via an MR-mediated mechanism, suggest that in utero exposure to DEHP causes reduction in both adrenal aldosterone synthesis and MR expression in Leydig cells, leading to reduced testosterone production in the adult. Moreover, these results suggest the existence of a DEHP-sensitive adrenal-testis axis regulating androgen formation. PMID:21389346

  17. Preserved seminiferous tubule integrity with spermatogonial survival and induction of Sertoli and Leydig cell maturation after long-term organotypic culture of prepubertal human testicular tissue.

    PubMed

    de Michele, F; Poels, J; Weerens, L; Petit, C; Evrard, Z; Ambroise, J; Gruson, D; Wyns, C

    2017-01-01

    Is an organotypic culture system able to provide the appropriate testicular microenvironment for in-vitro maturation of human immature testicular tissue (ITT)? Our organotypic culture system provided a microenvironment capable of preserving seminiferous tubule (ST) integrity and Leydig cell (LC) functionality and inducing Sertoli cell (SC) maturation. Cryopreservation of human ITT is a well-established strategy to preserve fertility in prepubertal boys affected by cancer, with a view for obtaining sperm. While spermatogenesis in mice has been replicated in organotypic culture, yielding reproductively efficient spermatozoa, this process has not yet been achieved in humans. The aim of this study was to in vitro mature frozen-thawed ITT. To this end, 1 mm 3 tissue fragments from three prepubertal patients aged 2 (P1), 11 (P2) and 12 (P3) years were placed in organotypic culture for 139 days. Culture media, supplemented with either testosterone or hCG, were compared. ST integrity and tissue viability were assessed by histological score and lactate dehydrogenase (LDH) levels in supernatants. Spermatogonia (SG), proliferating cells and proliferating SG were identified by the use of MAGE-A4 and Ki67 immunohistochemical markers. Glial cell line-derived neurotrophic factor (GDNF) was used as a marker of SC functionality, while SC maturation was evaluated by androgen receptor (AR), anti-Müllerian hormone (AMH) immunohistochemistry (IHC) and AMH immunoenzymatic assay. LC functionality was determined by testosterone levels in supernatants and by 3β-hydroxysteroid dehydrogenase (3β-HSD) IHC. Apoptosis was studied by IHC with active caspases 3 and 8 and by TUNEL (terminal deoxynubocleotidyl transferase-mediated dUTP nick end labeling) analysis. Tissue viability was preserved, as demonstrated by the decrease in and stabilization of LDH release, and evolution of ST scoring, with the percentage of well-preserved STs showing no statistical differences during culture in either

  18. Bile acid-FXRα pathways regulate male sexual maturation in mice

    PubMed Central

    Vega, Aurélie; Sédes, Lauriane; Rouaisnel, Betty; de Haze, Angélique; Baron, Silvère; Schoonjans, Kristina; Caira, Françoise; Volle, David H.

    2016-01-01

    The bile acid receptor Farnesol-X-Receptor alpha (FRXα) is a member of the nuclear receptor superfamily. FRXα is expressed in the interstitial compartment of the adult testes, which contain the Leydig cells. In adult, short term treatment (12 hours) with FRXα agonist inhibits the expression of steroidogenic genes via the induction of the Small heterodimer partner (SHP). However the consequences of FRXα activation on testicular pathophysiology have never been evaluated. We demonstrate here that mice fed a diet supplemented with bile acid during pubertal age show increased incidence of infertility. This is associated with altered differentiation and increase apoptosis of germ cells due to lower testosterone levels. At the molecular level, next to the repression of basal steroidogenesis via the induction expression of Shp and Dax-1, two repressors of steroidogenesis, the main action of the BA-FRXα signaling is through lowering the Leydig cell sensitivity to the hypothalamo-pituitary axis, the main regulator of testicular endocrine function. In conclusion, BA-FRXα signaling is a critical actor during sexual maturation. PMID:26848619

  19. Simvastatin and Dipentyl Phthalate Display Different Mechanisms of Action but Exhibit Dose Additive Effects on Fetal Testicular Testosterone Production in Sprague Dawley Rats

    EPA Science Inventory

    Sex differentiation of the male reproductive tract in mammals is driven, in part, by fetal androgen production. In utero exposure to some phthalate esters (PEs) alters fetal Leydig cell differentiation, reducing the expression of several genes associated with steroid synthesis/tr...

  20. The effects of simvastatin and dipentyl phthalate on fetal cholesterol and testosterone production

    EPA Science Inventory

    Sex differentiation of the male reproductive tract in mammals is driven, in part, by fetal androgen production. In utero, some phthalate esters (PEs) alter fetal Leydig cell differentiation, reducing the expression of genes associated with steroid synthesis/transport, and conseq...

  1. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells.

    PubMed

    Gatto, Sole; Puri, Pier Lorenzo; Malecova, Barbora

    2017-01-01

    Single cell gene expression profiling is a fundamental tool for studying the heterogeneity of a cell population by addressing the phenotypic and functional characteristics of each cell. Technological advances that have coupled microfluidic technologies with high-throughput quantitative RT-PCR analyses have enabled detailed analyses of single cells in various biological contexts. In this chapter, we describe the procedure for isolating the skeletal muscle interstitial cells termed Fibro-Adipogenic Progenitors (FAPs ) and their gene expression profiling at the single cell level. Moreover, we accompany our bench protocol with bioinformatics analysis designed to process raw data as well as to visualize single cell gene expression data. Single cell gene expression profiling is therefore a useful tool in the investigation of FAPs heterogeneity and their contribution to muscle homeostasis.

  2. Expression of heparanase in basal cell carcinoma and squamous cell carcinoma.

    PubMed

    Pinhal, Maria Aparecida Silva; Almeida, Maria Carolina Leal; Costa, Alessandra Scorse; Theodoro, Thérèse Rachell; Serrano, Rodrigo Lorenzetti; Machado, Carlos D'Apparecida Santos

    2016-01-01

    Heparanase is an enzyme that cleaves heparan sulfate chains. Oligosaccharides generated by heparanase induce tumor progression. Basal cell carcinoma and squamous cell carcinoma comprise types of nonmelanoma skin cancer. Evaluate the glycosaminoglycans profile and expression of heparanase in two human cell lines established in culture, immortalized skin keratinocyte (HaCaT) and squamous cell carcinoma (A431) and also investigate the expression of heparanase in basal cell carcinoma, squamous cell carcinoma and eyelid skin of individuals not affected by the disease (control). Glycosaminoglycans were quantified by electrophoresis and indirect ELISA method. The heparanase expression was analyzed by quantitative RT-PCR (qRTPCR). The A431 strain showed significant increase in the sulfated glycosaminoglycans, increased heparanase expression and decreased hyaluronic acid, comparing to the HaCaT lineage. The mRNA expression of heparanase was significantly higher in Basal cell carcinoma and squamous cell carcinoma compared with control skin samples. It was also observed increased heparanase expression in squamous cell carcinoma compared to the Basal cell carcinoma. The glycosaminoglycans profile, as well as heparanase expression are different between HaCaT and A431 cell lines. The increased expression of heparanase in Basal cell carcinoma and squamous cell carcinoma suggests that this enzyme could be a marker for the diagnosis of such types of non-melanoma cancers, and may be useful as a target molecule for future alternative treatment.

  3. [Expression of cell adhesion molecules in acute leukemia cell].

    PubMed

    Ju, Xiaoping; Peng, Min; Xu, Xiaoping; Lu, Shuqing; Li, Yao; Ying, Kang; Xie, Yi; Mao, Yumin; Xia, Fang

    2002-11-01

    To investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia. The expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR). The expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR. The cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.

  4. [Relationship between phthalates and testicular dysgenesis syndrome].

    PubMed

    Chen, Guo-Rong; Dong, Lei; Ge, Ren-Shan; Hardy, Matthew P

    2007-03-01

    Recent epidemiological evidence demonstrates that boys born to women exposed to phthalates during pregnancy have an increased incidence of cryptorchidism, hypospadias, testicular cancer and spermatogenic dysfunction, which are collectively referred to as testicular dysgenesis syndrome (TDS). TDS may be attributed to the dysfunction of Leydig cells and Sertoli cells during their differentiation after exposure to phthalates in utero. Fox example, Leydig cell functions are significantly affected by phthalates, leading to the decrease of two Leydig cell products--insulin-like growth factor 3 (INSL3) and testosterone, which are critical factors for testis descent. The disorientation of Leydig cells and Sertoli cells in the adult testis may be the cause of spermatogenic dysfunction.

  5. Expression of NK cell receptors on decidual T cells in human pregnancy.

    PubMed

    Tilburgs, Tamara; van der Mast, Barbara J; Nagtzaam, Nicole M A; Roelen, Dave L; Scherjon, Sicco A; Claas, Frans H J

    2009-06-01

    Specific receptors enable NK cells to discriminate between cells with normal expression of MHC class I and cells that have low or absent expression of MHC class I molecules. In addition to NK cells, these receptors can be expressed on T cell subsets, mainly on CD8+ T cells but also on gammadeltaTCR+ T cells and CD4+ T cells. Although the function of NK cell receptor expression on T cells is not completely understood, various studies have shown that they are involved in down regulation of T cell receptor (TCR)-mediated activation and influence effector functions, like cytotoxicity and cytokine production. The aim of this study was to analyze expression of NK cell receptors on peripheral blood and decidual T cells during human pregnancy using flow cytometry. We demonstrate that a proportion of decidual T cells express HLA-C specific killer immunoglobulin-like receptors (KIRs). Furthermore, a small proportion of decidual T cells express the HLA-E specific CD94-NKG2A inhibitory and CD94-NKG2C activating receptors. Decidual KIR+ and CD94-NKG2+ T cells mainly display a CD3+CD4-CD8- phenotype. However, decidual tissue also contains higher percentages of KIR and CD94-NKG2 expressing CD4+ and CD8+ T cells compared to peripheral blood. So far, the functional capacities of decidual T cells expressing the NK cell receptors are unknown but NK cell receptor expression on decidual T cells may provide an alternative means by which decidual T cells distinguish self (maternal) cells from allogeneic fetal cells, and act to modulate the decidual immune response.

  6. Organization and quantification of the elements in the intertubular space in the adult jaguar testis (Panthera onca, LINNAEUS, 1758).

    PubMed

    Azevedo, Maria Helena Ferreira; Paula, Tarcízio Antônio Rego; Balarini, Maytê Koch; Matta, Sérgio Luiz Pinto; Peixoto, Juliano Vogas; Guião Leite, Flaviana Lima; Rossi, João Luis; da Costa, Eduardo Paulino

    2008-12-01

    The endocrine portion of mammal testicle is represented by Leydig cells which, together with connective cells, leukocytes, blood and lymphatic vessels, form the intertubular space. The arrangement and proportion of these components vary in the different species of mammals and form mechanisms that keep the testosterone level--the main product of the Leydig cell--two to three times higher in the interstitial fluid than in the testicular blood vessels and 40-250 times higher in these than in the peripheral blood. Marked differences are observed among animal species regarding the abundance of Leydig cells, loose connective tissue, development degree and location of the lymphatic vessels and their topographical relationship with seminiferous tubules. In the jaguar about 13% of the testicular parenchyma is occupied by Leydig cells, 8.3% by connective tissue and 0.3% by lymphatic vessels. Although included in standard II, as described in the literature, concerning the arrangement of the intertubular space, the jaguar has grouped lymphatic vessels in the intertubular space instead of isolated ones. In the jaguar the average volume of the Leydig cell was 2386 microm3 and its average nuclear diameter was 7.7 microm. A great quantity of 2.3 microm diameter lipidic drops was observed in the Leydig cell cytoplasm of the jaguar. The Leydig cells in the jaguar occupy an average 0.0036% of the body weight and the average number per gram of testicle was within the range for most mammals: between 20 and 40 million.

  7. Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis

    PubMed Central

    Guerquin, Marie-Justine; Matilionyte, Gabriele; Kilcoyne, Karen; N’Tumba-Byn, Thierry; Messiaen, Sébastien; Deceuninck, Yoann; Pozzi-Gaudin, Stéphanie; Benachi, Alexandra; Livera, Gabriel; Antignac, Jean-Philippe; Mitchell, Rod; Rouiller-Fabre, Virginie

    2018-01-01

    Background Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. Methods Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks. Results With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. Conclusions Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental

  8. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

    PubMed

    Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-08-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics.

  9. Gene expression profile during testicular development in patients with SRY-negative 46,XX testicular disorder of sex development.

    PubMed

    Mizuno, Kentaro; Kojima, Yoshiyuki; Kamisawa, Hideyuki; Moritoki, Yoshinobu; Nishio, Hidenori; Kohri, Kenjiro; Hayashi, Yutaro

    2013-12-01

    To elucidate alternative pathways in testicular development, we attempted to clarify the genetic characteristics of SRY-negative XX testes. We previously reported 5 cases of SRY-negative 46,XX testicular disorders of sex development and demonstrated that coordinated expression of genes such as SOX9, SOX3, and DAX1 was associated with testicular development. We performed a case-control study between the aforementioned boy with 46,XX testicular disorders of sex development and an age-matched patient with hydrocele testis (46,XY). During their consecutive surgeries, testicular biopsy specimens were obtained. Genes with differential expression compared with XY testis were identified using polymerase chain reaction (PCR)-based subtractive hybridization and sequencing. For validation of differential gene expression, real-time RT-PCR was performed using gene-specific primers. The distribution of candidate proteins in the testicular tissue was clarified by immunohistochemistry in human and rodent specimens. Moreover, in vitro inhibitory assays were performed. We identified 13 upregulated and 7 downregulated genes in XX testis. Among the candidate genes, we focused on ROCK1 (Rho-associated, coiled-coil protein kinase 1) in the upregulated gene group, because high expression in XX testis was validated by real-time RT-PCR. ROCK1 protein was detected in germ cells, Leydig cells, and Sertoli cells by immunohistochemistry. Moreover, the addition of specific ROCK1 inhibitor to Sertoli cells decreased SOX9 gene expression. On the basis of in vitro inhibitory assay, it is suggested that ROCK1 phosphorylates and activates SOX9 in Sertoli cells. Testes formation might be initiated by an alternative signaling pathway attributed to ROCK1, not SRY, activation in XX testes. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Postnatal somatic cell proliferation and seminiferous tubule maturation in pigs: A non-random event

    PubMed Central

    Avelar, Gleide F.; Oliveira, Carolina F.A.; Soares, Jaqueline M.; Silva, Israel J.; Dobrinski, Ina; Hess, Rex A.; França, Luiz R.

    2015-01-01

    Although seminiferous tubule maturation in horses begins in the central area of the testis, this process is thought to occur randomly throughout the testis in most mammals. Studies in our laboratory revealed that the establishment of spermatogenesis may not be a synchronous event in the testicular parenchyma of pigs. The objectives of the present study were to evaluate the pattern of seminiferous cord/tubule maturation and the morphological and functional characteristics of testicular somatic cells during postnatal development in three regions of the pig testis: a) near the tunica albuginea (TA); b) in the transitional area between the seminiferous tubules and mediastinum (TR); and c) in the intermediate area (ID) between the TA and TR. Based on the diameter of seminiferous cords/tubules, nucleus size of Sertoli cells and fluid secretion, mainly at 90 and 120 d of age, seminiferous tubule maturation was more advanced in the ID and TR. The mitotic activity of Sertoli cells was higher (P < 0.05) in the TR than the ID and TA at 7 and 120 d. Except for the mitotic index of the Leydig cells, which was lower (P < 0.05) in the ID at 7, 30, and 180 d than in the TA and TR, other Leydig cell ebd points, e.g., individual cell size, nuclear volume, and cytoplasmic volume, were consistently higher (P < 0.05) in the ID, suggesting that steroidogenesis was more active in this region during the period investigated. Overall, we inferred that Leydig cells in the ID may play a pivotal role in postnatal testis development in pigs and this type of cell is likely related to asynchronous testicular parenchyma development, with the transitional area providing the primary zone for growth of seminiferous tubules. PMID:20189235

  11. Impaired expression of DICER and some microRNAs in HBZ expressing cells from acute adult T-cell leukemia patients

    PubMed Central

    Gazon, Hélène; Belrose, Gildas; Terol, Marie; Meniane, Jean-Come; Mesnard, Jean-Michel; Césaire, Raymond; Peloponese, Jean-Marie

    2016-01-01

    Global dysregulation of microRNAs (miRNAs), a class of non-coding RNAs that regulate genes expression, is a common feature of human tumors. Profiling of cellular miRNAs on Adult T cell Leukemia (ATL) cells by Yamagishi et al. showed a strong decrease in expression for 96.7% of cellular miRNAs in ATL cells. However, the mechanisms that regulate the expression of miRNAs in ATL cells are still largely unknown. In this study, we compared the expression of 12 miRs previously described for being overexpress by Tax and the expression of several key components of the miRNAs biogenesis pathways in different HBZ expressing cell lines as well as in primary CD4 (+) cells from acute ATL patients. We showed that the expression of miRNAs and Dicer1 were downregulated in cells lines expressing HBZ as well as in fresh CD4 (+) cells from acute ATL patients. Using qRT-PCR, western blotting analysis and Chromatin Immunoprecipitation, we showed that dicer transcription was regulated by c-Jun and JunD, two AP-1 transcription factors. We also demonstrated that HBZ affects the expression of Dicer by removing JunD from the proximal promoter. Furthermore, we showed that at therapeutic concentration of 1mM, Valproate (VPA) an HDAC inhibitors often used in cancer treatment, rescue Dicer expression and miRNAs maturation. These results might offer a rationale for clinical studies of new combined therapy in an effort to improve the outcome of patients with acute ATL. PMID:26849145

  12. Mapping mitochondrial heteroplasmy in a Leydig tumor by laser capture micro-dissection and cycling temperature capillary electrophoresis.

    PubMed

    Refinetti, Paulo; Arstad, Christian; Thilly, William G; Morgenthaler, Stephan; Ekstrøm, Per Olaf

    2017-01-01

    The growth of tumor cells is accompanied by mutations in nuclear and mitochondrial genomes creating marked genetic heterogeneity. Tumors also contain non-tumor cells of various origins. An observed somatic mitochondrial mutation would have occurred in a founding cell and spread through cell division. Micro-anatomical dissection of a tumor coupled with assays for mitochondrial point mutations permits new insights into this growth process. More generally, the ability to detect and trace, at a histological level, somatic mitochondrial mutations in human tissues and tumors, makes these mutations into markers for lineage tracing. A tumor was first sampled by a large punch biopsy and scanned for any significant degree of heteroplasmy in a set of sequences containing known mutational hotspots of the mitochondrial genome. A heteroplasmic tumor was sliced at a 12 μm thickness and placed on membranes. Laser capture micro-dissection was used to take 25000 μm 2 subsamples or spots. After DNA amplification, cycling temperature capillary electrophoresis (CTCE) was used on the laser captured samples to quantify mitochondrial mutant fractions. Of six testicular tumors studied, one, a Leydig tumor, was discovered to carry a detectable degree of heteroplasmy for two separate point mutations: a C → T mutation at bp 64 and a T → C mutation found at bp 152. From this tumor, 381 spots were sampled with laser capture micro-dissection. The ordered distribution of spots exhibited a wide range of fractions of the mutant sequences from 0 to 100% mutant copies. The two mutations co-distributed in the growing tumor indicating they were present on the same genome copies in the founding cell. Laser capture microdissection of sliced tumor samples coupled with CTCE-based point mutation assays provides an effective and practical means to obtain maps of mitochondrial mutational heteroplasmy within human tumors.

  13. Single cell gene expression profiling of cortical osteoblast lineage cells.

    PubMed

    Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon

    2013-03-01

    In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Tropomyosin Receptor Kinase A Expression on Merkel Cell Carcinoma Cells.

    PubMed

    Wehkamp, Ulrike; Stern, Sophie; Krüger, Sandra; Hauschild, Axel; Röcken, Christoph; Egberts, Friederike

    2017-11-01

    Merkel cell carcinoma (MCC) is a malignant neuroendocrine skin tumor frequently associated with the Merkel cell polyomavirus. Immune checkpoint therapy showed remarkable results, although not all patients are responsive to this therapy. Anti-tropomyosin receptor kinase A (TrkA)-targeted treatment has shown promising results in several tumor entities. To determine TrkA expression in MCC as a rationale for potential targeted therapy. This case series study investigated the MCC specimens of 55 patients treated at the Department of Dermatology, University Hospital of Schleswig-Holstein, Kiel, Germany, from January 1, 2005, through December 31, 2015. Thirty-nine of the 55 samples were suitable for further histopathologic examination. Expression of TrkA was explored by immunohistochemical analysis. Diagnosis of MCC was confirmed by staining positive for cytokeratin 20 (CK20) and synaptophysin. Expression of TrkA on the tumor cells. Specimens of 39 patients (21 women and 18 men; mean [SD] age, 75.0 [7.8] years) underwent immunohistochemical investigation. Thirty-eight of 38 specimens expressed CK20 and synaptophysin on the MCC tumor cells (100% expression). Merkel cell polyomavirus was detected in 32 of 38 specimens (84%). Tropomyosin receptor kinase A was found in all 36 evaluable specimens on the tumor cells; 34 (94%) showed a weak and 2 (6%) showed a strong cytoplasmic expression. In addition, strongly positive perinuclear dots were observed in 30 of 36 specimens (83%). Tropomyosin receptor kinase A was expressed on MCC tumor cells in 100% of evaluable specimens. This result may lead to the exploration of new targeted treatment options in MCC, especially for patients who do not respond to anti-programmed cell death protein 1 treatment.

  15. A time-course study of long term over-expression of ARR19 in mice

    PubMed Central

    Qamar, Imteyaz; Ahmad, Mohammad Faiz; Narayanasamy, Arul

    2015-01-01

    A leucine-rich protein, ARR19 (androgen receptor corepressor-19 kDa), is highly expressed in male reproductive organs and moderately in others. Previously, we have reported that ARR19 is differentially expressed in adult Leydig cells during the testis development and inhibits steroidogenesis by reducing the expression of steroidogenic enzymes. Whereas in prostate, ARR19 represses the transcriptional activity of AR (androgen receptor), it is important for male sexual differentiation and maturation in prostate and epididymis, through the recruitment of HDAC4. In this study we show that long term adenovirus mediated overexpression of ARR19 in mice testis has the potential of inhibiting the differentiation of testicular and prostatic cells by reducing the size of testis and prostate but has no effect on the growth of seminal vesicles. Further, it reduces the level of progesterone and testosterone by reducing the steroidogenic enzymes such as 3HSD, P450c17 and StAR. This is the first study reporting a time-course analysis of the implications of long term overexpression of ARR19 in mice testis and its effect on other organs such as prostate and seminal vesicles. Taken together, these results suggest that ARR19 may play an important role in the differentiation of male reproductive organs such as testis and prostate. PMID:26260329

  16. Expression of stanniocalcin 1 in thyroid side population cells and thyroid cancer cells.

    PubMed

    Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S; Hewitt, Stephen M; Ward, Jerrold M; Kimura, Shioko

    2015-04-01

    Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma-derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer.

  17. Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells

    PubMed Central

    Danaher, Patrick; Finak, Greg; Krouse, Michael; Wang, Alice; Webster, Philippa; Beechem, Joseph; Gottardo, Raphael

    2014-01-01

    Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We determine each cell's phase non-invasively without chemical arrest and use it as a covariate in tests of differential expression. We observe bi-modal gene expression, a previously-described phenomenon, wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its source, we show that it should be modeled to draw accurate inferences from single cell expression experiments. To this end, we propose a semi-continuous modeling framework based on the generalized linear model, and use it to characterize genes with consistent cell cycle effects across three cell lines. Our new computational framework improves the detection of previously characterized cell-cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use our semi-continuous modelling framework to estimate single cell gene co-expression networks. These networks suggest that in addition to having phase-dependent shifts in expression (when averaged over many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single cells. We estimate the amount of single cell expression variability attributable to the cell cycle. We find that the cell cycle explains only 5%–17% of expression variability, suggesting that the cell cycle will not tend to be a large nuisance factor in analysis of the single cell transcriptome. PMID:25032992

  18. Expression of Stanniocalcin 1 in Thyroid Side Population Cells and Thyroid Cancer Cells

    PubMed Central

    Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S.; Hewitt, Stephen M.; Ward, Jerrold M.

    2015-01-01

    Background: Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Method: Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Results: Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma–derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. Conclusion: These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer. PMID:25647164

  19. During development intense Sox2 expression marks not only Prox1-expressing taste bud cell but also perigemmal cell lineages.

    PubMed

    Nakayama, Ayumi; Miura, Hirohito; Ooki, Makoto; Harada, Shuitsu

    2015-03-01

    Sox2 is proposed to regulate the differentiation of bipotential progenitor cells into taste bud cells. However, detailed expression of Sox2 remains unclear. In this report, Sox2 expression during taste bud development in the fungiform (FF), circumvallate (CV) and soft palate (SP) areas is examined together with Prox1. First, we immunohistochemically checked Prox1 expression in adults and found that almost all taste bud cells are Prox1-positive. During FF development, intense Sox2 expression was restricted to taste bud primordia expressing Prox1 at E12.5. However, at E14.5, Sox2 was intensely expressed outside the developing taste buds resolving to perigemmal Sox2 expression in adults. In the SP, at E14.5, taste bud primordia emerged as Prox1-expressing cell clusters. However, intense Sox2 expression was not restricted to taste bud primordia but was detected widely in the epithelium. During development, Sox2 expression outside developing taste buds was generally down-regulated but was retained in the perigemmal region similarly to that in the FF. In the CV, the initial stage of taste bud development remained unclear because of the lack of taste bud primordia comparable to that in the FF and SP. Here, we show that Prox1-expressing cells appear in the apical epithelium at E12.5, in the inner trench wall at E17.5 and in the outer trench wall at E18.5. Sox2 was again not restricted to developing taste bud cells expressing Prox1 during CV development. The expression patterns support that Sox2 does not serve as a cell fate selector between taste bud cells and surrounding keratinocytes but rather may contribute to them both.

  20. Thyroid Hormone and Leptin in the Testis

    PubMed Central

    Ramos, Cristiane Fonte; Zamoner, Ariane

    2014-01-01

    Leptin is primarily expressed in white adipose tissue; however, it is expressed in the hypothalamus and reproductive tissues as well. Leptin acts by activating the leptin receptors (Ob-Rs). Additionally, the regulation of several neuroendocrine and reproductive functions, including the inhibition of glucocorticoids and enhancement of thyroxine and sex hormone concentrations in human beings and mice are leptin functions. It has been suggested that thyroid hormones (TH) could directly regulate leptin expression. Additionally, hypothyroidism compromises the intracellular integration of leptin signaling specifically in the arcuate nucleus. Two TH receptor isoforms are expressed in the testis, TRa and TRb, with TRa being the predominant one that is present in all stages of development. The effects of TH involve the proliferation and differentiation of Sertoli and Leydig cells during development, spermatogenesis, and steroidogenesis. In this context, TH disorders are associated with sexual dysfunction. An endocrine and/or direct paracrine effect of leptin on the gonads inhibits testosterone production in Leydig cells. Further studies are necessary to clarify the effects of both hormones in the testis during hypothyroidism. The goal of this review is to highlight the current knowledge regarding leptin and TH in the testis. PMID:25505448

  1. Infant feeding with soy formula milk: effects on puberty progression, reproductive function and testicular cell numbers in marmoset monkeys in adulthood.

    PubMed

    Tan, Karen A L; Walker, Marion; Morris, Keith; Greig, Irene; Mason, J Ian; Sharpe, Richard M

    2006-04-01

    This marmoset study addresses concerns about feeding human male infants with soy formula milk (SFM). From age 4 to 5 days, seven male co-twin sets were fed standard formula milk (SMA) or SFM for 5-6 weeks; blood samples were subsequently collected at 10-week intervals. Testes from co-twins killed at 120-138 weeks were fixed for cell counts. SFM- and SMA-fed twins showed normal weight gain; puberty started and progressed normally, based on blood testosterone measurements. Body weight, organ weights (prostate, seminal vesicles, pituitary, thymus and spleen) and penis length were comparable in co-twins. All SMA- and 6/7 SFM-fed males were fertile. Unexpectedly, testis weight (P = 0.041), Sertoli (P = 0.025) and Leydig cell (P = 0.026) numbers per testis were consistently increased in SFM-fed co-twins; the increase in Leydig cell numbers was most marked in males with consistently low-normal testosterone levels. Seminiferous epithelium volume per tubule showed a less consistent, non-significant increase in SFM-fed males; raised germ cell numbers per testis, probably due to increased Sertoli cells, conceivably resulted in larger testes. Average lumen size, although greater in SFM-fed group, was inconsistent between co-twins and the difference was not significant. Infant feeding with SFM has no gross adverse reproductive effects in male marmosets, though it alters testis size and cell composition, and there is consistent, if indirect, evidence for possible 'compensated Leydig cell failure'. Similar and perhaps larger changes likely occur in adult men who were fed SFM as infants.

  2. Role of the testis interstitial compartment in spermatogonial stem cell function

    PubMed Central

    Potter, Sarah J.; DeFalco, Tony

    2017-01-01

    Male fertility is maintained through intricate cellular and molecular interactions that ensure spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells, and vasculature) and peritubular (peritubular macrophages, peritubular myoid cells) cells and their role in regulating SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce proliferation or differentiation of SSCs, respectively. Vasculature influences SSC dynamics through CSF1, vascular endothelial growth factor (VEGF), and regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility. PMID:28115580

  3. Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study.

    PubMed

    Hayashi, K; Hayashi, M; Jalkanen, M; Firestone, J H; Trelstad, R L; Bernfield, M

    1987-10-01

    The core protein of the proteoglycan at the cell surface of NMuMG mouse mammary epithelial cells bears both heparan and chondroitin sulfate chains and is recognized by the monoclonal antibody 281-2. Using this antibody and the peroxidase-antiperoxidase staining technique in adult mouse tissues, we found that the antibody recognizes the antigen in a highly restricted distribution, staining a variety of epithelial cells but no cells derived from embryonic mesoderm or neural crest. The antibody fails to stain any stromal (mesenchymal) or neuronal cells, with the exception of plasma cells and Leydig cells. Squamous and transitional epithelia stain intensely over their entire surfaces, whereas cuboidal and columnar epithelia stain moderately and only at the lateral surface of the basal cells. Within squamous and transitional epithelial tissues that undergo physiological regeneration (e.g., epidermis), the most superficial and differentiated cell types fail to stain. Within glandular and branched epithelia (e.g., pancreas), the secretory alveolar cells fail to stain. When evaluated by electron microscopy, granular deposits of stain are seen on the plasma membrane, especially on lateral surfaces, but none are noted within the cells or the basement membrane. These results indicate that in adult tissues the core protein of this heparan sulfate-rich proteoglycan is expressed almost exclusively at epithelial cell surfaces. Expression appears to be lost as the cells become either mature or highly differentiated.

  4. Reconstructing Cell Lineages from Single-Cell Gene Expression Data: A Pilot Study

    DTIC Science & Technology

    2016-08-30

    Reconstructing cell lineages from single- cell gene expression data: a pilot study The goal of this pilot study is to develop novel mathematical...methods, by leveraging tools developed in the bifurcation theory, to infer the underlying cell -state dynamics from single- cell gene expression data. Our...proposed method contains two steps. The first step is to reconstruct the temporal order of the cells from gene expression data, whereas the second

  5. Synergistic Activation of Steroidogenic Acute Regulatory Protein Expression and Steroid Biosynthesis by Retinoids: Involvement of cAMP/PKA Signaling

    PubMed Central

    Manna, Pulak R.; Slominski, Andrzej T.; King, Steven R.; Stetson, Cloyce L.

    2014-01-01

    Both retinoic acid receptors (RARs) and retinoid X receptors (RXRs) mediate the action of retinoids that play important roles in reproductive development and function, as well as steroidogenesis. Regulation of steroid biosynthesis is principally mediated by the steroidogenic acute regulatory protein (StAR); however, the modes of action of retinoids in the regulation of steroidogenesis remain obscure. In this study we demonstrate that all-trans retinoic acid (atRA) enhances StAR expression, but not its phosphorylation (P-StAR), and progesterone production in MA-10 mouse Leydig cells. Activation of the protein kinase A (PKA) cascade, by dibutyrl-cAMP or type I/II PKA analogs, markedly increased retinoid-responsive StAR, P-StAR, and steroid levels. Targeted silencing of endogenous RARα and RXRα, with small interfering RNAs, resulted in decreases in 9-cis RA-stimulated StAR and progesterone levels. Truncation of and mutational alterations in the 5′-flanking region of the StAR gene demonstrated the importance of the −254/−1-bp region in retinoid responsiveness. An oligonucleotide probe encompassing an RXR/liver X receptor recognition motif, located within the −254/−1-bp region, specifically bound MA-10 nuclear proteins and in vitro transcribed/translated RXRα and RARα in EMSAs. Transcription of the StAR gene in response to atRA and dibutyrl-cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of cAMP response-element binding protein (CREB). Chromatin immunoprecipitation studies revealed the association of phosphorylation of CREB, CREB binding protein, RXRα, and RARα to the StAR promoter. Further studies elucidated that hormone-sensitive lipase plays an important role in atRA-mediated regulation of the steroidogenic response that involves liver X receptor signaling. These findings delineate the molecular events by which retinoids influence cAMP/PKA signaling and provide additional and novel insight into the

  6. The compounds from the hollyhock extract (Althaea rosea Cav. var. nigra) affect the aromatization in rat testicular cells in vivo and in vitro.

    PubMed

    Papiez, Monika; Gancarczyk, Monika; Bilińska, Barbara

    2002-01-01

    Among medicinal plants, extract from the hollyhock flowers is a source of antocyanides and flavonoids. The latter compounds belong, among others, to phytoestrogens (plant-derived dietary estrogens). The important role of estrogens in the testis is now well documented, and phytoestrogens, which may act as estrogen agonists or estrogen antagonists can also alter the reproductive function of the male. The aim of this study was to show whether the exposure of male rats to the aqueous hollyhock extract could affect the process of aromatization in their testes and in cultured Leydig cells. This was investigated by immunocytochemistry and radioimmunological assays. Immunoreactivities for aromatase and estrogen receptor beta were weaker both in testicular sections and cultured Leydig cells after hollyhock extract administration when compared to the controls, while the intensity of immunoreaction for estrogen receptor alpha remained unchanged. A lower level of estradiol secreted by cultured Leydig cells from the experimental group positively correlated with a direct inhibition of aromatase activity. Additionally, a quantitative analysis of flavonoid fraction from the hollyhock extract revealed the presence of quercetin and kaempferol. It seems that a weak antiestrogenic activity of flavonoid compounds present in the hollyhock extract is mediated through aromatase and estrogen receptor beta rather than by estrogen receptor alpha.

  7. Tissue factor expression by endothelial cells in sickle cell anemia.

    PubMed

    Solovey, A; Gui, L; Key, N S; Hebbel, R P

    1998-05-01

    The role of the vascular endothelium in activation of the coagulation system, a fundamental homeostatic mechanism of mammalian biology, is uncertain because there is little evidence indicating that endothelial cells in vivo express tissue factor (TF), the system's triggering mechanism. As a surrogate for vessel wall endothelium, we examined circulating endothelial cells (CEC) from normals and patients with sickle cell anemia, a disease associated with activation of coagulation. We find that sickle CEC abnormally express TF antigen (expressed as percent CEC that are TF-positive), with 66+/-13% positive in sickle patients in steady-state, 83+/-19% positive in sickle patients presenting with acute vasoocclusive episodes, and only 10+/-13% positive in normal controls. Repeated samplings confirmed this impression that TF expression is greater when sickle patients develop acute vasoocclusive episodes. Sickle CEC are also positive for TF mRNA, with excellent concurrence between antigen and mRNA expression. The TF expressed on the antigen-positive CEC is functional, as demonstrated by a binding assay for Factor VIIa and a chromogenic assay sensitive to generation of Factor Xa. By establishing that endothelial cells in vivo can express TF, these data imply that the vast endothelial surface area does provide an important pathophysiologic trigger for coagulation activation.

  8. DR-nm23 expression affects neuroblastoma cell differentiation, integrin expression, and adhesion characteristics.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    2001-01-01

    Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.

  9. Expression of nerve growth factor and its receptor, tyrosine kinase receptor A, in rooster testes.

    PubMed

    Ma, Wei; Wang, Chunqiang; Su, Yuhong; Tian, Yumin; Zhu, Hongyan

    2015-10-01

    Nerve growth factor (NGF), which is required for the survival and differentiation of the nervous system, is also thought to play an important role in the development of mammalian reproductive tissues. To explore the function of NGF in the male reproductive system of non-mammalian animals, we determined the presence of NGF and its receptor, tyrosine kinase receptor A (TrkA), in rooster testes and investigated the regulation of NGF and TrkA expression by follicle-stimulating hormone (FSH). The mRNA and protein levels of NGF and TrkA in 6-week-old rooster testes were lower than those in 12-, 16- or 20-week age groups; levels were highest in the 16-week group. Immunohistochemistry showed that NGF and TrkA were both detected in spermatogonia, spermatocytes and spermatids. NGF immunoreactivity was observed in Leydig cells and strong TrkA signals were present in Sertoli cells. Meanwhile, FSH increased TrkA transcript levels in rooster testes in a dose-dependent manner. We present novel evidence for the developmental and FSH-regulated expression of the NGF/TrkA system, and our findings suggest that the NGF/TrkA system may play a prominent role in chicken spermatogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Leptin Level and Oxidative Stress Contribute to Obesity-Induced Low Testosterone in Murine Testicular Tissue

    PubMed Central

    Zhao, Jian; Zhai, Lingling; Liu, Zheng; Wu, Shuang; Xu, Liping

    2014-01-01

    Objective. This study evaluated the effects of obesity on the function of reproductive organs in male mice and the possible mechanism of male secondary hypogonadism (SH) in obesity. Methods. Ninety-six mice were randomly assigned to three groups: the control group, diet-induced obesity group, and diet-induced obesity resistant group for 8 weeks and 19 weeks. The effects of short- and long-term high-fat diet on the reproductive organs were determined by measuring sperm count and motility, relative testis weight, testosterone level, pathological changes and apoptosis of Leydig cells. Oxidative stress was evaluated by determining malondialdehyde, H2O2, NO levels, and GSH in testis tissues. CAT, SOD, GSH-Px and Nrf2 mRNA were measured by real-time PCR. Results. Short- and long-term high-fat diet decreased sperm count and motility, relative testis weight, testosterone level; decreased CAT, SOD, GSH-Px and Nrf2 mRNA expression; increased MDA, H2O2, NO and leptin levels; inhibited the activity of CAT and GSH-Px enzymes. Pathological injury and apoptosis of Leydig cells were found in testis tissue. Conclusions. Pathological damage of Leydig cells, oxidative stress in testis tissue, and high level of leptin may provide some evidence to clarify the mechanisms of male SH in obesity. PMID:24829619

  11. Hemoglobin enhances tissue factor expression on human malignant cells.

    PubMed

    Siddiqui, F A; Amirkhosravi, A; Amaya, M; Meyer, T; Biggerstaff, J; Desai, H; Francis, J L

    2001-04-01

    Tissue Factor (TF) is a transmembrane glycoprotein that complexes with factor VII/activated factor VII to initiate blood coagulation. TF may be expressed on the surface of various cells including monocytes and endothelial cells. Over-expression of TF in human tumor cell lines promotes metastasis. We recently showed that hemoglobin (Hb) forms a specific complex with TF purified from human malignant melanoma cells and enhances its procoagulant activity (PCA). To further study this interaction, we examined the effect of Hb on the expression of TF on human malignant (TF+) cells and KG1 myeloid leukemia (TF-) cells. Human melanoma A375 and J82 bladder carcinoma cells, which express TF at moderate and relatively high levels, respectively, were incubated with varying concentrations (0-1.5 mg/ml) of Hb. After washing, cells were analyzed for Hb binding and TF expression using flow cytometry and confocal microscopy. Hb bound to the cells in a concentration-dependent manner, and increased both TF expression and PCA. The human A375 malignant melanoma cells incubated with Hb (1 mg/ml) expressed up to six times more TF antigen than cells without Hb. This increase in TF expression and PCA of intact cells incubated with Hb was significantly inhibited by cycloheximide at a concentration of 10 microg/ml (P < 0.01). An increase in total cellular TF antigen content was demonstrated by specific immunoassay. In contrast, Hb (5 mg/ml) did not induce TF expression and PCA on KG1 cells as determined by flow cytometry and TF (FXAA) activity. We conclude that Hb specifically binds to TF-bearing malignant cells and increases their PCA. This effect seems to be at least partly due to de novo synthesis of TF and increased surface expression. However, the exact mechanism by which Hb binds and upregulates TF expression remains to be determined.

  12. RNA Expression Profiling Reveals Differentially Regulated Growth Factor and Receptor Expression in Redirected Cancer Cells.

    PubMed

    Schmucker, Hannah S; Park, Jang Pyo; Coissieux, Marie-May; Bentires-Alj, Mohamed; Feltus, F Alex; Booth, Brian W

    2017-05-01

    Tumorigenic cells can be redirected to adopt a normal phenotype when transplanted into cleared mammary fat pads of juvenile female mice in specific ratios with normal epithelial cells. The redirected tumorigenic cells enter stem cell niches and provide progeny that differentiate into all mammary epithelial subtypes. We have developed an in vitro model that mimics the in vivo phenomenon. The shift in phenotype to redirection should be accomplished through a return to a normal gene expression state. To measure this shift, we interrogated the transcriptome of various in vitro model states in search for casual genes. For this study, expression of growth factors, cytokines, and their associated receptors was examined. In all, we queried 251 growth factor and cytokine-related genes. We found numerous growth factor and cytokine genes whose expression levels switched from expression levels seen in cancer cells to expression levels observed in normal cells. The comparisons of gene expression between normal mammary epithelial cells, tumor-derived cells, and redirected cancer cells have revealed insight into active and inactive growth factors and cytokines in cancer cell redirection.

  13. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  14. Protective effects of new Wenshen Shengjing Decoction on cyclosporine-induced impairment of testosterone synthesis and spermatogenic apoptosis.

    PubMed

    Pan, Xiaoyan; Wang, Xiyan; Wang, Xuenan; Zhang, Wansheng; Sun, Zhanxuan; Liang, Xuanxuan; Zhang, Xue; Li, Wenjun; Li, Zhixin

    2018-01-01

    The aim of the present study was to investigate the potential protective effects of new Wenshen Shengjing Decoction (new WSSJD; including Cornu Cervi Nippon Parvum , Panax ginseng, Cynomorium songaricum, Cistanche deserticola, Radix Astragali, Epimedium brevicornum and Angelica sinensis) on cyclosporine-induced impairment of testosterone synthesis and spermatogenic apoptosis in mice. A total of 90 adult male Kunming mice were divided into the following 6 groups: Control (no intervention), dimethylsulfoxide (DMSO; received only DMSO), cyclosporine A (CsA), clomifene citrate (CC; CsA + CC, 15 mg/kg/day), WSSJD (CsA + WSSJD, crude drug 12 g/kg/day) and new WSSJD (CsA + new WSSJD, crude drug 12 g/kg/day). All mice were treated for 30 days via oral gavage. The testes were subsequently fixed and stained with hematoxylin & eosin to assess the development of seminiferous epithelia. Immunohistochemical techniques were used to detect the expression of luteinizing hormone receptor (LHR) and P450 side chain cleavage (P450scc) in testicular Leydig cells. In addition, the apoptosis of spermatogenic cells in the testes was detected using a terminal dexynucleotidyl transferase-mediated dUTP nick-end labeling assay, and flow cytometry was used to analyze the survival rate and early apoptosis of sperm in the epididymis. Compared with the CsA and CC groups, new WSSJD administration significantly increased levels of serum testosterone and the expressions of LHR and P450scc in testicular Leydig cells (P<0.05), while the apoptosis of spermatogenic cells in the seminiferous tubules and early apoptosis of mature sperm were significantly decreased (P<0.05). These results suggest that new WSSJD may ameliorate CsA-induced spermatogenic damage in male mice by enhancing testosterone synthesis and the secretion of testicular Leydig cells, and by reducing the apoptosis of spermatogenic cells.

  15. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify

  16. Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes.

    PubMed

    Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S; Kopp, Jeffrey B

    2010-10-01

    We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo.

  17. Fragments of Target Cells are Internalized into Retroviral Envelope Protein-Expressing Cells during Cell-Cell Fusion by Endocytosis

    PubMed Central

    Izumida, Mai; Kamiyama, Haruka; Suematsu, Takashi; Honda, Eri; Koizumi, Yosuke; Yasui, Kiyoshi; Hayashi, Hideki; Ariyoshi, Koya; Kubo, Yoshinao

    2016-01-01

    Retroviruses enter into host cells by fusion between viral and host cell membranes. Retroviral envelope glycoprotein (Env) induces the membrane fusion, and also mediates cell-cell fusion. There are two types of cell-cell fusions induced by the Env protein. Fusion-from-within is induced by fusion between viral fusogenic Env protein-expressing cells and susceptible cells, and virions induce fusion-from-without by fusion between adjacent cells. Although entry of ecotropic murine leukemia virus (E-MLV) requires host cell endocytosis, the involvement of endocytosis in cell fusion is unclear. By fluorescent microscopic analysis of the fusion-from-within, we found that fragments of target cells are internalized into Env-expressing cells. Treatment of the Env-expressing cells with an endocytosis inhibitor more significantly inhibited the cell fusion than that of the target cells, indicating that endocytosis in Env-expressing cells is required for the cell fusion. The endocytosis inhibitor also attenuated the fusion-from-without. Electron microscopic analysis suggested that the membrane fusion resulting in fusion-from-within initiates in endocytic membrane dents. This study shows that two types of the viral cell fusion both require endocytosis, and provides the cascade of fusion-from-within. PMID:26834711

  18. Quantification of multiple gene expression in individual cells.

    PubMed

    Peixoto, António; Monteiro, Marta; Rocha, Benedita; Veiga-Fernandes, Henrique

    2004-10-01

    Quantitative gene expression analysis aims to define the gene expression patterns determining cell behavior. So far, these assessments can only be performed at the population level. Therefore, they determine the average gene expression within a population, overlooking possible cell-to-cell heterogeneity that could lead to different cell behaviors/cell fates. Understanding individual cell behavior requires multiple gene expression analyses of single cells, and may be fundamental for the understanding of all types of biological events and/or differentiation processes. We here describe a new reverse transcription-polymerase chain reaction (RT-PCR) approach allowing the simultaneous quantification of the expression of 20 genes in the same single cell. This method has broad application, in different species and any type of gene combination. RT efficiency is evaluated. Uniform and maximized amplification conditions for all genes are provided. Abundance relationships are maintained, allowing the precise quantification of the absolute number of mRNA molecules per cell, ranging from 2 to 1.28 x 10(9) for each individual gene. We evaluated the impact of this approach on functional genetic read-outs by studying an apparently homogeneous population (monoclonal T cells recovered 4 d after antigen stimulation), using either this method or conventional real-time RT-PCR. Single-cell studies revealed considerable cell-to-cell variation: All T cells did not express all individual genes. Gene coexpression patterns were very heterogeneous. mRNA copy numbers varied between different transcripts and in different cells. As a consequence, this single-cell assay introduces new and fundamental information regarding functional genomic read-outs. By comparison, we also show that conventional quantitative assays determining population averages supply insufficient information, and may even be highly misleading.

  19. UTF1, a Putative Marker for Spermatogonial Stem Cells in Stallions

    PubMed Central

    Jung, Heejun; Roser, Janet F.; Yoon, Minjung

    2014-01-01

    Spermatogonial stem cells (SSCs) continuously undergo self-renewal and differentiation to sustain spermatogenesis throughout adulthood in males. In stallions, SSCs may be used for the production of progeny from geldings after cryopreservation and therapy for infertile and subfertile stallions. Undifferentiated cell transcription factor 1 (UTF1) is a putative marker for undifferentiated spermatogonia in humans and rats. The main purposes of this study are to determine the following: 1) changes in the expression pattern of UTF1 at various reproductive stages of stallions, 2) subpopulations of spermatogonia that express UTF1. Testicular samples were collected and categorized based on the age of the horses as follows: pre-pubertal (<1 yr), pubertal (1–1.5 yr), post-pubertal (2–3 yr), and adult (4–8 yr). Western blot analysis was utilized to determine the cross-activity of the UTF1 antibody to horse testes tissues. Immunohistochemistry was conducted to investigate the UTF1 expression pattern in germ cells at different reproductive stages. Whole mount staining was applied to determine the subpopulation of UTF1-positive spermatogonia. Immunohistological analysis showed that most germ cells in the pre-pubertal and pubertal stages were immunolabeled with UTF1, whereas only a few germ cells in the basal compartment of the seminiferous tubule cross-sections of post-pubertal and adult tissues were UTF1-positive. No staining was observed in the Sertoli or Leydig cells at any reproductive stages. Whole mount staining showed that As, Apr, and chains of 4, 8, 16 Aal spermatogonia were immunolabeled with UTF1 in the post-pubertal stallion tubule. Isolated single germ cells were also immunolabeled with UTF1. In conclusion, UTF1 is expressed in undifferentiated spermatogonia, and its antibody can be used as a putative marker for SSCs in stallions. PMID:25272017

  20. Lmo2 expression defines tumor cell identity during T-cell leukemogenesis.

    PubMed

    García-Ramírez, Idoia; Bhatia, Sanil; Rodríguez-Hernández, Guillermo; González-Herrero, Inés; Walter, Carolin; González de Tena-Dávila, Sara; Parvin, Salma; Haas, Oskar; Woessmann, Wilhelm; Stanulla, Martin; Schrappe, Martin; Dugas, Martin; Natkunam, Yasodha; Orfao, Alberto; Domínguez, Verónica; Pintado, Belén; Blanco, Oscar; Alonso-López, Diego; De Las Rivas, Javier; Martín-Lorenzo, Alberto; Jiménez, Rafael; García Criado, Francisco Javier; García Cenador, María Begoña; Lossos, Izidore S; Vicente-Dueñas, Carolina; Borkhardt, Arndt; Hauer, Julia; Sánchez-García, Isidro

    2018-06-07

    The impact of LMO2 expression on cell lineage decisions during T-cell leukemogenesis remains largely elusive. Using genetic lineage tracing, we have explored the potential of LMO2 in dictating a T-cell malignant phenotype. We first initiated LMO2 expression in hematopoietic stem/progenitor cells and maintained its expression in all hematopoietic cells. These mice develop exclusively aggressive human-like T-ALL In order to uncover a potential exclusive reprogramming effect of LMO2 in murine hematopoietic stem/progenitor cells, we next showed that transient LMO2 expression is sufficient for oncogenic function and induction of T-ALL The resulting T-ALLs lacked LMO2 and its target-gene expression, and histologically, transcriptionally, and genetically similar to human LMO2-driven T-ALL We next found that during T-ALL development, secondary genomic alterations take place within the thymus. However, the permissiveness for development of T-ALL seems to be associated with wider windows of differentiation than previously appreciated. Restricted Cre-mediated activation of Lmo2 at different stages of B-cell development induces systematically and unexpectedly T-ALL that closely resembled those of their natural counterparts. Together, these results provide a novel paradigm for the generation of tumor T cells through reprogramming in vivo and could be relevant to improve the response of T-ALL to current therapies. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    PubMed

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  2. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells.

    PubMed

    Scharmach, E; Hessel, S; Niemann, B; Lampen, A

    2009-11-30

    The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.

  3. Automatic Control of Gene Expression in Mammalian Cells.

    PubMed

    Fracassi, Chiara; Postiglione, Lorena; Fiore, Gianfranco; di Bernardo, Diego

    2016-04-15

    Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point.

  4. Expression of pleiotrophin in small cell lung cancer.

    PubMed

    Wang, H Q; Wang, J

    2015-01-01

    Pleiotrophin (PTN) is a kind of heparin binding growth factor closely related to tumor progression. This study aimed to discuss the significance of the expression of PTN in benign and malignant lung cancer tissues, especially small cell lung cancer. Lung cancer samples were collected for study and lung tissue samples with benign lesions were taken as controls. The expression of PTN was detected using tissue chip combined with the immunohistochemical method, and the differences of small cell lung cancer with non-small cell lung cancer and benign lesion tissue were compared. It was found that PTN expression was mainly located in the cytoplasm and membrane of cells; PTN expression in the lung cancer group was higher than that in the control group (p < 0.01), and PTN expression in the small cell cancer group was higher than that in the squamous carcinoma group and glandular cancer group (p < 0.05). In addition, PTN expression quantity in patients with lung cancer were in close correlation with TNM staging, pathological type and tumor differentiation degree (p < 0.05). PTN was found to express abnormally high in lung cancer, especially small cell lung cancer tissue. PTN is most likely to be a new tumor marker for diagnosis and prognosis of lung cancer.

  5. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line.

    PubMed

    Ketkaew, Yuwaporn; Osathanon, Thanaphum; Pavasant, Prasit; Sooampon, Sireerat

    2017-02-01

    Cancer stem cells contribute to tumor recurrence, and a hypoxic environment is critical for maintaining cancer stem cells. Apigenin is a natural product with anticancer activity. However, the effect of apigenin on cancer stem cells remains unclear. Our aim was to investigate the effect of apigenin on cancer stem cell marker expression in head and neck squamous cell carcinoma cells under hypoxia. We used three head and neck squamous cell carcinoma cell lines; HN-8, HN-30, and HSC-3. The mRNA expression of cancer stem cell markers was determined by semiquantitative RT-PCR and Real-time PCR. The cytotoxic effect of apigenin was determined by MTT colorimetric assay. Flow cytometry was used to reveal the number of cells expressing cancer stem cell surface markers. HN-30 cells, a cancer cell line from the pharynx, showed the greatest response to hypoxia by increasing their expression of CD44, CD105, NANOG, OCT-4, REX-1, and VEGF. Apigenin significantly decreased HN-30 cell viability in dose- and time-dependent manners. In addition, 40μM apigenin significantly down-regulated the mRNA expression of CD44, NANOG, and CD105. Consistent with these results, the hypoxia-induced increase in CD44 + cells, CD105 + cells, and STRO-1 + cells was significantly abolished by apigenin. Apigenin suppresses cancer stem cell marker expression and the number of cells expressing cell surface markers under hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    PubMed

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  7. CD40 expression in Wehi-164 cell line

    PubMed Central

    Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-01-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system. PMID:20496113

  8. CD40 expression in Wehi-164 cell line.

    PubMed

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-07-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.

  9. [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells

    PubMed Central

    Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo

    2006-01-01

    [6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513

  10. Human Langerhans cells express E-cadherin.

    PubMed

    Blauvelt, A; Katz, S I; Udey, M C

    1995-02-01

    Murine Langerhans cells (LC) synthesize and express E-cadherin, a Ca(++)-dependent homophilic cell adhesion molecule that mediates LC-keratinocyte (KC) binding in vitro. In vivo, E-cadherin expression by LC may promote localization and persistence of LC within the epidermis through LC-KC adhesion. In addition, changes in LC E-cadherin expression or affinity may be an important factor in the egress of LC from the epidermis after exposure to antigen. The aim of the present study was to determine if human LC also express E-cadherin. Suction blister roofs were obtained from normal volunteers and epidermal cell (EC) suspensions were prepared by limited trypsinization in the presence of 1 mM Ca++. EC were then incubated with antibodies to E-cadherin and CD1a or HLA-DR, and examined by two-color analytical flow cytometry or immunofluorescence microscopy. Most (82.9% +/- 7.4% [mean +/- SD], range 67-89%, n = 7) freshly prepared human LC expressed E-cadherin, as did the majority of KC. The amount of E-cadherin (as determined by mean fluorescence intensity) expressed by LC and KC was similar. Trypsin/EDTA treatment of freshly prepared EC abrogated expression of E-cadherin by LC and KC, whereas E-cadherin was not degraded by trypsin in the presence of Ca++. LC expressed lower levels of E-cadherin after 3 d in culture. Thus, human LC, like murine LC, express the homophilic adhesion molecule E-cadherin, which may be important in establishing and maintaining interactions between LC and KC in mammalian epidermis.

  11. Characteristics of allelic gene expression in human brain cells from single-cell RNA-seq data analysis.

    PubMed

    Zhao, Dejian; Lin, Mingyan; Pedrosa, Erika; Lachman, Herbert M; Zheng, Deyou

    2017-11-10

    Monoallelic expression of autosomal genes has been implicated in human psychiatric disorders. However, there is a paucity of allelic expression studies in human brain cells at the single cell and genome wide levels. In this report, we reanalyzed a previously published single-cell RNA-seq dataset from several postmortem human brains and observed pervasive monoallelic expression in individual cells, largely in a random manner. Examining single nucleotide variants with a predicted functional disruption, we found that the "damaged" alleles were overall expressed in fewer brain cells than their counterparts, and at a lower level in cells where their expression was detected. We also identified many brain cell type-specific monoallelically expressed genes. Interestingly, many of these cell type-specific monoallelically expressed genes were enriched for functions important for those brain cell types. In addition, function analysis showed that genes displaying monoallelic expression and correlated expression across neuronal cells from different individual brains were implicated in the regulation of synaptic function. Our findings suggest that monoallelic gene expression is prevalent in human brain cells, which may play a role in generating cellular identity and neuronal diversity and thus increasing the complexity and diversity of brain cell functions.

  12. Amino Acids Regulate Transgene Expression in MDCK Cells

    PubMed Central

    Torrente, Marta; Guetg, Adriano; Sass, Jörn Oliver; Arps, Lisa; Ruckstuhl, Lisa; Camargo, Simone M. R.; Verrey, François

    2014-01-01

    Gene expression and cell growth rely on the intracellular concentration of amino acids, which in metazoans depends on extracellular amino acid availability and transmembrane transport. To investigate the impact of extracellular amino acid concentrations on the expression of a concentrative amino acid transporter, we overexpressed the main kidney proximal tubule luminal neutral amino acid transporter B0AT1-collectrin (SLC6A19-TMEM27) in MDCK cell epithelia. Exogenously expressed proteins co-localized at the luminal membrane and mediated neutral amino acid uptake. However, the transgenes were lost over few cell culture passages. In contrast, the expression of a control transgene remained stable. To test whether this loss was due to inappropriately high amino acid uptake, freshly transduced MDCK cell lines were cultivated either with physiological amounts of amino acids or with the high concentration found in standard cell culture media. Expression of exogenous transporters was unaffected by physiological amino acid concentration in the media. Interestingly, mycoplasma infection resulted in a significant increase in transgene expression and correlated with the rapid metabolism of L-arginine. However, L-arginine metabolites were shown to play no role in transgene expression. In contrast, activation of the GCN2 pathway revealed by an increase in eIF2α phosphorylation may trigger transgene derepression. Taken together, high extracellular amino acid concentration provided by cell culture media appears to inhibit the constitutive expression of concentrative amino acid transporters whereas L-arginine depletion by mycoplasma induces the expression of transgenes possibly via stimulation of the GCN2 pathway. PMID:24797296

  13. Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules.

    PubMed

    Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen

    2006-03-01

    Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.

  14. Natural killer cells attack tumor cells expressing high levels of sialyl Lewis x oligosaccharides

    PubMed Central

    Ohyama, Chikara; Kanto, Satoru; Kato, Kazunori; Nakano, Osamu; Arai, Yoichi; Kato, Tetsuro; Chen, Shihao; Fukuda, Michiko N.; Fukuda, Minoru

    2002-01-01

    Epithelial carcinoma and leukemia cells express sialyl Lewis x oligosaccharides as tumor-associated carbohydrate antigens. To determine the role of sialyl Lewis x oligosaccharides in tumor dissemination, human melanoma MeWo cells, which do not express sialyl Lewis x, were transfected with α1,3-fucosyltransferase III (FTIII), and cell lines expressing different amounts of sialyl Lewis x were isolated. When these cells were injected into the tail vein of nude mice, cells expressing moderate amounts of sialyl Lewis x (MeWo-FTIII⋅M) produced a significantly greater number of lung tumor foci than did parental MeWo cells. In contrast, cells expressing large amounts of sialyl Lewis x (MeWo-FTIII⋅H) produced few lung tumor foci in nude mice but were highly tumorigenic in beige mice, which have defective natural killer (NK) cells. In vitro assays demonstrated that MeWo-FTIII⋅H cells are much more sensitive to NK cell-mediated cytotoxicity than are MeWo-FTIII⋅M cells or parental MeWo cells and the susceptibility of MeWo-FTIII⋅H cells to NK cell-mediated cytolysis can be inhibited by preincubating MeWo-FTIII⋅H cells with anti-sialyl Lewis x antibody. Moreover, we discovered that NK cell-mediated cytolysis of MeWo-FTIII⋅H cells can be inhibited by the addition of an antibody against the NK cell receptor CD94 or sialyl Lewis x oligosaccharides. These results, combined with structural analysis of MeWo-FTIII⋅H cell carbohydrates, indicate that moderate amounts of sialyl Lewis x lead to tumor metastasis, whereas expression of high levels of sialyl Lewis x leads to an NK cell attack on tumor cells, demonstrating that expression of different amounts of sialyl Lewis x results in entirely different biological consequences. PMID:12370411

  15. NOS2 expression in glioma cell lines and glioma primary cell cultures: correlation with neurosphere generation and SOX-2 expression.

    PubMed

    Palumbo, Paola; Miconi, Gianfranca; Cinque, Benedetta; Lombardi, Francesca; La Torre, Cristina; Dehcordi, Soheila Raysi; Galzio, Renato; Cimini, Annamaria; Giordano, Antonio; Cifone, Maria Grazia

    2017-04-11

    Nitric oxide has been implicated in biology and progression of glioblastoma (GBM) being able to influence the cellular signal depending on the concentration and duration of cell exposure. NOS2 (inducible nitric oxide synthase) have been proposed as a component of molecular profile of several tumors, including glioma, one of the most aggressive primary brain tumor featuring local cancer stem cells responsible for enhanced resistance to therapies and for tumor recurrence. Here, we investigated the NOS2 mRNA expression by reverse transcription-PCR in human glioma primary cultures at several grade of malignancy and glioma stem cell (GSC) derived neurospheres. Glioma cell lines were used as positive controls both in terms of stemness marker expression that of capacity of generating neurospheres. NOS2 expression was detected at basal levels in cell lines and primary cultures and appeared significantly up-regulated in cultures kept in the specific medium for neurospheres. The immunofluorescence analysis of all cell cultures to evaluate the levels of SOX-2, a stemness marker aberrantly up-regulated in GBM, was also performed. The potential correlation between NOS2 expression and ability to generate neurospheres and between NOS2 and SOX-2 levels was also verified. The results show that the higher NOS2 expression is detected in all primary cultures able to arise neurosphere. A high and significant correlation between NOS2 expression and SOX-2 positive cells (%) in all cell cultures maintained in standard conditions has been observed. The results shed light on the potential relevance of NOS2 as a prognostic factor for glioma malignancy and recurrence.

  16. Can dead bacterial cells be defined and are genes expressed after cell death?

    PubMed

    Trevors, J T

    2012-07-01

    There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  18. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    PubMed

    Yu, Yue; Lee, Jennifer Suehyun; Xie, Ning; Li, Estelle; Hurtado-Coll, Antonio; Fazli, Ladan; Cox, Michael; Plymate, Stephen; Gleave, Martin; Dong, Xuesen

    2014-01-01

    Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR) was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1) and interlukin-6 (IL-6) by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  19. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    PubMed

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  20. Molecular expression in transfected corneal endothelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Miao, Zhuang; Lu, Chengwei; Hao, Jilong

    2017-10-01

    To investigate the capability of human corneal endothelial cells serving as immunological cells. Expression of HLA-DP, -DQ, -DR, CD40, CD80, and CD86 was determined by immunohistochemical methods. Meanwhile, purified peripheral blood mononuclear cells were cocultured with human corneal endothelial cells which were pre-treated with and without -IFN respectively, activation of lymphocytes was determined by FACS analysis. In coculture system, T lymphocyte was activated by corneal endothelial cells, HLA-DP, -DQ, -DR and CD40 expression were increased by - IFN induction. Costimulatory molecular CD80 was shown on the endothelial cells. Human corneal endothelial cells were assumed to be involved in the corneal transplantation rejection process as potential antigen presenting cells.

  1. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Chandramu; Dontula, Ranadheer; Ganji, Purnachandra Nagaraju

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reductionmore » in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of

  2. D-Aspartic acid and nitric oxide as regulators of androgen production in boar testis.

    PubMed

    Lamanna, Claudia; Assisi, Loredana; Vittoria, Alfredo; Botte, Virgilio; Di Fiore, Maria Maddalena

    2007-01-15

    D-Aspartic acid (D-Asp) and nitric oxide (NO) are two biologically active molecules playing important functions as neurotransmitters and neuromodulators of nerve impulse and as regulators of hormone production by endocrine organs. We studied the occurrence of D-Asp and NO as well as their effects on testosterone synthesis in the testis of boar. This model was chosen for our investigations because it contains more Leydig cells than other mammals. Indirect immunofluorescence applied to cryostat sections was used to evaluate the co-localization of D-Asp and of the enzyme nitric oxide synthase (NOS) in the same Leydig cells. D-Asp and NOS often co-existed in the same Leydig cells and were found, separately, in many other testicular cytotypes. D-Asp level was dosed by an enzymatic method performed on boar testis extracts and was 40+/-3.6 nmol/g of fresh tissue. NO measurement was carried out using a biochemical method by NOS activity determination and expressed as quantity of nitrites produced: it was 155.25+/-21.9 nmol/mg of tissue. The effects of the two molecules on steroid hormone production were evaluated by incubating testis homogenates, respectively with or without D-Asp and/or the NO-donor L-arginine (L-Arg). After incubation, the testosterone presence was measured by immunoenzymatic assay (EIA). These in vitro experiments showed that the addition of D-Asp to incubated testicular homogenates significantly increased testosterone concentration, whereas the addition of L-Arg decreased the hormone production. Moreover, the inclusion of L-Arg to an incubation medium of testicular homogenates with added D-Asp, completely inhibited the stimulating effects of this enantiomer. Our results suggest an autocrine action of both D-Asp and NO on the steroidogenetic activity of the Leydig cell.

  3. Robust Inference of Cell-to-Cell Expression Variations from Single- and K-Cell Profiling

    PubMed Central

    Narayanan, Manikandan; Martins, Andrew J.; Tsang, John S.

    2016-01-01

    Quantifying heterogeneity in gene expression among single cells can reveal information inaccessible to cell-population averaged measurements. However, the expression level of many genes in single cells fall below the detection limit of even the most sensitive technologies currently available. One proposed approach to overcome this challenge is to measure random pools of k cells (e.g., 10) to increase sensitivity, followed by computational “deconvolution” of cellular heterogeneity parameters (CHPs), such as the biological variance of single-cell expression levels. Existing approaches infer CHPs using either single-cell or k-cell data alone, and typically within a single population of cells. However, integrating both single- and k-cell data may reap additional benefits, and quantifying differences in CHPs across cell populations or conditions could reveal novel biological information. Here we present a Bayesian approach that can utilize single-cell, k-cell, or both simultaneously to infer CHPs within a single condition or their differences across two conditions. Using simulated as well as experimentally generated single- and k-cell data, we found situations where each data type would offer advantages, but using both together can improve precision and better reconcile CHP information contained in single- and k-cell data. We illustrate the utility of our approach by applying it to jointly generated single- and k-cell data to reveal CHP differences in several key inflammatory genes between resting and inflammatory cytokine-activated human macrophages, delineating differences in the distribution of ‘ON’ versus ‘OFF’ cells and in continuous variation of expression level among cells. Our approach thus offers a practical and robust framework to assess and compare cellular heterogeneity within and across biological conditions using modern multiplexed technologies. PMID:27438699

  4. Gene expression distribution deconvolution in single-cell RNA sequencing.

    PubMed

    Wang, Jingshu; Huang, Mo; Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney; Murray, John; Raj, Arjun; Li, Mingyao; Zhang, Nancy R

    2018-06-26

    Single-cell RNA sequencing (scRNA-seq) enables the quantification of each gene's expression distribution across cells, thus allowing the assessment of the dispersion, nonzero fraction, and other aspects of its distribution beyond the mean. These statistical characterizations of the gene expression distribution are critical for understanding expression variation and for selecting marker genes for population heterogeneity. However, scRNA-seq data are noisy, with each cell typically sequenced at low coverage, thus making it difficult to infer properties of the gene expression distribution from raw counts. Based on a reexamination of nine public datasets, we propose a simple technical noise model for scRNA-seq data with unique molecular identifiers (UMI). We develop deconvolution of single-cell expression distribution (DESCEND), a method that deconvolves the true cross-cell gene expression distribution from observed scRNA-seq counts, leading to improved estimates of properties of the distribution such as dispersion and nonzero fraction. DESCEND can adjust for cell-level covariates such as cell size, cell cycle, and batch effects. DESCEND's noise model and estimation accuracy are further evaluated through comparisons to RNA FISH data, through data splitting and simulations and through its effectiveness in removing known batch effects. We demonstrate how DESCEND can clarify and improve downstream analyses such as finding differentially expressed genes, identifying cell types, and selecting differentiation markers. Copyright © 2018 the Author(s). Published by PNAS.

  5. Advantages and applications of CAR-expressing natural killer cells

    PubMed Central

    Glienke, Wolfgang; Esser, Ruth; Priesner, Christoph; Suerth, Julia D.; Schambach, Axel; Wels, Winfried S.; Grez, Manuel; Kloess, Stephan; Arseniev, Lubomir; Koehl, Ulrike

    2015-01-01

    In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy. PMID:25729364

  6. Single cell gene expression profiling in Alzheimer's disease.

    PubMed

    Ginsberg, Stephen D; Che, Shaoli; Counts, Scott E; Mufson, Elliott J

    2006-07-01

    Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.

  7. Feeding hydroalcoholic extract powder of Lepidium meyenii (maca) enhances testicular gene expression of 3β-hydroxysteroid dehydrogenase in rats.

    PubMed

    Ohta, Y; Kawate, N; Inaba, T; Morii, H; Takahashi, K; Tamada, H

    2017-12-01

    Although feeding diets containing the extract powder of Lepidium meyenii (maca), a plant growing in Peru's Central Andes, increases serum testosterone concentration associated with enhanced ability of testosterone production by Leydig cells in male rats, changes in testicular steroidogenesis-related factors by the maca treatment are not known. This study examined the effects of maca on testicular gene expressions for luteinizing hormone receptor, steroidogenic acute regulatory protein and steroidogenic enzymes. Eight-week-old male rats were given the diets with or without (control) the maca extract powder (2%) for 6 weeks, and mRNA levels were determined by reverse transcription quantitative real-time PCR. The results showed that the testicular mRNA level of HSD3B1 (3β-hydroxysteroid dehydrogenase; 3β-HSD) increased by the treatment, whereas the levels of the other factors examined did not change. These results suggest that increased expression of 3β-HSD gene may be involved in the enhanced steroidogenic ability by the maca treatment in rat testes. © 2017 Blackwell Verlag GmbH.

  8. Multiple cells express interleukin 17 in oral squamous cell carcinoma.

    PubMed

    Avadhani, Avadhoot V; Parachuru, Venkata P B; Milne, Trudy; Seymour, Gregory J; Rich, Alison M

    2017-01-01

    Interleukin (IL)-17 is a pro-inflammatory cytokine with pro- and antitumour effects. The aim of this study was to investigate the presence and potential sources of IL-17 in oral squamous cell carcinoma (OSCC). Immunohistochemistry was used to label and compare IL-17 + cells in the tissue sections of OSCC and inflammatory controls (IC), n = 14 for both. In OSCC, the comparison was made between the number of IL-17 + cells in the tumoral islands (TI), tumour-stroma interface (TS) and more distant stroma (DS). Cells expressing IL-17 were identified using double-labelling immunofluorescence and examined using laser scanning microscopy. The production of IL-17 from tumour cells was determined in the culture supernatants of OSCC cell lines, SCC4, SCC15 and SCC25, using sandwich ELISA. Significantly more IL-17 + cells were observed in OSCC compared with IC (Mann-Whitney, P < 0.0001). In OSCC, the numbers of IL-17 + cells were not significantly different in three compartments, TI, TS and DS (one-way ANOVA, P > 0.05). However, the TI had significantly fewer IL-17 + cells than the combined stroma (both TS and DS together, Mann-Whitney, P < 0.01). Laser scanning microscopy revealed helper T cells, cytotoxic T cells, macrophages and mast cells co-expressed IL-17. ELISA experiments did not detect IL-17 in the supernatants of OSCC cell lines. Although the tumour cells themselves did not express IL-17, a range of cell types did, suggesting multiple cellular sources for IL-17 in OSCC. The spatial distribution of IL-17 + cells suggests specific interactions with cells within the tumour microenvironment, implying that IL-17 + cells are likely to play a role in the pathogenesis of OSCC. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Endothelial connexin 32 regulates tissue factor expression induced by inflammatory stimulation and direct cell-cell interaction with activated cells.

    PubMed

    Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Shimaoka, Motomu; Suzuki, Koji

    2014-10-01

    Endothelial cell (EC) interacts with adjacent EC through gap junction, and abnormal expression or function of Cxs is associated with cardiovascular diseases. In patients with endothelial dysfunction, the up-regulation of tissue factor (TF) expression promotes the pathogenic activation of blood coagulation, however the relationship between gap junctions and TF expression in ECs remains uncharacterized. ECs express the gap junction (GJ) proteins connexin32 (Cx32), Cx37, Cx40 and Cx43. We investigated the role of endothelial gap junctions, particularly Cx32, in modulating TF expression during vascular inflammation. Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor-α (TNF-α) and TF activity was assessed in the presence of GJ blockers and an inhibitory anti-Cx32 monoclonal antibody. Treatment with GJ blockers and anti-Cx32 monoclonal antibody enhanced the TNF-α-induced TF activity and mRNA expression in HUVECs. TNF-α-activated effector HUVECs or mouse MS-1 cells were co-cultured with non-stimulated acceptor HUVECs and TF expression in acceptor HUVECs was detected. Effector EC induced TF expression in adjacent acceptor HUVECs through direct cell-cell interaction. Cell-cell interaction induced TF expression was reduced by anti-intercellular adhesion molecule-1 (ICAM1) monoclonal antibody. Soluble ICAM1-Fc fusion protein promotes TF expression. GJ blockers and anti-Cx32 monoclonal antibody enhanced TF expression induced by cell-cell interaction and ICAM1-Fc treatment. Blockade of endothelial Cx32 increased TF expression induced by TNF-α stimulation and cell-cell interaction which was at least partly dependent upon ICAM1. These results suggest that direct Cx32-mediated interaction modulates TF expression in ECs during vascular inflammation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Magnetic field-controlled gene expression in encapsulated cells

    PubMed Central

    Ortner, Viktoria; Kaspar, Cornelius; Halter, Christian; Töllner, Lars; Mykhaylyk, Olga; Walzer, Johann; Günzburg, Walter H.; Dangerfield, John A.; Hohenadl, Christine; Czerny, Thomas

    2012-01-01

    Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches. PMID:22197778

  11. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  12. Geometry of the Gene Expression Space of Individual Cells

    PubMed Central

    Korem, Yael; Szekely, Pablo; Hart, Yuval; Sheftel, Hila; Hausser, Jean; Mayo, Avi; Rothenberg, Michael E.; Kalisky, Tomer; Alon, Uri

    2015-01-01

    There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the

  13. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    PubMed

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (<40%) expressed it on the cell surface. In this latter subset of cells, most (>75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  14. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana

    2012-11-15

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazinemore » did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. -- Highlights: ► Atrazine stimulates cAMP accumulation in pituitary and Leydig cells. ► Atrazine also stimulates PRL and androgens secretion. ► Stimulatory effects of atrazine were abolished in cells with IBMX-inhibited PDEs. ► Atrazine specificity toward

  15. Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.

    PubMed

    Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M

    1990-06-01

    It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and

  16. Irradiation of breast cancer cells enhances CXCL16 ligand expression and induces the migration of natural killer cells expressing the CXCR6 receptor.

    PubMed

    Yoon, Mee Sun; Pham, Chanh Tin; Phan, Minh-Trang Thi; Shin, Dong-Jun; Jang, Youn-Young; Park, Min-Ho; Kim, Sang-Ki; Kim, Seokho; Cho, Duck

    2016-12-01

    Few studies have examined the migration pattern of natural killer (NK) cells, especially after radiation treatment for cancer. We investigated whether irradiation can modulate the expression of chemokines in cancer cells and the migration of NK cells to irradiated tumor cells. The expression of chemokine receptors (CXCR3, CXCR4 and CXCR6) on interleukin-2 (IL-2)/IL-15-activated NK cells was assessed using flow cytometry. Related chemokine ligands (CXCL11, CXCL12 and CXCL16) in human breast cancer cell lines (MCF7, SKBR3 and MDA-MB231) irradiated at various doses were assessed using reverse transcription-polymerase chain reaction (RT-PCR), fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA). The cell-free culture supernatant was collected 96 h after irradiation of breast cancer cell lines for migration and blocking assays. The activated NK cells expressed CXCR6. Expression of the CXCR6 ligand CXCL16 increased in a time- and dose-dependent manner in all analyzed cancer cell lines. CXCL16 expression was statistically significantly enhanced in all breast cancer cell lines on day 3 after 20 Gy irradiation. Activated NK cells migration correlated with CXCL16 concentration (R 2  = 0.91; P <0.0001). Significantly enhanced migration of NK cells to irradiated cancer cells was observed for a dose of 20 Gy in MCF7 (P = 0.043) and SKBR3 (P = 0.043) cells, but not in MDA-MB231 (P = 0.225) cells. A blocking assay using a CXCR6 antibody showed a significant decrease in the migration of activated NK cells in all cancer cell lines. Our data indicate that irradiation induces CXCL16 chemokine expression in cancer cells and enhances the migration of activated NK cells expressing CXCR6 to irradiated breast cancer cells. These results suggest that radiation would improve the anti-tumor effect of NK cells through enhanced migration of NK cells to tumor site for the treatment of patients with breast cancer. Copyright © 2016

  17. The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.

    PubMed

    Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru

    2017-06-01

    Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors

    PubMed Central

    Boulassel, Mohamed-Rachid; Galal, Ahmed

    2012-01-01

    Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is being evaluated as a potential treatment for B-cell neoplasms. In recent clinical trials it has shown promising results. As the number of potential candidate antigens expands, the choice of suitable target antigens becomes more challenging to design studies and to assess optimal efficacy of CAR. Careful evaluation of candidate target antigens is required to ensure that T cells expressing CAR will preferentially kill malignant cells with a minimal toxicity against normal tissues. B cells express specific surface antigens that can theoretically act as targets for CAR design. Although many of these antigens can stimulate effective cellular immune responses in vivo, their implementation in clinical settings remains a challenge. Only targeted B-cell antigens CD19 and CD20 have been tested in clinical trials. This article reviews exploitable B cell surface antigens for CAR design and examines obstacles that could interfere with the identification of potentially useful cellular targets. PMID:23269948

  19. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    PubMed Central

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  20. Production of stable GFP-expressing neural cells from P19 embryonal carcinoma stem cells.

    PubMed

    Shirzad, Hedayatollah; Esmaeili, Fariba; Bakhshalizadeh, Shabnam; Ebrahimie, Marzieh; Ebrahimie, Esmaeil

    2017-04-01

    Murine P19 embryonal carcinoma (EC) cells are convenient to differentiate into all germ layer derivatives. One of the advantages of P19 cells is that the exogenous DNA can be easily inserted into them. Here, at the first part of this study, we generated stable GFP-expressing P19 cells (P19-GFP + ). FACS and western-blot analysis confirmed stable expression of GFP in the cells. We previously demonstrated the efficient induction of neuronal differentiation from mouse ES and EC cells by application of a neuroprotective drug, selegiline In the second part of this study selegiline was used to induce differentiation of P19-GFP + into stable GFP-expressing neuron-like cells. Cresyl violet staining confirmed neuronal morphology of the differentiated cells. Furthermore, real-time PCR and immunoflourescence approved the expression of neuron specific markers. P19-GFP + cells were able to survive, migrate and integrated into host tissues when transplanted to developing chick embryo CNS. The obtained live GFP-expressing cells can be used as an abundant source of developmentally pluripotent material for transplantation studies, investigating the cellular and molecular aspects of early differentiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

    PubMed

    Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-11-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (<1% of genes) and mainly affected the most weakly expressed genes. Consequently, the overwhelming majority of aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.

  2. Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice.

    PubMed

    Kress, Chantal; Gautier-Courteille, Carole; Osborne, H Beverley; Babinet, Charles; Paillard, Luc

    2007-02-01

    CUG-BP1/CELF1 is a multifunctional RNA-binding protein involved in the regulation of alternative splicing and translation. To elucidate its role in mammalian development, we produced mice in which the Cugbp1 gene was inactivated by homologous recombination. These Cugbp1(-/-) mice were viable, although a significant portion of them did not survive after the first few days of life. They displayed growth retardation, and most Cugbp1(-/-) males and females exhibited impaired fertility. Male infertility was more thoroughly investigated. Histological examination of testes from Cugbp1(-/-) males showed an arrest of spermatogenesis that occurred at step 7 of spermiogenesis, before spermatid elongation begins, and an increased apoptosis. A quantitative reverse transcriptase PCR analysis showed a decrease of all the germ cell markers tested but not of Sertoli and Leydig markers, suggesting a general decrease in germ cell number. In wild-type testes, CUG-BP1 is expressed in germ cells from spermatogonia to round spermatids and also in Sertoli and Leydig cells. These findings demonstrate that CUG-BP1 is required for completion of spermatogenesis.

  3. Autoimmune Regulator (AIRE) Is Expressed in Spermatogenic Cells, and It Altered the Expression of Several Nucleic-Acid-Binding and Cytoskeletal Proteins in Germ Cell 1 Spermatogonial (GC1-spg) Cells.

    PubMed

    Radhakrishnan, Karthika; Bhagya, Kongattu P; Kumar, Anil Tr; Devi, Anandavalli N; Sengottaiyan, Jeeva; Kumar, Pradeep G

    2016-08-01

    Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein

  4. Distributional map of the terminal and sub-terminal sugar residues of the glycoconjugates in the prepubertal and postpubertal testis of a subject affected by complete androgen insensitivity syndrome (Morris's syndrome): lectin histochemical study.

    PubMed

    Gheri, G; Vannelli, G B; Marini, M; Zappoli Thyrion, G D; Gheri, R G; Sgambati, E

    2004-01-01

    In the present research we have investigated the distribution of the sugar residues of the glycoconjugates in the prepubertal and postpubertal testes of a subject with Morris's syndrome (CAIS, Complete Androgen Insensitivity Syndrome). For this purpose a battery of six horseradish peroxidase-conjugated lectins was used (SBA, PNA, WGA, ConA, LTA and UEAI). We have obtained a complete distributional map of the terminal and sub-terminal oligosaccharides in the tunica albuginea, interstitial tissue, lamina propria of the seminiferous tubules, Leydig cells, Sertoli cells, spermatogonia, mastocytes and endothelial cells. Furthermore the present study has shown that a large amount of sugar residues were detectable in the prepubertal and postpubertal testes but that some differences exist with particular regard to the Sertoli cells. The Sertoli cells and the Leydig cells of the retained prepubertal testis of the patient affected by Morris's syndrome were characterized by the presence of alpha-L-fucose, which was absent in the retained prepubertal testis of the normal subjects. Comparing the results on the postpubertal testis with those obtained on the same aged testis of healthy subjects we have demonstrated that alpha-L-fucose in the Sertoli and Leydig cells and D-galactose-N-acetyl-D-galactosamine in the Leydig cells are a unique feature of the subject affected by Morris's syndrome. D-galactose (ss1,3)-N-acetyl-D-galactosamine and sialic acid, which are present in the Leydig cells of the normal testis were never observed in the same cells of the postpubertal testis of the CAIS patient.

  5. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor

  6. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    PubMed

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  7. Analysis of specific RNA in cultured cells through quantitative integration of q-PCR and N-SIM single cell FISH images: Application to hormonal stimulation of StAR transcription.

    PubMed

    Lee, Jinwoo; Foong, Yee Hoon; Musaitif, Ibrahim; Tong, Tiegang; Jefcoate, Colin

    2016-07-05

    The steroidogenic acute regulatory protein (StAR) has been proposed to serve as the switch that can turn on/off steroidogenesis. We investigated the events that facilitate dynamic StAR transcription in response to cAMP stimulation in MA-10 Leydig cells, focusing on splicing anomalies at StAR gene loci. We used 3' reverse primers in a single reaction to respectively quantify StAR primary (p-RNA), spliced (sp-RNA/mRNA), and extended 3' untranslated region (UTR) transcripts, which were quantitatively imaged by high-resolution fluorescence in situ hybridization (FISH). This approach delivers spatio-temporal resolution of initiation and splicing at single StAR loci, and transfers individual mRNA molecules to cytoplasmic sites. Gene expression was biphasic, initially showing slow splicing, transitioning to concerted splicing. The alternative 3.5-kb mRNAs were distinguished through the use of extended 3'UTR probes, which exhibited distinctive mitochondrial distribution. Combining quantitative PCR and FISH enables imaging of localization of RNA expression and analysis of RNA processing rates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. An Evaluation of LH-Stimulated Testosterone Production by ...

    EPA Pesticide Factsheets

    An Evaluation of LH-Stimulated Testosterone Production by Highly Purified Rat Leydig Cells: A Complementary Screen for Steroidogenesis in the Testis. 1Botteri, N., 2Suarez, J., 2Laws, S., 2Klinefelter, G.1Oak Ridge Institute for Science and Education, Oak Ridge, TN, 2 U.S. Environmental Protection Agency, ORD, NHEERL, TAD, RTP, NCThe H295R steroidogenesis assay uses an adrenocarcinoma cell line which fails to elicit LH mediated responses. This limits the assay’s ability to detect chemicals which disrupt LH-mediated Leydig cell responses in the testis. This study evaluated whether LH-stimulated T production by purified rat Leydig cells would be altered after exposure to chemicals that failed to decrease T production in the ToxCast H295R screen. Ten chemicals negative for T inhibition in the H295R screen, were selected based on alterations in upstream substrates (deoxycorticosterone, hydroxyprogesterone) expected to result in a decrease in T. Based on earlier work, simvastatin served as our positive control. Each chemical was tested over 6 concentrations ranging from 0.1 µM to 100 µM. Leydig cells were cultured overnight under maximal LH stimulation. A minimum of 3 replicate experiments were conducted for each format (24 and 96 well) and chemical tested; cell viability was assessed using a live/dead cytotoxicity kit. T data were excluded if viability was less than 80% of control. Initial evaluation using a 24-well Leydig cell assay confir

  9. Role of monocyte-lineage cells in prostate cancer cell invasion and tissue factor expression.

    PubMed

    Lindholm, Paul F; Lu, Yi; Adley, Brian P; Vladislav, Tudor; Jovanovic, Borko; Sivapurapu, Neela; Yang, Ximing J; Kajdacsy-Balla, André

    2010-11-01

    Tissue factor (TF) is a cell surface glycoprotein intricately related to blood coagulation and inflammation. This study was performed to investigate the role of monocyte-lineage cells in prostate cancer cell TF expression and cell invasion. Prostate cancer cell invasion was tested with and without added peripheral blood monocytes or human monocyte-lineage cell lines. TF neutralizing antibodies were used to determine the TF requirement for prostate cancer cell invasion activity. Immunohistochemistry was performed to identify prostate tissue CD68 positive monocyte-derived cells and prostate epithelial TF expression. Co-culture of PC-3, DU145, and LNCaP cells with isolated human monocytes significantly stimulated prostate cancer cell invasion activity. TF expression was greater in highly invasive prostate cancer cells and was induced in PC-3, DU145, and LNCaP cells by co-culture with U-937 cells, but not with THP-1 cells. TF neutralizing antibodies inhibited PC-3 cell invasion in co-cultures with monocyte-lineage U-937 or THP-1 cells. Prostate cancer tissues contained more CD68 positive cells in the stroma and epithelium (145 ± 53/mm(2)) than benign prostate (108 ± 31/mm(2)). Samples from advanced stage prostate cancer tended to contain more CD68 positive cells when compared with lower stage lesions. Prostatic adenocarcinoma demonstrated significantly increased TF expression compared with benign prostatic epithelium. This study shows that co-culture with monocyte-lineage cells induced prostate cancer cell invasion activity. PC-3 invasion and TF expression was induced in co-culture with U-937 cells and partially inhibited with TF neutralizing antibodies.

  10. [The expression of interferon-lambda1 in CHO cell].

    PubMed

    Yuan, Wu-Mei; Ma, Fen-Lian; Zhang, Qian; Zheng, Wen-Zhi; Zheng, Li-Shu

    2013-06-01

    To construct the eukaryotic expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which linked the enhancer SP163 with interferon lambda1. Then express the interferon lambda1 in CHO (dhfr-) cells. Using PCR method to introduce the restriction enzyme sites and through the fusion PCR binding the enhancer with the interferon Lambda1. After sequenced, lambda1 and SP163-lambda1 was inserted into PCI-dhfr forming the expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which was constructed successfully confirming by sequencing. Then the expressing vectors were transfected into CHO (dhfr-) cells using liposome transfection method and interferon lambda1 protein was assayed with indirect immunofluorescence and Western Blot. Using cytopathic effect inhibition evaluated the antiviral activity of interferon lambda1. Successfully constructing the eukaryotic expression vectors of interferon lambda and the vectors could express interferon lambda1. The result of immunofluorescence showed the enhancer developed the expression of interferon lambda1. Detecting the interferon lambda1 in CHO (dhfr-) cells after transfecting 48 hour using Western Blot. The cytopathic effect inhibition showed the expressed interferon lambda1 has the antiviral activity. Successfully expressed the interferon lambda1 in CHO (dhfr-) cells and the protein possesses antiviral activity, which may supply a valuable basis for building the stable cell line of interferon lambda1.

  11. Expression of Master Regulators of T-cell, Helper T-cell and Follicular Helper T-cell Differentiation in Angioimmunoblastic T-cell Lymphoma.

    PubMed

    Matsumoto, Yosuke; Nagoshi, Hisao; Yoshida, Mihoko; Kato, Seiichi; Kuroda, Junya; Shimura, Kazuho; Kaneko, Hiroto; Horiike, Shigeo; Nakamura, Shigeo; Taniwaki, Masafumi

    2017-11-01

    Objective It has been postulated that the normal counterpart of angioimmunoblastic T-cell lymphoma (AITL) is the follicular helper T-cell (TFH). Recent immunological studies have identified several transcription factors responsible for T-cell differentiation. The master regulators associated with T-cell, helper T-cell (Th), and TFH differentiation are reportedly BCL11B, Th-POK, and BCL6, respectively. We explored the postulated normal counterpart of AITL with respect to the expression of the master regulators of T-cell differentiation. Methods We performed an immunohistochemical analysis in 15 AITL patients to determine the expression of the master regulators and several surface markers associated with T-cell differentiation. Results BCL11B was detected in 10 patients (67%), and the surface marker of T-cells (CD3) was detected in all patients. Only 2 patients (13%) expressed the marker of naïve T-cells (CD45RA), but all patients expressed the marker of effector T-cells (CD45RO). Nine patients expressed Th-POK (60%), and 7 (47%) expressed a set of surface antigens of Th (CD4-positive and CD8-negative). In addition, BCL6 and the surface markers of TFH (CXCL13, PD-1, and SAP) were detected in 11 (73%), 8 (53%), 14 (93%), and all patients, respectively. Th-POK-positive/BCL6-negative patients showed a significantly shorter overall survival (OS) than the other patients (median OS: 33.0 months vs. 74.0 months, p=0.020; log-rank test). Conclusion Many of the AITL patients analyzed in this study expressed the master regulators of T-cell differentiation. The clarification of the diagnostic significance and pathophysiology based on the expression of these master regulators in AITL is expected in the future.

  12. Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat.

    PubMed

    Petersen, B E; Goff, J P; Greenberger, J S; Michalopoulos, G K

    1998-02-01

    Hepatic oval cells (HOC) are a small subpopulation of cells found in the liver when hepatocyte proliferation is inhibited and followed by some type of hepatic injury. HOC can be induced to proliferate using a 2-acetylaminofluorene (2-AAF)/hepatic injury (i.e., CCl4, partial hepatectomy [PHx]) protocol. These cells are believed to be bipotential, i.e., able to differentiate into hepatocytes or bile ductular cells. In the past, isolation of highly enriched populations of these cells has been difficult. Thy-1 is a cell surface marker used in conjunction with CD34 and lineage-specific markers to identify hematopoietic stem cells. Thy-1 antigen is not normally expressed in adult liver, but is expressed in fetal liver, presumably on the hematopoietic cells. We report herein that HOC express high levels of Thy-1. Immunohistochemistry revealed that the cells expressing Thy-1 were indeed oval cells, because they also expressed alpha-fetoprotein (AFP), gamma-glutamyl transpeptidase (GGT), cytokeratin 19 (CK-19), OC.2, and OV-6, all known markers for oval cell identification. In addition, the Thy-1+ cells were negative for desmin, a marker specific for Ito cells. Using Thy-1 antibody as a new marker for the identification of oval cells, a highly enriched population was obtained. Using flow cytometric methods, we isolated a 95% to 97% pure Thy-1+ oval cell population. Our results indicate that cell sorting using Thy-1 could be an attractive tool for future studies, which would facilitate both in vivo and in vitro studies of HOC.

  13. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate

    PubMed Central

    Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.

    2015-01-01

    Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179

  14. Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas

    PubMed Central

    Azuma, Sakiko; Yokoyama, Yukihiro; Yamamoto, Akiko; Kyokane, Kazuhiro; Niida, Shumpei; Ishiguro, Hiroshi; Ko, Minoru S. H.

    2013-01-01

    We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4+) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4+ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4+ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas. PMID:23599043

  15. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells.

    PubMed

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-11-24

    Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by > or = 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer.

  16. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.

    PubMed

    Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini

    2018-05-01

    The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of

  17. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds.

    PubMed

    Kotani, Takeshi; Toyono, Takashi; Seta, Yuji; Kitou, Ayae; Kataoka, Shinji; Toyoshima, Kuniaki

    2013-09-01

    Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.

  18. Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cell-cell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge.

    PubMed

    Kaneko, Kunihiko

    2011-06-01

    Here I present and discuss a model that, among other things, appears able to describe the dynamics of cancer cell origin from the perspective of stable and unstable gene expression profiles. In identifying such aberrant gene expression profiles as lying outside the normal stable states attracted through development and normal cell differentiation, the hypothesis explains why cancer cells accumulate mutations, to which they are not robust, and why these mutations create a new stable state far from the normal gene expression profile space. Such cells are in strong contrast with normal cell types that appeared as an attractor state in the gene expression dynamical system under cell-cell interaction and achieved robustness to noise through evolution, which in turn also conferred robustness to mutation. In complex gene regulation networks, other aberrant cellular states lacking such high robustness are expected to remain, which would correspond to cancer cells. Copyright © 2011 WILEY Periodicals, Inc.

  19. General statistics of stochastic process of gene expression in eukaryotic cells.

    PubMed Central

    Kuznetsov, V A; Knott, G D; Bonner, R F

    2002-01-01

    Thousands of genes are expressed at such very low levels (< or =1 copy per cell) that global gene expression analysis of rarer transcripts remains problematic. Ambiguity in identification of rarer transcripts creates considerable uncertainty in fundamental questions such as the total number of genes expressed in an organism and the biological significance of rarer transcripts. Knowing the distribution of the true number of genes expressed at each level and the corresponding gene expression level probability function (GELPF) could help resolve these uncertainties. We found that all observed large-scale gene expression data sets in yeast, mouse, and human cells follow a Pareto-like distribution model skewed by many low-abundance transcripts. A novel stochastic model of the gene expression process predicts the universality of the GELPF both across different cell types within a multicellular organism and across different organisms. This model allows us to predict the frequency distribution of all gene expression levels within a single cell and to estimate the number of expressed genes in a single cell and in a population of cells. A random "basal" transcription mechanism for protein-coding genes in all or almost all eukaryotic cell types is predicted. This fundamental mechanism might enhance the expression of rarely expressed genes and, thus, provide a basic level of phenotypic diversity, adaptability, and random monoallelic expression in cell populations. PMID:12136033

  20. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    PubMed Central

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression.Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells. PMID:22952666

  1. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effectmore » of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation

  2. Amniotic Fluid Cells Show Higher Pluripotency-Related Gene Expression Than Allantoic Fluid Cells.

    PubMed

    Kehl, Debora; Generali, Melanie; Görtz, Sabrina; Geering, Diego; Slamecka, Jaroslav; Hoerstrup, Simon P; Bleul, Ulrich; Weber, Benedikt

    2017-10-01

    Amniotic fluid represents an abundant source of multipotent stem cells, referred as broadly multipotent given their differentiation potential and expression of pluripotency-related genes. However, the origin of this broadly multipotent cellular fraction is not fully understood. Several sources have been proposed so far, including embryonic and extraembryonic tissues. In this regard, the ovine developmental model uniquely allows for direct comparison of fetal fluid-derived cells from two separate fetal fluid cavities, the allantois and the amnion, over the entire duration of gestation. As allantoic fluid mainly collects fetal urine, cells originating from the efferent urinary tract can directly be compared with cells deriving from the extraembryonic amniotic tissues and the fetus. This study shows isolation of cells from the amniotic [ovine amniotic fluid cells (oAFCs)] and allantoic fluid [ovine allantoic fluid cells (oALCs)] in a strictly paired fashion with oAFCs and oALCs derived from the same fetus. Both cell types showed cellular phenotypes comparable to standard mesenchymal stem cells (MSCs), with trilineage differentiation potential, and expression of common ovine MSC markers. However, the expression of MSC markers per single cell was higher in oAFCs as measured by flow cytometry. oAFCs exhibited higher proliferative capacities and showed significantly higher expression of pluripotency-related genes OCT4, STAT3, NANOG, and REX1 by quantitative real-time polymerase chain reaction compared with paired oALCs. No significant decrease of pluripotency-related gene expression was noted over gestation, implying that cells with high differentiation potential may be isolated at the end of pregnancy. In conclusion, this study suggests that cells with highest stem cell characteristics may originate from the fetus itself or the amniotic fetal adnexa rather than from the efferent urinary tract or the allantoic fetal adnexa.

  3. CD146 Expression Influences Periapical Cyst Mesenchymal Stem Cell Properties.

    PubMed

    Paduano, Francesco; Marrelli, Massimo; Palmieri, Francesca; Tatullo, Marco

    2016-10-01

    Recent studies have identified a new human dental derived progenitor cell population with multi-lineage differentiation potential referred to as human periapical cyst mesenchymal stem cells (hPCy-MSCs). In the present study, we compared two subpopulations of hPCy-MSCs characterised by the low or high expression of CD146 to establish whether this expression can regulate their stem cell properties. Using flow cytometry, we evaluated the stem cell marker profile of hPCy-MSCs during passaging. Furthermore, CD146 Low and CD146 High cells were sorted by magnetic beads and subsequently both cell populations were evaluated for differences in their proliferation, self-renewal, stem cell surface markers, stemness genes expression and osteogenic differentiation potential.We found that hPCy-MSCs possessed a stable expression of several mesenchymal stem cell surface markers, whereas CD146 expression declined during passaging.In addition, sorted CD146 Low cells proliferated significantly faster, displayed higher colony-forming unit-fibroblast capacity and showed higher expression of Klf4 when compared to the CD146 High subset. Significantly, the osteogenic potential of hPCy-MSCs was greater in the CD146 Low than in CD146 High population. These results demonstrate that CD146 is spontaneously downregulated with passaging at both mRNA and protein levels and that the high expression of CD146 reduces the proliferative, self-renewal and osteogenic differentiation potential of hPCy-MSCs. In conclusion, our study demonstrates that changes in the expression of CD146 can influence the stem cell properties of hPCy-MSCs.

  4. The effect of the colostral cells on gene expression of cytokines in cord blood cells.

    PubMed

    Hrdý, Jiří; Novotná, Olga; Kocourková, Ingrid; Prokešová, Ludmila

    2017-11-01

    Beneficial effect of maternal milk is acknowledged, but there is still question whether maternal milk from allergic mother is as good as from healthy one. In our study, we have assayed the effect of cells from colostrum of healthy and allergic mothers on gene expression of cytokines in cord blood cells of newborns of healthy and allergic mothers. Cytokines typical for Th1 (IL-2, IFN-gamma), Th2 (IL-4, IL-13), Tregs (IL-10, TGF-beta), and IL-8 were followed. We were not able to detect significant influence of colostral cells on gene expression of cytokines in cord blood after 2-day coculture using Transwell system. There was no difference in gene expression of cytokines in nonstimulated cord blood cells of newborns of healthy and allergic mothers, but generally increased gene expression of cytokines except IL-10 and TGF-beta after polyclonal stimulation was detected in cord blood cells of children of allergic mothers. There was no difference in IL-10 expression in stimulated cord blood cells of children of healthy and allergic mothers. Gene expression of TGF-beta was even decreased in stimulated cord blood cells of children of allergic mothers in comparison to healthy ones. We have not observed difference in the capacity of colostral cells of healthy and allergic mothers to influence gene expression of cytokines in cord blood cells, but we have described difference in the reactivity of cord blood cells between children of allergic and healthy mothers.

  5. VISA is Required for B Cell Expression of TLR7

    PubMed Central

    Xu, Liang-Guo; Jin, Lei; Zhang, Bi-Cheng; Akerlund, Janie L.; Shu, Hong-Bing; Cambier, John C.

    2011-01-01

    B cells play a critical role in the initialization and development of the Systemic Lupus Erythematosus (SLE) that is dependent on the expression of the endosomal ssRNA receptor TLR7. Previous studies have established that B cell expression of TLR7 is controlled by the Type I IFN secreted by Plasmacytoid Dendritic Cells (PDC). Here we report that VISA, also known as MAVS, IPS-1 and CardIf, essential for RIG-I/MDA5-mediated signaling following sensing of cytosolic RNA, regulate B cell expression of TLR7 and CD23. We found that B cells from VISA−/− mouse express reduced TLR7, but normal basal levels of Type I IFN. We also show that while IFNβ and TLR7 agonists synergize to promote TLR7 expression in VISA−/− B cells, they do not fully complement the defect seen in VISA−/− cells. Cell transfer experiments revealed that the observed effects of VISA−/− are B cell intrinsic. The reduced TLR7 expression in B cells is correlated with impaired TLR7 agonist-induced up-regulation of activation markers CD69 and CD86, cell proliferation, production of IFNα, TNF, IL-12 and NF-κB activation. Finally, studies indicate that genetic background may influence the observed phenotype of our VISA−/− mice, since VISA−/− B cells differ in CD23 and TLR7 expression when on C57BL/6 vs 129Sv-C57BL/6 background. Thus, our findings suggest an unexpected link between VISA-mediated cytosolic RLR signaling and autoimmunity. PMID:22105994

  6. VISA is required for B cell expression of TLR7.

    PubMed

    Xu, Liang-Guo; Jin, Lei; Zhang, Bi-Cheng; Akerlund, Linda J; Shu, Hong-Bing; Cambier, John C

    2012-01-01

    B cells play a critical role in the initialization and development of the systemic lupus erythematosus that is dependent on the expression of the endosomal ssRNA receptor TLR7. Previous studies have established that B cell expression of TLR7 is controlled by the type I IFN secreted by plasmacytoid dendritic cells. In this article, we report that VISA, also known as MAVS, IPS-1, and CardIf, essential for RIG-I/MDA5-mediated signaling following sensing of cytosolic RNA, regulate B cell expression of TLR7 and CD23. We found that B cells from a VISA(-/-) mouse express reduced TLR7 but normal basal levels of type I IFN. We also show that although IFN-β and TLR7 agonists synergize to promote TLR7 expression in VISA(-/-) B cells, they do not fully complement the defect seen in VISA(-/-) cells. Cell transfer experiments revealed that the observed effects of VISA(-/-) are B cell intrinsic. The reduced TLR7 expression in B cells is correlated with impaired TLR7 agonist-induced upregulation of activation markers CD69 and CD86, cell proliferation, production of IFN-α, TNF, and IL-12, and NF-κB activation. Finally, studies indicate that genetic background may influence the observed phenotype of our VISA(-/-) mice, because VISA(-/-) B cells differ in CD23 and TLR7 expression when on C57BL/6 versus 129Sv-C57BL/6 background. Thus, our findings suggest an unexpected link between VISA-mediated cytosolic RLR signaling and autoimmunity.

  7. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells.

    PubMed

    Botti, Gerardo; Fratangelo, Federica; Cerrone, Margherita; Liguori, Giuseppina; Cantile, Monica; Anniciello, Anna Maria; Scala, Stefania; D'Alterio, Crescenzo; Trimarco, Chiara; Ianaro, Angela; Cirino, Giuseppe; Caracò, Corrado; Colombino, Maria; Palmieri, Giuseppe; Pepe, Stefano; Ascierto, Paolo Antonio; Sabbatino, Francesco; Scognamiglio, Giosuè

    2017-02-23

    The resistance to PD-1/PD-L1 inhibitors for the treatment of melanoma have prompted investigators to implement novel clinical trials which combine immunotherapy with different treatment modalities. Moreover is also important to investigate the mechanisms which regulate the dynamic expression of PD-L1 on tumor cells and PD-1 on T cells in order to identify predictive biomarkers of response. COX-2 is currently investigated as a major player of tumor progression in several type of malignancies including melanoma. In the present study we investigated the potential relationship between COX-2 and PD-L1 expression in melanoma. Tumor samples obtained from primary melanoma lesions and not matched lymph node metastases were analyzed for both PD-L1 and COX-2 expression by IHC analysis. Status of BRAF and NRAS mutations was analyzed by sequencing and PCR. Co-localization of PD-L1 and COX-2 expression was analyzed by double fluorescence staining. Lastly the BRAF V600E A375 and NRAS Q61R SK-MEL-2 melanoma cell lines were used to evaluate the effect of COX-2 inhibition by celecoxib on expression of PD-L1 in vitro. BRAF V600E/V600K and NRAS Q61R/Q61L were detected in 57.8 and 8.9% of the metastatic lesions, and in 65.9 and 6.8% of the primary tumors, respectively. PD-L1 and COX-2 expression were heterogeneously expressed in both primary melanoma lesions and not matched lymph node metastases. A significantly lower number of PD-L1 negative lesions was found in primary tumors as compared to not matched metastatic lesions (P = 0.002). COX-2 expression significantly correlated with PD-L1 expression in both primary (P = 0.001) and not matched metastatic (P = 0.048) lesions. Furthermore, in melanoma tumors, cancer cells expressing a higher levels of COX-2 also co-expressed a higher level of PD-L1. Lastly, inhibition of COX-2 activity by celecoxib down-regulated the expression of PD-L1 in both BRAF V600E A375 and NRAS Q61R SK-MEL-2 melanoma cell lines. COX-2 expression correlates

  8. Murine cell glycolipids customization by modular expression of glycosyltransferases.

    PubMed

    Cid, Emili; Yamamoto, Miyako; Buschbeck, Marcus; Yamamoto, Fumiichiro

    2013-01-01

    Functional analysis of glycolipids has been hampered by their complex nature and combinatorial expression in cells and tissues. We report an efficient and easy method to generate cells with specific glycolipids. In our proof of principle experiments we have demonstrated the customized expression of two relevant glycosphingolipids on murine fibroblasts, stage-specific embryonic antigen 3 (SSEA-3), a marker for stem cells, and Forssman glycolipid, a xenoantigen. Sets of genes encoding glycosyltansferases were transduced by viral infection followed by multi-color cell sorting based on coupled expression of fluorescent proteins.

  9. Reduction of CD147 surface expression on primary T cells leads to enhanced cell proliferation.

    PubMed

    Biegler, Brian; Kasinrerk, Watchara

    2012-12-01

    CD147 is a ubiquitously expressed membrane glycoprotein that has numerous functional associations in health and disease. However, the molecular mechanisms by which CD147 participates in these processes are unclear. Establishing physiologically relevant silencing of CD147 in primary T cells could provide clues essential for elucidating some aspects of CD147 biology. To date, achieving the knockdown of CD147 in primary T cells has remained elusive. Utilizing RNA interference and the Nucleofector transfection system, we were able to reduce the expression of CD147 in primary T cells. Comparison of basic functions, such as proliferation and CD25 expression, were then made between control populations and populations with reduced expression. Up-regulation of CD147 was found upon T-cell activation, indicating a role in T-cell responses. To better understand the possible importance of this up-regulation, we knocked down the expression of CD147 using RNA interference. When compared to control populations the CD147 knockdown populations exhibited increased proliferation. This alteration of cell proliferation, however, was not linked to a change in CD25 expression. We achieved reduction of CD147 surface expression in primary T cells by siRNA-mediated gene silencing. Our results point to CD147 having a possible negative regulatory role in T cell-mediated immune responses.

  10. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation

    PubMed Central

    Lunt, Sophia Y.; Muralidhar, Vinayak; Hosios, Aaron M.; Israelsen, William J.; Gui, Dan Y.; Newhouse, Lauren; Ogrodzinski, Martin; Hecht, Vivian; Xu, Kali; Acevedo, Paula N. Marín; Hollern, Daniel P.; Bellinger, Gary; Dayton, Talya L.; Christen, Stefan; Elia, Ilaria; Dinh, Anh T.; Stephanopoulos, Gregory; Manalis, Scott R.; Yaffe, Michael B.; Andrechek, Eran R.; Fendt, Sarah-Maria; Heiden, Matthew G. Vander

    2014-01-01

    SUMMARY Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2-deletion affects proliferation and metabolism in non-transformed, non-immortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis. PMID:25482511

  11. Starvation is more efficient than the washing technique for purification of rat Sertoli cells.

    PubMed

    Ghasemzadeh-Hasankolaei, Mohammad; Eslaminejad, Mohamadreza Baghaban; Sedighi-Gilani, Mohammadali; Mokarizadeh, Aram

    2014-09-01

    Sertoli cells (SCs), one of the most important components of seminiferous tubules, are vital for normal spermatogenesis and male fertility. In recent years, numerous in vitro studies have shown the potential and actual activities of SCs. However, pure SCs are necessary for various in vitro studies. In this study, we have evaluated the efficiency of the starvation method for SC purification as compared with the washing method. Seminiferous tubule-derived cells (STDCs) of rats' testes underwent two different techniques for SC purification. In the first group (washing group), the medium was changed every 3-4 d, and cells were washed twice with phosphate-buffered saline that lacked CaC12 and MgSO4 (PBS(-)) before the addition of fresh medium. In the second group (starvation), the medium was changed every 7-8 d. Primary culture (P0), passage 1 (P1), and passage 2 (P2) cells were analyzed for the expression of SC-specific genes, vimentin, Wilm's tumor 1 (WT1), germ cell gene (vasa), Leydig cell marker, 17beta-hydroxysteroid dehydrogenase type 3 (Hsd17b3), and a marker of peritubular myoid cells, alpha smooth muscle actin (αSma), by reverse transcriptase polymerase chain reaction (RT-PCR) and real-time RT-PCR. Gene expression analysis showed that P0 cells expressed all tested genes except Hsd17b3. The starvation method caused significant downregulation of vasa and αSma expression in P0, P1, and P2 cells, whereas vimentin and WT1 were upregulated. In contrast, the washing method was less effective than the starvation method for the removal of germ and pretubular myoid cells (p < 0.001). Totally, the results have revealed that although washing is the only common technique for elimination of contaminant cells in SC cultures, starvation has a stronger effect and is a suitable, affordable technique for SC purification. We propose that starvation is an efficient, inexpensive method that can be used for purification of SCs in animal species.

  12. Generation of mammalian cells stably expressing multiple genes at predetermined levels.

    PubMed

    Liu, X; Constantinescu, S N; Sun, Y; Bogan, J S; Hirsch, D; Weinberg, R A; Lodish, H F

    2000-04-10

    Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the

  13. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediatedmore » toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.« less

  14. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    PubMed

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  15. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    PubMed

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.

  16. Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance

    PubMed Central

    Das, Joydeep; Kang, Min-Hee; Kim, Eunsu; Kwon, Deug-Nam; Choi, Yun-Jung; Kim, Jin-Hoi

    2015-01-01

    Hexavalent chromium [Cr(VI)], an environmental toxicant, causes severe male reproductive abnormalities. However, the actual mechanisms of toxicity are not clearly understood and have not been studied in detail. The present in vitro study aimed to investigate the mechanism of reproductive toxicity of Cr(VI) in male somatic cells (mouse TM3 Leydig cells and TM4 Sertoli cells) and spermatogonial stem cells (SSCs) because damage to or dysfunction of these cells can directly affect spermatogenesis, resulting in male infertility. Cr(VI) by inducing oxidative stress was cytotoxic to both male somatic cells and SSCs in a dose-dependent manner, and induced mitochondria-dependent apoptosis. Although the mechanism of Cr(VI)-induced cytotoxicity was similar in both somatic cells, the differences in sensitivity of TM3 and TM4 cells to Cr(VI) could be attributed, at least in part, to cell-specific regulation of P-AKT1, P-ERK1/2, and P-P53 proteins. Cr(VI) affected the differentiation and self-renewal mechanisms of SSCs, disrupted steroidogenesis in TM3 cells, while in TM4 cells, the expression of tight junction signaling and cell receptor molecules was affected as well as the secretory functions were impaired. In conclusion, our results show that Cr(VI) is cytotoxic and impairs the physiological functions of male somatic cells and SSCs. PMID:26355036

  17. T-cell lymphomas associated gene expression signature: Bioinformatics analysis based on gene expression Omnibus.

    PubMed

    Zhou, Lei-Lei; Xu, Xiao-Yue; Ni, Jie; Zhao, Xia; Zhou, Jian-Wei; Feng, Ji-Feng

    2018-06-01

    Due to the low incidence and the heterogeneity of subtypes, the biological process of T-cell lymphomas is largely unknown. Although many genes have been detected in T-cell lymphomas, the role of these genes in biological process of T-cell lymphomas was not further analyzed. Two qualified datasets were downloaded from Gene Expression Omnibus database. The biological functions of differentially expressed genes were evaluated by gene ontology enrichment and KEGG pathway analysis. The network for intersection genes was constructed by the cytoscape v3.0 software. Kaplan-Meier survival curves and log-rank test were employed to assess the association between differentially expressed genes and clinical characters. The intersection mRNAs were proved to be associated with fundamental processes of T-cell lymphoma cells. These intersection mRNAs were involved in the activation of some cancer-related pathways, including PI3K/AKT, Ras, JAK-STAT, and NF-kappa B signaling pathway. PDGFRA, CXCL12, and CCL19 were the most significant central genes in the signal-net analysis. The results of survival analysis are not entirely credible. Our findings uncovered aberrantly expressed genes and a complex RNA signal network in T-cell lymphomas and indicated cancer-related pathways involved in disease initiation and progression, providing a new insight for biotargeted therapy in T-cell lymphomas. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xuefeng, E-mail: dengxfdoctor@hotmail.com; Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences; Ma, Qunfeng

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level ofmore » MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.« less

  19. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq

    PubMed Central

    Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-01-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here, we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and in vivo human CD8+ T-cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells’ transcriptomes, with levels dependent on the cells’ transcriptional activity. Importantly, clonal aRME was detected but was surprisingly scarce (<1% of genes) and affected mainly the most low-expressed genes. Consequently, the overwhelming portion of aRME occurs transiently within individual cells and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells. PMID:27668657

  20. Isolation of Oct4-Expressing Extraembryonic Endoderm Precursor Cell Lines

    PubMed Central

    Debeb, Bisrat G.; Galat, Vasiliy; Epple-Farmer, Jessica; Iannaccone, Steve; Woodward, Wendy A.; Bader, Michael; Iannaccone, Philip; Binas, Bert

    2009-01-01

    Background The extraembryonic endoderm (ExEn) defines the yolk sac, a set of membranes that provide essential support for mammalian embryos. Recent findings suggest that the committed ExEn precursor is present already in the embryonic Inner Cell Mass (ICM) as a group of cells that intermingles with the closely related epiblast precursor. All ICM cells contain Oct4, a key transcription factor that is first expressed at the morula stage. In vitro, the epiblast precursor is most closely represented by the well-characterized embryonic stem (ES) cell lines that maintain the expression of Oct4, but analogous ExEn precursor cell lines are not known and it is unclear if they would express Oct4. Methodology/Principal Findings Here we report the isolation and characterization of permanently proliferating Oct4-expressing rat cell lines (“XEN-P cell lines”), which closely resemble the ExEn precursor. We isolated the XEN-P cell lines from blastocysts and characterized them by plating and gene expression assays as well as by injection into embryos. Like ES cells, the XEN-P cells express Oct4 and SSEA1 at high levels and their growth is stimulated by leukemia inhibitory factor, but instead of the epiblast determinant Nanog, they express the ExEn determinants Gata6 and Gata4. Further, they lack markers characteristic of the more differentiated primitive/visceral and parietal ExEn stages, but exclusively differentiate into these stages in vitro and contribute to them in vivo. Conclusions/Significance Our findings (i) suggest strongly that the ExEn precursor is a self-renewable entity, (ii) indicate that active Oct4 gene expression (transcription plus translation) is part of its molecular identity, and (iii) provide an in vitro model of early ExEn differentiation. PMID:19784378

  1. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    PubMed

    Chen, Linxu; Xu, Qilong; Tu, Jiagang; Ge, Yihe; Liu, Jun; Liang, Fang Ting

    2013-01-01

    RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  2. Aromatase and estrogen receptors in male reproduction.

    PubMed

    Carreau, Serge; Delalande, Christelle; Silandre, Dorothée; Bourguiba, Sonia; Lambard, Sophie

    2006-02-26

    Aromatase is a terminal enzyme which transforms irreversibly androgens into estrogens and it is present in the endoplasmic reticulum of numerous tissues. We have demonstrated that mature rat germ cells express a functional aromatase with a production of estrogens equivalent to that of Leydig cells. In humans in addition to Leydig cells, we have shown the presence of aromatase in ejaculated spermatozoa and in immature germ cells. In most tissues, high affinity estrogen receptors, ERalpha and/or ERbeta, mediate the role of estrogens. Indeed, in human spermatozoa, we have successfully amplified ERbeta mRNA but the protein was not detectable. Using ERalpha antibody we have detected two proteins in human immature germ cells: one at the expected size 66 kDa and another at 46 kDa likely corresponding to the ERalpha isoform lacking exon 1. In spermatozoa only the 46 kDa isoform was present, and we suggest that it may be located on the membrane. In addition, in men genetically deficient in aromatase, it is reported that alterations of spermatogenesis occur both in terms of the number and motility of spermatozoa. All together, these observations suggest that endogenous estrogens are important in male reproduction.

  3. Wnt Responsive Lgr5-Expressing Stem Cells Are Hair Cell Progenitors in the Cochlea

    PubMed Central

    Shi, Fuxin; Kempfle, Judith; Edge, Albert S. B.

    2012-01-01

    Auditory hair cells are surrounded on their basolateral aspects by supporting cells, and these two cell types together constitute the sensory epithelium of the organ of Corti, which is the hearing apparatus of the ear. We show here that Lgr5, a marker for adult stem cells, was expressed in a subset of supporting cells in the newborn and adult murine cochlea. Lgr5-expressing supporting cells, sorted by flow cytometry and cultured in a single cell suspension, as compared to unsorted cells, displayed an enhanced capacity for self-renewing neurosphere formation in response to Wnt and were converted to hair cells at a higher (>10-fold) rate. The greater differentiation of hair cell in the neurosphere assay showed that Lgr5-positive cells had the capacity to act as cochlear progenitor cells, and lineage tracing confirmed that Lgr5-expressing cells accounted for the cells that formed neurospheres and differentiated to hair cells. The responsiveness to Wnt of cells with a capacity for division and sensory cell formation suggests a potential route to new hair cell generation in the adult cochlea. PMID:22787049

  4. Side population cells and Bcrp1 expression in lung.

    PubMed

    Summer, Ross; Kotton, Darrell N; Sun, Xi; Ma, Bei; Fitzsimmons, Kathleen; Fine, Alan

    2003-07-01

    Side population (SP) cells are a rare subset of cells found in various tissues that are highly enriched for stem cell activity. SP cells can be isolated by dual-wavelength flow cytometry because of their capacity to efflux Hoechst dye, a process mediated by the ATP-binding cassette transporter breast cancer resistance protein (Bcrp) 1. By performing flow cytometry of enzymedigested mouse lung stained with Hoechst dye, we found that SP cells comprise 0.03-0.07% of total lung cells and are evenly distributed in proximal and distal lung regions. By RT-PCR, we found that lung SP cells express hepatocyte nuclear factor-3beta, but not thyroid transcription factor-1. Surface marker analysis revealed lung SP cells to be stem cell antigen 1 positive, Bcrp1 positive, lineage marker negative, and heterogeneous at the CD45 locus. As expected, we did not detect lung SP cells in Bcrp1-deficient animals. We, therefore, employed nonisotopic in situ hybridization and immunostaining for Bcrp1 as a strategy to localize these cells in vivo. Expression was observed in distinct lung cell types: bronchial and vascular smooth muscle cells and round cells within the distal air space. We confirmed the expression of Bcrp1 in primary bronchial smooth muscle cell cultures (BSMC) and in lavaged distal airway cells, but neither possessed the capacity to efflux Hoechst dye. In BSMC, Bcrp1 was localized to an intracellular compartment, suggesting that the molecular site of Bcrp1 expression regulates SP phenotype.

  5. Bone Marrow Cells Expressing Clara Cell Secretory Protein Increase Epithelial Repair After Ablation of Pulmonary Clara Cells

    PubMed Central

    Bustos, Martha L; Mura, Marco; Marcus, Paula; Hwang, David; Ludkovski, Olga; Wong, Amy P; Waddell, Thomas K

    2013-01-01

    We have previously reported a subpopulation of bone marrow cells (BMC) that express Clara cell secretory protein (CCSP), generally felt to be specific to lung Clara cells. Ablation of lung Clara cells has been reported using a transgenic mouse that expresses thymidine kinase under control of the CCSP promoter. Treatment with ganciclovir results in permanent elimination of CCSP+ cells, failure of airway regeneration, and death. To determine if transtracheal delivery of wild-type bone marrow CCSP+ cells is beneficial after ablation of lung CCSP+ cells, transgenic mice were treated with ganciclovir followed by transtracheal administration of CCSP+ or CCSP− BMC. Compared with mice administered CCSP− cells, mice treated with CCSP+ cells had more donor cells lining the airway epithelium, where they expressed epithelial markers including CCSP. Although donor CCSP+ cells did not substantially repopulate the airway, their administration resulted in increased host ciliated cells, better preservation of airway epithelium, reduction of inflammatory cells, and an increase in animal survival time. Administration of CCSP+ BMC is beneficial after permanent ablation of lung Clara cells by increasing bronchial epithelial repair. Therefore, CCSP+ BMC could be important for treatment of lung diseases where airways re-epithelialization is compromised. PMID:23609017

  6. MiR-210 expression reverses radioresistance of stem-like cells of oesophageal squamous cell carcinoma

    PubMed Central

    Chen, Xin; Guo, Jia; Xi, Ru-Xing; Chang, Yu-Wei; Pan, Fei-Yang; Zhang, Xiao-Zhi

    2014-01-01

    AIM: To investigate the expression of miR-210 and the role it plays in the cell cycle to regulate radioresistance in oesophageal squamous cell carcinoma (ESCC). METHODS: MiR-210 expression was evaluated in 37 pairs of ESCC tissues and matched para-tumorous normal oesophageal tissues from surgical patients who had not received neoadjuvant therapy, and in the cells of two novel radioresistant cell lines, TE-1R and Eca-109R, using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The transient up-regulation of miR-210 expression in TE-1R and Eca-109R cells was studied using liposomes and was confirmed using qRT-PCR. The rate of cell survival after a series of radio-treatment doses was evaluated using the clone formation assay. Flow cytometry was used to detect the changes to the cell cycle patterns due to radiation treatment. RT-PCR and Western blot were used to detect the expression of ataxia telangiectasia mutated (ATM) and DNA dependent protein kinase (DNA-PKcs) after irradiation, and the cell sphere formation assay was used to evaluate the proliferative ability of the cancer stem-like cells. RESULTS: The level of miR-210 expression was significantly decreased, by 21.3% to 97.2%, with the average being 39.2% ± 16.1%, in the ESCC tissues of most patients (81.1%, 30 of 37 vs patients with high miR-210 expression, P < 0.05). A low level of expression of miR-210 was correlated with a poorly differentiated pathological type (P < 0.01) but was not correlated with the T-stage or lymph node infiltration (both P > 0.05). Early local recurrences (< 18 mo, n = 19) after radiotherapy were significantly related with low miR-210 expression (n = 13, P < 0.05). The level of miR-210 was decreased by approximately 73% (vs TE-1, 0.27 ± 0.10, P < 0.01) in the established radioresistant TE-IR cell line and by 52% (vs Eca-109, 0.48 ± 0.17, P < 0.05) in the corresponding Eca-109R line. Transient transfection with a miR-210 precursor increased the level of miR-210

  7. A CD133-expressing murine liver oval cell population with bilineage potential.

    PubMed

    Rountree, C Bart; Barsky, Lora; Ge, Shundi; Zhu, Judy; Senadheera, Shantha; Crooks, Gay M

    2007-10-01

    Although oval cells are postulated to be adult liver stem cells, a well-defined phenotype of a bipotent liver stem cell remains elusive. The heterogeneity of cells within the oval cell fraction has hindered lineage potential studies. Our goal was to identify an enriched population of bipotent oval cells using a combination of flow cytometry and single cell gene expression in conjunction with lineage-specific liver injury models. Expression of cell surface markers on nonparenchymal, nonhematopoietic (CD45-) cells were characterized. Cell populations were isolated by flow cytometry for gene expression studies. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine toxic injury induced cell cycling and expansion specifically in the subpopulation of oval cells in the periportal zone that express CD133. CD133+CD45- cells expressed hepatoblast and stem cell-associated genes, and single cells coexpressed both hepatocyte and cholangiocyte-associated genes, indicating bilineage potential. CD133+CD45- cells proliferated in response to liver injury. Following toxic hepatocyte damage, CD133+CD45- cells demonstrated upregulated expression of the hepatocyte gene Albumin. In contrast, toxic cholangiocyte injury resulted in upregulation of the cholangiocyte gene Ck19. After 21-28 days in culture, CD133+CD45- cells continued to generate cells of both hepatocyte and cholangiocyte lineages. Thus, CD133 expression identifies a population of oval cells in adult murine liver with the gene expression profile and function of primitive, bipotent liver stem cells. In response to lineage-specific injury, these cells demonstrate a lineage-appropriate genetic response. Disclosure of potential conflicts of interest is found at the end of this article.

  8. Expression of Cat Podoplanin in Feline Squamous Cell Carcinomas.

    PubMed

    Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Harada, Hiroyuki; Kagawa, Yumiko; Konnai, Satoru; Kato, Yukinari

    2017-12-01

    Oral squamous cell carcinoma is an aggressive tumor in cats; however, molecular-targeted therapies against this tumor, including antibody therapy, have not been developed. Sensitive and specific monoclonal antibodies (mAbs) against highly expressed membrane proteins are needed to develop antibody therapies. Podoplanin, a type I transmembrane glycoprotein, is expressed in many human malignant tumors, including brain tumor, esophageal cancer, lung cancer, mesothelioma, and oral cancer. Podoplanin binds to C-type lectin-like receptor-2 (CLEC-2) and activates platelet aggregation, which is involved in cancer metastasis. Until now, we have established several mAbs against podoplanin in humans, mice, rats, rabbits, dogs, cattle, and cats. We have reported podoplanin expression in canine melanoma and squamous cell carcinomas using an anti-dog podoplanin mAb PMab-38. In this study, we investigated podoplanin expression in 40 feline squamous cell carcinomas (14 cases of mouth floor, 13 of skin, 9 of ear, and 4 of tongue) by immunohistochemical analysis using an anti-cat podoplanin mAb PMab-52, which we recently developed by cell-based immunization and screening (CBIS) method. Of the total 40 cases, 38 (95%) showed positive staining for PMab-52. In particular, 12 cases (30%) showed a strong membrane-staining pattern of squamous cell carcinoma cells. PMab-52 can be useful for antibody therapy against feline podoplanin-expressing squamous cell carcinomas.

  9. PTPN6 regulates the cell-surface expression of TRPM4 channels in HEK293 cells.

    PubMed

    Lee, Dong Kun; Park, Jung Yeon; Yoo, Jae Cheal; Byun, Eun Hye; Bae, Yeon-Ju; Lee, Young-Sun; Park, Nammi; Kang, Dawon; Han, Jaehee; Park, Jae Yong; Hwang, Eunmi; Hong, Seong-Geun

    2018-06-21

    Transient receptor-potential, cation channel, subfamily M, member 4 (TRPM4) channels regulate a variety of physiological and pathological processes; however, their roles as functional channels under diverse conditions remain unclear. In this study, cytosolic protein tyrosine phosphatase non-receptor type 6 (PTPN6) interacted with TRPM4 channels. We confirmed their interaction by performing co-immunoprecipitation (Co-IP) assays following heterologous PTPN6 and TRPM4 channel expression in HEK293 cells. Furthermore, biomolecular fluorescence complementation (BiFC) image analysis confirmed TRPM4-PTPN6 binding. In addition, immunoblotting and Co-IP analyses revealed that TRPM4 expression significantly decreased in the membrane fraction of cells after PTPN6 was silenced with a specific short-hairpin RNA (shRNA-PTPN6). In agreement, TRPM4-induced changes in whole-cell currents were not detected in PTPN6-silenced HEK cells, in contrast to cells transfected with a scrambled RNA (scRNA) or in naïve HEK cells. These data suggest that PTPN6 inhibits TRPM4 channel activity by disrupting TRPM4 expression. Furthermore, TRPM4 channels were expressed in the membrane of naïve cells and scRNA transfectants, but not in those of PTPN6-silenced cells. These results indicated that PTPN6 is critically associated with TRPM4 trafficking. This role of PTPN6 in TRPM4 membrane localization was also demonstrated in HeLa cells. TRPM4 overexpression significantly enhanced cell proliferation in untreated HeLa cells, but not in HeLa cells with silenced PTPN6 expression. These findings indicate that PTPN6-dependent TRPM4 expression and trafficking to the plasma membrane is critical for cell proliferation in both HEK293 and HeLa cells. Therefore, PTPN6 is a novel therapeutic target for treating pathologic diseases involving TRPM4.

  10. Reduced Ang2 expression in aging endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at; Ebenbauer, B.; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of agingmore » before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.« less

  11. Gene expression profiling of single cells on large-scale oligonucleotide arrays

    PubMed Central

    Hartmann, Claudia H.; Klein, Christoph A.

    2006-01-01

    Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717

  12. s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells

    PubMed Central

    Brocqueville, Guillaume; Chmelar, Renee S.; Bauderlique-Le Roy, Hélène; Deruy, Emeric; Tian, Lu; Vessella, Robert L.; Greenberg, Norman M.; Bourette, Roland P.

    2016-01-01

    Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin− CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells. PMID:27081082

  13. Single-Cell RNA-Sequencing: Assessment of Differential Expression Analysis Methods.

    PubMed

    Dal Molin, Alessandra; Baruzzo, Giacomo; Di Camillo, Barbara

    2017-01-01

    The sequencing of the transcriptomes of single-cells, or single-cell RNA-sequencing, has now become the dominant technology for the identification of novel cell types and for the study of stochastic gene expression. In recent years, various tools for analyzing single-cell RNA-sequencing data have been proposed, many of them with the purpose of performing differentially expression analysis. In this work, we compare four different tools for single-cell RNA-sequencing differential expression, together with two popular methods originally developed for the analysis of bulk RNA-sequencing data, but largely applied to single-cell data. We discuss results obtained on two real and one synthetic dataset, along with considerations about the perspectives of single-cell differential expression analysis. In particular, we explore the methods performance in four different scenarios, mimicking different unimodal or bimodal distributions of the data, as characteristic of single-cell transcriptomics. We observed marked differences between the selected methods in terms of precision and recall, the number of detected differentially expressed genes and the overall performance. Globally, the results obtained in our study suggest that is difficult to identify a best performing tool and that efforts are needed to improve the methodologies for single-cell RNA-sequencing data analysis and gain better accuracy of results.

  14. β-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs.

    PubMed

    Fujita, Atsushi; Uchida, Naoya; Haro-Mora, Juan J; Winkler, Thomas; Tisdale, John

    2016-06-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent a potential alternative source for red blood cell transfusion. However, when using traditional methods with embryoid bodies, ES cell-derived erythroid cells predominantly express embryonic type ɛ-globin, with lesser fetal type γ-globin and very little adult type β-globin. Furthermore, no β-globin expression is detected in iPS cell-derived erythroid cells. ES cell-derived sacs (ES sacs) have been recently used to generate functional platelets. Due to its unique structure, we hypothesized that ES sacs serve as hemangioblast-like progenitors capable to generate definitive erythroid cells that express β-globin. With our ES sac-derived erythroid differentiation protocol, we obtained ∼120 erythroid cells per single ES cell. Both primitive (ɛ-globin expressing) and definitive (γ- and β-globin expressing) erythroid cells were generated from not only ES cells but also iPS cells. Primitive erythropoiesis is gradually switched to definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. Primitive and definitive erythroid progenitor cells were selected on the basis of glycophorin A or CD34 expression from cells within the ES sacs before erythroid differentiation. This selection and differentiation strategy represents an important step toward the development of in vitro erythroid cell production systems from pluripotent stem cells. Further optimization to improve expansion should be required for clinical application. Stem Cells 2016;34:1541-1552. © 2016 AlphaMed Press.

  15. Adult human pancreas-derived cells expressing stage-specific embryonic antigen 4 differentiate into Sox9-expressing and Ngn3-expressing pancreatic ducts in vivo.

    PubMed

    Lee, Song; Lee, Chan Mi; Kim, Song Cheol

    2016-11-11

    Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4 + cells. Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4 + and CA19-9 + cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4 + and CA19-9 + cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4 + cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4 + cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9 + cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4 + or CA19-9 + cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9 + cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4 + cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4 + cells. SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may

  16. Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas.

    PubMed

    Lardon, Jessy; Corbeil, Denis; Huttner, Wieland B; Ling, Zhidong; Bouwens, Luc

    2008-01-01

    Many efforts are spent in identifying stem cells in adult pancreas because these could provide a source of beta cells for cell-based therapy of type 1 diabetes. Prominin-1, particularly its specific glycosylation-dependent AC133 epitope, is expressed on stem/progenitor cells of various human tissues and can be used to isolate them. We, therefore, examined its expression in adult human pancreas. To detect prominin-1 protein, monoclonal antibody CD133/1 (AC133 clone), which recognizes the AC133 epitope, and the alphahE2 antiserum, which is directed against the human prominin-1 polypeptide, were used. Prominin-1 RNA expression was analyzed by real-time polymerase chain reaction. We report that all duct-lining cells of the pancreas express prominin-1. Most notably, the cells that react with the alphahE2 antiserum also react with the AC133 antibody. After isolation and culture of human exocrine cells, we found a relative increase in prominin-1 expression both at protein and RNA expression level, which can be explained by an enrichment of cells with ductal phenotype in these cultures. Our data show that pancreatic duct cells express prominin-1 and surprisingly reveal that its particular AC133 epitope is not an exclusive stem and progenitor cell marker.

  17. Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression.

    PubMed

    Lalani, Aly-Khan A; Gray, Kathryn P; Albiges, Laurence; Callea, Marcella; Pignon, Jean-Christophe; Pal, Soumitro; Gupta, Mamta; Bhatt, Rupal S; McDermott, David F; Atkins, Michael B; Woude, G F Vande; Harshman, Lauren C; Choueiri, Toni K; Signoretti, Sabina

    2017-11-28

    In preclinical models, c-Met promotes survival of renal cancer cells through the regulation of programmed death-ligand 1 (PD-L1). However, this relationship in human clear cell renal cell carcinoma (ccRCC) is not well characterized. We evaluated c-Met expression in ccRCC patients using paired primary and metastatic samples and assessed the association with PD-L1 expression and other clinical features. Areas with predominant and highest Fuhrman nuclear grade (FNG) were selected. c-Met expression was evaluated by IHC using an anti-Met monoclonal antibody (MET4 Ab) and calculated by a combined score (CS, 0-300): intensity of c-Met staining (0-3) x % of positive cells (0-100). PD-L1 expression in tumor cells was previously assessed by IHC and PD-L1+ was defined as PD-L1 > 0% positive cells. Our cohort consisted of 45 pairs of primary and metastatic ccRCC samples. Overall, c-Met expression was higher in metastatic sites compared to primary sites (average c-Met CS: 55 vs. 28, p = 0.0003). Higher c-Met expression was associated with higher FNG (4 vs. 3) in primary tumors (average c-Met CS: 52 vs. 20, p = 0.04). c-Met expression was numerically greater in PD-L1+ vs. PD-L1- tumors. Higher c-Met expression in metastatic sites compared to primary tumors suggests that testing for biomarkers of response to c-Met inhibitors should be conducted in metastases. While higher c-Met expression in PD-L1+ tumors requires further investigation, it supports exploring these targets in combination clinical trials.

  18. Occurrence of FSH, inhibin and other hypothalamic-pituitary-intestinal hormones in normal fertility, subfertility, and tumors of human testes.

    PubMed

    Mehta, M K; Garde, S V; Sheth, A R

    1995-01-01

    To compare the distribution of peptide hormones in presumably normal human testicular tissues and specimens exhibiting any of five pathologies. Biopsies from patients having testicular malfunctions were prepared as sections and specifically immunohistochemically stained for inhibin, FSH, serotonin, AUP, and oxytocin. Immunocytochemical studies revealed the presence of various hypophysial-pituitary-intestinal hormones, viz., FSH, inhibin, arginine vasopressin (AVP), calcitonin, serotonin, oxytocin, adrenocorticotropin (ACTH), gastrin, secretin, and somatostatin in human testicular biopsies exhibiting normal spermatogenesis, Sertoli-cell-only syndrome, spermatogenic arrest, Leydig cell hyperplasia, Leydig cell tumor, and seminoma. Intensity of immunostaining for all peptides except FSH was stronger in cases of subfertile as compared to normal testis. Intensity of immunostaining with inhibin was maximum in Leydig cell tumor. These regulatory peptides may be involved in the pathophysiology of the testes.

  19. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability

    PubMed Central

    Fehrmann, Steffen; Bottin-Duplus, Hélène; Leonidou, Andri; Mollereau, Esther; Barthelaix, Audrey; Wei, Wu; Steinmetz, Lars M; Yvert, Gaël

    2013-01-01

    Living systems may have evolved probabilistic bet hedging strategies that generate cell-to-cell phenotypic diversity in anticipation of environmental catastrophes, as opposed to adaptation via a deterministic response to environmental changes. Evolution of bet hedging assumes that genotypes segregating in natural populations modulate the level of intraclonal diversity, which so far has largely remained hypothetical. Using a fluorescent Pmet17-GFP reporter, we mapped four genetic loci conferring to a wild yeast strain an elevated cell-to-cell variability in the expression of MET17, a gene regulated by the methionine pathway. A frameshift mutation in the Erc1p transmembrane transporter, probably resulting from a release of laboratory strains from negative selection, reduced Pmet17-GFP expression variability. At a second locus, cis-regulatory polymorphisms increased mean expression of the Mup1p methionine permease, causing increased expression variability in trans. These results demonstrate that an expression quantitative trait locus (eQTL) can simultaneously have a deterministic effect in cis and a probabilistic effect in trans. Our observations indicate that the evolution of transmembrane transporter genes can tune intraclonal variation and may therefore be implicated in both reactive and anticipatory strategies of adaptation. PMID:24104478

  20. Krüppel Like Factors Family Expression in Cervical Cancer Cells.

    PubMed

    Marrero-Rodríguez, Daniel; la Cruz, Hugo Arreola-De; Taniguchi-Ponciano, Keiko; Gomez-Virgilio, Laura; Huerta-Padilla, Victor; Ponce-Navarrete, Gustavo; Andonegui-Elguera, Sergio; Jimenez-Vega, Florinda; Romero-Morelos, Pablo; Rodriguez-Esquivel, Miriam; Meraz-Rios, Marco; Figueroa-Corona, Ma Del Pilar; Monroy, Alberto; Pérez-González, Oscar; Salcedo, Mauricio

    2017-05-01

    Krüppel Like Factors (KLF) refers to a family of seventeen members of transcription factors. Involved in several cellular processes. As other cancer types, Cervical Cancer (CC) presents molecular deregulations in transcription factors, but especially Human Papilloma Virus (HPV) sequences. Here in this work we analyzed the mRNA expression of all KLF family members in CC-derived cell lines and CC tissues. The cell lines used were HeLa, INBL, RoVa, C4-I, Ms751, ViPa, CaLo, SiHa, CaSki, C33a and ViBo and the non-tumorigenic HaCaT. mRNA expression was analyzed by means of expression microarray and RT-PCR, and KLF5 protein by immunofluorescence. The cell lines were grouped according to HPV genotype as HPV16, HPV18 positive or HPV negative cells. Heterogeneous expression was observed among the cell lines. Despite the heterogeneous expression profile, KLF3, -5, -12, -15 and -16 transcripts were present in all cell lines, KLF4 and -10 which were not expressed in CaSki; KLF11 and 13 were not expressed by Vipa and C4-I, and KLF7 was not expressed by C4-I and Rova. The CC tissue analysis shows expression of most of the KLF members, such as KLF5. KLF5 immunosignal was positive in the three cell lines analyzed. We suggest that KLF expression could not be related to HPV presence/genotype, at least at transcriptional level, and the expression of KLF family members may be necessary in the biology of the CC cells. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  1. CD28 T-cell costimulatory molecule expression in pemphigus vulgaris.

    PubMed

    Alecu, M; Ursaciuc, C; Surcel, M; Coman, G; Ciotaru, D; Dobre, M

    2009-03-01

    CD28 superfamily of immune costimulatory molecules could play an important role in autotolerance control. CD28 costimulation seems to be necessary for regulatory T cell (Treg) activation and successive suppressive activities involved in autoimmunity protection. This study investigates CD28 expression, especially inducible costimulator fraction, on T lymphocytes in pemphigus vulgaris (PV) patients. CD28 expression on T lymphocytes was assessed in 16 PV patients during acute attack. All patients and 10 healthy control subjects were tested for lymphocyte populations, T-cell subpopulations (T-CD4+, T-CD8+), Treg and CD28 expression on T-cell subpopulations. T, B and natural killer cells average values in PV patients were close to the control group values. Compared with control group, PV values showed lower Treg (2.2% compared with 4.7%), slightly decreased CD4+ CD28+ T cells (91% compared with 95%), higher CD4+ CD28- T cells (9% compared with 5%), decreased CD8+ CD28+ T cells (57% and 73%, respectively) and significantly enhanced CD8+ CD28- T cells (43% compared with 27%). These data suggest that Treg-mediated suppressor T-cell effects could be diminished in PV, together with an abnormal or ineffective subsequent helper T-cell suppression. CD28 high expression on helper T cells and low expression on suppressor T cells are arguments for a potential CD28 role in PV autoimmune response mechanism.

  2. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001.

  3. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151

  4. Effects of Different Cell-Detaching Methods on the Viability and Cell Surface Antigen Expression of Synovial Mesenchymal Stem Cells.

    PubMed

    Tsuji, Kunikazu; Ojima, Miyoko; Otabe, Koji; Horie, Masafumi; Koga, Hideyuki; Sekiya, Ichiro; Muneta, Takeshi

    2017-06-09

    Flow cytometric analysis of cell surface antigens is a powerful tool for the isolation and characterization of stem cells residing in adult tissues. In contrast to the collection of hematopoietic stem cells, the process of enzymatic digestion is usually necessary to prepare mesenchymal stem cells (MSCs) suspensions, which can influence the expression of cell surface markers. In this study, we examined the effects of various cell-detaching reagents and digestion times on the expression of stem cell-related surface antigens and MSC functions. Human MSCs were detached from dishes using four different reagents: trypsin, TrypLE, collagenase, and a nonenzymatic cell dissociation reagent (C5789; Sigma-Aldrich). Following dissociation reagent incubations ranging from 5 to 120 min, cell surface markers were analyzed by flow cytometry. Trypsin and TrypLE quickly dissociated the cells within 5 min, while collagenase and C5789 required 60 min to obtain maximum cell yields. C5789 significantly decreased cell viability at 120 min. Trypsin treatment significantly reduced CD44+, CD55+, CD73+, CD105+, CD140a+, CD140b+, and CD201+ cell numbers within 30 min. Collagenase treatment reduced CD140a expression by 30 min. In contrast, TrypLE treatment did not affect the expression of any cell surface antigens tested by 30 min. Despite the significant loss of surface antigen expression after 60 min of treatment with trypsin, adverse effects of enzymatic digestion on multipotency of MSCs were limited. Overall, our data indicated that TrypLE is advantageous over other cell dissociation reagents tested for the rapid preparation of viable MSC suspensions.

  5. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. © 2016 International Federation for Cell Biology.

  6. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells

    PubMed Central

    Gornalusse, Germán G.; Hirata, Roli K.; Funk, Sarah; Riolobos, Laura; Lopes, Vanda S.; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G.; Hanafi, Laïla-Aïcha; Clegg, Dennis O.; Turtle, Cameron; Russell, David W.

    2017-01-01

    Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this ‘missing self’ response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8+ T cells, do not bind anti-HLA antibodies, and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression. PMID:28504668

  7. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells.

    PubMed

    Gornalusse, Germán G; Hirata, Roli K; Funk, Sarah E; Riolobos, Laura; Lopes, Vanda S; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G; Hanafi, Laïla-Aïcha; Clegg, Dennis O; Turtle, Cameron; Russell, David W

    2017-08-01

    Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this 'missing-self' response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8 + T cells, do not bind anti-HLA antibodies and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression.

  8. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells.

    PubMed

    Vincent, Per Henrik; Benedikz, Eirikur; Uhlén, Per; Hovatta, Outi; Sundström, Erik

    2017-06-15

    Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem cells (CD133 + /CD24 lo ), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology, as did the nonexpressing cells. Depletion experiments showed that after the complete removal of the subpopulations of NANOG- and REX1-expressing NPCs, the expression of these genes appeared in other NPCs within a few days. The percentage of NANOG- and REX1-expressing cells returned to that observed before depletion. Our results are best explained by a model in which there is stochastic transient expression of pluripotency-associated genes in proliferating NPCs.

  9. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  10. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  11. The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells.

    PubMed

    Nabatov, Alexey A; Raginov, Ivan S

    2015-01-01

    This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56(pos) cells. The treatment of CD56(pos) cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56(pos) cells and protects DC-SIGN expressing dendritic cells against CD56(pos) cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.

  12. Spatial reconstruction of single-cell gene expression data.

    PubMed

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  13. Matrix metalloproteinase-9 expression in folliculostellate cells of rat anterior pituitary gland.

    PubMed

    Ilmiawati, Cimi; Horiguchi, Kotaro; Fujiwara, Ken; Yashiro, Takashi

    2012-03-01

    Folliculostellate (FS) cells of the anterior pituitary gland express a variety of regulatory molecules. Using transgenic rats that express green fluorescent protein specifically in FS cells, we recently demonstrated that FS cells in vitro showed marked changes in motility, proliferation, and that formation of cellular interconnections in the presence of laminin, a component of the extracellular matrix, closely resembled those observed in vivo. These findings suggested that FS cells express matrix metalloproteinase-9 (MMP-9), which assists their function on laminin. In the present study, we investigate MMP-9 expression in rat anterior pituitary gland and examine its role in motility and proliferation of FS cells on laminin. Immunohistochemistry, RT-PCR, immunoblotting, and gelatin zymography were performed to assess MMP-9 expression in the anterior pituitary gland and cultured FS cells. Real-time RT-PCR was used to quantify MMP-9 expression in cultured FS cells under different conditions and treatments. MMP-9 expression was inhibited by pharmacological inhibitor or downregulated by siRNA and time-lapse images were acquired. A 5-bromo-2'-deoxyuridine assay was performed to analyze the proliferation of FS cells. Our results showed that MMP-9 was expressed in FS cells, that this expression was upregulated by laminin, and that laminin induced MMP-9 secretion by FS cells. MMP-9 inhibition and downregulation did not impair FS motility; however, it did impair the capacity of FS cells to form interconnections and it significantly inhibited proliferation of FS cells on laminin. We conclude that MMP-9 is necessary in FS cell interconnection and proliferation in the presence of laminin.

  14. Organization of testicular interstitial tissue of an Australian rodent, the spinifex hopping mouse, Notomys alexis.

    PubMed

    Peirce, E J; Breed, W G

    1990-05-01

    The organization of testicular interstitial tissue of the spinifex hopping mouse, Notomys alexis differs from that of other rodents. It comprises between 10.3% and 17.3% (average 15.0%) of the total testicular volume, and is variable in its organization both at different locations within the testis of the one animal and among different individuals. Abundant, closely packed Leydig cells are usually present; however, in some regions large, thick-walled blood vessels and extensive peritubular lymphatic spaces, often lacking an endothelium adjacent to the Leydig cells, are also prominent. The Leydig cells in contact with the large blood vessels and lymphatics, unlike those in regions where lymph is sparse, are not densely packed and sometimes contain numerous lipid droplets. Ultrastructure of Leydig cells is typical of steroid-producing cells; however, mitochondria are often extremely large, unusual in shape or bizarrely arranged in relation to one another. Also electron-dense bodies displaying a paracrystalline-like internal structure of parallel, electron-dense filaments arranged in a lattice pattern occur in the cytoplasm of many cells. The significance of these unusual ultrastructural features and the organization of the interstitial tissue remain to be determined conclusively, but may relate to steroid synthesis, secretion and uptake.

  15. Changes in the expression of potassium channels during mouse T cell development

    PubMed Central

    1986-01-01

    In this report we have combined the whole-cell electrophysiological recording technique with flow microfluorometry to isolate phenotypically defined thymocytes and T lymphocytes. Results obtained showed that J11d-/Lyt-2-/L3T4- cells express none or very few delayed rectifier K+ channels, whereas most other Lyt-2-/L3T4- cells, as well as typical cortical thymocytes (Lyt-2+/L3T4+), do express K+ channels. Mature (Lyt-2+/L3T4- or Lyt-2-/L3T4+) thymocytes, which are heterogeneous for J11d expression, were also found to be heterogeneous for K+ channel expression. Consistent with this finding was the observation that the cortisone-resistant subpopulation of thymocytes, which express low levels of J11d, were enriched for cells expressing low levels of K+ channels. Mature phenotype peripheral T lymphocytes expressed very low levels of K+ channels, but upon activation with Con A were found to express high levels of K+ channels. The results suggest that K+ channel expression in T cells is developmentally regulated. Increased expression of the channel is induced in response to mitogenic signals throughout the T cell lineage. Expression of the channel, therefore, serves as a useful marker in defining steps in the T cell differentiation pathway. PMID:2431091

  16. Modification of Schwann Cell Gene Expression by Electroporation in vivo

    PubMed Central

    Aspalter, Manuela; Vyas, Alka; Feiner, Jeffrey; Griffin, John; Brushart, Thomas; Redett, Richard

    2009-01-01

    Clinical outcomes of nerve grafting are often inferior to those of end-to-end nerve repair. This may be due, in part, to the routine use of cutaneous nerve to support motor axon regeneration. In previous work, we have demonstrated that Schwann cells express distinct sensory and motor phenotypes, and that these promote regeneration in a modality-specific fashion. Intra-operative modification of graft Schwann cell phenotype might therefore improve clinical outcomes. This paper demonstrates the feasibility of electroporating genes into intact nerve to modify Schwann cell gene expression. Initial trials established 70 V, 5 ms as optimum electroporation parameters. Intact, denervated, and reinnervated rat tibial nerves were electroporated with the YFP gene and evaluated serially by counting S-100 positive cells that expressed YFP. In intact nerve, a mean of 28% of Schwann cells expressed the gene at 3 days, falling to 20% at 7 days with little expression at later times. There were no significant differences among the three groups at each time period. Electronmicroscopic evaluation of treated, intact nerve revealed only occasional demyelination and axon degeneration. Intraoperative electroporation of nerve graft is thus a practical means of altering Schwann cell gene expression without the risks inherent in viral transfection. PMID:18834904

  17. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Hiromasa; Database Center for Life Science; Oki, Yoshinao

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed asmore » well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.« less

  18. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    PubMed

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Endothelial nitric oxide synthase is dynamically expressed during bone marrow stem cell differentiation into endothelial cells.

    PubMed

    Liu, Zhenguo; Jiang, Yuehua; Hao, Hong; Gupta, Kalpna; Xu, Jian; Chu, Ling; McFalls, Edward; Zweier, Jay; Verfaillie, Catherine; Bache, Robert J

    2007-09-01

    This study was designed to investigate the developmental expression of endothelial nitric oxide synthase (eNOS) during stem cell differentiation into endothelial cells and to examine the functional status of the newly differentiated endothelial cells. Mouse adult multipotent progenitor cells (MAPCs) were used as the source of stem cells and were induced to differentiate into endothelial cells with vascular endothelial growth factor (VEGF) in serum-free medium. Expression of eNOS in the cells during differentiation was evaluated with real-time PCR, nitric oxide synthase (NOS) activity, and Western blot analysis. It was found that eNOS, but no other NOS, was present in undifferentiated MAPCs. eNOS expression disappeared in the cells immediately after induction of differentiation. However, eNOS expression reoccurred at day 7 during differentiation. Increasing eNOS mRNA, protein content, and activity were observed in the cells at days 14 and 21 during differentiation. The differentiated endothelial cells formed dense capillary networks on growth factor-reduced Matrigel. VEGF-stimulated phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2 occurred in these cells, which was inhibited by NOS inhibitor N(G)-nitro-L-arginine methyl ester. In conclusion, these data demonstrate that eNOS is present in MAPCs and is dynamically expressed during the differentiation of MAPCs into endothelial cells in vitro.

  20. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    PubMed

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  1. A small population of resident limb bud mesenchymal cells express few MSC-associated markers, but the expression of these markers is increased immediately after cell culture.

    PubMed

    Marín-Llera, Jessica Cristina; Chimal-Monroy, Jesús

    2018-05-01

    Skeletal progenitors are derived from resident limb bud mesenchymal cells of the vertebrate embryos. However, it remains poorly understood if they represent stem cells, progenitors, or multipotent mesenchymal stromal cells (MSC). Derived-MSC of different adult tissues under in vitro experimental conditions can differentiate into the same cellular lineages that are present in the limb. Here, comparing non-cultured versus cultured mesenchymal limb bud cells, we determined the expression of MSC-associated markers, the in vitro differentiation capacity and their gene expression profile. Results showed that in freshly isolated limb bud mesenchymal cells, the proportion of cells expressing Sca1, CD44, CD105, CD90, and CD73 is very low and a low expression of lineage-specific genes was observed. However, recently seeded limb bud mesenchymal cells acquired Sca1 and CD44 markers and the expression of the key differentiation genes Runx2 and Sox9, while Scx and Pparg genes decreased. Also, their chondrogenic differentiation capacity decreased through cellular passages while the osteogenic increased. Our findings suggest that the modification of the cell adhesion process through the in vitro method changed the limb mesenchymal cell immunophenotype leading to the expression and maintenance of common MSC-associated markers. These findings could have a significant impact on MSC study and isolation strategy because they could explain common variations observed in the MSC immunophenotype in different tissues. © 2018 International Federation for Cell Biology.

  2. Complexity of expression of the intermediate filaments of six new human ovarian carcinoma cell lines: new expression of cytokeratin 20.

    PubMed

    Yanagibashi, T; Gorai, I; Nakazawa, T; Miyagi, E; Hirahara, F; Kitamura, H; Minaguchi, H

    1997-01-01

    Six permanent human ovarian carcinoma cell lines (OVISE, OVTOKO, OVMANA and OVSAYO from clear cell adenocarcinoma, and OVSAHO and OVKATE from serous papillary adenocarcinoma) were established from solid tumours. The cell lines have been in culture for 5-8 years, the passage number varying from 62 to 246. Immunohistochemical analysis has shown that five of the six cell lines express at least six cytokeratin (CK) polypeptides. OVISE and OVSAYO expressed CKs 6, 7, 8, 18, 19 and 15 and/or 16. OVTOKO was positive for CKs 7, 8, 18, 19 and 15 and/or 16. OVSAHO expressed CKs 6, 7, 8, 14, 18, 19 and 15 and/or 16. OVMANA expressed CKs 6, 7, 8, 18, 19, 20 and 15 and/or 16. OVKATE expressed CKs 6, 7, 8, 13, 17, 18, 19, 20 and 15 and/or 16. The expression of CK7, additional expression of vimentin, and clinical and histopathological findings enabled us to confirm that six cell lines had been established from primary ovarian cancers. Two of the six cell lines were positive for CK20, although CK20 was not expressed in the original tumours. The heterotransplanted tumours produced by CK20-positive cells also expressed CK20. This is the first report of ovarian carcinoma cell lines that express CK20 irrespective of their histological type. CK20 has been found in all colon carcinoma cell lines, but only in the mucinous type of ovarian tumours. These new ovarian carcinoma cell lines will therefore provide a relevant experimental system for elucidating the regulatory control mechanisms of intermediate filament expression.

  3. Inactivation of CUG-BP1/CELF1 Causes Growth, Viability, and Spermatogenesis Defects in Mice▿

    PubMed Central

    Kress, Chantal; Gautier-Courteille, Carole; Osborne, H. Beverley; Babinet, Charles; Paillard, Luc

    2007-01-01

    CUG-BP1/CELF1 is a multifunctional RNA-binding protein involved in the regulation of alternative splicing and translation. To elucidate its role in mammalian development, we produced mice in which the Cugbp1 gene was inactivated by homologous recombination. These Cugbp1−/− mice were viable, although a significant portion of them did not survive after the first few days of life. They displayed growth retardation, and most Cugbp1−/− males and females exhibited impaired fertility. Male infertility was more thoroughly investigated. Histological examination of testes from Cugbp1−/− males showed an arrest of spermatogenesis that occurred at step 7 of spermiogenesis, before spermatid elongation begins, and an increased apoptosis. A quantitative reverse transcriptase PCR analysis showed a decrease of all the germ cell markers tested but not of Sertoli and Leydig markers, suggesting a general decrease in germ cell number. In wild-type testes, CUG-BP1 is expressed in germ cells from spermatogonia to round spermatids and also in Sertoli and Leydig cells. These findings demonstrate that CUG-BP1 is required for completion of spermatogenesis. PMID:17130239

  4. Single-cell gene expression analysis reveals diversity among human spermatogonia.

    PubMed

    Neuhaus, N; Yoon, J; Terwort, N; Kliesch, S; Seggewiss, J; Huge, A; Voss, R; Schlatt, S; Grindberg, R V; Schöler, H R

    2017-02-10

    Is the molecular profile of human spermatogonia homogeneous or heterogeneous when analysed at the single-cell level? Heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the existence of a heterogeneous stem cell population. Despite the fact that many studies have sought to identify specific markers for human spermatogonia, the molecular fingerprint of these cells remains hitherto unknown. Testicular tissues from patients with spermatogonial arrest (arrest, n = 1) and with qualitatively normal spermatogenesis (normal, n = 7) were selected from a pool of 179 consecutively obtained biopsies. Gene expression analyses of cell populations and single-cells (n = 105) were performed. Two OCT4-positive individual cells were selected for global transcriptional capture using shallow RNA-seq. Finally, expression of four candidate markers was assessed by immunohistochemistry. Histological analysis and blood hormone measurements for LH, FSH and testosterone were performed prior to testicular sample selection. Following enzymatic digestion of testicular tissues, differential plating and subsequent micromanipulation of individual cells was employed to enrich and isolate human spermatogonia, respectively. Endpoint analyses were qPCR analysis of cell populations and individual cells, shallow RNA-seq and immunohistochemical analyses. Unexpectedly, single-cell expression data from the arrest patient (20 cells) showed heterogeneous expression profiles. Also, from patients with normal spermatogenesis, heterogeneous expression patterns of undifferentiated (OCT4, UTF1 and MAGE A4) and differentiated marker genes (BOLL and PRM2) were obtained within each spermatogonia cluster (13 clusters with 85 cells). Shallow RNA-seq analysis of individual human spermatogonia was validated, and a spermatogonia-specific heterogeneous protein expression of selected candidate markers (DDX5, TSPY1, EEF1A1 and NGN3) was demonstrated. The heterogeneity of human

  5. Gravity Vector Changes Induce Alterations in Nervous and Testicular Cells in Cultures and in Testis Slices

    NASA Astrophysics Data System (ADS)

    Uva, B.; Strollo, F.; Ricci, F.; Masini, M. A.

    Cultured astrocytes, neurons and testicular cells (myoid, germ, Sertoli, Leydig cells) as well as rat testes and testes'slices, were subjected to modeled microgravity using a three dimensional Random Positioning Machine (10-6G) for 5min, 30min, 1h, 24h and 32h. Parallel cell cultures and tissues were submitted to hypergravity using an hyperfuge (2.5G) for the same period of time. At the end of the rotations the cultures and tissues were fixed, the tissue was sectioned (5 micron). All the specimens were processed for immunohistochemical identification of microtubules, mitochondria, 3 hydroxysteroid dehydrogenase, 17 hydroxysteroid dehydrogenase, caspase 7, heat shock proteins and identification of DNA fragmentation. At 5min at modeled microgravity and hypergravity, the histology of the cells in culture and the tissues was altered, microtubules and mitochondria were disorganized. Numerous cells underwent apoptosis. Immunostaining for enzymes involved in ion transmembrane transport, as Na+/K+ATPase and cotransporter proteins, and in steroidogenesis diminished or was abolished. At 1h in modeled microgravity or hypergravity, HSPs were expressed and ion transport enzymes as well as steroidogenic enzymes were again immunostainable. These data show that microgravity and hypergravity cause only transient alterations, and tissues and cells in cultures are able to adapt to different gravity conditions.

  6. Cellular changes in the hamster testicular interstitium with ageing and after exposure to short photoperiod.

    PubMed

    Beltrán-Frutos, E; Seco-Rovira, V; Ferrer, C; Madrid, J F; Sáez, F J; Canteras, M; Pastor, L M

    2016-04-01

    The aim of this study was to evaluate the cellular changes that occur in the hamster testicular interstitium in two very different physiological situations involving testicular involution: ageing and exposure to a short photoperiod. The animals were divided into an 'age group' with three subgroups - young, adult and old animals - and a 'regressed group' with animals subjected to a short photoperiod. The testicular interstitium was characterised by light and electron microscopy. Interstitial cells were studied histochemically with regard to their proliferation, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling (TUNEL+) and testosterone synthetic activity. We identified two types of Leydig cell: Type A cells showed a normal morphology, while Type B cells appeared necrotic. With ageing, pericyte proliferation decreased but there was no variation in the index of TUNEL-positive Leydig cells. In the regressed group, pericyte proliferation was greater and TUNEL-positive cells were not observed in the interstitium. The testicular interstitium suffered few ultrastructural changes during ageing and necrotic Leydig cells were observed. In contrast, an ultrastructural involution of Leydig cells with no necrosis was observed in the regressed group. In conclusion, the testicular interstitium of Mesocricetus auratus showed different cellular changes in the two groups (age and regressed), probably due to the irreversible nature of ageing and the reversible character of changes induced by short photoperiod.

  7. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  8. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  9. Expression of checkpoint molecules on myeloid-derived suppressor cells.

    PubMed

    Ballbach, Marlene; Dannert, Angelika; Singh, Anurag; Siegmund, Darina M; Handgretinger, Rupert; Piali, Luca; Rieber, Nikolaus; Hartl, Dominik

    2017-12-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population expanded in cancer, infection and autoimmunity capable of suppressing T-cell functions. Checkpoint inhibitors have emerged as a key therapeutic strategy in immune-oncology. While checkpoint molecules were initially associated with T cell functions, recent evidence suggests a broader expression and function in innate myeloid cells. Previous studies provided first evidence for a potential role for checkpoints on MDSCs, yet the human relevance remained poorly understood. Therefore, we investigated the expression and functional relevance of checkpoint molecules in human MDSC-T-cell interactions. Our studies demonstrate that programmed death-ligand 1 (PD-L1) is expressed on granulocytic MDSCs upon co-culture with T cells. Transwell experiments showed that cell-to-cell contact was required for MDSC-T-cell interactions and antibody blocking studies showed that targeting PD-L1 partially impaired MDSC-mediated T-cell suppression. Collectively, these studies suggest a role for PD-L1 in human MDSC function and thereby expand the functionality of this checkpoint beyond T cells, which could pave the way for further understanding and therapeutic targeting of PD-1/PD-L1 in innate immune-mediated diseases. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  10. Langerhans' cell expression of the selectin ligand, sialyl Lewis x.

    PubMed Central

    Ross, E L; Barker, J N; Allen, M H; Chu, A C; Groves, R W; MacDonald, D M

    1994-01-01

    Cellular adhesion molecules play a central role in leucocyte migration through peripheral blood and tissues. A crucial stage in these events in selectin-mediated adhesion involving E-selectin expressed on activated endothelium interacting with a range of carbohydrate ligands expressed by specific subpopulations of leucocytes. As such mechanisms may be relevant to bone marrow-derived dendritic epidermal Langerhans' cell (LC) migration, expression of these carbohydrate ligands was assessed immunocytochemically in whole skin biopsies and in epidermal cell suspensions obtained from adult humans. Double-labelling experiments revealed that sialyl Lewis x, recognized by the monoclonal antibody CSLEX1, was expressed on epidermal LC (n = 9). Furthermore, expression was enhanced at 24 hr following epicutaneous application of antigen and in the inflammatory disorder psoriasis (n = 10). E-selectin was concomitantly strongly expressed on dermal endothelium in psoriasis and allergic contact dermatitis. Intradermal injection of the T-cell-derived cytokine interferon-gamma (IFN-gamma) led to increased LC expression of sialyl Lewis x. In epidermal cell suspensions, in contrast to keratinocytes, CD1a+ cells expressed sialyl Lewis x, intensity of which was enhanced after 4 days in culture. CSLEX1 staining could be abolished and CD15 (non-sialated Lewis x) expression induced by saponification and treatment with neuraminidase. Expression of other selectin ligands was also examined. While the cutaneous lymphocyte antigen defined by the monoclonal antibody HECA-452 reacted with a small minority of LC, sialyl Lewis a and sulphatide were not expressed under any experimental conditions. These studies indicate that E-selectin-sialyl Lewis x interactions are potentially important in LC migration, both into and out of skin. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:7512530

  11. Universal Artificial Antigen Presenting Cells to Selectively Propagate T Cells Expressing Chimeric Antigen Receptor Independent of Specificity

    PubMed Central

    Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J. N.

    2014-01-01

    T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to non-viral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through co-culture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed one ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Employing CARL enables one aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity. PMID:24714354

  12. Prostate specific membrane antigen (PSMA) expression in non-small cell lung cancer

    PubMed Central

    Heitkötter, Birthe; Schulze, Arik B.; Schliemann, Christoph; Steinestel, Konrad; Trautmann, Marcel; Marra, Alessandro; Hillejan, Ludger; Mohr, Michael; Evers, Georg; Wardelmann, Eva; Rahbar, Kambiz; Görlich, Dennis; Lenz, Georg; Berdel, Wolfgang E.; Hartmann, Wolfgang; Wiewrodt, Rainer; Huss, Sebastian

    2017-01-01

    Objectives PSMA (prostate-specific membrane antigen) is overexpressed in prostate cancer cells and is reported to be a promising target for antibody-based radioligand therapy in patients with metastasized prostate cancer. Since PSMA expression is not restricted to prostate cancer, the underlying study investigates PSMA expression in non-small cell lung cancer (NSCLC). Material and methods Immunohistochemistry was used to identify PSMA expression in n = 275 samples of NSCLC tissue specimens. By means of CD34 co-expression, the level of PSMA expression in tumor associated neovasculature was investigated. The impact of PSMA expression on clinicopathologic parameters and prognosis was evaluated. Results PSMA tumor cell expression in NSCLC is as low as 6% and was predominantly found in squamous cell carcinoma (p = 0.002). Neovascular PSMA expression was found in 49% of NSCLC. High neovascular PSMA expression was associated with higher tumor grading (G3/G4) (p < 0.001). Neither for PSMA tumor cell expression, nor for PSMA neovascular cell expression prognostic effects were found for the investigated NSCLC cases. Conclusion Here, we report on the expression of PSMA in NSCLC tissue samples. Against the background of a potential treatment with radiolabeled PSMA ligands, our data might serve for the future identification of patients who could benefit from this therapeutic option. PMID:29077706

  13. Expression and rearrangement of the ROS1 gene in human glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birchmeier, C.; Sharma, S.; Wigler, M.

    1987-12-01

    The human ROS1 gene, which possibly encodes a growth factor receptor, was found to be expressed in human tumor cell lines. In a survey of 45 different human cell lines, the authors found ROS1 to be expressed in glioblastoma-derived cell lines at high levels and not to be expressed at all, or expressed at very low levels, in the remaining cell lines. The ROS1 gene was present in normal copy numbers in all cell lines that expressed the gene. However, in one particular glioblastoma line, they detected a potentially activating mutation at the ROS1 locus.

  14. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieken, Stefan, E-mail: Stefan.Rieken@med.uni-heidelberg.de; Habermehl, Daniel; Wuerth, Lena

    2012-05-01

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration onmore » both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.« less

  15. Gene therapy for human ovarian cancer cells using efficient expression of Fas gene combined with γδT cells.

    PubMed

    Lin, Jiajing; Zeng, Dingyuan; He, Hongying; Tan, Guangping; Lan, Ying; Jiang, Fuyan; Sheng, Shuting

    2017-10-01

    Low tissue specificity and efficiency of exogenous gene expression are the two major obstacles in tumor‑targeted gene therapy. The Fas cell surface death receptor (Fas)/Fas ligand pathway is one of the primary pathways responsible for the regulation of cell apoptosis. The aim of the present study was to explore whether the regulation of tumor specific promoters and a two‑step transcriptional amplification system (TSTA) assured efficient, targeted expression of their downstream Fas gene in human ovarian cancer cells, and to assess the killing effect of γδT cells on these cells with high Fas expression. Three shuttle plasmids containing different control elements of the human telomerase reverse transcriptase (hTERT) promoter and/or TSTA were constructed and packaged into adenovirus 5 (Ad5) vectors for the expression of exogenous Fas gene. The human ovarian cancer cell line SKOV3 and a control human embryonic lung fibroblast cell line were transfected with Ad5‑hTERT‑Fas or Ad5‑hTERT‑TSTA‑Fas. Fas mRNA and protein expression were examined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. γδT lymphocytes were isolated, cultured and mixed at different ratios with SKOV3 cells with Fas expression in order to assess the killing effect of γδT cells. hTERT promoter induced the specific expression of FAS gene in SKOV3 cells, and the TSTA strategy increased FAS expression by 14.2‑fold. The killing effect of γδT cells increased with the expression level of Fas and the effector‑target cell ratio. The killing rate for SKOV3 cells with high FAS expression was 72.5% at an effector‑target cell ratio of 40:1. The regulators of hTERT promoter and TSTA assure the efficient and targeted expression of their downstream Fas gene in SKOV3 cells. The killing effect of γδT cells for ovarian cancer cells with relatively high Fas expression was improved.

  16. Interdependence of cell growth and gene expression: origins and consequences.

    PubMed

    Scott, Matthew; Gunderson, Carl W; Mateescu, Eduard M; Zhang, Zhongge; Hwa, Terence

    2010-11-19

    In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined. Elucidating these relations is important both for understanding the physiological functions of endogenous genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of complex biological systems before underlying regulatory circuits are elucidated.

  17. Zfp206 regulates ES cell gene expression and differentiation.

    PubMed

    Zhang, Wen; Walker, Emily; Tamplin, Owen J; Rossant, Janet; Stanford, William L; Hughes, Timothy R

    2006-01-01

    Understanding transcriptional regulation in early developmental stages is fundamental to understanding mammalian development and embryonic stem (ES) cell properties. Expression surveys suggest that the putative SCAN-Zinc finger transcription factor Zfp206 is expressed specifically in ES cells [Zhang,W., Morris,Q.D., Chang,R., Shai,O., Bakowski,M.A., Mitsakakis,N., Mohammad,N., Robinson,M.D., Zirngibl,R., Somogyi,E. et al., (2004) J. Biol., 3, 21; Brandenberger,R., Wei,H., Zhang,S., Lei,S., Murage,J., Fisk,G.J., Li,Y., Xu,C., Fang,R., Guegler,K. et al., (2004) Nat. Biotechnol., 22, 707-716]. Here, we confirm this observation, and we show that ZFP206 expression decreases rapidly upon differentiation of cultured mouse ES cells, and during development of mouse embryos. We find that there are at least six isoforms of the ZFP206 transcript, the longest being predominant. Overexpression and depletion experiments show that Zfp206 promotes formation of undifferentiated ES cell clones, and positively regulates abundance of a very small set of transcripts whose expression is also specific to ES cells and the two- to four-cell stages of preimplantation embryos. This set includes members of the Zscan4, Thoc4, Tcstv1 and eIF-1A gene families, none of which have been functionally characterized in vivo but whose members include apparent transcription factors, RNA-binding proteins and translation factors. Together, these data indicate that Zfp206 is a regulator of ES cell differentiation that controls a set of genes expressed very early in development, most of which themselves appear to be regulators.

  18. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    PubMed

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  19. Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration.

    PubMed

    Ghaye, Aurélie P; Bergemann, David; Tarifeño-Saldivia, Estefania; Flasse, Lydie C; Von Berg, Virginie; Peers, Bernard; Voz, Marianne L; Manfroid, Isabelle

    2015-09-02

    In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors. Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells. We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In

  20. Network-based expression analyses and experimental validations revealed high co-expression between Yap1 and stem cell markers compared to differentiated cells.

    PubMed

    Dehghanian, Fariba; Hojati, Zohreh; Esmaeili, Fariba; Masoudi-Nejad, Ali

    2018-05-21

    The Hippo signaling pathway is identified as a potential regulatory pathway which plays critical roles in differentiation and stem cell self-renewal. Yap1 is a primary transcriptional effector of this pathway. The importance of Yap1 in embryonic stem cells (ESCs) and differentiation procedure remains a challenging question, since two different observations have been reported. To answer this question we used co-expression network and differential co-expression analyses followed by experimental validations. Our results indicate that Yap1 is highly co-expressed with stem cell markers in ESCs but not in differentiated cells (DCs). The significant Yap1 down-regulation and also translocation of Yap1 into the cytoplasm during P19 differentiation was also detected. Moreover, our results suggest the E2f7, Lin28a and Dppa4 genes as possible regulatory nuclear factors of Hippo pathway in stem cells. The present findings are actively consistent with studies that suggested Yap1 as an essential factor for stem cell self-renewal. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Expression of myeloid differentiation antigens on normal and malignant myeloid cells.

    PubMed Central

    Griffin, J D; Ritz, J; Nadler, L M; Schlossman, S F

    1981-01-01

    A series of monoclonal antibodies have been characterized that define four surface antigens (MY3, MY4, MY7, and MY8) of human myeloid cells. They were derived from a fusion of the NS-1 plasmacytoma cell line with splenocytes from a mouse immunized with human acute myelomonocytic leukemia cells. MY3 and MY4 are expressed by normal monocytes and by greater than 90% of patients with acute monocytic leukemia or acute myelomonocytic leukemia, but are detected much less often on other types of myeloid leukemia. MY7 is expressed by granulocytes, monocytes, and 5% of normal bone marrow cells. 79% of all acute myeloblastic leukemia (AML) patients tested (72 patients) express MY7 without preferential expression by any AML subtype. MY8 is expressed by normal monocytes, granulocytes, all peroxidase-positive bone marrow cells, and 50% of AML patients. MY3, MY4, and MY8 define myeloid differentiation antigens in that they are not detected on myeloid precursor cells and appear at discrete stages of differentiation. These antigens are not expressed by lymphocytes, erythrocytes, platelets, or lymphoid malignancies. The monoclonal antisera defining these antigens have been used to study differentiation of normal myeloid cells and malignant cell lines. Images PMID:6945311

  2. DR-nm23 gene expression in neuroblastoma cells: relationship to integrin expression, adhesion characteristics, and differentiation.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    1997-09-03

    Neuroblastoma, a childhood tumor originating from cells of the embryonic neural crest, retains the ability to differentiate, yielding cells with epithelial-Schwann-like, neuronal, or melanocytic characteristics. Since nm23 gene family members have been proposed to play a role in cellular differentiation, as well as in metastasis suppression, we investigated whether and how DR-nm23, a recently identified third member of the human nm23 gene family, might be involved in neuroblastoma differentiation. Three neuroblastoma cell lines (human LAN-5, human SK-N-SH, and murine N1E-115) were used in these experiments; cells from two of the lines (SK-N-SH and N1E-115) were also studied after being stably transfected with a plasmid containing a full-length DR-nm23 complementary DNA. Cellular expression of specific messenger RNAs and proteins was assessed by use of standard techniques. Cellular adhesion to a variety of protein substrates was also evaluated. DR-nm23 messenger RNA levels in nontransfected LAN-5 and SK-N-SH cells generally increased with time after exposure to differentiation-inducing conditions; levels of the other two human nm23 messenger RNAs (nm23-H1 and nm23-H2) remained essentially constant. Transfected SK-N-SH cells overexpressing DR-nm23 exhibited some characteristics of differentiated cells (increased vimentin and collagen type IV expression) even in the absence of differentiation-inducing conditions. Compared with control cells, DR-nm23-transfected cells exposed to differentiation-inducing conditions showed a greater degree of growth arrest (SK-N-SH cells) and greater increases in integrin protein expression, especially of integrin beta1 (N1E-115 cells). DR-nm23-transfected N1E-115 cells also showed a marked increase in adhesion to collagen type I-coated tissue culture plates that was inhibited by preincubation with an anti-integrin beta1 antibody. DR-nm23 gene expression appears to be associated with differentiation in neuroblastoma cells and may affect

  3. Cytological and cytochemical analysis of the effects of hormones on postradiation changes in testicular sex and incretory cells. [. gamma. rays; x rays; mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratenko, V.G.; Ganzenko, L.F.; Stakanov, V.A.

    1979-06-01

    Cytochemical and cytological analysis demonstrated that administration of testosterone propionate or estradiol propionate alters nuclear nucleoproteins of Leydig and Sertoli cells, as well as spermatogeneic elements. It was shown that the hormones modify the testicular reactions to radiation and, by influencing regulation of spermatogenesis, exert a protective action.

  4. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  5. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  6. Proton receptor GPR68 expression in dendritic-cell-like S100β-positive cells of rat anterior pituitary gland: GPR68 induces interleukin-6 gene expression in extracellular acidification.

    PubMed

    Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio

    2014-11-01

    S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.

  7. Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression.

    PubMed

    Cowden Dahl, Karen D; Robertson, Sarah E; Weaver, Valerie M; Simon, M Celeste

    2005-04-01

    Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of alpha and beta aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt(-/-) and Hifalpha(-/-) TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin alphavbeta3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O(2)). Culturing B16F0 melanoma cells at 1.5% O(2) resulted in increased alphavbeta3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O(2) tension influence placental invasion and tumor migration by increasing cell surface expression of alphavbeta3 integrin.

  8. Differential expression of nanog1 and nanogp8 in colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Nanog is expressed in a majority of colon cancer cell lines examined. Black-Right-Pointing-Pointer Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. Black-Right-Pointing-Pointer Nanog mediates cell proliferation of colon cancer cells. Black-Right-Pointing-Pointer Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement duringmore » cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.« less

  9. [Expression of embryonic markers in pterygium derived mesenchymal cells].

    PubMed

    Pascual, G; Montes, M A; Pérez-Rico, C; Pérez-Kohler, B; Bellón, J M; Buján, J

    2010-12-01

    Destruction of the limbal epithelium barrier is the most important mechanism of pterygium formation (conjunctiva proliferation, encroaching onto the cornea). It is thought to arise from activated and proliferating limbal epithelial stem cells. The objective of this study is to evaluate the presence of undifferentiated mesenchymal cells (stem cells) in cultured cells extracted from human pterygium. Cells from 6 human pterygium were isolated by explantation and placed in cultures with amniomax medium. Once the monolayer was reached the cells were seeded onto 24 well microplates. The cells were studied in the second sub-culture. The immunohistochemical expression of different embryonic stem cell markers, OCT3/4 and CD9, was analysed. The differentiated phenotypes were characterised with the monoclonal antibodies anti-CD31, α-actin and vimentin. All the cell populations obtained from pterygium showed vimentin expression. Less than 1% of the cells were positive for CD31 and α-actin markers. The majority of the cell population was positive for OCT3/4 and CD9. The cell population obtained from pterygium expressed mesenchymal cell phenotype and embryonic markers, such us OCT3/4 and CD9. This undifferentiated population could be involved in the large recurrence rate of this type of tissue after surgery. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  10. Cell Surface Expression of Biologically Active Influenza C Virus HEF Glycoprotein Expressed from cDNA

    PubMed Central

    Pekosz, Andrew; Lamb, Robert A.

    1999-01-01

    The hemagglutinin, esterase, and fusion (HEF) glycoprotein of influenza C virus possesses receptor binding, receptor destroying, and membrane fusion activities. The HEF cDNAs from influenza C/Ann Arbor/1/50 (HEF-AA) and influenza C/Taylor/1223/47 (HEF-Tay) viruses were cloned and expressed, and transport of HEF to the cell surface was monitored by susceptibility to cleavage by exogenous trypsin, indirect immunofluorescence microscopy, and flow cytometry. Previously it has been found in studies with the C/Johannesburg/1/66 strain of influenza C virus (HEF-JHB) that transport of HEF to the cell surface is severely inhibited, and it is thought that the short cytoplasmic tail, Arg-Thr-Lys, is involved in blocking HEF cell surface expression (F. Oeffner, H.-D. Klenk, and G. Herrler, J. Gen. Virol. 80:363–369, 1999). As the cytoplasmic tail amino acid sequences of HEF-AA and HEF-Tay are identical to that of HEF-JHB, the data indicate that cell surface expression of HEF-AA and HEF-Tay is not inhibited by this amino acid sequence. Furthermore, the abundant cell surface transport of HEF-AA and HEF-Tay indicates that their cell surface expression does not require coexpression of another viral protein. The HEF-AA and HEF-Tay HEF glycoproteins bound human erythrocytes, promoted membrane fusion in a low-pH and trypsin-dependent manner, and displayed esterase activity, indicating that the HEF glycoprotein alone mediates all three known functions at the cell surface. PMID:10482635

  11. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad.

    PubMed

    Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z

    2017-10-01

    Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James

    2006-10-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ER{alpha} signaling. However, many ER{alpha}-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ER{alpha} signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ER{alpha}-negative cells. We previously noticed that both ER{alpha}-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ER{alpha}-negative cell lines even exceeded its over-expression level inmore » ER{alpha}-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ER{alpha}-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene.« less

  13. Cell-Free Optogenetic Gene Expression System.

    PubMed

    Jayaraman, Premkumar; Yeoh, Jing Wui; Jayaraman, Sudhaghar; Teh, Ai Ying; Zhang, Jingyun; Poh, Chueh Loo

    2018-04-20

    Optogenetic tools provide a new and efficient way to dynamically program gene expression with unmatched spatiotemporal precision. To date, their vast potential remains untapped in the field of cell-free synthetic biology, largely due to the lack of simple and efficient light-switchable systems. Here, to bridge the gap between cell-free systems and optogenetics, we studied our previously engineered one component-based blue light-inducible Escherichia coli promoter in a cell-free environment through experimental characterization and mathematical modeling. We achieved >10-fold dynamic expression and demonstrated rapid and reversible activation of the target gene to generate oscillatory response. The deterministic model developed was able to recapitulate the system behavior and helped to provide quantitative insights to optimize dynamic response. This in vitro optogenetic approach could be a powerful new high-throughput screening technology for rapid prototyping of complex biological networks in both space and time without the need for chemical induction.

  14. Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development.

    PubMed

    Baertschiger, Reto M; Bosco, Domenico; Morel, Philippe; Serre-Beinier, Veronique; Berney, Thierry; Buhler, Leo H; Gonelle-Gispert, Carmen

    2008-07-01

    Transplantation of in vitro generated islets or insulin-producing cells represents an attractive option to overcome organ shortage. The aim of this study was to isolate, expand, and characterize cells from human exocrine pancreas and analyze their potential to differentiate into beta cells. Fibroblast-like cells growing out of human exocrine tissue were characterized by flow cytometry and by their capacity to differentiate into mesenchymal cell lineages. During cell expansion and after differentiation toward beta cells, expression of transcription factors of endocrine pancreatic progenitors was analyzed by reverse transcription polymerase chain reaction. Cells emerged from 14/18 human pancreatic exocrine fractions and were expanded up to 40 population doublings. These cells displayed surface antigens similar to mesenchymal stem cells from bone marrow. A culture of these cells in adipogenic and chondrogenic differentiation media allowed differentiation into adipocyte- and chondrocyte-like cells. During expansion, cells expressed transcription factors implicated in islet development such as Isl1, Nkx2.2, Nkx6.1, nestin, Ngn3, Pdx1, and NeuroD. Activin A and hepatocyte growth factor induced an expression of insulin, glucagon, and glucokinase. Proliferating cells with characteristics of mesenchymal stem cells and endocrine progenitors were isolated from exocrine tissue. Under specific conditions, these cells expressed little insulin. Human pancreatic exocrine tissue might thus be a source of endocrine cell progenitors.

  15. Lower expression of CADM1 and higher expression of MAL in Merkel cell carcinomas are associated with Merkel cell polyomavirus infection and better prognosis.

    PubMed

    Iwasaki, Takeshi; Matsushita, Michiko; Nonaka, Daisuke; Nagata, Keiko; Kato, Masako; Kuwamoto, Satoshi; Murakami, Ichiro; Hayashi, Kazuhiko

    2016-02-01

    Merkel cell carcinoma (MCC) is a clinically aggressive neuroendocrine skin cancer; 80% of the cases are associated with the Merkel cell polyomavirus (MCPyV). We previously reported that MCPyV-negative MCCs have more irregular nuclei with abundant cytoplasm and significantly unfavorable outcomes than do MCPyV-positive MCCs. These results suggest that some cell adhesion or structural stabilization molecules are differently expressed depending on MCPyV infection status. Thus, we investigated the association of prognosis or MCPyV infection status in MCCs with cell adhesion molecule 1 (CADM1)/differentially expressed in adenocarcinoma of the lung protein 1 (DAL-1)/membrane protein, palmitoylated 3 (MPP3) tripartite complex and mal T-cell differentiation protein (MAL) expression, which play important roles in cell adhesion and oncogenesis and are related to cancer outcomes in various malignancies, to elucidate the role of these molecules. We analyzed the pathological and molecular characteristics of 26 MCPyV-positive and 15 MCPyV-negative MCCs. Univariate Cox regression analysis showed that advanced age (hazard ratio [HR], 8.249; P = .007) and high CADM1 expression (HR, 5.214; P = .012) were significantly unfavorable overall survival parameters, whereas MCPyV infection (HR, 0.043, P < .001) and lower MAL expression (HR, 0.273; P = .018) were significantly favorable. On multivariate analysis, only MCPyV infection was significantly favorable for overall survival (HR, 0.04; P = .005). Hypermethylation of CADM1, DAL-1, and MAL promoters was detected in 1 of 18, 15 of 27, and 1 of 13 cases, respectively. Double immunostaining for cytokeratin 20 and CADM1, DAL-1, or MAL showed that nonneoplastic Merkel cells expressed DAL-1 and MAL but not CADM1. This study revealed that MCPyV-negative MCCs significantly expressed higher CADM1 and lower MAL than MCPyV-positive MCCs; these expression levels were markedly related to unfavorable outcomes. These data will give us important

  16. Unprecedented Cell-Selection Using Ultra-Quick Freezing Combined with Aquaporin Expression

    PubMed Central

    Kato, Yasuhiro; Miyauchi, Takayuki; Abe, Youichiro; Kojić, Dušan; Tanaka, Manami; Chikazawa, Nana; Nakatake, Yuhki; Ko, Shigeru B. H.; Kobayashi, Daisuke; Hazama, Akihiro; Fujiwara, Shoko; Uchida, Tatsuya; Yasui, Masato

    2014-01-01

    Freezing is usually used for preservation and storage of biological samples; however, this process may have some adverse effects such as cell membrane damage. Aquaporin (AQP), a water channel protein, has been suggested to play some roles for cryopreservation although its molecular mechanism remains unclear. Here we show that membrane damage caused by ultra-quick freezing is rescued by the expression of AQP4. We next examine if the expression of AQP combined with ultra-quick freezing can be used to select cells efficiently under freezing conditions where most cells are died. CHO cells stably expressing AQP4 were exclusively selected from mixed cell cultures. Having identified the increased expression of AQP4 during ES cell differentiation into neuro-ectoderm using bioinformatics, we confirmed the improved survival of differentiated ES cells with AQP4 expression. Finally we show that CHO cells transiently transfected with Endothelin receptor A and Aqp4 were also selected and concentrated by multiple cycles of freezing/thawing, which was confirmed with calcium imaging in response to endothelin. Furthermore, we found that the expression of AQP enables a reduction in the amount of cryoprotectants for freezing, thereby decreasing osmotic stress and cellular toxicity. Taken together, we propose that this simple but efficient and safe method may be applicable to the selection of mammalian cells for applications in regenerative medicine as well as cell-based functional assays or drug screening protocols. PMID:24558371

  17. Mechanisms underlying differential expression of interleukin-8 in breast cancer cells

    PubMed Central

    Freund, Ariane; Jolivel, Valérie; Durand, Sébastien; Kersual, Nathalie; Chalbos, Dany; Chavey, Carine; Vignon, Françoise; Lazennec, Gwendal

    2004-01-01

    We have recently reported that Interleukin-8 (IL-8) expression was inversely correlated to estrogen-receptor (ER)-status and was overexpressed in invasive breast cancer cells. In the present study, we show that IL-8 overexpression in breast cancer cells involves a higher transcriptional activity of IL-8 gene promoter. Cloning of IL-8 promoter from MDA-MB-231 and MCF-7 cells expressing high and low levels of IL-8, respectively, shows the integrity of the promoter in both cell lines. Deletion and site-directed mutagenesis of the promoter demonstrate that NF-κB and AP-1 and to a lesser extent C/EBP binding sites play a crucial role in the control of IL-8 promoter activity in MDA-MB-231 cells. Knock-down of NF-κB and AP-1 activities by adenovirus-mediated expression of a NF-κB super-repressor and RNA interference, respectively, decreased IL-8 expression in MDA-MB-231 cells. On the contrary, restoration of Fra-1, Fra-2, c-Jun, p50, p65, C/EBPα and C/EBPβ expression levels in MCF-7 cells led to a promoter activity comparable to that observed in MDA-MB-231 cells. Our data constitute the first extensive study of IL-8 gene overexpression in breast cancer cells and suggest that the high expression of IL-8 in invasive cancer cells requires a complex cooperation between NF-κB, AP-1 and C/EBP transcription factors. PMID:15208657

  18. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    PubMed

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  19. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia.

    PubMed

    Jiang, Jin-Yi; Cheung, Carmen K M; Wang, Yifang; Tsang, Benjamin K

    2003-01-01

    Mammalian ovarian follicular development and atresia is closely regulated by the cross talk of cell death and cell survival signals, which include endocrine hormones (gonadotropins) and intra-ovarian regulators (gonadal steroids, cytokines and growth factors). The fate of the follicle is dependent on a delicate balance in the expression and actions of factors promoting follicular cell proliferation, growth and differentiation and of those inducing programmed cell death (apoptosis). As an important endocrine hormone, FSH binds to its granulosa cell receptors and promotes ovarian follicle survival and growth not only by stimulating proliferation and estradiol secretion of these cells, but also inhibiting the apoptosis by up-regulating the expression of intracellular anti-apoptotic proteins, such as XIAP and FLIP. In addition, intra-ovarian regulators, such as TGF-alpha and TNF-alpha, also play an important role in the control of follicular development and atresia. In response to FSH, Estradiol-17 beta synthesized from the granulosa cells stimulates thecal expression of TGF-alpha, which in turn increases granulosa cell XIAP expression and proliferation. The death receptor and ligand, Fas and Fas ligand, are expressed in granulosa cells following gonadotropin withdrawal, culminating in caspase-mediated apoptosis and follicular atresia. In contrast, TNF-alpha has both survival and pro-apoptotic function in the follicle, depending on the receptor subtype activated, but has been shown to promote granulosa cell survival by increasing XIAP and FLIP expression via the IkappaB-NFkappaB pathway. The pro-apoptotic action of TNF-alpha is mediated through the activation of caspases, via its receptor- (i.e. Caspases-8 and -3) and mitochrondria- (i.e. Caspase-9 and -3) death pathways. In the present manuscript, we have reviewed the actions and interactions of gonadotropins and intra-ovarian regulators in the control of granulosa cell fate and ultimately follicular destiny. We have

  20. Spatial reconstruction of single-cell gene expression

    PubMed Central

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  1. PROFILES OF GENE EXPRESSION ASSOCIATED WITH TETRACYCLINE OVER EXPRESSION OF HSP70 IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory

    Profiles of gene expression associated with tetracycline over expression of HSP70 in MCF-7 breast cancer cells.

    Heat shock proteins (HSPs) protect cells from damage through their function as molecular chaperones. Some cancers reveal high levels of HSP70 expression in asso...

  2. Scrutinizing the Expression and Blockade of Inhibitory Molecules Expressed on T Cells from Acute Myeloid Leukemia Patients.

    PubMed

    Abdolmaleki, Mohsen; Mojtabavi, Nazanin; Zavvar, Mahdi; Vaezi, Mohammad; Noorbakhsh, Farshid; Nicknam, Mohammad Hossein

    2018-06-01

    T cell exhaustion is an immunosuppressive mechanism which occurs in chronic viral infections, solid tumors and hematologic malignancies. Exhausted T cell has increased the expression of inhibitory receptors, and functional impairment. In this study, we investigated the expression from some of those inhibitory receptors being Programmed death 1 (PD-1), T cell immunoglobulin and mucin domain containing molecules 3 (TIM-3) and CD244 on T cells from Iranian acute myeloid leukemia (AML) patients. Peripheral blood samples were collected from Iranian newly diagnosed AML patients and flow cytometric analysis was accomplished for cell surface expression of PD-1, TIM-3, and CD244 on T lymphocytes. Functionality and proliferation assay were done in the presence of anti-PD-1 and anti-CD244 blocking antibodies. Immunophenotyping of T cells showed a significant increase of PD-1 and CD244 expression on CD4+ and CD8+ T cells of AML patients. Whereas blockade of PD1 and CD244 increased the proliferation of CD4+ and CD8+ T lymphocytes of AML patients but IFN-γ production was not significantly increased. In conclusion, our data indicate that CD4+ and CD8+ T cells from AML patients appeared to be exhausted and blockade of some immune checkpoints can improve the proliferation of those cells.

  3. An alternatively spliced CXCL16 isoform expressed by dendritic cells is a secreted chemoattractant for CXCR6+ cells.

    PubMed

    van der Voort, Robbert; Verweij, Viviènne; de Witte, Theo M; Lasonder, Edwin; Adema, Gosse J; Dolstra, Harry

    2010-06-01

    DC are professional APCs that initiate and regulate adaptive immune responses by interacting with naïve and memory T cells. Chemokines released by DC play an essential role in T cell recruitment and in the maintenance of antigen-specific T cell-DC conjugates. Here, we characterized the expression of the T cell-attracting chemokine CXCL16 by murine DC. We demonstrate that through alternative RNA splicing, DC not only express the previously characterized transmembrane CXCL16 isoform, which can be cleaved from the cell surface, but also a novel isoform lacking the transmembrane and cytoplasmic domains. Transfection of HEK293 cells shows that this novel isoform, termed CXCL16v, is not expressed on the cell membrane but is secreted as a protein of approximately 10 kDa. Quantitative PCR demonstrates that CXCL16v is broadly expressed in lymphoid and nonlymphoid tissues resembling the tissue distribution of DC. Indeed, CXCL16v mRNA is expressed significantly by spleen DC and BM-DC. Moreover, we show that mature DC have increased CXCL16v mRNA levels and express transmembrane and soluble CXCL16 proteins. Finally, we show that CXCL16v specifically attracts cells expressing the chemokine receptor CXCR6. Our data demonstrate that mature DC express secreted, transmembrane, and cleaved CXCL16 isoforms to recruit and communicate efficiently with CXCR6(+) lymphoid cells.

  4. Elevated expression of pleiotrophin in lymphocytic leukemia CD19+ B cells.

    PubMed

    Du, Chun-Xian; Wang, Lan; Li, Yan; Xiao, Wei; Guo, Qin-Lian; Chen, Fei; Tan, Xin-Ti

    2014-10-01

    Pleiotrophin (PTN) has been demonstrated to be strongly expressed in many fetal tissues, but seldom in healthy adult tissues. While PTN has been reported to be expressed in many types of tumors as well as at high serum concentrations in patients with many types of cancer, to date, there has been no report that PTN is expressed in leukemia, especially in lymphocytic leukemia. We isolated the CD19(+) subset of B cells from peripheral blood from healthy adults, B-cell acute lymphocytic leukemia (B-ALL) patients, and B-cell chronic lymphocytic leukemia (B-CLL) patients and examined these cells for PTN mRNA and protein expression. We used immunocytochemistry, western blotting, and enzyme-linked immunosorbent assay to show that PTN protein is highly expressed in CD19(+) B cells from B-ALL and B-CLL patients, but barely expressed in B cells from healthy adults. We also examined PTN expression at the nucleic acid level using reverse transcription polymerase chain reaction (RT-PCR) and northern blotting and detected a high levels of PTN transcripts in the CD19(+) B cells from both groups of leukemia patients, but very few in the CD19(+) B cells from the healthy controls. Interestingly, the quantity of the PTN transcripts correlated with the severity of disease. Moreover, suppression of PTN activity with an anti-PTN antibody promoted apoptosis of cells from leukemia patients and cell lines SMS-SB and JVM-2. This effect of the anti-PTN antibody suggests that PTN may be a new target for the treatment of lymphocytic leukemia. © 2014 APMIS. Published by John Wiley & Sons Ltd.

  5. Osteoprotegerin expression in triple-negative breast cancer cells promotes metastasis.

    PubMed

    Weichhaus, Michael; Segaran, Prabu; Renaud, Ashleigh; Geerts, Dirk; Connelly, Linda

    2014-10-01

    Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that has been well characterized as a negative regulator of bone remodeling. OPG is also expressed in human breast cancer tissues and cell lines. In vitro studies suggest that OPG exerts tumor-promoting effects by binding to TNF-related apoptosis inducing ligand (TRAIL), thereby preventing induction of apoptosis. However, the in vivo effect of OPG expression by primary breast tumors has not been characterized. We knocked down OPG expression in MDA-MB-231 and MDA-MB-436 human breast cancer cells using shRNA and siRNA to investigate impact on metastasis in the chick embryo model. We observed a reduction in metastasis with OPG knockdown cells. We found that lowering OPG expression did not alter sensitivity to TRAIL-induced apoptosis; however, the OPG knockdown cells had a reduced level of invasion. In association with this we observed reduced expression of the proteases Cathepsin D and Matrix Metalloproteinase-2 upon OPG knockdown, indicating that OPG may promote metastasis via modulation of protease expression and invasion. We conclude that OPG has a metastasis-promoting effect in breast cancer cells. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Resveratrol Represses Pokemon Expression in Human Glioma Cells.

    PubMed

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Overstreet, Anne-Marie; Zhan, Yiping; Shan, Dapeng; Li, Hui; Li, Hui; Wang, Yongjun; Zhang, Mengmeng; Yu, Chunjiang; Xu, Zhi-Qing David

    2016-03-01

    POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells.

  7. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells.

    PubMed

    Wang, Rui; Kozhaya, Lina; Mercer, Frances; Khaitan, Alka; Fujii, Hodaka; Unutmaz, Derya

    2009-08-11

    The molecules that define human regulatory T cells (Tregs) phenotypically and functionally remain to be fully characterized. We recently showed that activated human Tregs express mRNA for a transmembrane protein called glycoprotein A repetitions predominant (GARP, or LRRC32). Here, using a GARP-specific mAb, we demonstrate that expression of GARP on activated Tregs correlates with their suppressive capacity. However, GARP was not induced on T cells activated in the presence of TGFbeta, which expressed high levels of FOXP3 and lacked suppressive function. Ectopic expression of FOXP3 in conventional T cells was also insufficient for induction of GARP expression in most donors. Functionally, silencing GARP in Tregs only moderately attenuated their suppressive activity. CD25+ T cells sorted for high GARP expression displayed more potent suppressive activity compared with CD25+GARP- cells. Remarkably, CD25+GARP- T cells expanded in culture contained 3-5 fold higher IL-17-secreting cells compared with either CD25+GARP+ or CD25-GARP- cells, suggesting that high GARP expression can potentially discriminate Tregs from those that have switched to Th17 lineage. We also determined whether GARP expression correlates with FOXP3-expressing T cells in human immunodeficiency virus (HIV) -infected subjects. A subset of HIV+ individuals with high percentages of FOXP3+ T cells did not show proportionate increase in GARP+ T cells. This finding suggests that higher FOXP3 levels observed in these HIV+ individuals is possibly due to immune activation rather than to an increase in Tregs. Our findings highlight the significance of GARP both in dissecting duality of Treg/Th17 cell differentiation and as a marker to identify bona fide Tregs during diseases with chronic immune activation.

  8. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells

    PubMed Central

    Wang, Rui; Kozhaya, Lina; Mercer, Frances; Khaitan, Alka; Fujii, Hodaka; Unutmaz, Derya

    2009-01-01

    The molecules that define human regulatory T cells (Tregs) phenotypically and functionally remain to be fully characterized. We recently showed that activated human Tregs express mRNA for a transmembrane protein called glycoprotein A repetitions predominant (GARP, or LRRC32). Here, using a GARP-specific mAb, we demonstrate that expression of GARP on activated Tregs correlates with their suppressive capacity. However, GARP was not induced on T cells activated in the presence of TGFβ, which expressed high levels of FOXP3 and lacked suppressive function. Ectopic expression of FOXP3 in conventional T cells was also insufficient for induction of GARP expression in most donors. Functionally, silencing GARP in Tregs only moderately attenuated their suppressive activity. CD25+ T cells sorted for high GARP expression displayed more potent suppressive activity compared with CD25+GARP− cells. Remarkably, CD25+GARP− T cells expanded in culture contained 3–5 fold higher IL-17-secreting cells compared with either CD25+GARP+ or CD25−GARP− cells, suggesting that high GARP expression can potentially discriminate Tregs from those that have switched to Th17 lineage. We also determined whether GARP expression correlates with FOXP3-expressing T cells in human immunodeficiency virus (HIV) −infected subjects. A subset of HIV+ individuals with high percentages of FOXP3+ T cells did not show proportionate increase in GARP+ T cells. This finding suggests that higher FOXP3 levels observed in these HIV+ individuals is possibly due to immune activation rather than to an increase in Tregs. Our findings highlight the significance of GARP both in dissecting duality of Treg/Th17 cell differentiation and as a marker to identify bona fide Tregs during diseases with chronic immune activation. PMID:19666573

  9. Selective elimination of long INterspersed element-1 expressing tumour cells by targeted expression of the HSV-TK suicide gene

    PubMed Central

    Chendeb, Mariam; Schneider, Robert; Davidson, Irwin; Fadloun, Anas

    2017-01-01

    In gene therapy, effective and selective suicide gene expression is crucial. We exploited the endogenous Long INterspersed Element-1 (L1) machinery often reactivated in human cancers to integrate the Herpes Simplex Virus Thymidine Kinase (HSV-TK) suicide gene selectively into the genome of cancer cells. We developed a plasmid-based system directing HSV-TK expression only when reverse transcribed and integrated in the host genome via the endogenous L1 ORF1/2 proteins and an Alu element. Delivery of these new constructs into cells followed by Ganciclovir (GCV) treatment selectively induced mortality of L1 ORF1/2 protein expressing cancer cells, but had no effect on primary cells that do not express L1 ORF1/2. This novel strategy for selective targeting of tumour cells provides high tolerability as the HSV-TK gene cannot be expressed without reverse transcription and integration, and high selectivity as these processes take place only in cancer cells expressing high levels of functional L1 ORF1/2. PMID:28415677

  10. Dynamic methylation and expression of Oct4 in early neural stem cells.

    PubMed

    Lee, Shih-Han; Jeyapalan, Jennie N; Appleby, Vanessa; Mohamed Noor, Dzul Azri; Sottile, Virginie; Scotting, Paul J

    2010-09-01

    Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form 'induced pluripotent stem cells' (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages.

  11. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing.

    PubMed

    Dyment, Nathaniel A; Liu, Chia-Feng; Kazemi, Namdar; Aschbacher-Smith, Lindsey E; Kenter, Keith; Breidenbach, Andrew P; Shearn, Jason T; Wylie, Christopher; Rowe, David W; Butler, David L

    2013-01-01

    The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair.

  12. MicroRNA Expression in Alpha and Beta Cells of Human Pancreatic Islets

    PubMed Central

    Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L.

    2013-01-01

    microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels. In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet

  13. MicroRNA expression in alpha and beta cells of human pancreatic islets.

    PubMed

    Klein, Dagmar; Misawa, Ryosuke; Bravo-Egana, Valia; Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L

    2013-01-01

    microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet

  14. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells.

    PubMed

    Kobayashi, Masakatsu; Taniura, Hideo; Yoshikawa, Kazuaki

    2002-11-01

    Necdin is expressed predominantly in postmitotic neurons, and ectopic expression of this protein strongly suppresses cell growth. Necdin has been implicated in the pathogenesis of Prader-Willi syndrome, a human neurodevelopmental disorder associated with genomic imprinting. Here we demonstrate that ectopic expression of necdin induces a neuronal phenotype in neuroblastoma cells. Necdin was undetectable in mouse neuroblastoma N1E-115 cells under undifferentiated and differentiated conditions. N1E-115 cells transfected with necdin cDNA showed morphological differentiation such as neurite outgrowth and expression of the synaptic marker proteins synaptotagmin and synaptophysin. In addition, Western blot analysis of the retinoblastoma protein (Rb) family members Rb, p130, and p107 revealed that necdin cDNA transfectants contained an increased level of p130 and a reduced level of p107, a pattern seen in differentiated G(0) cells. The transcription factors E2F1 and E2F4 physically interacted with necdin via their carboxyl-terminal transactivation domains, but only E2F1 abrogated necdin-induced growth arrest and neurite outgrowth of neuroblastoma cells. Overexpression of E2F1 in differentiated N1E-115 cells induced apoptosis, which was antagonized by co-expression of necdin. These results suggest that necdin promotes the differentiation and survival of neurons through its antagonistic interactions with E2F1.

  15. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing.

    PubMed

    Akhmetzyanova, Ilseyar; Drabczyk, Malgorzata; Neff, C Preston; Gibbert, Kathrin; Dietze, Kirsten K; Werner, Tanja; Liu, Jia; Chen, Lieping; Lang, Karl S; Palmer, Brent E; Dittmer, Ulf; Zelinskyy, Gennadiy

    2015-10-01

    Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.

  16. Low-expression of E-cadherin in leukaemia cells causes loss of homophilic adhesion and promotes cell growth.

    PubMed

    Rao, Qing; Wang, Ji-Ying; Meng, Jihong; Tang, Kejing; Wang, Yanzhong; Wang, Min; Xing, Haiyan; Tian, Zheng; Wang, Jianxiang

    2011-09-01

    E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells.

  17. Single-cell real-time imaging of transgene expression upon lipofection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiume, Giuseppe; Di Rienzo, Carmine; NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa

    2016-05-20

    Here we address the process of lipofection by quantifying the expression of a genetically-encoded fluorescent reporter at the single-cell level, and in real-time, by confocal imaging in live cells. The Lipofectamine gold-standard formulation is compared to the alternative promising DC-Chol/DOPE formulation. In both cases, we report that only dividing cells are able to produce a detectable amount of the fluorescent reporter protein. Notably, by measuring fluorescence over time in each pair of daughter cells, we find that Lipofectamine-based transfection statistically yields a remarkably higher degree of “symmetry” in protein expression between daughter cells as compared to DC-Chol/DOPE. A model ismore » envisioned in which the degree of symmetry of protein expression is linked to the number of bioavailable DNA copies within the cell before nuclear breakdown. Reported results open new perspectives for the understanding of the lipofection mechanism and define a new experimental platform for the quantitative comparison of transfection reagents. -- Highlights: •The process of lipofection is followed by quantifying the transgene expression in real time. •The Lipofectamine gold-standard is compared to the promising DC-Chol/DOPE formulation. •We report that only dividing cells are able to produce the fluorescent reporter protein. •The degree of symmetry of protein expression in daughter cells is linked to DNA bioavailability. •A new experimental platform for the quantitative comparison of transfection reagents is proposed.« less

  18. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells.

    PubMed

    Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho

    2017-09-01

    β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines.

    PubMed

    Witter, Lauren E; Gruber, Erika J; Lean, Fabian Z X; Stokol, Tracy

    2017-01-01

    OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor-replete or specific coagulation factor-deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X-deficient plasma; residual thrombin generation in factor VII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma.

  20. Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines

    PubMed Central

    Witter, Lauren E.; Gruber, Erika J.; Lean, Fabian Z. X.; Stokol, Tracy

    2017-01-01

    OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor–replete or specific coagulation factor–deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X–deficient plasma; residual thrombin generation in FVII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma. PMID:28029283

  1. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels

    PubMed Central

    Zhao, Bo; Cunningham, Christopher; Harkins-Perry, Sarah; Coste, Bertrand; Ranade, Sanjeev; Zebarjadi, Navid; Beurg, Maryline; Fettiplace, Robert; Patapoutian, Ardem; Mueller, Ulrich

    2016-01-01

    Auditory hair cells contain mechanotransduction channels that rapidly open in response to sound-induced vibrations. Surprisingly, we report here that auditory hair cells contain two molecularly distinct mechanotransduction channels. One ion channel is activated by sound and is responsible for sensory transduction. This sensory transduction channel is expressed in hair-cell stereocilia and previous studies show that its activity is affected by mutations in the genes encoding the transmembrane proteins TMHS/LHFPL5, TMIE and TMC1/2. We show here that the second ion channel is expressed at the apical surface of hair cells and contains the Piezo2 protein. The activity of the Piezo2-dependent channel is controlled by the intracellular Ca2+ concentration and can be recorded following disruption of the sensory transduction machinery or more generally by disruption of the sensory epithelium. We thus conclude that hair cells express two molecularly and functionally distinct mechanotransduction channels with different subcellular distribution. PMID:27893727

  2. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

    PubMed Central

    Ruijtenberg, Suzan; van den Heuvel, Sander

    2016-01-01

    ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227

  3. GiniClust: detecting rare cell types from single-cell gene expression data with Gini index.

    PubMed

    Jiang, Lan; Chen, Huidong; Pinello, Luca; Yuan, Guo-Cheng

    2016-07-01

    High-throughput single-cell technologies have great potential to discover new cell types; however, it remains challenging to detect rare cell types that are distinct from a large population. We present a novel computational method, called GiniClust, to overcome this challenge. Validation against a benchmark dataset indicates that GiniClust achieves high sensitivity and specificity. Application of GiniClust to public single-cell RNA-seq datasets uncovers previously unrecognized rare cell types, including Zscan4-expressing cells within mouse embryonic stem cells and hemoglobin-expressing cells in the mouse cortex and hippocampus. GiniClust also correctly detects a small number of normal cells that are mixed in a cancer cell population.

  4. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma.

    PubMed

    Kremer, Veronika; Ligtenberg, Maarten A; Zendehdel, Rosa; Seitz, Christina; Duivenvoorden, Annet; Wennerberg, Erik; Colón, Eugenia; Scherman-Plogell, Ann-Helén; Lundqvist, Andreas

    2017-09-19

    Adoptive natural killer (NK) cell transfer is being increasingly used as cancer treatment. However, clinical responses have so far been limited to patients with hematological malignancies. A potential limiting factor in patients with solid tumors is defective homing of the infused NK cells to the tumor site. Chemokines regulate the migration of leukocytes expressing corresponding chemokine receptors. Various solid tumors, including renal cell carcinoma (RCC), readily secrete ligands for the chemokine receptor CXCR2. We hypothesize that infusion of NK cells expressing high levels of the CXCR2 chemokine receptor will result in increased influx of the transferred NK cells into tumors, and improved clinical outcome in patients with cancer. Blood and tumor biopsies from 14 primary RCC patients were assessed by flow cytometry and chemokine analysis. Primary NK cells were transduced with human CXCR2 using a retroviral system. CXCR2 receptor functionality was determined by Calcium flux and NK cell migration was evaluated in transwell assays. We detected higher concentrations of CXCR2 ligands in tumors compared with plasma of RCC patients. In addition, CXCL5 levels correlated with the intratumoral infiltration of CXCR2-positive NK cells. However, tumor-infiltrating NK cells from RCC patients expressed lower CXCR2 compared with peripheral blood NK cells. Moreover, healthy donor NK cells rapidly lost their CXCR2 expression upon in vitro culture and expansion. Genetic modification of human primary NK cells to re-express CXCR2 improved their ability to specifically migrate along a chemokine gradient of recombinant CXCR2 ligands or RCC tumor supernatants compared with controls. The enhanced trafficking resulted in increased killing of target cells. In addition, while their functionality remained unchanged compared with control NK cells, CXCR2-transduced NK cells obtained increased adhesion properties and formed more conjugates with target cells. To increase the success of NK

  5. Nestin-expressing cells in the pancreatic islets of Langerhans.

    PubMed

    Hunziker, E; Stein, M

    2000-04-29

    The pancreatic islets of Langerhans produce several peptide hormones, predominantly the metabolically active hormones insulin and glucagon, which are critical for maintaining normal fuel homeostasis. Some evidence exists that pancreatic endocrine cells turn over at a slow rate and can regenerate in certain conditions. This could be due to the presence of pluripotent cells residing in the pancreas. Recently the intermediate filament protein nestin has been identified to be a marker for a multipotent stem cell in the central nervous system. Given the similarity between the pancreatic islets and neuronal cells, we hypothesized that stem cells expressing nestin might be present in the pancreas. Here we present evidence that a subset of cells in the pancreatic islets express the stem cell marker nestin. These cells might serve as precursors of differentiated pancreatic endocrine cells. Copyright 2000 Academic Press.

  6. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  7. Isoform-level gene expression patterns in single-cell RNA-sequencing data.

    PubMed

    Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Pawitan, Yudi; Rantalainen, Mattias

    2018-02-27

    RNA sequencing of single cells enables characterization of transcriptional heterogeneity in seemingly homogeneous cell populations. Single-cell sequencing has been applied in a wide range of researches fields. However, few studies have focus on characterization of isoform-level expression patterns at the single-cell level. In this study we propose and apply a novel method, ISOform-Patterns (ISOP), based on mixture modeling, to characterize the expression patterns of isoform pairs from the same gene in single-cell isoform-level expression data. We define six principal patterns of isoform expression relationships and describe a method for differential-pattern analysis. We demonstrate ISOP through analysis of single-cell RNA-sequencing data from a breast cancer cell line, with replication in three independent datasets. We assigned the pattern types to each of 16,562 isoform-pairs from 4,929 genes. Among those, 26% of the discovered patterns were significant (p<0.05), while remaining patterns are possibly effects of transcriptional bursting, drop-out and stochastic biological heterogeneity. Furthermore, 32% of genes discovered through differential-pattern analysis were not detected by differential-expression analysis. The effect of drop-out events, mean expression level, and properties of the expression distribution on the performances of ISOP were also investigated through simulated datasets. To conclude, ISOP provides a novel approach for characterization of isoformlevel preference, commitment and heterogeneity in single-cell RNA-sequencing data. The ISOP method has been implemented as a R package and is available at https://github.com/nghiavtr/ISOP under a GPL-3 license. mattias.rantalainen@ki.se. Supplementary data are available at Bioinformatics online.

  8. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction.

    PubMed

    Rouhani, Sherin J; Eccles, Jacob D; Riccardi, Priscila; Peske, J David; Tewalt, Eric F; Cohen, Jarish N; Liblau, Roland; Mäkinen, Taija; Engelhard, Victor H

    2015-04-10

    Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3.

  9. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction

    PubMed Central

    Rouhani, Sherin J.; Eccles, Jacob D.; Riccardi, Priscila; Peske, J. David; Tewalt, Eric F.; Cohen, Jarish N.; Liblau, Roland; Mäkinen, Taija; Engelhard, Victor H.

    2015-01-01

    Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3. PMID:25857745

  10. Dynamic methylation and expression of Oct4 in early neural stem cells

    PubMed Central

    Lee, Shih-Han; Jeyapalan, Jennie N; Appleby, Vanessa; Mohamed Noor, Dzul Azri; Sottile, Virginie; Scotting, Paul J

    2010-01-01

    Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form ‘induced pluripotent stem cells’ (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages. PMID:20646110

  11. Cell-based capacitance sensor for analysis of EGFR expression on cell membrane

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Shin, Yong-Cheol; Ha, Ji Hye; Lee, Jong-Ho; Han, Dong-Wook; Kim, Jong-Man; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2013-02-01

    Cancer cells have many kinds of cancer biomarkers. Among them, the epidermal growth factor (EGF) receptors can show a possibility for a cancer marker because the over-expression of EGF receptor is related with fibrous, colorectal, cervical and gastric tumorigenesis. We fabricated the capacitance sensor with a gap area of 50 μm × 200 μm by using photolithography and lift-off method. Using the capacitance sensor, we investigated the time dependent capacitance changes of different kinds of fibrous cells, such as HT1080 fibrosarcoma, L-929 fibroblast cell line and nHDF dermal fibroblast primary cell. We found that when we put the EGF, the capacitance decreased due to the immobilization of EGF to EGF receptor on the cell membrane. The quantitative determination of EGF receptor level for various fibrous cells was carried out and the results showed good correlation with conventional method. Based on our results, we suggest that the capacitance sensor can measure the expression level of the EGF receptor on cell membrane and be a good candidate as a cancer diagnosis.

  12. Interleukin-induced increase in Ia expression by normal mouse B cells.

    PubMed

    Roehm, N W; Leibson, H J; Zlotnik, A; Kappler, J; Marrack, P; Cambier, J C

    1984-09-01

    The constitutive culture supernatant (SN) of the macrophage tumor line P388D1 (P388 SN) and the concanavalin A (Con A)-induced culture supernatant of the T cell hybridoma FS6-14.13 (FS6 Con A SN) were shown to contain nonspecific factors capable of inducing increased Ia expression by normal resting B cells in a dose-dependent manner. In six consecutive experiments the relative increase in Ia expression induced by P388 SN was 4.9 +/- 0.9, with FS6 Con A SN 10.7 +/- 1.5, and with a combination of both preparations 13.0 +/- 1.7. This increase in Ia expression was observed to occur in virtually all the B cells, reaching maximum levels within 24 h of culture. The interleukin-induced increase in B cell Ia expression occurred in the absence of ancillary signals provided by ligand-receptor Ig cross-linking and despite the fact that virtually all the control B cells, cultured in the absence of factors, remained in G0. These results suggest that functional receptors for at least some interleukins are expressed on normal resting B cells and their effects can be manifest in the absence of additional activating signals. The increased Ia expression induced by the nonspecific factor preparations was shown to be correlated with enhanced antigen-presenting capacity by the B cells to T cell hybridomas. The nature of the interleukins responsible for these effects remains to be definitively determined, however, the activity of FS6 Con A SN was shown to correlate with B cell growth factor activity and increased B cell Ia expression was not observed using interleukin 2 (IL-2) or interferon-gamma, prepared by recombinant DNA technology.

  13. Loss of c-KIT expression in thyroid cancer cells.

    PubMed

    Franceschi, Sara; Lessi, Francesca; Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria

    2017-01-01

    Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression.

  14. Loss of c-KIT expression in thyroid cancer cells

    PubMed Central

    Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria

    2017-01-01

    Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression. PMID:28301608

  15. Expression of Genomic Functional Estrogen Receptor 1 in Mouse Sertoli Cells

    PubMed Central

    Lin, Jing; Zhu, Jia; Li, Xian; Li, Shengqiang; Lan, Zijian; Ko, Jay

    2014-01-01

    There is no consensus whether Sertoli cells express estrogen receptor 1 (Esr1). Reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence demonstrated that mouse Sertoli cell lines, TM4, MSC-1, and 15P-1, and purified primary mouse Sertoli cells (PSCs) contained Esr1 messenger RNA and proteins. Incubation of Sertoli cells with 17β-estradiol (E2) or ESR1 agonist stimulated the expression of an estrogen responsive gene Greb1, which was prevented by ESR inhibitor or ESR1 antagonist. Overexpression of Esr1 in MSC-1 enhanced E2-induced Greb1 expression, while knockdown of Esr1 by small interfering RNA in TM4 attenuated the response. Furthermore, E2-induced Greb1 expression was abolished in the PSCs isolated from Amh-Cre/Esr1-floxed mice in which Esr1 in Sertoli cells were selectively deleted. Chromatin immunoprecipitation assays indicated that E2-induced Greb1 expression in Sertoli cells was mediated by binding of ESR1 to estrogen responsive elements. In summary, ligand-dependent nuclear ESR1 was present in mouse Sertoli cells and mediates a classical genomic action of estrogens. PMID:24615934

  16. Canine ovarian neoplasms: a clinicopathologic study of 71 cases, including histology of 12 granulosa cell tumors.

    PubMed

    Patnaik, A K; Greenlee, P G

    1987-11-01

    In a retrospective study of 71 primary ovarian tumors in the dog, epithelial tumors (46%) were more common than sex cord stromal (34%) and germ cell tumors (20%). There were more adenocarcinomas (64%) than adenomas. Sex cord stromal tumors were equally divided into Sertoli-Leydig (12/24) and granulosa cell tumors (12/24). There were equal numbers (7/14) of dysgerminomas and teratomas among the germ cell tumors. Most teratomas (6/7) were malignant. Most granulosa cell tumors were solid; two were mostly cystic. Patterns included sheets of round and ovoid to spindle-shaped cells separated by thin, fibrovascular stroma; neoplastic cells formed rosettes or Call-Exner bodies. In some areas, neoplastic cells were in cords or columns and formed cyst-like structures. Four granulosa cell tumors were macrofollicular, having cysts lined with granulosa cells. Median ages of dogs with different ovarian neoplasms were similar; all were more than 10 years old, except the dogs with teratoma (mean age, 4 years). Most neoplasms were unilateral (84%), except the Sertoli-Leydig cell tumors, many of which were bilateral (36%). Size of ovarian neoplasms varied (2 cm3 to 15,000 cm3). Twenty-nine percent of neoplasms metastasized; adenocarcinomas (48%) and malignant teratomas (50%) had the highest rates, and distant metastasis was more common in malignant teratoma. Endometrial hyperplasia was in 67% of the dogs; it was most common in dogs with sex cord stromal tumors (95%). Uterine malignancy was not seen in dogs with granulosa cell tumors, although hyperplasia endometrium was in all dogs with this tumor. Cysts in the contralateral ovaries were most common in dogs with sex cord stromal tumors.

  17. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    PubMed

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  18. Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    PubMed Central

    Pan, Xuan; Jones, Morgan; Jiang, Jie; Zaprazna, Kristina; Yu, Duonan; Pear, Warren; Maillard, Ivan; Atchison, Michael L.

    2012-01-01

    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs. PMID:22292011

  19. Immunohistochemical localization of steroidogenic enzymes in the testis of the sika deer (Cervus nippon) during developmental and seasonal changes.

    PubMed

    Hayakawa, Daisuke; Sasaki, Motoki; Suzuki, Masatsugu; Tsubota, Toshio; Igota, Hiromasa; Kaji, Koichi; Kitamura, Nobuo

    2010-02-01

    Testicular steroidogenesis and spermatogenesis during developmental and seasonal changes were investigated in male sika deer (Cervus nippon), a short-day seasonal breeder, to clarify the physiological mechanisms for reproductive function. The immunohistochemical localization of steroidogenic enzymes (P450scc, P450c17, 3betaHSD and P450arom), spermatogenesis and cell proliferation were analyzed in the testes of fetal (164 to 218 days of fetal age), fawn (0 years old), yearling (1 year old) and adult (more than 2 years old) male sika deer. Three kinds of steroidogenic enzymes, P450scc, P450c17 and 3betaHSD, essential for the synthesis of testosterone were located only in the Leydig cells of the testes from the fetal period, and these localizations did not change during developmental or seasonal stages. Immunoreactivity for P450arom, a key enzyme converting testosterone to estradiol, was also localized only in the Leydig cells of testes but was also further limited to the testes of yearlings and adults. Seminiferous tubules had already formed in the fetal testes examined in the present study. Spermatogenesis started in yearlings and was more active in the breeding season. In the adult sika deer testes, the Leydig cells, which displayed immunoreactivities for steroidogenic enzymes, changed to have more cytoplasm in the breeding season than in the non-breeding season. Cell proliferation of Leydig cells was hardly observed in adult testes during seasonal changes. The present results suggested that sika deer testes start to synthesize testosterone from the fetal period, that seasonal changes in testosterone and estradiol syntheses are dependent on the quantitative variation of steroidogenic enzymes synchronized with the size of Leydig cells and that estradiol synthesized in yearling and adult testes makes a contribution to the initiation and recrudescence of spermatogenesis and spermiogenesis in the sika deer.

  20. Expression of E-cadherin and vimentin in oral squamous cell carcinoma

    PubMed Central

    Zhou, Jingping; Tao, Detao; Xu, Qing; Gao, Zhenlin; Tang, Daofang

    2015-01-01

    The aim of the study is to determine the levels of E-cadherin, vimentin expression in tumor tissues from patients with oral squamous cell carcinoma (OSCC), and the relationship between the expression of E-cadherin, vimentin and epithelial-mesenchymal transition, in order to explore its values for predicting the invasion and metastasis of oral squamous cell carcinoma, short survival of patients in many types of cancer. E-cadherin and vimentin expression of 10 benign and 42 OSCC tumor tissues was examined by immunohistochemical staining. E-cadherin is positively expressed in normal oral mucosa epithelium, but vimentin expression is not found in normal oral mucosa epithelia; the E-cadherin and vimentin were expressed in 26 of 42 (61.9%) and 16 of 42 (38.1%), respectively. No statistically difference was found for E-cadherin and vimentin expression in patients with different age, gender and tumor location, E-cadherin and vimentin expression was significantly associated with lymph node metastasis and tissue location (P < 0.05); E-cadherin expression was also significantly associated with tumor stage (P < 0.05); there are significantly difference between infiltrative margin and central area in patients with oral squamous cell carcinoma for E-cadherin and vimentin positive expression (P < 0.05). E-cadherin and vimentin positive expression was associated with tumor metastasis of oral squamous cell carcinoma. Our study preliminarily confirmed that EMT phenomenon is existed during the development of oral squamous cell carcinoma. Co-evaluation of E-cadherin and vimentin might be a valuable tool for predicting OSCC patient outcome. PMID:26045832

  1. B-lymphoma cells escape rituximab-triggered elimination by NK cells through increased HLA class I expression.

    PubMed

    Borgerding, Andrea; Hasenkamp, Justin; Engelke, Michael; Burkhart, Nina; Trümper, Lorenz; Wienands, Jürgen; Glass, Bertram

    2010-03-01

    Antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells is a major effector mechanism of the monoclonal anti-CD20 antibody rituximab in eliminating B-cell lymphomas. Resistance to this treatment occurs, although CD20 antigen is expressed on the tumor cells. A model of ADCC was established by stimulating human bulk NK cells and inhibitory killer immunoglobulin receptor (KIR)-defined NK cells from human leukocyte antigen (HLA)-typed donors. NK-cell activation was triggered via stimulation of the Fc receptor with immunoglobulin G aggregates, rituximab-labeled HLA-defined CD20-positive B-lymphoblast cell lines or CD20-positive B-lymphoma cell lines. The effect of KIR ligation by anti-KIR antibodies and HLA, the HLA expression density and rituximab concentrations on the efficacy of ADCC were analyzed in granzyme B ELISPOT measuring NK-cell activation and fluorescein-activated cell sorting cytotoxicity assay. HLA, but not CD20 expression density correlated with NK-cell activity against rituximab-labeled targets. ADCC was increased or decreased following HLA shielding or KIR activation by anti-KIR antibodies, respectively. Herein we show that rituximab-induced ADCC is attenuated upon ligation of KIR by HLA molecules expressed on human B-lymphoma target cells. Moreover, anti-KIR antibodies do not only block KIR/HLA interactions, but display agonistic effects at the KIR, which has to be considered for therapeutical applications. KIR activation and HLA expression density are critical determinants for the efficacy of rituximab treatment. An explanation for the failure of rituximab treatment may be the protection of the tumor cells from ADCC by inhibiting NK-cell function with their surface HLA. Copyright 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  2. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum.

    PubMed

    Kawanami, Aya; Matsushita, Takehiko; Chan, Yuk Yu; Murakami, Shunichi

    2009-08-28

    We generated Prx1CreER-GFP transgenic mice that express tamoxifen-inducible Cre recombinase and GFP under the control of a 2.4 kb Prx1 promoter. The transgene is expressed in osteochondro progenitor cells in the developing limb buds and in a subpopulation of periosteal cells that is closely associated with the cortical bone. GFP-expressing cells isolated from the diaphyses of long bones by cell sorting express multiple markers of periosteal cells, including Prx1, Fgf18, Tenascin-W, Periostin, and Thrombospondin 2. In addition, these cells undergo chondrogenic and osteogenic differentiation in culture upon induction. Cell fate analysis using the Rosa26 LacZ reporter indicated that transgene-expressing cells give rise to some of the chondrocytes and osteoblasts in the fracture callus. Collectively, these observations strongly suggest that the transgene-expressing cells are osteochondro progenitor cells in the periosteum. The established Prx1CreER-GFP mice would offer novel approaches for analyzing the functions of periosteal cells in vitro and in vivo.

  3. p16 expression in follicular dendritic cell sarcoma: a potential mimicker of human papillomavirus-related oropharyngeal squamous cell carcinoma.

    PubMed

    Zhang, Lingxin; Yang, Chen; Lewis, James S; El-Mofty, Samir K; Chernock, Rebecca D

    2017-08-01

    Follicular dendritic cell sarcoma is a rare mesenchymal neoplasm that most commonly occurs in cervical lymph nodes. It has histologic and clinical overlap with the much more common p16-positive human papillomavirus (HPV)-related squamous cell carcinoma of the oropharynx, which characteristically has nonkeratinizing morphology and often presents as an isolated neck mass. Not surprisingly, follicular dendritic cell sarcomas are commonly misdiagnosed as squamous cell carcinoma. Immunohistochemistry is helpful in separating the 2 entities. Follicular dendritic cell sarcoma expresses dendritic markers such as CD21 and CD23 and is almost always cytokeratin negative. However, in many cases of HPV-related oropharyngeal carcinoma, only p16 immunohistochemistry as a prognostic and surrogate marker for HPV is performed. p16 expression in follicular dendritic cell sarcoma has not been characterized. Here, we investigate the expression of p16 in follicular dendritic cell sarcoma and correlate it with retinoblastoma protein expression. A pilot study of dendritic marker expression in HPV-related oropharyngeal squamous cell carcinoma was also performed. We found that 4 of 8 sarcomas expressed p16 with strong and diffuse staining in 2 cases. In 2 of the 4 cases, p16 expression corresponded to loss of retinoblastoma protein expression. Dendritic marker expression (CD21 and CD23) was not found in HPV-related oropharyngeal squamous cell carcinomas. As such, positive p16 immunohistochemistry cannot be used as supportive evidence for the diagnosis of squamous cell carcinoma as strong and diffuse p16 expression may also occur in follicular dendritic cell sarcoma. Cytokeratins and dendritic markers are critical in separating the two tumor types. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Human amnion epithelial cells expressing HLA-G as novel cell-based treatment for liver disease.

    PubMed

    Strom, Stephen C; Gramignoli, Roberto

    2016-09-01

    Despite routine liver transplantation and supporting medical therapies, thousands of patients currently wait for an organ and there is an unmet need for more refined and widely available regenerative strategies to treat liver diseases. Cell transplants attempt to maximize the potential for repair and/or regeneration in liver and other organs. Over 40years of laboratory pre-clinical research and 25years of clinical procedures have shown that certain liver diseases can be treated by the infusion of isolated cells (hepatocyte transplant). However, like organ transplants, hepatocyte transplant suffers from a paucity of tissues useful for cell production. Alternative sources have been investigated, yet with limited success. The tumorigenic potential of pluripotent stem cells together with their primitive level of hepatic differentiation, have limited the use of stem cell populations. Stem cell sources from human placenta, and the amnion tissue in particular are receiving renewed interest in the field of regenerative medicine. Unlike pluripotent stem cells, human amnion epithelial (AE) cells are easily available without ethical or religious concerns; they do not express telomerase and are not immortal or tumorigenic when transplanted. In addition, AE cells have been reported to express genes normally expressed in mature liver, when transplanted into the liver. Moreover, because of the possibility of an immune-privileged status related to their expression of HLA-G, it might be possible to transplant human AE cells without immunosuppression of the recipient. Copyright © 2016. Published by Elsevier Inc.

  5. IAA8 expression during vascular cell differentiation

    Treesearch

    Andrew T. Groover; Amy Pattishall; Alan M. Jones

    2003-01-01

    We report the characterization of a member of the auxin-induced IAA gene family from zinnia, designated zIAA8, which is expressed by mesophyll cells differentiating as tracheary elements in vitro. Transcription of zIAA8 is upregulated within 3 h after cell isolation in inductive medium,...

  6. Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine.

    PubMed

    Glass, Leslie L; Calero-Nieto, Fernando J; Jawaid, Wajid; Larraufie, Pierre; Kay, Richard G; Göttgens, Berthold; Reimann, Frank; Gribble, Fiona M

    2017-10-01

    To identify sub-populations of intestinal preproglucagon-expressing (PPG) cells producing Glucagon-like Peptide-1, and their associated expression profiles of sensory receptors, thereby enabling the discovery of therapeutic strategies that target these cell populations for the treatment of diabetes and obesity. We performed single cell RNA sequencing of PPG-cells purified by flow cytometry from the upper small intestine of 3 GLU-Venus mice. Cells from 2 mice were sequenced at low depth, and from the third mouse at high depth. High quality sequencing data from 234 PPG-cells were used to identify clusters by tSNE analysis. qPCR was performed to compare the longitudinal and crypt/villus locations of cluster-specific genes. Immunofluorescence and mass spectrometry were used to confirm protein expression. PPG-cells formed 3 major clusters: a group with typical characteristics of classical L-cells, including high expression of Gcg and Pyy (comprising 51% of all PPG-cells); a cell type overlapping with Gip-expressing K-cells (14%); and a unique cluster expressing Tph1 and Pzp that was predominantly located in proximal small intestine villi and co-produced 5-HT (35%). Expression of G-protein coupled receptors differed between clusters, suggesting the cell types are differentially regulated and would be differentially targetable. Our findings support the emerging concept that many enteroendocrine cell populations are highly overlapping, with individual cells producing a range of peptides previously assigned to distinct cell types. Different receptor expression profiles across the clusters highlight potential drug targets to increase gut hormone secretion for the treatment of diabetes and obesity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  7. Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells.

    PubMed

    Ramsuran, Veron; Naranbhai, Vivek; Horowitz, Amir; Qi, Ying; Martin, Maureen P; Yuki, Yuko; Gao, Xiaojiang; Walker-Sperling, Victoria; Del Prete, Gregory Q; Schneider, Douglas K; Lifson, Jeffrey D; Fellay, Jacques; Deeks, Steven G; Martin, Jeffrey N; Goedert, James J; Wolinsky, Steven M; Michael, Nelson L; Kirk, Gregory D; Buchbinder, Susan; Haas, David; Ndung'u, Thumbi; Goulder, Philip; Parham, Peter; Walker, Bruce D; Carlson, Jonathan M; Carrington, Mary

    2018-01-05

    The highly polymorphic human leukocyte antigen ( HLA ) locus encodes cell surface proteins that are critical for immunity. HLA-A expression levels vary in an allele-dependent manner, diversifying allele-specific effects beyond peptide-binding preference. Analysis of 9763 HIV-infected individuals from 21 cohorts shows that higher HLA-A levels confer poorer control of HIV. Elevated HLA-A expression provides enhanced levels of an HLA-A-derived signal peptide that specifically binds and determines expression levels of HLA-E, the ligand for the inhibitory NKG2A natural killer (NK) cell receptor. HLA-B haplotypes that favor NKG2A-mediated NK cell licensing (i.e., education) exacerbate the deleterious effect of high HLA-A on HIV control, consistent with NKG2A-mediated inhibition impairing NK cell clearance of HIV-infected targets. Therapeutic blockade of HLA-E:NKG2A interaction may yield benefit in HIV disease. Copyright © 2017, American Association for the Advancement of Science.

  8. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    PubMed Central

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes

  9. Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells.

    PubMed

    Friedman, Kevin M; Garrett, Tracy E; Evans, John W; Horton, Holly M; Latimer, Howard J; Seidel, Stacie L; Horvath, Christopher J; Morgan, Richard A

    2018-05-01

    B-cell maturation antigen (BCMA) expression has been proposed as a marker for the identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Consistent BCMA expression was confirmed on MM biopsies (29/29 BCMA+), and it was further demonstrated that BCMA is expressed in a substantial number of lymphoma samples, as well as primary chronic lymphocytic leukemia B cells. To target BCMA using redirected autologous T cells, lentiviral vectors (LVV) encoding chimeric antigen receptors (CARs) were constructed with four unique anti-BCMA single-chain variable fragments, fused to the CD137 (4-1BB) co-stimulatory and CD3ζ signaling domains. One LVV, BB2121, was studied in detail, and BB2121 CAR-transduced T cells (bb2121) exhibited a high frequency of CAR + T cells and robust in vitro activity against MM cell lines, lymphoma cell lines, and primary chronic lymphocytic leukemia peripheral blood. Based on receptor quantification, bb2121 recognized tumor cells expressing as little as 222 BCMA molecules per cell. The in vivo pharmacology of anti-BCMA CAR T cells was studied in NSG mouse models of human MM, Burkitt lymphoma, and mantle cell lymphoma, where mice received a single intravenous administration of vehicle, control vector-transduced T cells, or anti-BCMA CAR-transduced T cells. In all models, the vehicle and control CAR T cells failed to inhibit tumor growth. In contrast, treatment with bb2121 resulted in rapid and sustained elimination of the tumors and 100% survival in all treatment models. Together, these data support the further development of anti-BCMA CAR T cells as a potential treatment for not only MM but also some lymphomas.

  10. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Holly A., E-mail: hport001@umaryland.edu; Molecular Medicine Program, University of Maryland School of Medicine, Baltimore, MD 21201; Carey, Gregory B., E-mail: gcarey@som.umaryland.edu

    2012-08-15

    The adapters IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression ofmore » IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. -- Highlights: Black-Right-Pointing-Pointer IRS1 enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. Black-Right-Pointing-Pointer This sensitivity is abrogated by the expression of IRS2. Black-Right-Pointing-Pointer Expressing IRS1 in 32D cells increased levels of Annexin A2. Black-Right-Pointing-Pointer Both IRS1 and Annexin A2 were located in cytoplasmic and membrane fractions. Black-Right-Pointing-Pointer Decreasing Annexin A2 in 32D-IRS1 cells abated their sensitivity to chemotherapy.« less

  11. Ferritin expression in rat hepatocytes and Kupffer cells after lead nitrate treatment.

    PubMed

    Fan, Yang; Yamada, Toshiyuki; Shimizu, Takeshi; Nanashima, Naoki; Akita, Miki; Suto, Kohji; Tsuchida, Shigeki

    2009-02-01

    Lead nitrate induces hepatocyte proliferation and subsequent apoptosis in rat livers. Iron is a constituent of heme and is also required for cell proliferation. In this study, the expression of ferritin light-chain (FTL), the major iron storage protein, was investigated in rat livers after a single intravenous injection of lead nitrate. Western blotting and immunohistochemistry revealed that FTL was increased in hepatocytes around the central veins and strongly expressed in nonparenchymal cells. Some FTL-positive nonparenchymal cells were identified as Kupffer cells that were positive for CD68. FTL-positive Kupffer cells occupied about 60% of CD68-positive cells in the periportal and perivenous areas. The relationships between FTL expression and apoptosis induction or the engulfment of apoptotic cells were examined. TUNEL-positive cells were increased in the treatment group, and enhanced expression of milk fat globule EGF-like 8 was demonstrated in some Kupffer cells and hepatocytes, indicating enhanced apoptosis induction and phagocytosis of apoptotic cells. FTL-positive Kupffer cells were not detected without lead nitrate treatment or in rat livers treated with clofibrate, which induces hepatocyte proliferation but not apoptosis. These results suggest that FTL expression in Kupffer cells after lead treatment is dependent on phagocytosis of apoptotic cells.

  12. Stage-dependent DAZL localization in stallion germ cells.

    PubMed

    Jung, H J; Song, H; Yoon, M J

    2014-06-10

    Deleted in azoospermia-like (DAZL) is used as a germ cell marker in several species, including mice, rats, pigs, rhesus monkeys, bulls, and humans. Our objectives with this study were to investigate DAZL expression in stallion germ cells by using immunofluorescence, immunocytochemistry, and western blotting, and to determine the effects of reproductive stage and breeding season on the DAZL-positive cell population in seminiferous tubule cross sections. Testes were obtained during routine castration procedures at a large animal clinic and routine field service castration. The reproductive stage of the stallions was classified as pre-pubertal (<1 yr), pubertal (1-1.5 yr), post-pubertal (2-3 yr), or adult (4-8 yr). Using immunofluorescent staining, we showed that DAZL is localized to the cytoplasm of some, but not all, spermatogonia in pre-pubertal and pubertal horses. In the post-pubertal and adult testes, DAZL immunostaining was observed in spermatogonia proximal to the basement membrane of seminiferous tubules; however, few spermatogonia attached to the basement membrane were not immunolabeled. DAZL immunostaining was also observed in primary spermatocytes, but not in secondary spermatocytes, spermatids, or spermatozoa. DAZL protein was not detected in Leydig, Sertoli, or myoid cells of the testes at any reproductive stage. The immunocytochemistry analysis showed that DAZL immunolabeling was also localized to the cytoplasm of isolated germ cells such as spermatogonia or primary spermatocytes. We conclude that DAZL can be used as a marker of pre-meiotic germ cells in stallions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Transforming Lepidopteran Insect Cells for Improved Protein Processing and Expression

    USDA-ARS?s Scientific Manuscript database

    The lepidopteran insect cells used with the baculovirus expression vector system (BEVS) are capable of synthesizing and accurately processing foreign proteins. However, proteins expressed in baculovirus-infected cells often fail to be completely processed, or are not processed in a manner that meet...

  14. Differential expression of GPR15 on T cells during ulcerative colitis

    PubMed Central

    Adamczyk, Alexandra; Gageik, Daniel; Frede, Annika; Pastille, Eva; Hansen, Wiebke; Rueffer, Andreas; Buer, Jan; Büning, Jürgen; Langhorst, Jost

    2017-01-01

    G protein–coupled receptor 15 (GPR15) was recently highlighted as a colon-homing receptor for murine and human CD4+ T cells. The aim of this study was to explore the functional phenotype of human GPR15+CD4+ T cells, focusing on Tregs and effector T cells (Teffs), and to determine whether GPR15 is the driver for the migration of T cells to the colon during ulcerative colitis (UC). In the peripheral blood, GPR15 was expressed on Tregs and Teffs; both GPR15+ T cell subsets produced less IFN-γ and IL-4 but more IL-17 after stimulation and showed a higher migration activity compared with GPR15–CD4+ T cells. In UC patients, GPR15 expression was increased on Tregs in the peripheral blood but not on Teffs. Interestingly, the expression of GPR15 was significantly enhanced on colonic T cells of UC patients in noninflamed biopsies but not in inflamed biopsies. The differential expression of GPR15 in UC patients was accompanied by a significant reduction of bacterial immunoregulatory metabolites in the feces. In conclusion, GPR15 expression on CD4+ T cells is altered in UC patients, which may have implications for the development of therapeutic approaches to target T cell trafficking to the colon. PMID:28422750

  15. Molecular cloning, sequence characterization and recombinant expression of Nanog gene in goat fibroblast cells using lentiviral based expression system.

    PubMed

    Singhal, Dinesh K; Singhal, Raxita; Malik, Hruda N; Kumar, Surender; Kumar, Sudarshan; Mohanty, Ashok K; Kaushik, Jai K; Malakar, Dhruba

    2014-01-01

    Nanog is a homeodomain containing protein which plays important roles in regulation of signaling pathways for maintenance and induction of pluripotency in stem cells. Because of its unique expression in stem cells it is also regarded as pluripotency marker. In this study goat Nanog (gNanog) gene has been amplified, cloned and characterized at sequence level with successful over-expression in CHO-K1 cell line using a lentiviral based system. gNanog ORF is 903 bp long which codes for Nanog protein of size 300 amino acids (aas). Complete nucleotide sequence shows some evolutionary mutation in goat in comparision to other species. Protein sequence of goat is highly similar to other species. Overall, gNanog nucleotide sequence and predicted protein sequence showed high similarity and minimum divergence with cattle (96 % identity/4 % divergence) and buffalo (94/5 %) while low similarity and high divergence with pig (84/15 %), human (81/23 %) and mouse (69/40 %) indicating evolutionary closeness of gNanog to cattle and buffalo. gNanog lentiviral expression construct was prepared for over-expression of Nanog gene in adult goat fibroblast cells. Lentiviral expression construct of Nanog enabled continuous protein expression for induction and maintenance of pluripotency. Western blotting revealed the expression of Nanog gene at protein level which supported that the lentiviral expression system is highly promising for Nanog protein expression in differentiated goat cell.

  16. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors

    PubMed Central

    Torikai, Hiroki; Reik, Andreas; Soldner, Frank; Warren, Edus H.; Yuen, Carrie; Zhou, Yuanyue; Crossland, Denise L.; Huls, Helen; Littman, Nicholas; Zhang, Ziying; Tykodi, Scott S.; Kebriaei, Partow; Lee, Dean A.; Miller, Jeffrey C.; Rebar, Edward J.; Holmes, Michael C.; Jaenisch, Rudolf; Champlin, Richard E.; Gregory, Philip D.

    2013-01-01

    Long-term engraftment of allogeneic cells necessitates eluding immune-mediated rejection, which is currently achieved by matching for human leukocyte antigen (HLA) expression, immunosuppression, and/or delivery of donor-derived cells to sanctuary sites. Genetic engineering provides an alternative approach to avoid clearance of cells that are recognized as “non-self” by the recipient. To this end, we developed designer zinc finger nucleases and employed a “hit-and-run” approach to genetic editing for selective elimination of HLA expression. Electro-transfer of mRNA species coding for these engineered nucleases completely disrupted expression of HLA-A on human T cells, including CD19-specific T cells. The HLA-Aneg T-cell pools can be enriched and evade lysis by HLA-restricted cytotoxic T-cell clones. Recognition by natural killer cells of cells that had lost HLA expression was circumvented by enforced expression of nonclassical HLA molecules. Furthermore, we demonstrate that zinc finger nucleases can eliminate HLA-A expression from embryonic stem cells, which broadens the applicability of this strategy beyond infusing HLA-disparate immune cells. These findings establish that clinically appealing cell types derived from donors with disparate HLA expression can be genetically edited to evade an immune response and provide a foundation whereby cells from a single donor can be administered to multiple recipients. PMID:23741009

  17. Dendrimer-driven neurotrophin expression differs in temporal patterns between rodent and human stem cells.

    PubMed

    Shakhbazau, Antos; Shcharbin, Dzmitry; Seviaryn, Ihar; Goncharova, Natalya; Kosmacheva, Svetlana; Potapnev, Mihail; Bryszewska, Maria; Kumar, Ranjan; Biernaskie, Jeffrey; Midha, Rajiv

    2012-05-07

    This study reports the use of a nonviral expression system based on polyamidoamine dendrimers for time-restricted neurotrophin overproduction in mesenchymal stem cells and skin precursor-derived Schwann cells. The dendrimers were used to deliver plasmids for brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) expression in both rodent and human stem cells, and the timelines of expression were studied. We have found that, despite the fact that transfection efficiencies and protein expression levels were comparable, dendrimer-driven expression in human mesenchymal stem cells was characterized by a more rapid decline compared to rodent cells. Transient expression systems can be beneficial for some neurotrophins, which were earlier reported to cause unwanted side effects in virus-based long-term expression models. Nonviral neurotrophin expression is a biologically safe and accessible alternative to increase the therapeutic potential of autologous adult stem cells and stem cell-derived functional differentiated cells.

  18. Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    PubMed Central

    Miccichè, Francesca; Da Riva, Luca; Fabbi, Marina; Pilotti, Silvana; Mondellini, Piera; Ferrini, Silvano; Canevari, Silvana; Pierotti, Marco A.; Bongarzone, Italia

    2011-01-01

    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology. PMID:21364949

  19. SALL4 EXPRESSION IN GERM CELL AND NON GERM-CELL TUMORS – A SYSTEMATIC IMMUNOHISTOCHEMICAL STUDY OF 3215 CASES

    PubMed Central

    Miettinen, Markku; Wang, Zengfeng; Mc. Cue, Peter A.; Sarlomo-Rikala, Maarit; Rys, Janusz; Biernat, Wojciech; Lasota, Jerzy; Lee, Yi-Shan

    2014-01-01

    SALL4 transcription factor is associated with embryonic cell pluripotency and has been shown as a useful immunohistochemical marker for germ cell tumors. However, information of SALL4 distribution in normal human tissues and non germ-cell tumors is limited. In this study we examined normal human tissues and 3215 tumors for SALL4 expression using a monoclonal antibody 6E3 and automated immunohistochemistry. In a 10th week embryo, SALL4 was expressed in ovocytes, intestine, kidney, and some hepatocytes. In adult tissues, it was only detected in germ cells. SALL4 was consistently expressed in all germ cell tumors except some trophoblastic tumors and mature components of teratomas, where it was selectively expressed in intestinal-like and some squamous epithelia. In non germ-cell carcinomas, SALL4 was detected in 20% of cases or more of serous carcinoma of ovary, urothelial high-grade carcinoma, and gastric adenocarcinoma (especially the intestinal type). SALL4 was only rarely (≤5%) expressed in mammary, colorectal, prostatic, and squamous cell carcinomas. Many SALL4 positive carcinomas showed poorly differentiated patterns and some showed positivity in most tumor cells mimicking the expression in germ cell tumors. SALL4 was commonly expressed in rhabdoid tumors of kidney and extrarenal sites, and in Wilms tumor. Expression of SALL4 was rare in other mesenchymal and neuroendocrine tumors but was occasionally detected in melanoma, desmoplastic small round cell tumor, epithelioid sarcoma, and rhabdomyosarcoma. All hematopoietic tumors were negative. SALL4 is an excellent marker of non-teratomatous germ cell tumors, but it is also expressed in other tumors, sometimes extensively. Such expression may reflect stem-cell like differentiation and must be considered when using SALL4 as a marker for germ cell tumors. Observed lack of other pluripotency factors, OCT4 and NANOG, in SALL4-positive non-germ cell tumors can also be diagnostically helpful. PMID:24525512

  20. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells

    PubMed Central

    Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena

    2012-01-01

    In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906

  1. Vertebrate Cells Express Protozoan Antigen after Hybridization

    NASA Astrophysics Data System (ADS)

    Crane, Mark St. J.; Dvorak, James A.

    1980-04-01

    Epimastigotes, the invertebrate host stage of Trypanosoma cruzi, the protozoan parasite causing Chagas' disease in man, were fused with vertebrate cells by using polyethylene glycol. Hybrid cells were selected on the basis of T. cruzi DNA complementation of biochemical deficiencies in the vertebrate cells. Some clones of the hybrid cells expressed T. cruzi-specific antigen. It might be possible to use selected antigens obtained from the hybrids as vaccines for immunodiagnosis or for elucidation of the pathogenesis of Chagas' disease.

  2. Mutant p53-Expressing Cells Undergo Necroptosis via Cell Competition with the Neighboring Normal Epithelial Cells.

    PubMed

    Watanabe, Hirotaka; Ishibashi, Kojiro; Mano, Hiroki; Kitamoto, Sho; Sato, Nanami; Hoshiba, Kazuya; Kato, Mugihiko; Matsuzawa, Fumihiko; Takeuchi, Yasuto; Shirai, Takanobu; Ishikawa, Susumu; Morioka, Yuka; Imagawa, Toshiaki; Sakaguchi, Kazuyasu; Yonezawa, Suguru; Kon, Shunsuke; Fujita, Yasuyuki

    2018-06-26

    p53 is a tumor suppressor protein, and its missense mutations are frequently found in human cancers. During the multi-step progression of cancer, p53 mutations generally accumulate at the mid or late stage, but not in the early stage, and the underlying mechanism is still unclear. In this study, using mammalian cell culture and mouse ex vivo systems, we demonstrate that when p53R273H- or p53R175H-expressing cells are surrounded by normal epithelial cells, mutant p53 cells undergo necroptosis and are basally extruded from the epithelial monolayer. When mutant p53 cells alone are present, cell death does not occur, indicating that necroptosis results from cell competition with the surrounding normal cells. Furthermore, when p53R273H mutation occurs within RasV12-transformed epithelia, cell death is strongly suppressed and most of the p53R273H-expressing cells remain intact. These results suggest that the order of oncogenic mutations in cancer development could be dictated by cell competition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    PubMed

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  4. FoxP3 Expression in Macrophages, Cancer, and B Cells-Is It Real?

    PubMed

    Vadasz, Zahava; Toubi, Elias

    2017-06-01

    During the last decade, B regulatory cells are appreciated to have a central role in preventing autoimmunity and maintaining self-tolerance. They are characterized by expressing different phenotypic markers and the production of either IL-10 or TGF-β or both. The recent recognition of Fas ligand expressing B regulatory cells as "killer" cells established their role in maintaining viral persistence by preventing effective antiviral immune responses. The forkhead lineage-transcription factor (FoxP3) was considered for many years to be a highly specific intracellular regulatory marker of CD4+CD25+ T regulatory cells. The possibility of FoxP3 being expressed in B regulatory cells was suggested in many studies. Though controversial, FoxP3 expression was also reported in macrophages and cancer cells. Aiming to avoid artifact staining, many researchers required the usage of FoxP3 messenger RNA (mRNA) and PCR in order to prove a true expression of FoxP3 in these different cells. In addition, most studies' report on that FoxP3 expression in all abovementioned cells is related to their status of activation since naïve (non-activated cells) were found poorly FoxP3 expressing. In this review, we present the existing data on FoxP3 expression in non-T-regulatory cells, but we suggest that further studies are needed to better establish this concept.

  5. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealedmore » the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.« less

  6. Baculovirus-mediated expression of GPCRs in insect cells.

    PubMed

    Saarenpää, Tuulia; Jaakola, Veli-Pekka; Goldman, Adrian

    2015-01-01

    G-protein-coupled receptors (GPCRs) are a large family of seven transmembrane proteins that influence a considerable number of cellular events. For this reason, they are one of the most studied receptor types for their pharmacological and structural properties. Solving the structure of several GPCR receptor types has been possible using almost all expression systems, including Escherichia coli, yeast, mammalian, and insect cells. So far, however, most of the GPCR structures solved have been done using the baculovirus insect cell expression system. The reason for this is mainly due to cost-effectiveness, posttranslational modification efficiency, and overall effortless maintenance. The system has evolved so much that variables starting from vector type, purification tags, cell line, and growth conditions can be varied and optimized countless ways to suit the needs of new constructs. Here, we present the array of techniques that enable the rapid and efficient optimization of expression steps for maximal protein quality and quantity, including our emendations. © 2015 Elsevier Inc. All rights reserved.

  7. [Expression of c-MPL in leukemic stem cells from acute myeloid leukemia patients].

    PubMed

    Yu, Pei; Qiu, Shao-Wei; Rao, Qing; Lin, Dong; Xing, Hai-Yan; Tang, Ke-Jing; Tian, Zheng; Wang, Min; Wang, Jian-Xiang

    2012-10-01

    This study was aimed to investigate the expression of c-MPL in acute myeloid leukemia (AML) and the correlation of the c-MPL expression with CD34 and CD38, so as to define the expression of c-MPL in leukemic stem cells. The expression levels of CD34, CD38 and c-MPL were detected by flow cytometry in bone marrow cells from 29 newly diagnosed AML patients. The relationship of c-MPL positive cell ratio with clinical parameters and correlation of c-MPL with CD34 and CD38 expression in AML patients were analyzed. The results showed that expression level of c-MPL in AML patients was significantly higher than that of normal controls (P < 0.05), and the expression level of c-MPL did not correlate with age, sex, white blood cell count, AML1-ETO fusion gene and remission after chemotherapy, but the expression of c-MPL in M2 and M5 patients was higher than that of normal control (P < 0.05). Expression of c-MPL in CD34 positive AML patients was obviously higher than that in CD34 negative AML patients (P < 0.01). c-MPL was significantly higher expressed in CD34(+) cells than that in CD34(-) cells (P < 0.001), while c-MPL expression was not significantly different between CD34(+)CD38(-) and CD34(+)CD38(-) cell groups. Positive correlation between c-MPL and CD34 expression was observed (r = 0.380, P = 0.042). It is concluded that expression of c-MPL is higher in AML patients, and positively correlates with the expression level of CD34. The c-MPL expresses in leukemic stem cells.

  8. Methods of expressing and detecting activity of expansin in plant cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Elizabeth E.; Yoon, Sangwoong

    A method of expressing heterologous expansin in a plant cell is provided where a nucleic acid molecule encoding expansin is introduced into the plant cell and in an embodiment is operably linked to a promoter preferentially expressing in the seed tissue of the plant, and in another embodiment is linked to a promoter preferentially expressing in the embryo tissue of the seed. An embodiment provides the nucleic acid molecule is operably linked to a second nucleic acid molecule that directs expression to the endoplasmic reticulum, vacuole or cell wall. Plants and plant parts expressing expansin are provided. An assay formore » detection of expansin activity is also provided.« less

  9. Epidermal Growth Factor Increases LRF/Pokemon Expression in Human Prostate Cancer Cells

    PubMed Central

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K.

    2011-01-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  10. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    PubMed

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell

  11. Altered PKR signalling and C/EBPβ expression is associated with HLA-B27 expression in monocytic cells

    PubMed Central

    Sahlberg, Anna S.; Ruuska, Marja; Colbert, Robert A.; Granfors, Kaisa; Penttinen, Markus A.

    2011-01-01

    Infection caused by certain gram negative bacteria, e.g. Salmonella, can trigger inflammatory joint disease reactive arthritis (ReA). It is suggested that the disease-triggering bacteria or bacterial components persist in patients for an abnormally long time. Development of ReA is strongly associated with tissue antigen HLA-B27. Previously, we reported an enhanced replication of S. enteritidis and altered p38 MAP kinase signalling in HLA-B27-expressing monocytic cells. Here we aimed to investigate the role of HLA-B27 in regulation of double-stranded RNA activated kinase (PKR)-related signalling in Salmonella-infected or Salmonella LPS-stimulated human U937 monocytic cells, since PKR has been reported to modify p38 signalling in Salmonella-infected cells. In cells expressing HLA-B27, PKR is overexpressed and hypophosphorylated, and the expression of transcription factor CCAAT enhancer binding protein beta (C/EBPβ) is increased upon Salmonella infection and LPS stimulation. The expression of C/EBPβ is PKR-dependent in LPS-stimulated mock cells whereas in LPS-stimulated B27 cells the majority of C/EBPβ is expressed in a PKR-independent manner. Our results show that the expression of HLA-B27 disturbs the PKR-mediated signalling pathway. Moreover, altered signalling is related to misfolding-linked Glu45 in the B pocket of the HLA-B27 heavy chain. We suggest that the expression of HLA-B27 HCs modulates the intracellular environment of monocyte/macrophages and the mechanisms that are important in eliminating intracellular S. enteritidis by altering the intracellular signalling. This phenomenon is at least partly dependent on the misfolding featureof the B27 molecule. These observations offer a novel mechanism by which HLA-B27 may modulate inflammatory response induced by ReA-triggering bacteria. PMID:21988375

  12. D-type cyclins in adult human testis and testicular cancer: relation to cell type, proliferation, differentiation, and malignancy.

    PubMed

    Bartkova, J; Rajpert-de Meyts, E; Skakkebaek, N E; Bartek, J

    1999-04-01

    D-type cyclins are proto-oncogenic components of the 'RB pathway', a G1/S regulatory mechanism centred around the retinoblastoma tumour suppressor (pRB) implicated in key cellular decisions that control cell proliferation, cell-cycle arrest, quiescence, and differentiation. This study focused on immunohistochemical and immunochemical analysis of human adult testis and 32 testicular tumours to examine the differential expression and abundance of cyclins D1, D2, and D3 in relation to cell type, proliferation, differentiation, and malignancy. In normal testis, the cell type-restricted expression patterns were dominated by high levels of cyclin D3 in quiescent Leydig cells and the lack of any D-type cyclin in the germ cells, the latter possibly representing the only example of normal mammalian cells proliferating in the absence of these cyclins. Most carcinoma-in-situ lesions appeared to gain expression of cyclin D2 but not D1 or D3, while the invasive testicular tumours showed variable positivity for cyclins D2 and D3, but rarely D1. An unexpected correlation with differentiation rather than proliferation was found particularly for cyclin D3 in teratomas, a conceptually significant observation confirmed by massive up-regulation of cyclin D3 in the human teratocarcinoma cell line NTera2/D1 induced to differentiate along the neuronal lineage. These results suggest a possible involvement of cyclin D2 in the early stages of testicular oncogenesis and the striking examples of proliferation-independent expression point to potential dual or multiple roles of the D-type cyclins, particularly of cyclin D3. These findings extend current concepts of the biology of the cyclin D subfamily, as well as of the biology and oncopathology of the human adult testis. Apart from practical implications for the assessment of proliferation and oncogenic aberrations in human tissues and tumours, this study may inspire further research into the emerging role of the cyclin D proteins in the

  13. PD-L1 Expression of Tumor Cells, Macrophages, and Immune Cells in Non-Small Cell Lung Cancer Patients with Malignant Pleural Effusion.

    PubMed

    Tseng, Yen-Han; Ho, Hsiang-Ling; Lai, Chiung-Ru; Luo, Yung-Hung; Tseng, Yen-Chiang; Whang-Peng, Jacqueline; Lin, Yi-Hsuan; Chou, Teh-Ying; Chen, Yuh-Min

    2018-03-01

    Whether immunohistochemical staining of programmed death ligand 1 (PD-L1) on cells of pleural effusion could be used to predict response to immunotherapy treatment has not been reported. We retrospectively enrolled patients who had undergone malignant pleural effusion drainage and had effusion cell block specimens from 2014 to 2016. Immunohistochemical staining for PD-L1 was performed with tumor cells, immune cells, and macrophages of all cell block specimens. Immunoactivity was scored as 0 for absence of staining and 1+ for faint, 2+ for moderate, and 3+ for intense membranous staining. Patients' clinicopathological characteristics were also collected. PD-L1 expression of pleural effusion tumor cells was associated with the PD-L1 expression of macrophages (p = 0.003) and immune cells (p < 0.001). However, the PD-L1 expression of immune cells was not associated with that of macrophages. The PD-L1 expression of tumor cells was correlated with sex (p = 0.012), smoking status (p = 0.032), and Eastern Cooperative Oncology Group performance status (p = 0.017). The PD-L1 expression of immune cells was associated with the overall survival of patients (p = 0.004). These results suggest that there might be an immune interaction between pleural effusion tumor cells and macrophages. The low intensity of PD-L1 expression in immune cells is associated with the poor survival of patients with lung cancer with malignant pleural effusion. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  14. Expression and in vitro regulation of integrins by normal human urothelial cells.

    PubMed

    Southgate, J; Kennedy, W; Hutton, K A; Trejdosiewicz, L K

    1995-08-01

    Integrins are thought to be essential adhesion receptors for the maintenance of tissue histioarchitecture. The purpose of this study was to determine integrin expression patterns in the human stratified transitional epithelium of the urinary tract (urothelium). In situ expression patterns were compared with in vitro expression, using a normal cell culture model system in which the effects of cell stratification can be studied independently of differentiation. By immunohistological criteria, the urothelia of bladder, ureter and renal pelvis expressed alpha 2 beta 1 and alpha 3 beta 1 integrins in all layers at intercellular junctions, and cytoplasmically in the lower strata. By contrast, alpha 6 beta 4 and occasionally alpha v beta 4 were expressed only by basal cells and localised to the basal lamina. These expression patterns were unaltered in specimens where an inflammatory cell infiltrate was present. In long-term cultures of normal urothelial cells maintained in a low-Ca++ serum-free medium, the monolayer cultures expressed alpha 2 beta 1, alpha 3 beta 1 and alpha 5 beta 1 integrins at intercellular junctions and in cytoplasmic inclusions, whereas alpha 6 beta 4 was distributed in a random pattern over the substratum. Increasing exogenous Ca++ concentrations induced cell stratification and desmosome formation, but not cytodifferentiation. Under these conditions, alpha 6 beta 4 became cell-, rather than substratum-associated, localising particularly to filopodia and lamellipodia. Quantitation of integrin expression by flow cytometry confirmed increased surface expression of alpha 6 beta 4 in high Ca++ media, and also of alpha 3 and alpha 5, but not alpha 2, subunits. These results suggest that alpha 2 beta 1 and alpha 3 beta 1 integrins, although differentially regulated, are mainly involved in homotypic cell-cell interactions and the maintenance of a stratified morphology, whereas alpha 6 beta 4 is the principal integrin involved in substratum adhesion.

  15. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer

    PubMed Central

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R.; Tang, Dean G.

    2016-01-01

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. PMID:26924072

  16. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.

    PubMed

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G

    2016-02-29

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.

  17. Unique patterns of organization and migration of FGF-expressing cells during Drosophila morphogenesis.

    PubMed

    Du, Lijuan; Zhou, Amy; Patel, Akshay; Rao, Mishal; Anderson, Kelsey; Roy, Sougata

    2017-07-01

    Fibroblast growth factors (FGF) are essential signaling proteins that regulate diverse cellular functions in developmental and metabolic processes. In Drosophila, the FGF homolog, branchless (bnl) is expressed in a dynamic and spatiotemporally restricted pattern to induce branching morphogenesis of the trachea, which expresses the Bnl-receptor, breathless (btl). Here we have developed a new strategy to determine bnl- expressing cells and study their interactions with the btl-expressing cells in the range of tissue patterning during Drosophila development. To enable targeted gene expression specifically in the bnl expressing cells, a new LexA based bnl enhancer trap line was generated using CRISPR/Cas9 based genome editing. Analyses of the spatiotemporal expression of the reporter in various embryonic stages, larval or adult tissues and in metabolic hypoxia, confirmed its target specificity and versatility. With this tool, new bnl expressing cells, their unique organization and functional interactions with the btl-expressing cells were uncovered in a larval tracheoblast niche in the leg imaginal discs, in larval photoreceptors of the developing retina, and in the embryonic central nervous system. The targeted expression system also facilitated live imaging of simultaneously labeled Bnl sources and tracheal cells, which revealed a unique morphogenetic movement of the embryonic bnl- source. Migration of bnl- expressing cells may create a dynamic spatiotemporal pattern of the signal source necessary for the directional growth of the tracheal branch. The genetic tool and the comprehensive profile of expression, organization, and activity of various types of bnl-expressing cells described in this study provided us with an important foundation for future research investigating the mechanisms underlying Bnl signaling in tissue morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Liver Cell-Derived Microparticles Activate Hedgehog Signaling and Alter Gene Expression in Hepatic Endothelial Cells

    PubMed Central

    Witek, Rafal P.; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S.; Cheong, Yeiwon; Fearing, Caitlin M.; Agboola, Kolade M.; Chen, Wei; Diehl, Anna Mae

    2013-01-01

    Background & Aims Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). Methods MF-HSCs and cholangiocytes were exposed to platelet-derived growth factor (PDGF) to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy (TEM) and immunoblots, and applied to Hh-reporter containing cells. Microparticles were also obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, a Hh signaling inhibitor. Effects on SEC gene expression were evaluated by QRT-PCR and immunoblotting. Finally, Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Results PDGF-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically active Hh ligands. BDL also increased release of Hh-containing exosome-enriched microparticles into plasma and bile. TEM and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Conclusions Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy. PMID:19013163

  19. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    PubMed

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  20. Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells.

    PubMed

    Li, G Q; Kevetter, G A; Leonard, R B; Prusak, D J; Wood, T G; Correia, M J

    2007-04-25

    Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.

  1. Glucose transporters are expressed in taste receptor cells

    PubMed Central

    Merigo, Flavia; Benati, Donatella; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea

    2011-01-01

    In the intestine, changes of sugar concentration generated in the lumen during digestion induce adaptive responses of glucose transporters in the epithelium. A close matching between the intestinal expression of glucose transporters and the composition and amount of the diet has been provided by several experiments. Functional evidence has demonstrated that the regulation of glucose transporters into enterocytes is induced by the sensing of sugar of the enteroendocrine cells through activation of sweet taste receptors (T1R2 and T1R3) and their associated elements of G-protein-linked signaling pathways (e.g. α-gustducin, phospholipase C β type 2 and transient receptor potential channel M5), which are signaling molecules also involved in the perception of sweet substances in the taste receptor cells (TRCs) of the tongue. Considering this phenotypical similarity between the intestinal cells and TRCs, we evaluated whether the TRCs themselves possess proteins of the glucose transport mechanism. Therefore, we investigated the expression of the typical intestinal glucose transporters (i.e. GLUT2, GLUT5 and SGLT1) in rat circumvallate papillae, using immunohistochemistry, double-labeling immunofluorescence, immunoelectron microscopy and reverse transcriptase-polymerase chain reaction analysis. The results showed that GLUT2, GLUT5 and SGLT1 are expressed in TRCs; their immunoreactivity was also observed in cells that displayed staining for α-gustducin and T1R3 receptor. The immunoelectron microscopic results confirmed that GLUT2, GLUT5 and SGLT1 were predominantly expressed in cells with ultrastructural characteristics of chemoreceptor cells. The presence of glucose transporters in TRCs adds a further link between chemosensory information and cellular responses to sweet stimuli that may have important roles in glucose homeostasis, contributing to a better understanding of the pathways implicated in glucose metabolism. PMID:21592100

  2. Glucose transporters are expressed in taste receptor cells.

    PubMed

    Merigo, Flavia; Benati, Donatella; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea

    2011-08-01

    In the intestine, changes of sugar concentration generated in the lumen during digestion induce adaptive responses of glucose transporters in the epithelium. A close matching between the intestinal expression of glucose transporters and the composition and amount of the diet has been provided by several experiments. Functional evidence has demonstrated that the regulation of glucose transporters into enterocytes is induced by the sensing of sugar of the enteroendocrine cells through activation of sweet taste receptors (T1R2 and T1R3) and their associated elements of G-protein-linked signaling pathways (e.g. α-gustducin, phospholipase C β type 2 and transient receptor potential channel M5), which are signaling molecules also involved in the perception of sweet substances in the taste receptor cells (TRCs) of the tongue. Considering this phenotypical similarity between the intestinal cells and TRCs, we evaluated whether the TRCs themselves possess proteins of the glucose transport mechanism. Therefore, we investigated the expression of the typical intestinal glucose transporters (i.e. GLUT2, GLUT5 and SGLT1) in rat circumvallate papillae, using immunohistochemistry, double-labeling immunofluorescence, immunoelectron microscopy and reverse transcriptase-polymerase chain reaction analysis. The results showed that GLUT2, GLUT5 and SGLT1 are expressed in TRCs; their immunoreactivity was also observed in cells that displayed staining for α-gustducin and T1R3 receptor. The immunoelectron microscopic results confirmed that GLUT2, GLUT5 and SGLT1 were predominantly expressed in cells with ultrastructural characteristics of chemoreceptor cells. The presence of glucose transporters in TRCs adds a further link between chemosensory information and cellular responses to sweet stimuli that may have important roles in glucose homeostasis, contributing to a better understanding of the pathways implicated in glucose metabolism. © 2011 The Authors. Journal of Anatomy © 2011

  3. High expression of NKG2A/CD94 and low expression of granzyme B are associated with reduced cord blood NK cell activity.

    PubMed

    Wang, Yanyan; Xu, Han; Zheng, Xiaodong; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2007-10-01

    Human umbilical cord blood (CB) has recently been used as a source of stem cells in transplantation. NK cells derived from CB are the key effector cells involved in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL). It was reported that the activity of CB NK cells was lower than that of adult peripheral blood (PB) NK cells. In this study, we analyzed the expression of some NK cell receptors and cytotoxicity-related molecules in CB and PB NK cells. The expressions of activating NK receptors, CD16, NKG2D and NKp46, did not show significant difference between CB and PB NK cells. But the expression of inhibitory receptor NKG2A/CD94 was significantly higher on CB NK cells. As to the effector function molecules, granzyme B was expressed significantly lower in CB NK cells, but the expressions of intracellular perforin, IFN-gamma, TNF-alpha and cell surface FasL and TRAIL did not show difference between CB and PB NK cells. The results indicated that the high expression of NKG2A/CD94 and low expression of granzyme B may be related with the reduced activity of CB NK cells.

  4. Establishment of stable cell line for inducing KAP1 protein expression.

    PubMed

    Liu, Xiaoyan; Khan, Md Asaduzzaman; Cheng, Jingliang; Wei, Chunli; Zhang, Lianmei; Fu, Junjiang

    2015-06-01

    Generation of the stable cell lines is a highly efficient tool in functional studies of certain genes or proteins, where the particular genes or proteins are inducibly expressed. The KRAB-associated protein-1 (KAP1) is an important transcription regulatory protein, which is investigated in several molecular biological studies. In this study, we have aimed to generate a stable cell line for inducing KAP1 expression. The recombinant plasmid pcDNA5/FRT/TO-KAP1 was constructed at first, which was then transfected into Flp-In™T-REx™-HEK293 cells to establish an inducible pcDNA5/FRT/TO-KAP1-HEK293 cell line. The Western blot analysis showed that the protein level of KAP1 is over-expressed in the established stable cell line by doxycycline induction, both dose and time dependently. Thus we have successfully established stable pcDNA5/FRT/TO-KAP1-HEK293 cell line, which can express KAP1 inducibly. This inducible cell line might be very useful for KAP1 functional studies.

  5. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation,more » myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes

  6. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    PubMed Central

    Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.

    2012-01-01

    The adaptors IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. PMID:22652453

  7. Over-expression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells.

    PubMed

    Pickel, Lara; Matsuzuka, Takaya; Doi, Chiyo; Ayuzawa, Rie; Maurya, Dharmendra Kumar; Xie, Sheng-Xue; Berkland, Cory; Tamura, Masaaki

    2010-02-01

    The endogenous angiotensin II (Ang II) type 2 receptor (AT 2) has been shown to mediate apoptosis in cardiovascular tissues. Thus, the aim of this study was to explore the anti-cancer effect of AT 2 over-expression on lung adenocarcinoma cells in vitro using adenoviral (Ad), FuGENE, and nanoparticle vectors. All three gene transfection methods efficiently transfected AT 2 cDNA into lung cancer cells but caused minimal gene transfection in normal lung epithelial cells. Ad-AT 2 significantly attenuated multiple human lung cancer cell growth (A549 and H358) as compared to the control viral vector, Ad-LacZ, when cell viability was examined by direct cell count. Examination of annexin V by flow cytometry revealed the activation of the apoptotic pathway via AT 2 over-expression. Western Blot analysis confirmed the activation of caspase-3. Similarly, poly (lactide-co-glycolic acid) (PLGA) biodegradable nanoparticles encapsulated AT 2 plasmid DNA were shown to be effectively taken up into the lung cancer cell. Nanoparticle-based AT 2 gene transfection markedly increased AT 2 expression and resultant cell death in A549 cells. These results indicate that AT 2 over-expression effectively attenuates growth of lung adenocarcinoma cells through intrinsic apoptosis. Our results also suggest that PLGA nanoparticles can be used as an efficient gene delivery vector for lung adenocarcinoma targeted therapy.

  8. Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes.

    PubMed

    Dahan, Tehila; Ziv, Oren; Horwitz, Elad; Zemmour, Hai; Lavi, Judith; Swisa, Avital; Leibowitz, Gil; Ashcroft, Frances M; In't Veld, Peter; Glaser, Benjamin; Dor, Yuval

    2017-02-01

    β-Cell failure in type 2 diabetes (T2D) was recently proposed to involve dedifferentiation of β-cells and ectopic expression of other islet hormones, including somatostatin and glucagon. Here we show that gastrin, a stomach hormone typically expressed in the pancreas only during embryogenesis, is expressed in islets of diabetic rodents and humans with T2D. Although gastrin in mice is expressed in insulin + cells, gastrin expression in humans with T2D occurs in both insulin + and somatostatin + cells. Genetic lineage tracing in mice indicates that gastrin expression is turned on in a subset of differentiated β-cells after exposure to severe hyperglycemia. Gastrin expression in adult β-cells does not involve the endocrine progenitor cell regulator neurogenin3 but requires membrane depolarization, calcium influx, and calcineurin signaling. In vivo and in vitro experiments show that gastrin expression is rapidly eliminated upon exposure of β-cells to normal glucose levels. These results reveal the fetal hormone gastrin as a novel marker for reversible human β-cell reprogramming in diabetes. © 2017 by the American Diabetes Association.

  9. Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes

    PubMed Central

    Dahan, Tehila; Ziv, Oren; Horwitz, Elad; Zemmour, Hai; Lavi, Judith; Swisa, Avital; Leibowitz, Gil; Ashcroft, Frances M.; In’t Veld, Peter

    2017-01-01

    β-Cell failure in type 2 diabetes (T2D) was recently proposed to involve dedifferentiation of β-cells and ectopic expression of other islet hormones, including somatostatin and glucagon. Here we show that gastrin, a stomach hormone typically expressed in the pancreas only during embryogenesis, is expressed in islets of diabetic rodents and humans with T2D. Although gastrin in mice is expressed in insulin+ cells, gastrin expression in humans with T2D occurs in both insulin+ and somatostatin+ cells. Genetic lineage tracing in mice indicates that gastrin expression is turned on in a subset of differentiated β-cells after exposure to severe hyperglycemia. Gastrin expression in adult β-cells does not involve the endocrine progenitor cell regulator neurogenin3 but requires membrane depolarization, calcium influx, and calcineurin signaling. In vivo and in vitro experiments show that gastrin expression is rapidly eliminated upon exposure of β-cells to normal glucose levels. These results reveal the fetal hormone gastrin as a novel marker for reversible human β-cell reprogramming in diabetes. PMID:27864307

  10. BCL2 expression in CD105 positive neoangiogenic cells and tumor progression in angioimmunoblastic T-cell lymphoma.

    PubMed

    Ratajczak, Philippe; Leboeuf, Christophe; Wang, Li; Brière, Josette; Loisel-Ferreira, Irmine; Thiéblemont, Catherine; Zhao, Wei-Li; Janin, Anne

    2012-06-01

    The angiogenic microenvironment has been known to be a component of angioimmunoblastic T-cell lymphoma since its initial characterization. We have shown that angioimmunoblastic T-cell lymphoma endothelial cells produce vascular endothelial growth factor-A (VEGFA), and participate in lymphoma progression. In squamous cell carcinoma, endothelial BCL2 expression induces a crosstalk with tumor cells through VEGFA, a major mediator of tumoral angiogenesis. In the present study, we analyzed BCL2 and VEGFA in 30 angioimmunoblastic T-cell lymphomas, using triple immunofluorescence to identify protein coexpression in well-characterized lymphoma cells and microenvironment neoangiogenic endothelial cells. Using quantitative real-time PCR, we assessed mRNA expression levels in laser-microdissected endothelial and lymphoma cells. In lymphoma cells, as in endothelial cells, BCL2 and VEGFA proteins were coexpressed. BCL2 was expressed only in neoangiogenic CD34(+)CD105(+) endothelial cells. In laser-microdissected cells, mRNA studies showed a significant relationship between BCL2 and VEGFA levels in CD34(+) endothelial cells, but not in CD3(+)CD10(+)lymphoma cells, or in CD34(+) endothelial cells from lymph node hyperplasia. Further study showed that, in AITL, BCL2 mRNA levels in CD34(+)CD105(+) neoangiogenic endothelial cells also correlated with microvessel density, International Prognostic Index, Ann Arbor stage, bone marrow involvement and elevated LDH. BCL2 expression by CD105(+) neoangiogenic endothelial cells is related to tumor progression in angioimmunoblastic T-cell lymphoma.

  11. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes.

    PubMed

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    Spermatogenesis, a study of germ cell development, is a long, orderly, and well-defined process occurring in seminiferous tubules of the testis. It is a temporal event whereby undifferentiated spermatogonial germ cells evolve into maturing spermatozoa over a period of several weeks. Spermatogenesis is characterized by three specific functional phases: proliferation, meiosis, and differentiation, and it involves spermatogonia, spermatocytes, and spermatids. Germ cells at steps of development form various cellular associations or stages, with 6, 12, and 14 specific stages being identified in human, mouse, and rat, respectively. The stages evolve over time in a given area of the seminiferous tubule forming a cycle of the seminiferous epithelium that has a well-defined duration for a given species. In this part, we discuss the proliferation and meiotic phase whereby spermatogonia undergo several mitotic divisions to form spermatocytes that undergo two meiotic divisions to form haploid spermatids. In the rat, spermatogonia can be subdivided into several classes: stem cells (A(s)), proliferating cells (A(pr), A(al)), and differentiating cells (A(1)-A(4), In, B). They are dependent on a specific microenvironment (niche) contributed by Sertoli, myoid, and Leydig cells for proper development. Spermatogonia possess several surface markers whereby they can be identified from each other. During meiosis, spermatocytes undergo chromosomal pairing, synapsis, and genetic exchange as well as transforming into haploid cells following meiosis. The meiotic cells form specific structural entities such as the synaptonemal complex and sex body. Many genes involved in spermatogonial renewal and the meiotic process have been identified and shown to be essential for this event. Copyright 2009 Wiley-Liss, Inc.

  12. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control

    PubMed Central

    Grant, Gavin D.; Gamsby, Joshua; Martyanov, Viktor; Brooks, Lionel; George, Lacy K.; Mahoney, J. Matthew; Loros, Jennifer J.; Dunlap, Jay C.; Whitfield, Michael L.

    2012-01-01

    We developed a system to monitor periodic luciferase activity from cell cycle–regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle–regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle–dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant. PMID:22740631

  13. Differential marker expression by cultures rich in mesenchymal stem cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  14. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma.

    PubMed

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL.

  15. OCT4 expression mediates partial cardiomyocyte reprogramming of mesenchymal stromal cells

    PubMed Central

    Montanari, Sonia; Santa-Cruz, Diego; Viswanathan, Sowmya; Keating, Armand

    2017-01-01

    Mesenchymal stem/stromal cells (MSCs) are in numerous cell therapy clinical trials, including for injured myocardium. Acquisition of cardiomyocyte characteristics by MSCs may improve cardiac regeneration but the mechanisms regulating this process are unclear. Here, we investigated whether the pluripotency transcription factor OCT4 is involved in the activation of cardiac lineage genetic programs in MSCs. We employed our established co-culture model of MSCs with rat embryonic cardiomyocytes showing co-expression of cardiac markers on MSCs independent of cell fusion. Bone marrow-derived MSCs were isolated from transgenic mice expressing GFP under the control of the cardiac-specific α-myosin heavy chain promoter. After 5 days of co-culture, MSCs expressed cardiac specific genes, including Nkx2.5, atrial natriuretic factor and α-cardiac actin. The frequency of GFP+ cells was 7.6±1.9%, however, these cells retained the stromal cell phenotype, indicating, as expected, only partial differentiation. Global OCT4 expression increased 2.6±0.7-fold in co-cultured MSCs and of interest, 87±5% vs 79±4% of MSCs expressed OCT4 by flow cytometry in controls and after co-culture, respectively. Consistent with the latter observation, the GFP+ cells did not express nuclear OCT4 and showed a significant increase in OCT4 promoter methylation compared with undifferentiated MSCs (92% vs 45%), inferring that OCT4 is regulated by an epigenetic mechanism. We further showed that siRNA silencing of OCT4 in MSCs resulted in a reduced frequency of GFP+ cells in co-culture to less than 1%. Our data infer that OCT4 expression may have a direct effect on partial cardiomyocyte reprogramming of MSCs and suggest a new mechanism(s) associated with MSC multipotency and a requirement for crosstalk with the cardiac microenvironment. PMID:29216265

  16. OCT4 expression mediates partial cardiomyocyte reprogramming of mesenchymal stromal cells.

    PubMed

    Yannarelli, Gustavo; Pacienza, Natalia; Montanari, Sonia; Santa-Cruz, Diego; Viswanathan, Sowmya; Keating, Armand

    2017-01-01

    Mesenchymal stem/stromal cells (MSCs) are in numerous cell therapy clinical trials, including for injured myocardium. Acquisition of cardiomyocyte characteristics by MSCs may improve cardiac regeneration but the mechanisms regulating this process are unclear. Here, we investigated whether the pluripotency transcription factor OCT4 is involved in the activation of cardiac lineage genetic programs in MSCs. We employed our established co-culture model of MSCs with rat embryonic cardiomyocytes showing co-expression of cardiac markers on MSCs independent of cell fusion. Bone marrow-derived MSCs were isolated from transgenic mice expressing GFP under the control of the cardiac-specific α-myosin heavy chain promoter. After 5 days of co-culture, MSCs expressed cardiac specific genes, including Nkx2.5, atrial natriuretic factor and α-cardiac actin. The frequency of GFP+ cells was 7.6±1.9%, however, these cells retained the stromal cell phenotype, indicating, as expected, only partial differentiation. Global OCT4 expression increased 2.6±0.7-fold in co-cultured MSCs and of interest, 87±5% vs 79±4% of MSCs expressed OCT4 by flow cytometry in controls and after co-culture, respectively. Consistent with the latter observation, the GFP+ cells did not express nuclear OCT4 and showed a significant increase in OCT4 promoter methylation compared with undifferentiated MSCs (92% vs 45%), inferring that OCT4 is regulated by an epigenetic mechanism. We further showed that siRNA silencing of OCT4 in MSCs resulted in a reduced frequency of GFP+ cells in co-culture to less than 1%. Our data infer that OCT4 expression may have a direct effect on partial cardiomyocyte reprogramming of MSCs and suggest a new mechanism(s) associated with MSC multipotency and a requirement for crosstalk with the cardiac microenvironment.

  17. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  18. Expression of CD105 cancer stem cell marker in three subtypes of renal cell carcinoma.

    PubMed

    Saeednejad Zanjani, Leili; Madjd, Zahra; Abolhasani, Maryam; Shariftabrizi, Ahmad; Rasti, Arezoo; Asgari, Mojgan

    2018-01-01

    CD105 is recently described as a cancer stem cell (CSC) marker. The present study was aimed to investigate the expression and prognostic significance of the CSC marker CD105 in different histological subtypes of renal cell carcinoma (RCC). Expression of CD105 was evaluated using immunohistochemistry in RCC samples on tissue microarrays including clear cell RCCs (ccRCCs), papillary, and chromophobe RCCs. The association between CD105 expression and clinicopathological features as well as survival outcomes was determined. In ccRCC, increased tumoral cytoplasmic and endothelial expression of CD105 were significantly associated with advanced stage, renal vein invasion, and microvascular invasion (MVI). In addition, MVI was associated with a worse overall survival (OS). Moreover, in multivariate analysis tumor stage and nuclear grade were independent prognostic factors for OS both in case of tumoral cytoplasmic and endothelial CD105 expression. Additionally, CD105 expression was found to be a predictor of worse OS in univariate analysis. However, in papillary and chromophobe RCC, no significant association was found between CD105 expression and clinicopathological parameters or prognosis. We showed that CD105 expression was associated with more aggressive tumor behavior, more advanced disease, and worse prognosis in ccRCC but not in the other RCC subtypes.

  19. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development.

    PubMed

    Wang, Haopeng; Holst, Jeff; Woo, Seng-Ryong; Guy, Cliff; Bettini, Matt; Wang, Yao; Shafer, Aaron; Naramura, Mayumi; Mingueneau, Michaël; Dragone, Leonard L; Hayes, Sandra M; Malissen, Bernard; Band, Hamid; Vignali, Dario A A

    2010-04-07

    Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3varepsilon proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3zeta-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development.