Science.gov

Sample records for lhc generalizing mt2

  1. Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies

    SciTech Connect

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.

    2012-04-03

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{sub c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

  2. General-purpose event generators for LHC physics

    SciTech Connect

    Buckley, Andy; Butterworth, Jonathan; Gieseke, Stefan; Grellscheid, David; Hoche, Stefan; Hoeth, Hendrik; Krauss, Frank; Lonnblad, Leif; Nurse, Emily; Richardson, Peter; Schumann, Steffen; Seymour, Michael H.; Sjostrand, Torbjorn; Skands, Peter; Webber, Bryan; /Cambridge U.

    2011-03-03

    We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard-scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond-Standard-Model processes. We describe the principal features of the Ariadne, Herwig++, Pythia 8 and Sherpa generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists wanting a deeper insight into the tools available for signal and background simulation at the LHC.

  3. The role of MT2-MMP in cancer progression

    SciTech Connect

    Ito, Emiko; Yana, Ikuo; Fujita, Chisato; Irifune, Aiko; Takeda, Maki; Madachi, Ayako; Mori, Seiji; Hamada, Yoshinosuke; Kawaguchi, Naomasa; Matsuura, Nariaki

    2010-03-05

    The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.

  4. Heteromeric MT1/MT2 Melatonin Receptors Modulate Photoreceptor Function

    PubMed Central

    Baba, Kenkichi; Benleulmi-Chaachoua, Abla; Journé, Anne-Sophie; Kamal, Maud; Guillaume, Jean-Luc; Dussaud, Sébastien; Gbahou, Florence; Yettou, Katia; Liu, Cuimei; Contreras-Alcantara, Susana; Jockers, Ralf; Tosini, Gianluca

    2013-01-01

    The formation of G protein-coupled receptor (GPCR) heteromers elicits signaling diversification and holds great promise for improved drug selectivity. Most studies have been conducted in heterologous expression systems; however, in vivo validation is missing from most cases thus questioning the physiological significance of GPCR heteromerization. Melatonin MT1 and MT2 receptors have been shown to exist as homo- and heteromers in vitro. We show here that the effect of melatonin on rod photoreceptor light sensitivity is mediated by melatonin MT1/MT2 receptor heteromers. This effect involves activation of the heteromer-specific PLC/PKC pathway and is abolished in MT1−/− and MT2−/− mice as well as in mice overexpressing a non-functional MT2 receptor mutant that competes with the formation of functional MT1/MT2 heteromers in photoreceptor cells. This study establishes the essential role of melatonin receptor heteromers in retinal function and supports the physiological importance of GPCR heteromerization. Finally, our work may have important therapeutic implications, as the heteromer complex may provide a unique pharmacological target to improve photoreceptor functioning and to extend the viability of photoreceptors during aging. PMID:24106342

  5. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers.

    PubMed

    Kamal, Maud; Gbahou, Florence; Guillaume, Jean-Luc; Daulat, Avais M; Benleulmi-Chaachoua, Abla; Luka, Marine; Chen, Patty; Kalbasi Anaraki, Dina; Baroncini, Marc; Mannoury la Cour, Clotilde; Millan, Mark J; Prevot, Vincent; Delagrange, Philippe; Jockers, Ralf

    2015-05-01

    Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders. PMID:25770211

  6. Human Gastroenteropancreatic Expression of Melatonin and Its Receptors MT1 and MT2

    PubMed Central

    Söderquist, Fanny; Hellström, Per M.; Cunningham, Janet L.

    2015-01-01

    Background and Aim The largest source of melatonin, according to animal studies, is the gastrointestinal (GI) tract but this is not yet thoroughly characterized in humans. This study aims to map the expression of melatonin and its two receptors in human GI tract and pancreas using microarray analysis and immunohistochemistry. Method Gene expression data from normal intestine and pancreas and inflamed colon tissue due to ulcerative colitis were analyzed for expression of enzymes relevant for serotonin and melatonin production and their receptors. Sections from paraffin-embedded normal tissue from 42 individuals, representing the different parts of the GI tract (n=39) and pancreas (n=3) were studied with immunohistochemistry using antibodies with specificity for melatonin, MT1 and MT2 receptors and serotonin. Results Enzymes needed for production of melatonin are expressed in both GI tract and pancreas tissue. Strong melatonin immunoreactivity (IR) was seen in enterochromaffin (EC) cells partially co-localized with serotonin IR. Melatonin IR was also seen in pancreas islets. MT1 and MT2 IR were both found in the intestinal epithelium, in the submucosal and myenteric plexus, and in vessels in the GI tract as well as in pancreatic islets. MT1 and MT2 IR was strongest in the epithelium of the large intestine. In the other cell types, both MT2 gene expression and IR were generally elevated compared to MT1. Strong MT2, IR was noted in EC cells but not MT1 IR. Changes in gene expression that may result in reduced levels of melatonin were seen in relation to inflammation. Conclusion Widespread gastroenteropancreatic expression of melatonin and its receptors in the GI tract and pancreas is in agreement with the multiple roles ascribed to melatonin, which include regulation of gastrointestinal motility, epithelial permeability as well as enteropancreatic cross-talk with plausible impact on metabolic control. PMID:25822611

  7. Antinociceptive properties of selective MT(2) melatonin receptor partial agonists.

    PubMed

    López-Canul, Martha; Comai, Stefano; Domínguez-López, Sergio; Granados-Soto, Vinicio; Gobbi, Gabriella

    2015-10-01

    Melatonin is a neurohormone involved in the regulation of both acute and chronic pain whose mechanism is still not completely understood. We have recently demonstrated that selective MT2 melatonin receptor partial agonists have antiallodynic properties in animal models of chronic neuropathic pain by modulating ON/OFF cells of the descending antinociceptive system. Here, we examined the antinociceptive properties of the selective MT2 melatonin receptor partial agonists N-{2-[(3-methoxyphenyl)phenylamino]ethyl}acetamide (UCM765) and N-{2-[(3-bromophenyl)-(4-fluorophenyl)amino]ethyl}acetamide (UCM924) in two animal models of acute and inflammatory pain: the hot-plate and formalin tests. UCM765 and UCM924 (5-40 mg/kg, s.c.) dose-dependently increased the temperature of the first hind paw lick in the hot-plate test, and decreased the total time spent licking the injected hind paw in the formalin test. Antinociceptive effects of UCM765 and UCM924 were maximal at the dose of 20mg/kg. At this dose, the effects of UCM765 and UCM924 were similar to those produced by 200 mg/kg acetaminophen in the hot-plate test, and by 3 mg/kg ketorolac or 150 mg/kg MLT in the formalin test. Notably, antinociceptive effects of the two MT2 partial agonists were blocked by the pre-treatment with the MT2 antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT, 10 mg/kg) in both paradigms. These results demonstrate the antinociceptive properties of UCM765 and UCM924 in acute and inflammatory pain models and corroborate the concept that MT2 melatonin receptor may be a novel target for analgesic drug development. PMID:26162699

  8. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective.

    PubMed

    Liu, Jiabei; Clough, Shannon J; Hutchinson, Anthony J; Adamah-Biassi, Ekue B; Popovska-Gorevski, Marina; Dubocovich, Margarita L

    2016-01-01

    Melatonin, or 5-methoxy-N-acetyltryptamine, is synthesized and released by the pineal gland and locally in the retina following a circadian rhythm, with low levels during the day and elevated levels at night. Melatonin activates two high-affinity G protein-coupled receptors, termed MT1 and MT2, to exert beneficial actions in sleep and circadian abnormality, mood disorders, learning and memory, neuroprotection, drug abuse, and cancer. Progress in understanding the role of melatonin receptors in the modulation of sleep and circadian rhythms has led to the discovery of a novel class of melatonin agonists for treating insomnia, circadian rhythms, mood disorders, and cancer. This review describes the pharmacological properties of a slow-release melatonin preparation (i.e., Circadin®) and synthetic ligands (i.e., agomelatine, ramelteon, tasimelteon), with emphasis on identifying specific therapeutic effects mediated through MT1 and MT2 receptor activation. Discovery of selective ligands targeting the MT1 or the MT2 melatonin receptors may promote the development of novel and more efficacious therapeutic agents. PMID:26514204

  9. An LHCb general-purpose acquisition board for beam and background monitoring at the LHC

    NASA Astrophysics Data System (ADS)

    Alessio, F.; Guzik, Z.; Jacobsson, R.

    2011-01-01

    In this paper we will present an LHCb custom-made acquisition board which was developed for a continuous beam and background monitoring during LHC operations at CERN. The paper describes both the conceptual design and its performance, and concludes with results from the first period of beam operations at the LHC. The main purpose of the acquisition board is to process signals from a pair of beam pickups to continuously monitor the intensity of each bunch, and to monitor the phase of the arrival time of each proton bunch with respect to the LHC bunch clock. The extreme versatility of the board also allowed the LHCb experiment to build a high-speed and high-sensitivity readout system for a fast background monitor based on a pair of plastic scintillators. The board has demonstrated very good performance and proved to be conceptually valid during the first months of operations at the LHC. Connected to the beam pickups, it provides the LHCb experiment with a real-time measurement of the total intensity of each beam and of the arrival time of each beam at the LHCb Interaction Point. It also monitors the LHC filling scheme and the beam current per bunch at a continuous rate of 40 MHz, and assures a proper global timing of LHCb. The continuous readout of the scintillators at bunch clock speed provides the LHCb experiment with high-resolution information about the beam halo and fast losses during both injection and circulating beam. It has also provided valuable information to the LHC during machine commissioning with beam. Recent results also shows that it could contribute as a luminosity monitor independent from the LHCb experiment readout system. Beam, background and luminosity measurements are continuously fed back to the LHC in the data exchange framework between the experiments and the LHC machine aimed at improving efficiently the experimental conditions real-time.

  10. REM sleep deprivation promotes a dopaminergic influence in the striatal MT2 anxiolytic-like effects

    PubMed Central

    Noseda, Ana Carolina D.; Targa, Adriano D.S.; Rodrigues, Lais S.; Aurich, Mariana F.; Lima, Marcelo M.S.

    2015-01-01

    The aim of this study was to investigate the possible anxiolytic-like effects of striatal MT2 activation, and its counteraction induced by the selective blockade of this receptor. Furthermore, we analyzed this condition under the paradigm of rapid eye movement (REM) sleep deprivation (REMSD) and the animal model of Parkinson’s disease (PD) induced by rotenone. Male Wistar rats were infused with intranigral rotenone (12 μg/μL), and 7 days later were subjected to 24 h of REMSD. Afterwards the rats underwent striatal micro-infusions of selective melatonin MT2 receptor agonist, 8-M-PDOT (10 μg/μL) or selective melatonin MT2 receptor antagonist, 4-P-PDOT (5 μg/μL) or vehicle. Subsequently, the animals were tested in the open-field (OP) and elevated plus maze (EPM) tests. Results indicated that the activation of MT2 receptors produced anxiolytic-like effects. In opposite, the MT2 blockade did not show an anxiogenic-like effect. Besides, REMSD induced anxiolytic-like effects similar to 8-M-PDOT. MT2 activation generated a prevalent locomotor increase compared to MT2 blockade in the context of REMSD. Together, these results suggest a striatal MT2 modulation associated to the REMSD-induced dopaminergic supersensitivity causing a possible dopaminergic influence in the MT2 anxiolytic-like effects in the intranigral rotenone model of PD. PMID:27226821

  11. REM sleep deprivation promotes a dopaminergic influence in the striatal MT2 anxiolytic-like effects.

    PubMed

    Noseda, Ana Carolina D; Targa, Adriano D S; Rodrigues, Lais S; Aurich, Mariana F; Lima, Marcelo M S

    2016-01-01

    The aim of this study was to investigate the possible anxiolytic-like effects of striatal MT2 activation, and its counteraction induced by the selective blockade of this receptor. Furthermore, we analyzed this condition under the paradigm of rapid eye movement (REM) sleep deprivation (REMSD) and the animal model of Parkinson's disease (PD) induced by rotenone. Male Wistar rats were infused with intranigral rotenone (12 μg/μL), and 7 days later were subjected to 24 h of REMSD. Afterwards the rats underwent striatal micro-infusions of selective melatonin MT2 receptor agonist, 8-M-PDOT (10 μg/μL) or selective melatonin MT2 receptor antagonist, 4-P-PDOT (5 μg/μL) or vehicle. Subsequently, the animals were tested in the open-field (OP) and elevated plus maze (EPM) tests. Results indicated that the activation of MT2 receptors produced anxiolytic-like effects. In opposite, the MT2 blockade did not show an anxiogenic-like effect. Besides, REMSD induced anxiolytic-like effects similar to 8-M-PDOT. MT2 activation generated a prevalent locomotor increase compared to MT2 blockade in the context of REMSD. Together, these results suggest a striatal MT2 modulation associated to the REMSD-induced dopaminergic supersensitivity causing a possible dopaminergic influence in the MT2 anxiolytic-like effects in the intranigral rotenone model of PD. PMID:27226821

  12. Inclusive B-meson production at the LHC in the general-mass variable-flavor-number scheme

    SciTech Connect

    Kniehl, B. A.; Kramer, G.; Schienbein, I.

    2011-11-01

    We calculate the next-to-leading-order cross section for the inclusive production of B mesons in pp collisions in the general-mass variable-flavor-number scheme, an approach that takes into account the finite mass of the b quarks. We use realistic evolved nonperturbative fragmentation functions obtained from fits to e{sup +}e{sup -} data and compare our results for the transverse-momentum and rapidity distributions at a center-of-mass energy of 7 TeV with recent data from the CMS Collaboration at the CERN LHC. We find good agreement, in particular, at large values of p{sub T}.

  13. Using MT2 to distinguish dark matter stabilization symmetries

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Kim, Doojin; Walker, Devin G. E.; Zhu, Lijun

    2011-09-01

    We examine the potential of using colliders to distinguish models with parity (Z2) stabilized dark matter (DM) from models in which the DM is stabilized by other symmetries, taking the latter to be a Z3 symmetry for illustration. The key observation is that a heavier mother particle charged under a Z3 stabilization symmetry can decay into one or two DM particles along with standard model particles. This can be contrasted with the decay of a mother particle charged under a parity symmetry; typically, only one DM particle appears in the decay chain. The arXiv:1003.0899 studied the distributions of visible invariant mass from the decay of a single such mother particle in order to highlight the resulting distinctive signatures of Z3 symmetry versus parity symmetry stabilized dark matter candidates. We now describe a complementary study which focuses on decay chains of the two mother particles which are necessarily present in these events. We also include in our analysis the missing energy/momentum in the event. For the Z3 symmetry stabilized mothers, the resulting inclusive final state can have two, three or four DM particles. In contrast, models with Z2 symmetry can have only two. We show that the shapes and edges of the distribution of MT2-type variables, along with ratio of the visible momentum/energy on the two sides of the event, are powerful in distinguishing these different scenarios. Finally we conclude by outlining future work which focuses on reducing combinatoric ambiguities from reconstructing multijet events. Increasing the reconstruction efficiency can allow better reconstruction of events with two or three dark matter candidates in the final state.

  14. General Features of Supersymmetric Signals at the ILC: Solving the LHC Inverse Problem

    SciTech Connect

    Berger, Carola F.; Gainer, James S.; Hewett, JoAnne L.; Lillie, Ben; Rizzo, Thomas G.

    2007-12-19

    We examine whether the {radical}s = 500 GeV International Linear Collider with 80% electron beam polarization can be used to solve the LHC Inverse Problem within the framework of the MSSM. We investigate 242 points in the MSSM parameter space, which we term models, that correspond to the 162 pairs of models found by Arkani-Hamed et al. to give indistinguishable signatures at the LHC. We first determine whether the production of the various SUSY particles is visible above the Standard Model background for each of these parameter space points, and then make a detailed comparison of their various signatures. Assuming an integrated luminosity of 500 fb{sup -1}, we find that only 82 out of 242 models lead to visible signatures of some kind with a significance {ge} 5 and that only 57(63) out of the 162 model pairs are distinguishable at 5(3){sigma}. Our analysis includes PYTHIA and CompHEP SUSY signal generation, full matrix element SM backgrounds for all 2 {yields} 2, 2 {yields} 4, and 2 {yields} 6 processes, ISR and beamstrahlung generated via WHIZARD/GuineaPig, and employs the fast SiD detector simulation org.lcsim.

  15. Cadmium-resistance mechanism in the bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2.

    PubMed

    Shamim, Saba; Rehman, Abdul; Qazi, Mahmood Hussain

    2014-08-01

    Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to study Cd uptake, sorption, intracellular accumulation, metallothionein (MT) induction, and bioremediation potential of both isolates. According to this research work, Cd had a stimulatory effect on the growth of CH34 cells (OD578 = 1.43) compared with mt2 cells (OD578 = 0.8). Addition of N,N'-dicyclohexylcarbodiimide (DCCD) and 2,4-dinitrophenol (DNP) along with Cd resulted in more cell growth in mt2 (OD578 = 0.71) compared with CH34 (OD578 = 0.34). DCCD and DNP inhibited this active uptake only in CH34 but not in mt2. Greater Cd interaction with the cell surface was observed in mt2 cells compared with CH34 cells. Intracellular Cd accumulation was interrupted by DCCD and DNP in CH34 (only 1.81 ± 0.04 μg L(-1) at 5 h) but not in mt2 (24.41 ± 0.01 μg L(-1) at 5 h). Intracellular Cd uptake was observed in even killed mt2 cells (7.11 ± 0.05 μg L(-1) at 5 h) compared with CH34 cells (2.50 ± 0.08 μg L(-1) at 5 h). This result showed that the Cd accumulation mechanism in CH34 is ATPase-dependent, whereas in mt2 uptake mechanism is not ATPase-dependent because mt2 ATPase was not inhibited by DCCD and DNP. CH34 removed 93 mg L(-1) of Cd after 8 days from original industrial effluent, which was more than Cd removal by CH34 from distilled water (i.e. 90 mg L(-1) after 8 days). mt2 was able to remove 80 mg L(-1) of Cd after 8 days from original industrial effluent, which was more than Cd removal by mt2 from distilled water (i.e. 77 mg L(-1) after 8 days). Cd did not induce any MT in CH34, but it did so in mt2 (14 kDa), which was thought to be a Cd-resistance mechanism operative in mt2. PMID:24595738

  16. Putative role of monoamines in the antidepressant-like mechanism induced by striatal MT2 blockade.

    PubMed

    Noseda, Ana Carolina D; Rodrigues, Lais S; Targa, Adriano D S; Aurich, Mariana F; Vital, Maria A B F; Da Cunha, Cláudio; Lima, Marcelo M S

    2014-12-15

    It has been observed that the secretion pattern of melatonin is modified in Parkinson's disease (PD). Hence, it is hypothesized that dysregulations of melatonin MT2 receptors may be involved in the installation of depression in PD patients. Together with recent evidence based on the use of the intranigral rotenone model of PD, have led to the hypothesis that modulating the striatal MT2 receptor could provide a more comprehensive understanding of the antidepressant properties triggered. To further investigate this issue, male Wistar rats were infused with intranigral rotenone (12μg/μL) and seven days later subjected to a rapid eye movement sleep deprivation (REMSD) for 24h. After, we injected within the striatum the MT2 selective agonist, 8-M-PDOT (10μg/μL), the MT2 selective antagonist, 4-P-PDOT (5μg/μL) or vehicle. Subsequently, they were tested in the forced swimming test and were allowed to perform the sleep rebound (REB). Then, the rats were re-tested, and the striatum, hippocampus and substantia nigra pars compacta (SNpc) were collected for neurochemical purposes. Results indicated substantial antidepressant effects promoted by the blockade of striatal MT2 receptors that were potentiated by REMSD. MT2 activation increased DA levels in the striatum and hippocampus, while MT2 blockade increase DA in the SNpc. 4-P-PDOT treatment of the rotenone REMSD group generated a decrement in 5-HT levels within the striatum, hippocampus and SNpc. However, increased 5-HT turnover was observed among these structures. Therefore, we demonstrated the neurochemical antidepressant effect induced by striatal MT2 blockage associated with REMSD in the rotenone model of PD. PMID:25218873

  17. Physicochemical surface properties of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress.

    PubMed

    Shamim, Saba; Rehman, Abdul

    2014-04-01

    Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd) resistant and sensitive bacteria, respectively to study the effect of Cd on physicochemical surface properties which include the study of surface charge and hydrophobicity which are subjected to vary under stress conditions. In this research work, effective concentration 50 (EC50 ) was calculated to exclude the doubt that dead cells were also responding and used as reference point to study the changes in cell surface properties in the presence of Cd. EC50 of C. metallidurans CH34 was found to be 2.5 and 0.25 mM for P. putida mt2. The zeta potential analysis showed that CH34 cells were slightly less unstable than mt2 cells as CH34 cells exhibited -8.5 mV more negative potential than mt2 cells in the presence of Cd in growth medium. Cd made P. putida mt2 surface to behave as intermediate hydrophilic (θw  = 25.32°) while C. metallidurans CH34 as hydrophobic (θw  = 57.26°) at their respective EC50 . Although belonging to the same gram-negative group, both bacteria behaved differently in terms of changes in membrane fluidity. Expression of trans fatty acids was observed in mt2 strain (0.45%) but not in CH34 strain (0%). Similarly, cyclopropane fatty acids were observed more in mt2 strain (0.06-0.14%) but less in CH34 strain (0.01-0.02%). Degree of saturation of fatty acids decreased in P. putida mt2 (36.8-33.75%) while increased in C. metallidurans CH34 (35.6-39.3%). Homeoviscous adaptation is a survival strategy in harsh environments which includes expression of trans fatty acids and cyclo fatty acids in addition to altered degree of saturation. Different bacteria show different approaches to homeoviscous adaptation. PMID:23564035

  18. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT

    PubMed Central

    Kowald, Gregory R.; Stürzenbaum, Stephen R.; Blindauer, Claudia A.

    2016-01-01

    Earthworms express, as most animals, metallothioneins (MTs)—small, cysteine-rich proteins that bind d10 metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by 1H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo. PMID:26742040

  19. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential.

    PubMed

    Zlotos, Darius P; Jockers, Ralf; Cecon, Erika; Rivara, Silvia; Witt-Enderby, Paula A

    2014-04-24

    Numerous physiological functions of the pineal gland hormone melatonin are mediated via activation of two G-protein-coupled receptors, MT1 and MT2. The melatonergic drugs on the market, ramelteon and agomelatine, as well as the most advanced drug candidates under clinical evaluation, tasimelteon and TIK-301, are high-affinity nonselective MT1/MT2 agonists. A great number of MT2-selective ligands and, more recently, several MT1-selective agents have been reported to date. Herein, we review recent advances in the field focusing on high-affinity agonists and antagonists and those displaying selectivity toward MT1 and MT2 receptors. Moreover, the existing models of MT1 and MT2 receptors as well as the current status in the emerging field of melatonin receptor oligomerization are critically discussed. In addition to the already existing indications, such as insomnia, circadian sleep disorders, and depression, new potential therapeutic applications of melatonergic ligands including cardiovascular regulation, appetite control, tumor growth inhibition, and neurodegenerative diseases are presented. PMID:24228714

  20. Searches for supersymmetry using the M$_{T2}$ variable in hadronic events produced in pp collisions at 8 TeV

    SciTech Connect

    Khachatryan, V.

    2015-05-15

    Searches for supersymmetry (SUSY) are performed using a sample of hadronic events produced in 8 TeV pp collisions at the CERN LHC. The searches are based on the M$_{T2}$ variable, which is a measure of the transverse momentum imbalance in an event. The data were collected with the CMS detector and correspond to an integrated luminosity of 19.5 fb1. Two related searches are performed. The first is an inclusive search based on signal regions defined by the value of the M$_{T2}$ variable, the hadronic energy in the event, the jet multiplicity, and the number of jets identified as originating from bottom quarks. The second is a search for a mass peak corresponding to a Higgs boson decaying to a bottom quark-antiquark pair, where the Higgs boson is produced as a decay product of a SUSY particle. For both searches, the principal backgrounds are evaluated with data control samples. No significant excess over the expected number of background events is observed, and exclusion limits on various SUSY models are derived.

  1. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity.

    PubMed

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (Biolog(TM)) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  2. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity

    PubMed Central

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (BiologTM) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  3. FoxO1 regulates apoptosis induced by asbestos in the MT-2 human T-cell line.

    PubMed

    Matsuzaki, Hidenori; Lee, Suni; Maeda, Megumi; Kumagai-Takei, Naoko; Nishimura, Yasumitsu; Otsuki, Takemi

    2016-09-01

    Asbestos is known to cause malignant mesothelioma and lung cancer. Recent studies implicate tumor immunity in the development of various tumors, including malignant mesothelioma. In order to establish an in vitro T-cell model to clarify the effects of long-term exposure of asbestos on tumor immunity, in this study, human T-cell line MT-2 cells were cultured with asbestos for longer than 8 months and the resultant cells (MT-2Rst) were assessed for the expression of forkhead transcription factor FoxO1. Gene expression analysis revealed that the amount of FoxO1 mRNA decreased after long-term exposure of the MT-2 cells to asbestos. In accordance with this reduction in FoxO1, pro-apoptotic Foxo1 target genes Puma, Fas ligand and Bim were also seen to be down-regulated in MT-2Rst cells. Furthermore, shRNA-mediated knock-down of FoxO1 reduced the number of apoptotic parental MT-2 cells after treatment with asbestos. On the other hand, over-expression of FoxO1 did not affect asbestos-induced apoptosis in MT-2Rst cells. These results suggested that FoxO1 played an important role in regulating asbestos-induced apoptosis and confirmed the presence of multiple pathways regulating resistance to asbestos in MT-2Rst cells. PMID:27042963

  4. Isolation, molecular characterization and functional analysis of OeMT2, an olive metallothionein with a bioremediation potential.

    PubMed

    Dundar, Ekrem; Sonmez, Görkem Deniz; Unver, Turgay

    2015-02-01

    Metallothioneins are essential in plants for metal detoxification in addition to their other roles in plant life cycle. This study reports the characterization of an olive (Olea europaea L. cv. Ayvalik) metallothionein with respect to molecular and functional properties. A cDNA encoding a type 2 metallothionein from olive was isolated from a leaf cDNA library, characterized and named OeMT2 after its molecular and functional properties. OeMT2 was expressed in Escherichia coli, and a single protein band was confirmed by protein gel blot analysis. Metal tolerance ability of bacterial cells expressing OeMT2 was determined against 0.2 mM CdCl2, 0.4 mM CdCl2 and 1 mM CuSO4 in the growth medium. Metal ion contents of bacterial cells expressing OeMT2 were measured by ICP. Metal tolerance assays and ICP measurements suggested that OeMT2 effectively binds Cu and Cd. Molecular analysis of OeMT2 revealed two introns, three exons, a short 3' UTR and a long 5' UTR. Comparing the genomic sequences from 14 olive cultivars revealed OeMT2 had both intron and exon polymorphisms dividing the cultivars into three groups. Real-time PCR analysis demonstrated that OeMT2 expresses more or less the same amounts in all tissues of the olive tree examined. The genomic copy number of OeMT2 was also determined employing real-time PCR which suggested a single copy gene in the olive genome while three other MT2 members were determined from the draft olive genome sequences of Ayvalik cultivar and that of wild olive. This is the first report on molecular and functional characterization of an olive metallothionein and shows that OeMT2 expressed in E. coli has the capability of effectively binding toxic heavy metals. This may suggest that OeMT2 plays an important role in metal homeostasis in addition to a good potential for environmental and industrial usage. PMID:25204791

  5. Bacillus rubiinfantis sp. nov. strain mt2T, a new bacterial species isolated from human gut

    PubMed Central

    Tidjiani Alou, M.; Rathored, J.; Khelaifia, S.; Michelle, C.; Brah, S.; Diallo, B.A.; Raoult, D.; Lagier, J.-C.

    2015-01-01

    Bacillus rubiinfantis sp. nov. strain mt2T is the type strain of B. rubiinfantis sp. nov., isolated from the fecal flora of a child with kwashiorkor in Niger. It is Gram-positive facultative anaerobic rod belonging to the Bacillaceae family. We describe the features of this organism alongside the complete genome sequence and annotation. The 4 311 083 bp long genome (one chromosome but no plasmid) contains 4028 protein-coding gene and 121 RNA genes including nine rRNA genes. PMID:27076912

  6. Antioxidative enzyme profiling and biosorption ability of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress.

    PubMed

    Shamim, Saba; Rehman, Abdul

    2015-03-01

    Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to study their biosorption ability and their antioxidative enzymes. The minimal inhibitory concentration of C. metallidurans CH34 for Cd was found to be 30 mM, and for P. putida mt2 it was 1.25 mM. The tube dilution method revealed the heavy-metal resistance pattern of C. metallidurans CH34 as Ni(2+) (10 mM)>Zn(2+) (4 mM)>Cu(2+) (2 mM)>Hg(2+) (1 mM)>Cr(2+) (1 mM)>Pb(2+) (0 mM), whereas P. putida mt2 was only resistant to Zn(2+) (1 mM). Under Cd stress, the induction of GSH was higher in C. metallidurans CH34 (0.359 ± 0.010 mM g(-1)  FW) than in P. putida mt2 (0.286 ± 0.005 mM g(-1)  FW). Glutathione reductase was more highly expressed in the mt2 strain, in contrast to non-protein thiols and peroxidase. Unlike dead bacterial cells, live cells of both bacteria showed significant Cd biosorption, i.e. more than 80% at 48 h. C. metallidurans CH34 used only catalase, whereas P. putida mt2 used superoxide dismutase and ascorbate peroxidase to combat Cd stress. This study investigated the Cd biosorption ability and enzymes involved in the Cd detoxification mechanisms of C. metallidurans CH34 and P. putida mt2. PMID:23832807

  7. MT2-MMP-dependent release of collagen IV NC1 domains regulates submandibular gland branching morphogenesis

    PubMed Central

    Rebustini, Ivan T.; Myers, Christopher; Lassiter, Keyonica S.; Surmak, Andrew; Szabova, Ludmila; Holmbeck, Kenn; Pedchenko, Vadim; Hudson, Billy G.; Hoffman, Matthew P.

    2009-01-01

    Summary Proteolysis is essential during branching morphogenesis, but the roles of MT-MMPs and their proteolytic products are not clearly understood. Here we discover that decreasing MT-MMP activity during submandibular gland branching morphogenesis decreases proliferation and increases collagen IV and MT-MMP expression. Importantly, reducing epithelial MT2-MMP profoundly decreases proliferation and morphogenesis, increases Col4a2 and intracellular accumulation of collagen IV, and decreases the proteolytic release of collagen IV NC1 domains. Importantly, we demonstrate the presence of collagen IV NC1 domains in developing tissue. Furthermore, recombinant collagen IV NC1 domains rescue branching morphogenesis after MT2-siRNA-treatment, increasing MT-MMP and pro-proliferative gene expression via β1 integrin and PI3K-AKT signaling. Additionally, HBEGF also rescues MT2-siRNA-treatment, increasing NC1 domain release, proliferation, and MT2-MMP and Hbegf expression. Our studies provide mechanistic insight into how MT2-MMP-dependent release of bioactive NC1 domains from collagen IV is critical for integrating collagen IV synthesis and proteolysis with epithelial proliferation during branching morphogenesis. PMID:19853562

  8. Searches for supersymmetry using the M$$_{T2}$$ variable in hadronic events produced in pp collisions at 8 TeV

    DOE PAGESBeta

    Khachatryan, V.

    2015-05-15

    Searches for supersymmetry (SUSY) are performed using a sample of hadronic events produced in 8 TeV pp collisions at the CERN LHC. The searches are based on the Mmore » $$_{T2}$$ variable, which is a measure of the transverse momentum imbalance in an event. The data were collected with the CMS detector and correspond to an integrated luminosity of 19.5 fb1. Two related searches are performed. The first is an inclusive search based on signal regions defined by the value of the M$$_{T2}$$ variable, the hadronic energy in the event, the jet multiplicity, and the number of jets identified as originating from bottom quarks. The second is a search for a mass peak corresponding to a Higgs boson decaying to a bottom quark-antiquark pair, where the Higgs boson is produced as a decay product of a SUSY particle. For both searches, the principal backgrounds are evaluated with data control samples. No significant excess over the expected number of background events is observed, and exclusion limits on various SUSY models are derived.« less

  9. Melatonin inhibits cholangiocyte hyperplasia in cholestatic rats by interaction with MT1 but not MT2 melatonin receptors.

    PubMed

    Renzi, Anastasia; Glaser, Shannon; Demorrow, Sharon; Mancinelli, Romina; Meng, Fanyin; Franchitto, Antonio; Venter, Julie; White, Mellanie; Francis, Heather; Han, Yuyan; Alvaro, Domenico; Gaudio, Eugenio; Carpino, Guido; Ueno, Yoshiyuki; Onori, Paolo; Alpini, Gianfranco

    2011-10-01

    In bile duct-ligated (BDL) rats, large cholangiocytes proliferate by activation of cAMP-dependent signaling. Melatonin, which is secreted from pineal gland as well as extrapineal tissues, regulates cell mitosis by interacting with melatonin receptors (MT1 and MT2) modulating cAMP and clock genes. In the liver, melatonin suppresses oxidative damage and ameliorates fibrosis. No information exists regarding the role of melatonin in the regulation of biliary hyperplasia. We evaluated the mechanisms of action by which melatonin regulates the growth of cholangiocytes. In normal and BDL rats, we determined the hepatic distribution of MT1, MT2, and the clock genes, CLOCK, BMAL1, CRY1, and PER1. Normal and BDL (immediately after BDL) rats were treated in vivo with melatonin before evaluating 1) serum levels of melatonin, bilirubin, and transaminases; 2) intrahepatic bile duct mass (IBDM) in liver sections; and 3) the expression of MT1 and MT2, clock genes, and PKA phosphorylation. In vitro, large cholangiocytes were stimulated with melatonin in the absence/presence of luzindole (MT1/MT2 antagonist) and 4-phenyl-2-propionamidotetralin (MT2 antagonist) before evaluating cell proliferation, cAMP levels, and PKA phosphorylation. Cholangiocytes express MT1 and MT2, CLOCK, BMAL1, CRY1, and PER1 that were all upregulated following BDL. Administration of melatonin to BDL rats decreased IBDM, serum bilirubin and transaminases levels, the expression of all clock genes, cAMP levels, and PKA phosphorylation in cholangiocytes. In vitro, melatonin decreased the proliferation, cAMP levels, and PKA phosphorylation, decreases that were blocked by luzindole. Melatonin may be important in the management of biliary hyperplasia in human cholangiopathies. PMID:21757639

  10. LHC Computing

    SciTech Connect

    Lincoln, Don

    2015-07-28

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  11. Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose.

    PubMed

    Latrach Tlemçani, Leith; Corroler, David; Barillier, Daniel; Mosrati, Ridha

    2008-08-01

    Kinetic study of growth of Pseudomonas putida mt-2 was investigated in batch culture under aerobic conditions, on glucose as initial carbon and energy source. Cell growth was continuous and three phases were found regarding accumulation of intermediates: (1) glucose was largely converted to gluconate and 2-ketogluconate, (2) then gluconate was converted to 2-ketogluconate and (3) the latter was consumed after gluconate depletion. Examination of growth kinetics and yields showed that glucose flux was mainly oriented to oxidation reduction in the periplasm and less towards biosynthesis. Values of respiratory quotient and of CO2/biomass and O2/biomass yields were characteristic of each phase. Main enzymatic activities involved in the use of these substrates were always detected meaning that concomitant assimilation is possible. However the levels of these activities varied during growth. Membrane conversions seem to have a significant energetic contribution explaining the higher specific growth rate obtained in glucose phase compared to gluconate and 2-ketogluconate ones. This is also noticeable through the evolution of the yields Y(O2)/X and Y(CO2)/X. Although the three convergent pathways are operational and can be genetically controlled, the progression of the culture in successive phases highlights an overall level of regulation in response to the energetic needs. PMID:18493743

  12. Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols

    SciTech Connect

    Bartels, I.; Knackmuss, H.J.; Reineke, W.

    1984-03-01

    The inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-chloro- and 3-fluorocatechol and the iron-chelating agent Tiron (catechol-3,5-disulfonate) was studied. Whereas inactivation by Tiron is an oxygen-independent and mostly reversible process, inactivation by the 3-halocatechols was only observed in the presence of oxygen and was largely irreversible. The rate constants for inactivation (K/sub 2/) were 1.62 x 10/sup -3/ sec/sup -1/ for 3-chlorocatechol and 2.38 x 10/sup -3/ sec/sup -1/ for 3-fluorocatechol. The inhibitor constants (K/sub i/) were 23 ..mu..M for 3-chlorocatechol and 17 ..mu..M for 3-fluorocatechol. The kinetic data for 3-fluorocatechol could only be obtained in the presence of 2-mercaptoethanol. Besides inactivated enzyme, some 2-hydroxyhexa-2,4-dienoic acid as the actual suicide product of meta-cleavage. A side product of 3-fluorocatechol cleavage is a yellow compound with the spectral characteristics of a 2-hydroxy-6-oxohexa-2,4-dienoci acid indicating 1,6-cleavage. Rates of inactivation by 3-fluorocatechol were reduced in the presence of superoxide dismutase, catalase, formate, and mannitol, which implies that superoxide anion, hydrogen peroxide, and hydroxyl radical exhibit additional inactivation. 64 references.

  13. The SbMT-2 Gene from a Halophyte Confers Abiotic Stress Tolerance and Modulates ROS Scavenging in Transgenic Tobacco

    PubMed Central

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2−; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance. PMID:25340650

  14. Melatonin inhibits insulin secretion in rat insulinoma β-cells (INS-1) heterologously expressing the human melatonin receptor isoform MT2.

    PubMed

    Mühlbauer, Eckhard; Albrecht, Elke; Hofmann, Kathleen; Bazwinsky-Wutschke, Ivonne; Peschke, Elmar

    2011-10-01

    Melatonin exerts some of its effects via G-protein-coupled membrane receptors. Two membrane receptor isoforms, MT1 and MT2, have been described. The MT1 receptor is known to inhibit second messenger cyclic adenosine monophosphate (cAMP) signaling through receptor-coupling to inhibitory G-proteins (G(i) ). Much less is known about the MT2 receptor, but it has also been implicated in signaling via G(i) -proteins. In rat pancreatic β-cells, it has recently been reported that the MT2 receptor plays an inhibitory role in the cyclic guanosine monophosphate (cGMP) pathway. This study addresses the signaling features of the constitutively expressed human recombinant MT2 receptor (hMT2) and its impact on insulin secretion, using a rat insulinoma β-cell line (INS-1). On the basis of a specific radioimmunoassay, insulin secretion was found to be more strongly reduced in the clones expressing hMT2 than in INS-1 controls, when incubated with 1 or 100 nm melatonin. Similarly, cAMP and cGMP levels, measured by specific enzyme-linked immunosorbent assays (ELISAs), were reduced to a greater extent in hMT2 clones after melatonin treatment. In hMT2-expressing cells, the inhibitory effect of melatonin on insulin secretion was blocked by pretreatment with pertussis toxin, demonstrating the coupling of the hMT2 to G(i) -proteins. These results indicate that functional hMT2 expression leads to the inhibition of cyclic nucleotide signaling and a reduction in insulin release. Because genetic variants of the hMT2 receptor are considered to be risk factors in the development of type 2 diabetes, our results are potentially significant in explaining and preventing the pathogenesis of this disease. PMID:21585522

  15. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals

    SciTech Connect

    Li, Yan; Chen, Yue Yi; Yang, Shu Guang; Tian, Wei Min

    2015-05-22

    Metallothioneins (MTs) are of low molecular mass, cysteine-rich proteins. They play an important role in the detoxification of heavy metals and homeostasis of intracellular metal ions, and protecting against intracellular oxidative damages. In this study a full-length cDNA of type 2 plant metallothioneins, HbMT2a, was isolated from 25 mM Polyethyleneglycol (PEG) stressed leaves of Hevea brasiliensis by RACE. The HbMT2a was 372 bp in length and had a 237 bp open reading frame (ORF) encoding for a protein of 78 amino acid residues with molecular mass of 7.772 kDa. The expression of HbMT2a in the detached leaves of rubber tree clone RY7-33-97 was up-regulated by Me-JA, ABA, PEG, H{sub 2}O{sub 2}, Cu{sup 2+} and Zn{sup 2+}, but down-regulated by water. The role of HbMT2a protein in protecting against metal toxicity was demonstrated in vitro. PET-28a-HbMT2-beared Escherichia coli. Differential expression of HbMT2a upon treatment with 10 °C was observed in the detached leaves of rubber tree clone 93-114 which is cold-resistant and Reken501 which is cold-sensitive. The expression patterns of HbMT2a in the two rubber tree clones may be ascribed to a change in the level of endogenous H{sub 2}O{sub 2}. - Highlights: • Cloning an HbMT2a gene from rubber tree. • Analyzing expression patterns of HbMT2a upon abiotic stress and heavy metal stress. • Finding different expression patterns of HbMT2a among two Hevea germplasm. • The expressed protein of HbMT2a enhances copper and zinc tolerance in Escherichia coli.

  16. Melatonin modulates the functions of porcine granulosa cells via its membrane receptor MT2 in vitro.

    PubMed

    He, Ya-Mei; Deng, Hong-Hui; Shi, Mei-Hong; Bodinga, Bello Musa; Chen, Hua-Li; Han, Zeng-Sheng; Jiang, Zhong-Liang; Li, Qing-Wang

    2016-09-01

    Melatonin (N-acetyl-5-methoxytryptamine) is documented as a hormone involved in the circadian regulation of physiological and neuroendocrine function in mammals. Herein, the effects of melatonin on the functions of porcine granulosa cells in vitro were investigated. Porcine granulosa cells were cultivated with variable concentrations of melatonin (0, 0.001, 0.01, 0.1, 1.0, and 10ng/mL) for 48h. Melatonin receptor agonist (IIK7) and antagonist (Luzindole, 4P-PDOT) were used to further examine the action of melatonin. The results showed optimum cell viability and colony-forming efficiency of porcine granulosa cells at 0.01ng/mL melatonin for 48-h incubation period. The percentage of apoptotic granulosa cells was significantly reduced by 0.01 and 0.1ng/mL melatonin within the 48-h incubation period as compared with the rest of the treatments. Estradiol biosynthesis was significantly stimulated by melatonin supplementation and suppressed for the progesterone secretion; the minimum ratio of progesterone to estradiol was 1.82 in 0.01ng/mL melatonin treatment after 48h of cultivation. Moreover, the expression of BCL-2, CYP17A1, CYP19A1, SOD1, and GPX4 were up-regulated by 0.01ng/mL melatonin or combined with IIK7, but decreased for the mRNA levels of BAX, P53, and CASPASE-3, as compared with control or groups treated with Luzindole or 4P-PDOT in the presence of melatonin. In conclusion, the study demonstrated that melatonin mediated proliferation, apoptosis, and steroidogenesis in porcine granulosa cells predominantly through the activation of melatonin receptor MT2 in vitro, which provided evidence of the beneficial role of melatonin as well as its functional mechanism in porcine granulosa cells in vitro. PMID:27477115

  17. CCNP Award Paper: Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology

    PubMed Central

    Comai, Stefano; Gobbi, Gabriella

    2014-01-01

    Background Melatonin (MLT) is a pleiotropic neurohormone controlling many physiological processes and whose dysfunction may contribute to several different diseases, such as neurodegenerative diseases, circadian and mood disorders, insomnia, type 2 diabetes and pain. Melatonin is synthesized by the pineal gland during the night and acts through 2 G-protein coupled receptors (GPCRs), MT1 (MEL1a) and MT2 (MEL1b). Although a bulk of research has examined the physiopathological effects of MLT, few studies have investigated the selective role played by MT1 and MT2 receptors. Here we have reviewed current knowledge about the implications of MT2 receptors in brain functions. Methods We searched PubMed, Web of Science, Scopus, Google Scholar and articles reference lists for studies on MT2 receptor ligands in sleep, anxiety, neuropsychiatric diseases and psychopharmacology, including genetic studies on the MTNR1B gene, which encodes the melatonin MT2 receptor. Results These studies demonstrate that MT2 receptors are involved in the pathophysiology and pharmacology of sleep disorders, anxiety, depression, Alzheimer disease and pain and that selective MT2 receptor agonists show hypnotic and anxiolytic properties. Limitations Studies examining the role of MT2 receptors in psychopharmacology are still limited. Conclusion The development of novel selective MT2 receptor ligands, together with further preclinical in vivo studies, may clarify the role of this receptor in brain function and psychopharmacology. The superfamily of GPCRs has proven to be among the most successful drug targets and, consequently, MT2 receptors have great potential for pioneer drug discovery in the treatment of mental diseases for which limited therapeutic targets are currently available. PMID:23971978

  18. Overexpression of Iris. lactea var. chinensis metallothionein llMT2a enhances cadmium tolerance in Arabidopsis thaliana.

    PubMed

    Gu, Chun-Sun; Liu, Liang-qin; Zhao, Yan-Hai; Deng, Yan-ming; Zhu, Xu-dong; Huang, Su-Zhen

    2014-07-01

    Metallothioneins (MTs) are cysteine-rich, low molecular weight, heavy metal-binding protein molecules. Here, a full-length cDNA homologue of MT2a (type 2 metallothionein) was isolated from the cadmium-tolerant species Iris. lactea var. chinensis (I. lactea var. chinensis). Expression of IlMT2a in I. lactea var. chinensis roots and leaves was up-regulated in response to cadmium stress. When the gene was constitutively expressed in Arabidopsis thaliana (A. thaliana), root length of transgenic lines was longer than that of wild-type under 50μM or 100μM cadmium stress. However, there was no difference of cadmium absorption between wild-type and trangenic lines. Histochemical staining by 3,3-diaminobenzidine (DAB) and nitroblue tetrazoliu (NBT) clearly demonstrated that transgenic lines accumulated remarkably less H2O2 and O2(-) than wild-type. Together, IlMT2a may be a promising gene for the cadmium tolerance improvement. PMID:24780229

  19. Ligand binding to the human MT2 melatonin receptor: The role of residues in transmembrane domains 3, 6, and 7

    SciTech Connect

    Mazna, Petr; Berka, Karel; Balik, Ales; Svoboda, Petr; Obsilova, Veronika; Obsil, Tomas . E-mail: teisingr@biomed.cas.cz

    2005-07-08

    To better understand the mechanism of interactions between G-protein-coupled melatonin receptors and their ligands, our previously reported homology model of human MT2 receptor with docked 2-iodomelatonin was further refined and used to select residues within TM3, TM6, and TM7 potentially important for receptor-ligand interactions. Selected residues were mutated and radioligand-binding assay was used to test the binding affinities of hMT2 receptors transiently expressed in HEK293 cells. Our data demonstrate that residues N268 and A275 in TM6 as well as residues V291 and L295 in TM7 are essential for 2-iodomelatonin binding to the hMT2 receptor, while TM3 residues M120, G121, V124, and I125 may participate in binding of other receptor agonists and/or antagonists. Presented data also hint at possible specific interaction between the side-chain of Y188 in second extracellular loop and N-acetyl group of 2-iodomelatonin.

  20. Experimental Methods at the LHC

    NASA Astrophysics Data System (ADS)

    Korytov, Andrey

    The lectures presented below cover the basics of proton-proton collisions at the LHC, the principles of particle detection, the methodologies employed for reconstruction of individual collision events, general strategies for signal event selection, data-driven techniques for evaluating signal efficiencies and background rates, as well as the main statistical concepts used for physics inference from selected data. The described principles and concepts are then illustrated on an example of a search for a Higgs boson and measurement of its properties in the H → ZZ → 4ℓ decay mode. The discussion is largely based on CMS, taken as a representative LHC experiment.

  1. LHC detector upgrades

    SciTech Connect

    Dan Green

    2003-09-15

    The LHC detectors are well into their construction phase. The LHC schedule shows first beam to ATLAS and CMS in 2007. Because the LHC accelerator has begun to plan for a ten fold increase in LHC design luminosity (the SLHC or super LHC) it is none too soon to begin to think about the upgrades which will be required of the present LHC detectors. In particular, the tracking systems of ATLAS and CMS will need to be completely rebuilt. Given the time needed to do the R & D, make prototypes, and construct the new detectors and given the accelerator schedule for the SLHC, work needs to begin rather soon.

  2. Synthesis and pharmacological evaluation of dual ligands for melatonin (MT1/MT2) and serotonin 5-HT2C receptor subtypes (II).

    PubMed

    Ettaoussi, Mohamed; Pérès, Basile; Errazani, Aïcha; Boutin, Jean A; Caignard, Daniel-Henri; Delagrange, Philippe; Melnyk, Patricia; Berthelot, Pascal; Yous, Saïd

    2015-01-27

    In this paper we report the investigation of C-3 and β-acetamide positions of agomelatine analogues. Concomitant insertion of a hydroxymethyl in the β-acetamide position and aliphatic groups in C-3 position produced a positive effect on both melatonin (MT1, MT2) and serotonin (5-HT2C) binding affinities. In particular, the allyl 6b and ethyl 15a represented the more interesting compounds of this series. Furthermore, the introduction of methyl cycloalkyl groups (compounds 11a, 12a) exhibited no change in both MT2 and 5-HT2C binding affinities while a decrease of MT1 binding affinity occurred leading to an MT2 selectivity. Finally, the acetamide modulation has led to methyl thiourea 11h, with a weak MT2 selectivity. PMID:25528336

  3. Swimming, swarming, twitching, and chemotactic responses of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 in the presence of cadmium.

    PubMed

    Shamim, Saba; Rehman, Abdul; Qazi, Mahmood Hussain

    2014-04-01

    To use of microorganisms for bioremediation purposes, the study of their motility behavior toward metals is essential. In the present study, Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to evaluate the effects of Cd on their motility behaviors. Potassium morpholinopropane sulfonate (MOPS) buffer was used to observe the motility behavior of both isolates. Movement of mt2 was less in MOPS buffer compared with CH34, likely reflecting the mono-flagellated nature of mt2 and the peritrichous nature of CH34. The swimming, swarming, twitching, and chemotaxis behaviors of mt2 were greater in the presence of glucose than that of Cd. mt2 exhibited negative motility behaviors when exposed to Cd, but the opposite effect was seen in CH34. Cd was found to be a chemorepellent for mt2 but a chemoattractant for CH34, suggesting that CH34 is a potential candidate for metal (Cd) bioremediation. PMID:24306627

  4. Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana.

    PubMed

    Liu, Jia; Shi, Xiaoting; Qian, Meng; Zheng, Luqing; Lian, Chunlan; Xia, Yan; Shen, Zhenguo

    2015-08-30

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich metal-binding proteins found in numerous genera and species, but their functions in abiotic stress tolerance remain unclear. Here, a MT gene from Oryza sativa, OsMT2c, was isolated and characterized, encoding a type 2 MT, and observed expression in the roots, leaf sheathes, and leaves, but only weak expression in seeds. OsMT2c was upregulated by copper (Cu) and hydrogen peroxide (H2O2) treatments. Excessive Cu elicited a rapid and sustained production and release of H2O2 in rice, and exogenous H2O2 scavengers N,N'-dimethylthiourea (DMTU) and ascorbic acid (Asc) decreased H2O2 production and OsMT2c expression. Furthermore, the expression of OsMT2c increased in the osapx2 mutant in which the H2O2 levels were higher than in wild-type (WT) plants. These results showed that Cu increased MT2c expression through the production and accumulation of Cu-induced H2O2 in O. sativa. In addition, the transgenic OsMT2c-overexpressing Arabidopsis displayed improved tolerance to Cu stress and exhibited increased reactive oxygen species (ROS) scavenging ability compared to WT and empty-vector (Ev) seedlings. PMID:25867584

  5. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals.

    PubMed

    Li, Yan; Chen, Yue Yi; Yang, Shu Guang; Tian, Wei Min

    2015-05-22

    Metallothioneins (MTs) are of low molecular mass, cysteine-rich proteins. They play an important role in the detoxification of heavy metals and homeostasis of intracellular metal ions, and protecting against intracellular oxidative damages. In this study a full-length cDNA of type 2 plant metallothioneins, HbMT2a, was isolated from 25 mM Polyethyleneglycol (PEG) stressed leaves of Hevea brasiliensis by RACE. The HbMT2a was 372bp in length and had a 237bp open reading frame (ORF) encoding for a protein of 78 amino acid residues with molecular mass of 7.772 kDa. The expression of HbMT2a in the detached leaves of rubber tree clone RY7-33-97 was up-regulated by Me-JA, ABA, PEG, H2O2, Cu(2+) and Zn(2+), but down-regulated by water. The role of HbMT2a protein in protecting against metal toxicity was demonstrated in vitro. PET-28a-HbMT2-beared Escherichia coli. Differential expression of HbMT2a upon treatment with 10 °C was observed in the detached leaves of rubber tree clone 93-114 which is cold-resistant and Reken501 which is cold-sensitive. The expression patterns of HbMT2a in the two rubber tree clones may be ascribed to a change in the level of endogenous H2O2. PMID:25858315

  6. Supersymmetry Breaking, Gauge Mediation, and the LHC

    SciTech Connect

    Shih, David

    2015-04-14

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  7. Unravelling strings at the CERN LHC

    SciTech Connect

    Kane, Gordon L.; Kumar, Piyush; Shao Jing

    2008-06-01

    We construct LHC signature footprints for four semirealistic string/M theory vacua with a minimal supersymmetric standard model visible sector. We find that they all give rise to limited regions in LHC signature space and are qualitatively different from each other for understandable reasons. We also propose a technique in which correlations of LHC signatures can be effectively used to distinguish among these string theory vacua. We expect the technique to be useful for more general string vacua. We argue that further systematic analysis with this approach will allow LHC data to disfavor or exclude major 'corners' of string/M theory and favor others. The technique can be used with limited integrated luminosity and improved.

  8. Status of LHC crab activity simulations and beam studies

    SciTech Connect

    Calaga,R.; Assman, R.; Barranco, J.; Barranco, J.; Calaga, R.; Caspers, F.; Ciapala, E.; De-Maria, R.; Koutchouk, J. P.; Linnecar, T.; Metral, E.; Morita, A.; Solyak, N.; Sun, Y.; Tomas, R.; Tuckmantel, J.; Weiler, T.; Zimmermann, F.

    2009-05-04

    The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. The general project status and some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects. beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here.

  9. Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica DB21MT-2 isolated from the 11,000-m depth of the Mariana Trench.

    PubMed

    Kasahara, Ryota; Sato, Takako; Tamegai, Hideyuki; Kato, Chiaki

    2009-11-01

    3-isopropylmalate dehydrogenase (IPMDH)-encoding leuB genes were obtained from the obligate piezophile Shewanella benthica DB21MT-2 and non-piezophile Shewanella oneidensis MR-1. The genes were expressed in Escherichia coli and the proteins were purified using His-tag. The estimated kinetic parameters of these enzymes indicated that IPMDH of S. benthica DB21MT-2 is more tolerant of high pressure than that of S. oneidensis MR-1. Thus such an adaptation is one of the mechanisms bacteria utilize for survival at high pressures. PMID:19897891

  10. Metabolism of Allylglycine and cis-Crotylglycine by Pseudomonas putida (arvilla) mt-2 Harboring a TOL Plasmid

    PubMed Central

    Kunz, Daniel A.; Ribbons, Douglas W.; Chapman, Peter J.

    1981-01-01

    Spontaneous mutants which acquired the ability to utilize d-allylglycine (d-2-amino-4-pentenoic acid) and dl-cis-crotylglycine (dl-2-amino-cis-4-hexenoic acid) but not l-allylglycine or dl-trans-crotylglycine could be readily isolated from Pseudomonas putida mt-2 (PaM1). Derivative strains of PaM1 putatively cured of the TOL (pWWO) plasmid were incapable of forming mutants able to utilize the amino acids for growth; however, this ability could be regained by conjugative transfer of the TOL (pWWO) plasmid from a wild-type strain of mt-2 or of the TOL (pDK1) plasmid from a related strain of P. putida (HS1), into cured recipients. dl-Allylglycine-grown cells of one spontaneous mutant (PaM1000) extensively oxidized dl-allylglycine and dl-cis-crotylglycine, whereas only a limited oxidation was observed toward l-allylglycine and dl-trans-crotylglycine. Cell extracts prepared from PaM1000 cells contained high levels of 2-keto-4-hydroxyvalerate aldolase and 2-keto-4-pentenoic acid hydratase, the latter enzyme showing higher activity toward 2-keto-cis-4-hexenoic acid than toward the trans isomer. Levels of other enzymes of the TOL degradative pathway, including toluate oxidase, catechol-2,3-oxygenase, 2-hydroxymuconic semialdehyde hydrolase, and 2-hydroxymuconic semialdehyde dehydrogenase, were also found to be elevated after growth on allylglycine. Whole cells of a putative cured strain, PaM3, accumulated 2-keto-4-pentenoic acid from d-allylglycine, which was shown to be rapidly degraded by cell extracts of PaM1000 grown on dl-allylglycine. These same cell extracts were also capable of catalyzing the dehydrogenation of d- but not l-allylglycine and were further found to metabolize the amino acid completely to pyruvate and acetaldehyde. Differential centrifugation of crude cell extracts localized d-allylglycine dehydrogenase activity to membrane fractions. The results are consistent with a catabolic pathway for d-allylglycine and dl-cis-crotylglycine involving the

  11. Volunteer Clouds and Citizen Cyberscience for LHC Physics

    NASA Astrophysics Data System (ADS)

    Aguado Sanchez, Carlos; Blomer, Jakob; Buncic, Predrag; Chen, Gang; Ellis, John; Garcia Quintas, David; Harutyunyan, Artem; Grey, Francois; Lombrana Gonzalez, Daniel; Marquina, Miguel; Mato, Pere; Rantala, Jarno; Schulz, Holger; Segal, Ben; Sharma, Archana; Skands, Peter; Weir, David; Wu, Jie; Wu, Wenjing; Yadav, Rohit

    2011-12-01

    Computing for the LHC, and for HEP more generally, is traditionally viewed as requiring specialized infrastructure and software environments, and therefore not compatible with the recent trend in "volunteer computing", where volunteers supply free processing time on ordinary PCs and laptops via standard Internet connections. In this paper, we demonstrate that with the use of virtual machine technology, at least some standard LHC computing tasks can be tackled with volunteer computing resources. Specifically, by presenting volunteer computing resources to HEP scientists as a "volunteer cloud", essentially identical to a Grid or dedicated cluster from a job submission perspective, LHC simulations can be processed effectively. This article outlines both the technical steps required for such a solution and the implications for LHC computing as well as for LHC public outreach and for participation by scientists from developing regions in LHC research.

  12. Supersymmetry At LHC

    SciTech Connect

    Khalil, Shaaban

    2008-04-21

    One of the main motivation of the experiments at the Large Hadron Collider (LHC), scheduled to start around 2006, is to search for supersymmetric particles. The region of the parameter space of the minimal supersymmetric standard model, where supersymmetry can be discovered is investigated. We show that if supersymmetry exists at electroweak scale, it would be easy to find signals for it at the LHC. If the LHC does find supersymmetry, this would be one of the greatest achievements in the history of theoretical physics.

  13. The LHC Experiments

    SciTech Connect

    Lincoln, Don

    2015-03-11

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  14. Dependence of the initial adhesion of biofilm forming Pseudomonas putida mt2 on physico-chemical material properties.

    PubMed

    Montag, Dominik; Frant, Marion; Horn, Harald; Liefeith, Klaus

    2012-01-01

    Bacterial adhesion is strongly dependent on the physico-chemical properties of materials and plays a fundamental role in the development of a growing biofilm. Selected materials were characterized with respect to their physico-chemical surface properties. The different materials, glass and several polymer foils, showed a stepwise range of surface tensions (γ(s)) between 10.3 and 44.7 mN m(-1). Measured zeta potential values were in the range between -74.8 and -28.3 mV. The initial bacterial adhesion parameter q(max) was found to vary between 6.6 × 10(6) and 28.1 × 10(6) cm(-2). By correlation of the initial adhesions kinetic parameters with the surface tension data, the optimal conditions for the immobilization of Pseudomonas putida mt2 were found to be at a surface tension of 24.7 mN m(-1). Both higher and lower surface tensions lead to a smaller number of adherent cells per unit surface area. Higher energy surfaces, commonly termed hydrophilic, could constrain bacterial adhesion because of their more highly ordered water structure (exclusion zone) close to the surface. At low energy surfaces, commonly referred to as hydrophobic, cell adhesion is inhibited due to a thin, less dense zone (depletion layer or clathrate structure) close to the surface. Correlation of q (max) with zeta potential results in a linear relationship. Since P. putida carries weak negative charges, a measurable repulsive effect can be assumed on negative surfaces. PMID:22452391

  15. LHC phenomenology of a two-Higgs-doublet neutrino mass model

    NASA Astrophysics Data System (ADS)

    Davidson, Shainen M.; Logan, Heather E.

    2010-12-01

    We study the LHC search prospects for a model in which the neutrinos obtain Dirac masses from couplings to a second Higgs doublet with tiny vacuum expectation value. The model contains a charged Higgs boson that decays to ℓν with branching fractions controlled by the neutrino masses and mixing angles as measured in neutrino oscillation experiments. The most promising signal is electroweak production of H+H- pairs with decays to ℓℓ'pTmiss, where ℓℓ'=e+e-, μ+μ-, and e±μ∓. We find that a cut on the kinematic variable MT2 eliminates most of the tt¯ and W-pair background. Depending on the neutrino mass spectrum and mixing angles, a 100 (300) GeV charged Higgs could be discovered at the LHC with as little as 8(24)fb-1 of integrated luminosity at 14 TeV pp center-of-mass energy.

  16. POTENTIAL FOR HIGGS PHYSICS AT THE LHC AND SUPER-LHC.

    SciTech Connect

    CRANMER, K.S.

    2005-12-12

    The expected sensitivity of the LHC experiments to the discovery of the Higgs boson and the measurement of its properties is presented in the context of both the standard model and the its minimal supersymmetric extension. Prospects for a luminosity-upgraded ''Super-LHC'' are also presented. If it exists, the LHC should discover standard model Higgs boson, measure its mass accurately, and make various measurements of its couplings, spin and CP properties. In the context of the CP-conserving MSSM, the LHC should be able to discover one or more Higgs bosons over the entire m{sub A}-tan {beta} plane, with two or more observable in many cases. The large number of channels available insure a robust discovery and offer many opportunities for additional measurements. Observation of H {yields} {mu}{mu}, measurement of the tri-linear Higgs self-coupling, and various search channels are statistics-limited, and only possible with a luminosity upgrade. A luminosity upgrade would substantially improve some of the coupling measurements and generally extend the sensitivity in the MSSM Higgs plane. Efforts are ongoing to understand the upgrade of the LHC to the Super-LHC.

  17. MT2D: an interactive two-dimensional magnetotelluric and line source modeling program (user's guide and documentation for Rev. 3)

    SciTech Connect

    Nutter, C.

    1981-04-01

    MT2D.REV3 is the latest revision of a 2-dimensional, finite-element, interactive MT-line source modeling program. The original program was a batch-mode program developed by John Stodt. An interactive program was developed based on Stodt's program for a UNIVAC 1108. The program uses linear interpolation of the unknown field over triangular sub-domains of the region where a solution is sought in conjunction with the Galerkin technique to derive a system of linear equations which approximate the governing partial differential equation. The solution of this linear system of equations gives the approximate field values at the nodes of the discretized domain. MT2D has an interactive data management system for data manipulation and display built around the finite-element program.

  18. Sunflower metallothionein family characterisation. Study of the Zn(II)- and Cd(II)-binding abilities of the HaMT1 and HaMT2 isoforms.

    PubMed

    Tomas, M; Pagani, M A; Andreo, C S; Capdevila, M; Atrian, S; Bofill, R

    2015-07-01

    Plant metallothioneins (MTs) constitute a family of small Cys-rich proteins capable of coordinating metal ions, significantly differing from microbial and animal MTs. They are divided into four subfamilies depending on the Cys pattern in their sequence. In this work, the MT system of the sunflower plant (Helianthus annuus) has been defined, with ten genes coding for MTs (HaMT) belonging to the four plant MT subfamilies; three HaMT1, four HaMT2, one HaMT3 and two HaMT4 isoforms. The gene expression pattern and capacity to confer metal resistance to yeast cells have been analysed for at least one member of each subfamily. The divalent metal ion-binding abilities of HaMT1-2 and HaMT2-1 (the isoforms encoded by the most abundantly expressed HaMT1 and HaMT2 isogenes) have been characterised, as HaMT3 and HaMT4 were previously studied. Those isoforms constitute an optimum material to study the effect of Cys number variability on their coordination abilities, as they exhibit additional Cys residues regarding the canonical Cys pattern of each subfamily. Our results show that the variation in the number of Cys does not drastically modify their M(II)-binding abilities, but instead modulates the degree of heterogeneity of the corresponding recombinant syntheses. Significantly, the Zn(II)-HaMT1 complexes were highly susceptible to proteolytic cleavage. The recombinant Cd-MT preparations of both isoforms exhibit significant acid-labile sulphide content-Cd6S8 or Cd7S7 species. Overall results suggest that HaMT2-1 is probably associated with Cd(II) detoxification, in contrast to HaMT1-2, which may be more related to physiological functions, such as metal ion transport and delivery. PMID:25770010

  19. Metallothionein MT2A A-5G Polymorphism as a Risk Factor for Chronic Kidney Disease and Diabetes: Cross-Sectional and Cohort Studies.

    PubMed

    Hattori, Yuta; Naito, Mariko; Satoh, Masahiko; Nakatochi, Masahiro; Naito, Hisao; Kato, Masashi; Takagi, Sahoko; Matsunaga, Takashi; Seiki, Toshio; Sasakabe, Tae; Suma, Shino; Kawai, Sayo; Okada, Rieko; Hishida, Asahi; Hamajima, Nobuyuki; Wakai, Kenji

    2016-07-01

    Metallothioneins (MTs) are proteins that protect cells from toxic agents such as heavy metal ions or reactive oxygen species. MT2A A-5G is a single nucleotide polymorphism in the promoter region of the MT2A gene, and the minor G allele results in lower transcription efficiency. We aimed to elucidate associations between MT2A A-5G and risks of 2 diseases potentially related to lowered MT expression, chronic kidney disease (CKD), and diabetes mellitus (DM), in a community-dwelling population. Study subjects were Nagoya city residents participating in the Japan Multi-Institutional Collaborative Cohort Study (J-MICC) Daiko Study, comprised 749 men and 2,025 women, aged 39-75 years. CKD (>stage 3) and DM were defined by standard guidelines. Associations were evaluated using logistic regression models with adjustments for age, sex and potential confounders in a cross-sectional study, and verified in a 5-year longitudinal study. Odds ratios (OR [95% confidence interval]) were calculated relative to the AA genotype. Serum MT (I + II), Cd and zinc levels were also determined by genotype. The OR of the GG genotype for CKD risk was 3.98 (1.50, 10.58) in the cross-sectional study and 5.17 (1.39, 19.28) in the longitudinal study. The OR of the GA genotype for DM was 1.86 (1.26, 2.75) in the cross-sectional study and 2.03 (1.19, 3.46) in the longitudinal study. MT2A A-5G may be associated with CKD and DM risks. This polymorphism is a promising target for evaluations of CKD and DM risks with possible involvement of low-dose chronic exposure to environmental pollutants. PMID:27122239

  20. Metallothionein MT2A A-5G Polymorphism as a Risk Factor for Chronic Kidney Disease and Diabetes: Cross-Sectional and Cohort Studies

    PubMed Central

    Hattori, Yuta; Naito, Mariko; Satoh, Masahiko; Nakatochi, Masahiro; Naito, Hisao; Kato, Masashi; Takagi, Sahoko; Matsunaga, Takashi; Seiki, Toshio; Sasakabe, Tae; Suma, Shino; Kawai, Sayo; Okada, Rieko; Hishida, Asahi; Hamajima, Nobuyuki; Wakai, Kenji

    2016-01-01

    Metallothioneins (MTs) are proteins that protect cells from toxic agents such as heavy metal ions or reactive oxygen species. MT2A A-5G is a single nucleotide polymorphism in the promoter region of the MT2A gene, and the minor G allele results in lower transcription efficiency. We aimed to elucidate associations between MT2A A-5G and risks of 2 diseases potentially related to lowered MT expression, chronic kidney disease (CKD), and diabetes mellitus (DM), in a community-dwelling population. Study subjects were Nagoya city residents participating in the Japan Multi-Institutional Collaborative Cohort Study (J-MICC) Daiko Study, comprised 749 men and 2,025 women, aged 39–75 years. CKD (>stage 3) and DM were defined by standard guidelines. Associations were evaluated using logistic regression models with adjustments for age, sex and potential confounders in a cross-sectional study, and verified in a 5-year longitudinal study. Odds ratios (OR [95% confidence interval]) were calculated relative to the AA genotype. Serum MT (I + II), Cd and zinc levels were also determined by genotype. The OR of the GG genotype for CKD risk was 3.98 (1.50, 10.58) in the cross-sectional study and 5.17 (1.39, 19.28) in the longitudinal study. The OR of the GA genotype for DM was 1.86 (1.26, 2.75) in the cross-sectional study and 2.03 (1.19, 3.46) in the longitudinal study. MT2A A-5G may be associated with CKD and DM risks. This polymorphism is a promising target for evaluations of CKD and DM risks with possible involvement of low-dose chronic exposure to environmental pollutants. PMID:27122239

  1. Transcriptional response of two metallothionein genes (OcMT1 and OcMT2) and histological changes in Oxya chinensis (Orthoptera: Acridoidea) exposed to three trace metals.

    PubMed

    Liu, Yaoming; Wu, Haihua; Yu, Zhitao; Guo, Yaping; Zhang, Jianzhen; Zhu, Kun Yan; Ma, Enbo

    2015-11-01

    This study evaluated the transcriptional responses of two metallothionein (MT) genes (OcMT1 and OcMT2) in various tissues (brain, optic lobe, Malpighian tubules, fat bodies, foregut, gastric caeca, midgut and hindgut) of Oxya chinensis (Thunberg) (Orthoptera: Acridoidea) after exposed to the trace metals cadmium (Cd), copper (Cu) and zinc (Zn) for 48h. The study revealed that the exposure of O. chinensis to each of the three metals at the median lethal concentration (LC50) or lower concentration(s) up-regulated the transcriptions of both OcMT1 and OCMT2 in the eight tissues except for OcMT1 and OcMT2 with Cd in brain and gastric caeca, respectively, and OcMT2 with Cu in gastric caeca. These results suggested that the exposure of O. chinensis to the metals may enhance MT biosynthesis that protects tissues by binding these metals in various tissues. To examine possible histopathological effect of the metals, we examined the histological changes in the fat bodies after O. chinensis was exposed to each of these metals at LC50. The exposure of Cd significantly reduced the size and number of adipocytes as compared with the control. However, such an effect was not observed in O. chinensis exposed to either Cu or Zn. These results suggested that fat bodies might be either significantly affected by Cd or play a crucial role in detoxification of excessive trace metals. PMID:26159299

  2. Analyses of multiplicity distributions with η c and Bose-Einstein correlations at LHC by means of generalized Glauber-Lachs formula

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Takuya; Biyajima, Minoru

    2010-12-01

    Using the negative binomial distribution (NBD) and the generalized Glauber-Lachs (GGL) formula, we analyze the data on charged multiplicity distributions with pseudo-rapidity cutoffs η c at 0.9, 2.36, and 7 TeV by ALICE Collaboration and at 0.2, 0.54, and 0.9 TeV by UA5 Collaboration. We confirm that the KNO scaling holds among the multiplicity distributions with η c =0.5 at sqrt{s} = 0.2-2.36 TeV and estimate the energy dependence of a parameter 1/ k in NBD and parameters 1/ k and γ (the ratio of the average value of the coherent hadrons to that of the chaotic hadrons) in the GGL formula. Using empirical formulas for the parameters 1/ k and γ in the GGL formula, we predict the multiplicity distributions with η c =0.5 at 7 and 14 TeV. Data on the second order Bose-Einstein correlations (BEC) at 0.9 TeV by ALICE Collaboration and 0.9 and 2.36 TeV by CMS Collaboration are also analyzed based on the GGL formula. Prediction for the third order BEC at 0.9 and 2.36 TeV are presented. Moreover, the information entropy is discussed.

  3. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  4. Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid.

    PubMed Central

    Kunz, D A; Chapman, P J

    1981-01-01

    Pseudocumene (1,2,4-trimethylbenzene) and 3-ethyltoluene were found to serve as growth substrates for Pseudomonas putida (arvilla) mt-2, in addition to toluene, m-xylene, and p-xylene as previously described. Similar observations were made with several additional P. putida strains also capable of growth with toluene and the xylenes. Additional substrates which supported the growth of these organisms included 3,4-dimethylbenzyl alcohol, 3,4-dimethylbenzoate, and 3-ethylbenzoate. P. putida mt-2 cells grown either with toluene or pseudocumene rapidly oxidized toluene, pseudocumene, and 3-ethyltoluene as well as 3,4-dimethylbenzoate, 3-ethylbenzoate, 3,4-dimethylcatechol, and 3-ethylcatechol. Cell extracts from similarly grown P. putida mt-2 cells catalyzed a meta fission of 3,4-dimethylcatechol and 3-ethylcatechol to compounds having the spectral properties of 2-hydroxy-5-methyl-6-oxo-2,4-heptadienoate and 2-hydroxy-6-ox-2,4-octadienoate, respectively. The further metabolism of these intermediates was shown to be independent of oxidized nicotinamide adenine dinucleotide (NAD+) and resulted in the formation of essentially equimolar amounts of pyruvate, indicating that each ring fission product was degraded via the hydrolytic branch of the meta fission pathway. Treatment of cells with N-methyl-N'-nitro-N-nitrosoguanidine led to the isolation of a mutant, which when grown with succinate in the presence of pseudocumene or 3-ethyltoluene accumulated 3,4-dimethylcatechol or 3-ethylcatechol. Cells unable to utilize toluene, m-xylene, and p-xylene, obtained by growth in benzoate, also lost the ability to utilize pseudocumene and 3-ethyltoluene. The ability to utilize these substrates could be reacquired by incubation with a leucine auxotroph otherwise able to grow on all of the aromatic substrates. PMID:7216999

  5. LHC forward physics

    SciTech Connect

    Cartiglia, N.; Royon, C.

    2015-10-02

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  6. LHC benchmarks from flavored gauge mediation

    NASA Astrophysics Data System (ADS)

    Ierushalmi, N.; Iwamoto, S.; Lee, G.; Nepomnyashy, V.; Shadmi, Y.

    2016-07-01

    We present benchmark points for LHC searches from flavored gauge mediation models, in which messenger-matter couplings give flavor-dependent squark masses. Our examples include spectra in which a single squark — stop, scharm, or sup — is much lighter than all other colored superpartners, motivating improved quark flavor tagging at the LHC. Many examples feature flavor mixing; in particular, large stop-scharm mixing is possible. The correct Higgs mass is obtained in some examples by virtue of the large stop A-term. We also revisit the general flavor and CP structure of the models. Even though the A-terms can be substantial, their contributions to EDM's are very suppressed, because of the particular dependence of the A-terms on the messenger coupling. This holds regardless of the messenger-coupling texture. More generally, the special structure of the soft terms often leads to stronger suppression of flavor- and CP-violating processes, compared to naive estimates.

  7. Higgs Boson Search at LHC (and LHC/CMS status)

    SciTech Connect

    Korytov, Andrey

    2008-11-23

    Presented are the results of the most recent studies by the CMS and ATLAS collaborations on the expected sensitivity of their detectors to observing a Higgs boson at LHC. The overview is preceded with a brief summary of the LHC and the CMS Experiment status.

  8. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  9. LNV Higgses at LHC

    NASA Astrophysics Data System (ADS)

    Maiezza, Alessio; Nemevšek, Miha; Nesti, Fabrizio

    2016-06-01

    Lepton number is a fundamental symmetry that can be probed at the LHC. Here, we study the Higgs sector of theories responsible for neutrino mass generation. After a brief discussion of simple see-saw scenarios, we turn to theories where heavy Majorana neutrino mass is protected by a gauge symmetry and focus on the Left-Right symmetric theory. There, the SM-like Higgs boson can decay to a pair of heavy neutrinos and provide enough information to establish the origin of neutrino mass.

  10. Monotops at the LHC

    SciTech Connect

    Andrea, J.; Fuks, B.

    2011-10-01

    We explore scenarios where top quarks may be produced singly in association with missing energy, a very distinctive signature, which, in analogy with monojets, we dub monotops. We find that monotops can be produced in a variety of modes, typically characterized by baryon number-violating or flavorchanging neutral interactions. We build a simplified model that encompasses all the possible (tree-level) production mechanisms and study the LHC sensitiveness to a few representative scenarios by considering fully hadronic top decays. We find that constraints on such exotic models can already be set with 1 fb{sup -1} of integrated luminosity collected at {radical}(s)=7 TeV.

  11. The LHC Vacuum System

    NASA Astrophysics Data System (ADS)

    Gröbner, O.

    1997-05-01

    The Large Hadron Collider (LHC) at CERN, involves two proton storage rings with colliding beams of 7 TeV. The machine will be housed in the existing LEP tunnel and requires 16 m long superconducting bending magnets. The vacuum chamber will be the inner wall of the cryostat and hence at the temperature of the magnet cold bore, i.e. at 1.9 K and therefore a very good cryo-pump. To reduce the cryogenic power consumption, the heat load from synchrotron radiation and from the image currents in the vacuum chamber will be absorbed on a 'beam screen', which operates between 5 and 20 K, inserted in the magnet cold bore. The design pressure necessary for operation must provide a lifetime of many days and a stringent requirement comes from the power deposition in the superconducting magnet coils due to protons scattered on the residual gas which could lead to a magnet quench. Cryo-pumping of gas on the cold surfaces provides the necessary low gas densities but it must be ensured that the vapour pressure of cryo-sorbed molecules, of which H2 and He would be the most critical species, remains within acceptable limits. The room temperature sections of the LHC, specifically in the experiments, the vacuum must be stable against ion induced desorption and ISR-type 'pressure bumps'.

  12. LHC - a "Why" Facility

    ScienceCinema

    Gordon Kane

    2010-01-08

    The Standard Models of particle physics and cosmology describe the world we see, and how it works, very well. But we want to understand (not just accommodate) much more ? how does the Higgs mechanism work, what is the dark matter, why is the universe matter and not antimatter, why is parity violated, why are the particles (quarks and leptons) what they are, and why are the forces that act on them to make our world what they are, and more. Today is an exciting time to be doing particle physics ? on the experimental side we have data coming from LHC and dark matter experiments that will provide clues to these questions, and on the theoretical side we have a framework (string theory) that addresses all these ?why? questions. LHC data will not qualitatively improve our description ? rather, it may provide the data that will allow us to learn about the dark matter, the Higgs physics, the matter asymmetry, etc, to test underlying theories such as string theory, and begin to answer the ?why? questions. Supersymmetry is the best motivated discovery, and it would also open a window to the underlying theory near the Planck scale.

  13. Supersymmetry at LHC

    SciTech Connect

    Bartl, A.; Soederqvist, J.; Paige, F.

    1996-11-22

    Supersymmetry (SUSY) is an appealing concept which provides a plausible solution to the fine tuning problem, while leaving the phenomenological success of the Standard Model (SM) unchanged. Moreover, some SUSY models allow for the unification of gauge couplings at a scale of M{sub GUT} {approx} 10{sup 16} GeV. A further attractive feature is the possibility of radiative breaking of the electro-weak symmetry group SU(2) {times} U(1). The masses of the SUSY partners of the SM particles are expected to be in the range 100 GeV to 1 TeV. One of the main goals of the Large Hadron Collider (LHC) will be either to discover weak-scale SUSY or to exclude it over the entire theoretically allowed parameter space. The authors have developed a strategy for the analysis of experimental data at LHC which will allow them to determine the scale for supersymmetry, to limit the model parameter space, and to make precision measurements of model parameters.

  14. The ALICE experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Aamodt, K.; Abrahantes Quintana, A.; Achenbach, R.; Acounis, S.; Adamová, D.; Adler, C.; Aggarwal, M.; Agnese, F.; Aglieri Rinella, G.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Aleksandrov, D.; Alessandro, B.; Alfaro, R.; Alfarone, G.; Alici, A.; Alme, J.; Alt, T.; Altinpinar, S.; Amend, W.; Andrei, C.; Andres, Y.; Andronic, A.; Anelli, G.; Anfreville, M.; Angelov, V.; Anzo, A.; Anson, C.; Anticić, T.; Antonenko, V.; Antonczyk, D.; Antinori, F.; Antinori, S.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Aprodu, V.; Arba, M.; Arcelli, S.; Argentieri, A.; Armesto, N.; Arnaldi, R.; Arefiev, A.; Arsene, I.; Asryan, A.; Augustinus, A.; Awes, T. C.; Äysto, J.; Danish Azmi, M.; Bablock, S.; Badalà, A.; Badyal, S. K.; Baechler, J.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barberis, P.-L.; Barbet, J. M.; Barnäfoldi, G.; Barret, V.; Bartke, J.; Bartos, D.; Basile, M.; Basmanov, V.; Bastid, N.; Batigne, G.; Batyunya, B.; Baudot, J.; Baumann, C.; Bearden, I.; Becker, B.; Belikov, J.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Belyaev, S.; Benato, A.; Beney, J. L.; Benhabib, L.; Benotto, F.; Beolé, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Bernard, C.; Berny, R.; Berst, J. D.; Bertelsen, H.; Betev, L.; Bhasin, A.; Baskar, P.; Bhati, A.; Bianchi, N.; Bielčik, J.; Bielčiková, J.; Bimbot, L.; Blanchard, G.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Blyth, S.; Boccioli, M.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Bonnet, D.; Bonvicini, V.; Borel, H.; Borotto, F.; Borshchov, V.; Bortoli, Y.; Borysov, O.; Bose, S.; Bosisio, L.; Botje, M.; Böttger, S.; Bourdaud, G.; Bourrion, O.; Bouvier, S.; Braem, A.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Bruckner, G.; Brun, R.; Bruna, E.; Brunasso, O.; Bruno, G. E.; Bucher, D.; Budilov, V.; Budnikov, D.; Buesching, H.; Buncic, P.; Burns, M.; Burachas, S.; Busch, O.; Bushop, J.; Cai, X.; Caines, H.; Calaon, F.; Caldogno, M.; Cali, I.; Camerini, P.; Campagnolo, R.; Campbell, M.; Cao, X.; Capitani, G. P.; Romeo, G. Cara; Cardenas-Montes, M.; Carduner, H.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casado, J.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castor, J.; Catanescu, V.; Cattaruzza, E.; Cavazza, D.; Cerello, P.; Ceresa, S.; Černý, V.; Chambert, V.; Chapeland, S.; Charpy, A.; Charrier, D.; Chartoire, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chepurnov, V.; Chernenko, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chochula, P.; Chiavassa, E.; Chibante Barroso, V.; Choi, J.; Christakoglou, P.; Christiansen, P.; Christensen, C.; Chykalov, O. A.; Cicalo, C.; Cifarelli-Strolin, L.; Ciobanu, M.; Cindolo, F.; Cirstoiu, C.; Clausse, O.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Colledani, C.; Combaret, C.; Combet, M.; Comets, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Contin, G.; Contreras, J.; Cormier, T.; Corsi, F.; Cortese, P.; Costa, F.; Crescio, E.; Crochet, P.; Cuautle, E.; Cussonneau, J.; Dahlinger, M.; Dainese, A.; Dalsgaard, H. H.; Daniel, L.; Das, I.; Das, T.; Dash, A.; Da Silva, R.; Davenport, M.; Daues, H.; DeCaro, A.; de Cataldo, G.; DeCuveland, J.; DeFalco, A.; de Gaspari, M.; de Girolamo, P.; de Groot, J.; DeGruttola, D.; DeHaas, A.; DeMarco, N.; DePasquale, S.; DeRemigis, P.; de Vaux, D.; Decock, G.; Delagrange, H.; DelFranco, M.; Dellacasa, G.; Dell'Olio, C.; Dell'Olio, D.; Deloff, A.; Demanov, V.; Dénes, E.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Bartelomen, A.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Díaz Valdes, R.; Dietel, T.; Dima, R.; Ding, H.; Dinca, C.; Divià, R.; Dobretsov, V.; Dobrin, A.; Doenigus, B.; Dobrowolski, T.; Domínguez, I.; Dorn, M.; Drouet, S.; Dubey, A. E.; Ducroux, L.; Dumitrache, F.; Dumonteil, E.; Dupieux, P.; Duta, V.; Dutta Majumdar, A.; Dutta Majumdar, M.; Dyhre, Th; Efimov, L.; Efremov, A.; Elia, D.; Emschermann, D.; Engster, C.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evangelista, A.; Evans, D.; Evrard, S.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Farano, R.; Fearick, R.; Fedorov, O.; Fekete, V.; Felea, D.; Feofilov, G.; Férnandez Téllez, A.; Ferretti, A.; Fichera, F.; Filchagin, S.; Filoni, E.; Finck, C.; Fini, R.; Fiore, E. M.; Flierl, D.; Floris, M.; Fodor, Z.; Foka, Y.; Fokin, S.; Force, P.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Fraissard, D.; Franco, A.; Franco, M.; Frankenfeld, U.; Fratino, U.; Fresneau, S.; Frolov, A.; Fuchs, U.; Fujita, J.; Furget, C.; Furini, M.; Fusco Girard, M.; Gaardhøje, J.-J.; Gabrielli, A.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gaido, L.; Gallas Torreira, A.; Gallio, M.; Gandolfi, E.; Ganoti, P.; Ganti, M.; Garabatos, J.; Garcia Lopez, A.; Garizzo, L.; Gaudichet, L.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giolu, G.; Giraudo, G.; Giubellino, P.; Glasow, R.; Glässel, P.; Ferreiro, E. G.; Gonzalez Gutierrez, C.; Gonzales-Trueba, L. H.; Gorbunov, S.; Gorbunov, Y.; Gos, H.; Gosset, J.; Gotovac, S.; Gottschlag, H.; Gottschalk, D.; Grabski, V.; Grassi, T.; Gray, H.; Grebenyuk, O.; Grebieszkow, K.; Gregory, C.; Grigoras, C.; Grion, N.; Grigoriev, V.; Grigoryan, A.; Grigoryan, C.; Grigoryan, S.; Grishuk, Y.; Gros, P.; Grosse-Oetringhaus, J.; Grossiord, J.-Y.; Grosso, R.; Grynyov, B.; Guarnaccia, C.; Guber, F.; Guerin, F.; Guernane, R.; Guerzoni, M.; Guichard, A.; Guida, M.; Guilloux, G.; Gulkanyan, H.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, V.; Gustafsson, H.-A.; Gutbrod, H.; Hadjidakis, C.; Haiduc, M.; Hamar, G.; Hamagaki, H.; Hamblen, J.; Hansen, J. C.; Hardy, P.; Hatzifotiadou, D.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hayrapetyan, A.; Hasch, D.; Hasegan, D.; Hehner, J.; Heine, N.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Herlant, S.; Herrera Corral, G.; Herrmann, N.; Hetland, K.; Hille, P.; Hinke, H.; Hippolyte, B.; Hoch, M.; Hoebbel, H.; Hoedlmoser, H.; Horaguchi, T.; Horner, M.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Guo, C. Hu; Humanic, T.; Hurtado, A.; Hwang, D. S.; Ianigro, J. C.; Idzik, M.; Igolkin, S.; Ilkaev, R.; Ilkiv, I.; Imhoff, M.; Innocenti, P. G.; Ionescu, E.; Ippolitov, M.; Irfan, M.; Insa, C.; Inuzuka, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacobs, P.; Jacholkowski, A.; Jančurová, L.; Janik, R.; Jasper, M.; Jena, C.; Jirden, L.; Johnson, D. P.; Jones, G. T.; Jorgensen, C.; Jouve, F.; Jovanović, P.; Junique, A.; Jusko, A.; Jung, H.; Jung, W.; Kadija, K.; Kamal, A.; Kamermans, R.; Kapusta, S.; Kaidalov, A.; Kakoyan, V.; Kalcher, S.; Kang, E.; Kapitan, J.; Kaplin, V.; Karadzhev, K.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Karpio, K.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Mohsin Khan, M.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, S.; Kinson, J. B.; Kiprich, S. K.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, T.; Kiworra, V.; Klay, J.; Klein Bösing, C.; Kliemant, M.; Klimov, A.; Klovning, A.; Kluge, A.; Kluit, R.; Kniege, S.; Kolevatov, R.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kornas, E.; Koshurnikov, E.; Kotov, I.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Kryshen, E.; Kucheriaev, Y.; Kugler, A.; Kuhn, C.; Kuijer, P.; Kumar, L.; Kumar, N.; Kumpumaeki, P.; Kurepin, A.; Kurepin, A. N.; Kushpil, S.; Kushpil, V.; Kutovsky, M.; Kvaerno, H.; Kweon, M.; Labbé, J.-C.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; La Rocca, P.; Lamont, M.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; LeBornec, Y.; LeBris, N.; LeGailliard, C.; Lebedev, V.; Lecoq, J.; Lee, K. S.; Lee, S. C.; Lefévre, F.; Legrand, I.; Lehmann, T.; Leistam, L.; Lenoir, P.; Lenti, V.; Leon, H.; Monzon, I. Leon; Lévai, P.; Li, Q.; Li, X.; Librizzi, F.; Lietava, R.; Lindegaard, N.; Lindenstruth, V.; Lippmann, C.; Lisa, M.; Listratenko, O. M.; Littel, F.; Liu, Y.; Lo, J.; Lobanov, V.; Loginov, V.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Lorenzo, P. M.; Løvhøiden, G.; Lu, S.; Ludolphs, W.; Lunardon, M.; Luquin, L.; Lusso, S.; Lutz, J.-R.; Luvisetto, M.; Lyapin, V.; Maevskaya, A.; Magureanu, C.; Mahajan, A.; Majahan, S.; Mahmoud, T.; Mairani, A.; Mahapatra, D.; Makarov, A.; Makhlyueva, I.; Malek, M.; Malkiewicz, T.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manea, C.; Mangotra, L. K.; Maniero, D.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marcel, A.; Marchini, S.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marin, A.; Marin, J.-C.; Marras, D.; Martinengo, P.; Martínez, M. I.; Martinez-Davalos, A.; Martínez Garcia, G.; Martini, S.; Marzari Chiesa, A.; Marzocca, C.; Masciocchi, S.; Masera, M.; Masetti, M.; Maslov, N. I.; Masoni, A.; Massera, F.; Mast, M.; Mastroserio, A.; Matthews, Z. L.; Mayer, B.; Mazza, G.; Mazzaro, M. D.; Mazzoni, A.; Meddi, F.; Meleshko, E.; Menchaca-Rocha, A.; Meneghini, S.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Meunier, O.; Miake, Y.; Michalon, A.; Michinelli, R.; Miftakhov, N.; Mignone, M.; Mikhailov, K.; Milosevic, J.; Minaev, Y.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitsyn, V.; Mitu, C.; Mohanty, B.; Moisa, D.; Molnar, L.; Mondal, M.; Mondal, N.; Montaño Zetina, L.; Monteno, M.; Morando, M.; Morel, M.; Moretto, S.; Morhardt, Th; Morsch, A.; Moukhanova, T.; Mucchi, M.; Muccifora, V.; Mudnic, E.; Müller, H.; Müller, W.; Munoz, J.; Mura, D.; Musa, L.; Muraz, J. F.; Musso, A.; Nania, R.; Nandi, B.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.; Nazarenko, S.; Nazarov, G.; Nellen, L.; Nendaz, F.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.; Nitti, M.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noto, F.; Nouais, D.; Nyiri, A.; Nystrand, J.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Oldenburg, M.; Oleks, I.; Olsen, E. K.; Onuchin, V.; Oppedisano, C.; Orsini, F.; Ortiz-Velázquez, A.; Oskamp, C.; Oskarsson, A.; Osmic, F.; Österman, L.; Otterlund, I.; Ovrebekk, G.; Oyama, K.; Pachr, M.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S.; Pal, S.; Pálla, G.; Palmeri, A.; Pancaldi, G.; Panse, R.; Pantaleo, A.; Pappalardo, G. S.; Pastirčák, B.; Pastore, C.; Patarakin, O.; Paticchio, V.; Patimo, G.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pénichot, Y.; Pepato, A.; Pereira, H.; Peresunko, D.; Perez, C.; Perez Griffo, J.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, V.; Petrov, V.; Petrovici, M.; Peyré, J.; Piano, S.; Piccotti, A.; Pichot, P.; Piemonte, C.; Pikna, M.; Pilastrini, R.; Pillot, P.; Pinazza, O.; Pini, B.; Pinsky, L.; Pinto Morais, V.; Pismennaya, V.; Piuz, F.; Platt, R.; Ploskon, M.; Plumeri, S.; Pluta, J.; Pocheptsov, T.; Podesta, P.; Poggio, F.; Poghosyan, M.; Poghosyan, T.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pompei, F.; Pop, A.; Popescu, S.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.; Preghenella, R.; Prino, F.; Prodan, L.; Prono, G.; Protsenko, M. A.; Pruneau, C. A.; Przybyla, A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putschke, J.; Quartieri, J.; Quercigh, E.; Rachevskaya, I.; Rachevski, A.; Rademakers, A.; Radomski, S.; Radu, A.; Rak, J.; Ramello, L.; Raniwala, R.; Raniwala, S.; Rasmussen, O. B.; Rasson, J.; Razin, V.; Read, K.; Real, J.; Redlich, K.; Reichling, C.; Renard, C.; Renault, G.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Rigalleau, L. M.; Riggi, F.; Riegler, W.; Rindel, E.; Riso, J.; Rivetti, A.; Rizzi, M.; Rizzi, V.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román-López, S.; Romanato, M.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Rostchin, V.; Rotondo, F.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, D.; Roy, P.; Royer, L.; Rubin, G.; Rubio, A.; Rui, R.; Rusanov, I.; Russo, G.; Ruuskanen, V.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Salur, S.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sann, H.; Santiard, J.-C.; Santo, R.; Santoro, R.; Sargsyan, G.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Schackert, B.; Schiaua, C.; Schicker, R.; Schioler, T.; Schippers, J. D.; Schmidt, C.; Schmidt, H.; Schneider, R.; Schossmaier, K.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Schyns, E.; Scioli, G.; Scomparin, E.; Snow, H.; Sedykh, S.; Segato, G.; Sellitto, S.; Semeria, F.; Senyukov, S.; Seppänen, H.; Serci, S.; Serkin, L.; Serra, S.; Sesselmann, T.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, E.; Sharma, S.; Shigaki, K.; Shileev, K.; Shukla, P.; Shurygin, A.; Shurygina, M.; Sibiriak, Y.; Siddi, E.; Siemiarczuk, T.; Sigward, M. H.; Silenzi, A.; Silvermyr, D.; Silvestri, R.; Simili, E.; Simion, V.; Simon, R.; Simonetti, L.; Singaraju, R.; Singhal, V.; Sinha, B.; Sinha, T.; Siska, M.; Sitár, B.; Sitta, M.; Skaali, B.; Skowronski, P.; Slodkowski, M.; Smirnov, N.; Smykov, L.; Snellings, R.; Snoeys, W.; Soegaard, C.; Soerensen, J.; Sokolov, O.; Soldatov, A.; Soloviev, A.; Soltveit, H.; Soltz, R.; Sommer, W.; Soos, C.; Soramel, F.; Sorensen, S.; Soyk, D.; Spyropoulou-Stassinaki, M.; Stachel, J.; Staley, F.; Stan, I.; Stavinskiy, A.; Steckert, J.; Stefanini, G.; Stefanek, G.; Steinbeck, T.; Stelzer, H.; Stenlund, E.; Stocco, D.; Stockmeier, M.; Stoicea, G.; Stolpovsky, P.; Strmeň, P.; Stutzmann, J. S.; Su, G.; Sugitate, T.; Šumbera, M.; Suire, C.; Susa, T.; Sushil Kumar, K.; Swoboda, D.; Symons, J.; Szarka, I.; Szostak, A.; Szuba, M.; Szymanski, P.; Tadel, M.; Tagridis, C.; Tan, L.; Tapia Takaki, D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Thäder, J.; Tieulent, R.; Timmer, P.; Tolyhy, T.; Topilskaya, N.; Torcato de Matos, C.; Torii, H.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tröger, G.; Tromeur, W.; Truesdale, D.; Trzaska, W.; Tsiledakis, G.; Tsilis, E.; Tsvetkov, A.; Turcato, M.; Turrisi, R.; Tuveri, M.; Tveter, T.; Tydesjo, H.; Tykarski, L.; Tywoniuk, K.; Ugolini, E.; Ullaland, K.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Usseglio, M.; Vacchi, A.; Vala, M.; Valiev, F.; Vande Vyvre, P.; Van Den Brink, A.; Van Eijndhoven, N.; Van Der Kolk, N.; van Leeuwen, M.; Vannucci, L.; Vanzetto, S.; Vanuxem, J.-P.; Vargas, M. A.; Varma, R.; Vascotto, A.; Vasiliev, A.; Vassiliou, M.; Vasta, P.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Verhoeven, W.; Veronese, F.; Vetlitskiy, I.; Vernet, R.; Victorov, V.; Vidak, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.; Vodopianov, A.; Volpe, G.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wabnitz, C.; Wagner, V.; Wallet, L.; Wan, R.; Wang, Y.; Wang, Y.; Wheadon, R.; Weis, R.; Wen, Q.; Wessels, J.; Westergaard, J.; Wiechula, J.; Wiesenaecker, A.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, C.; Willis, N.; Windelband, B.; Witt, R.; Woehri, H.; Wyllie, K.; Xu, C.; Yang, C.; Yang, H.; Yermia, F.; Yin, Z.; Yin, Z.; Ky, B. Yun; Yushmanov, I.; Yuting, B.; Zabrodin, E.; Zagato, S.; Zagreev, B.; Zaharia, P.; Zalite, A.; Zampa, G.; Zampolli, C.; Zanevskiy, Y.; Zarochentsev, A.; Zaudtke, O.; Závada, P.; Zbroszczyk, H.; Zepeda, A.; Zeter, V.; Zgura, I.; Zhalov, M.; Zhou, D.; Zhou, S.; Zhu, G.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zubarev, A.; Zucchini, A.; Zuffa, M.

    2008-08-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 × 16 × 26 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This

  15. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    SciTech Connect

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  16. Melatonin relieves neuropathic allodynia through spinal MT2-enhanced PP2Ac and downstream HDAC4 shuttling-dependent epigenetic modification of hmgb1 transcription.

    PubMed

    Lin, Tzer-Bin; Hsieh, Ming-Chun; Lai, Cheng-Yuan; Cheng, Jen-Kun; Wang, Hsueh-Hsiao; Chau, Yat-Pang; Chen, Gin-Den; Peng, Hsien-Yu

    2016-04-01

    Melatonin (MLT; N-acetyl-5-methoxytryptamine) exhibits analgesic properties in chronic pain conditions. While researches linking MLT to epigenetic mechanisms have grown exponentially over recent years, very few studies have investigated the contribution of MLT-associated epigenetic modification to pain states. Here, we report that together with behavioral allodynia, spinal nerve ligation (SNL) induced a decrease in the expression of catalytic subunit of phosphatase 2A (PP2Ac) and enhanced histone deacetylase 4 (HDAC4) phosphorylation and cytoplasmic accumulation, which epigenetically alleviated HDAC4-suppressed hmgb1 gene transcription, resulting in increased high-mobility group protein B1 (HMGB1) expression selectively in the ipsilateral dorsal horn of rats. Focal knock-down of spinal PP2Ac expression also resulted in behavioral allodynia in association with similar protein expression as observed with SNL. Notably, intrathecal administration with MLT increased PP2Ac expression, HDAC4 dephosphorylation and nuclear accumulation, restored HDAC4-mediated hmgb1 suppression and relieved SNL-sensitized behavioral pain; these effects were all inhibited by spinal injection of 4P-PDOT (a MT2 receptor antagonist, 30 minutes before MLT) and okadaic acid (OA, a PP2A inhibitor, 3 hr after MLT). Our findings demonstrate a novel mechanism by which MLT ameliorates neuropathic allodynia via epigenetic modification. This MLT-exhibited anti-allodynia is mediated by MT2-enhanced PP2Ac expression that couples PP2Ac with HDAC4 to induce HDAC4 dephosphorylation and nuclear import, herein increases HDAC4 binding to the promoter of hmgb1 gene and upregulates HMGB1 expression in dorsal horn neurons. PMID:26732138

  17. PDF4LHC recommendations for LHC Run II

    NASA Astrophysics Data System (ADS)

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; De Roeck, Albert; Feltesse, Joël; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-02-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+{α }s uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology. This paper is dedicated to the memory of Guido Altarelli (1941-2015), whose seminal work made possible the quantitative study of PDFs.

  18. PDF4LHC recommendations for LHC Run II

    DOE PAGESBeta

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; Roeck, Albert De; Feltesse, Joel; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; et al

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for themore » delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.« less

  19. Data Analysis Techniques at LHC

    SciTech Connect

    Boccali, Tommaso

    2005-10-12

    A review of the recent developments on data analysis techniques for the upcoming LHC experiments is presented, with the description of early tests ('Data Challenges'), which are being performed before the start-up, to validate the overall design.

  20. Searching for radiative neutrino mass generation at the LHC

    NASA Astrophysics Data System (ADS)

    Volkas, Raymond R.

    2015-04-01

    In this talk (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015), I describe the general characteristics of radiative neutrino mass models that can be probed at the LHC. I then cover the specific constraints on a new, explicit model of this type.

  1. The ATLAS Experiment: Getting Ready for the LHC

    SciTech Connect

    Jenni, Peter

    2006-05-15

    At CERN the Large Hadron Collider (LHC) project is well advanced. First proton-proton collisions at the high-energy frontier are expected for the second half of 2007. In parallel to the collider construction the powerful general-purpose ATLAS detector is being assembled in its underground cavern by a world-wide collaboration. ATLAS will explore new domains of particle physics. After briefly overviewing the LHC construction and installation progress, the status of the ATLAS experiment will be presented, including examples of the exciting prospects for new physics.

  2. Probing minimal flavor violation at the CERN LHC

    SciTech Connect

    Grossman, Yuval; Nir, Yosef; Volansky, Tomer; Thaler, Jesse; Zupan, Jure

    2007-11-01

    If the LHC experiments discover new particles that couple to the standard model fermions, then measurements by ATLAS and CMS can contribute to our understanding of the flavor puzzles. We demonstrate this statement by investigating a scenario where extra SU(2)-singlet down-type quarks are within the LHC reach. By measuring masses, production cross sections, and relative decay rates, minimal flavor violation (MFV) can in principle be excluded. Conversely, these measurements can probe the way in which MFV applies to the new degrees of freedom. Many of our conclusions are valid in a much more general context than this specific extension of the standard model.

  3. First Experiences with LHC Grid Computing and Distributed Analysis

    SciTech Connect

    Fisk, Ian

    2010-12-01

    In this presentation the experiences of the LHC experiments using grid computing were presented with a focus on experience with distributed analysis. After many years of development, preparation, exercises, and validation the LHC (Large Hadron Collider) experiments are in operations. The computing infrastructure has been heavily utilized in the first 6 months of data collection. The general experience of exploiting the grid infrastructure for organized processing and preparation is described, as well as the successes employing the infrastructure for distributed analysis. At the end the expected evolution and future plans are outlined.

  4. Toxicity of synthetic herbicides containing 2,4-D and MCPA moieties towards Pseudomonas putida mt-2 and its response at the level of membrane fatty acid composition.

    PubMed

    Piotrowska, Aleksandra; Syguda, Anna; Chrzanowski, Łukasz; Heipieper, Hermann J

    2016-02-01

    One of the attempts to create more effective herbicidal compounds includes the use of ionic liquids. Herbicidal ionic liquids have more effective biological activity, they are less volatile, more thermally stable, and exhibit superior efficiency in comparison to typically employed herbicides, allowing the reduction of the herbicide dose applied per hectare. However, studies on the environmental toxicity of this group of compounds are very rarely available. Environmental toxicity is an important factor, showing the concentration of compounds that has negative effects on soil bacteria including those responsible for biodegradation processes. Therefore, potential toxicity of four herbicidal ionic liquids (HILs) precursors containing 2,4-D and MCPA moieties was tested with the well investigated model organism for toxicity and adaptation, Pseudomonas putida mt-2. Results were compared to those obtained for commercial 2,4-D and MCPA herbicides. Next to growth inhibition, given as EC50, changes in the isomerisation of cis to trans unsaturated fatty acids were applied as proxy for cellular stress adaptation to toxic substances. The results revealed that all investigated precursors of HILs showed lower toxicity compared to commercialized synthetic herbicides 2,4-D and MCPA. The collected data on toxicity of HILs together with their physico-chemical properties might be useful for assessing the potential risk of the environmental pollution as well as guidelines for setting the legislation for their future use. PMID:26347932

  5. Enhancement of regulatory T cell-like suppressive function in MT-2 by long-term and low-dose exposure to asbestos.

    PubMed

    Ying, Chen; Maeda, Megumi; Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Hayashi, Hiroaki; Matsuzaki, Hidenori; Lee, Suni; Yoshitome, Kei; Yamamoto, Shoko; Hatayama, Tamayo; Otsuki, Takemi

    2015-12-01

    Asbestos exposure causes lung fibrosis and various malignant tumors such as lung cancer and malignant mesothelioma. The effects of asbestos on immune cells have not been thoroughly investigated, although our previous reports showed that asbestos exposure reduced anti-tumor immunity. The effects of continuous exposure of regulatory T cells (Treg) to asbestos were examined using the HTLV-1 immortalized human T cell line MT-2, which possesses a suppressive function and expresses the Treg marker protein, Foxp3. Sublines were generated by the continuous exposure to low doses of asbestos fibers for more than one year. The sublines exposed to asbestos showed enhanced suppressive Treg function via cell-cell contact, and increased production of soluble factors such as IL-10 and transforming growth factor (TGF)-β1. These results also indicated that asbestos exposure induced the reduction of anti-tumor immunity, and efforts to develop substances to reverse this reduction may be helpful in preventing the occurrence of asbestos-induced tumors. PMID:26505785

  6. Caveats for poly(methimazolyl)borate chemistry: the novel inorganic heterocycles [H2C(mt)2BR2]Cl (mt = methimazolyl; BR2 = BH2, BH(mt), 9-BBN).

    PubMed

    Crossley, Ian R; Hill, Anthony F; Humphrey, Elizabeth R; Smith, Matthew K; Tshabang, Never; Willis, Anthony C

    2004-08-21

    Whilst frequently used for reactions of poly(methimazolyl)borates, dichloromethane is not an innocent solvent, but rather slowly forms heterocyclic salts [H(2)C(mt)(2)BR(2)]Cl, three examples of which (BR(2) = BH(2), BH(mt), 9-borabicyclononyl) have been structurally characterised to confirm the unprecedented B(NCS)(2)C connectivity. PMID:15306929

  7. Mono-Higgs detection of dark matter at the LHC

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Lin, Tongyan; Wang, Lian-Tao

    2014-06-01

    Motivated by the recent discovery of the Higgs boson, we investigate the possibility that a missing energy plus Higgs final state is the dominant signal channel for dark matter at the LHC. We consider examples of higher-dimension operators where a Higgs and dark matter pair are produced through an off-shell Z or γ, finding potential sensitivity at the LHC to cutoff scales of around a few hundred GeV. We generalize this production mechanism to a simplified model by introducing a Z' as well as a second Higgs doublet, where the pseudoscalar couples to dark matter. Resonant production of the Z' which decays to a Higgs plus invisible particles gives rise to a potential mono-Higgs signal. This may be observable at the 14 TeV LHC at low tan β and when the Z' mass is roughly in the range 600 GeV to 1.3 TeV.

  8. Characteristic and Expression Analysis of a Metallothionein Gene, OsMT2b, Down-Regulated by Cytokinin Suggests Functions in Root Development and Seed Embryo Germination of Rice1[OA

    PubMed Central

    Yuan, Jing; Chen, Dan; Ren, Yujun; Zhang, Xuelian; Zhao, Jie

    2008-01-01

    Metallothioneins (MTs) are low molecular mass and cysteine-rich metal-binding proteins known to be mainly involved in maintaining metal homeostasis and stress responses. But, their functions in higher plant development are scarcely studied. Here, we characterized rice (Oryza sativa) METALLOTHIONEIN2b (OsMT2b) molecularly and found that its expression was down-regulated by cytokinins. OsMT2b was preferentially expressed in rice immature panicles, scutellum of germinating embryos, and primordium of lateral roots. In contrast with wild-type plants, OsMT2b-RNA interference (RNAi) transgenic plants had serious handicap in plant growth and root formation, whereas OsMT2b-overexpressing transformants were dwarfed and presented more adventitious roots and big lateral roots. The increased cytokinin levels in RNAi plants and decreased cytokinin levels in overexpressing plants were confirmed by high-performance liquid chromatography quantitative analysis in the roots of wild-type and transgenic plants. In RNAi plants, localization of isopentenyladenosine, a kind of endogenous cytokinin, in roots and germinating embryos expanded to the whole tissues, whereas in overexpressing plants, the isopentenyladenosine signals were very faint in the vascular tissues of roots and scutellum cells of germinating embryos. In vitro culture of embryos could largely resume the reduced germination frequency in RNAi plants but had no obvious change in overexpressing plants. Taken together, these results indicate a possible feedback regulation mechanism of OsMT2b to the level of endogenous cytokinins that is involved in root development and seed embryo germination of rice. PMID:18258694

  9. Le LHC, un tunnel cosmique

    ScienceCinema

    None

    2011-10-06

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d?autres termes, qu?est-ce que le LHC peut nous apporter dans la connaissance de l?Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l?univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l?Univers ? La matière noire est-elle détectable au LHC ? L?énergie noire ? Pourquoi l?antimatière accumulée au CERN est-elle si rare dans l?Univers ? Et si le CERN a bâti sa réputation sur l?exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l?évolution cosmique ? Depuis une trentaine d?années, notre compréhension de l?univers dans ses plus grandes dimensions et l?appréhension de son comportement aux plus petites distances sont intimement liées : en quoi le LHC va-t-il tester expérimentalement cette vision unifiée ? Tout public, entrée libre / Réservations au +41 (0)22 767 76 76

  10. L'Aventure du LHC

    ScienceCinema

    None

    2011-10-06

    Cette présentation s?adressera principalement aux personnes qui ont construit le LHC. La construction du LHC fut longue et difficile. De nombreux problèmes sont apparus en cours de route. Tous ont été résolus grâce au dévouement et à l?engagement du personnel et des collaborateurs. Je reviendrai sur les coups durs et les réussites qui ont marqués ces 15 dernières années et je vous montrerai combien cette machine, le fruit de vos efforts, est extraordinaire.

  11. Diffraction dissociation at the LHC

    SciTech Connect

    Jenkovszky, Laszlo; Orava, Risto; Salii, Andrii

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  12. B Physics at the LHC

    SciTech Connect

    Gersabeck, Marco

    2010-02-10

    The LHC is scheduled to start its first physics data taking period later in 2009. Primarily LHCb but also ATLAS and CMS will start a rich B physics programme with the potential of revealing New Physics in the heavy flavour sector. This contribution will cover the prospects for B physics at the LHC with particular emphasis to early measurements. This includes CP violation measurements in B{sub d}{sup 0} and B{sub s}{sup 0} decays, searches for rare decays such as B{sub s}{sup 0}->{mu}{mu}, as well as semileptonic and radiative channels.

  13. L'Aventure du LHC

    SciTech Connect

    2010-06-11

    Cette présentation s’adressera principalement aux personnes qui ont construit le LHC. La construction du LHC fut longue et difficile. De nombreux problèmes sont apparus en cours de route. Tous ont été résolus grâce au dévouement et à l’engagement du personnel et des collaborateurs. Je reviendrai sur les coups durs et les réussites qui ont marqués ces 15 dernières années et je vous montrerai combien cette machine, le fruit de vos efforts, est extraordinaire.

  14. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  15. Diffraction dissociation at the LHC

    NASA Astrophysics Data System (ADS)

    Jenkovszky, László; Orava, Risto; Salii, Andrii

    2013-04-01

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  16. LHC Symposium 2003: Summary Talk

    SciTech Connect

    Jeffrey A. Appel

    2003-08-12

    This summary talk reviews the LHC 2003 Symposium, focusing on expectations as we prepare to leap over the current energy frontier into new territory. We may learn from what happened in the two most recent examples of leaping into new energy territory. Quite different scenarios appeared in those two cases. In addition, they review the status of the machine and experiments as reported at the Symposium. Finally, I suggest an attitude which may be most appropriate as they look forward to the opportunities anticipated for the first data from the LHC.

  17. Probing baryogenesis with displaced vertices at the LHC

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Shuve, Brian

    2015-02-01

    The generation of the asymmetric cosmic baryon abundance requires a departure from thermal equilibrium in the early universe. In a large class of baryogenesis models, the baryon asymmetry results from the out-of-equilibrium decay of a new, massive particle. We highlight that in the interesting scenario where this particle has a weak scale mass, this out-of-equilibrium condition requires a proper decay length larger than O(1) mm. Such new fields are within reach of the LHC, at which they can be pair produced leaving a distinctive, displaced-vertex signature. This scenario is realized in the recently proposed mechanism of baryogenesis where the baryon asymmetry is produced through the freeze-out and subsequent decay of a meta-stable weakly interacting massive particle ("WIMP baryogenesis"). In analogy to missing energy searches for WIMP dark matter, the LHC is an excellent probe of these new long-lived particles responsible for baryogenesis via the low-background displaced vertex channel. In our paper, we estimate the limits on simplified models inspired by WIMP baryogenesis from two of the most sensitive collider searches by CMS and ATLAS with 8 TeV LHC data. We also estimate the LHC reach at 13 TeV using current strategies, and demonstrate that up to a factor of 100 improvement in cross-section limits can be achieved by requiring two displaced vertices while lowering kinematic thresholds. For meta-stable WIMPs produced through electroweak interactions, the high luminosity LHC is sensitive to masses up to 2.5 TeV for lifetimes around 1 cm, while for singlets pair-produced through the off-shell-Higgs portal, the LHC is sensitive to production cross sections of O(10) ab for benchmark masses around 150 GeV. Our analysis and proposals also generally apply to displaced vertex signatures from other new physics such as hidden valley models, twin Higgs models and displaced supersymmetry.

  18. LHC Higgs signatures from extended electroweak gauge symmetry

    NASA Astrophysics Data System (ADS)

    Abe, Tomohiro; Chen, Ning; He, Hong-Jian

    2013-01-01

    We study LHC Higgs signatures from the extended electroweak gauge symmetry SU(2) ⊗ SU(2) ⊗ U(1). Under this gauge structure, we present an effective UV completion of the 3-site moose model with ideal fermion delocalization, which contains two neutral Higgs states ( h, H) plus three new gauge bosons ( W ' , Z '). We study the unitarity, and reveal that the exact E 2 cancellation in the longitudinal V L V L scattering amplitudes is achieved by the joint role of exchanging both spin-1 new gauge bosons W ' /Z ' and spin-0 Higgs bosons h/H. We identify the lighter Higgs state h with mass 125 GeV, and derive the unitarity bound on the mass of heavier Higgs boson H. The parameter space of this model is highly predictive. We study the production and decay signals of this 125 GeV Higgs boson h at the LHC. We demonstrate that the h Higgs boson can naturally have enhanced signals in the diphoton channel gg → h → γγ, while the event rates in the reactions gg → h → W W ∗ and gg → h → ZZ ∗ are generally suppressed relative to the SM expectation. Searching the h Higgs boson via the associated production and the vector boson fusions are also discussed for our model. We further analyze the LHC signals of the heavier Higgs boson H as a new physics discriminator from the SM. For wide mass-ranges of H, we derive constraints from the existing LHC searches, and study the discovery potential of H at the LHC (8 TeV) and LHC (14 TeV).

  19. Minimal natural supersymmetry after the LHC8

    NASA Astrophysics Data System (ADS)

    Drees, Manuel; Kim, Jong Soo

    2016-05-01

    In this work, we present limits on natural supersymmetry scenarios based on searches in data taken during run 1 of the LHC. We consider a set of 22 000 model points in a six dimensional parameter space. These scenarios are minimal in the sense of only keeping those superparticles relatively light that are required to cancel the leading quadratically divergent quantum corrections (from the top and QCD sector) to the Higgs mass in the Standard Model. The resulting mass spectra feature Higgsinos as the lightest supersymmetric particle, as well as relatively light third generation S U (2 ) doublet squarks and S U (2 ) singlet stops and gluinos while assuming a Standard-Model-like Higgs boson. All remaining supersymmetric particles and Higgs bosons are assumed to be decoupled. We check each parameter set against a large number of LHC searches as implemented in the public code CheckMATE. These searches show a considerable degree of complementarity, i.e., in general, many searches have to be considered in order to check whether a given scenario is allowed. We delineate allowed and excluded regions in parameter space. For example, we find that all scenarios where either mt˜1<230GeV or mg ˜<440 GeV are clearly excluded, while all model points where mt ˜1>660 GeV and mg ˜>1180 GeV remain allowed.

  20. PHOBOS in the LHC era

    SciTech Connect

    Steinberg, Peter

    2015-01-15

    The PHOBOS experiment ran at the RHIC collider from 2000 to 2005, under the leadership of Wit Busza. These proceedings summarize selected PHOBOS results, highlighting their continuing relevance amidst the wealth of new results from the lead–lead program at the Large Hadron Collider (LHC)

  1. String Physics at the LHC

    SciTech Connect

    Anchordoqui, Luis A.

    2008-11-23

    The LHC program will include the identification of events with single high-k{sub T} photons as probes of new physics. We show that this channel is uniquely suited to search for experimental evidence of TeV-scale open string theory.

  2. Event generator for the LHC

    NASA Astrophysics Data System (ADS)

    Gleisberg, T.; Höche, S.; Krauss, F.; Schälicke, A.; Schumann, S.; Winter, J.

    2006-04-01

    In this contribution the new event generation framework S HERPA will be presented. It aims at the full simulation of events at current and future high-energy experiments, in particular the LHC. Some results related to the production of jets at the Tevatron will be discussed.

  3. The history of the LHC

    SciTech Connect

    2010-05-11

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  4. Post-LHC accelerator magnets

    SciTech Connect

    Gourlay, Stephen A.

    2001-06-10

    The design and practicality of future accelerators, such as hadron colliders and neutrino factories being considered to supercede the LHC, will depend greatly on the choice of superconducting magnets. Various possibilities will be reviewed and discussed, taking into account recent progress and projected improvements in magnet design and conductor development along with the recommendations from the 2001 Snowmass workshop.

  5. The history of the LHC

    ScienceCinema

    None

    2011-10-06

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  6. Tax Posttranslational Modifications and Interaction with Calreticulin in MT-2 Cells and Human Peripheral Blood Mononuclear Cells of Human T Cell Lymphotropic Virus Type-I-Associated Myelopathy/Tropical Spastic Paraparesis Patients

    PubMed Central

    Medina, Fernando; Quintremil, Sebastian; Alberti, Carolina; Barriga, Andres; Cartier, Luis; Puente, Javier; Ramírez, Eugenio; Ferreira, Arturo; Tanaka, Yuetsu

    2014-01-01

    Abstract The human retrovirus human T cell lymphotropic virus type-I (HTLV-1) is the etiologic agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Axonal degeneration in HAM/TSP patients occurs without neuron infection, with the secreted viral Tax protein proposed to be involved. We previously found that Tax secreted into the culture medium of MT-2 cells (HTLV-1-infected cell line) produced neurite retraction in neuroblastoma cells differentiated to neuronal type. To assess the relevance of Tax posttranslational modifications on this effect, we addressed the question of whether Tax secreted by MT-2 cells and peripheral blood mononuclear cells (PBMCs) of HTLV-1-infected subjects is modified. The interaction of Tax with calreticulin (CRT) that modulates intracellular Tax localization and secretion has been described. We studied Tax localization and modifications in MT-2 cells and its interaction with CRT. Intracellular Tax in MT-2 cells was assessed by flow cytometry, corresponding mainly to a 71-kDa protein followed by western blot. This protein reported as a chimera with gp21 viral protein—confirmed by mass spectrometry—showed no ubiquitination or SUMOylation. The Tax–CRT interaction was determined by confocal microscopy and coimmunoprecipitation. Extracellular Tax from HAM/TSP PBMCs is ubiquitinated according to western blot, and its interaction with CRT was shown by coimmunoprecipitation. A positive correlation between Tax and CRT secretion was observed in HAM/TSP PBMCs and asymptomatic carriers. For both proteins inhibitors and activators of secretion showed secretion through the endoplasmic reticulum–Golgi complex. Tax, present in PBMC culture medium, produced neurite retraction in differentiated neuroblastoma cells. These results suggest that Tax, whether ubiquitinated or not, is active for neurite retraction. PMID:24321043

  7. Testing the Muon g-2 Anomaly at the LHC

    SciTech Connect

    Freitas, Ayres; Lykken, Joseph; Kell, Stefan; Westhoff, Susanne

    2014-05-29

    The long-standing difference between the experimental measurement and the standard-model prediction for the muon's anomalous magnetic moment, $a_{\\mu} = (g_{\\mu}-2)/2$, may be explained by the presence of new weakly interacting particles with masses of a few 100 GeV. Particles of this kind can generally be directly produced at the LHC, and thus they may already be constrained by existing data. In this work, we investigate this connection between $a_{\\mu}$ and the LHC in a model-independent approach, by introducing one or two new fields beyond the standard model with spin and weak isospin up to one. For each case, we identify the preferred parameter space for explaining the discrepancy of a_mu and derive bounds using data from LEP and the 8-TeV LHC run. Furthermore, we estimate how these limits could be improved with the 14-TeV LHC. We find that the 8-TeV results already rule out a subset of our simplified models, while almost all viable scenarios can be tested conclusively with 14-TeV data.

  8. Testing the Muon g-2 Anomaly at the LHC

    DOE PAGESBeta

    Freitas, Ayres; Lykken, Joseph; Kell, Stefan; Westhoff, Susanne

    2014-05-29

    The long-standing difference between the experimental measurement and the standard-model prediction for the muon's anomalous magnetic moment,more » $$a_{\\mu} = (g_{\\mu}-2)/2$$, may be explained by the presence of new weakly interacting particles with masses of a few 100 GeV. Particles of this kind can generally be directly produced at the LHC, and thus they may already be constrained by existing data. In this work, we investigate this connection between $$a_{\\mu}$$ and the LHC in a model-independent approach, by introducing one or two new fields beyond the standard model with spin and weak isospin up to one. For each case, we identify the preferred parameter space for explaining the discrepancy of a_mu and derive bounds using data from LEP and the 8-TeV LHC run. Furthermore, we estimate how these limits could be improved with the 14-TeV LHC. We find that the 8-TeV results already rule out a subset of our simplified models, while almost all viable scenarios can be tested conclusively with 14-TeV data.« less

  9. Naturalness in the dark at the LHC

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Katz, Andrey; Strassler, Matt; Sundrum, Raman

    2015-07-01

    We revisit the Twin Higgs scenario as a "dark" solution to the little hierarchy problem, identify the structure of a minimal model and its viable parameter space, and analyze its collider implications. In this model, dark naturalness generally leads to Hidden Valley phenomenology. The twin particles, including the top partner, are all Standard-Model-neutral, but naturalness favors the existence of twin strong interactions — an asymptotically-free force that confines not far above the Standard Model QCD scale — and a Higgs portal interaction. We show that, taken together, these typically give rise to exotic decays of the Higgs to twin hadrons. Across a substantial portion of the parameter space, certain twin hadrons have visible and often displaced decays, providing a potentially striking LHC signature. We briefly discuss appropriate experimental search strategies.

  10. Simplified SIMPs and the LHC

    NASA Astrophysics Data System (ADS)

    Daci, N.; De Bruyn, I.; Lowette, S.; Tytgat, M. H. G.; Zaldivar, B.

    2015-11-01

    The existence of Dark Matter (DM) in the form of Strongly Interacting Massive Particles (SIMPs) may be motivated by astrophysical observations that challenge the classical Cold DM scenario. Other observations greatly constrain, but do not completely exclude, the SIMP alternative. The signature of SIMPs at the LHC may consist of neutral, hadron-like, trackless jets produced in pairs. We show that the absence of charged content can provide a very efficient tool to suppress dijet backgrounds at the LHC, thus enhancing the sensitivity to a potential SIMP signal. We illustrate this using a simplified SIMP model and present a detailed feasibility study based on simulations, including a dedicated detector response parametrization. We evaluate the expected sensitivity to various signal scenarios and tentatively consider the exclusion limits on the SIMP elastic cross section with nucleons.

  11. Catching Collisions in the LHC

    SciTech Connect

    Fruguiele, Claudia; Hirschauer, Jim

    2015-06-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  12. LHC magnet quench protection system

    NASA Astrophysics Data System (ADS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  13. Cryogenics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  14. hhjj production at the LHC

    DOE PAGESBeta

    Dolan, Matthew J.; Englert, Christoph; Greiner, Nicolas; Nordstrom, Karl; Spannowsky, Michael

    2015-08-25

    The search for di-Higgs production at the LHC in order to set limits on the Higgs trilinear coupling and constraints on new physics is one of the main motivations for the LHC high-luminosity phase. Recent experimental analyses suggest that such analyses will only be successful if information from a range of channels is included. We therefore investigate di-Higgs production in association with two hadronic jets and give a detailed discussion of both the gluon- and the weak boson-fusion (WBF) contributions, with a particular emphasis on the phenomenology with modified Higgs trilinear and quartic gauge couplings. We perform a detailed investigationmore » of the full hadronic final state and find that hhjj production should add sensitivity to a di-Higgs search combination at the HL-LHC with 3 ab-1. Since the WBF and GF contributions are sensitive to different sources of physics beyond the Standard Model, we devise search strategies to disentangle and isolate these production modes. In addition, while gluon fusion remains non-negligible in WBF-type selections, sizeable new physics contributions to the latter can still be constrained. As an example of the latter point we investigate the sensitivity that can be obtained for a measurement of the quartic Higgs–gauge boson couplings.« less

  15. QCD and hard diffraction at the LHC

    SciTech Connect

    Albrow, Michael G.; /Fermilab

    2005-09-01

    As an introduction to QCD at the LHC the author gives an overview of QCD at the Tevatron, emphasizing the high Q{sup 2} frontier which will be taken over by the LHC. After describing briefly the LHC detectors the author discusses high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. The author introduces the FP420 project to measure the scattered protons 420m downstream of ATLAS and CMS.

  16. Abort Gap Cleaning for LHC Run 2

    SciTech Connect

    Uythoven, Jan; Boccardi, Andrea; Bravin, Enrico; Goddard, Brennan; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Kain, Verena; Mazzoni, Stefano; Meddahi, Malika; Valuch, Daniel; Gianfelice-Wendt, Eliana

    2014-07-01

    To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  17. LHC crab-cavity aspects and strategy

    SciTech Connect

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-05-23

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  18. Z' Phenomenology and the LHC

    SciTech Connect

    Rizzo, Thomas G.

    2006-10-17

    A brief pedagogical overview of the phenomenology of Z{prime} gauge bosons is ILC in determining Z{prime} properties is also discussed. and explore in detail how the LHC may discover and help elucidate the models, review the current constraints on the possible properties of a Z{prime} nature of these new particles. We provide an overview of the Z{prime} studies presented. Such particles can arise in various electroweak extensions of that have been performed by both ATLAS and CMS. The role of the the Standard Model (SM). We provide a quick survey of a number of Z{prime}.

  19. Probing Metastability at the LHC

    SciTech Connect

    Clavelli, L.

    2010-02-10

    Current attempts to understand supersymmetry (susy) breaking are focused on the idea that we are not in the ground state of the universe but, instead, in a metastable state that will ultimately decay to an exactly susy ground state. It is interesting to ask how experiments at the Large Hadron Collider (LHC) will shed light on the properties of this future supersymmetric universe. In particular we ask how we can determine whether this final state has the possibility of supporting atoms and molecules in a susy background.

  20. Experimental status of supersymmetry after the LHC Run-I

    NASA Astrophysics Data System (ADS)

    Autermann, Christian

    2016-09-01

    The ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN have searched for signals of new physics, in particular for supersymmetry. The data collected until 2012 at center-of-mass energies of 7 and 8 TeV and integrated luminosities of 5 fb-1 and 20 fb-1, respectively, agree with the expectation from standard model processes. Constraints on supersymmetry have been calculated and interpreted in different models. Limits on supersymmetry particle masses at the TeV scale have been derived and interpreted generally in the context of simplified model spectra. The constrained minimal supersymmetric standard model is disfavored by the experimental results. Natural supersymmetry scenarios with low supersymmetry particle masses remain possible in multiple regions, for example in those with compressed spectra, that are difficult to access experimentally. The upgraded LHC operating at √{ s } = 13 TeV is gaining sensitivity to the remaining unexplored SUSY parameter space.

  1. A flippon related singlet at the LHC II

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Maxin, James A.; Mayes, Van E.; Nanopoulos, Dimitri V.

    2016-06-01

    We consider the 750 GeV diphoton resonance at the 13 TeV LHC in the ℱ-SU(5) model with a Standard Model (SM) singlet field which couples to TeV-scale vector-like particles, dubbed flippons. This singlet field assumes the role of the 750 GeV resonance, with production via gluon fusion and subsequent decay to a diphoton via the vector-like particle loops. We present a numerical analysis showing that the observed 8 TeV and 13 TeV diphoton production cross-sections can be generated in the model space with realistic electric charges and Yukawa couplings for light vector-like masses. We further discuss the experimental viability of light vector-like masses in a General No-Scale ℱ-SU(5) model, offering a few benchmark scenarios in this consistent GUT that can satisfy all experimental constraints imposed by the LHC and other essential experiments.

  2. (SUSY) Higgs Search at the LHC

    SciTech Connect

    Muehlleitner, M. Margarete

    2008-11-23

    The discovery of the Standard Model (SM) or supersymmetric (SUSY) Higgs bosons belongs to the main endeavors of the Large Hadron Collider (LHC). In this article the status of the signal and background calculations for Higgs boson production at the LHC is reviewed.

  3. First data from TOTEM experiment at LHC

    NASA Astrophysics Data System (ADS)

    Ferro, F.

    2011-07-01

    The TOTEM experiment at the LHC is mainly dedicated to the measurement of the total proton-proton cross section, elastic scattering and to the study of the diffractive processes. This contribution reviews the physics goals of the experiment, the status of the experimental apparatus and of the analysis of the first data from the LHC.

  4. Remote Operations for LHC and CMS

    SciTech Connect

    Gottschalk, E.E.; /Fermilab

    2007-04-01

    Commissioning the Large Hadron Collider (LHC) and its experiments will be a vital part of the worldwide high energy physics program beginning in 2007. A remote operations center has been built at Fermilab to contribute to commissioning and operations of the LHC and the Compact Muon Solenoid (CMS) experiment, and to develop new capabilities for real-time data analysis and monitoring for LHC, CMS, and grid computing. Remote operations will also be essential to a future International Linear Collider with its multiple, internationally distributed control rooms. In this paper we present an overview of Fermilab's LHC@FNAL remote operations center for LHC and CMS, describe what led up to the development of the center, and describe noteworthy features of the center.

  5. String photini at the LHC

    SciTech Connect

    Arvanitaki, Asimina; Craig, Nathaniel; Dimopoulos, Savas; Dubovsky, Sergei; March-Russell, John

    2010-04-01

    String theories with topologically complex compactification manifolds suggest the simultaneous presence of many unbroken U(1)'s without any light matter charged under them. The gauge bosons associated with these U(1)'s do not have direct observational consequences. However, in the presence of low energy supersymmetry the gauge fermions associated with these U(1)'s, the ''photini,'' mix with the bino and extend the minimal supersymmetric standard model neutralino sector. This leads to novel signatures at the LHC. The lightest ordinary supersymmetric particle (LOSP) can decay to any one of these photini. In turn, photini may transition into each other, leading to high lepton and jet multiplicities. Both the LOSP decays and interphotini transitions can lead to displaced vertices. When the interphotini decays happen outside the detector, the cascades can result in different photini escaping the detector, leading to multiple reconstructed masses for the invisible particle. If the LOSP is charged, it stops in the detector and decays out of time to photini, with the possibility that the produced final photini vary from event to event. Observation of a plenitude of photini at the LHC would be evidence that we live in a string vacuum with a topologically rich compactification manifold.

  6. Mirage models confront the LHC. III. Deflected mirage mediation

    NASA Astrophysics Data System (ADS)

    Everett, Lisa L.; Garon, Todd; Kaufman, Bryan L.; Nelson, Brent D.

    2016-03-01

    We complete the study of a class of string-motivated effective supergravity theories in which modulus-induced soft supersymmetry breaking is sufficiently suppressed in the observable sector so as to be competitive with anomaly-mediated supersymmetry breaking. Here we consider deflected "mirage mediation" (DMM), where contributions from gauge mediation are added to those arising from gravity mediation and anomaly mediation. We update previous work that surveyed the rich parameter space of such theories, in light of data from the CERN Large Hadron Collider (LHC) and recent dark matter detection experiments. Constraints arising from LHC superpartner searches at √{s }=8 TeV are considered, and discovery prospects at √{s }=14 TeV are evaluated. We find that deflected mirage mediation generally allows for S U (3 )-charged superpartners of significantly lower mass (given current knowledge of the Higgs mass and neutralino relic density) than was found for the "pure" mirage mediation models of Kachru et al. [Phys. Rev. D 68, 046005 (2003)]. Consequently, discovery prospects are enhanced for many combinations of matter multiplet modular weights. We examine the experimental challenges that will arise due to the prospect of highly compressed spectra in DMM, and the correlation between accessibility at the LHC and discovery prospects at large-scale liquid xenon dark matter detectors.

  7. GUT and supersymmetry at the LHC and in dark matter

    SciTech Connect

    Nath, Pran

    2012-07-27

    Conventional SO(10) models involve more than one scale for a complete breaking of the GUT symmetry requiring further assumptions on the VEVs of the Higgs fields that enter in the breaking to achieve viable models. Recent works where the breaking can be accomplished at one scale are discussed. These include models with just a pair of 144+144 of Higgs fields. Further extensions of this idea utilizing 560+560 of Higgs representations allow both the breaking at one scale, as well as accomplish a natural doublet-triplet splitting via the missing partner mechanism. More generally, we discuss the connection of high scale models to low energy physics in the context of supergravity grand unification. Here we discuss a natural solution to the little hierarchy problem and also discuss the implications of the LHC data for supersymmetry. It is shown that the LHC data implies that most of the parameter space of supergravity models consistent with the data lie on the Hyperbolic Branch of radiative breaking of the electroweak symmetry and more specifically on the Focal Surface of the Hyperbolic Branch. A discussion is also given of the implications of recent LHC data on the Higgs boson mass for the discovery of supersymmetry and for the search for dark matter.

  8. The versatile link, a common project for super-LHC

    SciTech Connect

    Amaral, Luis; Dris, Stefanos; Gerardin, Alexandre; Huffman, Todd; Issever, Cigdem; Pacheco, Alberto Jimenez; Jones, Mark; Kwan, Simon; Lee, Shih-Chang; Lian, Zhijun; Liu, Tiankuan; /CERN /Oxford U. /Fermilab /Taipei, Computing Ctr. /Southern Methodist U.

    2009-07-01

    Radiation tolerant, high speed optoelectronic data transmission links are fundamental building blocks in today's large scale High Energy Physics (HEP) detectors, as exemplified by the four experiments currently under commissioning at the Large Hadron Collider (LHC), see for example. New experiments or upgrades will impose even more stringent demands on these systems from the point of view of performance and radiation tolerance. This can already be seen from the developments underway for the Super Large Hadron Collider (SLHC) project, a proposed upgrade to the LHC aiming at increasing the luminosity of the machine by factor of 10 to 10{sup 35} cm{sup -2}s{sup -1}, and thus providing a better chance to see rare processes and improving statistically marginal measurements. In the past, specific data transmission links have been independently developed by each LHC experiment for data acquisition (DAQ), detector control as well as trigger and timing distribution (TTC). This was justified by the different types of applications being targeted as well as by technological limitations preventing one single solution from fitting all requirements. However with today's maturity of optoelectronic and CMOS technologies it is possible to envisage the development of a general purpose optical link which can cover most transmission applications: a Versatile Link. Such an approach has the clear advantage of concentrating the development effort on one single project targeting an optical link whose final functionality will only result from the topology and configuration settings adopted.

  9. Overview of LHC physics results at ICHEP

    SciTech Connect

    2011-02-25

     This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar)For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  10. Overview of LHC physics results at ICHEP

    ScienceCinema

    None

    2011-04-25

     This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar)For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  11. Diffraction at the Tevatron and the LHC

    NASA Astrophysics Data System (ADS)

    Royon, C.

    2008-09-01

    In this paper, we present and discuss the most recent results on inclusive diffraction at the Tevatron collider and give the prospects at the LHC. We also describe the search for exclusive events at the Tevatron. Of special interest is the exclusive production of Higgs boson and heavy objects (W, top, stop pairs) at the LHC which will require precise measurements and analyses of inclusive and exclusive diffraction to constrain further the gluon density in the pomeron. At the end of the paper, we describe the projects to install forward detectors at the LHC to fulfil these measurements. We also describe the diffractive experiments accepted or in project at the LHC: TOTEM, ALFA in ATLAS, and the AFP/FP420 projects.

  12. The LHC Confronts the pMSSM

    DOE PAGESBeta

    Cahill-Rowley, Matthew

    2016-05-31

    Here we explore the impact of current (7+8 TeV) and future (14 TeV) LHC searches on the range of viable sparticle spectra within the 19/20 – dimensional phenomenological MSSM (pMSSM). Considering both neutralino and gravitino LSPs, we compare our results with simplified model exclusion limits and describe important cases where the pMSSM results differ significantly from the simplified model descriptions. We also consider models that are poorly constrained by LHC data because of unusual decay topologies and/or displaced decays, and discuss ways to improve the LHC sensitivity in these scenarios. Finally, motivated by naturalness, we examine the sensitivity of currentmore » searches to models with light stops and to a specialized set of models with fine-tuning better than 1%. We show that the 14 TeV LHC will be a very powerful probe of natural pMSSM models.« less

  13. Double Pomeron physics at the LHC

    SciTech Connect

    Albrow, Michael G.; /Fermilab

    2005-07-01

    The author discusses central exclusive production, also known as Double Pomeron Exchange DIPE, from the ISR through the Tevatron to the LHC. There the author emphasizes the interest of exclusive Higgs and W{sup +}W{sup -}/ZZ production.

  14. Physics motivations for SSC/LHC detectors

    SciTech Connect

    Hinchliffe, I.

    1993-06-01

    In this talk, I review the some of the physics goals and simulation work done in the SSC and LHC experimental proposal. I select the processes that illustrate the strengths and weaknesses the proposed detectors.

  15. Tension in the LHC diffractive data?

    SciTech Connect

    Gotsman, Errol

    2015-04-10

    I discuss the LHC diffractive data, and compare it to predicted energy behaviour of various models. I suggest that the so called 'tension' between the experimental results, maybe due to the different Monte Carlo programs used.

  16. The TOTEM Experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Avati, V.; Totem Collaboration

    The TOTEM experiment at the LHC will measure the total pp cross-section, elastic scattering and diffraction. This contribution summarises the physics goals, the status of the experimental apparatus and the first results from the 2010 data taking.

  17. Review of the safety of LHC collisions

    NASA Astrophysics Data System (ADS)

    Ellis, John; Giudice, Gian; Mangano, Michelangelo; Tkachev, Igor; Wiedemann, Urs; LHC Safety Assessment Group

    2008-11-01

    The safety of collisions at the Large Hadron Collider (LHC) was studied in 2003 by the LHC Safety Study Group, who concluded that they presented no danger. Here we review their 2003 analysis in light of additional experimental results and theoretical understanding, which enable us to confirm, update and extend the conclusions of the LHC Safety Study Group. The LHC reproduces in the laboratory, under controlled conditions, collisions at centre-of-mass energies, less than those reached in the atmosphere by some of the cosmic rays that have been bombarding the Earth for billions of years. We recall the rates for the collisions of cosmic rays with the Earth, Sun, neutron stars, white dwarfs and other astronomical bodies at energies higher than the LHC. The stability of astronomical bodies indicates that such collisions cannot be dangerous. Specifically, we study the possible production at the LHC of hypothetical objects such as vacuum bubbles, magnetic monopoles, microscopic black holes and strangelets, and find no associated risks. Any microscopic black holes produced at the LHC are expected to decay by Hawking radiation before they reach the detector walls. If some microscopic black holes were stable, those produced by cosmic rays would be stopped inside the Earth or other astronomical bodies. The stability of astronomical bodies strongly constrains the possible rate of accretion by any such microscopic black holes, so that they present no conceivable danger. In the case of strangelets, the good agreement of measurements of particle production at RHIC with simple thermodynamic models severely constrains the production of strangelets in heavy-ion collisions at the LHC, which also present no danger.

  18. Physics at the LHC: a short overview

    NASA Astrophysics Data System (ADS)

    d'Enterria, David

    2011-01-01

    The CERN Large Hadron Collider (LHC) started operation a few months ago. The machine will deliver proton-proton and nucleus-nucleus collisions at energies as high as = 14 TeV and luminosities up to ~ 1034 cm-2s-1 never reached before. The main open scientific questions that the seven LHC experiments - ATLAS, CMS, ALICE, LHCb, TOTEM, LHCf and MOEDAL - aim to solve in the coming years are succinctly reviewed.

  19. Introduction to the HL-LHC Project

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Brüning, O.

    The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11-12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federates efforts and R&D of a large community in Europe, in the US and in Japan, which will facilitate the implementation of the construction phase as a global project.

  20. From the LHC to Future Colliders

    SciTech Connect

    De Roeck, A.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglein, G.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Assamagan, K.; Bechtle, P.; Carena, M.; Chachamis, G.; /more authors..

    2010-06-11

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, theWorking Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  1. Hadron colliders (SSC/LHC)

    SciTech Connect

    Chao, A.W.; Palmer, R.B.; Evans, L.; Gareyte, J.; Siemann, R.H.

    1992-12-31

    The nominal SSC and LHC designs should operate conservatively at luminosities up to 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. This luminosity is dictated by the event rates that can be handled by the detectors. However, this limit is event dependent (e.g. it does not take much of a detector to detect the event pp {yields} elephant; all one needs is extremely high luminosity). As such, it is useful to explore the possibility of going beyond the 10{sup 33} cm{sup {minus}2} s{sup {minus}1} level. Such exploration will also improve the accelerator physics understanding of pp collider designs. If the detector limitations are removed, the first accelerator limits occur when the luminosity is at the level of 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. These accelerator limits will first be reviewed. The authors will then continue on to explore even higher luminosity as the ultimate limit of pp colliders. Accelerator technologies needed to achieve this ultimate luminosity as well as the R and D needed to reach it are discussed.

  2. Gaugino physics of split supersymmetry spectra at the LHC and future proton colliders

    NASA Astrophysics Data System (ADS)

    Jung, Sunghoon; Wells, James D.

    2014-04-01

    Discovery of the Higgs boson and lack of discovery of superpartners in the first run at the LHC are both predictions of split supersymmetry with thermal dark matter. We discuss what it would take to find gluinos at hadron supercolliders, including the LHC at 14 TeV center-of-mass energy, and future pp colliders at 100 TeV and 200 TeV. We generalize the discussion by reexpressing the search capacity in terms of the gluino to lightest superpartner mass ratio and apply results to other scenarios, such as gauge mediation and mirage mediation.

  3. TeV lepton number violation: From neutrinoless double-β decay to the LHC

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Ramsey-Musolf, Michael J.; Winslow, Peter

    2016-05-01

    We analyze the sensitivity of next-generation tonne-scale neutrinoless double-β decay (0 ν β β ) experiments and searches for same-sign di-electrons plus jets at the Large Hadron Collider to TeV scale lepton number violating interactions. Taking into account previously unaccounted for physics and detector backgrounds at the LHC, renormalization group evolution, and long-range contributions to 0 ν β β nuclear matrix elements, we find that the reach of tonne-scale 0 ν β β generally exceeds that of the LHC for a class of simplified models. However, for a range of heavy particle masses near the TeV scale, the high luminosity LHC and tonne-scale 0 ν β β may provide complementary probes.

  4. $A^t_{FB}$ Meets LHC

    SciTech Connect

    Hewett, JoAnne L.; Shelton, Jessie; Spannowsky, Michael; Tait, Tim M.P.; Takeuchi, Michihisa; /Heidelberg U.

    2012-02-14

    The recent Tevatron measurement of the forward-backward asymmetry of the top quark shows an intriguing discrepancy with Standard Model expectations, particularly at large t{bar t} invariant masses. Measurements of this quantity are subtle at the LHC, due to its pp initial state, however, one can define a forward-central-charge asymmetry which captures the physics. We study the capability of the LHC to measure this asymmetry and find that within the SM a measurement at the 5{sigma} level is possible with roughly 60 fb{sup -1} at {radical}s = 14 TeV. If nature realizes a model which enhances the asymmetry (as is necessary to explain the Tevatron measurements), a significant difference from zero can be observed much earlier, perhaps even during early LHC running at {radical}s = 7 TeV. We further explore the capabilities of the 7 TeV LHC to discover resonances or contact interactions which modify the t{bar t} invariant mass distribution using recent boosted top tagging techniques. We find that TeV-scale color octet resonances can be discovered, even with small coupling strengths and that contact interactions can be probed at scales exceeding 6 TeV. Overall, the LHC has good potential to clarify the situation with regards to the Tevatron forward-backward measurement.

  5. Supersymmetry Without Prejudice at the LHC

    SciTech Connect

    Conley, John A.; Gainer, James S.; Hewett, JoAnne L.; Le, My Phuong; Rizzo, Thomas G.; /SLAC

    2011-08-19

    The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC ({radical}s = 14 TeV, 1 fb{sup -1}) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of {approx} 71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 71k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all(two-thirds) of the pMSSM model points are discovered with a significance S > 5 in at least one of these 11 analyses assuming a 50% systematic error on the SM background. If this systematic error can be reduced to only 20% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.

  6. Machine optics studies for the LHC measurements

    NASA Astrophysics Data System (ADS)

    Trzebiński, Maciej

    2014-11-01

    In this work the properties of scattered protons in the vicinity of the ATLAS Interaction Point (IP1) for various LHC optics settings are discussed. Firstly, the beam elements installed around IP1 are presented. Then the ATLAS forward detector systems: Absolute Luminosity For ATLAS (ALFA) and ATLAS Forward Protons (AFP) are described and their similarities and differences are discussed. Next, the various optics used at Large Hadron Collider (LHC) are described and the beam divergence and width at the Interaction Point as well as at the ATLAS forward detectors locations are calculated. Finally, the geometric acceptance of the ATLAS forward detectors is shown and the impact of the LHC collimators on it is discussed.

  7. Higgs coupling measurements at the LHC

    NASA Astrophysics Data System (ADS)

    Englert, Christoph; Kogler, Roman; Schulz, Holger; Spannowsky, Michael

    2016-07-01

    Due to the absence of tantalising hints for new physics during the LHC's Run 1, the extension of the Higgs sector by dimension-six operators will provide the new phenomenological standard for searches of non-resonant extensions of the Standard Model. Using all dominant and subdominant Higgs production mechanisms at the LHC, we compute the constraints on Higgs physics-relevant dimension-six operators in a global and correlated fit. We show in how far these constraints can be improved by new Higgs channels becoming accessible at higher energy and luminosity, both through inclusive cross sections as well as through highly sensitive differential distributions. This allows us to discuss the sensitivity to new effects in the Higgs sector that can be reached at the LHC if direct hints for physics beyond the SM remain elusive. We discuss the impact of these constraints on well-motivated BSM scenarios.

  8. Heavy ion physics at the LHC

    SciTech Connect

    Vogt, R.

    2004-08-15

    The ion-ion center of mass energies at the LHC will exceed that at RHIC by nearly a factor of 30, providing exciting opportunities for addressing unique physics issues in a completely new energy domain. Some highlights of this new physics domain are presented here. We briefly describe how these collisions will provide new insights into the high density, low momentum gluon content of the nucleus expected to dominate the dynamics of the early state of the system. We then discuss how the dense initial state of the nucleus affects the lifetime and temperature of the produced system. Finally, we explain how the high energy domain of the LHC allows abundant production of ''rare'' processes, hard probes calculable in perturbative quantum chromodynamics, QCD. At the LHC, high momentum jets and b{bar b} bound states, the {Upsilon} family, will be produced with high statistics for the first time in heavy ion collisions.

  9. Critical services in the LHC computing

    NASA Astrophysics Data System (ADS)

    Sciabà, A.

    2010-04-01

    The LHC experiments (ALICE, ATLAS, CMS and LHCb) rely for the data acquisition, processing, distribution, analysis and simulation on complex computing systems, running using a variety of services, provided by the experiments, the Worldwide LHC Computing Grid and the different computing centres. These services range from the most basic (network, batch systems, file systems) to the mass storage services or the Grid information system, up to the different workload management systems, data catalogues and data transfer tools, often internally developed in the collaborations. In this contribution we review the status of the services most critical to the experiments by quantitatively measuring their readiness with respect to the start of the LHC operations. Shortcomings are identified and common recommendations are offered.

  10. LHC RF System Time-Domain Simulation

    SciTech Connect

    Mastorides, T.; Rivetta, C.; /SLAC

    2010-09-14

    Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.

  11. New Physics Undercover at the LHC

    NASA Astrophysics Data System (ADS)

    Lou, Hou Keong

    With the completion of 7 TeV and 8 TeV data taking at the Large Hadron Collider (LHC), the physics community witnessed one of the great triumphs of modern physics: the completion of the Standard Model (SM) as an effective theory. The final missing particle, the Higgs boson, was observed and its mass was measured. However, many theoretical questions remain unanswered. What is the source of electroweak symmetry breaking? What is the nature of dark matter? How does gravity fit into the picture? With no definitive hints of new physics at the LHC, we must consider the possibility that our search strategies need to be expanded. Conventional LHC searches focus on theoretically motivated scenarios, such as the Minimal Supersymmetric Standard Models and Little Higgs Theories. However, it is possible that new physics may be entirely different from what we might expect. In this thesis, we examine a variety of scenarios that lead to new physics undercover at the LHC. First we look at potential new physics hiding in Quantum Chromo-Dynamics backgrounds, which may be uncovered using jet substructure techniques in a data-driven way. Then we turn to new long-lived particles hiding in Higgs decay, which may lead to displaced vertices. Such a signal can be unearthed through a data-driven analysis. Then we turn to new physics with ``semi-visible jets'', which lead to missing momentum aligned with jet momentum. These events are vetoed in traditional searches and we demonstrate ways to uncover these signals. Lastly, we explore performance of future colliders in two case studies: Stops and Higgs Portal searches. We show that a 100 TeV collider will lead to significant improvements over 14 TeV LHC runs. Indeed, new physics may lie undercover at the LHC and future colliders, waiting to be discovered.

  12. Using tevatron magnets for HE-LHC or new ring in LHC tunnel

    SciTech Connect

    Piekarz, Henryk; /Fermilab

    2011-08-01

    Two injector accelerator options for HE-LHC of p{sup +} - p{sup +} collisions at 33 TeV cms energy are briefly outlined. One option is based on the Super-SPS (S-SPS) accelerator in the SPS tunnel, and the other one is based on the LER (Low-Energy-Ring) accelerator in the LHC tunnel. Expectations of performance of the main arc accelerator magnets considered for the construction of the S-SPS and of the LER accelerators are used to tentatively devise some selected properties of these accelerators as potential injectors to HE-LHC.

  13. R-axion detection at LHC

    SciTech Connect

    Goh, Hock-Seng; Ibe, Masahiro; /SLAC

    2009-06-19

    Supersymmetric models with spontaneously broken approximate R-symmetry contains a light spin 0 particle, the R-axion. The properties of the particle can be a powerful probe of the structure of the new physics. In this paper, we discuss the possibilities of the R-axion detection at the LHC experiments. It is challenge to observe this light particle in the LHC environment. However, for typical values in which the mass of the R-axion is a few hundred MeV, we show that those particles can be detected by searching for displaced vertices from R-axion decay.

  14. Bigger, Better, Faster, More at the LHC

    SciTech Connect

    Izaguirre, Eder; Manhart, Michael; Wacker, Jay G.; /SLAC

    2010-08-26

    Multijet plus missing energy searches provide universal coverage for theories that have new colored particles that decay into a dark matter candidate and jets. These signals appear at the LHC further out on the missing energy tail than two-to-two scattering indicates. The simplicity of the searches at the LHC contrasts sharply with the Tevatron where more elaborate searches are necessary to separate signal from background. The searches presented in this article effectively distinguish signal from background for any theory where the LSP is a daughter or granddaughter of the pair-produced colored parent particle without ever having to consider missing energies less than 400 GeV.

  15. Production of hhjj at the LHC.

    PubMed

    Dolan, Matthew J; Englert, Christoph; Greiner, Nicolas; Spannowsky, Michael

    2014-03-14

    Until now, a phenomenologically complete analysis of the hh+2j channel at the LHC has been missing. This is mostly due to the high complexity of the involved one-loop gluon fusion contribution and the fact that a reliable estimate thereof cannot be obtained through simplified calculations in the mt→∞ limit. In this Letter, we report on the LHC's potential to access di-Higgs production in association with two jets in a fully showered hadron-level analysis. Our study includes the finite top and bottom mass dependencies for the gluon fusion contribution. PMID:24679280

  16. LHC II system sensitivity to magnetic fluids

    NASA Astrophysics Data System (ADS)

    Cotae, Vlad; Creanga, Ioan

    2005-03-01

    Experiments have been designed to reveal the influences of ferrofluid treatment and static magnetic field exposure on the photosynthetic system II, where the light harvesting complex (LHC II) controls the ratio chlorophyll a/ chlorophyll b (revealing, indirectly, the photosynthesis rate). Spectrophotometric measurement of chlorophyll content revealed different influences for relatively low ferrofluid concentrations (10-30 μl/l) in comparison to higher concentrations (70-100 μl/l). The overlapped effect of the static magnetic field shaped better the stimulatory ferrofluid action on LHC II system in young poppy plantlets.

  17. Charged-particle multiplicity at LHC energies

    ScienceCinema

    None

    2011-10-06

    The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited. 

  18. Lessons from LHC elastic and diffractive data

    SciTech Connect

    Martin, A.D.; Khoze, V.A.; Ryskin, M.G.

    2015-04-10

    In the light of LHC data, we discuss the global description of all high-energy elastic and diffractive data, using a one-pomeron model, but including multi-pomeron interactions. The LHC data indicate the need of a k{sub t}(s) behaviour, where k{sub t} is the gluon transverse momentum along the partonic ladder structure which describes the pomeron. We also discuss tensions in the data, as well as the t dependence of the slope of dσ{sub el}/dt in the small t domain.

  19. LHC: The Emptiest Space in the Solar System

    ERIC Educational Resources Information Center

    Cid-Vidal, Xabier; Cid, Ramon

    2011-01-01

    Proton beams have been colliding at 7 TeV in the Large Hadron Collider (LHC) since 30 March 2010, meaning that the LHC research programme is underway. Particle physicists around the world are looking forward to using the data from these collisions, as the LHC is running at an energy three and a half times higher than previously achieved at any…

  20. Comment on ``Causality-violating Higgs singlets at the LHC''

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen

    2013-09-01

    The spacetime of Ho and Weiler [Phys. Rev. D 87, 045004 (2013)] supposedly admitting closed timelike curves (CTCs) is flat Minkowski spacetime with a compactified coordinate and can only contain CTCs if the compact direction is chosen to be timelike. This case of a “periodic time” is probably the simplest example of a causality-violating spacetime; it trivially satisfies all energy conditions usually assumed in general relativity, and its geodesics are just straight lines. Its relevance for phenomenology of the LHC, on the other hand, depends on consistency with observational constraints on gravity, as is mentioned in general but not discussed in any detail by Ho and Weiler. We verify a basic consistency check for stationary sources.

  1. Flavor changing heavy Higgs interactions at the LHC

    NASA Astrophysics Data System (ADS)

    Altunkaynak, Baris; Hou, Wei-Shu; Kao, Chung; Kohda, Masaya; McCoy, Brent

    2015-12-01

    A general two Higgs doublet model (2HDM) is adopted to study the signature of flavor changing neutral Higgs (FCNH) decay ϕ0 → t c bar + t bar c, where ϕ0 could be a CP-even scalar (H0) or a CP-odd pseudoscalar (A0). Measurement of the light 125 GeV neutral Higgs boson (h0) couplings at the Large Hadron Collider (LHC) favor the decoupling limit or the alignment limit of a 2HDM, in which gauge boson and diagonal fermion couplings of h0 approach Standard Model values. In such limit, FCNH couplings of h0 are naturally suppressed by a small mixing parameter cos ⁡ (β - α), while the off-diagonal couplings of heavier neutral scalars ϕ0 are sustained by sin ⁡ (β - α) ∼ 1. We study physics background from dominant processes with realistic acceptance cuts and tagging efficiencies. Promising results are found for the LHC running at 13 or 14 TeV collision energies.

  2. Flavor changing heavy Higgs interactions at the LHC

    NASA Astrophysics Data System (ADS)

    McCoy, Brent; Altunkaynak, Baris; Kao, Chung; Hou, Wei-Shou; Kohda, Masaya

    2016-03-01

    A general two Higgs doublet model (2HDM) is adopted to study the signature of flavor changing neutral Higgs (FCNH) decay ϕ0 --> t c + t c , where ϕ0 could be a CP-even scalar (H0) or a CP-odd pseudoscalar (A0). Measurement of the light 126 GeV neutral Higgs boson (h0) couplings at the Large Hadron Collider (LHC) favor the decoupling limit or the alignment limit of a 2HDM, in which gauge boson and diagonal fermion couplings of h0 approach Standard Model values. In such a limit, FCNH couplings of h0 are naturally suppressed by a small mixing parameter cos (β - α) , while the off-diagonal couplings of heavier neutral scalars ϕ0 are sustained by sin (β - α) ~ 1 . We study physics background from dominant processes with realistic acceptance cuts and tagging efficiencies. Promising results are found for the LHC running at 13 or 14 TeV collision energies. Academia Sinica, National Taiwan University; OU Supercomputing Center for Education & Research; U.S. Department of Energy, Grant No. DEFG01-13ER41979; Academic Summit Grants: MOST 103-2745-M-002-001-ASP, NTU-EPR-103R8915, and NSC 102-2112-M-033-007-MY3.

  3. The complete HEFT Lagrangian after the LHC Run I

    NASA Astrophysics Data System (ADS)

    Brivio, I.; Gonzalez-Fraile, J.; Gonzalez-Garcia, M. C.; Merlo, L.

    2016-07-01

    The complete effective chiral Lagrangian for a dynamical Higgs is presented and constrained by means of a global analysis including electroweak precision data together with Higgs and triple gauge-boson coupling data from the LHC Run I. The operators' basis up to next-to-leading order in the expansion consists of 148 (188 considering right-handed neutrinos) flavour universal terms and it is presented here making explicit the custodial nature of the operators. This effective Lagrangian provides the most general description of the physical Higgs couplings once the electroweak symmetry is assumed, and it allows for deviations from the SU(2)_L doublet nature of the Standard Model Higgs. The comparison with the effective linear Lagrangian constructed with an exact SU(2)_L doublet Higgs and considering operators with at most canonical dimension six is presented. A promising strategy to disentangle the two descriptions consists in analysing (i) anomalous signals present only in the chiral Lagrangian and not expected in the linear one, that are potentially relevant for LHC searches, and (ii) decorrelation effects between observables that are predicted to be correlated in the linear case and not in the chiral one. The global analysis presented here, which includes several kinematic distributions, is crucial for reducing the allowed parameter space and for controlling the correlations between parameters. This improves previous studies aimed at investigating the Higgs Nature and the origin of the electroweak symmetry breaking.

  4. LHAPDF6: parton density access in the LHC precision era

    NASA Astrophysics Data System (ADS)

    Buckley, Andy; Ferrando, James; Lloyd, Stephen; Nordström, Karl; Page, Ben; Rüfenacht, Martin; Schönherr, Marek; Watt, Graeme

    2015-03-01

    The Fortran LHAPDF library has been a long-term workhorse in particle physics, providing standardised access to parton density functions for experimental and phenomenological purposes alike, following on from the venerable PDFLIB package. During Run 1 of the LHC, however, several fundamental limitations in LHAPDF's design have became deeply problematic, restricting the usability of the library for important physics-study procedures and providing dangerous avenues by which to silently obtain incorrect results. In this paper we present the LHAPDF 6 library, a ground-up re-engineering of the PDFLIB/LHAPDF paradigm for PDF access which removes all limits on use of concurrent PDF sets, massively reduces static memory requirements, offers improved CPU performance, and fixes fundamental bugs in multi-set access to PDF metadata. The new design, restricted for now to interpolated PDFs, uses centralised numerical routines and a powerful cascading metadata system to decouple software releases from provision of new PDF data and allow completely general parton content. More than 200 PDF sets have been migrated from LHAPDF 5 to the new universal data format, via a stringent quality control procedure. LHAPDF 6 is supported by many Monte Carlo generators and other physics programs, in some cases via a full set of compatibility routines, and is recommended for the demanding PDF access needs of LHC Run 2 and beyond.

  5. Heavy color-octet particles at the LHC

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Freitas, Ayres; Han, Tao; Lee, Keith S. M.

    2015-05-01

    Many new-physics models, especially those with a color-triplet top-quark partner, contain a heavy color-octet state. The "naturalness" argument for a light Higgs boson requires that the color-octet state be not much heavier than a TeV, and thus it can be pair-produced with large cross sections at high-energy hadron colliders. It may decay preferentially to a top quark plus a top partner, which subsequently decays to a top quark plus a color-singlet state. This singlet can serve as a WIMP dark-matter candidate. Such decay chains lead to a spectacular signal of four top quarks plus missing energy. We pursue a general categorization of the color-octet states and their decay products according to their spin and gauge quantum numbers. We review the current bounds on the new states at the LHC and study the expected discovery reach at the 8-TeV and 14-TeV runs. We also present the production rates at a future 100-TeV hadron collider, where the cross sections will be many orders of magnitude greater than at the 14-TeV LHC. Furthermore, we explore the extent to which one can determine the color octet's mass, spin, and chiral couplings. Finally, we propose a test to determine whether the fermionic color octet is a Majorana particle.

  6. Exploring the Pomeron structure at the LHC

    NASA Astrophysics Data System (ADS)

    Royon, Christophe; Saimpert, Matthias

    2015-03-01

    We present some physics topics that will allow us to constrain the Pomeron structure at the LHC in terms of gluon and quark densities using the dijet and γ+jet events and tagged protons in AFP (ATLAS) and CMS-TOTEM. We also discuss the possibility to test the BFKL dynamics using jet-gap-jet events.

  7. LHC Phenomenology and Lattice Strong Dynamics

    NASA Astrophysics Data System (ADS)

    Fleming, G. T.

    2013-03-01

    While the LHC experimentalists work to find evidence of physics beyond the standard model, lattice gauge theorists are working as well to characterize the range of possible phenomena in strongly-coupled models of electroweak symmetry breaking. I will summarize the current progress of the Lattice Strong Dynamics (LSD) collaboration on the flavor dependence of SU(3) gauge theories.

  8. The LHCb Detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration; Alves, A. Augusto, Jr.; Filho, L. M. Andrade; Barbosa, A. F.; Bediaga, I.; Cernicchiaro, G.; Guerrer, G.; Lima, H. P., Jr.; Machado, A. A.; Magnin, J.; Marujo, F.; de Miranda, J. M.; Reis, A.; Santos, A.; Toledo, A.; Akiba, K.; Amato, S.; de Paula, B.; de Paula, L.; da Silva, T.; Gandelman, M.; Lopes, J. H.; Maréchal, B.; Moraes, D.; Polycarpo, E.; Rodrigues, F.; Ballansat, J.; Bastian, Y.; Boget, D.; DeBonis, I.; Coco, V.; David, P. Y.; Decamp, D.; Delebecque, P.; Drancourt, C.; Dumont-Dayot, N.; Girard, C.; Lieunard, B.; Minard, M. N.; Pietrzyk, B.; Rambure, T.; Rospabe, G.; T'Jampens, S.; Ajaltouni, Z.; Bohner, G.; Bonnefoy, R.; Borras, D.; Carloganu, C.; Chanal, H.; Conte, E.; Cornat, R.; Crouau, M.; Delage, E.; Deschamps, O.; Henrard, P.; Jacquet, P.; Lacan, C.; Laubser, J.; Lecoq, J.; Lefèvre, R.; Magne, M.; Martemiyanov, M.; Mercier, M.-L.; Monteil, S.; Niess, V.; Perret, P.; Reinmuth, G.; Robert, A.; Suchorski, S.; Arnaud, K.; Aslanides, E.; Babel, J.; Benchouk, C.; Cachemiche, J.-P.; Cogan, J.; Derue, F.; Dinkespiler, B.; Duval, P.-Y.; Garonne, V.; Favard, S.; LeGac, R.; Leon, F.; Leroy, O.; Liotard, P.-L.; Marin, F.; Menouni, M.; Ollive, P.; Poss, S.; Roche, A.; Sapunov, M.; Tocco, L.; Viaud, B.; Tsaregorodtsev, A.; Amhis, Y.; Barrand, G.; Barsuk, S.; Beigbeder, C.; Beneyton, R.; Breton, D.; Callot, O.; Charlet, D.; D'Almagne, B.; Duarte, O.; Fulda-Quenzer, F.; Jacholkowska, A.; Jean-Marie, B.; Lefrancois, J.; Machefert, F.; Robbe, P.; Schune, M.-H.; Tocut, V.; Videau, I.; Benayoun, M.; David, P.; DelBuono, L.; Gilles, G.; Domke, M.; Futterschneider, H.; Ilgner, Ch; Kapusta, P.; Kolander, M.; Krause, R.; Lieng, M.; Nedos, M.; Rudloff, K.; Schleich, S.; Schwierz, R.; Spaan, B.; Wacker, K.; Warda, K.; Agari, M.; Bauer, C.; Baumeister, D.; Bulian, N.; Fuchs, H. P.; Fallot-Burghardt, W.; Glebe, T.; Hofmann, W.; Knöpfle, K. T.; Löchner, S.; Ludwig, A.; Maciuc, F.; Sanchez Nieto, F.; Schmelling, M.; Schwingenheuer, B.; Sexauer, E.; Smale, N. J.; Trunk, U.; Voss, H.; Albrecht, J.; Bachmann, S.; Blouw, J.; Deissenroth, M.; Deppe, H.; Dreis, H. B.; Eisele, F.; Haas, T.; Hansmann-Menzemer, S.; Hennenberger, S.; Knopf, J.; Moch, M.; Perieanu, A.; Rabenecker, S.; Rausch, A.; Rummel, C.; Rusnyak, R.; Schiller, M.; Stange, U.; Uwer, U.; Walter, M.; Ziegler, R.; Avoni, G.; Balbi, G.; Bonifazi, F.; Bortolotti, D.; Carbone, A.; D'Antone, I.; Galli, D.; Gregori, D.; Lax, I.; Marconi, U.; Peco, G.; Vagnoni, V.; Valenti, G.; Vecchi, S.; Bonivento, W.; Cardini, A.; Cadeddu, S.; DeLeo, V.; Deplano, C.; Furcas, S.; Lai, A.; Oldeman, R.; Raspino, D.; Saitta, B.; Serra, N.; Baldini, W.; Brusa, S.; Chiozzi, S.; Cotta Ramusino, A.; Evangelisti, F.; Franconieri, A.; Germani, S.; Gianoli, A.; Guoming, L.; Landi, L.; Malaguti, R.; Padoan, C.; Pennini, C.; Savriè, M.; Squerzanti, S.; Zhao, T.; Zhu, M.; Bizzeti, A.; Graziani, G.; Lenti, M.; Lenzi, M.; Maletta, F.; Pennazzi, S.; Passaleva, G.; Veltri, M.; Alfonsi, M.; Anelli, M.; Balla, A.; Battisti, A.; Bencivenni, G.; Campana, P.; Carletti, M.; Ciambrone, P.; Corradi, G.; Dané, E.; Di Virgilio, A.; DeSimone, P.; Felici, G.; Forti, C.; Gatta, M.; Lanfranchi, G.; Murtas, F.; Pistilli, M.; Poli Lener, M.; Rosellini, R.; Santoni, M.; Saputi, A.; Sarti, A.; Sciubba, A.; Zossi, A.; Ameri, M.; Cuneo, S.; Fontanelli, F.; Gracco, V.; Miní, G.; Parodi, M.; Petrolini, A.; Sannino, M.; Vinci, A.; Alemi, M.; Arnaboldi, C.; Bellunato, T.; Calvi, M.; Chignoli, F.; DeLucia, A.; Galotta, G.; Mazza, R.; Matteuzzi, C.; Musy, M.; Negri, P.; Perego, D.; Pessina, G.; Auriemma, G.; Bocci, V.; Buccheri, A.; Chiodi, G.; Di Marco, S.; Iacoangeli, F.; Martellotti, G.; Nobrega, R.; Pelosi, A.; Penso, G.; Pinci, D.; Rinaldi, W.; Rossi, A.; Santacesaria, R.; Satriano, C.; Carboni, G.; Iannilli, M.; Massafferri Rodrigues, A.; Messi, R.; Paoluzzi, G.; Sabatino, G.; Santovetti, E.; Satta, A.; Amoraal, J.; van Apeldoorn, G.; Arink, R.; van Bakel, N.; Band, H.; Bauer, Th; Berkien, A.; van Beuzekom, M.; Bos, E.; Bron, Ch; Ceelie, L.; Doets, M.; van der Eijk, R.; Fransen, J.-P.; de Groen, P.; Gromov, V.; Hierck, R.; Homma, J.; Hommels, B.; Hoogland, W.; Jans, E.; Jansen, F.; Jansen, L.; Jaspers, M.; Kaan, B.; Koene, B.; Koopstra, J.; Kroes, F.; Kraan, M.; Langedijk, J.; Merk, M.; Mos, S.; Munneke, B.; Palacios, J.; Papadelis, A.; Pellegrino, A.; van Petten, O.; du Pree, T.; Roeland, E.; Ruckstuhl, W.; Schimmel, A.; Schuijlenburg, H.; Sluijk, T.; Spelt, J.; Stolte, J.; Terrier, H.; Tuning, N.; Van Lysebetten, A.; Vankov, P.; Verkooijen, J.; Verlaat, B.; Vink, W.; de Vries, H.; Wiggers, L.; Ybeles Smit, G.; Zaitsev, N.; Zupan, M.; Zwart, A.; van den Brand, J.; Bulten, H. J.; de Jong, M.; Ketel, T.; Klous, S.; Kos, J.; M'charek, B.; Mul, F.; Raven, G.; Simioni, E.; Cheng, J.; Dai, G.; Deng, Z.; Gao, Y.; Gong, G.; Gong, H.; He, J.; Hou, L.; Li, J.; Qian, W.; Shao, B.; Xue, T.; Yang, Z.; Zeng, M.; Muryn, B.; Ciba, K.; Oblakowska-Mucha, A.; Blocki, J.; Galuszka, K.; Hajduk, L.; Michalowski, J.; Natkaniec, Z.; Polok, G.; Stodulski, M.; Witek, M.; Brzozowski, K.; Chlopik, A.; Gawor, P.; Guzik, Z.; Nawrot, A.; Srednicki, A.; Syryczynski, K.; Szczekowski, M.; Anghel, D. V.; Cimpean, A.; Coca, C.; Constantin, F.; Cristian, P.; Dumitru, D. D.; Dumitru, D. T.; Giolu, G.; Kusko, C.; Magureanu, C.; Mihon, Gh; Orlandea, M.; Pavel, C.; Petrescu, R.; Popescu, S.; Preda, T.; Rosca, A.; Rusu, V. L.; Stoica, R.; Stoica, S.; Tarta, P. D.; Filippov, S.; Gavrilov, Yu; Golyshkin, L.; Gushchin, E.; Karavichev, O.; Klubakov, V.; Kravchuk, L.; Kutuzov, V.; Laptev, S.; Popov, S.; Aref'ev, A.; Bobchenko, B.; Dolgoshein, V.; Egorychev, V.; Golutvin, A.; Gushchin, O.; Konoplyannikov, A.; Korolko, I.; Kvaratskheliya, T.; Machikhiliyan, I.; Malyshev, S.; Mayatskaya, E.; Prokudin, M.; Rusinov, D.; Rusinov, V.; Shatalov, P.; Shchutska, L.; Tarkovskiy, E.; Tayduganov, A.; Voronchev, K.; Zhiryakova, O.; Bobrov, A.; Bondar, A.; Eidelman, S.; Kozlinsky, A.; Shekhtman, L.; Beloous, K. S.; Dzhelyadin, R. I.; Gelitsky, Yu V.; Gouz, Yu P.; Kachnov, K. G.; Kobelev, A. S.; Matveev, V. D.; Novikov, V. P.; Obraztsov, V. F.; Ostankov, A. P.; Romanovsky, V. I.; Rykalin, V. I.; Soldatov, A. P.; Soldatov, M. M.; Tchernov, E. N.; Yushchenko, O. P.; Bochin, B.; Bondar, N.; Fedorov, O.; Golovtsov, V.; Guets, S.; Kashchuk, A.; Lazarev, V.; Maev, O.; Neustroev, P.; Sagidova, N.; Spiridenkov, E.; Volkov, S.; Vorobyev, An; Vorobyov, A.; Aguilo, E.; Bota, S.; Calvo, M.; Comerma, A.; Cano, X.; Dieguez, A.; Herms, A.; Lopez, E.; Luengo, S.; Garra, J.; Garrido, Ll; Gascon, D.; Gaspar de Valenzuela, A.; Gonzalez, C.; Graciani, R.; Grauges, E.; Perez Calero, A.; Picatoste, E.; Riera, J.; Rosello, M.; Ruiz, H.; Vilasis, X.; Xirgu, X.; Adeva, B.; Cid Vidal, X.; MartÉnez Santos, D.; Esperante Pereira, D.; Fungueiriño Pazos, J. L.; Gallas Torreira, A.; Gómez, C. Lois; Pazos Alvarez, A.; Pérez Trigo, E.; Pló Casasús, M.; Rodriguez Cobo, C.; Rodríguez Pérez, P.; Saborido, J. J.; Seco, M.; Vazquez Regueiro, P.; Bartalini, P.; Bay, A.; Bettler, M.-O.; Blanc, F.; Borel, J.; Carron, B.; Currat, C.; Conti, G.; Dormond, O.; Ermoline, Y.; Fauland, P.; Fernandez, L.; Frei, R.; Gagliardi, G.; Gueissaz, N.; Haefeli, G.; Hicheur, A.; Jacoby, C.; Jalocha, P.; Jimenez-Otero, S.; Hertig, J.-P.; Knecht, M.; Legger, F.; Locatelli, L.; Moser, J.-R.; Needham, M.; Nicolas, L.; Perrin-Giacomin, A.; Perroud, J.-P.; Potterat, C.; Ronga, F.; Schneider, O.; Schietinger, T.; Steele, D.; Studer, L.; Tareb, M.; Tran, M. T.; van Hunen, J.; Vervink, K.; Villa, S.; Zwahlen, N.; Bernet, R.; Büchler, A.; Gassner, J.; Lehner, F.; Sakhelashvili, T.; Salzmann, C.; Sievers, P.; Steiner, S.; Steinkamp, O.; Straumann, U.; van Tilburg, J.; Vollhardt, A.; Volyanskyy, D.; Ziegler, M.; Dovbnya, A.; Ranyuk, Yu; Shapoval, I.; Borisova, M.; Iakovenko, V.; Kyva, V.; Kovalchuk, O.; Okhrimenko, O.; Pugatch, V.; Pylypchenko, Yu; Adinolfi, M.; Brook, N. H.; Head, R. D.; Imong, J. P.; Lessnoff, K. A.; Metlica, F. C. D.; Muir, A. J.; Rademacker, J. H.; Solomin, A.; Szczypka, P. M.; Barham, C.; Buszello, C.; Dickens, J.; Gibson, V.; Haines, S.; Harrison, K.; Jones, C. R.; Katvars, S.; Kerzel, U.; Lazzeroni, C.; Li, Y. Y.; Rogers, G.; Storey, J.; Skottowe, H.; Wotton, S. A.; Adye, T. J.; Densham, C. J.; Easo, S.; Franek, B.; Loveridge, P.; Morrow, D.; Morris, J. V.; Nandakumar, R.; Nardulli, J.; Papanestis, A.; Patrick, G. N.; Ricciardi, S.; Woodward, M. L.; Zhang, Z.; Chamonal, R. J. U.; Clark, P. J.; Clarke, P.; Eisenhardt, S.; Gilardi, N.; Khan, A.; Kim, Y. M.; Lambert, R.; Lawrence, J.; Main, A.; McCarron, J.; Mclean, C.; Muheim, F.; Osorio-Oliveros, A. F.; Playfer, S.; Styles, N.; Xie, Y.; Bates, A.; Carson, L.; da Cunha Marinho, F.; Doherty, F.; Eklund, L.; Gersabeck, M.; Haddad, L.; Macgregor, A. A.; Melone, J.; McEwan, F.; Petrie, D. M.; Paterson, S. K.; Parkes, C.; Pickford, A.; Rakotomiaramanana, B.; Rodrigues, E.; Saavedra, A. F.; Soler, F. J. P.; Szumlak, T.; Viret, S.; Allebone, L.; Awunor, O.; Back, J.; Barber, G.; Barnes, C.; Cameron, B.; Clark, D.; Clark, I.; Dornan, P.; Duane, A.; Eames, C.; Egede, U.; Girone, M.; Greenwood, S.; Hallam, R.; Hare, R.; Howard, A.; Jolly, S.; Kasey, V.; Khaleeq, M.; Koppenburg, P.; Miller, D.; Plackett, R.; Price, D.; Reece, W.; Savage, P.; Savidge, T.; Simmons, B.; Vidal-Sitjes, G.; Websdale, D.; Affolder, A.; Anderson, J. S.; Biagi, S. F.; Bowcock, T. J. V.; Carroll, J. L.; Casse, G.; Cooke, P.; Donleavy, S.; Dwyer, L.; Hennessy, K.; Huse, T.; Hutchcroft, D.; Jones, D.; Lockwood, M.; McCubbin, M.; McNulty, R.; Muskett, D.; Noor, A.; Patel, G. D.; Rinnert, K.; Shears, T.; Smith, N. A.; Southern, G.; Stavitski, I.; Sutcliffe, P.; Tobin, M.; Traynor, S. M.; Turner, P.; Whitley, M.; Wormald, M.; Wright, V.; Bibby, J. H.; Brisbane, S.; Brock, M.; Charles, M.; Cioffi, C.; Gligorov, V. V.; Handford, T.; Harnew, N.; Harris, F.; John, M. J. J.; Jones, M.; Libby, J.; Martin, L.; McArthur, I. A.; Muresan, R.; Newby, C.; Ottewell, B.; Powell, A.; Rotolo, N.; Senanayake, R. S.; Somerville, L.; Soroko, A.; Spradlin, P.; Sullivan, P.; Stokes-Rees, I.; Topp-Jorgensen, S.; Xing, F.; Wilkinson, G.; Artuso, M.; Belyaev, I.; Blusk, S.; Lefeuvre, G.; Menaa, N.; Menaa-Sia, R.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Abadie, L.; Aglieri-Rinella, G.; Albrecht, E.; André, J.; Anelli, G.; Arnaud, N.; Augustinus, A.; Bal, F.; Barandela Pazos, M. C.; Barczyk, A.; Bargiotti, M.; Batista Lopes, J.; Behrendt, O.; Berni, S.; Binko, P.; Bobillier, V.; Braem, A.; Brarda, L.; Buytaert, J.; Camilleri, L.; Cambpell, M.; Castellani, G.; Cataneo, F.; Cattaneo, M.; Chadaj, B.; Charpentier, P.; Cherukuwada, S.; Chesi, E.; Christiansen, J.; Chytracek, R.; Clemencic, M.; Closier, J.; Collins, P.; Colrain, P.; Cooke, O.; Corajod, B.; Corti, G.; D'Ambrosio, C.; Damodaran, B.; David, C.; de Capua, S.; Decreuse, G.; Degaudenzi, H.; Dijkstra, H.; Droulez, J.-P.; Duarte Ramos, D.; Dufey, J. P.; Dumps, R.; Eckstein, D.; Ferro-Luzzi, M.; Fiedler, F.; Filthaut, F.; Flegel, W.; Forty, R.; Fournier, C.; Frank, M.; Frei, C.; Gaidioz, B.; Gaspar, C.; Gayde, J.-C.; Gavillet, P.; Go, A.; Gracia Abril, G.; Graulich, J.-S.; Giudici, P.-A.; Guirao Elias, A.; Guglielmini, P.; Gys, T.; Hahn, F.; Haider, S.; Harvey, J.; Hay, B.; Hernando Morata, J.-A.; Herranz Alvarez, J.; van Herwijnen, E.; Hilke, H. J.; von Holtey, G.; Hulsbergen, W.; Jacobsson, R.; Jamet, O.; Joram, C.; Jost, B.; Kanaya, N.; Knaster Refolio, J.; Koestner, S.; Koratzinos, M.; Kristic, R.; Lacarrère, D.; Lasseur, C.; Lastovicka, T.; Laub, M.; Liko, D.; Lippmann, C.; Lindner, R.; Losasso, M.; Maier, A.; Mair, K.; Maley, P.; Mato Vila, P.; Moine, G.; Morant, J.; Moritz, M.; Moscicki, J.; Muecke, M.; Mueller, H.; Nakada, T.; Neufeld, N.; Ocariz, J.; Padilla Aranda, C.; Parzefall, U.; Patel, M.; Pepe-Altarelli, M.; Piedigrossi, D.; Pivk, M.; Pokorski, W.; Ponce, S.; Ranjard, F.; Riegler, W.; Renaud, J.; Roiser, S.; Rossi, A.; Roy, L.; Ruf, T.; Ruffinoni, D.; Saladino, S.; Sambade Varela, A.; Santinelli, R.; Schmelling, S.; Schmidt, B.; Schneider, T.; Schöning, A.; Schopper, A.; Seguinot, J.; Snoeys, W.; Smith, A.; Smith, A. C.; Somogyi, P.; Stoica, R.; Tejessy, W.; Teubert, F.; Thomas, E.; Toledo Alarcon, J.; Ullaland, O.; Valassi, A.; Vannerem, P.; Veness, R.; Wicht, P.; Wiedner, D.; Witzeling, W.; Wright, A.; Wyllie, K.; Ypsilantis, T.

    2008-08-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

  9. US-LHC MAGNET DATABASE AND CONVENTIONS.

    SciTech Connect

    WEI,J.; MCCHESNEY,D.; JAIN,A.; PEGGS,S.; PILAT,F.; BOTTURA,L.; SABBI,G.

    1999-03-29

    The US-LHC Magnet Database is designed for production-magnet quality assurance, field and alignment error impact analysis, cryostat assembly assistance, and ring installation assistance. The database consists of tables designed to store magnet field and alignment measurements data and quench data. This information will also be essential for future machine operations including local IR corrections.

  10. The Tsallis distribution at the LHC: Phenomenology

    SciTech Connect

    Cleymans, J.

    2014-11-11

    An overview is presented of transverse momentum distributions of particles at the LHC using the Tsallis distribution. The use of a thermodynamically consistent form of this distribution leads to an excellent description of charged and identified particles. The values of the Tsallis parameter q are truly remarkably consistent.

  11. Phenomenology of flavon fields at the LHC

    SciTech Connect

    Tsumura, Koji; Velasco-Sevilla, Liliana

    2010-02-01

    We study low energy constraints from flavor violating processes, production, and decay at the LHC of a scalar field {phi} (flavon) associated to the breaking of a nonsupersymmetric Abelian family symmetry at the TeV scale. This symmetry is constrained to reproduce fermion masses and mixing, up to O(1) coefficients. The nonsupersymmetric gauged U(1) models considered are severely restricted by cancellation of anomalies and LEP bounds on contact interactions; consequently its phenomenology is out of the LHC reach. We therefore introduce an effective U(1) which is not gauged and is broken explicitly by a CP-odd term at the TeV scale. This helps us to explore flavor violating processes, production, and decay at the LHC for these kind of light scalars. In this context we first study the constraints on the flavon mass and its vacuum expectation value from low energy flavor changing processes such as {mu}{yields}e{gamma}. We find that a flavon of about m{sub {phi}}< or approx. 150 GeV could be experimentally allowed. These kinds of flavons could be significantly generated at the LHC via the gluon fusion mechanism and the single top production channel gu{yields}t{phi}. The produced flavons can have characteristic decay modes such as tc for m{sub {phi}}> or approx. m{sub t}, and {tau}{mu} for m{sub {phi}}< or approx. m{sub t}, which could be effectively useful to detect flavons.

  12. LOCAL DECOUPLING IN THE LHC INTERACTION REGIONS

    SciTech Connect

    PILAT,F.

    1999-09-07

    Local decoupling is a technique to correct coupling locally and operationally, that is, without a priori knowledge of the underlying skew quadrupole errors. The method is explained and applied to the correction of coupling in the interaction regions of the LHC at collision.

  13. RENORM predictions of diffraction at LHC confirmed

    SciTech Connect

    Goulianos, Konstantin

    2015-04-10

    The RENORM model predictions of diffractive, total, and total-inelastic cross sections at the LHC are confirmed by recent measurements. The predictions of several other available models are discussed, highlighting their differences from RENORM, mainly arising from the way rapidity gap formation, low- and high-mass diffraction, unitarization, and hadronization are implemented.

  14. Dijet production at the LHC through unparticles

    SciTech Connect

    Agarwal, Neelima; Kumar, M. C.; Mathews, Prakash

    2009-08-01

    We report the phenomenological impact of unparticles in the production of dijet at the LHC. We compute the scalar, spin-1 and spin-2 unparticle contributions to the dijet cross sections and present our results in different kinematical distributions. We find that the scalar unparticle contribution is dominant over that of the spin-1 and spin-2 unparticles for the same coupling values.

  15. Ground Vibration Measurements at LHC Point 4

    SciTech Connect

    Bertsche, Kirk; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  16. Soft QCD and Diffractive Physics at Lhc

    NASA Astrophysics Data System (ADS)

    Scapparone, Eugenio

    2012-12-01

    After a short introduction on the importance of the soft and of the diffractive studies in the understanding of minimum bias events, the main results obtained at LHC are discussed. This overview includes identified particle and inclusive measurements, minimum bias and underlying events, all of them shedding light on the soft process production mechanisms. The results of the inelastic cross-section measurements obtained by the LHC experiments and their compatibility are discussed together with the models used to extrapolate the data at low diffractive masses. A review of the most recent diffraction results is presented, showing the different approaches used by the LHC experiments, relying on different experimental techniques. The combination of the results obtained by ALICE, ATLAS, CMS, LHCb and TOTEM provides a wide sample of informations, covering an unprecedented pseudorapidity range. A detailed comparison between the obtained results is shown, followed by a critical discussion on the still existing discrepancies between the experimental data and the Monte Carlo used at LHC to simulate soft and diffractive physics.

  17. Continuing u.s. participation in the lhc accelerator program

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2005-12-01

    The U.S. LHC Accelerator Research Program (LARP) was established to enable U.S. accelerator specialists to take on active and important roles in the LHC accelerator project during its commissioning and early operations, and to be a major collaborator in future LHC performance upgrades. It is hoped that this follow-on effort to the U.S. contributions to the LHC accelerator project will improve the capabilities of the U.S. accelerator community in accelerator science and technology in order to more effectively use, develop, and preserve unique U.S. resources and capabilities during the LHC era.

  18. Less-simplified models of dark matter for direct detection and the LHC

    NASA Astrophysics Data System (ADS)

    Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.

    2016-04-01

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators' mass. We derive the strongest limits for combinations of vector + scalar, vector + "squark", and "squark" + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  19. The LHC magnet system and its status of development

    NASA Technical Reports Server (NTRS)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  20. Vector dark matter at the LHC

    NASA Astrophysics Data System (ADS)

    Kumar, Jason; Marfatia, Danny; Yaylali, David

    2015-11-01

    We consider monojet searches at the Large Hadron Collider (LHC) for spin-1 dark matter that interacts with quarks through a contact operator. If the dark matter particles are produced with longitudinal polarizations, then the production matrix element is enhanced by factors of the energy. We show that this particularly effective search strategy can test models for which the energy suppression scale of the operator is as large as 105 TeV . As such, these searches can probe a large class of models for which the contact-operator approximation is valid. We find that for contact operators that permit velocity-independent dark matter-nucleon scattering, LHC monojet searches for spin-1 dark matter are competitive with or far surpass direct-detection searches depending on whether the scattering is spin independent or spin dependent, respectively.

  1. Resonant mono Higgs at the LHC

    NASA Astrophysics Data System (ADS)

    Basso, Lorenzo

    2016-04-01

    In recent years, the production of a SM particle with large missing transverse momentum, dubbed mono-X searches, have gained increasing attention. After the discovery of the Higgs boson in 2012, the run-II of the LHC will now scrutinise its properties, looking for BSM physics. In particular, one could search for mono-Higgs signals, that are typically studied in models addressing dark matter. However, this signal can appear also in models addressing the neutrino masses, if additional heavier neutrinos with masses at the electroweak scale are present. The latter will couple to the SM neutrinos and the Higgs boson, yielding a type of mono-Higgs signal not considered for dark matter: the resonant production of a Higgs boson and missing energy. In this paper, we address the LHC exclusion power of the latter with dedicated detector simulations, and reinterpret it in a benchmark scenario for neutrino mass generation.

  2. Scalar explanation of diphoton excess at LHC

    NASA Astrophysics Data System (ADS)

    Han, Huayong; Wang, Shaoming; Zheng, Sibo

    2016-06-01

    Inspired by the diphoton signal excess observed in the latest data of 13 TeV LHC, we consider either a 750 GeV real scalar or pseudo-scalar responsible for this anomaly. We propose a concrete vector-like quark model, in which the vector-like fermion pairs directly couple to this scalar via Yukawa interaction. For this setting the scalar is mainly produced via gluon fusion, then decays at the one-loop level to SM diboson channels gg , γγ , ZZ , WW. We show that for the vector-like fermion pairs with exotic electric charges, such model can account for the diphoton excess and is consistent with the data of 8 TeV LHC simultaneously in the context of perturbative analysis.

  3. Jet energy calibration at the LHC

    SciTech Connect

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiple p–p interactions (pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.

  4. Cornering diphoton resonance models at the LHC

    NASA Astrophysics Data System (ADS)

    Backović, Mihailo; Kulkarni, Suchita; Mariotti, Alberto; Sessolo, Enrico Maria; Spannowsky, Michael

    2016-08-01

    We explore the ability of the high luminosity LHC to test models which can explain the 750 GeV diphoton excess. We focus on a wide class of models where a 750 GeV singlet scalar couples to Standard Model gauge bosons and quarks, as well as dark matter. Including both gluon and photon fusion production mechanisms, we show that LHC searches in channels correlated with the diphoton signal will be able to probe wide classes of diphoton models with L ˜ 3000 fb-1 of data. Furthermore, models in which the scalar is a portal to the dark sector can be cornered with as little as L ˜ 30 fb-1.

  5. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall,G. Burt,C. Lingwood,Robert Rimmer,Haipeng Wang; Hall, B.; Burt, G.; Lingwood, C.; Rimmer, Robert; Wang, Haipeng

    2010-05-01

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  6. Smashing Protons: First Physics at the LHC

    SciTech Connect

    Miller, David

    2010-11-30

    The Large Hadron Collider, at CERN in Geneva, Switzerland, is the largest scientific instrument ever built. For nearly a year now, we have been smashing protons into each other with unprecedented energy, allowing us to peer into nature's most intimate depths. The world's largest and most complex cameras take snapshots of these collisions millions of times per second. These pictures reveal the smallest components of the universe - the quarks and gluons - and, someday, we hope, the elusive Higgs boson. Why do we need to build such an enormous machine in order to study particles more than a million times smaller than a speck of dust? This lecture will explain how the LHC and its detectors work, what the pictures from the LHC are telling us now, and how we will use this technology to explore the deepest secrets of the universe.

  7. Jet energy calibration at the LHC

    DOE PAGESBeta

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions (pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  8. LHC prospects for minimal decaying dark matter

    SciTech Connect

    Arcadi, Giorgio; Covi, Laura; Dradi, Federico E-mail: laura.covi@theorie.physik.uni-goettingen.de

    2014-10-01

    We study the possible signals at LHC of the minimal models of decaying dark matter. Those models are characterized by the fact that DM interacts with SM particles through renormalizable coupling with an additional heavier charged state. Such interaction allows to produce a substantial abundance of DM in the early Universe via the decay of the charged heavy state, either in- or out-of-equilibrium. Moreover additional couplings of the charged particle open up decay channels for the DM, which can nevertheless be sufficiently long-lived to be a good DM candidate and within reach of future Indirect Detection observations. We compare the cosmologically favored parameter regions to the LHC discovery reach and discuss the possibility of simultaneous detection of DM decay in Indirect Detection.

  9. Soft interaction model and the LHC data

    NASA Astrophysics Data System (ADS)

    Gotsman, E.; Levin, E.; Maor, U.

    2012-05-01

    Most models for soft interactions which were proposed prior to the measurements at the LHC, are only marginally compatible with LHC data, the Gotsma-Levin-Maor model has the same deficiency. In this paper we investigate possible causes of the problem, by considering separate fits to the high energy (W>500GeV), and low energy (W<500GeV) data. Our new results are moderately higher than our previous predictions. Our results for total and elastic cross sections are systematically lower that the recent Totem and Alice published values, while our results for the inelastic and forward slope agree with the data. If with additional experimental data, the errors are reduced, while the central cross section values remain unchanged, we will need to reconsider the physics on which our model is built.

  10. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  11. Gap between jets at the LHC

    NASA Astrophysics Data System (ADS)

    Royon, Christophe

    2013-04-01

    We describe a NLL BFKL calculation implemented in the HERWIG MC of the gap between jets cross section, that represent a test of BFKL dynamics. We compare the predictions with recent measurements at the Tevatron and present predictions for the LHC. We also discuss the interesting process of looking for gap between jets in diffractive events when protons are detected in the ATLAS Forward Physics (AFP) detectors.

  12. Bottom production asymmetries at the LHC

    SciTech Connect

    Norrbin, E.; Vogt, R.

    1999-01-01

    We present results on bottom hadron production asymmetries at the LHC within both the Lund string fragmentation model and the intrinsic bottom model. The main aspects of the models are summarized and specific predictions for pp collisions at 14 TeV are given. Asymmetries are found to be very small at central rapidities increasing to a few percent at forward rapidities. At very large rapidities intrinsic production could dominate but this region is probably out of reach of any experiment.

  13. Color Sextet Scalars in Early LHC Experiments

    SciTech Connect

    Berger, Edmond L.; Cao Qinghong; Chen, Chuan-Ren; Shaughnessy, Gabe; Zhang Hao

    2010-10-29

    We explore the potential for discovery of an exotic color sextet scalar in same-sign top quark pair production in early running at the LHC. We present the first phenomenological analysis at colliders of color sextet scalars with full top quark spin correlations included. We demonstrate that one can measure the scalar mass, the top quark polarization, and confirm the scalar resonance with 1 fb{sup -1} of integrated luminosity. The top quark polarization can distinguish gauge triplet and singlet scalars.

  14. Electron lenses for particle collimation in LHC

    SciTech Connect

    Shiltsev, v.; /Fermilab

    2007-12-01

    Electron Lenses built and installed in Tevatron have proven themselves as safe and very reliable instruments which can be effectively used in hadron collider operation for a number of applications, including compensation of beam-beam effects [1], DC beam removal from abort gaps [2], as a diagnostic tool. In this presentation we - following original proposal [3] - consider in more detail a possibility of using electron lenses with hollow electron beam for ion and proton collimation in LHC.

  15. Calculation of water activation for the LHC

    NASA Astrophysics Data System (ADS)

    Vollaire, Joachim; Brugger, Markus; Forkel-Wirth, Doris; Roesler, Stefan; Vojtyla, Pavol

    2006-06-01

    The management of activated water in the Large Hadron Collider (LHC) at CERN is a key concern for radiation protection. For this reason, the induced radioactivity of the different water circuits is calculated using the Monte-Carlo (MC) code FLUKA. The results lead to the definition of procedures to be taken into account during the repair and maintenance of the machine, as well as to measures being necessary for a release of water into the environment. In order to assess the validity of the applied methods, a benchmark experiment was carried out at the CERN-EU High Energy Reference Field (CERF) facility, where a hadron beam (120 GeV) is impinging on a copper target. Four samples of water, as used at the LHC, and different in their chemical compositions, were irradiated near the copper target. In addition to the tritium activity measured with a liquid scintillation counter, the samples were also analyzed using gamma spectroscopy in order to determine the activity of the gamma emitting isotopes such as Be7 and Na24. While for the latter an excellent agreement between simulation and measurement was found, for the calculation of tritium a correction factor is derived to be applied for future LHC calculations in which the activity is calculated by direct scoring of produced nuclei. A simplified geometry representing the LHC Arc sections is then used to evaluate the different calculation methods with FLUKA. By comparing these methods and by taking into account the benchmark results, a strategy for the environmental calculations can be defined.

  16. Status of the TOTEM experiment at LHC

    NASA Astrophysics Data System (ADS)

    Baechler, J.; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M. G.; Covault, C.; Csörgő, T.; Deile, M.; Eggert, K.; Eremin, V.; Ferretti, R.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Intonti, M. R.; Kašpar, J.; Kopal, J.; Kundrát, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Lucas Rodríguez, F.; Macrí, M.; Magaletti, L.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vítek, M.; Welti, J.; Whitmore, J.

    2013-08-01

    The TOTEM experiment is dedicated to the measurement of the total proton-proton cross-section with the luminosity-independent method and the study of elastic and diffractive scattering processes. Two tracking telescopes, T1 and T2, integrated in the CMS detector, cover the pseudo-rapidity region between 3.1 and 6.5 on both sides of the interaction point IP5. The Roman Pot (RP) stations are located at distances of ±147 m and ±220 m with respect to the interaction point to measure the very forward scattered protons at very small angles. During the LHC technical stop in winter 2010/2011, the TOTEM experiment was completed with the installation of the T1 telescope and the RP stations at ±147 m. In 2011, the LHC machine provided special optics with the large ß*=90 m, allowing TOTEM to measure the elastic scattering differential cross-section, down to the four-momentum transfer squared |t|=2×10-2 GeV2. Using the optical theorem and extrapolation of the differential cross-section to t=0 (optical point), the total p-p cross-section at the LHC energy of √{ s} = 7 TeV could be computed for the first time. Furthermore we measured with standard LHC beam optics and the energy of √{ s} = 7 TeV the forward charged particle pseudorapidity density dn/dη in the range of 5.3<|η|<6.4. The status of the experiment, the performance of the detectors with emphasis on the RPs are described and the first physics results are presented.

  17. Dark Matter Jets at the LHC

    SciTech Connect

    Bai, Yang; Rajaraman, Arvind; /UC, Irvine

    2012-03-28

    We argue that dark matter particles which have strong interactions with the Standard Model particles are not excluded by current astrophysical constraints. These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such strongly interacting particles by looking for a signal of two trackless jets. We show that suitable cuts can plausibly allow us to find these signals at the LHC even in early data.

  18. Processing LHC data in the UK

    PubMed Central

    Colling, D.; Britton, D.; Gordon, J.; Lloyd, S.; Doyle, A.; Gronbech, P.; Coles, J.; Sansum, A.; Patrick, G.; Jones, R.; Middleton, R.; Kelsey, D.; Cass, A.; Geddes, N.; Clark, P.; Barnby, L.

    2013-01-01

    The Large Hadron Collider (LHC) is one of the greatest scientific endeavours to date. The construction of the collider itself and the experiments that collect data from it represent a huge investment, both financially and in terms of human effort, in our hope to understand the way the Universe works at a deeper level. Yet the volumes of data produced are so large that they cannot be analysed at any single computing centre. Instead, the experiments have all adopted distributed computing models based on the LHC Computing Grid. Without the correct functioning of this grid infrastructure the experiments would not be able to understand the data that they have collected. Within the UK, the Grid infrastructure needed by the experiments is provided by the GridPP project. We report on the operations, performance and contributions made to the experiments by the GridPP project during the years of 2010 and 2011—the first two significant years of the running of the LHC. PMID:23230163

  19. Beam Loss Monitoring for LHC Machine Protection

    NASA Astrophysics Data System (ADS)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  20. Sbottoms of natural NMSSM at the LHC

    NASA Astrophysics Data System (ADS)

    Beuria, Jyotiranjan; Chatterjee, Arindam; Datta, AseshKrishna

    2016-08-01

    Search for the bottom squarks (sbottoms) at the Large Hadron Collider (LHC) has recently assumed a heightened focus in the hunt for Supersymmetry (SUSY). The popular framework of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) could conceive a naturally light sbottom which can easily be consistent with available constraints from the experiments at the LHC. Phenomenology of such sbottoms could in principle be as striking as that for a light top squark (stop) thanks to a rather nontrivial neutralino sector (with appreciable mixing among the neutral higgsinos and the singlino) that the scenario gives rise to. Nonetheless, finding such sbottoms would require a moderately large volume of data (˜300 fb-1) at the 13 TeV run of the LHC. A multi-channel analysis establishing a generic depletion of events in the usual 2 b- jets + [InlineMediaObject not available: see fulltext.] T final state while registering, in conjunction, characteristically significant rates in various multi-lepton final states accompanied by b- jets might point not only to the presence of light sbottom(s) but could also shed crucial light on their compositions and the (singlino) nature of the lightest SUSY particle (LSP).

  1. LHC and SPS Electron Cloud Studies

    SciTech Connect

    Jimenez, J.M.; Henrist, B.; Hilleret, N.; Laurent, J.-M.; Schulte, D.; Zimmermann, F.

    2005-06-08

    The additional heat load onto the LHC beam screens of the cold magnets in the bending sections ({approx}21 km) is still considered as one of the main possible limitations of the LHC performances. Since more than three years, the characteristics of the electron cloud are being studied in the SPS at ambient (RT) and cryogenic temperatures in both dipole and field free conditions. The results obtained in the SPS in 2003 showed a vacuum cleaning (or vacuum scrubbing) on both ambient and cryogenic surfaces. On the contrary, the heat load and the electron intensity (current collected at the detector) under both dipole and field free conditions at 4.5 or 30 K had shown only a limited decrease after 12 A.h of beam i.e. beam conditioning. Water contamination coming from the unbaked upstream and downstream parts of the SPS (non-baked machine) was suspected to be responsible for this behavior. The upgrade of the existing detectors as well as the design and results obtained with the new strip detector installed in a quadrupole are presented. Preliminary results on the electron cloud build up in the quadrupole will also be presented and compared to the predictions of the simulations. The effects of the gases physisorbed at cryogenic temperature in the SPS and in the laboratory are shown and the applicability to the LHC will be discussed.

  2. Experiment Dashboard for Monitoring of the LHC Distributed Computing Systems

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Devesas Campos, M.; Tarragon Cros, J.; Gaidioz, B.; Karavakis, E.; Kokoszkiewicz, L.; Lanciotti, E.; Maier, G.; Ollivier, W.; Nowotka, M.; Rocha, R.; Sadykov, T.; Saiz, P.; Sargsyan, L.; Sidorova, I.; Tuckett, D.

    2011-12-01

    LHC experiments are currently taking collisions data. A distributed computing model chosen by the four main LHC experiments allows physicists to benefit from resources spread all over the world. The distributed model and the scale of LHC computing activities increase the level of complexity of middleware, and also the chances of possible failures or inefficiencies in involved components. In order to ensure the required performance and functionality of the LHC computing system, monitoring the status of the distributed sites and services as well as monitoring LHC computing activities are among the key factors. Over the last years, the Experiment Dashboard team has been working on a number of applications that facilitate the monitoring of different activities: including following up jobs, transfers, and also site and service availabilities. This presentation describes Experiment Dashboard applications used by the LHC experiments and experience gained during the first months of data taking.

  3. High-field Magnet Development toward the High Luminosity LHC

    SciTech Connect

    Apollinari, Giorgio

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  4. The CMSSM and NUHM1 after LHC Run 1

    SciTech Connect

    Buchmueller, O.; De Roeck, A.; Cavanaugh, R.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; Marrouche, J.; Martinez Santos, D.; Olive, K. A.; Rogerson, S.; Ronga, F. J.; de Vries, K. J.; Weiglein, G.

    2014-06-13

    We analyze the impact of data from the full Run 1 of the LHC at 7 and 8 TeV on the CMSSM with μ > 0 and < 0 and the NUHM1 with μ > 0, incorporating the constraints imposed by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment. We use the following results from the LHC experiments: ATLAS searches for events with E/T accompanied by jets with the full 7 and 8 TeV data, the ATLAS and CMS measurements of the mass of the Higgs boson, the CMS searches for heavy neutral Higgs bosons and a combination of the LHCb and CMS measurements of BR(Bs → μ+μ) and BR(Bd → μ+μ). Our results are based on samplings of the parameter spaces of the CMSSM for both μ > 0 and μ < 0 and of the NUHM1 for μ > 0 with 6.8×106, 6.2×106 and 1.6×107 points, respectively, obtained using the MultiNest tool. The impact of the Higgs-mass constraint is assessed using FeynHiggs 2.10.0, which provides an improved prediction for the masses of the MSSM Higgs bosons in the region of heavy squark masses. It yields in general larger values of Mh than previous versions of FeynHiggs, reducing the pressure on the CMSSM and NUHM1. We find that the global χ2 functions for the supersymmetric models vary slowly over most of the parameter spaces allowed by the Higgs-mass and the E/T searches, with best-fit values that are comparable to the χ2/dof for the best Standard Model fit. As a result, we provide 95% CL lower limits on the masses of various sparticles and assess the prospects for observing them during Run 2 of the LHC.

  5. The CMSSM and NUHM1 after LHC Run 1

    DOE PAGESBeta

    Buchmueller, O.; De Roeck, A.; Cavanaugh, R.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; Marrouche, J.; Martinez Santos, D.; et al

    2014-06-13

    We analyze the impact of data from the full Run 1 of the LHC at 7 and 8 TeV on the CMSSM with μ > 0 and < 0 and the NUHM1 with μ > 0, incorporating the constraints imposed by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment. We use the following results from the LHC experiments: ATLAS searches for events with E/T accompanied by jets with the full 7 and 8 TeV data, the ATLASmore » and CMS measurements of the mass of the Higgs boson, the CMS searches for heavy neutral Higgs bosons and a combination of the LHCb and CMS measurements of BR(Bs → μ+μ–) and BR(Bd → μ+μ–). Our results are based on samplings of the parameter spaces of the CMSSM for both μ > 0 and μ < 0 and of the NUHM1 for μ > 0 with 6.8×106, 6.2×106 and 1.6×107 points, respectively, obtained using the MultiNest tool. The impact of the Higgs-mass constraint is assessed using FeynHiggs 2.10.0, which provides an improved prediction for the masses of the MSSM Higgs bosons in the region of heavy squark masses. It yields in general larger values of Mh than previous versions of FeynHiggs, reducing the pressure on the CMSSM and NUHM1. We find that the global χ2 functions for the supersymmetric models vary slowly over most of the parameter spaces allowed by the Higgs-mass and the E/T searches, with best-fit values that are comparable to the χ2/dof for the best Standard Model fit. As a result, we provide 95% CL lower limits on the masses of various sparticles and assess the prospects for observing them during Run 2 of the LHC.« less

  6. Supersymmetry Without Prejudice at the 7 TeV LHC

    SciTech Connect

    Conley, John A.; Gainer, James S.; Hewett, JoAnne L.; Le, My Phuong; Rizzo, Thomas G.; /SLAC

    2011-08-12

    We investigate the model independent nature of the Supersymmetry search strategies at the 7 TeV LHC. To this end, we study the missing-transverse-energy-based searches developed by the ATLAS Collaboration that were essentially designed for mSUGRA. We simulate the signals for {approx} 71k models in the 19-dimensional parameter space of the pMSSM. These models have been found to satisfy existing experimental and theoretical constraints and provide insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. Using backgrounds generated by ATLAS, we find that imprecise knowledge of these estimated backgrounds is a limiting factor in the potential discovery of these models and that some channels become systematics-limited at larger luminosities. As this systematic error is varied between 20-100%, roughly half to 90% of this model sample is observable with significance S {ge} 5 for 1 fb{sup -1} of integrated luminosity. We then examine the model characteristics for the cases which cannot be discovered and find several contributing factors. We find that a blanket statement that squarks and gluinos are excluded with masses below a specific value cannot be made. We next explore possible modifications to the kinematic cuts in these analyses that may improve the pMSSM model coverage. Lastly, we examine the implications of a null search at the 7 TeV LHC in terms of the degree of fine-tuning that would be present in this model set and for sparticle production at the 500 GeV and 1 TeV Linear Collider.

  7. Z{sup '} physics with early LHC data

    SciTech Connect

    Accomando, Elena; Belyaev, Alexander; Fedeli, Luca; King, Stephen F.; Shepherd-Themistocleous, Claire

    2011-04-01

    We discuss the prospects for setting limits on or discovering spin-1 Z{sup '} bosons using early LHC data at 7 TeV. Our results are based on the narrow width approximation in which the leptonic Drell-Yan Z{sup '} boson production cross section only depends on the Z{sup '} boson mass together with two parameters c{sub u} and c{sub d}. We carefully discuss the experimental cuts that should be applied and tabulate the theoretical next-to-next-to-leading order corrections which must be included. Using these results the approach then provides a safe, convenient, and unbiased way of comparing experiment to theoretical models which avoids any built-in model-dependent assumptions. We apply the method to three classes of perturbative Z{sup '} boson benchmark models: E{sub 6} models, left-right symmetric models, and sequential standard models. We generalize each class of model in terms of mixing angles which continuously parametrize linear combinations of pairs of generators and lead to distinctive orbits in the c{sub u}-c{sub d} plane. We also apply this method to the strongly coupled four-site benchmark model in which two Z{sup '} bosons are predicted. By comparing the experimental limits or discovery bands to the theoretical predictions on the c{sub u}-c{sub d} plane, we show that the LHC at 7 TeV with integrated luminosity of 500 pb{sup -1} will greatly improve on current Tevatron mass limits for the benchmark models. If a Z{sup '} is discovered our results show that measurement of the mass and cross section will provide a powerful discriminator between the benchmark models using this approach.

  8. Supersymmetric dark matter after LHC run 1

    NASA Astrophysics Data System (ADS)

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Martínez Santos, D.; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-01

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, tilde{χ }^01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau tilde{τ }1, stop tilde{t}1 or chargino tilde{χ }^± 1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the {tilde{τ }_1} coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for / E_T events and long-lived charged particles, whereas their H / A funnel, focus-point and tilde{χ }^± 1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is tilde{χ }^± 1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  9. Supersymmetric Dark Matter after LHC Run 1

    DOE PAGESBeta

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; et al

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ~±1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-pointmore » region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ~±1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.« less

  10. Supersymmetric Dark Matter after LHC Run 1

    SciTech Connect

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Santos, D. Martinez; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  11. Vertex finding with deformable templates at LHC

    NASA Astrophysics Data System (ADS)

    Stepanov, Nikita; Khanov, Alexandre

    1997-02-01

    We present a novel vertex finding technique. The task is formulated as a discrete-continuous optimisation problem in a way similar to the deformable templates approach for the track finding. Unlike the track finding problem, "elastic hedgehogs" rather than elastic arms are used as deformable templates. They are initialised by a set of procedures which provide zero level approximation for vertex positions and track parameters at the vertex point. The algorithm was evaluated using the simulated events for the LHC CMS detector and demonstrated good performance.

  12. Top quark physics at the LHC

    NASA Astrophysics Data System (ADS)

    Kim, Tae Jeong

    2014-04-01

    In 2011, an integrated luminosity of more than 5 fb-1 at 7 TeV has been delivered by the LHC. The measurement of the cross section in top quark pair production and in single top quark production, top quark mass, top quark properties and new physics searches in top quark decays have been performed at the CMS experiment with various integrated luminosities. An overview of the latest results of these measurements and searches by the time of ICFP 2012 conference will be presented.

  13. Early black hole signals at the LHC

    SciTech Connect

    Koch, Ben; Bleicher, Marcus; Stoecker, Horst

    2007-10-26

    The production of mini black holes due to large extra dimensions is a speculative but possible scenario. We survey estimates for di-jet suppression, and multi-mono-jet emission due to black hole production. We further look for a possible sub-scenario which is the formation of a stable or meta-stable black hole remnant (BHR). We show that the beauty of such objects is, that they are relatively easy to observe, even in the early phase of LHC running.

  14. Precision Electroweak Physics at the LHC

    NASA Astrophysics Data System (ADS)

    Freitas, Ayres

    2015-04-01

    The current status of precision tests of the electroweak Standard Model is summarized, and a short review of the theory input from higher-order loop corrections is given. The most constraining quantities are the masses and couplings of the W and Z bosons, and it is shown how these put strong bounds on various examples of new physics. Furthermore, the impact of current and future LHC data on electroweak precision tests is described in some detail. It is also briefly discussed how measurements of anomalous gauge boson couplings provide complementary information about the electroweak theory.

  15. Higgs boson photoproduction at the LHC

    SciTech Connect

    Ducati, M. B. Gay; Silveira, G. G.

    2011-07-15

    We present the current development of the photoproduction approach for the Higgs boson with its application to pp and pA collisions at the LHC. We perform a different analysis for the Gap Survival Probability, where we consider a probability of 3% and also a more optimistic value of 10% based on the HERA data for dijet production. As a result, the cross section for the exclusive Higgs boson production is about 2 fb and 6 fb in pp collisions and 617 and 2056 fb for pPb collisions, considering the gap survival factor of 3% and 10%, respectively.

  16. Higgs boson at LHC: a diffractive opportunity

    SciTech Connect

    Ducati, M. B. Gay; Silveira, G. G.

    2009-03-23

    An alternative process is presented for diffractive Higgs boson production in peripheral pp collisions, where the particles interact through the Double Pomeron Exchange. The event rate is computed as a central-rapidity distribution for Tevatron and LHC energies leading to a result around 0.6 pb, higher than the predictions from previous approaches. Therefore, this result arises as an enhanced signal for the detection of the Higgs boson in hadron colliders. The predictions for the Higgs boson photoproduction are compared to the ones obtained from a similar approach proposed by the Durham group, enabling an analysis of the future developments of its application to pp and AA collisions.

  17. Particle physics with the LHC data

    SciTech Connect

    Hagiwara, Kaoru

    2012-07-27

    In this talk, I give reasons why we regard GUT as a part of the Standard Model of Elementary Particle Physics that explain all phenomena observed at high energy experiments and in the universe, with a few notable exceptions. It is based on my introduction-to-elementary-particle-physics lectures for the first year graduate students at Sokendai, Graduate University for Advanced Studies. No new observation is made, but I think that it is important for us to examine the LHC data from the GUT viewpoint together with our fresh students.

  18. Searching for Unexpected Physics at the LHC

    NASA Astrophysics Data System (ADS)

    Zurek, Kathryn M.

    2011-03-01

    These TASI lectures consider low mass hidden sectors from Hidden Valleys, Quirks and Unparticles. We show how each corresponds to a different limit of the same class of models: hidden sectors with non-abelian gauge groups with mass gaps well below a TeV that communicate to the Standard Model through weak scale suppressed higher dimension operators. We provide concrete examples of such models and discuss LHC signatures. Lastly we turn to discussing the application of Hidden Valleys to dark matter sectors.

  19. Tau Flavour Violation at the LHC

    SciTech Connect

    Carquin, E.

    2009-04-17

    We study the relevance of neutrino oscillation data for sparticle decays that violate the {tau} lepton number at the LHC, in the context of the Constrained Minimal Supersymmetric Extension of the Standard Model (CMSSM) and in SU(5) extensions of the theory. We study the conditions required for {chi}{sub 2}{yields}{chi}+{tau}{sup {+-}}{mu}{sup {+-}} decays to yield observable tau flavour violation, for cosmologically interesting values of the neutralino relic density. We present detailed studies of the relevant supersymmetric parameter space and pay particular emphasis to signals from tau hadronisation, that are analysed using PYTHIA event simulation.

  20. Jet quenching measurements with ATLAS at LHC

    SciTech Connect

    Brooks, W. K.

    2010-08-04

    A broad program of measurements is planned for heavy ion collisions in ATLAS. With up to a factor of 30 increase in collision energy compared to existing data, significant new insights are anticipated to be obtained with the first data measured. Global features of the LHC collisions will be accessible with the early data and will set the stage for the precision measurements to follow. ATLAS is particularly well suited for exploration of ''jet quenching,'' the extinction of energetic jets in the hot dense medium. Observations of heavy quark jet suppression will be possible with unprecedented energy reach and statistical precision, potentially yielding new insights into the basic mechanisms involved.

  1. Hadronization via coalescence at RHIC and LHC

    NASA Astrophysics Data System (ADS)

    Minissale, V.; Scardina, F.; Greco, V.

    2016-05-01

    An hadronization model that includes coalescence and fragmentation is used in this work to obtain predictions at both RHIC and LHC energy for light and strange hadrons transverse momentum spectra (π, p, k, Λ) and baryon to meson ratios (p/π, Λ/k) in a wide range of pT. This is accomplished without changing coalescence parameters. The ratios p/π and Λ/K shows the right behaviour except for some lack of baryon yield in a limited pT range around 6 GeV. This would indicate that the AKK fragmentation functions is too flat at pT < 8 GeV.

  2. Black Holes versus Supersymmetry at the LHC

    NASA Astrophysics Data System (ADS)

    Roy, Arunava; Cavaglia, Marco

    2007-11-01

    Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. In this paper we assess the distinguishability of supersymmetry and black hole events at the LHC. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our analysis shows that supersymmetry and black hole events at the Large Hadron Collider can be easily discriminated.

  3. MCFM for the Tevatron and the LHC

    SciTech Connect

    Campbell, John M.; Ellis, R.K.; /Fermilab

    2010-07-01

    A summary is given of the current status of the next-to-leading order (NLO) parton-level integrator MCFM. Some details are given about the Higgs + 2-jet process and the production and decay of t{bar t}, both of which have recently been added to the code. Using MCFM, comparisons between the Tevatron running at {radical}s = 2 TeV and the LHC running at {radical}s = 7 TeV are made for standard model process including the production of Higgs bosons. The case for running the Tevatron until 16fb{sup -1} are accumulated by both detectors is sketched.

  4. LHC searches for exotic new particles

    NASA Astrophysics Data System (ADS)

    Golling, Tobias

    2016-09-01

    A coherent description of the ATLAS and CMS program of searches for physics beyond the Standard Model of particle physics (except supersymmetry) is subject of this review. The theoretical motivation for new phenomena and the associated phenomenology are discussed. The search approach and philosophy by the experiments are presented in detail with illustrative examples both from Run-1 and early Run-2 of the LHC. The searches are largely driven by a diverse set of experimental signatures predicted by the various hypotheses of new physics.

  5. Towards LHC physics with nonlocal Standard Model

    NASA Astrophysics Data System (ADS)

    Biswas, Tirthabir; Okada, Nobuchika

    2015-09-01

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5-3 TeV.

  6. Heavy Flavor Simplified Models at the LHC

    SciTech Connect

    Essig, Rouven; Izaguirre, Eder; Kaplan, Jared; Wacker, Jay G.; /SLAC

    2012-04-03

    We consider a comprehensive set of simplified models that contribute to final states with top and bottom quarks at the LHC. These simplified models are used to create minimal search strategies that ensure optimal coverage of new heavy flavor physics involving the pair production of color octets and triplets. We provide a set of benchmarks that are representative of model space, which can be used by experimentalists to perform their own optimization of search strategies. For data sets larger than 1 fb{sup -1}, same-sign dilepton and 3b search regions become very powerful. Expected sensitivities from existing and optimized searches are given.

  7. LHC searches for heavy neutral Higgs bosons with a top jet substructure analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Li, Jinmian; Liu, Yandong

    2016-05-01

    We study the LHC searches for the heavy C P -odd Higgs boson A and C P -even Higgs boson H in the context of a general two-Higgs-doublet model. Specifically, we consider the decay mode of A /H →t t ¯ through the t t ¯ associated production channels. In the so-called "alignment limit" of the two-Higgs-doublet model, this decay mode can be the most dominant one. By employing the HEPTopTagger and the multivariate analysis method, we present the search sensitivities for both C P -odd Higgs boson A and C P -even Higgs boson H via this channel with multiple top quarks at the high-luminosity LHC runs.

  8. The No-Higgs Signal: Strong WW Scattering at the LHC

    SciTech Connect

    Michael S. Chanowitz

    2004-12-07

    Strong WW scattering at the LHC is discussed as a manifestation of electroweak symmetry breaking in the absence of a light Higgs bosom. The general framework of the Higgs mechanism--with or without a Higgs boson--is reviewed, and unitarity is shown to fix the scale of strong WW scattering. Strong WW scattering is also shown to be a possible outcome of five-dimensional models, which do not employ the usual Higgs mechanism at the TeV scale. Precision electroweak constraints are briefly discussed. Illustrative LHC signals are reviewed for models with QCD-like dynamics, stressing the complementarity of the W{sup {+-}}Z and like-charge W{sup +}W{sup +} + W{sup -}W{sup -} channels.

  9. CMS tracker performance and readiness for LHC Run II

    NASA Astrophysics Data System (ADS)

    Viliani, L.

    2016-07-01

    The CMS tracker performance during LHC Run I is reviewed. The latest results of both pixel and strip detectors following the first LHC Long Shutdown (LS1) are then presented. Results from detector calibration and commissioning, together with a description of operations and repairs done during LS1, will be shown.

  10. The operation of the LHC accelerator complex (1/2)

    ScienceCinema

    None

    2011-10-06

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  11. The operation of the LHC accelerator complex (2/2)

    ScienceCinema

    None

    2011-10-06

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  12. Tevatron-for-LHC Report: Preparations for Discoveries

    SciTech Connect

    Buescher, V.; Carena, Marcela S.; Dobrescu, Bogdan A.; Mrenna, S.; Rainwater, D.; Schmitt, M.

    2006-08-01

    This is the ''TeV4LHC'' report of the ''Physics Landscapes'' Working Group, focused on facilitating the start-up of physics explorations at the LHC by using the experience gained at the Tevatron. We present experimental and theoretical results that can be employed to probe various scenarios for physics beyond the Standard Model.

  13. The operation of the LHC accelerator complex (1/2)

    SciTech Connect

    2010-04-07

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  14. The operation of the LHC accelerator complex (2/2)

    SciTech Connect

    2010-04-09

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  15. Particle Physics on the Eve of Lhc

    NASA Astrophysics Data System (ADS)

    Studenikin, Alexander I.

    2009-01-01

    Fundamentals of particle physics. The quantum number of color, colored quarks and dynamic models of Hadrons composed of quasifree quarks / V. Matveev, A. Tavkhelidze. Discovery of the color degree of freedom in particle physics: a personal perspective / O. W. Greenberg. The evolution of the concepts of energy, momentum, and mass from Newton and Lomonosov to Einstein and Feynman / L. Okun -- Physics at accelerators and studies in SM and beyond. Search for new physics at LHC (CMS) / N. Krasnikov. Measuring the Higgs Boson(s) at ATLAS / C. Kourkoumelis. Beyond the standard model physics reach of the ATLAS experiment / G. Unel. The status of the International Linear Collider / B. Foster. Review of results of the electron-proton collider HERA / V. Chekelian. Recent results from the Tevatron on CKM matrix elements from Bs oscillations and single top production, and studies of CP violation in Bs Decays / J. P. Fernández. Direct observation of the strange b Barion [symbol] / L. Vertogradov. Search for new physics in rare B Decays at LHCb / V. Egorychev. CKM angle measurements at LHCb / S. Barsuk. Collider searches for extra spatial dimensions and black holes / G. Landsberg -- Neutrino Physics. Results of the MiniBooNE neutrino oscillation experiment / Z. Djurcic. MINOS results and prospects / J. P. Ochoa-Ricoux. The new result of the neutrino magnetic moment measurement in the GEMMA experiment / A. G. Beda ... [et al.]. The Baikal neutrino experiment: status, selected physics results, and perspectives / V. Aynutdinov ... [et al.]. Neutrino telescopes in the deep sea / V. Flaminio. Double beta decay: present status / A. S. Barabash. Beta-beams / C. Volpe. T2K experiment / K. Sakashita. Non-standard neutrino physics probed by Tokai-to-Kamioka-Korea two-detector complex / N. Cipriano Ribeiro ... [et al.]. Sterile neutrinos: from cosmology to the LHC / F. Vannucci. From Cuoricino to Cuore towards the inverted hierarchy region / C. Nones. The MARE experiment: calorimetric

  16. Odd top partners at the LHC

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, Archana; Collins, Jack H.; Farina, Marco; Kuflik, Eric; Perelstein, Maxim

    2016-04-01

    LHC searches for fermionic top partners T focus on three decay topologies: T →b W , T →t Z , and T →t h . However, top partners may carry new conserved quantum numbers that forbid these decays. The simplest possibility is a conserved parity, under which the top partner is odd and all SM states are even. In this case, decays of top partners may involve new particle-odd scalars, leading to signal topologies more commonly associated with supersymmetry, either with or without R -parity conservation. We study a simplified model in which this possibility is realized, and estimate the bounds on the top partner mass in this model implied by LHC searches for supersymmetry. We find that the bounds can be significantly weaker than in the conventional top partner decay scenario. For example, if the new parity is exact, a 500 GeV top partner is allowed as long as the lightest parity-odd scalar mass is between 325 and 500 GeV. The lower allowed top partner mass reduces the need for fine-tuning in the Higgs mass parameter, compared to the conventional decay scenario. We also present an explicit model, the oddest little Higgs, which exhibits this phenomenology.

  17. Simplified models for LHC new physics searches

    NASA Astrophysics Data System (ADS)

    Alves, Daniele; Arkani-Hamed, Nima; Arora, Sanjay; Bai, Yang; Baumgart, Matthew; Berger, Joshua; Buckley, Matthew; Butler, Bart; Chang, Spencer; Cheng, Hsin-Chia; Cheung, Clifford; Sekhar Chivukula, R.; Cho, Won Sang; Cotta, Randy; D'Alfonso, Mariarosaria; El Hedri, Sonia; Essig (Editor, Rouven; Evans, Jared A.; Fitzpatrick, Liam; Fox, Patrick; Franceschini, Roberto; Freitas, Ayres; Gainer, James S.; Gershtein, Yuri; Gray, Richard; Gregoire, Thomas; Gripaios, Ben; Gunion, Jack; Han, Tao; Haas, Andy; Hansson, Per; Hewett, JoAnne; Hits, Dmitry; Hubisz, Jay; Izaguirre, Eder; Kaplan, Jared; Katz, Emanuel; Kilic, Can; Kim, Hyung-Do; Kitano, Ryuichiro; Koay, Sue Ann; Ko, Pyungwon; Krohn, David; Kuflik, Eric; Lewis, Ian; Lisanti (Editor, Mariangela; Liu, Tao; Liu, Zhen; Lu, Ran; Luty, Markus; Meade, Patrick; Morrissey, David; Mrenna, Stephen; Nojiri, Mihoko; Okui, Takemichi; Padhi, Sanjay; Papucci, Michele; Park, Michael; Park, Myeonghun; Perelstein, Maxim; Peskin, Michael; Phalen, Daniel; Rehermann, Keith; Rentala, Vikram; Roy, Tuhin; Ruderman, Joshua T.; Sanz, Veronica; Schmaltz, Martin; Schnetzer, Stephen; Schuster (Editor, Philip; Schwaller, Pedro; Schwartz, Matthew D.; Schwartzman, Ariel; Shao, Jing; Shelton, Jessie; Shih, David; Shu, Jing; Silverstein, Daniel; Simmons, Elizabeth; Somalwar, Sunil; Spannowsky, Michael; Spethmann, Christian; Strassler, Matthew; Su, Shufang; Tait (Editor, Tim; Thomas, Brooks; Thomas, Scott; Toro (Editor, Natalia; Volansky, Tomer; Wacker (Editor, Jay; Waltenberger, Wolfgang; Yavin, Itay; Yu, Felix; Zhao, Yue; Zurek, Kathryn; LHC New Physics Working Group

    2012-10-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the Large Hadron Collider (LHC) and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the ‘Topologies for Early LHC Searches’ workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ˜50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

  18. ATLAS Distributed Computing in LHC Run2

    NASA Astrophysics Data System (ADS)

    Campana, Simone

    2015-12-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run-2. An increase in both the data rate and the computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (Prodsys-2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward a flexible computing model. A flexible computing utilization exploring the use of opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model; the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover, a new data management strategy, based on a defined lifetime for each dataset, has been defined to better manage the lifecycle of the data. In this note, an overview of an operational experience of the new system and its evolution is presented.

  19. Simplified Models for LHC New Physics Searches

    SciTech Connect

    Alves, Daniele; Arkani-Hamed, Nima; Arora, Sanjay; Bai, Yang; Baumgart, Matthew; Berger, Joshua; Buckley, Matthew; Butler, Bart; Chang, Spencer; Cheng, Hsin-Chia; Cheung, Clifford; Chivukula, R.Sekhar; Cho, Won Sang; Cotta, Randy; D'Alfonso, Mariarosaria; El Hedri, Sonia; Essig, Rouven,; Evans, Jared A.; Fitzpatrick, Liam; Fox, Patrick; Franceschini, Roberto; /more authors..

    2012-06-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first {approx} 50-500 pb{sup -1} of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

  20. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    Hall, B.; Burt, G.; Smith, J. D.A.; Rimmer, R.; Wang, H.; Delayen, J.; Calaga, R.

    2009-05-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design. A superconducting version of a two rod coaxial deflecting cavity as a suitable design is proposed in this paper.

  1. MSSM Electroweak Baryogenesis and LHC Data

    SciTech Connect

    Carena, Marcela; Nardini, Germano; Quiros, Mariano; Wagner, Carlos E.M.

    2013-02-01

    Electroweak baryogenesis is an attractive scenario for the generation of the baryon asymmetry of the universe as its realization depends on the presence at the weak scale of new particles which may be searched for at high energy colliders. In the MSSM it may only be realized in the presence of light stops, and with moderate or small mixing between the left- and right-handed components. Consistency with the observed Higgs mass around 125 GeV demands the heavier stop mass to be much larger than the weak scale. Moreover the lighter stop leads to an increase of the gluon-gluon fusion Higgs production cross section which seems to be in contradiction with indications from current LHC data. We show that this tension may be considerably relaxed in the presence of a light neutralino with a mass lower than about 60 GeV, satisfying all present experimental constraints. In such a case the Higgs may have a significant invisible decay width and the stop decays through a three or four body decay channel, including a bottom quark and the lightest neutralino in the final state. All these properties make this scenario testable at a high luminosity LHC.

  2. Torsion phenomenology at the CERN LHC

    SciTech Connect

    Belyaev, A. S.; Shapiro, I. L.; Vale, M. A. B. do

    2007-02-01

    We explore the potential of the CERN Large Hadron Collider (LHC) to test the dynamical torsion parameters. The form of the torsion action can be established from the requirements of consistency of effective quantum field theory. The most phenomenologically relevant part of the torsion tensor is dual to a massive axial vector field. This axial vector has geometric nature, that means it does not belong to any representation of the gauge group of the SM extension or GUT theory. At the same time, torsion should interact with all fermions, that opens the way for the phenomenological applications. We demonstrate that LHC collider can establish unique constraints on the interactions between fermions and torsion field considerably exceeding present experimental lower bounds on the torsion couplings and its mass. It is also shown how possible nonuniversal nature of torsion couplings due to the renormalization group running between the Planck and TeV energy scales can be tested via the combined analysis of Drell-Yan and tt production processes.

  3. CERN LHC signals from warped extra dimensions

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Belyaev, Alexander; Krupovnickas, Tadas; Perez, Gilad; Virzi, Joseph

    2008-01-01

    We study production of Kaluza-Klein (KK) gluons at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the standard model fields propagating in the bulk. We show that the detection of the KK gluon is challenging since its production is suppressed by small couplings to the proton’s constituents. Moreover, the KK gluon decays mostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG≲4TeV, 100fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic “top-jets.” We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays (golden modes) are suppressed. Our analysis suggests that other frameworks, for example, little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely, (1) suppressed production rates for the new particles (such as Z'), due to their “light-fermion-phobic” nature, and (2) difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.

  4. Electroweak Corrections at the LHC with MCFM

    SciTech Connect

    Campbell, John M.; Wackeroth, Doreen; Zhou, Jia

    2015-07-10

    Electroweak (EW) corrections at the LHC can be enhanced at high energies due to soft/collinear radiation of W and Z bosons, being dominated by Sudakov-like corrections in the form of $\\alpha_W^l\\log^n(Q^2/M_W^2)$ $(n \\le 2l, \\alpha_W = \\alpha/(4\\pi\\sin\\theta_W^2))$ when the energy scale $Q$ enters the TeV regime. Thus, the inclusion of EW corrections in LHC predictions is important for the search of possible signals of new physics in tails of kinematic distributions. EW corrections should also be taken into account in virtue of their comparable size ($\\mathcal{O}(\\alpha)$) to that of higher order QCD corrections ($\\mathcal{O}(\\alpha_s^2)$). We calculated the next-to-leading-order (NLO) weak corrections to the neutral-current (NC) Drell-Yan process, top-quark pair production and di-jet producion, and implemented them in the Monte-Carlo program MCFM. This enables a combined study with the corresponding NLO QCD corrections. We provide both the full NLO weak corrections and their weak Sudakov approximation valid at high energies. The latter is often used for a fast evaluation of weak effects, and having the exact result available as well allows to quantify the validity of the Sudakov approximation.

  5. Medical Imaging Inspired Vertex Reconstruction at LHC

    NASA Astrophysics Data System (ADS)

    Hageböck, S.; von Toerne, E.

    2012-12-01

    Three-dimensional image reconstruction in medical applications (PET or X-ray CT) utilizes sophisticated filter algorithms to linear trajectories of coincident photon pairs or x-rays. The goal is to reconstruct an image of an emitter density distribution. In a similar manner, tracks in particle physics originate from vertices that need to be distinguished from background track combinations. In this study it is investigated if vertex reconstruction in high energy proton collisions may benefit from medical imaging methods. A new method of vertex finding, the Medical Imaging Vertexer (MIV), is presented based on a three-dimensional filtered backprojection algorithm. It is compared to the open-source RAVE vertexing package. The performance of the vertex finding algorithms is evaluated as a function of instantaneous luminosity using simulated LHC collisions. Tracks in these collisions are described by a simplified detector model which is inspired by the tracking performance of the LHC experiments. At high luminosities (25 pileup vertices and more), the medical imaging approach finds vertices with a higher efficiency and purity than the RAVE “Adaptive Vertex Reconstructor” algorithm. It is also much faster if more than 25 vertices are to be reconstructed because the amount of CPU time rises linearly with the number of tracks whereas it rises quadratically for the adaptive vertex fitter AVR.

  6. Strongly coupled fourth generation at the LHC

    SciTech Connect

    Burdman, G.; Da Rold, L.; Eboli, O. J. P.; Matheus, R. D.

    2009-04-01

    We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D{sub 4}. We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D{sub 4} pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities.

  7. LHC Signals from Warped Extra Dimensions

    SciTech Connect

    Agashe, K.; Belyaev, A.; Krupovnickas, T.; Perez, G.; Virzi, J.

    2006-12-06

    We study production of Kaluza-Klein gluons (KKG) at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the Standard Model (SM) fields propagating in the bulk. We show that the detection of KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decaysmostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG<~;; 4 TeV, 100 fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizeable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic"top-jets." We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays ("golden" modes) are suppressed. Our analysis suggests that other frameworks, for example little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely (1) Suppressed production rates for the new particles (such as Z'), due to their"lightfermion-phobic" nature, and (2) Difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.

  8. Exclusive diffractive photon bremsstrahlung at the LHC

    NASA Astrophysics Data System (ADS)

    Lebiedowicz, Piotr; Szczurek, Antoni

    2013-06-01

    We calculate differential distributions for the pp→ppγ reaction at the LHC energy s=14TeV. We consider diffractive classical bremsstrahlung mechanisms including effects of the non-point-like nature of protons. In addition, we take into account (vector meson)-pomeron, photon-pion, and photon-pomeron exchange processes for the first time in the literature. Predictions for the total cross section and several observables related to these processes, e.g., differential distributions in pseudorapidities and transverse momenta of photons or protons are shown and discussed. The integrated diffractive bremsstrahlung cross section (Eγ>100GeV) is only of the order of μb. We try to identify regions of the phase space where one of the mechanisms dominates. The classical bremsstrahlung dominates at large forward/backward photon pseudorapidities, close to the pseudorapidities of scattered protons. In contrast, the photon-pomeron (pomeron-photon) mechanism dominates at midrapidities but the related cross section is rather small. In comparison the virtual-omega-rescattering mechanism contributes at smaller angles of photons (larger photon rapidities). Photons in the forward/backward region can be measured by the Zero Degree Calorimeters installed in experiments at the LHC while the midrapidity photons are difficult to measure (small cross section, small photon transverse momenta). Protons could be measured by the ALFA detector (ATLAS) or TOTEM detector at CMS. The exclusivity could be checked with the help of main central detectors.

  9. Nonlinear SUSY General Relativity Theory and Significances

    NASA Astrophysics Data System (ADS)

    Shima, Kazunari; Tsuda, Motomu

    2012-02-01

    We show some interesting consequences of the nonliear supersymmetric general relativity theory(NLSUSYGR) on particle physics, cosmology and their relations. They may geiv new insights into the SUSY breaking mechanism, dark energy, dark matter and the low enegy superpartner particles which are compatible with the recent LHC data.

  10. Spin and diffractive physics with a fixed-target experiment at the LHC (AFTER-LHC)

    SciTech Connect

    Lorce, C.; Chambert, V.; Didelez, J. P.; Genolini, B.; Hadjidakis, C.; Lansberg, J. P.; Rosier, P.; Brodsky, S. J.; Ferreiro, E. G.; Fleuret, F.

    2013-04-15

    We report on the spin and diffractive physics at a future multi-purpose f xed-target experiment with proton and lead LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic f xed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER using typical targets would surpass that of RHIC by more than 3 orders of magnitude. The f xed-target mode has the advantage to allow for measurements of single-spin asymmetries with polarized target as well as of single-diffractive processes in the target region.