Science.gov

Sample records for li-doped zno films

  1. Li doped ZnO thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Serrao, F. J.; Dharmaprakash, S. M.

    2016-05-01

    We have prepared undoped (ZnO) and Li doped ZnO (LZO) thin films using cost effective sol gel spin coating method.The structural properties were analyzed by X-ray diffraction, and it showed that Li ions occupied interstitial positions in the LZO film. The optical properties like band bending effect, absorption length, band edge sharpness, which have direct impact on solar cell performance has been calculated. The room temperature photoluminescence spectra of the films showed dominant blue emission with CIE coordinate numbers (0.1384, 0.0836) for ZnO and (0.1356, 0.0910) for LZO. The dominating wavelength of the blue emission is present at 470.9 nm and 472.3 nm for ZnO and LZO films respectively. The structural and optical parameters determined in the present study could be used in LED applications.

  2. Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Liang-xian; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; Liu, Jin-long; Wei, Jun-jun

    2015-10-01

    Radio frequency (RF) reactive magnetron sputtering was utilized to deposit Li-doped and undoped zinc oxide (ZnO) films on silicon wafers. Various Ar/O2 gas ratios by volume and sputtering powers were selected for each deposition process. The results demonstrate that the enhanced ZnO films are obtained via Li doping. The average deposition rate for doped ZnO films is twice more than that of the undoped films. Both atomic force microscopy and scanning electron microscopy studies indicate that Li doping significantly contributes to the higher degree of crystallinity of wurtzite-ZnO. X-ray diffraction analysis demonstrates that Li doping promotes the (002) preferential orientation in Li-doped ZnO films. However, an increase in the ZnO lattice constant, broadening of the (002) peak and a decrease in the peak integral area are observed in some Li-doped samples, especially as the form of Li2O. This implies that doping with Li expands the crystal structure and thus induces the additional strain in the crystal lattice. The oriented-growth Li-doped ZnO will make significant applications in future surface acoustic wave devices.

  3. Magnetic properties of high Li doped ZnO sol–gel thin films

    SciTech Connect

    Vettumperumal, R.; Kalyanaraman, S.; Santoshkumar, B.; Thangavel, R.

    2014-02-01

    Highlights: • Ferromagnetism in high Li doped ZnO films. • Magnetic properties observed by Guoy's and VSM method. • The rod and wrinkle like structures are observed from the surface of the films. • Band gap of ZnO does not get altered by high Li doping. - Abstract: Undoped and Li doped ZnO thin films were deposited on a glass substrate using the sol–gel dip coating method. The films were prepared at 5 mol.% and 10 mol.% of Li doped ZnO at 550 °C annealing temperature and the deposited films were characterized by X-ray diffraction (XRD), microscopic studies, Gouy's method, vibrating sample magnetometer (VSM) and UV–visible spectroscopy. All the deposited thin films had a hexagonal wurtzite structure with polycrystalline grains at random. Primarily magnetic properties of pure and Li doped ZnO films were observed by Guoy's method which depicted Dia and Para magnetic behavior at room temperature. VSM measurement reveals a coercivity of 97.7 Oe in the films. An inverse relative ferromagnetism was perceived in Li doped ZnO films which had an average transmission of <90%.

  4. Investigation of Li-doped ferroelectric and piezoelectric ZnO films by electric force microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ni, H. Q.; Lu, Y. F.; Liu, Z. Y.; Qiu, H.; Wang, W. J.; Ren, Z. M.; Chow, S. K.; Jie, Y. X.

    2001-08-01

    We have grown Li-doped ZnO films on silicon (100) using the rf planar magnetron sputtering method. The surface charges induced piezoelectrically by defect and by polarization can be observed by electric force microscopy. The Li-doped ZnO films have been proven to be ferroelectric. The Raman spectra of ZnO and Li-doped ZnO films have been measured.

  5. Mechanism of Photoinduced Charge Transfer in Co(Li)-Doped ZnO Film

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kenkichiro; Maeda, Tatsuro; Matsushima, Shigenori; Okada, Genji

    1992-08-01

    A three-layer film consisting of In-doped ZnO, Co(Li)-doped ZnO and Li-doped NiO has been fabricated by means of a sputtering technique. The photocurrent spectrum of the Co(Li)-doped ZnO has been measured by applying a bias voltage between the In-doped ZnO and Li-doped NiO electrodes. A broad peak around 640 nm in the photocurrent spectrum is assigned to photothermal ionization of Co2+ ions. The time dependence of photocurrents indicates that the concentration of Co2+ ions is decreased by the irradiation of 500 nm and is recovered to the initial value by turning off the bias voltage.

  6. Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films.

    PubMed

    Shinde, S S; Bhosale, C H; Rajpure, K Y

    2013-03-01

    Li-doped ZnO thin films with preferred (002) orientation have been prepared by spray pyrolysis technique in aqueous medium on to the corning glass substrates. The effect of Li-doping on to the photoelectrochemical, structural, morphological, optical, luminescence, electrical and thermal properties has been investigated. XRD and Raman study indicates that the films have hexagonal crystal structure. The transmittance, reflectance, refractive index, extinction coefficient and bandgap have been analyzed by optical study. PL spectra consist of a near band edge and visible emission due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn). The Li-doped ZnO films prepared for 1at% doping possesses the highest electron mobility of 102cm(2)/Vs and carrier concentration of 3.62×10(19)cm(-3). Finally, degradation of 2,4,6-Trinitrotoluene using Li-doped ZnO thin films has been reported. PMID:23416707

  7. Growth and characterization of Li-doped ZnO thin films on nanocrystalline diamond substrates

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Xia, Yiben; Wang, Linjun; Xu, Jinyong; Hu, Guang; Zhu, Xuefeng; Shi, Weimin

    2008-02-01

    Nanocrystalline diamond(NCD) films with a mean surface roughness of 23.8 nm were grown on silicon substrates in a hot filament chemical vapor deposition(HFCVD) system. Then, Zn 1-xLi xO (x=0, 0.05, 0.10, 0.15) films were deposited on these NCD films by radio-frequency(RF) reactive magnetron sputtering method. When x was 0.1, the Li-doped ZnO film had a larger resistivity more than 10 8Ω•cm obtained from Hall effect measurement. All the Zn 1-xLi xO films had a strong c-axis orientation structure determined by X-ray diffraction (XRD). The above results suggested that the Li-doped ZnO film/NCD structure prepared in this work was attractive for the application of high frequency surface acoustic wave (SAW) devices.

  8. Fabrication of p-type Li-doped ZnO films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Xiao, Bin; Ye, Zhizhen; Zhang, Yinzhu; Zeng, Yujia; Zhu, Liping; Zhao, Binghui

    2006-11-01

    p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li 2CO 3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O 2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm 2 V -1 s -1 and hole concentration of 1.37 × 10 18 cm -3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.

  9. Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Jang, Jongsu; Lee, Changhee; Hong, Yongtaek

    2009-11-01

    We report the effects of lithium (Li) doping on the performance and environmental stability of solution processed zinc oxide (ZnO) thin film transistors (TFTs). It was found that appropriate amount of Li doping significantly reduced the background conductivity of ZnO films and also improved the orientation of ZnO crystallites along the c-axis. A highest field-effect mobility of 3.07 cm2/V s was found for the 5 at. % Li-doped ZnO TFTs. However, 15 and 25 at. % Li-doped ZnO TFTs showed good environmental stability of Ion/Ioff ratio with reasonable field-effect mobility.

  10. Optical properties of Li-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Valentini, Antonio; Quaranta, Fabio; Vasanelli, Lorenzo; Piccolo, R.

    1991-03-01

    The difficulty to achieve a refractive index matching between active substrate and active layer grown on, is one of the main problem in integrated optical devices based on gallium arsenide, because of its high refractive index value. One possible solution could be an active layer whose refractive index is variable during the grown. Zinc oxide is a very interesting material because of its electro-optic and acousto- optic properties. It has a low cost and can be prepared by a variety of techniques. In this paper deposition of lithium doped zinc oxide films by reactive sputtering has been investigated in order to study the dependence of optical properties on lithium content and deposition parameters. A ZnO:Li target was used. The film depositions were performed varying the oxygen content in sputtering gas. For comparison undoped ZnO films were also prepared. We have performed optical and electrical measurement on films relating the results to Li contents and O/Zn ratio obtained by nuclear reaction and Rutherford backscattering measurements respectively. The film analysis has shown that dopant concentration is mainly controlled by gas mixture. The optical properties are dependent on deposition conditions. Optical waveguides have been prepared and characterized. The results are presented and discussed.

  11. Enhanced mobility of Li-doped ZnO thin film transistors fabricated by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jeon, Hye-ji; Lee, Seul-Gi; Kim, H.; Park, Jin-Seong

    2014-05-01

    Mist chemical vapor deposition (mist-CVD)-processed, lithium (Li)-doped ZnO thin film transistors (TFTs) are investigated. Li doping significantly increases the field-effect mobility in TFTs up to ˜100 times greater than that of undoped ZnO. The addition of Li into mist-CVD-grown ZnO semiconductors leads to improved film quality, which results from the enhanced crystallinity and reduced defect states, including oxygen vacancies. Our results suggest that Li doping of ZnO-based oxide semiconductors could serve as an effective strategy for high-performance, mist-CVD-processed oxide TFTs with low-cost and low-temperature fabrication.

  12. Identification of acceptor states in Li-doped p-type ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zeng, Y. J.; Ye, Z. Z.; Lu, J. G.; Xu, W. Z.; Zhu, L. P.; Zhao, B. H.; Limpijumnong, Sukit

    2006-07-01

    We investigate photoluminescence from reproducible Li-doped p-type ZnO thin films prepared by dc reactive magnetron sputtering. The LiZn acceptor state, with an energy level located at 150meV above the valence band maximum, is identified from free-to-neutral-acceptor transitions. Another deeper acceptor state located at 250meV emerges with the increased Li concentration. A broad emission centered at 2.96eV is attributed to a donor-acceptor pair recombination involving zinc vacancy. In addition, two chemical bonding states of Li, evident in x-ray photoelectron spectroscopy, are probably associated with the two acceptor states observed.

  13. Defects, stress and abnormal shift of the (0 0 2) diffraction peak for Li-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Wang, Mu-Shan; Liu, Chia-Jyi; Huang, Hsueh-Jung

    2010-10-01

    The effect of changes in Li content on the structural property of sol-gel Li-doped ZnO films was investigated in this study. The observed changes of the Li incorporation-induced strain along c-axis are closely related to the different ratios between the concentrations of Li interstitials (Li i) and Li substituting for Zn (Li Zn) in the films. According to the observed results from X-ray diffraction (XRD) and photoluminescence measurements, we found that the domination of the dissociative mechanism in the Li-doped ZnO films led to transformation from Li Zn to Li i, involving the formation of Zn vacancies (V Zn). In addition, the interaction between these defects (that is, Li Zn, Li i, V Zn and oxygen vacancy) and the crystal structure may lead to the abnormal shift of the (0 0 2) diffraction peak position determined from XRD measurements.

  14. Control of p- and n-type conductivities in Li-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Lu, J. G.; Zhang, Y. Z.; Ye, Z. Z.; Zeng, Y. J.; He, H. P.; Zhu, L. P.; Huang, J. Y.; Wang, L.; Yuan, J.; Zhao, B. H.; Li, X. H.

    2006-09-01

    Li-doped ZnO films were prepared by pulsed laser deposition. The carrier type could be controlled by adjusting the growth conditions. In an ionized oxygen atmosphere, p-type ZnO was achieved, with the hole concentration of 6.04×1017cm-3 at an optimal Li content of 0.6at.%, whereas ZnO exhibited n-type conductivity in a conventional O2 growth atmosphere. At a Li content of more than 1.2at.% only high-resistivity ZnO was obtained. The amount of Li introduced into ZnO and the relative concentrations of such defects as Li substitutions and interstitials could play an important role in determining the conductivity of films.

  15. Growth of ferroelectric Li-doped ZnO thin films for metal-ferroelectric-semiconductor FET

    NASA Astrophysics Data System (ADS)

    Dhananjay; Nagaraju, J.; Choudhury, Palash Roy; Krupanidhi, S. B.

    2006-07-01

    A metal-ferroelectric-semiconductor structure has been developed by depositing Li-doped ZnO thin films (Zn1-xLixO, x = 0.25) on p-type Si substrates by the pulsed laser ablation technique. (002) preferential oriented films were deposited at a low growth temperature of 500 °C and 100 mTorr oxygen partial pressure. The dielectric response of the films has been studied over a temperature range 250 373 K. A dielectric anomaly was observed at 360 K. The capacitance voltage characteristics of Ag/Zn0.75Li0.25O/Si exhibited clockwise hysteresis loops with a memory window of 2 V. The films deposited at 100 mTorr pressure show a stable current density and a saturated polarization hysteresis loop with a remanent polarization of 0.09 µC cm-2 and coercive field of 25 kV cm-1. Leakage current measurements were done at elevated temperatures to provide evidence of the conduction mechanism present in these films. Ohmic behaviour was observed at low voltage, while higher voltages induced a bulk space charge. The optical properties of Zn0.75Li0.25O thin films were studied in the wavelength range 300 900 nm. The appearance of ferroelectric nature in Li-doped ZnO films adds an additional dimension to its applications.

  16. Ferroelectric behavior of Li-doped ZnO thin films on Si(100) by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Joseph, M.; Tabata, H.; Kawai, T.

    1999-04-01

    Thin films of Li-doped ZnO of different compositions (Zn1-xLix)O, x=0.1, 0.17, and 0.3 have been prepared on Si(100) substrates, with no buffer layer, by the pulsed laser deposition method. Ferroelectric behavior with a memory window of 1.2 V has been observed in capacitance-voltage measurements. The peak maximum in the capacitance-temperature curve suggests that the ferroelectric phase transition occurs around 340 K.

  17. Electrical and Structural Analyses of Solution-Processed Li-Doped ZnO Thin Film Transistors Exposed to Ambient Conditions

    NASA Astrophysics Data System (ADS)

    Kang, Tae Sung; Koo, Ja Hyun; Kim, Tae Yoon; Hong, Jin Pyo

    2013-01-01

    We report the electrical and structural features of various Li-doped ZnO thin-film transistors (TFTs) grown via a chemical solution process at low temperature. The time-dependent transfer curves for the 10 at. % Li-doped ZnO TFTs, including second-order lowered off-current magnitude, exhibited only a negative shift of -1.07 V for 25 days, compared with a -21.83 V negative shift of undoped ZnO TFTs. Secondary ion mass spectroscopy and X-ray photoelectron spectroscopy observations clearly demonstrated the structure of Li dopants and the reduction of oxygen vacancies after appropriate doping processes. Finally, the nature of improved stability in the Li-doped ZnO TFTs is described.

  18. Comparison of Magnetic Property of Cu-, Al-, and Li-DOPED ZnO Dilute Magnetic Semiconductor Thin Films

    NASA Astrophysics Data System (ADS)

    van, L. H.; Ding, J.; Hong, M. H.; Fan, Z. C.; Wang, L.

    The properties of Cu-, Al-, and Li-doped ZnO dilute magnetic semiconductor (DMS) have been analyzed and compared. Zincite with wurtzite structures have been synthesized successfully on SiO2 (101) and SiO2 (110) substrates in both the Cu-ZnO and Li-ZnO DMS. The highly textured ZnO (002) peaks were able to form in the Cu-ZnO system at 400°C. However, it formed at even much lower temperature in the Li-ZnO system, that is only 25°C. ZnO (002) peaks in both systems were formed without any impurity phases. However, no crystalline structure is synthesized in the Al-ZnO system. The thin films formed are amorphous. The structural and related magnetic properties of the films were analyzed by XRD, AFM, and VSM. The films were found to be at their highest magnetism at the value of 3.1 emu/cm3 for Co-ZnO and 2.5 emu/cm3 for Li-ZnO, synthesized at 400°C, and under 1 × 10-4 Torr oxygen partial pressure.

  19. Luminescence of defects in Li-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Potek, Z.; Bryknar, Z.; Ptáek, P.; Hubika, Z.

    2005-01-01

    Photoluminescence of pure ZnO and ZnO:Li thin films prepared in the plasmachemical reactor with the hollow cathode can be observed after annealing of samples in the hydrogen atmosphere at temperatures within the range 300-600 °C. Photoluminescence was excited by light with the photon energy higher than 3.1 eV. Considering the differences between photoluminescence emission spectra of pure and doped ZnO thin films investigated in the spectral region (260-1000 nm) at temperature 12 K, it was concluded (i) photoluminescence emission from the region 3.10-1.77 eV is originated from the intrinsic centers of pure ZnO and (ii) the emission near 1.68 eV is associated with a transition from a state at bottom of the conduction band to a hole trapped in a localized state introduced by Li.

  20. Temperature dependence of the optical band gap and electrical conductivity of sol-gel derived undoped and Li-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Caglar, Mujdat; Caglar, Yasemin; Aksoy, Seval; Ilican, Saliha

    2010-06-01

    Undoped and lithium (Li)-doped ZnO films were prepared by sol-gel method using spin coating technique. The effects of Li content on the crystallinity and morphological properties of ZnO films were assessed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). XRD patterns of the films showed the hexagonal wurtzite type polycrystalline structure and that the incorporation of lithium leads to substantial changes in the structural characteristics of ZnO films. The SEM and AFM measurements showed that the surface morphology of the films was affected from the lithium incorporation. The wrinkle network was observed on the surface from both SEM and AFM results for undoped ZnO. The wrinkle structure disappeared with increasing Li content. The absorption spectra of the ZnO and 5% Li-doped ZnO (LZO5) films were carried out between 140 and 400 K temperatures. The optical band gap of ZnO and LZO5 films (calculated at various temperatures) showed a linear dependence on the temperature. The absolute zero value optical band gap and the rate of change of the band gap with temperature of the ZnO and LZO5 films were found to be 3.339 and 3.322 eV, and 2.95 × 10 -4 and 1.60 × 10 -4 eV/K, respectively. The transport mechanisms in the ZnO and LZO5 films have been investigated by analyzing of the temperature (80-300 K) dependence of the conductivity. The activation energies of the ZnO film increased with Li content.

  1. In-situ post-annealing technique for improving piezoelectricity and ferroelectricity of Li-doped ZnO thin films prepared by radio frequency magnetron sputtering system

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Cheng; Chang, Chia-Chiang; Wu, Chin-Jyi; Tseng, Zong-Liang; Tang, Jian-Fu; Chu, Sheng-Yuan; Chen, Yi-Chun; Qi, Xiaoding

    2013-03-01

    Li-doped zinc oxide (L0.03Z0.97O) thin films are deposited onto Pt/Ti/SiO2/Si substrates via the radio frequency magnetron sputtering method. The structure evolution with annealing temperature of the predominantly (002)-oriented Li-doped ZnO (LZO) films after in-situ post-annealing process is determined. The largest values of the piezoelectric coefficient (d33) and the remnant polarization (Pr) (22.85 pm/V and 0.655 μC/cm2, respectively) are obtained for LZO films post-annealed at 600 °C, which can be attributed to the predominant (002)-oriented crystalline structure, the release of intrinsic residual compressive stress, and less non-lattice oxygen.

  2. Structural, electrical and optical properties of a Li-doped ZnO thin film fabricated on a Pt(111)/Ti/SiO2/Si(100) substrate

    NASA Astrophysics Data System (ADS)

    Raghavan, C. M.; Kim, J. W.; Jang, K. W.; Kim, S. S.

    2015-04-01

    A Li-doped ZnO (Zn1- x Li x O1- δ , x = 0.12) thin film was fabricated on a Pt(111)/Ti/SiO2/Si(100) substrate by using a chemical solution deposition method. The formation of a wurtzite hexagonal structure was confirmed by an X-ray diffraction and a Raman spectroscopic analysis. Typical hexagonal microcrystalline grains were observed from the surface morphological studies. Room-temperature ferroelectricity with a remnant polarization (2 P r ) of 0.05 μC/cm2 and a coercive field (2 E c ) of 170 kV/cm at an applied electric field of 200 kV/cm was observed in the Li-doped ZnO thin film. The measured leakage current density for the thin film was 1.09 × 10 -4 A/cm2 at an applied electric field of 100 kV/cm. A sharp near-band-edge emission was observed in the photoluminescence spectrum at a wavelength of 375 nm for the thin film.

  3. Enhanced gas sensing performance of Li-doped ZnO nanoparticle film by the synergistic effect of oxygen interstitials and oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwei; Xie, Changsheng; Yang, Li; Zhang, Shunping; Zhang, Guozhu; Cai, Ziming

    2015-03-01

    Li doped ZnO (Zn1-xLixO) nanoparticles with different content were synthesized. X-ray photoelectron spectroscopy (XPS) indicated that the ratio of oxygen to zinc for ZnO increased with increasing of Li content from x = 0 to 0.2, which had been attributed to the introduction of oxygen interstitial by Li dopant. The sensing performance and the temperature-dependent conductivity were investigated. It is observed that Li doped ZnO showed higher sensitivity and selectivity compared to the undoped ZnO. The 0.1 Li doped ZnO performed the maximum responses of 71.5 and 40.2 for 100 ppm methanol and formaldehyde, respectively, at 350 °C. The research showed that the oxygen vacancies served as active sites which supported the oxygen adsorption and reaction, oxygen interstitials served as active sites to oxidize the reducing gases and produce electrons. The enhanced sensing performance of Li doped ZnO was attributed to the synergistic effect of oxygen interstitials and oxygen vacancies.

  4. Off-centered polarization and ferroelectric phase transition in Li-doped ZnO thin films grown by pulsed-laser ablation

    NASA Astrophysics Data System (ADS)

    Dhananjay, Nagaraju, J.; Krupanidhi, S. B.

    2007-05-01

    Li-doped ZnO (Zn1-xLixO, x=0.15) thin films have been grown on platinum-coated silicon substrates via pulsed-laser ablation. The films were grown at fixed substrate temperature of 500 °C and different partial pressure of oxygen (PO2˜100-300 mTorr). The films showed (002) preferred orientation. The doping concentration and built-in potential were estimated from the capacitance-voltage characteristics. In order to investigate the phase transition behavior of the films, dc conductivity and dielectric measurements were conducted. The phase transition temperature was found to be 330 K. The activation energy (dc) has been found to be 0.05 and 0.28 eV in ferroelectric and paraelectric phases, respectively. The Zn0.85Li015O thin films exhibited well-defined polarization hysteresis loop, with a remanent polarization of 0.2 μC/cm2 and coercive field of 25 kV/cm, at room temperature. The conduction mechanism of the laser ablated Zn0.85Li015O films was analyzed in the light of impedance spectroscopy.

  5. Ferromagnetism in Dilute Magnetic Semiconductors through Defect Engineering: Li-Doped ZnO

    NASA Astrophysics Data System (ADS)

    Yi, J. B.; Lim, C. C.; Xing, G. Z.; Fan, H. M.; van, L. H.; Huang, S. L.; Yang, K. S.; Huang, X. L.; Qin, X. B.; Wang, B. Y.; Wu, T.; Wang, L.; Zhang, H. T.; Gao, X. Y.; Liu, T.; Wee, A. T. S.; Feng, Y. P.; Ding, J.

    2010-04-01

    We demonstrate, both theoretically and experimentally, that cation vacancy can be the origin of ferromagnetism in intrinsic dilute magnetic semiconductors. The vacancies can be controlled to tune the ferromagnetism. Using Li-doped ZnO as an example, we found that while Li itself is nonmagnetic, it generates holes in ZnO, and its presence reduces the formation energy of Zn vacancy, and thereby stabilizes the zinc vacancy. Room temperature ferromagnetism with p type conduction was observed in pulsed laser deposited ZnO:Li films with certain doping concentration and oxygen partial pressure.

  6. Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO.

    PubMed

    Yi, J B; Lim, C C; Xing, G Z; Fan, H M; Van, L H; Huang, S L; Yang, K S; Huang, X L; Qin, X B; Wang, B Y; Wu, T; Wang, L; Zhang, H T; Gao, X Y; Liu, T; Wee, A T S; Feng, Y P; Ding, J

    2010-04-01

    We demonstrate, both theoretically and experimentally, that cation vacancy can be the origin of ferromagnetism in intrinsic dilute magnetic semiconductors. The vacancies can be controlled to tune the ferromagnetism. Using Li-doped ZnO as an example, we found that while Li itself is nonmagnetic, it generates holes in ZnO, and its presence reduces the formation energy of Zn vacancy, and thereby stabilizes the zinc vacancy. Room temperature ferromagnetism with p type conduction was observed in pulsed laser deposited ZnO:Li films with certain doping concentration and oxygen partial pressure. PMID:20481907

  7. Optical and electrical properties of p-type Li-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Sáaedi, Abdolhossein; Yousefi, Ramin; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Khorsand Zak, A.; Huang, Nay Ming

    2013-09-01

    Undoped and Li-doped ZnO nanowires were grown on Si(1 1 1) substrates using a thermal evaporation method. Undoped and Li-doped ZnO nanoparticles, which were prepared using a sol-gel method, were used as material sources to grow the undoped and Li-doped ZnO nanowires, respectively. X-ray diffraction patterns clearly indicated hexagonal structures for all of the products. The nanowires were completely straight, with non-aligned arrays, and were tapered. Field emission Auger spectrometer indicated lithium element in the nanowires structures. Photoluminescence (PL) studies showed lower optical properties for the Li-doped ZnO nanowires compared to the undoped ZnO nanowires. Furthermore, the UV peak of the Li-doped ZnO nanowires was red-shifted compared to the undoped ZnO nanowires. Two probe method results proved that the Li-doped ZnO nanowires exhibited p-type properties.

  8. Effect of Li doping on the magnetic properties of ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Rajamanickam, N.; Rajashabala, S.; Ramachandran, K.

    2013-06-01

    Zn1-xLixO (0 ≤ x ≥ 0.05) nanomaterials were synthesized by the solvothermal method and the influence of Li doping on the structural, optical, and magnetic properties was investigated. Morphological analysis by SEM revealed the formation of ZnO nanorods (NR) and Li-doped ZnO nanoparticles (NP), which indicate that doping of Li ions affects the morphology of ZnO. The magnetization curve of undoped ZnO indicates the co-existence of dia and antiferromagnetism, which changes to dia and ferrimagnetism with the addition of Li.

  9. Optical properties and surface morphology of Li-doped ZnO thin films deposited on different substrates by DC magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Mohamed, Galal A.; Mohamed, El-Maghraby; Abu El-Fadl, A.

    2001-12-01

    Thin films of zinc oxide doped with Zn 1- xLi xO with x=0.2 (ZnO : Li), have been prepared on sapphire, MgO and quartz substrates by DC magnetron sputtering method at 5 mTorr. The substrate temperatures were fixed to about 573 K. We have measured the transmission and reflection spectra and determined the absorption coefficient, optical band-gap ( Egdopt), the high frequency dielectric constant ε‧ ∞ and the carrier concentration N for the as-prepared films at room temperature. The films show direct allowed optical transitions with Egdopt values of 3.38, 3.43 and 3.29 eV for films deposited on sapphire, MgO and quartz substrates, respectively. The dependence of the obtained results on the substrate type are discussed.

  10. Annealing effect on conductivity behavior of Li-doped ZnO thin film and its application as ZnO-based homojunction device

    NASA Astrophysics Data System (ADS)

    Tsai, Shu-Yi; Hon, Min-Hsiung; Lu, Yang-Ming

    2011-07-01

    Transparent electronics is an advanced technology concerning the realization of invisible electronic circuits. The p-type doping in ZnO wide band gap semiconductor has been a challenge for research for many years. In this work, Lithium-doped ZnO films were deposited by the RF magnetron sputtering method. The influence of post-annealing temperature on the electrical, structural and optical properties of ZnO:Li films were investigated. The results show that the ZnO:Li films show (0 0 2) preferred orientation and high average transmittance about 85% in the visible region after annealing temperature of about 550 °C. The optimal p-type conduction of ZnO:Li film is achieved at the post-annealing temperature of 450 °C with a resistivity of 0.22 Ω cm, hole carrier concentration of 2.47×10 18 cm -3 and mobility of 0.22 cm 2/V s. Finally, p-n homojunction based on transparent semiconducting oxides is fabricated.

  11. Study of multiple phonon behavior in Li-doped ZnO thin films fabricated using the sol-gel spin-coating technique

    NASA Astrophysics Data System (ADS)

    Kalyanaraman, Subramanian; Vettumperumal, Rajapandi; Thangavel, Rajalingam

    2013-03-01

    Undoped and lithium-doped zinc oxide (ZnO) thin films have been deposited on sapphire substrates (0001) using the sol-gel method. The effect of doping with various percentages of Li at a particular annealing temperature of 600 °C is studied. The samples are characterized using Xray diffraction (XRD), scanning electron microscopy (SEM), micro-photoluminescence (µ-PL) and Raman and polarized Raman (PR) spectroscopy. The X-ray diffraction and micro-Raman spectroscopy confirm the presence of lithium substitution for zinc. The wurtzite structure of the lattice is retained, and five multiple phonon Raman modes are observed. The values of the depolarization ratios are calculated from polarized Raman data. Photoluminescence shows a strong emission peak in the near UV at 3.276 eV and negligible visible emission. The PL peak positions in the doped samples nearly coincide with each other, suggesting very similar recombination mechanisms in the nanocrystals.

  12. Control of point defects and grain boundaries in advanced materials. Optical properties and diffusion induced by Li doping in ZnO

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tsubasa; Sakaguchi, Isao; Matsunaga, Katsuyuki; Yamamoto, Takahisa; Haneda, Hajime; Ikuhara, Yuichi

    2005-05-01

    Nickel diffusion in non-doped and Li-doped polycrystalline ZnO was studied to investigate the dominant lattice defect introduced by the reaction of incorporated Li. Li-doped ZnO exhibited new emission at 393 nm. Li doping increased the Ni lattice diffusion coefficients in ZnO, but its effect on Ni grain boundary diffusion was very small. These results can be understood as Li incorporation in the ZnO lattice.

  13. Dielectric anomaly in Li-doped zinc oxide thin films grown by sol gel route

    NASA Astrophysics Data System (ADS)

    Dhananjay; Singh, Satyendra; Nagaraju, J.; Krupanidhi, S. B.

    2007-08-01

    Sol gel route was employed to grow polycrystalline thin films of Li-doped ZnO thin films (Zn1-xLixO, x=0.15). Polycrystalline films were obtained at a growth temperature of 400 500 °C. Ferroelectricity in Zn0.85Li0.15O was verified by examining the temperature variation of the real and imaginary parts of dielectric constant, and from the C V measurements. The phase transition temperature was found to be 330 K. The room-temperature dielectric constant and dissipation factor were 15.5 and 0.09 respectively, at a frequency of 100 kHz. The films exhibited well-defined hysteresis loop, and the values of spontaneous polarization (Ps) and coercive field were 0.15 μC/cm2 and 20 kV/cm, respectively, confirming the presence of ferroelectricity.

  14. Control of Li configuration and electrical properties of Li-doped ZnO

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Knutsen, K. E.; Merz, T.; Kuznetsov, A. Yu; Svensson, B. G.; Brillson, L. J.

    2012-09-01

    Li-doped ZnO after different thermal treatments was characterized by depth-resolved cathodoluminescence spectroscopy (DRCLS), secondary ion mass spectrometry, surface photovoltage spectroscopy (SPS), coupled with other surface science techniques. It is found that the Li configuration and electrical properties of Li-doped ZnO could be controlled by different thermal processes. Within a 500-600 °C annealing temperature range, subsequent quenching of ZnO leaves Li as interstitial donors, resulting in n-type low room temperature resistivity. In contrast, slower cooling in air enables these interstitials to fill Zn vacancies, forming Li acceptors 3.0 eV below the conduction band edge. Emergence of this acceptor and the resultant resistivity increase agree with the calculated diffusion lengths based on published diffusion coefficients. In general, these acceptors are compensated by residual intrinsic and extrinsic donors, resulting in a semi-insulating material. DRCL spectra exhibit a 3.0 eV optical signature of the LiZn acceptor and its depth distribution in slow-cooled ZnO. A 3.0 eV SPS absorption feature corresponding to a conduction band-to-acceptor level transition confirms this acceptor assignment. Nanoscale SPS spectra reveal p-type band bending localized near ZnO surface nano-mounds, where VZn and LiZn acceptor densities increase. The slow-cooled and quenched Li-doped ZnO spectra display an inverse relationship between the optical emission densities of lithium on zinc versus zinc vacancy sites, demonstrating the time dependence of Li interstitial diffusion to reach zinc vacancies and form substitutional Li acceptors.

  15. Direct observation of Li diffusion in Li-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Li, Guohua; Yu, Lei; Hudak, Bethany M.; Chang, Yao-Jen; Baek, Hyeonjun; Sundararajan, Abhishek; Strachan, Douglas R.; Yi, Gyu-Chul; Guiton, Beth S.

    2016-05-01

    The direct observation of Li diffusion in Li-doped zinc oxide nanowires (NWs) was realized by using in situ heating in the scanning transmission electron microscope (STEM). A continuous increase of low atomic mass regions within a single NW was observed between 200 °C and 600 °C when heated in vacuum, which was explained by the conversion of interstitial to substitutional Li in the ZnO NW host lattice. A kick-out mechanism is introduced to explain the migration and conversion of the interstitial Li (Lii) to Zn-site substitutional Li (LiZn), and this mechanism is verified with low-temperature (11 K) photoluminescence measurements on as-grown and annealed Li-doped zinc oxide NWs, as well as the observation of an increase of NW surface roughing with applied bias.

  16. The mechanism of formation and properties of Li-doped p-type ZnO grown by a two-step heat treatment

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Yao, B.; Zhang, Z. Z.; Li, B. H.; Wei, Z. P.; Shen, D. Z.; Lu, Y. M.; Fan, X. W.

    2006-04-01

    Li-doped p-type ZnO was fabricated by heat treatment of Zn-Li alloy film with 2 at% Li on a quartz substrate in N2 flow at 500 °C for 2 h, and then in O2 flow at 700 °C for 1 h. The room-temperature resistivity was measured to be 678.34 Ω cm with a Hall mobility of 1.03 cm2 V-1 s-1 and a carrier concentration of 8.934 × 1015 cm-3. Three emission peaks centred at 3.347, 3.302 and 3.234 eV are observed in the photoluminescence spectrum measured at 12 K and are due to neutral acceptor-bound exciton emission, conduction band to acceptor level transition and donor-acceptor pair recombination emission, respectively. The p-type conduction of the Li-doped ZnO may be attributed to the formation of a LiZn-N complex acceptor. The optical level of the acceptor is estimated to be about 137 meV. The mechanism of formation of the Li-doped p-type ZnO is discussed in the present work.

  17. Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping

    PubMed Central

    2014-01-01

    Undoped ZnO, Ce-doped ZnO, and (Li, Ce)-codoped ZnO nanophosphors were prepared by a sol-gel process. The effects of the additional doping with Li ions on the crystal structure, particle morphology, and luminescence properties of Ce-doped ZnO were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy and photoluminescence spectroscopy. The results indicate that the obtained samples are single phase, and a nanorod shaped morphology is observed for (Li, Ce)-codoping. Under excitation with 325 nm light, Ce-doped ZnO phosphors show an ultraviolet emission, a green emission, and a blue emission caused by Zn interstitials. The spectrum of the sample codoped with a proper Li concentration features two additional emissions that can be attributed to the Ce3+ ions. With the increase of the Li doping concentration, the Ce3+ blue luminescence of (Li, Ce)-codoped ZnO is obviously enhanced, which results not only from the increase of the Ce3+ ion concentration itself but also from the energy transfer from the ZnO host material to the Ce3+ ions. This enhancement reaches a maximum at a Li content of 0.02, and then decreases sharply due to the concentration quench. These nanophosphors may promise for application to the visible-light-emitting devices. PACS 78.55.Et; 81.07.Wx; 81.20.Fw PMID:25258604

  18. Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Rauch, C.; Gehlhoff, W.; Wagner, M. R.; Malguth, E.; Callsen, G.; Kirste, R.; Salameh, B.; Hoffmann, A.; Polarz, S.; Aksu, Y.; Driess, M.

    2010-01-01

    We study the existence of Li-related shallow and deep acceptor levels in Li-doped ZnO nanocrystals using electron paramagnetic resonance (EPR) and photoluminescence (PL) spectroscopy. ZnO nanocrystals with adjustable Li concentrations between 0% and 12% have been prepared using organometallic precursors and show a significant lowering of the Fermi energy upon doping. The deep Li acceptor with an acceptor energy of 800 meV could be identified in both EPR and PL measurements and is responsible for the yellow luminescence at 2.2 eV. Additionally, a shallow acceptor state at 150 meV above the valence band maximum is made responsible for the observed donor-acceptor pair and free electron-acceptor transitions at 3.235 and 3.301 eV, possibly stemming from the formation of Li-related defect complexes acting as acceptors.

  19. Thermal process dependence of Li configuration and electrical properties of Li-doped ZnO

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Knutsen, K. E.; Merz, T.; Kuznetsov, A. Yu.; Svensson, B. G.; Brillson, L. J.

    2012-01-01

    We used depth-resolved cathodoluminescence spectroscopy (DRCLS) to describe the strong dependence of Li acceptor formation on thermal treatment in Li-doped ZnO. Within a 500-600 °C annealing temperature range, subsequent quenching ZnO leaves Li as interstitial donors, resulting in low room temperature resistivity, while slow cooling in air allows these interstitials to fill Zn vacancies forming Li acceptors 3.0 eV below the conduction band edge. DRCLS reveals an inverse relationship between the optical emission densities of lithium on zinc sites versus zinc vacancy sites, demonstrating the time dependence of Li interstitials to combine with zinc vacancies in order to form substitutional Li acceptors.

  20. Defects Energetics and Electronic Properties of Li Doped ZnO: A Hybrid Hartree-Fock and Density Functional Study

    NASA Astrophysics Data System (ADS)

    Sun, Xu; Gu, You-song; Wang, Xue-qiang; Zhang, Yue

    2012-06-01

    The electronic properties and stability of Li-doped ZnO with various defects have been studied by calculating the electronic structures and defect formation energies via first-principles calculations using hybrid Hartree-Fock and density functional methods. The results from formation energy calculations show that Li pair complexes have the lowest formation energy in most circumstances and they consume most of the Li content in Li doped ZnO, which make the p-type conductance hard to obtain. The formation of Li pair complexes is the main obstacle to realize p-type conductance in Li doped ZnO. However, the formation energy of LiZn decreases as environment changes from Zn-rich to O-rich and becomes more stable than that of Li-pair complexes at highly O-rich environment. Therefore, p-type conductance can be obtained by Li doped ZnO grown or post annealed in oxygen rich atmosphere.

  1. Room-temperature ferromagnetism in Li-doped p -type luminescent ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Chawla, Santa; Jayanthi, K.; Kotnala, R. K.

    2009-03-01

    We have observed ferromagnetism in Li-doped ZnO nanorods with Curie temperature up to 554 K. Li forms shallow acceptor states in substitutional zinc sites giving rise to p -type conductivity. An explicit correlation emerges between increase in hole concentration with decrease in magnetization and Curie temperature in ZnO:Li. Occurrence of ferromagnetism at room temperature has been established with observed magnetic domain formation in ZnO:Li pellets in magnetic force microscopy and prominent ferromagnetic resonance signal in electron paramagnetic resonance spectrum. Magnetic ZnO:Li nanorods are luminescent, showing strong near UV emission. Substitutional Li atoms can induce local moments on neighboring oxygen atoms, which when considered in a correlated model for oxygen orbitals with random potentials introduced by dopant atom could explain the observed ferromagnetism and high Curie temperature in ZnO:Li nanorods.

  2. Properties of Li-Doped NiO Thin Films Prepared by RF-Magnetron Sputtering.

    PubMed

    Kwon, Ho-Beom; Han, Joo-Hwan; Lee, Hee Young; Lee, Jai-Yeoul

    2016-02-01

    Li-doped NiO thin films were deposited on glass and c-axis (0001) sapphire single crystal substrates by radio frequency (RF)-niagnetron sputtering. The effects of the type of substrate, substrate temperature and atmosphere on the structural, electrical and optical properties of the NiO thin films were examined. The electrical conductivity of the NiO thin films depends on the type of substrate, substrate temperature and oxygen atmosphere. The electrical conductivity of the thin films on the glass and sapphire substrates was improved by the introduction of oxygen and decreased with increasing substrate temperature. The optical transmittance decreased with the introduction of oxygen and increased with increasing substrate temperature. PMID:27433612

  3. Photoluminescence Analysis of Energy Level on Li-Doped ZnO Nanowires Grown by a Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Hyo Lee, Sang; Lee, Jun Seok; Ko, Won Bae; Inn Sohn, Jung; Cha, Seung Nam; Kim, Jong Min; Park, Young Jun; Hong, Jin Pyo

    2012-09-01

    The optical and structural properties of Li-doped ZnO nanowires grown by a hydrothermal method are reported herein. The low-temperature and temperature-dependent photoluminescence spectra clearly exhibited emission peaks that confirmed the presence of a lithium impurity as an acceptor dopant. Particularly, the acceptor energy level of the Li dopant was estimated to be 121 meV from the PL spectra. This value was also indicated from an Arrhenius plot of the integrated PL intensity of the A°X emission as a function of temperature. These results are in agreement with theoretical and experimental results of previously considered p-type dopants reported in other studies.

  4. Photoluminescence Analysis of Energy Level on Li-Doped ZnO Nanowires Grown by a Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hyo; Lee, Jun Seok; Ko, Won Bae; Sohn, Jung Inn; Cha, Seung Nam; Kim, Jong Min; Park, Young Jun; Hong, Jin Pyo

    2012-09-01

    The optical and structural properties of Li-doped ZnO nanowires grown by a hydrothermal method are reported herein. The low-temperature and temperature-dependent photoluminescence spectra clearly exhibited emission peaks that confirmed the presence of a lithium impurity as an acceptor dopant. Particularly, the acceptor energy level of the Li dopant was estimated to be 121 meV from the PL spectra. This value was also indicated from an Arrhenius plot of the integrated PL intensity of the A\\circX emission as a function of temperature. These results are in agreement with theoretical and experimental results of previously considered p-type dopants reported in other studies.

  5. Micro-patterned ZnO semiconductors for high performance thin film transistors via chemical imprinting with a PDMS stamp.

    PubMed

    Seong, Kieun; Kim, Kyongjun; Park, Si Yun; Kim, Youn Sang

    2013-04-01

    Chemical imprinting was conducted on ZnO semiconductor films via a chemical reaction at the contact regions between a micro-patterned PDMS stamp and ZnO films. In addition, we applied the chemical imprinting on Li doped ZnO thin films for high performance TFTs fabrication. The representative micro-patterned Li doped ZnO TFTs showed a field effect mobility of 4.2 cm(2) V(-1) s(-1) after sintering at 300 °C. PMID:23439918

  6. Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles

    SciTech Connect

    Awan, Saif Ullah E-mail: ullahphy@gmail.com; Hasanain, S. K.; Anjum, D. H.; Awan, M. S.; Shah, Saqlain A.

    2014-10-28

    Memory and switching devices acquired new materials which exhibit ferroelectric and ferromagnetic order simultaneously. We reported multiferroic behavior in Zn{sub 1−y}Li{sub y}O(0.00≤y≤0.10) nanoparticles. The analysis of transmission electron micrographs confirmed the hexagonal morphology and wurtzite crystalline structure. We investigated p-type conductivity in doped samples and measured hole carriers in range 2.4 × 10{sup 17}/cc to 7.3 × 10{sup 17}/cc for different Li contents. We found that hole carriers are responsible for long range order ferromagnetic coupling in Li doped samples. Room temperature ferroelectric hysteresis loops were observed in 8% and 10% Li doped samples. We demonstrated ferroelectric coercivity (remnant polarization) 2.5 kV/cm (0.11 μC/cm{sup 2}) and 2.8 kV/cm (0.15 μC/cm{sup 2}) for y = 0.08 and y = 0.10 samples. We propose that the mechanism of Li induced ferroelectricity in ZnO is due to indirect dipole interaction via hole carriers. We investigated that if the sample has hole carriers ≥5.3 × 10{sup 17}/cc, they can mediate the ferroelectricity. Ferroelectric and ferromagnetic measurements showed that higher electric polarization and larger magnetic moment is attained when the hole concentration is larger and vice versa. Our results confirmed the hole dependent coexistence of ferromagnetic and ferroelectric behavior at room temperature, which provide potential applications for switchable and memory devices.

  7. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    PubMed

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy. PMID:24205635

  8. Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li

    NASA Astrophysics Data System (ADS)

    Ullah Awan, Saif; Hasanain, S. K.; Bertino, Massimo F.; Hassnain Jaffari, G.

    2012-11-01

    ZnO nanoparticles doped with Li (Zn1-yLiyO, y ≤ 0.1) have been investigated with emphasis on the correlation between their magnetic, electronic, and structural properties. In particular, defects such as interstitial Li and Zn atoms, substitutional Li atoms, and oxygen vacancies have been identified by X-ray photoelectron spectroscopy (XPS) and their respective roles in stabilization of the magnetic moment are discussed. X-ray diffraction (XRD) and XPS give clear evidence of Li presence at both substitutional and interstitial sites. XPS studies further show that the amount of substitutional Li defects (Lizn) and interstitial Li defects (Lii) vary non-monotonically with the Li concentration, with the Lii defects being noticeably high for the y = 0.02, 0.08, and 0.10 concentrations, in agreement with the XRD results. Magnetization studies show room temperature ferromagnetism in these nanoparticles with the moment being largest for the particles with high concentration of interstitial lithium and vice versa. Both interstitial Zn (Zni) defects and Zn-O bonds were determined from the Zn LMM Auger peaks; however, the variation of these with Li concentrations was not large. Oxygen vacancies (Vo) concentrations are estimated to be relatively constant over the entire Li concentration range. We relate the Lii and Zni defects to the formation and stabilization of Zn vacancies and thus stabilizing the p-type ferromagnetism predicted for cation (zinc) vacancy in the ZnO type oxides.

  9. Realization of p-type ZnO films via monodoping of Li acceptor

    NASA Astrophysics Data System (ADS)

    Zeng, Yu-Jia; Ye, Zhi-Zhen; Xu, Wei-Zhong; Chen, Lan-Lan; Li, Dan-Ying; Zhu, Li-Ping; Zhao, Bing-Hui; Hu, Ying-Lin

    2005-09-01

    p-Type ZnO thin films have been realized via monodoping of Li acceptor by adopting DC reactive magnetron sputtering. The lowest room-temperature resistivity was found to be 17.6 Ω cm with a Hall mobility of 3.47 cm2 V-1 s-1 and carrier concentration of 1.01×1017 cm-3 for Li-doped p-type ZnO film deposited on glass substrate. The Li-doped ZnO film possessed a good crystallinity with c-axis orientation and a high transmittance (90%) in the visible region. Moreover, the effects of Li content on the crystallinity, electrical and optical properties of p-type ZnO films were discussed.

  10. Electrical properties of undoped and Li-doped NiO thin films deposited by RF sputtering without intentional heating

    NASA Astrophysics Data System (ADS)

    Sugiyama, Mutsumi; Nakai, Hiroshi; Sugimoto, Gaku; Yamada, Aika; Chichibu, Shigefusa F.

    2016-08-01

    The fundamental transmittance and electrical properties of undoped and Li-doped NiO thin films deposited by conventional RF sputtering without intentional heating were evaluated. Both the transmittance and resistivity of undoped and Li-doped NiO decreased with increasing O2 fraction in the sputtering gas, f(O2) = O2/(Ar + O2). The result is attributed to the increase in the concentration of acceptors of Ni vacancies (VNi) under oxygen-rich growth conditions. In addition to VNi, Li atom on the Ni site (LiNi) likely acts as a shallow accepter, which can explain the experimental finding that the carrier concentration of Li-doped NiO was approximately three orders of magnitude higher than that of the undoped case deposited under the same f(O2). The mobility of NiO was remarkably low (around 0.1–1.0 cm2 V‑1 s‑1) and almost independent of f(O2) or the amount of doping, reflecting the large hole effective mass.

  11. Ab-initio studies on Li doping, Li-pairs, and complexes between Li and intrinsic defects in ZnO

    NASA Astrophysics Data System (ADS)

    Vidya, R.; Ravindran, P.; Fjellvâg, H.

    2012-06-01

    First-principles density functional calculations have been performed on Li-doped ZnO using all-electron projector augmented plane wave method. Li was considered at six different interstitial sites (Lii), including anti-bonding and bond-center sites and also in substitutional sites such as at Zn-site (Lizn) and at oxygen site (Lio) in the ZnO matrix. Stability of LiZn over Lii is shown to depend on synthetic condition, viz., LiZn is found to be more stable than Lii under O-rich conditions. Hybrid density functional calculations performed on LiZn indicate that it is a deep acceptor with (0/-) transition taking place at 0.74 eV above valence band maximum. The local vibrational frequencies for Li-dopants are calculated and compared with reported values. In addition, we considered the formation of Li-pair complexes and their role on electronic properties of ZnO. Present study suggests that at extreme oxygen-rich synthesis condition, a pair of acceptor type LiZn-complex is found to be stable over the compensating Lii + LiZn pair. The stability of complexes formed between Li impurities and various intrinsic defects is also investigated and their role on electronic properties of ZnO has been analyzed. We have shown that a complex between LiZn and oxygen vacancy has less formation energy and donor-type character and could compensate the holes generated by Li-doping in ZnO.

  12. Influence of Li-doping on structural characteristics and photocatalytic activity of ZnO nano-powder formed in a novel solution pyro-hydrolysis route

    NASA Astrophysics Data System (ADS)

    Ganesh, Ibram; Sekhar, P. S. Chandra; Padmanabham, G.; Sundararajan, G.

    2012-10-01

    Different types of Li-doped ZnO (LDZ) (Li = 0-10 wt.%) powders were prepared by following a novel pyro-hydrolysis route at 450 °C, and were thoroughly characterized by means of thermo-gravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), Fourier-transform Raman (FT-Raman) spectroscopy, diffuse reflectance spectroscopy (DRS), ultra-violet visible (UV-Vis) spectroscopy, Brunauer-Emmett-Teller (BET) surface area (SA), and zeta potential (ζ) measurements. Photocatalytic activity of these powders was evaluated by means of methylene blue (MB) degradation experiments conducted under the irradiation of simulated and natural solar light. Characterization results suggest that both pure ZnO and LDZ powders are quite thermally stable up to a temperature of 700 °C and possess band gap (BG) energies in the range of 3.16-3.2 eV with a direct band to band transition and ζ values of -31.6 mV to -56.4 mV. The properties exhibited by LDZ powders were found to be quite comparable to those exhibited by p-type semi-conducting LDZ powders. In order to study the kinetics of MB degradation reaction under the irradiation of simulated solar light, the Li (0.2-10 wt.%) and Al (0.5 wt.%) co-doped ZnO (0.2LADZ to 10LADZ) powders were also synthesized and employed for this purpose. The photocatalytic degradation of MB over LADZ catalysts followed the Langmuir-Hinshelwood (L-H) first order reaction rate relationship. The 10LDZ catalyst exhibited highest photocatalytic activity among various powders investigated in this study.

  13. Raman and photoluminescence spectroscopic detection of surface-bound Li(+)O2(-) defect sites in Li-doped ZnO nanocrystals derived from molecular precursors.

    PubMed

    Kirste, Ronny; Aksu, Yilmaz; Wagner, Markus R; Khachadorian, Sevak; Jana, Surajit; Driess, Matthias; Thomsen, Christian; Hoffmann, Axel

    2011-04-18

    We present a detailed study of Raman spectroscopy and photoluminescence measurements on Li-doped ZnO nanocrystals with varying lithium concentrations. The samples were prepared starting from molecular precursors at low temperature. The Raman spectra revealed several sharp lines in the range of 100-200 cm(-1), which are attributed to acoustical phonons. In the high-energy range two peaks were observed at 735 cm(-1) and 1090 cm(-1). Excitation-dependent Raman spectroscopy of the 1090 cm(-1) mode revealed resonance enhancement at excitation energies around 2.2 eV. This energy coincides with an emission band in the photoluminescence spectra. The emission is attributed to the deep lithium acceptor and intrinsic point defects such as oxygen vacancies. Based on the combined Raman and PL results, we introduce a model of surface-bound LiO(2) defect sites, that is, the presence of Li(+)O(2)(-) superoxide. Accordingly, the observed Raman peaks at 735 cm(-1) and 1090 cm(-1) are assigned to Li-O and O-O vibrations of LiO(2). PMID:21433242

  14. Electrical stability enhancement of GeInGaO thin-film transistors by solution-processed Li-doped yttrium oxide passivation

    NASA Astrophysics Data System (ADS)

    Choi, U. H.; Yoon, S.; Yoon, D. H.; Tak, Y. J.; Kim, Y.-G.; Ahn, B. D.; Park, J.; Kim, H. J.

    2016-07-01

    In this study, we investigated a method of enhancing the electrical stability of GeInGaO thin-film transistors (TFTs) using a Li-doped Y2O3 (YO) passivation layer (PVL). Li reduced metal hydroxide groups in the PVL, and diffused into the channel layer and reduced the oxygen vacancy at the top surface of the channel layer, which is the origin of the defect state and electrical instability. In addition, the negative-bias temperature stress (NBTS) for 3600 s improved for Li-doped YO (LYO) PVL. The threshold voltage shift decreased from  ‑10.3 V for the YO PVL to  ‑4.8 V for the LYO PVL, a 54% improvement.

  15. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.

    PubMed

    Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S

    2013-09-25

    Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties. PMID:23988792

  16. 200 MeV Ag15+ ion beam irradiation effects on spray deposited 5 wt% `Li' doped V2O5 thin film

    NASA Astrophysics Data System (ADS)

    Kovendhan, M.; Joseph, D. Paul; Manimuthu, P.; Sendilkumar, A.; Asokan, K.; Venkateswaran, C.; Mohan, R.

    2016-05-01

    Lithium 5 wt% doped V2O5 thin film was deposited onto ITO substrate by spray pyrolysis technique. The substrate temperature was kept at 450 °C. 200 MeV Ag15+ ion beams at a fluence of 5×1012 ions/cm2 was irradiated on 5 wt% `Li' doped V2O5 film of thickness 1367 nm. The XRD pattern confirms that the pristine film is non stoichiometry with orthorhombic structure and upon irradiation the crystallinity decreased and an obvious textured growth along (020) plane is induced. Raman peak observed at 917 cm-1 is due to oxygen deficiency. Upon irradiation, the optical transparency and band gap of the film decreased. Electrical transport property study shows that the resistivity increased by one order for the irradiated film.

  17. Preparation and electrochromic properties of Li-doped MoO 3 films fabricated by the peroxo sol-gel process

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhi; Kuai, Sulan; Wang, Zhongchun; Hu, Xingfang

    2000-09-01

    Molybdenum oxide (MoO 3) films were prepared by the sol-gel process, using a lithium-doped peroxo-polymolybdate precursor solution. The highest quality films were obtained from precursor solutions containing 10% lithium. The structural properties of the films were characterized by TG-DTA and FTIR. The electrochemical and electrochromic properties were measured by cyclic voltammetry and an in-situ transmittance technique in 1 M LiClO 4/propylene carbonate electrolyte. The results show that the Li-doped MoO 3 films possess excellent electrochemical stability and reversibility, a remarkable change of transmittance (Δ T=32.3%) in visible region after coloration, and good electrochromic performance.

  18. Structural and Luminescence Features of Lithium-Doped p-Type Film-Like ZnO Nanorods.

    PubMed

    Ko, Wonbae; Lee, Sanghyo; Hong, Jin Pyo

    2015-11-01

    We report the structural and optical characteristics of p-type lithium (Li)-doped ZnO film-like nano-structures prepared by utilizing a simple hydro-thermal method in an aqueous solution at a low temperature (< 90 degrees C). The diameters and densities of the Li-doped ZnO nanostructures were controlled by adjusting the molar concentration. A relatively high molar concentration resulted in hexagonal and flat surface-shaped ZnO nanostructures. In addition, a post-annealing process in the range of 400 to 600 degrees C effectively leads to the incorporation of lithium dopant as an acceptor, resulting in optical p-type behavior. The p-type features of synthesized Li-doped ZnO nanostructures were analyzed using a photoluminescence measurement using a He-Cd laser as an excitation source at 10 K. Closer investigation of the fine donor- and acceptor-bound exciton emission peaks from the low temperature PL spectra revealed the occurrence of several peaks related to free excitons (FX), excitons bound to acceptor (A(0)X), free electron to the acceptor transition peak (FA), and its LO phonon replicas. PMID:26726574

  19. Pulsed-laser deposition of inclined ZnO, of GaPO4 and of novel composite thin films

    NASA Astrophysics Data System (ADS)

    Pedarnig, J. D.; Peruzzi, M.; Vrejoiu, I.; Matei, D. G.; Dinescu, M.; Bäuerle, D.

    2005-07-01

    Pulsed-laser deposition of different novel thin film materials is reported. Pure ZnO, Al-doped and Li-doped ZnO thin films and double-layers with inclined crystal orientation and very strong texture were achieved. The inclined ZnO heterostructures consisted of pure and doped layers of strongly different electrical resistivity. Polycrystalline GaPO4 thin films were grown by F2-laser ablation of ceramic GaPO4. Layers of a novel composite material were produced from BaTiO3/polytetrafluoroethylene mixed targets. The composite films revealed a giant dielectric permittivity, ɛr’≤ 15000, and a strong dependence of permittivity on the thickness of the layers.

  20. Atomic disorder of Li0.5Ni0.5O thin films caused by Li doping: estimation from X-ray Debye–Waller factors

    PubMed Central

    Yang, Anli; Sakata, Osami; Yamauchi, Ryosuke; Kumara, L. S. R.; Song, Chulho; Katsuya, Yoshio; Matsuda, Akifumi; Yoshimoto, Mamoru

    2015-01-01

    Cubic type room-temperature (RT) epitaxial Li0.5Ni0.5O and NiO thin films with [111] orientation grown on ultra-smooth sapphire (0001) substrates were examined using synchrotron-based thin-film X-ray diffraction. The 11 and 22 rocking curves including six respective equivalent reflections of the Li0.5Ni0.5O and NiO thin films were recorded. The RT B 1 factor, which appears in the Debye–Waller factor, of a cubic Li0.5Ni0.5O thin film was estimated to be 1.8 (4) Å2 from its 11 and 22 reflections, even though the Debye model was originally derived on the basis of one cubic element. The corresponding Debye temperature is 281 (39) K. Furthermore, the B 2 factor in the pseudo-Debye–Waller factor is proposed. This parameter, which is evaluated using one reflection, was also determined for the Li0.5Ni0.5O thin film by treating Li0.5Ni0.5O and NiO as ideal NaCl crystal structures. A structural parameter for the atomic disorder is introduced and evaluated. This parameter includes the combined effects of thermal vibration, interstitial atoms and defects caused by Li doping using the two Debye–Waller factors. PMID:26664345

  1. Dopant source choice for formation of p-type ZnO: Li acceptor

    NASA Astrophysics Data System (ADS)

    Zeng, Y. J.; Ye, Z. Z.; Xu, W. Z.; Li, D. Y.; Lu, J. G.; Zhu, L. P.; Zhao, B. H.

    2006-02-01

    Li-doped, p-type ZnO thin films have been realized via dc reactive magnetron sputtering. An optimized result with a resistivity of 16.4Ωcm, Hall mobility of 2.65cm2/Vs, and hole concentration of 1.44×1017cm-3 was achieved, and electrically stable over a month. Hall-effect measurements supported by secondary ion mass spectroscopy indicated that the substrate temperature played a key role in optimizing the p-type conduction of Li-doped ZnO thin films. Furthermore, ZnO-based p-n homojunction was fabricated by deposition of a Li-doped p-type ZnO layer on an Al-doped n-type ZnO layer.

  2. Homoepitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  3. Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method

    PubMed Central

    2013-01-01

    The lithium-doped nickel oxide (L-NiO) films were synthetized using the modified spray pyrolysis method with a two-step grown process. By observing the spectra of X-ray photoemission spectroscopy of L-NiO films, the intensity of Ni 2p3/2 peak of Ni3+ bonding state increases with increasing Li concentration that causes the decrease of transparency and resistivity. The L-NiO films with optimum characteristics were obtained at Li = 8 at%, where a p-type resistivity of 4.1 × 10−1 Ω cm and optical transparency above 76% in the visible region are achieved. PMID:23331663

  4. Ferroelectricity in Li-Doped ZnO:X Thin Films and their Application in Optical Switching Devices

    NASA Astrophysics Data System (ADS)

    Nagata, Takahiro; Shimura, Tamaki; Nakano, Yoshiyuki; Ashida, Atsushi; Fujimura, Norifumi; Ito, Taichiro

    2001-09-01

    We have proposed the application of ZnO:X (X=Li,Ni,Al etc.) films in monolithic optical integrated circuits (OICs). 1 To realize the optical switching device, dielectric properties of ZnO:Li deposited on SiO2/p-Si were evaluated in detail. From the results of the frequency dependence of the dielectric permittivity and the loss, and the temperature dependence of ac conductivity at various frequencies, the existence of mobile Li ion was confirmed. The pulsed C-V measurements 2 revealed that not only the mobile Li ion but also the ferroelectricity of ZnO:Li contributed to the hysteresis in the normal C-V behavior. To determine the processes assumed to occur in the switching device structure, a prototype of the waveguide structure was fabricated. Although the relationship between the refractive indices of the core and clad layers satisfied the required condition for propagation, several processes such as interdiffusion of doped ions, band alignment and/or rearrangement of space charge when applying the bias voltage were also revealed.

  5. ZnO nanolasers on graphene films

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Park, Jun Beom; Park, Jong-woo; Hyun, Jerome K.; Yoon, Hosang; Oh, Hongseok; Yoon, Jiyoung

    2016-06-01

    We grew and characterized zinc oxide (ZnO) nanolasers on graphene films. By using graphene as a growth medium, we were able to prepare position-controlled and vertically aligned ZnO nanotube lasers. The ZnO nanolasers grown on graphene films showed good optical characteristics, evidenced by a low lasing threshold. Furthermore, the nanolaser/graphene system was easily lifted off the original substrate and transferred onto foreign substrates. The lasing performance was observed to be significantly enhanced by depositing a layer of silver on the back of the graphene film during this transfer process, which was quantitatively investigated using finite-difference time-domain simulations. Due to the wide selection of substrates enabled by the use of graphene films, our results suggest promising strategies for preparing practical nanolasers with improved performance.

  6. Li—N dual-doped ZnO thin films prepared by an ion beam enhanced deposition method

    NASA Astrophysics Data System (ADS)

    Xie, Jian-Sheng; Chen, Qiang

    2014-09-01

    Li—N dual-doped ZnO films [ZnO:(Li,N)] with Li doping concentrations of 3 at.%-5 at.% were grown on a glass substrate using an ion beam enhanced deposition (IBED) method. An optimal p-type ZnO:(Li,N) film with the resistivity of 11.4 Ω·cm was obtained by doping 4 at.% of Li and 5 sccm flow ratio of N2. The ZnO:(Li,N) films exhibited a wurtzite structure and good transmittance in the visible region. The p-type conductive mechanism of ZnO:(Li,N) films are attributed to the Li substitute Zn site (LiZn) acceptor. N doping in ZnO can forms the Lii—NO complex, which depresses the compensation of Li occupy interstitial site (Lii) donors for LiZn acceptor and helps to achieve p-type ZnO:(Li,N) films. Room temperature photoluminescence measurements indicate that the UV peak (381 nm) is due to the shallow acceptors LiZn in the p-type ZnO:(Li,N) films. The band gap of the ZnO:(Li,N) films has a red-shift after p-type doping.

  7. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of ˜20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  8. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  9. Synthesis and characterization of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Anilkumar T., S.; Girija M., L.; Venkatesh, J.

    2016-05-01

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivity of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.

  10. Substrate Preparations in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.

    2000-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. Annealing-temperature dependence of ZnO substrates was studied. ZnO films grown on sapphire substrates have also been investigated for comparison purposes and the annealing temperature of A1203 substrates is 1000 C. Substrates and films were characterized using photoluminescence (PL) spectrum, x-ray diffraction, atomic force microscope, energy dispersive spectrum, and electric transport measurements. It has been found that the ZnO film properties were different when films were grown on the two polarity surfaces of ZnO substrates and the A1203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of homoepitaxial ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  11. Improved optical and electrical properties of 200 MeV Ag{sup 15+} irradiated 3 wt% 'Li' doped MoO{sub 3} thin film

    SciTech Connect

    Kovendhan, M.; Mohan, R.; Joseph, D. Paul; Manimuthu, P.; Venkateswaran, C.; Sambasivam, S.; Singh, J. P.; Asokan, K.

    2013-02-05

    The lithium (3 wt%) doped MoO{sub 3} thin film was prepared by spray deposition onto ITO substrate at 325 Degree-Sign C. The film of thickness 577 nm was irradiated with 200 MeV Ag{sup 15+} ion beams at a fluence of 5 Multiplication-Sign 10{sup 12} ions/cm{sup 2}. The XRD pattern confirmed that the pristine film is polycrystalline with orthorhombic symmetry. Upon irradiation, the film turned amorphous. The sharp Raman peak in pristine film at 993 cm{sup -1} is due to the terminal oxygen of {alpha}-MoO{sub 3} phase. Optical transparency of the film increased upon irradiation. Large red shift was observed in both direct and indirect band gaps. Electrical transport property study shows that the carrier concentration increased by one order for the irradiated film.

  12. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Harris, M. T.; George, Michael A.; McCarty, P.

    1999-01-01

    As a high temperature semiconductor, ZnO has been used for many applications such as wave-guide, solar cells, and surface acoustic wave devices. Since the ZnO material has an energy gap of 3.3 eV at room temperature and an excitonic binding energy (60 meV) that is possible to make excitonic lasering at room temperature a recent surge of interest is to synthesize ZnO films for electro-optical devices. These applications require films with a smooth surface, good crystal quality, and low defect density. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystals are grown by the hydrothermal method. Substrates are mechanically polished and annealed in air for four hours before deposited films. The annealing temperature-dependence of ZnO substrates is studied. Films are synthesized by the off-axis reactive sputtering deposition. The films have very smooth surface with a roughness film theta rocking curves measured by the x-ray diffraction is slightly larger than the crystal substrate. The film quality is determined by measuring the film resistivity, the Hall mobility, carrier densities and the energy band gap. The properties of ZnO films grown of (0001) ZnO and (0001) sapphire substrates will be also compared and discussed in the presentation.

  13. Growth of vertically aligned ZnO nanorods using textured ZnO films

    PubMed Central

    2011-01-01

    A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.) PMID:21899743

  14. Green emission in carbon doped ZnO films

    SciTech Connect

    Tseng, L. T.; Yi, J. B. Zhang, X. Y.; Xing, G. Z.; Luo, X.; Li, S.; Fan, H. M.; Herng, T. S.; Ding, J.; Ionescu, M.

    2014-06-15

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60–100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  15. Green emission in carbon doped ZnO films

    NASA Astrophysics Data System (ADS)

    Tseng, L. T.; Yi, J. B.; Zhang, X. Y.; Xing, G. Z.; Fan, H. M.; Herng, T. S.; Luo, X.; Ionescu, M.; Ding, J.; Li, S.

    2014-06-01

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60-100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  16. Influence of Li-dopants on the luminescent and ferroelectric properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Wang, J. B.; Zhong, X. L.; Zhou, Y. C.; Yuan, X. L.; Sekiguchi, T.

    2008-12-01

    Zn 1- xLi xO thin films ( 0.005≤x≤0.12) were prepared on Pt/Ti/SiO 2/Si substrates via a sol-gel spin coating method. Cathodoluminescence (CL) studies showed that the luminescent efficiency of specimens is degraded sharply with the increment of Li concentration, which indicates that non-radiative centers are introduced during the doping process. From low temperature CL studies, two luminescent peaks centered at 3.28 and 3.31 eV increase gradually with the increment of Li concentration, which are assigned to acceptor bound exciton transitions related to Li Zn and Li Zn-Li i complex, respectively. Ferroelectricity in Zn 1- xLi xO ( 0.08≤x≤0.12) thin films was found from the polarization hysteresis loop. The remnant polarization increases from 0.12 to 0.23 μC/cm 2 as the x increases from 0.08 to 0.12. Li Zn and Li Zn-Li i complex play important roles in the ferroelectric appearance of Li-doped ZnO thin films.

  17. Effect of Li substitution on dielectric and ferroelectric properties of ZnO thin films grown by pulsed-laser ablation

    NASA Astrophysics Data System (ADS)

    Dhananjay; Nagaraju, J.; Krupanidhi, S. B.

    2006-02-01

    Li-doped ZnO thin films (Zn1-xLixO, x=0.05-0.15) were grown by pulsed-laser ablation technique. Highly c-axis-oriented films were obtained at a growth temperature of 500 °C. Ferroelectricity in Zn1-xLixO was found from the temperature-dependent dielectric constant and from the polarization hysteresis loop. The transition temperature (Tc) varied from 290 to 330 K as the Li concentration increased from 0.05 to 0.15. It was found that the maximum value of the dielectric constant at Tc is a function of Li concentration. A symmetric increase in memory window with the applied gate voltage is observed for the ferroelectric thin films on a p-type Si substrate. A ferroelectric P-E hysteresis loop was observed for all the compositions. The spontaneous polarization (Ps) and coercive field (Ec) of 0.6 μC/cm2 and 45 kV/cm were obtained for Zn0.85Li0.15O thin films. These observations reveal that partial replacement of host Zn by Li ions induces a ferroelectric phase in the wurtzite-ZnO semiconductor. The dc transport studies revealed an Ohmic behavior in the lower-voltage region and space-charge-limited conduction prevailed at higher voltages. The optical constants were evaluated from the transmission spectrum and it was found that Li substitution in ZnO enhances the dielectric constant.

  18. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; George, M. A.; McCarty, P.

    1999-01-01

    As a high temperature wide-band-gap (3.3 eV at room temperature) semiconductor, ZnO has been used for many applications such as wave-guides, solar cells, and surface acoustic wave devices, Since ZnO has a 60 meV excitonic binding energy that makes it possible to produce excitonic lasing at room temperature, a recent surge of interest is to synthesize ZnO films for UV/blue/green laser diodes. These applications require films with a smooth surface, good crystal quality, and low defect density. Thus, homoepitaxial film growth is the best choice. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystal substrates grown by the hydrothermal method are mechanically polished and annealed in air for four hours before the films are deposited. The annealing temperature-dependence on ZnO substrate morphology and electrical properties is investigated. Films are synthesized by off-axis reactive sputtering deposition. This produces films that have very smooth surfaces with roughness less than or equal to 5 nm on a 5 microns x 5 microns area. The full width at half maximum of film theta rocking curves measured by the x-ray diffraction is slightly larger than that of the crystal substrate. Films are also characterized by measuring resistivity, optical transmittance, and photoluminescence. The properties of ZnO films grown on (0001) ZnO and (0001) sapphire substrates will also be compared and discussed.

  19. Improved Response of ZnO Films for Pyroelectric Devices

    PubMed Central

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Increasing the temperature variation rate is a useful method for enhancing the response of pyroelectric devices. A three-dimensional ZnO film was fabricated by the aerosol deposition (AD) rapid process using the shadow mask method, which induces lateral temperature gradients on the sidewalls of the responsive element, thereby increasing the temperature variation rate. To enhance the quality of the film and reduce the concentration of defects, the film was further treated by laser annealing, and the integration of a comb-like top electrode enhanced the voltage response and reduced the response time of the resulting ZnO pyroelectric devices. PMID:23235444

  20. Room-temperature ferromagnetic and ferroelectric behavior in polycrystalline ZnO-based thin films

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Hua; Ying, Minghao; Li, Ming; Wang, Xiaohui; Nan, Ce-Wen

    2007-05-01

    Polycrystalline ZnO-based thin films with Li and/or Co doping have been prepared by a sol-gel spin-coating method on silicon substrates. Magnetization measurements reveal that Li-doped ZnO film shows paramagnetic behavior. However, the Co-doped ZnO thin films show obvious room-temperature ferromagnetic properties, and ferromagnetic properties can be enhanced by the Li codoping, which may be ascribed to indirect exchange via Li-related defects. All ZnO-based films exhibit ferroelectric behavior, and ferroelectric properties can be tuned by the dopants.

  1. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  2. Characterization of the quality of ZnO thin films using reflective second harmonic generation

    SciTech Connect

    Huang, Y.-J.; Chu, S.-Y.; Lo, K.-Y.; Liu, C.-W.; Liu, C.-C.

    2009-08-31

    A polar mirror symmetrical contribution originated from the arrangement of grain boundaries existing in the ZnO film is detected by reflective second harmonic generation pattern. The ordering of ZnO grain boundary is dependent on the kinetic energy of deposited atoms and affects the quality of ZnO films. The net direction of the grain boundary in ZnO film trends toward the [110] direction of Si(111) to reach the minimum grain energy for better quality ZnO film. The polar structure of the mirrorlike boundaries under the optically macroscopic viewpoint presents a correlation with film quality.

  3. A high power ZnO thin film piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  4. Growth of vertically aligned one-dimensional ZnO nanowire arrays on sol-gel derived ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kitazawa, Nobuaki; Aono, Masami; Watanabe, Yoshihisa

    2014-11-01

    Vertically aligned one-dimensional ZnO nanowire arrays have been synthesized by a hydrothermal method on sol-gel derived ZnO films. Sol-gel derived ZnO films and corresponding ZnO nanowire arrays have been characterized by X-ray diffraction and field-emission scanning electron microscopy. The effect of sol-gel derived ZnO film surface on the morphology of ZnO nanowire arrays has been investigated. The authors suggest from our investigation that sol-gel derived ZnO films affect the growth of one-dimensional ZnO nanostructures. Not only crystalline ZnO films but also amorphous ones can act as a scaffold for ZnO nucleus. Tilted ZnO micro-rods are grown on ZnO gel films, whereas vertically aligned ZnO nanowire arrays are grown on nanometer-sized ZnO grains. The average diameter of ZnO nanowire arrays are correlated strongly with the grain size of sol-gel derived ZnO films.

  5. Growth of ZnO and GaN Films

    NASA Astrophysics Data System (ADS)

    Chang, J.; Hong, S.-K.; Matsumoto, K.; Tokunaga, H.; Tachibana, A.; Lee, S. W.; Cho, M.-W.

    . Zinc oxide (ZnO) and gallium nitride (GaN) are wide bandgap semi conductors applicable to light emitting diodes (LEDs) and laser diodes (LDs) with wavelengths ranging from ultraviolet to blue light. Now ZnO and GaN are key ma terials for optoelectronic device applications and their applications are being rapidly expanded to lots of other technology including electronics, biotechnology, nanotech-nology, and fusion technology among all these. As a fundamental starting point for the development of this new technique, epitaxy of ZnO and GaN films is one of the most important key technology. Hence, development of the growth technique for high quality epitaxial films is highly necessary. Among the various kinds of epi taxy technique for semiconductor films developed so far, physical vapor deposition (PVD)-based epitaxy technique has been revealed to be the appropriate way for the high quality ZnO film and related alloy growths, while chemical vapor deposition (CVD)-based epitaxy technique has been proved to be the best method for the high quality GaN film and related alloy growths.

  6. Structural and electrical properties of electric field assisted spray deposited pea structured ZnO film

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2016-05-01

    Spray deposition of ZnO film was carried out. The uneven growth of ZnO nanostructures is resulted for spray deposited ZnO film. Application of DC voltage (1000V) during spray deposition provides formation of pea like structures with uniform coverage over the substrate. Electric field assisted spray deposition provides increased crystallinity with reduced resistivity and improved mobility of the ZnO film as compared to spray deposited ZnO film without electric field. This with large area deposition makes the process more efficient than other techniques.

  7. Photoluminescence Spectra of thin Zno films grown by ALD technology

    NASA Astrophysics Data System (ADS)

    Akopyan, I. Kh.; Davydov, V. Yu.; Labzovskaya, M. E.; Lisachenko, A. A.; Mogunov, Ya. A.; Nazarov, D. V.; Novikov, B. V.; Romanychev, A. I.; Serov, A. Yu.; Smirnov, A. N.; Titov, V. V.; Filosofov, N. G.

    2015-09-01

    The photoluminescence of ZnO films grown by atomic layer deposition (ALD) on silicon substrates has been investigated. A new broad photoluminescence band has been revealed in the exciton region of the spectrum. The properties of the band in the spectra of the films with different crystallographic orientations of substrates have been studied in a wide temperature range at different excitation levels. A model describing the origin of the new band has been proposed.

  8. Semiconducting properties of Al doped ZnO thin films.

    PubMed

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future. PMID:24840493

  9. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Park, Sungho

    2016-08-01

    The effect of ZnO thin film on the growth of ZnO nanorods was investigated. ZnO thin films were sputter-deposited on Si substrate with varying the thickness. ZnO nanorods were grown on the thin film using a chemical bath deposition (CBD) method at 90 °C. The ZnO thin films showed granular structure and vertical roughness on the surface, which facilitated the vertical growth of ZnO nanorods. The average grain size and the surface roughness of ZnO film increased with an increase in film thickness, and this led to the increase in both the average diameter and the average length of vertically grown ZnO nanorods. In particular, it was found that the average diameter of ZnO nanorods was very close to the average grain size of ZnO thin film, confirming the role of ZnO film as a seed layer for the vertical growth of ZnO nanorods. The CBD growth on ZnO seed layers may provide a facile route to engineering vertically aligned ZnO nanorod arrays.

  10. Local structures of copper-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Ma, Qing; Buchholz, D. Bruce; Chang, Robert P. H.

    2008-12-01

    We report the local structures of a series of copper-doped zinc oxide films using polarization-dependent x-ray-absorption spectroscopy. The films were grown by pulsed-laser ablation under various conditions. The results show that films where copper exists solely as clusters are not ferromagnetic. The results also show that some of the copper-doped zinc oxide films are not ferromagnetic despite the fact that the copper substitution for zinc in the ZnO lattice is in the Cu2+ state, which provides the necessary unpaired spins for ferromagnetism. Therefore, Cu2+/Zn2+ substitution is not the only imperative condition for ferromagnetism to occur. We present characteristics unique to the electronic and atomic structure of ferromagnetic films and argue that the increased covalence of the CuZn-O bond found in these films is a prerequisite for the spin alignments in a substitutionally copper-doped zinc oxide film.

  11. Electrodeposited ZnO films with high UV emission properties

    SciTech Connect

    Matei, Elena; Enculescu, Ionut

    2011-11-15

    Highlights: {yields} Electrodeposition of ZnO from nitrate baths is investigated. {yields} The influence of process parameters on morphological and optical properties is studied. {yields} Experimental conditions to fabricate ZnO films with high UV emission were found. -- Abstract: We report here our results in the preparation of ZnO films with high UV band to band characteristic luminescence emission by potentiostatic electrodeposition. Zinc nitrate aqueous baths with different concentration and additives were employed for the preparation of the films on platinum substrates. We focused our research in determining how the electrodeposition bath composition, i.e. zinc nitrate concentration and addition of KCl or polyvinyl pyrolidone and applied overpotential influence the morphological and optical properties of the oxide films. Scanning electron microscopy was employed for characterizing the films in terms of morphology. Optical reflection, photoluminescence spectroscopy and cathodoluminescence were used for determining the optical characteristics of the samples. The morphology of the deposit varies from hexagonal prisms to platelets as a function of the deposition rate. This experimental parameter also influences the luminescence properties. We found that at low deposition rates high UV luminescent material is obtained.

  12. Sol-gel method of p-type zinc oxide films preparation

    NASA Astrophysics Data System (ADS)

    Poghosyan, Armen R.; Li, XiaoNan; Manukyan, Alexandr L.; Grigoryan, Stepan G.; Vardanyan, Eduard S.

    2007-09-01

    Both n-type and p-type ZnO will be required for development of homojunction light-emitting diodes and laser diodes. It is easy to obtain strong n-type ZnO, but very difficult to create consistent, reliable, high-conductivity p-type material. Here we present our investigations of p-type ZnO thin film preparation by sol-gel method using single Li doping and Ga(Al)+N codoping technique. ZnO thin films with c-axis orientation have been prepared on glass substrates. Zn acetate dihydrate, gallium nitrate and acetamide were used as zinc, gallium and nitrogen precursors respectively. SEM, X-ray diffraction, electric conductivity and Hall effect measurements were carried out. The results show that p-type conducting ZnO films with hole concentrations as high as 5x10 17 cm -3 were obtained by this method.

  13. Laser nanostructuring of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N.; Koleva, M.; Nikov, R.; Atanasov, P.; Nakajima, Y.; Takami, A.; Shibata, A.; Terakawa, M.

    2016-06-01

    In this work, results on laser processing of thin zinc oxide films deposited on metal substrate are presented. ZnO films are obtained by classical nanosecond pulsed laser deposition method in oxygen atmosphere on tantalum substrate. The produced films are then processed by nanosecond laser pulses at wavelength of 355 nm. The laser processing parameters and the film thickness are varied and their influence on the fabricated structures is estimated. The film morphology after the laser treatment is found to depend strongly on the laser fluence as two regimes are defined. It is shown that at certain conditions (high fluence regime) the laser treatment of the film leads to formation of a discrete nanostructure, composed of spherical like nanoparticles with narrow size distribution. The dynamics of the melt film on the substrate and fast cooling are found to be the main mechanisms for fabrication of the observed structures. The demonstrated method is an alternative way for direct fabrication of ZnO nanostructures on metal which can be easy implemented in applications as resistive sensor devices, electroluminescent elements, solar cell technology.

  14. Synchrotron radiation assistant MOCVD deposition of ZnO films on Si substrate

    NASA Astrophysics Data System (ADS)

    Guangtao, Yang; Guobin, Zhang; Hongjun, Zhou; Zeming, Qi

    2009-06-01

    The growth of ZnO film on Si(1 0 0) substrate has been studied with synchrotron radiation (SR) assisted MOCVD method. The diethylzinc (DEZn) and CO 2 are used as source materials, while Nitrogen is employed as a carrier gas for DEZn. With the assistance of SR the ZnO film can be deposited even at room temperature. XRD, SEM and photoluminescence (PL) studies show that the crystal quality of ZnO films grown with the assistance of SR is higher than that of those without SR assistance. The growth mechanism of ZnO film with the SR assistant MOCVD system is primarily discussed.

  15. Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Tseng, Zong-Liang; Chiang, Chien-Hung; Wu, Chun-Guey

    2015-09-01

    Sputtering made ZnO thin film was used as an electron-transport layer in a regular planar perovskite solar cell based on high quality CH3NH3PbI3 absorber prepared with a two-step spin-coating. An efficiency up to 15.9% under AM 1.5G irradiation is achieved for the cell based on ZnO film fabricated under Ar working gas. The atmosphere of the sputtering chamber can tune the surface electronic properties (band structure) of the resulting ZnO thin film and therefore the photovoltaic performance of the corresponding perovskite solar cell. Precise surface engineering of ZnO thin film was found to be one of the key steps to fabricate ZnO based regular planar perovskite solar cell with high power conversion efficiency. Sputtering method is proved to be one of the excellent techniques to prepare ZnO thin film with controllable properties.

  16. Semipolar r-plane ZnO films on Si(100) substrates: Thin film epitaxy and optical properties

    PubMed Central

    Aggarwal, Ravi; Zhou, Honghui; Jin, Chunming; Narayan, J.; Narayan, Roger J.

    2010-01-01

    We report heteroepitaxial growth of (101¯2) oriented (r-plane) ZnO films on Si(100) substrates. The films were grown by pulsed laser deposition and integration of ZnO with silicon was achieved using a tetragonal yttria stabilized zirconia (YSZ) buffer layer. It was observed that ZnO films grown at temperatures in the range of 700–750 °C with relatively high oxygen pressure (∼70 mTorr) were (101¯2) oriented. ZnO films deposited with lower oxygen pressures were found to be purely (0002) orientated. Experiments carried out to elucidate the role of oxygen pressure indicated that the crystallographic orientation of ZnO depends on the nature of atomic termination of YSZ layer. It has been proposed that crystallographic orientation of ZnO is controlled by chemical free energy associated with ZnO-YSZ interface. Detailed x-ray diffraction and transmission electron microscopy studies showed existence of four types of in-plane domains in r-plane ZnO films. Optical characterization demonstrated that photoluminescence of r-plane ZnO films was superior to that of c-plane ZnO films grown under similar conditions. PMID:20634966

  17. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  18. Thin film epitaxy and structure property correlations for non-polar ZnO films

    SciTech Connect

    Pant, Punam; Budai, John D; Aggarwal, R; Narayan, Roger; Narayan, Jagdish

    2009-01-01

    Heteroepitaxial growth and strain relaxation were investigated in non-polar a-plane (11-20)ZnO films grown on r-plane (10-12)sapphire substrates in the temperature range 200-700 C by pulsed laser deposition. The lattice misfit in the plane of the film for this orientation varied from -1.26% in [0001] to ?18.52% in the [-1100] direction. The alignment of (11-20)ZnO planes parallel to (10-12)sapphire planes was confirmed by X-ray diffraction {theta}-2{theta} scans over the entire temperature range. X-ray {psi}-scans revealed the epitaxial relationship:[0001]ZnO[-1101]sap; [-1100]ZnO[-1-120]sap. Depending on the growth temperature, variations in the structural, optical and electrical properties were observed in the grown films. Room temperature photoluminescence for films grown at 700 C shows a strong band-edge emission. The ratio of the band-edge emission to green band emission is 135:1, indicating reduced defects and excellent optical quality of the films. The resistivity data for the films grown at 700 C shows semiconducting behavior with room temperature resistivity of 2.2 x 10{sup -3} {Omega}-cm.

  19. Emission enhancement from metallodielectric-capped ZnO films

    NASA Astrophysics Data System (ADS)

    Ni, W. H.; An, J.; Lai, C. W.; Ong, H. C.; Xu, J. B.

    2006-07-01

    Emission enhancement from ZnO thin films coated with Al /AlOx has been studied by photoluminescence spectroscopy. While Al exhibits a moderate enhancement on ZnO, the introduction of an ultrathin AlOx spacer can increase the luminescence significantly. By examining the dependence of light emission of Al /AlOx/ZnO on AlOx thickness, we found, other than the surface plasmon mediation, a short-ranged nonradiative channel that plays a crucial role in determining that the overall emission enhancement is also present. Based on a simple analytical model, it is found that the nonradiative process is strongly dependent on (AlOxthickness)-6 and therefore its origin is suggested to be of Förster type. Finally, an AlOx spacer with thickness of 5nm is found to be adequate to eliminate the unwanted quenching effect.

  20. Effect of ZnO nanoparticles on structural and mechanical properties of HPMC polymer films

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Mahadeviah, Asha, S.; Somashekar, R.; Sangappa

    2013-02-01

    The Zinc Oxide (ZnO) nano-particles were synthesized by electrochemical method. The HPMC films were prepared by solution casting method and ZnO concentration was varied from 0.01 to 0.04%. The films were examined for structural and mechanical properties verifying how the addition of ZnO nano-particles affected the properties using X-ray diffraction (XRD) and Universal Testing Machine (UTM).

  1. Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Chen, Hanhong; Du Pasquier, Aurelien; Saraf, Gaurav; Zhong, Jian; Lu, Yicheng

    2008-04-01

    Ga-doped ZnO (GZO) transparent conducting films and well-aligned ZnO nanotips were sequentially grown on a glass substrate using metal-organic chemical vapor deposition (MOCVD). The morphology control of ZnO from dense films to nanotips was realized through temperature-modulated growth. The ZnO nanotips/GZO structure was sensitized with dye N719 to form photoelectrochemical cells. It is found that the power conversion efficiency linearly increases with the length of ZnO nanotips. For the 1.0 cm2 dye-sensitized solar cell built from 4.8 µm ZnO nanotips, a peak incident photo-to-current conversion efficiency of 79% (at ~530 nm) and a power conversion efficiency of 0.77% under the illumination of one sun-simulated sunlight were achieved. UV light harvesting directly by ZnO was observed. The I-V characteristics of the cells were analyzed using a one-diode equivalent circuit model.

  2. Surface Morphological and Nanomechanical Properties of PLD-Derived ZnO Thin Films

    PubMed Central

    2008-01-01

    This study reports the surface roughness and nanomechanical characteristics of ZnO thin films deposited on the various substrates, obtained by means of atomic force microscopy (AFM), nanoindentation and nanoscratch techniques. ZnO thin films are deposited on (a- and c-axis) sapphires and (0001) 6H-SiC substrates by using the pulsed-laser depositions (PLD) system. Continuous stiffness measurements (CSM) technique is used in the nanoindentation tests to determine the hardness and Young’s modulus of ZnO thin films. The importance of the ratio (H/Efilm) of elastic to plastic deformation during nanoindentation of ZnO thin films on their behaviors in contact-induced damage during fabrication of ZnO-based devices is considered. In addition, the friction coefficient of ZnO thin films is also presented here.

  3. Buffer-enhanced room-temperature growth and characterization of epitaxial ZnO thin films

    SciTech Connect

    Sasaki, Atsushi; Hara, Wakana; Matsuda, Akifumi; Tateda, Norihiro; Otaka, Sei; Akiba, Shusaku; Saito, Keisuke; Yodo, Tokuo; Yoshimoto, Mamoru

    2005-06-06

    The room-temperature epitaxial growth of ZnO thin films on NiO buffered sapphire (0001) substrate was achieved by using the laser molecular-beam-epitaxy method. The obtained ZnO films had the ultrasmooth surface reflecting the nanostepped structure of the sapphire substrate. The crystal structure at the surface was investigated in situ by means of coaxial impact-collision ion scattering spectroscopy. It was proved that the buffer-enhanced epitaxial ZnO thin films grown at room temperature had +c polarity, while the polarity of high-temperature grown ZnO thin films on the sapphire was -c. Photoluminescence spectra at room temperature were measured for the epitaxial ZnO films, showing only the strong ultraviolet emission near 380 nm.

  4. [Optical Properties of ZnO Films Fabricated by Atomic Layer Deposition].

    PubMed

    Zhang, Chun-mei; Wang, Dong-dong; Fang, Ming; Zhang, Ao; Wang, Xiao-yu; Chen, Qiang; Meng, Tao

    2016-01-01

    The ZnO films were deposited by atomic layer deposition method using water and diethylzinc as precursors at different temperatures (110 and 190 degrees C). X-ray photoelectron spectroscopy, spectroscopic ellipsometry and photoluminescence spectra (PL) were used to investigate the elemental composition and optical properties of ZnO films. Our results showed that with the increasing of the growth temperature, the amount of -OH groups in the ZnO film decreased, which indicated that the reactions went to completion at high processing temperatures. The PL spectra of the ZnO film deposited at 110 degrees C exhibited two emission bands, one in the UV region and the other in the visible region. When the deposition temperature increased to 190 degrees C, the emission bands in the visible region disappeared, which indicated that the deep level defect in ZnO became less. The carrier mobility improved from 25 to 32 cm2 x (V x S)(-1) with the reduction of the defects in the ZnO film. The refractive index of the ZnO films decreased from 2.33 to 1.9 in the 375-800 nm region. The optical absorption edge (E(g)) values of the ZnO films deposited at different temperature were about 3.27 eV. PMID:27228734

  5. Synthesis and annealing study of RF sputtered ZnO thin film

    NASA Astrophysics Data System (ADS)

    Singh, Shushant Kumar; Sharma, Himanshu; Singhal, R.; Kumar, V. V. Siva; Avasthi, D. K.

    2016-05-01

    In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structure of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.

  6. Synthesis and characterization of ZnO nanostructured film for optoelectronic applications

    SciTech Connect

    Kumar, Vijay E-mail: sanjeev04101977@gmail.com; Singh, Harpreetpal

    2015-05-15

    ZnO nanostructured film is synthesized by solution combustion technique. X-ray diffraction (XRD) studies show that preferred orientation is along (101) confirming the hexagonal wurtzite phase and no secondary phase is observed. The rietveld refinement of the XRD data was used to calculate different lattice parameters. I-V characterization of ZnO film shows non linear behavior. These ZnO films are photosensitive, may be due to defect states. This property of these films can be utilized in optoelectronic applications.

  7. Selective growth of ZnO thin film nanostructures: Structure, morphology and tunable optical properties

    NASA Astrophysics Data System (ADS)

    Krishnakanth, Katturi Naga; Rajesh, Desapogu; Sunandana, C. S.

    2016-05-01

    The ZnO nanostructures (spherical, rod shape) have been successfully fabricated via a thermal evaporation followed by dip coating method. The pure, doped ZnO thin films were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy, respectively. A possible growth mechanism of the spherical, rod shape ZnO nanostructures are discussed. XRD patterns revealed that all films consist of pure ZnO phase and were well crystallized with preferential orientation towards (002) direction. Doping by PVA, PVA+Cu has effective role in the enhancement of the crystalline quality and increases in the band gap.

  8. Influence of stress in ZnO thin films on its biosensing application.

    PubMed

    Saha, Shibu; Tomar, Monika; Gupta, Vinay

    2015-11-01

    Highly c-axis oriented zinc oxide (ZnO) thin films deposited by radio frequency (RF) magnetron sputtering, under varying ambient atmosphere (oxygen and argon reactive gas mixture), were studied for biosensing application. The as-grown ZnO thin films were found to be under compressive stress. Glucose oxidase was chosen as model enzyme for studying biosensing response properties of the ZnO thin films. The present study reveals a good correlation between stress induced during thin film growth and its biosensing response characteristic. The bio-electrodes based on ZnO thin films which are under the influence of higher stress, show better sensitivity and higher enzyme loading along with a prolonged shelf life. The study highlights the importance of physical properties of thin film matrix on its biosensing application. PMID:26320716

  9. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    NASA Astrophysics Data System (ADS)

    Shafura, A. K.; Sin, N. D. Md.; Azhar, N. E. I.; Saurdi, I.; Uzer, M.; Mamat, M. H.; Shuhaimi, A.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    CH4 gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10-3 S/cm and 11.5%, respectively.

  10. Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films

    SciTech Connect

    Wang, Canxing; Jiang, Haotian; Li, Yunpeng; Ma, Xiangyang; Yang, Deren

    2013-10-07

    Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, the photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film.

  11. Synthesis of nano-dimensional ZnO and Ga doped ZnO thin films by vapor phase transport and study as transparent conducting oxide.

    PubMed

    Ghosh, S; Saurav, M; Pandey, B; Srivastava, P

    2008-05-01

    We report synthesis of polycrystalline ZnO and Ga doped ZnO (ZnO:Ga) thin films (approximately 80 nm) on Si and quartz substrates in a non-vacuum muffle furnace, a simple and cost-effective route, without any catalyst/reactive carrier gases, at relatively low processing temperature of 550 degrees C. The crystalline phases of the films are identified by grazing angle X-ray diffraction (GAXRD). The growth of ZnO films is examined with scanning electron microscope (SEM) as a function of deposition time. An optical transmission of approximately 90% is observed for pure ZnO film having a resistivity of approximately 2.1 Omega-cm as measured by van der Pauw technique. Doping with Ga results in single phase ZnO:Ga films, retaining an optical transmission of about 80% and three orders of magnitude decrease in resistivity as compared to pure ZnO film. PMID:18572702

  12. Effect of annealing in hydrogen atmosphere on ZnO films for field emission display

    NASA Astrophysics Data System (ADS)

    Zulkifli, Zurita; Sharma, Subash; Shinde, Sachin; Kalita, Golap; Tanemura, M.

    2015-11-01

    Surface morphology, crystallinity, conductivity and optical transmittance of ZnO films can be modified by annealing process. Hydrogen is one of the popular annealing gases as well as nitrogen, argon, oxygen and air which are commonly used for thin film cleaning or the removal of native oxide. In general, annealing is done at high temperatures (> 600degC) to improve the film properties. From a view point of environment, however, lower annealing temperature is preferable. In this work, low annealing process was challenged to understand the effect of annealing temperature on properties of ZnO thin films and nanostructured film grown on glass substrates for transparent field emission device applications. The annealing temperature employed was 100, 200 and 450°C at 100 sccm hydrogen flow rate. ZnO thin films were deposited by RF magnetron sputtering. The ZnO thin films were characterized by X-ray diffraction analysis (XRD), Atomic Force Microscopy (AFM), UV-VIS and Raman spectroscopy. The sheet resistances reduced about 15 kohm/sq at low annealing temperature. By contrast, the optical transmittance did not show any significant changes after annealing. The FE current density increased after the ZnO nanostructures film was annealed in 100°C. The results obtained could motivate a surface treatment for flexible ZnO thin film since the substrate is always suffered by heat.

  13. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  14. Reliable thermal processing of organic perovskite films deposited on ZnO

    NASA Astrophysics Data System (ADS)

    Zakhidov, Alex; Manspeaker, Chris; Lyashenko, Dmitry; Alex Zakhidov Team

    Zinc oxide (ZnO) is a promising semiconducting material to serve as an electron transport layer (ETL) for solar cell devices based on organo-halide lead perovskites. ZnO ETL for perovskite photovoltaics has a combination of attractive electronic and optical properties: i) the electron affinity of ZnO is well aligned with valence band edge of the CH3NH3PbI3, ii) electron mobility of ZnO is >1 cm2/(Vs), which is a few orders of magnitude higher than that of TiO2 (another popular choice of ETL for perovskite photovoltaic devices), and iii) ZnO has a large of band gap of 3.3 eV, which ensures optical transparency and large barrier for the hole injection. Moreover, ZnO nanostructures can be printed on flexible substrates at room temperatures in cost effective manner. However, it was recently found that organic perovskites deposited on ZnO are unstable and readily decompose at >90°C. In this work, we further investigate the mechanism of decomposition of CH3NH3PbI3 film deposited on ZnO and reveal the role of the solvent in the film during the annealing process. We also develop a restricted volume solvent annealing (RVSA) process for post annealing of the perovskite film on ZnO without decomposition. We demonstrate that RVSA enables reliable perovskite solar cell fabrication.

  15. Effect of ZnO Nanostructured Thin Films on Pseudomonas Putida Cell Division

    NASA Astrophysics Data System (ADS)

    Ivanova, I.; Lukanov, A.; Angelov, O.; Popova, R.; Nichev, H.; Mikli, V.; Dimova-Malinovska, Doriana; Dushkin, C.

    In this report we study the interaction between the bacteria Pseudomonas putida and nanostructured ZnO and ZnO:H thin films prepared by magnetron sputtering of a ZnO target. The nanostructured ZnO and ZnO:H thin films possess some biological-active properties when in contact with bacteria. Our experimental data show that these films have no destructive effect on the cell division of Pseudomonas putida in poor liquid medium and can be applied in biosensor devices.

  16. Slow positron beam study of hydrogen ion implanted ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  17. Transparent conducting indium doped ZnO films by dc reactive S-gun magnetron sputtering.

    PubMed

    Ye, Z Z; Tang, J F

    1989-07-15

    Transparent conducting ZnO films have been prepared by modified S-gun reactive dc magnetron sputtering using an indium doped Zn target. Films with a resistivity of 1.08 x 10(-3) Omega cm and average transmittance of over 80% in the visible region were obtained. The influence of indium content at the surface of Zn target on the resistivity and transmittance of ZnO films was investigated. Optical properties of ZnO films in the 0.2-2.5-microm range were modeled by the Drude theory of free electrons. The reflectance of ZnO films in the 2.5-26.0-microm region was calculated. PMID:20555606

  18. Properties of antimony doped ZnO thin films deposited by spray pyrolysis technique

    SciTech Connect

    Sadananda Kumar, N. Bangera, Kasturi V.; Shivakumar, G. K.

    2015-07-15

    Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm{sup 2} V{sup –1} s{sup –1}, and a hole concentration of 6.25 × 10{sup 17} cm{sup –3}.

  19. Microwave annealing effects on ZnO films deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Shirui, Zhao; Yabin, Dong; Mingyan, Yu; Xiaolong, Guo; Xinwei, Xu; Yupeng, Jing; Yang, Xia

    2014-11-01

    Zinc oxide thin films deposited on glass substrate at 150 °C by atomic layer deposition were annealed by the microwave method at temperatures below 500 °C. The microwave annealing effects on the structural and luminescent properties of ZnO films have been investigated by X-ray diffraction and photoluminescence. The results show that the MWA process can increase the crystal quality of ZnO thin films with a lower annealing temperature than RTA and relatively decrease the green luminescence of ZnO films. The observed changes have demonstrated that MWA is a viable technique for improving the crystalline quality of ZnO thin film on glass.

  20. Atomic Oxygen Sensors Based on Nanograin ZnO Films Prepared by Pulse Laser Deposition

    SciTech Connect

    Wang Yunfei; Chen Xuekang; Li Zhonghua; Zheng Kuohai; Wang Lanxi; Feng Zhanzu; Yang Shengsheng

    2009-01-05

    High-quality nanograin ZnO thin films were deposited on c-plane sapphire (Al{sub 2}O{sub 3}) substrates by pulse laser deposition (PLD). Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to characterize the samples. The structural and morphological properties of ZnO films under different deposition temperature have been investigated before and after atomic oxygen (AO) treatment. XRD has shown that the intensity of the (0 0 2) peak increases and its FWHM value decreases after AO treatment. The AO sensing characteristics of nano ZnO film also has been investigated in a ground-based atomic oxygen simulation facility. The results show that the electrical conductivity of nanograin ZnO films decreases with increasing AO fluence and that the conductivity of the films can be recovered by heating.

  1. Effects of interfacial layer structures on crystal structural properties of ZnO films

    SciTech Connect

    Park, J. S.; Minegishi, T.; Lee, S. H.; Im, I. H.; Park, S. H.; Hanada, T.; Goto, T.; Cho, M. W.; Yao, T.; Hong, S. K.; Chang, J. H.

    2008-01-15

    Single crystalline ZnO films were grown on Cr compound buffer layers on (0001) Al{sub 2}O{sub 3} substrates by plasma assisted molecular beam epitaxy. In terms of lattice misfit reduction between ZnO and substrate, the CrN and Cr{sub 2}O{sub 3}/CrN buffers are investigated. The structural and optical qualities of ZnO films suggest the feasibility of Cr compound buffers for high-quality ZnO films growth on (0001) Al{sub 2}O{sub 3} substrates. Moreover, the effects of interfacial structures on selective growth of different polar ZnO films are investigated. Zn-polar ZnO films are grown on the rocksalt CrN buffer and the formation of rhombohedral Cr{sub 2}O{sub 3} results in the growth of O-polar films. The possible mechanism of polarity conversion is proposed. By employing the simple patterning and regrowth procedures, a periodical polarity converted structure in lateral is fabricated. The periodical change of the polarity is clearly confirmed by the polarity sensitive piezo response microscope images and the opposite hysteretic characteristic of the piezo response curves, which are strict evidences for the validity of the polarity controlling method as well as the successful fabrication of the periodical polarity controlled ZnO structure.

  2. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films.

    PubMed

    Shahmohammadi Jebel, Fereshteh; Almasi, Hadi

    2016-09-20

    Bacterial cellulose (BC) monolayer and multilayer films, incorporating 5wt.% ZnO nanoparticles (NPs) have been obtained. Ultrasound (US) irradiation (40kHz) was applied during ZnO-BC nanocomposites preparation. X-ray diffraction (XRD) patterns showed that ZnO NPs were crystallized in their pure phase. SEM scanning electron microscopy (SEM) results indicated that US treatment causes to decrease ZnO particle size, forming a stable hybrid nanostructure and evenly distributed ZnO NPs coated BC nanofibers. ZnO NPs enhanced the mechanical properties and diminished water vapor permeability and moisture absorption of BC films. Antibacterial activity of ZnO-BC films against Staphylococcus aureus was more than Escherichia coli. The antibacterial activity was enhanced with the utilization of US irradiation. The ZnO release was influenced by films composition; the multilayer and US treated films being promising in order to achieve controlled release of ZnO. Results suggest that ZnO-BC films may be used as controlled release antimicrobial food active packaging. PMID:27261725

  3. ZnO nanoparticles induced effects on nanomechanical behavior and cell viability of chitosan films

    PubMed Central

    Jayasuriya, Ambalangodage C.; Aryaei, Ashkan; Jayatissa, Ahalapitiya H.

    2014-01-01

    The aim of this paper is to develop novel chitosan-Zinc oxide nanocomposite films for biomedical applications. The films were fabricated with 1, 5, 10 and 15% w/w of Zinc Oxide (ZnO) nanoparticles (NPs) incorporated with chitosan (CS) using a simple method. The prepared nanocomposite films were characterized using atomic force microscopy, Raman and X-Ray diffraction studies. In addition, nano and micro mechanical properties were measured. It was found that the microhardness, nanohardness and its corresponding elastic modulus increased with the increasing of ZnO NPs percentage in the CS films. However, the ductility of films decreased as the percentage of ZnO NPs increased. Cell attachment and cytotoxicity of the prepared films at day two and five were evaluated in vitro using osteoblasts (OBs). It was observed that OB viability decreased in films with higher than 5% ZnO NPs. This result suggests that although ZnO NPs can improve the mechanical properties of pure CS films, only a low percentage of ZnO NPs can be applied for biomedical and bioengineering applications because of the cytotoxicity effects of these particles. PMID:23910265

  4. Efficient method for Li doping of α-rhombohedral boron

    NASA Astrophysics Data System (ADS)

    Dekura, H.; Shirai, K.; Yanase, A.

    2011-09-01

    Li doping is a promising method for achieving metallization of α-rhombohedral boron (α-boron for short), which is a potential candidate for a high-Tc superconducting material. Toward this end, a serious drawback has been the difficulty of doping α-boron, even though there are theoretical predictions claiming that it should be easy. This discrepancy has been systematically studied by the ab initio pseudopotential method through calculations of various structural and phonon properties of the material. For this study, a comparison with β-boron is important because experimental data are available in this case. The present results demonstrate that while Li doping is difficult for α-boron under normal conditions, it is easy for β-boron, which is completely consistent with experiments. The difference between these crystals originates from the contrasting characteristics of the bonding. For α-boron, the bonding requirement of the host crystal is fulfilled so well that the only way for a Li atom to enter the crystal is through the antibonding states. Electronically, this is favorable because it causes an almost perfect rigid-band shift without modifying the bonding nature of the host crystal. In terms of structural effects, Li doping causes a slight decrease in the cell angle αrh as well as softening of the elastic properties. A striking effect of Li doping is manifested in substantial phonon softening of the librational mode. These changes can be regarded as reliable criteria for the experimental detection of Li inclusion. On the other hand, β-boron can be characterized as a frustrated system, and the crystal has a propensity to welcome guest atoms in order to eliminate ill-connected bonds. As a result, even though Li is easily incorporated into β-boron, the carriers are not activated for electrical conduction. The remaining problem is how to overcome the difficulty of Li doping of α-boron. The most important contribution of this study lies in demonstrating the

  5. Optical, Electrical, and Adhesive Properties of ZnO Thin Films.

    PubMed

    Chen, Yuan-Tsung

    2016-01-01

    ZnO films were sputtered onto glass substrates to thicknesses from 100 A to 500 A under the following conditions; (a) as-deposited films were maintained at room temperature (RT); (b) films were post-annealed at 150 °C for 1 h, and (c) films were post-annealed at 250 °C for 1 h. X-ray diffraction (XRD) result thus obtained demonstrate that ZnO has a wurtzite structure with a (002) texture diffraction peak with a 2θ of 34° range. The intensity of the ZnO (002) peak increased with film thickness and upon post-annealing. As the ZnO thin film thickness increased and post-annealing was carried out, the grains became larger. A spectral analyzer was utilized to measure transmittance for various thicknesses. Post-annealing treatment promoted the growth of grains, yielding a large mean grain size and, therefore, low transmittance. The as-deposited ZnO thin film with a thickness of 100 Å had a transmittance maximum of approximately 88% and a reflectance minimum of around 12%. Additionally, the four-point probe measurements revealed that p decreased as the ZnO thickness increased and with post-annealing treatment because grain boundaries and the surface of thin films scatter electrons, so thinner films have a greater resistance. ZnO with a thickness of 500 Å that underwent post-annealing treatment at 250 °C had a minimum resistivity of 7.6 x 10⁻³ Ω · cm. Adhesion critically influences the surface energy of films. The surface energy of as-deposited ZnO films was higher than that following post-annealing treatments, revealing that the adhesion of the as-deposited ZnO films was stronger than that following post-annealing treatment because the degree of crystallinity was lower. Accordingly, the thickness and crystallinity of ZnO importantly affects its optical, electrical, and adhesive characteristics. Finally, thinner as-deposited ZnO films exhibited better optical and adhesive properties. PMID:27398504

  6. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  7. Effect of substrate temperature on the structural and optical properties of ZnO and Al-doped ZnO thin films prepared by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, Xue-Yong; Li, Hong-Jian; Wang, Zhi-Jun; Xia, Hui; Xiong, Zhi-Yong; Wang, Jun-Xi; Yang, Bing-Chu

    2009-01-01

    ZnO and Al-doped ZnO(ZAO) thin films have been prepared on glass substrates by direct current (dc) magnetron sputtering from 99.99% pure Zn metallic and ZnO:3 wt%Al 2O 3 ceramic targets, the effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. It shows that the surface morphologies of ZAO films exhibit difference from that of ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (0 0 2). The optical transmittance and photoluminescence (PL) spectra of both ZnO and ZAO films are obviously influenced by the substrate temperature. All films exhibit a transmittance higher than 86% in the visible region, while the optical transmittance of ZAO films is slightly smaller than that of ZnO films. More significantly, Al-doping leads to a larger optical band gap ( Eg) of the films. It is found from the PL measurement that near-band-edge (NBE) emission and deep-level (DL) emission are observed in pure ZnO thin films. However, when Al was doped into thin films, the DL emission of the thin films is depressed. As the substrate temperature increases, the peak of NBE emission has a blueshift to region of higher photon energy, which shows a trend similar to the Eg in optical transmittance measurement.

  8. Investigation of chemical bath deposition of ZnO thin films using six different complexing agents

    NASA Astrophysics Data System (ADS)

    Khallaf, Hani; Chai, Guangyu; Lupan, Oleg; Heinrich, Helge; Park, Sanghoon; Schulte, Alfons; Chow, Lee

    2009-07-01

    Chemical bath deposition of ZnO thin films using six different complexing agents, namely ammonia, hydrazine, ethanolamine, methylamine, triethanolamine and dimethylamine, is investigated. As-grown films were mainly ZnO2 with a band gap around 4.3 eV. Films annealed at 400 °C were identified as ZnO with a band gap around 3.3 eV. X-ray diffraction and micro-Raman spectroscopy revealed that as-grown films consist mainly of cubic zinc peroxide that was transformed into hexagonal ZnO after annealing. Rutherford backscattering spectroscopy (RBS) detected excess oxygen content in ZnO films after annealing. Fourier transform infrared spectroscopy of as-grown films showed a broad absorption band around 3300 cm-1 suggesting that the as-grown films may consist of a mixture of zinc peroxide and zinc hydroxide. X-ray photoelectron spectroscopy multiplex spectra of the O 1s peak were found to be consistent with film stoichiometry revealed by RBS. High-resolution transmission electron micrographs showed small variations of the order of 10 nm in film thickness which corresponds to the average grain size. A carrier density as high as 2.24×1019 cm-3 and a resistivity as low as 6.48 × 10-1 Ω cm were obtained for films annealed at 500 °C in argon ambient.

  9. Nanoporous characteristics of sol—gel-derived ZnO thin film

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Khan, M. A. M.; Alhoshan, M.; Alrokayan, S. A.; Alsalhi, M. S.

    2012-04-01

    Sol—gel-derived nanoporous ZnO film has been successfully deposited on glass substrate at 200 °C and subsequently annealed at different temperatures of 300, 400 and 600 °C. Atomic force micrographs demonstrated that the film was crack-free, and that granular nanoparticles were homogenously distributed on the film surface. The average grain size of the nanoparticles and RMS roughness of the scanned surface area was 10 nm and 13.6 nm, respectively, which is due to the high porosity of the film. Photoluminescence (PL) spectra of the nanoporous ZnO film at room temperature show a diffused band, which might be due to an increased amount of oxygen vacancies on the lattice surface. The observed results of the nanoporous ZnO film indicates a promising application in the development of electrochemical biosensors due to the porosity of film enhancing the higher loading of biomacromolecules (enzyme and proteins).

  10. Study of Doped ZnO Films Synthesized by Combining Vapor Gases and Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, Sandor L.; George, M. A.

    2000-01-01

    The properties and structure of the ZnO material are similar to those of the GaN. Since an excitonic binding energy of ZnO is about 60 meV, it has strong potential for excitonic lasing at the room temperature. This makes synthesizing ZnO films for applications attractive. However, there are several hurdles in fabricating electro-optical devices from ZnO. One of those is in growing doped p-type ZnO films. Although techniques have been developed for the doping of both p-type and n-type ZnO, this remains an area that can be improved. In this presentation, we will report the experimental results of using both thermal vapor and pulsed laser deposition to grow doped ZnO films. The films are deposited on (0001) sapphire, (001) Si and quartz substrates by ablating a ZnO target. The group III and V elements are introduced into the growth chamber using inner gases. Films are characterized by x-ray diffraction, scanning probe microscopy, energy dispersive spectroscopy, Auger electron spectroscopy, and electrical measurements. The full width at half maximum of theta rocking curves for epitaxial films is less than 0.5 deg. In textured films, it rises to several degrees. Film surface morphology reveals an island growth pattern, but the size and density of these islands vary with the composition of the reactive gases. The electrical resistivity also changes with the doped elements. The relationship between the doping elements, gas composition, and film properties will be discussed.

  11. Synthesis, structural and optical characterization of undoped, N-doped ZnO and co-doped ZnO thin films

    SciTech Connect

    Pathak, Trilok Kumar Kumar, R.; Purohit, L. P.

    2015-05-15

    ZnO, N-doped ZnO and Al-N co-doped ZnO thin films were deposited on ITO coated corning glass by spin coater using sol-gel method. The films were annealed in air at 450°C for one hour. The crystallographic structure and morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The X-ray diffraction results confirm that the thin films are of wurtzite hexagonal with a very small distortion. The optical properties were investigated by transmission spectra of different films using spectrophotometer (Shimadzu UV-VIS-NIR 3600). The results indicate that the N doped ZnO thin films have obviously enhanced transmittance in visible region. Moreover, the thickness of the films has strong influences on the optical constants.

  12. Polarity Effects of Substrate Surface in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.; McCarty, P.

    1999-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (0-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films are also deposited on the (000 I) Al203 substrates. It is found that the two polar surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which are strongly inference the epitaxial film growth. The morphology and structure of epitaxial films on the ZnO substrates are different from the film on the Al203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite Surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth using reactive sputtering deposition.

  13. Investigation of sol-gel yttrium doped ZnO thin films: structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.

    2016-02-01

    Nanostructured metal oxide films are extensively studied due to their numerous applications such as optoelectronic devices, sensors. In this work, we report the Y-Zn-O nanostructured films prepared by sol-gel technology from sols with different concentration of yttrium precursor, followed by post-annealing treatment. The Y doped ZnO thin films have been deposited on Si and quartz substrates by spin coating method, then treated at temperatures ranging from 300-800oC. XRD analysis reveals modification of the film structure and phases in the doped ZnO films.

  14. Structural, electronic and magnetic properties of Er implanted ZnO thin films

    NASA Astrophysics Data System (ADS)

    Murmu, P. P.; Kennedy, J.; Ruck, B. J.; Leveneur, J.

    2015-09-01

    We report the structural, electronic and magnetic properties of Er implanted and annealed ZnO thin films. The effect of annealing in oxygen-deficient and oxygen-rich conditions was investigated. Rutherford backscattering spectrometry results revealed that the Er atoms are located at the implantation depth of around 13 nm, and annealing conditions had no adverse effect on the Er concentration in the layer. Raman spectroscopy results showed peak related to E2(high) mode of ZnO indicating enhanced crystalline quality of the Er implanted and annealed ZnO films. X-ray absorption near edge spectroscopy results demonstrated pre-edge features in O K-edge which are attributed to the structural defects in the films. Room temperature magnetic ordering was observed in Er implanted and annealed films, and is mainly assigned to the intrinsic defects in ZnO.

  15. ZnO Thin Films Deposited on Textile Material Substrates for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Duta, L.; Popescu, A. C.; Dorcioman, G.; Mihailescu, I. N.; Stan, G. E.; Zgura, I.; Enculescu, I.; Dumitrescu, I.

    We report on the coating with ZnO adherent thin films of cotton woven fabrics by Pulsed laser deposition technique in order to obtain innovative textile materials, presenting protective effects against UV radiations and antifungal action.

  16. Transparent ZnO Films Deposited by Aqueous Solution Process Under Various pH Conditions

    NASA Astrophysics Data System (ADS)

    Hong, Jeong Soo; Wagata, Hajime; Ohashi, Naoki; Katsumata, Ken-ichi; Okada, Kiyoshi; Matsushita, Nobuhiro

    2015-08-01

    ZnO films were deposited using a spin-spray method with the source solution containing zinc nitrate and an oxidizing solution containing trisodium citrate onto glass substrates under various pH conditions. A ZnO film with a columnar structure was obtained at pH higher than 7.0, while no ZnO film was formed at a mixed solution pH of 6.7. The transparent and conductive ZnO film obtained from a mixed solution with pH 10.7 exhibited the lowest resistivity of 9.9 × 10-3 Ω cm with a high transmittance above 90%.

  17. 100 MeV O{sup 7+} irradiation induced red shift in the band gaps of 3 wt% 'Li' doped Nb{sub 2}O{sub 5} thin film

    SciTech Connect

    Kovendhan, M. Mohan, R.; Joseph, D. Paul; Manimuthu, P.; Venkateswaran, C.; Vijayarangamuthu, K.; Asokan, K.

    2014-04-24

    Nb{sub 2}O{sub 5}:Li (3 wt%) thin film of thickness 353 nm spray deposited onto ITO coated glass substrate at 350 °C is irradiated with 100 MeV O{sup 7+} ion at a fluence of 5×10{sup 12} ions/cm{sup 2}. X-ray diffraction shows that the pristine and irradiated films are polycrystalline with a tetragonal phase. Raman peaks suppressed upon irradiation imply large surface degradation which is also seen as a decrement in transparency in visible region to one half of the pristine film. Large red shift is observed in direct and indirect band gaps upon irradiation. Hall effect reveals slight increase in carrier concentration due to irradiation induced defects.

  18. Synthesis of Imine-Bearing ZnO Nanoparticle Thin Films and Characterization of Their Structural, Morphological and Optical Properties.

    PubMed

    Kaur, Narinder; Sharma, Sanjeev K; Kim, Deuk Young; Sharma, Hemant; Singh, Narinder

    2015-10-01

    We are presenting the first report on the fabrication of imine-bearing ZnO nanoparticle thin films grown on Corning glass by spin coating. The sol was prepared by dissolving imine-bearing ZnO nanoparticles in dimethylsulfoxide (DMSO). The thickness of the films was manipulated to be 125-200 nm. The X-ray diffraction (XRD) analysis showed hexagonal wurtzite structure of imine-bearing ZnO nanoparticles thin films with a (002) preferential orientation. The stretching of chemical bonds of the imine linkage and Zn-O in imine-bearing ZnO nanoparticle thin films was confirmed by Fourier transform infrared spectroscopy (FTIR). The grain size of the films increased with increasing the thickness of the films due to the number of coatings and subsequently dried at 200 °C. The transmittance of imine-bearing ZnO nanoparticle thin films was observed to be ≥94%, which was in close agreement to pure ZnO thin films in the visible region. The bandgap of imine-bearing ZnO nanoparticle thin films (3.04 eV), evaluated from Tauc's plot, was observed to be lower than that of pure ZnO (3.21 eV), which is attributed to the interaction of the ZnO nanoparticles with the imine receptor. PMID:26726472

  19. Influence of surface defects in ZnO thin films on its biosensing response characteristic

    SciTech Connect

    Saha, Shibu; Gupta, Vinay

    2011-09-15

    Highly c-axis oriented zinc oxide (ZnO) thin films deposited by rf magnetron sputtering under varying processing pressure (20-50 mT) in a reactive gas mixture of argon and oxygen were studied for biosensing application. The as-deposited ZnO thin films were in a state of compressive stress having defects related to interstitial Zn and antisite oxygen. Glucose oxidase has been chosen as the model enzyme in the present study and was immobilized on the surface of ZnO thin films deposited on indium tin oxide coated Corning Glass substrate. The studies reveal a correlation between the biosensing characteristic and the presence of defects in the ZnO films. The ZnO films deposited under high pressure (50 mT) are found to be more sensitive for biosensing application due to availability of more surface area for effective immobilization of biomolecules and exhibits a suitable microenvironment with good electron transfer characteristic. The obtained results highlight the importance of desired microstate besides availability of suitable native defects in the ZnO thin film for exhibiting enhanced biosensing response.

  20. Microstructural and chemical properties of ZnO films formed using electrodeposition.

    PubMed

    Song, Hyeon-Jin; Ahn, Kwang-Soon; Choi, Chel-Jong

    2014-12-01

    We investigated the effect of bath temperature and electrodeposition potential on the microstructural and chemical properties of ZnO films formed on Mo-coated soda-lime glass substrates using electrodeposition. The electrodeposition was performed using an electrolytic solution containing 0.05 M Zn(NO3)2 for 6 min. The ZnO islands grew larger to impinge with other islands until the bath temperature was increased up to 40 degrees C, above which continuous ZnO film was eventually formed. An increase in the electrodeposition potential resulted in enhancement of the growth rate of the electrodeposited ZnO film with the facilitation of film texturation. The c-axis was perpendicular to surface, which could be associated with the preferential orientation along the (002) direction. At the electrodeposition potential of -1.3 V (vs. a saturated calomel electrode), significant amounts of hydrogen bubbles that electrochemically evolved near the surface of the working electrode hampered the homogenous growth of the ZnO film, which could be responsible for morphological degradation of the ZnO film. PMID:25971102

  1. Modification of Photoluminescence Properties of ZnO Island Films by Localized Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Li, Xue-Hong; Peng, Cheng-Xiao

    2012-10-01

    The modification of localised surface plasmons of photoluminescence properties of ZnO is studied. It is found that the ultraviolet emission is drastically enhanced, and the visible emission related to the defects is almost completely suppressed, after an Au layer of nanoparticles is deposited on the surface of ZnO island films. This pronounced change in PL spectra is attributed to the efficient electron transfer via the coupling of localised surface plasmons at the interface between the Au nanoparticle layer and ZnO films.

  2. Growth of cluster assembled ZnO film by nanocluster beam deposition technique

    SciTech Connect

    Halder, Nilanjan

    2015-06-24

    ZnO is considered as one of the most promising material for optoelectronic devices. The present work emphasizes production of cluster assembled ZnO films by a UHV nanocluster beam deposition technique where the nanoclusters were produced in a laser vaporization cluster source. The microstructural and the optical properties of the ZnO nanocluster film deposited were investigated. As the wet chemical processes are not compatible with current solid state methods of device fabrication, therefore alternative UHV technique described in the paper is the need of the hour.

  3. Selective Purcell enhancement of defect emission in ZnO thin films

    SciTech Connect

    Lawrie, Benjamin J; Mu, Richard; HaglundJr., Richard F

    2012-01-01

    A zinc interstitial defect present but unobservable in ZnO thin films annealed at 500 C in oxygen or in atmosphere was selectively detected by interaction of the film with an Ag surface-plasmon polariton. The time-dependent differential reflectivity of the ZnO near the ZnO/MgO interface exhibited a subpicosecond decay followed by a several nanosecond recovery, consistent with the Purcell-enhanced Zn interstitial luminescence seen in Ag ZnO heterostructures. Heterostructures annealed at other temperatures showed significantly greater band-edge photoluminescence and no evidence of the Zn interstitial defect.

  4. Pulsed-laser deposition of ZnO and related compound thin films for optoelectronics

    NASA Astrophysics Data System (ADS)

    Millon, Eric; Perrière, Jacques; Tricot, Sylvain; Boulmer-Leborgne, Chantal

    2008-05-01

    ZnO is a wide and direct band-gap material (3.37 eV at room temperature) making this compound very suitable for UV photodetector applications as well as for UV and blue light emitting devices. As an electronic conductor, ZnO may be used as transparent and conducting electrodes for flat panel displays and solar cells. ZnO doped with various atoms can also lead to new or enhanced functional properties. For example, doping with Al, Ga, In, Si or H allows decreasing its resistivity to below 10-4 Ω.cm, while keeping the high optical transparency. Rare-earth doped ZnO thin films have been studied for optics and optoelectronics such as visible or infrared emitting devices, planar optical waveguide amplifiers. Ferromagnetic semiconductors can be obtained by doping ZnO with transition metal atoms (Mn, Co, Ni...) that could be used as spin injectors in spintronics. These new and exciting properties of pure and doped ZnO request the use of thin films or multilayer structures. ZnO thin film growth by pulsed-laser deposition (PLD) with or without any dopants or alloyed atoms has been intensively studied. In this paper, we will review the aspects of ZnO thin films grown by PLD, in order to prepare dense, stoichiometric and crystalline epitaxied ZnO layers or to form nanocrystalline films. Then, the optical and electrical properties will be discussed with a special emphasis on the growth conditions in relation to the physical properties for applications in p-n junctions, light emission devices, spintronics and bandgap tuning.

  5. Structural and optical characterization of high-quality ZnO thin films deposited by reactive RF magnetron sputtering

    SciTech Connect

    Zhang, X.L.; Hui, K.N.; Hui, K.S.; Singh, Jai

    2013-03-15

    Highlights: ► High-quality ZnO thin films were deposited at room temperature. ► Effect of O{sub 2} flow and RF sputtering voltages on properties of ZnO films were studied. ► O{sub 2}/Ar ratios played a key role in controlling optical properties of ZnO films. ► Photoluminescence intensity of the ZnO films strongly depended on O{sub 2}/Ar ratios. ► Crystallite size, stress and strain strongly depended on O{sub 2}/Ar ratios. - Abstract: ZnO thin films were deposited onto quartz substrates by radio frequency (RF) reactive magnetron sputtering using a Zn target. The structural and optical properties of the ZnO thin films were investigated comprehensively by X-ray diffraction (XRD), ultraviolet–visible and photoluminescence (PL) measurements. The effects of the oxygen content of the total oxygen–argon mixture and sputtering voltage in the sputtering process on the structural and optical properties of the ZnO films were studied systemically. The microstructural parameters, such as the lattice constant, crystallite size, stress and strain, were also calculated and correlated with the structural and optical properties of the ZnO films. In addition, the results showed that the crystalline quality of ZnO thin films improved with increasing O{sub 2}/Ar gas flow ratio from 2:8 to 8:2. XRD and PL spectroscopy revealed 800 V to be the most appropriate sputtering voltage for ZnO thin film growth. High-quality ZnO films with a good crystalline structure, tunable optical band gap as well as high transmittance could be fabricated easily by RF reactive magnetron sputtering, paving the way to obtaining cost-effective ZnO thin films transparent conducting oxides for optoelectronics applications.

  6. Ohmic-Rectifying Conversion of Ni Contacts on ZnO and the Possible Determination of ZnO Thin Film Surface Polarity

    PubMed Central

    Saw, Kim Guan; Tneh, Sau Siong; Tan, Gaik Leng; Yam, Fong Kwong; Ng, Sha Shiong; Hassan, Zainuriah

    2014-01-01

    The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films. PMID:24466144

  7. Effect of Substrate Temperature on The Structural and Optical Properties of Non-doped ZnO Thin Films

    SciTech Connect

    Ilican, Saliha; Caglar, Mujdat; Caglar, Yasemin

    2007-04-23

    Transparent conducting non-doped zinc oxide (ZnO) thin films have been deposited by the spray pyrolysis method at different substrate temperatures. X-ray diffraction spectra of the films have shown that the films are polycrystalline and hexagonal wurtzite in structure. From these spectra, grain size and texture coefficient (TC) are calculated. The analytical method for calculating lattice constants is used to calculate a and c for the films. The preferred orientation of non-doped ZnO thin films was changed with substrate temperature. The average optical transmittance of non-doped ZnO thin films was over 80% in the visible range. The optical band gap and optical constants of the non-doped ZnO thin films were evaluated as dependent on the substrate temperatures. The substrate temperature have a significant effect on structural and optical properties of the non-doped ZnO thin films.

  8. Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Zhang, B. P.; Binh, N. T.; Segawa, Y.

    2004-07-01

    Second harmonic generation (SHG) from ZnO thin films fabricated by metalorganic chemical vapor deposition (MOCVD) technique was carried out. By comparing the second harmonic signal generated in a series of ZnO films with different deposition temperatures, we conclude that a significant part of second harmonic signal is generated at the film deposited with appropriate temperature. The second-order susceptibility tensor χ(2)zzz=9.2 pm/V was deduced for a film deposited at 250 °C.

  9. Low switching voltage ZnO quantum dots doped polymer-dispersed liquid crystal film.

    PubMed

    Hsu, Chuan-Chun; Chen, Yi-Xuan; Li, Hui-Wen; Hsu, Jy-Shan

    2016-04-01

    This paper investigates the effects of ZnO nanoparticles (NPs) on the switching voltages of polymer dispersed liquid crystal (PDLC) films. The threshold and driving electric fields of PDLC film doped with 2.44 wt% ZnO NPs were 0.13 and 0.31 V/μm, respectively, with a contrast ratio of 26. The results of field emission scanning electron microscopy show that the size of the droplets in doped PDLC films increases with the doping concentration. The development of ZnO-doped PDLC films with low driving voltages greatly broadens the applicability of these devices. PMID:27137000

  10. ZrO2-ZnO composite thin films for humidity sensing

    NASA Astrophysics Data System (ADS)

    Velumani, M.; Meher, S. R.; Balakrishnan, L.; Sivacoumar, R.; Alex, Z. C.

    2016-05-01

    ZrO2-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO2 phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  11. Atomic layer deposition of Al-doped ZnO thin films

    SciTech Connect

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  12. Fabrication of superhydrophobic surface of hierarchical ZnO thin films by using stearic acid

    NASA Astrophysics Data System (ADS)

    Wang, Yanfen; Li, Benxia; Xu, Chuyang

    2012-01-01

    Flower-like hierarchical ZnO microspheres were successfully synthesized by a simple, template-free, and low-temperature aqueous solution route. The morphology and microstructure of the ZnO microspheres were examined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The bionic films with hydrophobicity were fabricated by the hierarchical ZnO microspheres modified by stearic acid. It was found that the hydrophobicity of the thin films was very sensitive to the added amount of stearic acid. The thin films modified with 8% stearic acid took on strong superhydrophobicity with a water contact angle (CA) almost to be 178° and weak adhersion. The remarkable superhydrophobicity could be attributed to the synergistic effect of micro/nano hierarchical structure of ZnO and low surface energy of stearic acid.

  13. Highly textured and transparent RF sputtered Eu2O3 doped ZnO films.

    PubMed

    Sreedharan, Remadevi Sreeja; Ganesan, Vedachalaiyer; Sudarsanakumar, Chellappan Pillai; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna; Mahadevan Pillai, Vellara Pappukutty Pillai

    2015-01-01

    Background : Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions. Methods : Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy. Results : XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15-22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions. Conclusion : Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications. PMID:25765728

  14. Highly textured and transparent RF sputtered Eu2O3 doped ZnO films

    PubMed Central

    Sreedharan, Remadevi Sreeja; Ganesan, Vedachalaiyer; Sudarsanakumar, Chellappan Pillai; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna; Mahadevan Pillai, Vellara Pappukutty Pillai

    2015-01-01

    Background Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions. Methods Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy. Results XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15–22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions. Conclusion Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications. PMID:25765728

  15. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Hong, Jeongsoo; Katsumata, Ken-ichi; Matsushita, Nobuhiro

    2016-06-01

    We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10-2 Ω cm and 5.9 × 10-3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

  16. Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells

    PubMed Central

    Tseng, Zong-Liang; Chiang, Chien-Hung; Wu, Chun-Guey

    2015-01-01

    Sputtering made ZnO thin film was used as an electron-transport layer in a regular planar perovskite solar cell based on high quality CH3NH3PbI3 absorber prepared with a two-step spin-coating. An efficiency up to 15.9% under AM 1.5G irradiation is achieved for the cell based on ZnO film fabricated under Ar working gas. The atmosphere of the sputtering chamber can tune the surface electronic properties (band structure) of the resulting ZnO thin film and therefore the photovoltaic performance of the corresponding perovskite solar cell. Precise surface engineering of ZnO thin film was found to be one of the key steps to fabricate ZnO based regular planar perovskite solar cell with high power conversion efficiency. Sputtering method is proved to be one of the excellent techniques to prepare ZnO thin film with controllable properties. PMID:26411577

  17. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  18. Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells.

    PubMed

    Tseng, Zong-Liang; Chiang, Chien-Hung; Wu, Chun-Guey

    2015-01-01

    Sputtering made ZnO thin film was used as an electron-transport layer in a regular planar perovskite solar cell based on high quality CH3NH3PbI3 absorber prepared with a two-step spin-coating. An efficiency up to 15.9% under AM 1.5G irradiation is achieved for the cell based on ZnO film fabricated under Ar working gas. The atmosphere of the sputtering chamber can tune the surface electronic properties (band structure) of the resulting ZnO thin film and therefore the photovoltaic performance of the corresponding perovskite solar cell. Precise surface engineering of ZnO thin film was found to be one of the key steps to fabricate ZnO based regular planar perovskite solar cell with high power conversion efficiency. Sputtering method is proved to be one of the excellent techniques to prepare ZnO thin film with controllable properties. PMID:26411577

  19. Cytotoxic evaluation of nanostructured zinc oxide (ZnO) thin films and leachates.

    PubMed

    Petrochenko, Peter E; Zhang, Qin; Bayati, Reza; Skoog, Shelby A; Phillips, K Scott; Kumar, Girish; Narayan, Roger J; Goering, Peter L

    2014-09-01

    Nanostructured ZnO films have potential use as coatings on medical devices and food packaging due to their antimicrobial and UV-protection properties. However, their influence on mammalian cells during clinical use is not fully understood. This study investigated the potential cytotoxicity of ZnO thin films in RAW 264.7 macrophages. ZnO thin films (∼96nm thick with a 50nm grain) were deposited onto silicon wafers using pulsed laser deposition. Cells grown directly on ZnO thin film coatings exhibited less toxicity than cells exposed to extracts of the coatings. Cells on ZnO thin films exhibited a 43% and 68% decrease in cell viability using the MTT and 7-AAD/Annexin V flow cytometry assays, respectively, after a 24-h exposure as compared to controls. Undiluted 100% 24- and 48-h extracts decreased viability by 89%, increased cell death by LDH release to 76% 24h after treatment, and increased ROS after 5-24h of exposure. In contrast, no cytotoxicity or ROS were observed for 25% and 50% extracts, indicating a tolerable concentration. Roughly 24 and 34μg/m(2) Zn leached off the surfaces after 24 and 48h of incubation, respectively. ZnO coatings may produce gradual ion release which becomes toxic after a certain level and should be evaluated using both direct exposure and extraction methods. PMID:24878115

  20. Plasmonic enhanced optical characteristics of Ag nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sarkar, Arijit; Gogurla, Narendar; Shivakiran Bhaktha, B. N.; Ray, Samit K.

    2016-04-01

    We have demonstrated the enhanced photoluminescence and photoconducting characteristics of plasmonic Ag–ZnO films due to the light scattering effect from Ag nanoislands. Ag nanoislands have been prepared on ITO-coated glass substrates by thermal evaporation followed by annealing. Plasmonic Ag–ZnO films have been fabricated by depositing ZnO over Ag nanoislands by sol–gel process. The band-edge emission of ZnO is enhanced for 170 nm sized Ag nanoislands in ZnO as compared to pure ZnO. The defect emission is also found to be quenched simultaneously for plasmonic Ag–ZnO films. The enhancement and quenching of photoluminescence at different wavelengths for Ag–ZnO films can be well understood from the localized surface plasmon resonance of Ag nanoislands. The Ag–ZnO M–S–M photoconductor device showed a tenfold increment in photocurrent and faster photoresponse as compared to the control ZnO device. The enhancement in photoresponse of the device is due to the increased photon absorption in ZnO films via scattering of the incident illumination.

  1. Correlation between polarity distribution and piezoelectric response of solution-deposited Zn1-xLixO films

    NASA Astrophysics Data System (ADS)

    Nagase, Toshimi; Kamohara, Toshihiro; Nishikubo, Keiko; Fukamachi, Satoru; Shobu, Kazuhisa; Akiyama, Morito

    2011-12-01

    We report a correlation between polarity distribution and piezoelectric response of Li-doped zinc oxide (Zn1-xLixO) films prepared by a facile chemical solution deposition (CSD) method. The correlation supports the importance of controlling the polarity distribution for obtaining high piezoelectric response of ZnO films. Although the Zn1-xLixO films were easily prepared on Inconel substrates by heating randomly-stacked nanoparticle films, Zn0.97Li0.03O and Zn0.94Li0.06O films showed high piezoelectric response of 5.6-5.8 pC/N and high O-polarity distribution ratio of 76-74%. This study presents the CSD method is promising as a low-cost and large-area fabrication method of piezoelectric ZnO films.

  2. Influence of Oxygen Partial Pressure on the Fermi Level of ZnO Films Investigated by Kelvin Probe Force Microscopy

    NASA Astrophysics Data System (ADS)

    Su, Ting; Zhang, Hai-Feng

    2012-12-01

    The influence of oxygen partial pressure on the Fermi level of ZnO films prepared by pulsed laser deposition is investigated. The contact potential difference of the ZnO films fabricated under various oxygen partial pressures is studied systematically using Kelvin probe force microscopy. The Fermi level shifted by 0.35 eV as oxygen partial pressure increased. This indicates a significant change in the electronic structure and energy balance in ZnO films. This fact provides a consistent explanation that the changes in carrier concentration, resistivity and mobility of ZnO films are attributed to oxygen vacancy induced shift of the Fermi level.

  3. Effects of Mn doping on electrical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Motevalizadeh, Leili; Shohany, Boshra Ghanbari; Abrishami, Majid Ebrahimizadeh

    2016-01-01

    In this paper, we have investigated the effect of Mn doping on the electrical properties of ZnO thin films. ZnO thin films with different amounts of Mn concentrations (0, 5, 10 and 15 mol.%) were prepared by spray pyrolysis technique. The crystal structure was examined by X-ray diffraction (XRD) analysis. XRD patterns showed that all the samples were crystallized in wurtzite structure while a decrease in crystallinity and switch in preferential orientations were observed in Mn-doped thin films comparing to undoped ZnO. The element composition of all thin films was detected by energy dispersive X-ray (EDX). The surface morphology of the films was investigated using field emission scanning electron microscope (FESEM) and optical properties were studied using UV-vis spectroscopy. UV-vis study revealed that the band gap blueshifts with the increase in Mn content and Eg increases with the increase in Mn concentration. The resistivity and activation energy were measured at room temperature and ranging from 373 K to 573 K. Comparing to undoped ZnO thin film, the resistivity of Mn-doped ZnO films increased because of different parameters such as increasing barrier height energy and reducing the oxygen deficiency.

  4. Morphology and Structure of ZnO Films Synthesized by Off-Axis Sputtering Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.

    1999-01-01

    ZnO is a wide-band-gap oxide material that has many applications. A new potential application of ZnO material is for light emitting devices since its structure and electrical properties are similar to that of the GaN material (a blue laser candidate). It also is a good substrate for fabricating GaN-based devices. Off-axis sputtering technique has revealed great potential in synthesizing excellent oxide materials because the negative ion bombardment is greatly reduced when adatoms condense on substrates. The surface of films grown by off-axis sputtering will be much smoother than that produced in a regular sputtering configuration. A growth mechanism is studied by investigating the morphology and structure of ZnO films under different growth conditions and orientations. ZnO films are deposited on (0001) sapphire and quartz substrates by off- axis sputtering deposition at various oxygen/argon mixture ratios and pressures and at different temperatures. All films reveal highly textured structures on quartz substrates and epitaxial growth on sapphire substrates. Two off-axis configurations, vertical and horizontal orientations are conducted to study the process of film growth, surface morphology, and film structure. X-ray diffraction, scanning probe microscopy, and electrical measurements are used to characterize these films. Detailed results will be discussed in the presentation. Keywords: ZnO, Photonic material, Off-axis sputtering, Growth mechanism

  5. Optoelectronic Properties of Thermally Evaporated ZnO Films with Nanowalls on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Chen, Tse-Pu; Hung, Fei-Yi; Chang, Sheng-Po; Chang, Shoou-Jinn; Hu, Zhan-Shuo; Chen, Kuan-Jen

    2013-04-01

    Zinc oxide (ZnO) films with two-dimensional (2D) vertically aligned nanowalls, denoted by nanowalls-films, are successfully prepared on glass substrates at a low growth temperature of 450 °C without using metal catalysts. The morphology and optical properties of the nanowalls-film are characterized by scanning electron microscopy, X-ray diffraction analysis, transmission electron microscopy, energy dispersive X-ray spectroscopy, and photoluminescence measurement. The ZnO nanowalls-film show a strong UV emission and a preferred c-axis orientation with a hexagonal structure. The UV sensor measurement of the ZnO nanowalls-film shows a high sensitivity to UV light, rapid rise and decay times, and a good UV-to-visible rejection ratio.

  6. Laser-assisted sol-gel growth and characteristics of ZnO thin films

    SciTech Connect

    Kim, Min Su; Kim, Soaram; Leem, Jae-Young

    2012-06-18

    ZnO thin films were grown on Si(100) substrates by a sol-gel method assisted by laser beam irradiation with a 325 nm He-Cd laser. In contrast to conventional sol-gel ZnO thin films, the surface morphology of the laser-assisted sol-gel thin films was much smoother, and the residual stress in the films was relaxed by laser irradiation. The luminescent properties of the films were also enhanced by laser irradiation, especially, by irradiation during the deposition and post-heat treatment stages. The incident laser beam is thought to play several roles, such as annihilating defects by accelerating crystallization during heat treatment, enhancing the surface migration of atoms and molecules, and relaxing the ZnO matrix structure during crystallization.

  7. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K.; Yu, Hyun Yong

    2015-01-01

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250 °C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80 °C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80 °C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  8. Bipolar Switching Behavior of ZnO x Thin Films Deposited by Metalorganic Chemical Vapor Deposition at Various Growth Temperatures

    NASA Astrophysics Data System (ADS)

    Bae, Seonho; Kim, Dae-Sik; Jung, Seojoo; Jeong, Woo Seop; Lee, Jee Eun; Cho, Seunghee; Park, Junsung; Byun, Dongjin

    2015-11-01

    The bipolar resistive switching behaviors of ZnO films grown at various temperatures by metalorganic chemical vapor deposition have been investigated. The ZnO films were grown on Pt/Ti/SiO2/Si(100) substrate, and the ZnO growth temperature was varied from 300°C to 500°C in steps of 100°C. Rutherford backscattering spectroscopy analysis results showed that the chemical compositions of the ZnO films were oxygen-poor Zn1O0.9 at 300°C, stoichiometric Zn1O1 at 400°C, and oxygen-rich Zn1O1.3 at 500°C. Resistive switching properties were observed in the ZnO films grown at 300°C and 400°C. In contrast, high current, without switching properties, was found in the ZnO film grown at 500°C. The ZnO film grown at 500°C had higher concentration of both nonlattice oxygen (4.95%) and oxygen vacancy (3.23%) than those grown at 300°C or 400°C. The resistive switching behaviors of ZnO films are related to the ZnO growth temperature via the relative amount of oxygen vacancies in the film. Pt/ZnO/Pt devices showed asymmetric resistive switching with narrow dispersion of switching voltage.

  9. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y. G.; Lau, S. P.; Lee, H. W.; Yu, S. F.; Tay, B. K.; Zhang, X. H.; Tse, K. Y.; Hng, H. H.

    2003-08-01

    Room temperature deposition of high crystal quality zinc oxide (ZnO) films was realized by the filtered cathodic vacuum arc (FCVA) technique. Detrimental macroparticles in the plasma as byproducts of arcing process are removed with an off-plane double bend magnetic filter. The influence of oxygen pressure on the structural, electrical and optical properties of ZnO films were investigated in detail. The crystal structure of ZnO is hexagonal with highly c-axis orientation. Intrinsic stress decreases with an increase of chamber pressure, and near stress-free film was obtained at 1×10-3 Torr. Films with optical transmittance above 90% in the visible range and resistivity as low as 4.1×10-3 Ω cm were prepared at pressure of 5×10-4 Torr. Energetic zinc particles in the cathodic plasma and low substrate temperature enhance the probability of formation of zinc interstitials in the ZnO films. The observation of strong ultraviolet photoluminescence and weak deep level emission at room temperature manifest the high crystal quality of the ZnO films prepared by FCVA. Enlargement of the band gap is observed in the absorption and photoluminescence spectra, the band gap shifts towards lower energy with an increase of oxygen pressure. This phenomenon is attributed to the Burstein-Moss effect.

  10. Investigation of physical properties of screen printed nanosized ZnO films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Zargar, Rayees Ahmad; Arora, Manju; Khurram Hafiz, Aurangzeb

    2015-04-01

    Nanosized ZnO particles derived from chemical co-precipitation route were used for casting ZnO films by screen printing method followed by sintering at two different temperatures. The variation in structural, optical and electrical properties of these films with temperature have been investigated by XRD, SEM, FTIR, Raman, UV-VIS, EPR and four probe analytical techniques. XRD patterns of these films exhibit polycrystalline nature with hexagonal wurtzite structure and SEM images reveal the smooth, dense and without any cracks/damage porous surface morphology. Infrared transmission spectra shows peaks pertaining to Zn-O stretching modes and their multiphonon modes. While Raman spectra exhibited strong peaks of E2 (high) phonon and overtone of surface phonon mode at 429 cm-1 and 1144 cm-1 respectively with weak components of LO and TO branches. The direct band gap energy of these films showed narrowing of band gap from 3.21 eV to 3.12 eV on increasing sintering temperature from 500 °C to 600 °C. DC conductivity measurements confirmed semiconducting behaviour and showed lowering of activation energy. EPR spectra showed single narrow line resonance signal of g-value ~ 1.9469 due to oxygen vacancies which are produced during synthesis of ZnO nanoparticles by sol-gel process. These studies revealed that on increasing sintering temperature the crystallinity of the film improves with reduction in lattice deformations in these screen printed ZnO films.

  11. Influence of nitrogen and magnesium doping on the properties of ZnO films

    NASA Astrophysics Data System (ADS)

    Dong-hua, Li; Hui-Qiong, Wang; Hua, Zhou; Ya-Ping, Li; Zheng, Huang; Jin-Cheng, Zheng; Jia-Ou, Wang; Hai-jie, Qian; Kurash, Ibrahim; Xiaohang, Chen; Huahan, Zhan; Yinghui, Zhou; Junyong, Kang

    2016-07-01

    Undoped ZnO and doped ZnO films were deposited on the MgO(111) substrates using oxygen plasma-assisted molecular beam expitaxy. The orientations of the grown ZnO thin film were investigated by in situ reflection high-energy electron diffraction and ex situ x-ray diffraction (XRD). The film roughness was measured by atomic force microscopy, which was correlated with the grain sizes determined by XRD. Synchrotron-based x-ray absorption spectroscopy was performed to study the doping effect on the electronic properties of the ZnO films, compared with density functional theory calculations. It is found that, nitrogen doping would hinder the growth of thin film, and generate the NO defect, while magnesium doping promotes the quality of nitrogen-doped ZnO films, inhibiting (N2)O production and increasing nitrogen content. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204253, U1332105, 61227009, and 91321102), the Fundamental Research Funds for Central Universities, China (Grant No. 20720160020), and the National High Technology Research and Development Program of China (Grant No. 2014AA052202).

  12. Optical Properties of Cu-Doped ZnO Films Prepared by Cu Solution Coating.

    PubMed

    Allabergenov, Bunyod; Chung, Seok-Hwan; Kim, Sungjin; Choi, Byeongdae

    2015-10-01

    This work demonstrates the fabrication of Cu-doped ZnO films by Cu solution coating method. Cu ink was spin coated on ZnO thin films prepared by e-beam deposition. After curing and annealing at high temperatures, structural, morphological and optical properties of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectrofluorometer, respectively. The XRD results showed that ZnO films formed polycrystalline with a hexagonal wurtzite structure, and the grain size increased with increasing the annealing temperature from 500 to 850 °C. The changes in lattice parameters were caused by grain size, strain, and residual stress. Morphological analysis have revealed that the Cu-doped ZnO film after annealing at 500 °C has flat surface with uniformly distributed grain size, which became porous after higher temperature annealing process. Energy dispersive spectroscopy (EDS) and photoluminescence spectras have shown the presence of Zn, Cu, and O elements, and combined violet, blue, green and weak red emissions between 350 and 650 nm in the ZnO films, respectively. PMID:26726392

  13. Role of Ni doping on transport properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Dar, Tanveer Ahmad; Agrawal, Arpana; Sen, Pratima

    2015-06-01

    Nickel doped (Ni=0.05) and undoped Zinc Oxide (ZnO) thin films have been prepared by Pulsed laser deposition (PLD) technique. The structural analysis of the films was done by X-ray diffraction (XRD) studies which reveal absence of any secondary phase in the prepared samples. UV transmission spectra show that Ni doping reduces the transparency of the films. X-ray Photoelectron spectroscopy (XPS) also shows the presence of metallic Ni along with +2 oxidation state in the sample. Low temperature magneto transport properties of the ZnO and NiZnO films are also discussed in view of Khosla fisher model. Ni doping in ZnO results in decrease in magnitude of negative MR.

  14. Mechanical and structural characterization of atomic layer deposition-based ZnO films

    NASA Astrophysics Data System (ADS)

    Tapily, K.; Gu, D.; Baumgart, H.; Namkoong, G.; Stegall, D.; Elmustafa, A. A.

    2011-11-01

    Zinc oxide thin films were deposited by atomic layer deposition (ALD). The structural and mechanical properties of the thin films were investigated by x-ray diffraction, transmission electron microscopy, atomic force microscopy, and nanoindentation. Diethyl zinc was used as the chemical precursor for zinc and water vapor was used as the oxidation agent. The samples were deposited at 150 °C and at a pressure of 2.1 × 10-1 Torr in the ALD reactor. A growth rate of 2 Å per cycle was calculated in the ALD process window. The Nano Indenter XP was used in conjunction with the continuous stiffness method in depth control mode in order to measure and to analyze the mechanical properties of hardness and modulus of ALD ZnO thin film samples. For comparison, we benchmarked the mechanical properties of single crystal bulk ZnO samples against those of our ALD ZnO thin films.

  15. Optical Properties of MEH-PPV Thin Films Containing ZnO Nanoparticles

    SciTech Connect

    Zayana, N. Y.; Shariffudin, S. S.; Jumali, N. S.; Shaameri, Z.; Hamzah, A. S.; Rusop, M.

    2011-05-25

    Thin films of poly [2-methoxy-5(2'-ethyl hexyloxy)-phenylene vinylene](MEH-PPV) containing different weight percent of ZnO nanoparticles were deposited by spin coating from THF solutions and their optical properties were investigated. Optical characterization of the nanocomposite thin films were performed by Ultraviolet-Visible Spectrophotometer (UV-Vis) and Photoluminescence Spectrometer while the thickness of the thin films was measured by using Surface Profiler. The UV-Vis absorption spectra of MEH-PPV: ZnO films showed a small red shift as compared with pure MEH-PPV. Similarly, a small red shift was found in PL emission spectra with increasing the content of ZnO nanoparticles.

  16. Role of Ni doping on transport properties of ZnO thin films

    SciTech Connect

    Dar, Tanveer Ahmad Agrawal, Arpana; Sen, Pratima

    2015-06-24

    Nickel doped (Ni=0.05) and undoped Zinc Oxide (ZnO) thin films have been prepared by Pulsed laser deposition (PLD) technique. The structural analysis of the films was done by X-ray diffraction (XRD) studies which reveal absence of any secondary phase in the prepared samples. UV transmission spectra show that Ni doping reduces the transparency of the films. X-ray Photoelectron spectroscopy (XPS) also shows the presence of metallic Ni along with +2 oxidation state in the sample. Low temperature magneto transport properties of the ZnO and NiZnO films are also discussed in view of Khosla fisher model. Ni doping in ZnO results in decrease in magnitude of negative MR.

  17. A template-free CVD route to synthesize hierarchical porous ZnO films

    NASA Astrophysics Data System (ADS)

    Duan, Xiangyang; Chen, Guangde; Guo, Lu'an; Zhu, Youzhang; Ye, Honggang; Wu, Yelong

    2015-12-01

    Unique porous ZnO films were successfully synthesized on Si substrates without any catalysts or templates using chemical vapor deposition method. Unlike earlier reports, they are hierarchical porous, containing both macropores and mesopores. The zinc oxide seed layer and the weight ratio of source materials were found to be the major factors that would facilitate the synthesis of these hierarchical porous films. We found that all the macropores were surrounded by grain boundaries. As presented in the SEM images, the newborn ZnO atoms would prefer to adsorb nearby the grain boundaries and nucleate there in the growth stage. A schematic diagram based on the aforesaid phenomenon was proposed to explain the synthesis of the hierarchical porous ZnO film. An unusual strong emission peak located at 420 nm was observed in the photoluminescence spectrum. It was suggested that the emission peak was attributed to the special hierarchical porous structure, especially the grain boundaries in the nanowalls of these films.

  18. Rectifying properties of ZnO thin films deposited on FTO by electrodeposition technique

    NASA Astrophysics Data System (ADS)

    Lv, Jianguo; Sun, Yue; Zhao, Min; Cao, Li; Xu, Jiayuan; He, Gang; Zhang, Miao; Sun, Zhaoqi

    2016-03-01

    ZnO thin films were successfully grown on fluorine-doped tin oxide glass by electrodeposition technique. The crystal structure, surface morphology and optical properties of the thin films were investigated. The average crystallite size and intensity of A1(LO) mode increase with improving the absolute value of deposition potential. The best preferential orientation along c-axis and the richest oxygen interstitial defects have been observed in the sample deposited at -0.8 V. A heterojunction device consisting of ZnO thin film and n-type fluorine-doped tin oxide was fabricated. The current-voltage (I-V) characteristic of the p-n heterojunction device deposited at -0.8 V shows the best rectifying diode behavior. The p-type conductivity of the ZnO thin film could be attributed to complex defect of unintentional impurity and interstitial oxygen.

  19. Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method

    NASA Astrophysics Data System (ADS)

    Radha, R.; Sakthivelu, A.; Pradhabhan, D.

    2016-08-01

    Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.

  20. Large lateral photovoltaic effect observed in nano Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Wang, Hui

    2011-07-01

    Zinc oxide (ZnO), including a variety of metal-doped ZnO, as one kind of most important photoelectric materials, has been widely investigated and received enormous attention for a series of applications. In this work, we report a new finding which we call as lateral photovoltaic effect (LPE) in a nano Al-doped ZnO (ZAO) film based on ZAO/SiO2/Si homo-heterostructure. This large and stable LPE observed in ZAO is an important supplement to the existing ZnO properties. In addition, all data and analyses demonstrate ZAO film can also be a good candidate for new type position-sensitive detector (PSD) devices.

  1. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food. PMID:24721068

  2. Formation of ST12 phase Ge nanoparticles in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Ceylan, Abdullah; Gumrukcu, Emre; Ozcan, Sadan

    2015-03-01

    In this work, we investigate the effects of reactive and nonreactive growth of ZnO on the rapid thermal annealing (RTA) induced formation of Ge nanoparticles (Ge-np) in ZnO: Ge nanocomposite thin films. The samples were deposited by sequential sputtering of ZnO and Ge thin film layers with a total thickness of about 600 nm on Si substrates followed by an ex-situ (RTA) at 600°C for 30, 60, 90, 120, 150, 180, and 210 s under forming gas atmosphere. In order for the reactive sputtering of ZnO layer, 5 mTorr Oxygen was introduced to the growth chamber. XRD and Raman analyses were utilized to investigate the effect of RTA time on the structural evolution of the samples. It has been realized that crystal structure of Ge nanoparticles is significantly affected by the growth method of the embedding ZnO layer. While reactive deposition of ZnO layers results in a mixture of diamond cubic (DC) and simple tetragonal (ST12) Ge-np, nonreactive deposition of ZnO layers leads to the formation of pure DC Ge-np upon RTA process. Formation of these two phases has been discussed based on the existence of native point defects such as oxygen vacancies and Zn interstitials.

  3. Charge Compensated (Al, N) Co-Doped Zinc Oxide (ZnO) Films for Photlelectrochemical Application

    SciTech Connect

    Shet, S.

    2012-01-01

    ZnO thin films with significantly reduced bandgaps were synthesized by doping N and co-doping Al and N at 100oC. All the films were synthesized by radio-frequency magnetron sputtering on F-doped tin-oxide-coated glass. We found that co-doped ZnO:(Al,N) thin films exhibited significantly enhanced crystallinity as compared to ZnO doped solely with N, ZnO:N, at the same growth conditions. Furthermore, annealed ZnO:(Al,N) thin films exhibited enhanced N incorporation over ZnO:N films. As a result, ZnO:(Al,N) films exhibited improved photocurrents than ZnO:N films grown with pure N doping, suggesting that charge-compensated donor-acceptor co-doping could be a potential method for bandgap reduction of wide-bandgap oxide materials to improve their photoelectrochemical performance.

  4. Controlling growth rate anisotropy for formation of continuous ZnO thin films from seeded substrates.

    PubMed

    Zhang, R H; Slamovich, E B; Handwerker, C A

    2013-05-17

    Solution-processed zinc oxide (ZnO) thin films are promising candidates for low-temperature-processable active layers in transparent thin film electronics. In this study, control of growth rate anisotropy using ZnO nanoparticle seeds, capping ions, and pH adjustment leads to a low-temperature (90 ° C) hydrothermal process for transparent and high-density ZnO thin films. The common 1D ZnO nanorod array was grown into a 2D continuous polycrystalline film using a short-time pure solution method. Growth rate anisotropy of ZnO crystals and the film morphology were tuned by varying the chloride (Cl(-)) ion concentration and the initial pH of solutions of zinc nitrate and hexamethylenetetramine (HMTA), and the competitive adsorption effects of Cl(-) ions and HMTA ligands on the anisotropic growth behavior of ZnO crystals were proposed. The lateral growth of nanorods constituting the film was promoted by lowering the solution pH to accelerate the hydrolysis of HMTA, thereby allowing the adsorption effects from Cl(-) to dominate. By optimizing the growth conditions, a dense ∼100 nm thickness film was fabricated in 15 min from a solution of [Cl(-)]/[Zn(2+)] = 1.5 and pH=  4.8 ± 0.1. This film shows >80% optical transmittance and a field-effect mobility of 2.730 cm(2) V(-1) s(-1) at zero back-gate bias. PMID:23595114

  5. Oxygen glow treating of ZnO electrode for thin film silicon solar cell

    SciTech Connect

    Elias, E.; Knapp, K.E.

    1989-10-10

    This patent describes an improvement in a process for production of a photoconductive device wherein a first conductive layer comprising ZnO is applied to a substrate, and a thin film silicon hydrogen alloy is applied to the first conductive layer. The improvement comprising: after applying the first conductive layer comprising ZnO to the substrate, treating the first conductive layer with a glow discharge in a gas containing a source of oxygen.

  6. Influence of Substrate Nature and Annealing on Electro-Optical Properties of ZnO Thin Films

    SciTech Connect

    Iacomi, Felicia; Baban, C.; Prepelita, Petronela; Luca, D.; Iftimie, Nicoleta

    2007-04-23

    ZnO thin films were grown on different substrates (glass, quartz, silicon wafers, etc) by vacuum thermal evaporation. Different thermal treatments were performed in order to obtain transparent and conductive or high resistive ZnO thin films. The optical and electrical properties of ZnO thin films are dependent on the crucible temperature, annealing conditions and on the substrate nature. The thin films are transparent and have an electrical resistivity in 10-4 {omega}m regio. The annealing process performed in vacuum at 573K or under UV irradiation determines a decrease in the electrical resistivity of films.

  7. Characterization of ZnO Thin Films Prepared by Thermal Oxidation of Zn

    NASA Astrophysics Data System (ADS)

    Bouanane, I.; Kabir, A.; Boulainine, D.; Zerkout, S.; Schmerber, G.; Boudjema, B.

    2016-07-01

    Zinc oxide thin films were prepared by thermal oxidation of zinc films at a temperature of 500°C for 2 h. The Zn films were deposited onto glass substrates by magnetron RF sputtering. The sputtering time varied from 2.5 min to 15 min. The physico-chemical characterization of the ZnO films was carried out depending on the Zn sputtering time. According to x-ray diffraction, ZnO films were polycrystalline and the Zn-ZnO phase transformation was direct. The mean transmittance of the ZnO films was around 80% and the band gap increased from 3.15 eV to 3.35 eV. Photoluminescence spectra show ultraviolet, visible, and infrared emission bands. The increase of the UV emission band was correlated with the improvement of the crystalline quality of the ZnO films. The concentration of native defects was found to decrease with increasing Zn sputtering time. The decrease of the electrical resistivity as a function of Zn sputtering time was linked to extrinsic hydrogen-related defects.

  8. Characterization of ZnO Thin Films Prepared by Thermal Oxidation of Zn

    NASA Astrophysics Data System (ADS)

    Bouanane, I.; Kabir, A.; Boulainine, D.; Zerkout, S.; Schmerber, G.; Boudjema, B.

    2016-04-01

    Zinc oxide thin films were prepared by thermal oxidation of zinc films at a temperature of 500°C for 2 h. The Zn films were deposited onto glass substrates by magnetron RF sputtering. The sputtering time varied from 2.5 min to 15 min. The physico-chemical characterization of the ZnO films was carried out depending on the Zn sputtering time. According to x-ray diffraction, ZnO films were polycrystalline and the Zn-ZnO phase transformation was direct. The mean transmittance of the ZnO films was around 80% and the band gap increased from 3.15 eV to 3.35 eV. Photoluminescence spectra show ultraviolet, visible, and infrared emission bands. The increase of the UV emission band was correlated with the improvement of the crystalline quality of the ZnO films. The concentration of native defects was found to decrease with increasing Zn sputtering time. The decrease of the electrical resistivity as a function of Zn sputtering time was linked to extrinsic hydrogen-related defects.

  9. Electrical and optical properties of Ti doped ZnO films grown on glass substrate by atomic layer deposition

    SciTech Connect

    Wan, Zhixin; Kwack, Won-Sub; Lee, Woo-Jae; Jang, Seung-II; Kim, Hye-Ri; Kim, Jin-Woong; Jung, Kang-Won; Min, Won-Ja; Yu, Kyu-Sang; Park, Sung-Hun; Yun, Eun-Young; Kim, Jin-Hyock; Kwon, Se-Hun

    2014-09-15

    Highlights: • Ti doped ZnO films were prepared on Corning XG glass substrate by ALD. • The electrical properties and optical properties were systematically investigated. • An optimized Ti doped ZnO films had low resistivity and excellent optical transmittance. - Abstract: Titanium doped zinc oxide (Ti doped ZnO) films were prepared by atomic layer deposition methods at a deposition temperature of 200 °C. The Ti content in Ti doped ZnO films was varied from 5.08 at.% to 15.02 at.%. X-ray diffraction results indicated that the crystallinity of the Ti doped ZnO films had degraded with increasing Ti content. Transmission electron microscopy was used to investigate the microstructural evolution of the Ti doped ZnO films, showing that both the grain size and crystallinity reduced with increasing Ti content. The electrical resistivity of the Ti doped ZnO films showed a minimum value of 1.6 × 10{sup −3} Ω cm with the Ti content of 6.20 at.%. Furthermore, the Ti doped ZnO films exhibited excellent transmittance.

  10. UCN detection with 6Li-doped glass scintillators

    NASA Astrophysics Data System (ADS)

    Ban, G.; Bodek, K.; Lefort, T.; Naviliat-Cuncic, O.; Pierre, E.; Plonka, C.; Rogel, G.

    2009-12-01

    We report the results of test measurements aimed at determining the performance of 6Li-doped glass scintillators for ultra-cold neutron detection. Investigations have mainly focused on the reduction of the gamma-ray sensitivity of the scintillators. The probability of gamma interaction has been considerably lowered using very thin glasses. For signals corresponding to full-energy deposition, a background count rate of 8×10 -3 s -1 was obtained for a shielded 0.5 cm 3 GS10 scintillator located near the PF2 turbine at ILL. The neutron-gamma separation has further been improved using a stack with an 6Li-depleted scintillator and an 6Li-enriched one. Neutron captures leading to partial energy deposition (so-called "edge events") have strongly been reduced resulting in a clear separation between the neutron and the gamma contributions.

  11. Electrical and optical properties of in and Al doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Koh, Jung-Hyuk

    2013-07-01

    In this study, to improve the electrical and optical properties of aluminium (Al) doped zinc oxide thin films, we have added small amounts of indium (In) to Al doped ZnO thin films. We will present the results of In and Al doped ZnO thin film on glass substrates prepared by the sol-gel processing method. A rapid thermal annealing process was applied to cure the thin film properties. Different amounts of In were used to dope the AZO thin films to find the optimum process condition. The effects of crystallinity were analyzed by an x-ray diffraction method. In addition, the optical transmittance and electrical proprties of In doped AZO thin films were investigated.

  12. Effect of defect content on the unipolar resistive switching characteristics of ZnO thin film memory devices

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Li, Xiaomin; Gao, Xiangdong; Wu, Liang; Zhuge, Fuwei; Wang, Qun; Liu, Xinjun; Yang, Rui; He, Yong

    2012-09-01

    In this study, unipolar resistive switching (URS) characteristics in ZnO thin film memory devices were systematically investigated with variable defect content. ZnO films displayed typically URS behavior while oxygen-deficient ZnO1-x films did not show resistive switching effects. The devices with two intentional Ohmic interfaces still show URS. These results show that appearance of URS behavior can be dominated by initial oxygen vacancy content in ZnO thin films. Modest increase in oxygen vacancy content in ZnO films will lead to forming-free and narrower distributions of switching parameters (set and reset voltage, high and low resistance states). It indicates that controlling the initial oxygen vacancy content was an effective method to enhance the URS performance.

  13. Growth of <1100> Epitaxial ZnO Film on Y-Plane LiNbO3 Substrate

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Ito, Yoshihiro; Kobayashi, Hideaki

    2008-05-01

    A <0001> oriented polycrystal ZnO film is deposited on many types of substrate. However, an epitaxial ZnO film is deposited on only specific substrates, because it depends greatly on the lattice constant of the substrate. An epitaxial ZnO film with the c-axis oriented horizontally on some types of substrate has been reported. In this study, a <1100> orientated epitaxial ZnO film has been deposited on a pre-heat-treated Y-plane (0110) LiNbO3 substrate for the first time. A <0001> oriented polycrystal ZnO film has also been deposited on this substrate without pre-heat-treatment. Thus, two orientation directions can be controlled by pre-heat-treatment for the first time. Moreover, their applications to shear bulk wave transducers and surface acoustic wave devices are discussed.

  14. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  15. ZnSe and ZnO film growth by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Han, S. W.; White, H. W.; Miceli, P. F.; Chandrasekhar, H. R.

    1998-05-01

    ZnSe and ZnO films have been deposited on (001) GaAs substrates under different pressures by pulsed-laser deposition (PLD) with a 193 nm laser beam. The ambient pressures were changed from 8×10 -6 to 5×10 -2 Torr with high-purity argon gas for ZnSe and oxygen gas for ZnO. X-ray diffraction (XRD) measurement was performed on these samples. The FWHM's of X-ray theta-rocking curves for the (004) peaks of ZnSe films were less than 0.5°. X-ray data show that high-quality ZnO films can be also synthesized by PLD.

  16. Production of high-quality ZnO films by the two-step annealing method

    NASA Astrophysics Data System (ADS)

    Ye, J. D.; Gu, S. L.; Zhu, S. M.; Qin, F.; Liu, S. M.; Liu, W.; Zhou, X.; Hu, L. Q.; Zhang, R.; Shi, Y.; Zheng, Y. D.

    2004-11-01

    In this study, a two-step annealing method is advanced to produce high-quality ZnO films with excellent structural, electrical, and optical properties. The effects of oxygen and nitrogen annealing on the properties of undoped ZnO films are reversible to each other and are attributed to the creation and annihilation of extrinsic trap states of antisite oxygen OZn and oxygen vacancies VO, which result from the chemisorption and desorption of oxygen, respectively. Moreover, annealing in nitrogen causes slight nitrogen incorporation, subsequently increasing the resistivity and inducing compressive stress in the film. The key to this two-step method is to keep the chemisorption and desorption of oxygen in equilibrium. Due to the similarity of annealing ambient with the growth condition, this process can be transplanted and employed in the in situ preparation of high-quality ZnO epilayers.

  17. Hydrogen treatment of undoped ZnO thin film using photo-chemical vapor deposition

    SciTech Connect

    Baik, S.J.; Lim, K.S.; Song, J.

    1996-12-31

    To obtain high quality ZnO thin films for use as transparent electrodes of amorphous silicon solar cells, hydrogen treatment of the films using photo-chemical vapor deposition was performed for the first time. The as-deposited ZnO thin film was irradiated by UV light during the flow of hydrogen molecules in the presence of photo-sensitizers of mercury. As the treatment time increased, resistivity decreased from 1 {times} 10{sup {minus}2}{Omega}cm to 2 {times} 10{sup {minus}3}{Omega}cm. Moreover, haze ratio increased from 20% to 48%. Hydrogen radicals were thought to be playing various roles on the neighborhood of the surface region and the grain boundary region. This new trial gave us new understanding into the relation between hydrogen and ZnO. Moreover, these results could be applied to the process of amorphous silicon solar cells and a possible increase of efficiency is expected.

  18. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    SciTech Connect

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-27

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 {mu}A mM{sup -1} cm{sup -2} and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  19. Photoluminescence, electrical and structural properties of ZnO films, grown by ALD at low temperature

    NASA Astrophysics Data System (ADS)

    Przeździecka, E.; Wachnicki, Ł.; Paszkowicz, W.; Łusakowska, E.; Krajewski, T.; Łuka, G.; Guziewicz, E.; Godlewski, M.

    2009-10-01

    We report the first results of the low-temperature photoluminescence study on polycrystal zinc oxide (ZnO) films obtained by atomic layer deposition at 100 °C, 130 °C and 200 °C. These ZnO films, when studied 'as-grown', show a strong excitonic emission even at room temperature. Low-temperature (T = 9 K) photoluminescence reveals lack of defect-related bands and a sharp photoluminescence peak at 3.36 eV with full width at half maximum of 6 meV which is comparable with the value reported for good quality bulk ZnO crystals. The energy position of the excitonic peak scales with temperature according to standard formulas and give the Debye temperature of 963 ± 26 K. We show that optical properties of low-temperature 'as-grown' ZnO films are correlated with structural and electrical ones and that optical study can be a valuable tool for evaluation of quality of ZnO films for novel electronic applications.

  20. Laser ablated ZnO thin film for amperometric detection of urea

    NASA Astrophysics Data System (ADS)

    Batra, Neha; Tomar, Monika; Jain, Prateek; Gupta, Vinay

    2013-09-01

    Zinc oxide (ZnO) thin films deposited onto indium tin oxide (ITO) coated corning glass substrates using pulsed laser deposition (PLD) technique at two different oxygen pressures (50 mT and 100 mT) have been used as efficient matrix for realization of efficient urea biosensors after immobilization of urease (Urs) enzyme onto ZnO film surface. The bioelectrode Urs/ZnO/ITO/glass having ZnO matrix grown at 100 mT is found to be exhibiting an enhanced sensitivity of 36 μΑ mΜ-1 cm-2 for urea over a wide detection range of 5-200 mg/dl. The relatively low value of Michaelis-Menten constant (Km = 0.82 mM) indicates high affinity of the immobilized urease towards the analyte (urea). The prepared sensor exhibits high selectivity towards detection of urea and retains 90% of its activity for more than 12 weeks. The observed enhanced response characteristics of bioelectrode is attributed to the growth of highly c-axis oriented ZnO thin film by PLD at 100 mT oxygen pressure with desired rough and porous surface morphology besides high electron communication feature. The results confirm the promising application of PLD grown ZnO thin film as an efficient matrix for urea detection.

  1. Enhancement of gas response of ZnO micro-nano structured films through plasma treatment

    NASA Astrophysics Data System (ADS)

    Delaunay, Jean-Jacques; Yanagisawa, Kazumasa; Nishino, Toshiki; Yamada, Ichiro

    2007-02-01

    Films of ZnO micro-nano structures were deposited on quartz substrates and subsequently plasma treated in O II, N II and CF 4. It was found that exposure to oxygen plasma enhanced gas response to ethanol vapor of the ZnO films by a factor 2. The effect of surface plasma treatments on the gas response of the ZnO films was discussed in reference to surface morphology observed by high-magnification SEM and surface chemical state determined by XPS. SEM observation revealed that O II plasma treatment induced less surface roughening than N II and CF 4 plasmas, in agreement with the view that O II plasma should reduce preferential sputtering. Deconvolution of the O 1s X-ray photoelectron peak indicated an increase in the Zn-O bond surface density relatively to O-H bond density for the O II plasma treated surface, whereas the O-H bond surface density was increased relatively to the Zn-O bond density for the N II and CF 4 plasma treated films. The O II plasma was found to partially clean the surface from hydroxyl groups and to expose more Zn cations, which might have caused the enhancement of sensor response by increasing the density of active sites for oxidation/reduction reactions.

  2. Surface modification of ZnO film by hydrogen peroxide solution

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Hung; Wang, Wei-Chin; Jenq, Feng-Lin; Liu, Chien-Chih; Hung, Chen-I.; Houng, Mau-Phon

    2008-09-01

    The effect of hydrogen peroxide (H2O2) treatment on the microstructure and luminescent properties of ZnO thin films has been investigated. Governed by high-resolution transmission electron microscopy and selected-area electron diffraction patterns, the oxygen radicals dissociated from H2O2 solution at room temperature and substantially changed the polycrystalline ZnO film into an insulator. In addition, the photoluminescence spectra showed that H2O2 solution had nearly no effect on the intensity of ultraviolet emission, whereas it significantly enhanced the intensity of deep-level emission. These observations strongly reveal the fact that the oxygen radicals penetrating into a ZnO film are reasonably speculated to occupy the interstitial sites to form oxygen interstitials Oi or fill the Zn vacancies to form antisite oxygen OZn defects. Because of these extra defects involved, an enhancement of the green light luminescence is significantly promoted in our ZnO samples after handling with H2O2 solution. Based on the characteristics mentioned above, our hydrogen peroxide solution treated ZnO film has the potential for applying to the light-emitting diode with metal-insulator-semiconductor structure.

  3. Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film

    PubMed Central

    2013-01-01

    ZnO nanorod arrays (NRAs) on transparent conductive oxide (TCO) films have been grown by a solution-free, catalyst-free, vapor-phase synthesis method at 600°C. TCO films, Al-doped ZnO films, were deposited on quartz substrates by magnetron sputtering. In order to study the effect of the growth duration on the morphological and optical properties of NRAs, the growth duration was changed from 3 to 12 min. The results show that the electrical performance of the TCO films does not degrade after the growth of NRAs and the nanorods are highly crystalline. As the growth duration increases from 3 to 8 min, the diffuse transmittance of the samples decreases, while the total transmittance and UV emission enhance. Two possible nanorod self-attraction models were proposed to interpret the phenomena in the sample with 9-min growth duration. The sample with 8-min growth duration has the highest total transmittance of 87.0%, proper density about 75 μm−2, diameter about 26 nm, and length about 500 nm, indicating that it can be used in hybrid solar cells. PMID:23566567

  4. ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Hongsingthong, Aswin; Krajangsang, Taweewat; Afdi Yunaz, Ihsanul; Miyajima, Shinsuke; Konagai, Makoto

    2010-05-01

    We successfully increased the haze value of zinc oxide (ZnO) films fabricated using metal-organic chemical vapor deposition (MOCVD) by conducting glass-substrate etching before film deposition. It was found that with increasing the glass treatment time, the surface morphology of ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like multi texture. Further, the rms roughness and the haze value of the films increased remarkably. Using ZnO films with a high haze value as front transparent conductive oxide (TCO) films in hydrogenated microcrystalline silicon (µc-Si:H) solar cells, we improved the quantum efficiency of these cells particularly in the long-wavelength region.

  5. Heteroepitaxial growth of nonpolar Cu-doped ZnO thin film on MnS-buffered (100) Si substrate

    NASA Astrophysics Data System (ADS)

    Nakamura, Tatsuru; Nguyen, Nam; Nagata, Takahiro; Takahashi, Kenichiro; Ri, Sung-Gi; Ishibashi, Keiji; Suzuki, Setsu; Chikyow, Toyohiro

    2015-06-01

    The preparation of nonpolar ZnO and Cu-doped ZnO thin films on Si substrates was studied for the application to the fabrication of green-light-emitting diodes. The use of rocksalt MnS and wurtzite AlN as buffer layers is a key technology for achieving the heteroepitaxial growth of nonpolar ZnO thin film on a (100) Si substrate. X-ray diffraction and photoluminescence measurements revealed that deposition under a high oxygen partial pressure (∼1 Torr) can enhance the nonpolar crystallization of undoped ZnO, and can simultaneously suppress the formation of defects such as oxygen vacancies. These techniques can be also applied to the growth of Cu-doped ZnO. A room-temperature photoluminescence study revealed that nonpolar [11\\bar{2}0]-oriented Cu-doped ZnO film exhibits enhanced green emission owing to the doped Cu ions.

  6. Effects of N- and N-In doping on ZnO films prepared by using ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Park, Se-Jeong; Shin, Dong-Myeong; Kim, Hyung-Kook; Hwang, Yoon-Hwae; Zhang, Yiwen; Li, Xiaomin

    2014-12-01

    The effects of N-doping, and N-In co-doping on ZnO films were studied by analyzing the structural, electrical, and optical properties of the films prepared by using an ultrasonic spray pyrolysis (USP) method. According to scanning electron microscopy (SEM) data, all films had very complex surface structures. Their polycrystallinity were also proven by using an X-ray diffraction method. The Hall-effect measurement showed that both the undoped and the N-doped ZnO films exhibited n-type conductivity and that the N-In co-doped ZnO film showed p-type conductivity. In the extended X-ray absorption fine structure (EXAFS) analysis, the number of oxygen atoms in the N-In codoped ZnO films was found to be larger than that in the N-doped and the undoped ZnO films. The photoluminescence spectra also showed that the N-In co-doping suppressed the concentration of oxygen vacancies in the ZnO films. Through an effective incorporation of indium atoms, more oxygen atoms seem to have been introduced into the lattice of the N-In co-doped ZnO films.

  7. Fabrication and Characterization of High-Crystalline Nanoporous ZnO Thin Films by Modified Thermal Evaporation System

    NASA Astrophysics Data System (ADS)

    Islam, M. S.; Hossain, M. F.; Razzak, S. M. A.; Haque, M. M.; Saha, D. K.

    2016-05-01

    The aim of this work is to fabricate high-crystalline nanoporous zinc oxide (ZnO) thin films by a modified thermal evaporation system. First, zinc thin films have been deposited on bare glass substrate by the modified thermal evaporation system with pressure of 0.05mbar, source-substrate distance of 3cm and source temperature 700∘C. Then, high-crystalline ZnO thin film is obtained by annealing at 500∘C for 2h in atmosphere. The prepared ZnO films are characterized with various deposition times of 10min and 20min. The structural property was investigated by X-ray diffractometer (XRD). The optical bandgap and absorbance/transmittance of these films are examined by ultraviolet/visible spectrophotometer. The surface morphological property has been observed by scanning electron microscope (SEM). ZnO films have showed uniform nanoporous surface with high-crystalline hexagonal wurtzite structure. The ZnO films prepared with 20min has excitation absorption-edge at 369nm, which is blueshifted with respect to the bulk absorption-edge appearing at 380nm. The gap energy of ZnO film is decreased from 3.14eV to 3.09eV with increase of the deposition time, which can enhance the excitation of ZnO films by the near visible light, and is suitable for the application of photocatalyst of waste water cleaning and polluted air purification.

  8. Investigation of correlation between the microstructure and electrical properties of sol-gel derived ZnO based thin films

    NASA Astrophysics Data System (ADS)

    Zhu, M. W.; Gong, J.; Sun, C.; Xia, J. H.; Jiang, X.

    2008-10-01

    Pure ZnO and aluminum doped ZnO films (ZAO) were prepared by sol-gel method and the effect of Al doping on the microstructure and electrical properties of the films was investigated. The results showed that the transformation from granular to columnar structure could be observed in pure ZnO films with the increase in heating time while in aluminum doped films little structural changes occurred even after a prolonged heating time. Additionally, measurements of electrical properties showed that both microstructural evolution and doping could significantly improve the conductivity of the films, which could be assigned to an increase both in Hall mobility and carrier concentration. The relationship between microstructure and the electrical properties of the films was discussed, and various scattering mechanisms were proposed for sol-gel derived ZnO and ZAO films as a function of the carrier concentration.

  9. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate.

    PubMed

    Rahmanian, Reza; Mozaffari, Sayed Ahmad; Abedi, Mohammad

    2015-12-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO-PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO2 conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO-PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO-PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE-SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV-Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0-110.0mg dL(-1) with the limit of detection as 5.0mg dL(-1). PMID:26354280

  10. Transistors: Chemically Functionalized, Well-Dispersed Carbon Nanotubes in Lithium-Doped Zinc Oxide for Low-Cost, High-Performance Thin-Film Transistors (Small 14/2016).

    PubMed

    Son, Gi-Cheol; Chee, Sang-Soo; Jun, Ji-Hyun; Son, Myungwoo; Lee, Sun Sook; Choi, Youngmin; Jeong, Sunho; Ham, Moon-Ho

    2016-04-01

    A simple, wet-chemical method for the surface functionalization of carbon nanotubes with hydrophilic groups is introduced in Li-doped ZnO by S. Jeong, M. H. Ham, and co-workers, on page 1859. This results in the uniform spatial distribution of single-walled carbon nanotubes in ultrathin ZnO-based matrix oxides, and facilitates high-mobility, low-cost metal-oxide-based thin-film transistors. This approach is compatible with various film formation processes, even printing processes, and enables the realization of high-performance, cost-effective, large-area electronics and displays based on metal oxides. PMID:27061455

  11. Correlated substitution in paramagnetic Mn{sup 2+}-doped ZnO epitaxial films.

    SciTech Connect

    Droubay, T. C.; Keavney, D. J.; Kaspar, T. C.; Heald, S. M.; Wang, C. M.; Johnson, C. A.; Whitaker, K. M.; Gamelin, D. R.; Chambers, S. A.; X-Ray Science Division; PNNL; Univ. of Washington

    2009-04-01

    Epitaxial films of Mn2+-doped ZnO were deposited by pulsed laser deposition on {alpha}-Al{sub 2}O{sub 3}(0001) using targets created from Mn{sup 2+}-doped ZnO nanoparticles. Using x-ray absorption spectroscopy and x-ray magnetic circular dichroism, Mn(II) was found to substitute for Zn(II) in the wuertzite ZnO lattice with only a paramagnetic dichroic component from the Mn and no magnetic component from either the O or Zn. The dichroism reveals that, while substitutional, the Mn{sup 2+} distribution in the ZnO lattice is not stochastic. Rather, Mn{sup 2+} has a tendency to substitute with higher effective local concentrations than anticipated from a stochastic doping model.

  12. Mechanical and transparent conductive properties of ZnO and Ga-doped ZnO films sputtered using electron-cyclotron-resonance plasma on polyethylene naphtalate substrates

    SciTech Connect

    Akazawa, Housei

    2014-03-15

    Transparent conductive ZnO and Ga-doped ZnO (GZO) films were deposited on polyethylene naphtalate (PEN) sheet substrates using electron cyclotron resonance plasma sputtering. Both ZnO and GZO films were highly adhesive to the PEN substrates without inserting an intermediate layer in the interface. When compared at the same thickness, the transparent conductive properties of GZO films on PEN substrates were only slightly inferior to those on glass substrates. However, the carrier concentration of ZnO films on PEN substrates was 1.5 times that of those on glass substrates, whereas their Hall mobility was only 60% at a thickness of 300 nm. The depth profile of elements measured by secondary ion mass spectroscopy revealed the diffusion of hydrocarbons out of the PEN substrate into the ZnO film. Hence, doped carbons may act as donors to enhance carrier concentration, and the intermixing of elements at the interface may deteriorate the crystallinity, resulting in the lower Hall mobility. When the ZnO films were thicker than 400 nm, cracks became prevalent because of the lattice mismatch strain between the film and the substrate, whereas GZO films were free of cracks. The authors investigated how rolling the films around a cylindrical pipe surface affected their conductive properties. Degraded conductivity occurred at a threshold pipe radius of 10 mm when tensile stress was applied to the film, but it occurred at a pipe radius of 5 mm when compressive stress was applied. These values are guidelines for bending actual devices fabricated on PEN substrates.

  13. Physical properties of metal-doped zinc oxide films for surface acoustic wave application

    PubMed Central

    2012-01-01

    Metal-doped ZnO [MZO] thin films show changes of the following properties by a dopant. First, group III element (Al, In, Ga)-doped ZnO thin films have a high conductivity having an n-type semiconductor characteristic. Second, group I element (Li, Na, K)-doped ZnO thin films have high resistivity due to a dopant that accepts a carrier. The metal-doped ZnO (M = Li, Ag) films were prepared by radio frequency magnetron sputtering on glass substrates with the MZO targets. We investigated on the optical and electrical properties of the as-sputtered MZO films as dependences on the doping contents in the targets. All the MZO films had shown a preferred orientation in the [002] direction. As the quantity and the variety of metal dopants were changed, the crystallinity and the transmittance, as well as optical band gap were changed. The electrical resistivity was also changed with changing metal doping amounts and kinds of dopants. An epitaxial Li-doped ZnO film has a high resistivity and very smooth surface; it will have the most optimum conditions which can be used for the piezoelectric devices. PMID:22221881

  14. Physical properties of metal-doped zinc oxide films for surface acoustic wave application.

    PubMed

    Nam, Sang-Hun; Cho, Sang-Jin; Boo, Jin-Hyo

    2012-01-01

    Metal-doped ZnO [MZO] thin films show changes of the following properties by a dopant. First, group III element (Al, In, Ga)-doped ZnO thin films have a high conductivity having an n-type semiconductor characteristic. Second, group I element (Li, Na, K)-doped ZnO thin films have high resistivity due to a dopant that accepts a carrier. The metal-doped ZnO (M = Li, Ag) films were prepared by radio frequency magnetron sputtering on glass substrates with the MZO targets. We investigated on the optical and electrical properties of the as-sputtered MZO films as dependences on the doping contents in the targets. All the MZO films had shown a preferred orientation in the [002] direction. As the quantity and the variety of metal dopants were changed, the crystallinity and the transmittance, as well as optical band gap were changed. The electrical resistivity was also changed with changing metal doping amounts and kinds of dopants. An epitaxial Li-doped ZnO film has a high resistivity and very smooth surface; it will have the most optimum conditions which can be used for the piezoelectric devices. PMID:22221881

  15. Physical properties of metal-doped zinc oxide films for surface acoustic wave application

    NASA Astrophysics Data System (ADS)

    Nam, Sang-Hun; Cho, Sang-Jin; Boo, Jin-Hyo

    2012-01-01

    Metal-doped ZnO [MZO] thin films show changes of the following properties by a dopant. First, group III element (Al, In, Ga)-doped ZnO thin films have a high conductivity having an n-type semiconductor characteristic. Second, group I element (Li, Na, K)-doped ZnO thin films have high resistivity due to a dopant that accepts a carrier. The metal-doped ZnO (M = Li, Ag) films were prepared by radio frequency magnetron sputtering on glass substrates with the MZO targets. We investigated on the optical and electrical properties of the as-sputtered MZO films as dependences on the doping contents in the targets. All the MZO films had shown a preferred orientation in the [002] direction. As the quantity and the variety of metal dopants were changed, the crystallinity and the transmittance, as well as optical band gap were changed. The electrical resistivity was also changed with changing metal doping amounts and kinds of dopants. An epitaxial Li-doped ZnO film has a high resistivity and very smooth surface; it will have the most optimum conditions which can be used for the piezoelectric devices.

  16. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    NASA Astrophysics Data System (ADS)

    Ahumada-Lazo, R.; Torres-Martínez, L. M.; Ruíz-Gómez, M. A.; Vega-Becerra, O. E.; Figueroa-Torres, M. Z.

    2014-12-01

    The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-visible spectroscopy (UV-Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media.

  17. Ferromagnetism studies of Cu-doped and (Cu, Al) co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Wu, S. Z.; Yang, H. L.; Xu, X. G.; Miao, J.; Jiang, Y.

    2011-01-01

    We have studied the room temperature ferromagnetism (FM) in Cu-doped and (Cu, Al) co-doped ZnO thin films which were grown on quartz substrates by chemical method based on a sol-gel process combining with spin-coating technology. X-ray diffraction (XRD) patterns demonstrate that both the Cu-doped and (Cu, Al) co-doped ZnO films have the hexagonal wurtzite structure with c-axis orientation. Alternating Gradient Magnetometer (AGM) measurements confirm that all the doped ZnO samples are ferromagnetic at room temperature. When the doped Cu content is 1 %, the Cu-doped ZnO film has the strongest FM. The FM significantly decreases in the (Cu, Al) co-doped ZnO films. The doping of Al ions suppresses the FM induced by the doped Cu ions.

  18. Formation of Al-doped ZnO thin films on glass by sol-gel process and characterization

    NASA Astrophysics Data System (ADS)

    Shahid, M. U.; Deen, K. M.; Ahmad, A.; Akram, M. A.; Aslam, M.; Akhtar, W.

    2016-02-01

    In this study, pure ZnO and Al-doped ZnO thin films were developed on glass by sol-gel process followed by drying and annealing in air at 170 and 400 °C, respectively. The surface morphology and structural characteristics were determined through scanning electron microscopy, atomic force microscopy and X-ray diffraction. The Fourier transform infrared spectroscopy validated the formation of Al-doped ZnO film on glass substrate. It was evaluated that 1 at% aluminum (Al) doping in ZnO film showed low electrical resistivity and higher charge carrier concentration due to uniformly dispersed regular shape crystallites as compared to pure ZnO and 2 at% `Al'-doped thin films.

  19. Study on Solid-Phase Crystallization of Amorphized Vanadium-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Watanabe, Akihiro; Chiba, Hiroshi; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-04-01

    The effects of post-annealing and film thickness on the solid-phase crystallization (SPC) of amorphized vanadium-doped ZnO (VZO) thin films were investigated. The 2-500-nm-thick VZO (V of about 4 at.%) thin films were deposited on a c-face sapphire substrate at room temperature by RF magnetron sputtering and subsequently were annealed at an annealing temperature (T A) from 700°C to 900°C in a nitrogen atmosphere. From in-plane x-ray diffraction (XRD) measurements, the as-deposited VZO film had a faint in-plane orientation at the initial stage of deposition. However, the ZnO(100) XRD intensity weakened with increasing film thickness and no diffraction peak was seen over 35-nm thick. That is, the pseudo-amorphous film was fabricated. By annealing the 100-nm-thick VZO film over 700°C, the sixfold symmetry appeared. The ZnO(100) XRD intensity increased sharply at a T A of 800°C and was saturated at a higher T A. The c axis orientation reached a peak at a T A of 800°C according to the ZnO(002) XRD intensity. Concerning the effect of film thickness in the case of T A = 800°C, both the in-plane and c axis orientation improved up to 100-nm thick and deteriorated over it. At a T A ≥ 850°C or film thickness ≥200 nm, where the c axis orientation was deteriorated, the secondary phase-like Zn3V2O8 was formed. As a result, it is found that the careful selection of the T A and film thickness is necessary to avoid the formation of secondary phase-like Zn3V2O8 to fabricate the high-quality buffer layer via SPC.

  20. Pulsed laser deposited cobalt-doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Wang, Li; Su, Xue-qiong; Lu, Yi; Chen, Jiang-bo

    2013-09-01

    To realize the room-temperature ferromagnetism (RTFM) in diluted magnetic semiconductors (DMS), we prepared a series of Cobalt-doped ZnO thin films using pulsed laser deposition (PLD) at deposition temperatures 500°C under oxygen pressure from 2.5×10-4 Pa to 15 Pa. To elucidate the physical origin of RTFM, Co 2p spectra of cobalt-doped ZnO thin films was measured by X-ray photoelectron spectroscopy (XPS). The magnetic properties of films were measured by an alternating gradient magnetometer (AGM), and the electrical properties were detected by a Hall Effect instrument using the Van der Pauw method. XPS analysis shows that the Co2+ exists and Co clusters and elemental content change greatly in samples under various deposition oxygen pressures. Not only the valence state and elemental content but also the electrical and magnetic properties were changed. In the case of oxygen pressure 10 Pa, an improvement of saturation magnetic moment about one order of magnitude over other oxygen pressure experiments, and the film exhibits ferromagnetism with a curie temperature above room temperature. It was found that the value of carrier concentration in the Co-doped ZnO film under oxygen pressure 10Pa increases about one order of magnitude than the values of other samples under different oxygen pressure. Combining XPS with AGM measurements, we found that the ferromagnetic signals in cobalt-doped ZnO thin film deposited at 500 °C under oxygen pressure 10 Pa only appear with the detectable Co2+ spectra from incompletely oxidized Co metal or Co cluster. So oxygen pressure 10 Pa can be thought the best condition to obtain room-temperature dilute magnetic semiconductor about cobalt-doped ZnO thin films.

  1. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    SciTech Connect

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.

  2. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    NASA Astrophysics Data System (ADS)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  3. Fe doped ZnO thin film for mediator-less biosensing application

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Tomar, Monika; Gupta, Vinay

    2012-05-01

    Fe doped ZnO (FZO) thin film is prepared by pulsed laser deposition for its application as mediator-less biosensing matrix. Fe doping introduces redox centre in ZnO along with shallow donor level and promotes the electron transfer capability due to substitution of Fe at Zn sites. Glucose oxidase (GOx), chosen as model enzyme, was immobilized on surface of the prepared matrix. Cyclic voltammetry and photometric assay show that the developed bio-electrode, GOx/FZO/indium tin oxide/Glass is sensitive to glucose concentration with enhanced response (0.2 µA mM-1 cm-2) and low Km (3.01 mM). The results show promising application of Fe doped ZnO thin film as an attractive matrix for mediator-less biosensing.

  4. Pressure Effect in ZnO Films Using Off-Axis Sputtering Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Peters, P.; George, M. A.

    1999-01-01

    ZnO films are deposited on (0001) sapphire, (001) Si and quartz substrates using the off-axis reactive magnetron sputtering deposition. Based on film thickness measurements, three transport regions of sputtered particles are observed when films are deposited in the pressure regions of 5 mtorr - 150 mtorr. X-ray diffraction, scanning probes microscopy, and electrical measurements are also used to characterize these films. The full width at half maximum of theta rocking curves for epitaxial films is less than 0.5 deg. In textured films, it rises to several degrees. The epitaxial films deposited at high pressure reveal a flat surface with some hexagonal facets. The density of hexagonal facets decreases when the growth pressure is reduced. The resistivity of these epitaxial films also depends on the growth pressures. A relationship between the pressure effects and film properties are discussed.

  5. Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles.

    PubMed

    Espitia, Paula Judith Perez; Soares, Nilda de Fátima Ferreira; Teófilo, Reinaldo F; Coimbra, Jane Sélia dos Reis; Vitor, Débora M; Batista, Rejane Andrade; Ferreira, Sukarno Olavo; de Andrade, Nélio José; Medeiros, Eber Antonio Alves

    2013-04-15

    This work aimed to develop nanocomposite films of methyl cellulose (MC) incorporated with pediocin and zinc oxide nanoparticles (nanoZnO) using the central composite design and response surface methodology. This study evaluated film physical-mechanical properties, including crystallography by X-ray diffraction, mechanical resistance, swelling and color properties, microscopy characterization, thermal stability, as well as antimicrobial activity against Staphylococcus aureus and Listeria monocytogenes. NanoZnO and pediocin affected the crystallinity of MC. Load at break and tensile strength at break did not differ among films. NanoZnO and pediocin significantly affected the elongation at break. Pediocin produced yellowish films, but nano ZnO balanced this effect, resulting in a whitish coloration. Nano ZnO exhibited good intercalation in MC and the addition of pediocin in high concentrations resulted crater-like pits in the film surfaces. Swelling of films diminished significantly compared to control. Higher concentrations of Nano ZnO resulted in enhanced thermal stability. Nanocomposite films presented antimicrobial activity against tested microorganisms. PMID:23544529

  6. Optical and electrical studies of ZnO thin films heavily implanted with silver ions

    NASA Astrophysics Data System (ADS)

    Lyadov, N. M.; Gumarov, A. I.; Valeev, V. F.; Nuzhdin, V. I.; Khaibullin, R. I.; Faizrakhmanov, I. A.

    2014-12-01

    Thin films of zinc oxide (ZnO) with the thickness of 200 nm have been deposited on quartz substrates by using ion-beam sputtering technique. Then Ag+ ions with the energy of 30 keV have been implanted into as-deposited ZnO films to the fluences in the range of (0.25-1.00)×1017 ions/cm2 to form ZnO:Ag composite layers with different concentrations of the silver impurity. The analysis of the microstructure has shown that the thickness of the ZnO film decreases, and the Ag dopant concentration tends to the saturation with increasing Ag implantation fluence. The ZnO:Ag composite layers reveal the optical selective absorption at the wavelength of the surface plasmon resonance that is typical for silver nanoparticles dispersed in the ZnO matrix. The red shift of the plasmon resonance peak from 480 to 500 nm is observed with the increase in the implantation fluence to 0.75×1017 Ag ions/cm2. Then the absorption peak position starts the backward motion, and the absorption intensity decreases with the subsequent increase in the implantation fluence. The non-monotonic dependence of the absorption peak position on the implantation fluence has been analyzed within of Maxwell Garnet theory and taking into account the strong sputtering of ZnO films during implantation. The ZnO:Ag composite layers exhibit the p-type conductivity indicating that a part of Ag+ ions is in the form of acceptor impurities implanted into the ZnO lattice.

  7. Growth and characterization of seed layer-free ZnO thin films deposited on porous silicon by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Kim, Min Su; Yim, Kwang Gug; Kim, Do Yeob; Kim, Soaram; Nam, Giwoong; Lee, Dong-Yul; Kim, Sung-O.; Kim, Jin Soo; Kim, Jong Su; Son, Jeong-Sik; Leem, Jae-Young

    2012-02-01

    Catalyst- and seed layer-free zinc oxide (ZnO) thin films were grown on porous silicon (PS) by a hydrothermal method. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and photoluminescence (PL) were carried out to investigate the structural and optical properties of the PS and the ZnO thin films. The ZnO thin films have an extraordinary tendency to grow along the a-axis with a hexagonal wurtzite structure. The growth rate of the ZnO thin films was increased with the increase in the precursor concentration. The crystal quality of the ZnO thin films was improved, and the residual stress was decreased as their thickness increased. Monochromatic indigo and red light emission peaks were observed from the ZnO thin films and the PS, respectively. At an excessively high precursor concentration, a green light emission peak was also observed in the ZnO thin films. The luminescent efficiency of the indigo light emission peak was enhanced with the increase in the precursor concentration.

  8. Growth of non-polar ZnO thin films with different working pressures by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chao, Chung-Hua; Wei, Da-Hua

    2014-11-01

    Non-polar coexisting m-plane (10\\bar{1}0) and a-plane (11\\bar{2}0) zinc oxide (ZnO) thin films have been synthesized onto commercial silicon (100) substrates by using plasma enhanced chemical vapor deposition (PECVD) system at different working pressures. The effects of the working pressure on crystal orientation, microstructure, surface morphology, and optical properties of the ZnO thin films were investigated. From the X-ray diffraction patterns, the non-polar ZnO thin films were successfully synthesized at the working pressures of 6 and 9 Torr, respectively. The non-polar ZnO thin films showed stripes-like surface morphology and with smooth surface roughness (˜3.53 nm) was performed by field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM), respectively. All the ZnO films show a remarkable near-band-edge (NBE) emission peak located at ultraviolet (UV) band accompanying a negligible deep-level (DL) emission at visible region detected by photoluminescence (PL) spectra at room temperature. From the above systematic measurement analysis, indicating the better crystallinity and optical character of ZnO thin film was improved with reducing the working pressure. The wettability of non-polar ZnO thin films was also explored in this presented article.

  9. Role of evaporation time on the structural and optical properties of ZnO films deposited by thermal evaporator

    NASA Astrophysics Data System (ADS)

    Khan, Ijaz Ahmad; Noor, Mamoona; Rehman, Aatiqa; Farid, Amjad; Shahid, M. Attique Khan; Shafiq, M.

    2015-12-01

    Zinc oxide films are deposited on Si substrates by thermal evaporator for different evaporation times (ET). XRD pattern shows the development of different diffraction peaks related to Zn, ZnO and Zn2SiO4 phases which confirms the deposition of composite film. The orientation transformation is observed with increasing ET. The maximum peak intensity of ZnO (1 0 1) plane is observed at 3 h ET. The dislocation density observed in ZnO (1 0 1) plane varies from 1.53 × 10-3 nm-2 to 8.94 × 10-3 nm-2. The lattice parameters of ZnO are found to be a = 3.243 Å and c = 5.197 Å. FTIR analysis confirms the formation of ZnO films. SEM microstructures exhibit the formation nano-wires, nano-bars, nano-strips and nano-needles. The optical energy band gap of ZnO films deposited for various ET varies from 3.98 eV to 4.06 eV. Results show that the peak intensity of ZnO (1 0 1) plane, orientation transformation and the presence of Si content are responsible to increase the energy band gap of ZnO films.

  10. Homoepitaxy of ZnO and MgZnO Films at 90 °C

    SciTech Connect

    Ehrentraut, Dirk; Goh, Gregory K.L.; Fujii, Katsushi; Ooi, Chin Chun; Quang, Le Hong; Fukuda, Tsuguo; Kano, Masataka; Zhang, Yuantao; Matsuoka, Takashi

    2014-06-01

    The aqueous synthesis of uniform single crystalline homoepitaxial zinc oxide, ZnO, and magnesium zinc oxide, Mg{sub x}Zn{sub 1−x}O, films under very low temperature conditions at T=90 °C and ambient pressure has been explored. A maximum Mg content of 1 mol% was recorded by energy dispersive spectroscopy. The growth on the polar (0 0 0 1) and (0 0 0 1¯) faces resulted in films that are strongly different in their structural and optical quality as evidenced by high-resolution X-ray diffraction, secondary electron microscopy, and photoluminescence. This is a result of the chemistry and temperature of the solution dictating the stability range of growth-governing metastable species. The use of trisodium citrate, Na{sub 3}C{sub 6}H{sub 5}O{sub 7}, yielded coalesced, mirror-like homoepitaxial films whereas adding magnesium nitrate hexahydrate, Mg(NO{sub 3}){sub 2}·6H{sub 2}O, favors the growth of films with pronounced faceting. - Graphical abstract: Homoepitaxial ZnO films grown from aqueous solution below boiling point of water on a ZnO substrate with off-orientation reveal parallel grooves that are characterized by (1 0 1{sup ¯} 1) facets. Adding trisodium citrate yields closed, single-crystalline ZnO films, which can further be functionalized. Alloying with MgO yields MgZnO films with low Mg content only. - Highlights: • A simple method to synthesize uniform single crystalline homoepitaxial ZnO and MgZnO films. • ZnO growth on (0 0 0 1) and (0 0 0 1{sup ¯}) face resulted in films that are strongly different in their structural and optical quality. • Single crystalline MgZnO film was fabricated under mild conditions (90 °C and ambient pressure). • Mg incorporation of nearly 1 mol% was obtained while maintaining single phase wurtzite structure.

  11. Origins of conductivity improvement in fluoride-enhanced silicon doping of ZnO films.

    PubMed

    Rashidi, Nazanin; Vai, Alex T; Kuznetsov, Vladimir L; Dilworth, Jonathan R; Edwards, Peter P

    2015-06-01

    Fluoride in spray pyrolysis precursor solutions for silicon-doped zinc oxide (SiZO) transparent conductor thin films significantly improves their electrical conductivity by enhancing silicon doping efficiency and not, as previously assumed, by fluoride doping. Containing only earth-abundant elements, SiZO thus prepared rivals the best solution-processed indium-doped ZnO in performance. PMID:25879727

  12. Effects of Annealing Temperature on Structural and Optical Properties of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Ping; Shi, Shao-Bo; Li, Lan; Zhang, Xiao-Song; Wang, Ya-Xin; Chen, Xi-Ming

    2010-04-01

    The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700°C. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (V-Zn), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.

  13. Growth and optical characteristics of high-quality ZnO thin films on graphene layers

    SciTech Connect

    Park, Suk In; Tchoe, Youngbin; Baek, Hyeonjun; Hyun, Jerome K.; Yi, Gyu-Chul E-mail: gcyi@snu.ac.kr; Heo, Jaehyuk; Jo, Janghyun; Kim, Miyoung; Kim, Nam-Jung E-mail: gcyi@snu.ac.kr

    2015-01-01

    We report the growth of high-quality, smooth, and flat ZnO thin films on graphene layers and their photoluminescence (PL) characteristics. For the growth of high-quality ZnO thin films on graphene layers, ZnO nanowalls were grown using metal-organic vapor-phase epitaxy on oxygen-plasma treated graphene layers as an intermediate layer. PL measurements were conducted at low temperatures to examine strong near-band-edge emission peaks. The full-width-at-half-maximum value of the dominant PL emission peak was as narrow as 4 meV at T = 11 K, comparable to that of the best-quality films reported previously. Furthermore, the stimulated emission of ZnO thin films on the graphene layers was observed at the low excitation energy of 180 kW/cm{sup 2} at room temperature. Their structural and optical characteristics were investigated using X-ray diffraction, transmission electron microscopy, and PL spectroscopy.

  14. Enhanced optical band-gap of ZnO thin films by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Raghu, P.; Naveen, C. S.; Shailaja, J.; Mahesh, H. M.

    2016-05-01

    Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ˜3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The results of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.

  15. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  16. Growth and characterization of nonpolar, heavily Mn-substituted ZnO films

    SciTech Connect

    Shao, Q.; Ku, P. S.; Wang, X. L.; Cheng, W. F.; Ruotolo, A.; Leung, C. W.

    2014-05-07

    Eight percent of Mn was successfully diluted into nonpolar ZnO films deposited by pulsed laser deposition on single crystal (100) SrTiO{sub 3} substrates. X-ray diffraction patterns and energy-dispersive X-ray spectroscopy confirmed high crystallinity of the films and excluded unintentional magnetic doping. A unique surface domain structure was observed by scanning electron microscope and atomic force microscope, which might play a vital role to strain release induced by lattice mismatch between nonpolar (11–20) ZnO film and (100) SrTiO{sub 3} substrate. In addition, the films showed strong ferromagnetism with a large coercivity H{sub C} ∼ 180 Oe at room temperature. The large magnetic moment is ascribed to carrier-mediated exchange interaction between the Mn ions, where the majority of the carriers are oxygen vacancies.

  17. A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness

    SciTech Connect

    Li, X. D.; Chen, T. P. Liu, P.; Liu, Y.; Liu, Z.; Leong, K. C.

    2014-03-14

    Dielectric function, band gap, and exciton binding energies of ultrathin ZnO films as a function of film thickness have been obtained with spectroscopic ellipsometry. As the film thickness decreases, both real (ε{sub 1}) and imaginary (ε{sub 2}) parts of the dielectric function decrease significantly, and ε{sub 2} shows a blue shift. The film thickness dependence of the dielectric function is shown related to the changes in the interband absorption, discrete-exciton absorption, and continuum-exciton absorption, which can be attributed to the quantum confinement effect on both the band gap and exciton binding energies.

  18. Study of deposition parameters for the fabrication of ZnO thin films using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hashmi, Jaweria Zartaj; Siraj, Khurram; Latif, Anwar; Murray, Mathew; Jose, Gin

    2016-08-01

    Femtosecond (fs) pulsed laser deposition (fs-PLD) of ZnO thin film on borosilicate glass substrates is reported in this work. The effect of important fs-PLD parameters such as target-substrate distance, laser pulse energy and substrate temperature on structure, morphology, optical transparency and luminescence of as-deposited films is discussed. XRD analysis reveals that all the films grown using the laser energy range 120-230 μJ are polycrystalline when they are deposited at room temperature in a ~10-5 Torr vacuum. Introducing 0.7 mTorr oxygen pressure, the films show preferred c-axis growth and transform into a single-crystal-like film when the substrate temperature is increased to 100 °C. The scanning electron micrographs show the presence of small nano-size grains at 25 °C, which grow in size to the regular hexagonal shape particles at 100 °C. Optical transmission of the ZnO film is found to increase with an increase in crystal quality. Maximum transmittance of 95 % in the wavelength range 400-1400 nm is achieved for films deposited at 100 °C employing a laser pulse energy of 180 μJ. The luminescence spectra show a strong UV emission band peaked at 377 nm close to the ZnO band gap. The shallow donor defects increase at higher pulse energies and higher substrate temperatures, which give rise to violet-blue luminescence. The results indicate that nano-crystalline ZnO thin films with high crystalline quality and optical transparency can be fabricated by using pulses from fs lasers.

  19. Growth of crystalline ZnO films on the nitridated (0001) sapphire surface

    SciTech Connect

    Butashin, A. V.; Kanevsky, V. M.; Muslimov, A. E. Prosekov, P. A.; Kondratev, O. A.; Blagov, A. E.; Vasil’ev, A. L.; Rakova, E. V.; Babaev, V. A.; Ismailov, A. M.; Vovk, E. A.; Nizhankovsky, S. V.

    2015-07-15

    The surface morphology and structure of (0001) sapphire substrates subjected to thermochemical nitridation in a mixture of N{sub 2}, CO, and H{sub 2} gases are investigated by electron and probe microscopy and X-ray and electron diffraction. It is shown that an aluminum nitride layer is formed on the substrate surface and heteroepitaxial ZnO films deposited onto such substrates by magnetron sputtering have a higher quality when compared with films grown on sapphire.

  20. Ferromagnetic behaviour of Fe-doped ZnO nanograined films

    PubMed Central

    Protasova, Svetlana G; Mazilkin, Andrei A; Tietze, Thomas; Goering, Eberhard; Schütz, Gisela; Straumal, Petr B; Baretzky, Brigitte

    2013-01-01

    Summary The influence of the grain boundary (GB) specific area s GB on the appearance of ferromagnetism in Fe-doped ZnO has been analysed. A review of numerous research contributions from the literature on the origin of the ferromagnetic behaviour of Fe-doped ZnO is given. An empirical correlation has been found that the value of the specific grain boundary area s GB is the main factor controlling such behaviour. The Fe-doped ZnO becomes ferromagnetic only if it contains enough GBs, i.e., if s GB is higher than a certain threshold value s th = 5 × 104 m2/m3. It corresponds to the effective grain size of about 40 μm assuming a full, dense material and equiaxial grains. Magnetic properties of ZnO dense nanograined thin films doped with iron (0 to 40 atom %) have been investigated. The films were deposited by using the wet chemistry “liquid ceramics” method. The samples demonstrate ferromagnetic behaviour with J s up to 0.10 emu/g (0.025 μB/f.u.ZnO) and coercivity H c ≈ 0.03 T. Saturation magnetisation depends nonmonotonically on the Fe concentration. The dependence on Fe content can be explained by the changes in the structure and contiguity of a ferromagnetic “grain boundary foam” responsible for the magnetic properties of pure and doped ZnO. PMID:23844341

  1. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sapkal, R. T.; Shinde, S. S.; Rajpure, K. Y.; Bhosale, C. H.

    2013-05-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 °C by using a chemical spray pyrolysis technique. Deposited films are character photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400 °C. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process.

  2. A comparison of ZnO films deposited on indium tin oxide and soda lime glass under identical conditions

    SciTech Connect

    Deka, Angshuman; Nanda, Karuna Kar

    2013-06-15

    ZnO films have been grown via a vapour phase transport (VPT) on soda lime glass (SLG) and indium-tin oxide (ITO) coated glass. ZnO film on ITO had traces of Zn and C which gives them a dark appearance while that appears yellowish-white on SLG. X-ray photoelectron spectroscopy studies confirm the traces of C in the form of C-O. The photoluminescence studies reveal a prominent green luminescence band for ZnO film on ITO.

  3. A comparison of ZnO films deposited on indium tin oxide and soda lime glass under identical conditions

    NASA Astrophysics Data System (ADS)

    Deka, Angshuman; Nanda, Karuna Kar

    2013-06-01

    ZnO films have been grown via a vapour phase transport (VPT) on soda lime glass (SLG) and indium-tin oxide (ITO) coated glass. ZnO film on ITO had traces of Zn and C which gives them a dark appearance while that appears yellowish-white on SLG. X-ray photoelectron spectroscopy studies confirm the traces of C in the form of C-O. The photoluminescence studies reveal a prominent green luminescence band for ZnO film on ITO.

  4. A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques

    SciTech Connect

    Yadav, Harish Kumar; Gupta, Vinay

    2012-05-15

    Photoresponse characteristics of ZnO thin films deposited by three different techniques namely rf diode sputtering, rf magnetron sputtering, and electrophoretic deposition has been investigated in the metal-semiconductor-metal (MSM) configuration. A significant variation in the crystallinity, surface morphology, and photoresponse characteristics of ZnO thin film with change in growth kinetics suggest that the presence of defect centers and their density govern the photodetector relaxation properties. A relatively low density of traps compared to the true quantum yield is found very crucial for the realization of practical ZnO thin film based ultraviolet (UV) photodetector.

  5. Growth of nonpolar ZnO Films on (100) β-LiGaO2 substrate by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Yu; Chen, Chenlong; Chang, Liuwen; Chou, Mitch M. C.

    2014-12-01

    Nonpolar m-plane (11¯00) ZnO epitaxial films were grown on (100) β-LiGaO2 (LGO) substrates by plasma assisted molecular beam epitaxy (PAMBE). The dependence of growth characteristics on the growth temperatures was investigated. The surface morphologies of ZnO films were characterized by scanning electron microscopy and atomic force microscopy. Furthermore, the structural properties characterized by high resolution X-ray diffraction (HRXRD) indicated that the ZnO epilayers were grown in the nonpolar [11¯00] orientation. Detailed structural characterization and defect analysis of nonpolar ZnO epilayer on β-LiGaO2 substrate were studied by transmission electron microscope (TEM). Optical properties of m-plane ZnO films were investigated by Raman spectroscopy and photoluminescence analyses.

  6. Photoluminescence and photoconductivity studies on amorphous and crystalline ZnO thin films obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; Manríquez Zepeda, J. L.

    2015-03-01

    Amorphous and crystalline ZnO thin films were obtained by the sol-gel process. A precursor solution of ZnO was synthesized by using zinc acetate dehydrate as inorganic precursor at room temperature. The films were spin-coated on silicon and glass wafers and gelled in humid air. The films were calcined at 450 °C for 15 min to produce ZnO nanocrystals with a wurtzite structure. Crystalline ZnO film exhibits an absorption band located at 359 nm (3.4 eV). Photoconductivity technique was used to determine the charge transport mechanism on both kinds of films. Experimental data were fitted with straight lines at darkness and under illumination at 355 and 633 nm wavelengths. This indicates an ohmic behavior. The photovoltaic and photoconductivity parameters were determined from the current density versus the applied electrical field results.

  7. Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Thapa, Dinesh; Huso, Jesse; Morrison, John L.; Corolewski, Caleb D.; McCluskey, Matthew D.; Bergman, Leah

    2016-08-01

    ZnO is an efficient luminescent material in the UV-range ∼3.4 eV with a wide range of applications in optical technologies. Sputtering is a cost-effective and relatively straightforward growth technique for ZnO films; however, most as-grown films are observed to contain intrinsic defects which can significantly diminish the desirable UV-emission. In this research the defect dynamics and optical properties of ZnO sputtered films were studied via post-growth annealing in Ar or O2 ambient, with X-ray diffraction (XRD), imaging, transmission and Urbach analysis, Raman scattering, and photoluminescence (PL). The imaging, XRD, Raman and Urbach analyses indicate significant improvement in crystal morphology and band-edge characteristics upon annealing, which is nearly independent of the annealing environment. The native defects specific to the as-grown films, which were analyzed via PL, are assigned to Zni related centers that luminesce at 2.8 eV. Their presence is attributed to the nature of the sputtering growth technique, which supports Zn-rich growth conditions. After annealing, in either environment the 2.8 eV center diminished accompanied by morphology improvement, and the desirable UV-PL significantly increased. The O2 ambient was found to introduce nominal Oi centers while the Ar ambient was found to be the ideal environment for the enhancement of the UV-light emission: an enhancement of ∼40 times was achieved. The increase in the UV-PL is attributed to the reduction of Zni-related defects, the presence of which in ZnO provides a competing route to the UV emission. Also, the effect of the annealing was to decrease the compressive stress in the films. Finally, the dominant UV-PL at the cold temperature regime is attributed to luminescent centers not associated with the usual excitons of ZnO, but rather to structural defects.

  8. Improvement of Flame-made ZnO Nanoparticulate Thick Film Morphology for Ethanol Sensing

    PubMed Central

    Liewhiran, Chaikarn; Phanichphantandast, Sukon

    2007-01-01

    ZnO nanoparticles were produced by flame spray pyrolysis using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particles properties were analyzed by XRD, BET. The ZnO particle size and morphology was observed by SEM and HR-TEM revealing spheroidal, hexagonal, and rod-like morphologies. The crystallite sizes of ZnO spheroidal and hexagonal particles ranged from 10-20 nm. ZnO nanorods were ranged from 10-20 nm in width and 20-50 nm in length. Sensing films were produced by mixing the nanoparticles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The morphology of the sensing films was analyzed by optical microscopy and SEM analysis. Cracking of the sensing films during annealing process was improved by varying the heating conditions. The gas sensing of ethanol (25-250 ppm) was studied at 400 °C in dry air containing SiC as the fluidized particles. The oxidation of ethanol on the surface of the semiconductor was confirmed by mass spectroscopy (MS). The effect of micro-cracks was quantitatively accounted for as a provider of extra exposed edges. The sensitivity decreased notably with increasing crack of sensing films. It can be observed that crack widths were reduced with decreasing heating rates. Crack-free of thick (5 μm) ZnO films evidently showed higher sensor signal and faster response times (within seconds) than cracked sensor. The sensor signal increased and the response time decreased with increasing ethanol concentration.

  9. Effect of Oxidation Condition on Growth of N: ZnO Prepared by Oxidizing Sputtering Zn-N Film

    NASA Astrophysics Data System (ADS)

    Qin, Xuesi; Li, Guojian; Xiao, Lin; Chen, Guozhen; Wang, Kai; Wang, Qiang

    2016-06-01

    Nitrogen-doped zinc oxide (N: ZnO) films have been prepared by oxidizing reactive RF magnetron-sputtering zinc nitride (Zn-N) films. The effect of oxidation temperature and oxidation time on the growth, transmittance, and electrical properties of the film has been explored. The results show that both long oxidation time and high oxidation temperature can obtain the film with a good transmittance (over 80 % for visible and infrared light) and a high carrier concentration. The N: ZnO film exhibits a special growth model with the oxidation time and is first to form a N: ZnO particle on the surface, then to become a N: ZnO layer, and followed by the inside Zn-N segregating to the surface to oxidize N: ZnO. The surface particle oxidized more adequately than the inside. However, the X-ray photoemission spectroscopy results show that the lower N concentration results in the lower N substitution in the O lattice (No). This leads to the formation of n-type N: ZnO and the decrease of carrier concentration. Thus, this method can be used to tune the microstructure, optical transmittance, and electrical properties of the N: ZnO film.

  10. Effect of Oxidation Condition on Growth of N: ZnO Prepared by Oxidizing Sputtering Zn-N Film.

    PubMed

    Qin, Xuesi; Li, Guojian; Xiao, Lin; Chen, Guozhen; Wang, Kai; Wang, Qiang

    2016-12-01

    Nitrogen-doped zinc oxide (N: ZnO) films have been prepared by oxidizing reactive RF magnetron-sputtering zinc nitride (Zn-N) films. The effect of oxidation temperature and oxidation time on the growth, transmittance, and electrical properties of the film has been explored. The results show that both long oxidation time and high oxidation temperature can obtain the film with a good transmittance (over 80 % for visible and infrared light) and a high carrier concentration. The N: ZnO film exhibits a special growth model with the oxidation time and is first to form a N: ZnO particle on the surface, then to become a N: ZnO layer, and followed by the inside Zn-N segregating to the surface to oxidize N: ZnO. The surface particle oxidized more adequately than the inside. However, the X-ray photoemission spectroscopy results show that the lower N concentration results in the lower N substitution in the O lattice (No). This leads to the formation of n-type N: ZnO and the decrease of carrier concentration. Thus, this method can be used to tune the microstructure, optical transmittance, and electrical properties of the N: ZnO film. PMID:27251324

  11. Effects of a seed layer on the structural properties of RF-sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Ur, Soon-Chul; Yi, Seung-Hwan

    2016-01-01

    Radio-frequency (RF) sputtered deposition combined with sol-gel spin coating has been applied to achieve a high-quality, c-axis-oriented ZnO film. The deposited ZnO films show only a c-axis-oriented ZnO (002) peak. The morphology, structure, and residual stress of the deposited ZnO films are found to depend strongly on the concentration of the precursor. As the concentration of the precursor is increased from 0.1-M to 0.6-M, the residual stress of the ZnO films changes from a compressive (-415 MPa) to a mild tensile (+90 MPa) mode. The deposited ZnO film interestingly shows facets when the concentration of the precursor is 0.6-M. We suggest that the residual stress in sputter-deposited ZnO films can be controlled by using the precursor concentration. This technique is believed to have been used for the first time, and can be applied to control the uniformity during micro speaker fabrication.

  12. Fabrication and characterization of pristine and annealed Ga doped ZnO thin films using sputtering

    NASA Astrophysics Data System (ADS)

    Mishra, Abhisek; Mohapatra, Saswat; Gouda, Himanshu Sekhar; Singh, Udai P.

    2016-05-01

    ZnO is a wide-band gap, transparent, polar semiconductor with unparalleled optoelectronic, piezoelectric, thermal and transport properties, which make it the material of choice for a wide range of applications such as blue/UV optoelectronics, energy conversion, transparent electronics, spintronic, plasmonic and sensor devices. We report, three sets of Ga doped Zinc Oxide (GZO) were fabricated in different sputtering power (100 watt, 200 watt and 300 watt). Thereafter films were annealed in nitrogen ambient for 30 minutes at 400° C. From the optical absorption spectroscopy it was found that pristine films are showing a 75% transmittance in the visible region of light and it increases after the annealing. However, for 300 W grown sample opposite trend has been achieved for the post annealed sample. X-ray diffraction pattern of all the pristine and annealed films showed a preferable growth orientation at (002) phase. Some other weak peaks were also appeared in different angle which indicates that films are polycrystalline in nature. XRD data also reveals that crystallite size increases with sputtering power up to 200 W and thereafter it decreases with the deposition power. It also noted that the crystallite size of the annealed film increases with compare to the non annealed films. At room temperature an enhancement in electrical properties of Ga doped ZnO thin films was noted for the annealed ZnO films except for the film deposited at 300 watt. More significantly, it was found that annealed thin films showed the resistivity in the range of 10-3 ˜ 10-4 ohm-cm. Such a high optical transmittance and conducting zinc-oxide thin film can be used as a window layer in solar cell.

  13. Towards P-Type Conductivity in SnO2 Nanocrystals through Li Doping

    SciTech Connect

    Chaparadza, Allen; Rananavare, Shankar B

    2010-01-22

    This paper examines electrical transport properties and Li doping in SnO2 synthesized by the sol–gel method. Solid-state 7Li-NMR lineshapes reveal that Li ions occupy two distinct sites with differing dynamic mobilities. The chemical exchange rate between the two sites is, however, too slow for detection on the NMR timescale. Compressed nanoparticulate films of this doped semiconductor exhibit a positive Seebeck coefficient implying a p-type conductivity. A variable-temperature direct current conductivity, over a 25–350 °C temperature range, follows an Efros–Shklovskii variable range hopping (ES-VRH) conduction mechanism (ln(ρ) versus T -1/2) at temperatures below 100 °C with a crossover to 2D Mott variable range hopping (M-VRH) (ln(ρ) versus T -1/3) conduction at temperatures above 250 °C. In a transition region between these two limiting behaviors, the dc resistivity exhibits an anomalous temperature-independent plateau. We suggest that its origin may lie in a carrier inversion phenomenon wherein the majority carriers switch from holes to electrons due to Li ion expulsion from the crystalline core and creation of oxygen vacancies generated by loss of oxygen at elevated temperatures.

  14. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods

    PubMed Central

    2013-01-01

    Well-dispersed fish gelatin-based nanocomposites were prepared by adding ZnO nanorods (NRs) as fillers to aqueous gelatin. The effects of ZnO NR fillers on the mechanical, optical, and electrical properties of fish gelatin bio-nanocomposite films were investigated. Results showed an increase in Young's modulus and tensile strength of 42% and 25% for nanocomposites incorporated with 5% ZnO NRs, respectively, compared with unfilled gelatin-based films. UV transmission decreased to zero with the addition of a small amount of ZnO NRs in the biopolymer matrix. X-ray diffraction showed an increase in the intensity of the crystal facets of (10ī1) and (0002) with the addition of ZnO NRs in the biocomposite matrix. The surface topography of the fish gelatin films indicated an increase in surface roughness with increasing ZnO NR concentrations. The conductivity of the films also significantly increased with the addition of ZnO NRs. These results indicated that bio-nanocomposites based on ZnO NRs had great potentials for applications in packaging technology, food preservation, and UV-shielding systems. PMID:23981366

  15. Residual and intentional n-type doping of ZnO thin films grown by metal-organic vapor phase epitaxy on sapphire and ZnO substrates

    NASA Astrophysics Data System (ADS)

    Brochen, Stéphane; Lafossas, Matthieu; Robin, Ivan-Christophe; Ferret, Pierre; Gemain, Frédérique; Pernot, Julien; Feuillet, Guy

    2014-03-01

    ZnO epilayers usually exhibit high n-type residual doping which is one of the reasons behind the difficulties to dope this material p-type. In this work, we aimed at determining the nature of the involved impurities and their potential role as dopant in ZnO thin films grown by metalorganic vapor phase epitaxy (MOVPE) on sapphire and ZnO substrates. In both cases, secondary ion mass spectroscopy (SIMS) measurements give evidence for a strong diffusion of impurities from the substrate to the epilayer, especially for silicon and aluminum. In the case of samples grown on sapphire substrates, aluminum follows Fick's diffusion law on a wide growth temperature range (800-1000°C). Thus, the saturation solubility and the diffusion coefficient of aluminum in ZnO single crystals have been determined. Furthermore, the comparison between SIMS impurity and effective dopant concentrations determined by capacitance-voltage measurements highlights, on one hand a substitutional mechanism for aluminum diffusion, and on the other hand that silicon acts as a donor in ZnO and not as an amphoteric impurity. In addition, photoluminescence spectra exhibit excitonic recombinations at the same energy for aluminum and silicon, indicating that silicon behaves as an hydrogenic donor in ZnO. Based on these experimental observations, ZnO thin films with a controlled n-type doping in the 1016-1019cm-3 range have been carried out. These results show that MOVPE growth is fully compatible with the achievement of highly Al-doped n-type thin films, but also with the growth of materials with low residual doping, which is a crucial parameter to address ZnO p-type doping issues.

  16. Local structure investigation of Co doped ZnO thin films prepared by RF sputtering technique

    NASA Astrophysics Data System (ADS)

    Yadav, A. K.; Haque, S. Maidul; Shukla, D.; Phase, D. M.; Jha, S. N.; Bhattacharyya, D.

    2016-05-01

    Co doped ZnO thin films have been prepared using rf magnetron sputtering technique with varying Co doping concentration. GIXRD has been used to probe long range order and Zn, Co and Oxygen K-edge XAFS measurements have been used for investigating local structure around Zn and Co atoms. GIXRD results show wurzite structure of the samples while XANES and EXAFS results at Zn and Co K edge show that Co is going at Zn site in ZnO matrix and no other phase is present. These results are further confirmed by O K edge and Co L2,3 edge XANES measurements.

  17. Electrode loading effect and high temperature performance of ZnO thin film ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Zhou, X. S.; Zhang, J.; Hou, R.; Zhao, C.; Kirk, K. J.; Hutson, D.; Hu, P. A.; Peng, S. M.; Zu, X. T.; Fu, Y. Q.

    2014-10-01

    Nanocrystalline ZnO films of 5.8 μm thick were sputter-deposited on ferritic carbon steel plates (25 × 25 × 3 mm3) and characterized for use as ultrasonic transducers at both room temperature and high temperatures. Electrode loading effects have been studied using two types of electrodes, i.e., sputtered Cr/Au (5/50 nm) and silver paste, with electrode diameters 0.7-2.5 mm. Longitudinal and transverse waves were obtained in pulse-echo tests using both types of electrodes. With a silver paste top electrode, a dominant longitudinal mode was obtained, but with a thin Cr/Au film as the top electrode, shear waves were more dominant. Pulse-echo tests of the ZnO transducers were also performed at elevated temperatures up to 450 °C using a carbon paste electrodes. The sputtered ZnO films maintained a stable crystalline structure and orientation at the elevated temperatures, and ZnO devices on ferritic carbon steel could be used successfully up to 400 °C. However, when the temperature was increased further, rapid surface oxidation of the ferritic carbon steel caused the failure of the transducer.

  18. Nanoscale heterogeniety and workfunction variations in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Anirudh; Untch, Maria; Quinton, Jamie S.; Berger, Rüdiger; Andersson, Gunther; Lewis, David A.

    2016-02-01

    Nano-roughened, sol-gel derived polycrystalline ZnO thin films prepared by a thermal ramping procedure were found to exhibit different work function values on a sub-micrometer scale. By Kelvin probe force microscopy (KPFM) two distinct nanoscale regions with work function differing by over 0.1 eV were detected which did not coincide with the nano-roughened surface topography. In contrast, a flat ZnO surface displayed a single, uniform distribution. Ultraviolet photoelectron spectroscopy (UPS) studies showed that the average workfunction across a flat ZnO surface was 3.7 eV while ZnO with a nano-roughened morphology had a lower workfunction of 3.4 eV with indications of electronic heterogeneity across the surface, supporting the KPFM results. Scanning Auger Nanoprobe measurements showed that the chemical composition was uniform across the surface in all samples, suggesting the work function heterogeneity was due to variations in crystallinity or crystal orientation on the surface of these thin films. Such heterogeneity in the electronic properties of materials in thin film devices can significantly influence the interfacial charge transport across materials.

  19. Dependence of photoconductivity on the crystallite orientations and porosity of polycrystalline ZnO films

    NASA Astrophysics Data System (ADS)

    Ghosh, R.; Mallik, B.; Basak, D.

    2005-11-01

    Hexagonal ZnO films deposited on quartz glass, sapphire and glass substrates by sol gel coating are found to be randomly oriented; maximum randomness is found in the film on quartz glass substrate. All the films are ultra-violet (UV) sensitive at around 360 nm sensitivity being maximum for the film with maximum randomness in the crystallite orientations. The film on quartz showed the lowest dark current and maximum photoresponse, which is related to the lowering of the barrier heights, introduced by the adsorbed oxygen at the grain boundaries. Faster decay in photocurrent is observed for the film deposited on glass, which is attributed due to the smaller crystallite sizes with porous microstructure of the film.

  20. ZnO and MgZnO Nanocrystalline Flexible Films: Optical and Material Properties

    DOE PAGESBeta

    Huso, Jesse; Morrison, John L.; Che, Hui; Sundararajan, Jency P.; Yeh, Wei Jiang; McIlroy, David; Williams, Thomas J.; Bergman, Leah

    2011-01-01

    An emore » merging material for flexible UV applications is Mg x Zn 1 − x O which is capable of tunable bandgap and luminescence in the UV range of ~3.4 eV–7.4 eV depending on the composition x . Studies on the optical and material characteristics of ZnO and Mg 0.3 Zn 0.7 O nanocrystalline flexible films are presented. The analysis indicates that the ZnO and Mg 0.3 Zn 0.7 O have bandgaps of 3.34 eV and 4.02 eV, respectively. The photoluminescence (PL) of the ZnO film was found to exhibit a structural defect-related emission at ~3.316 eV inherent to the nanocrystalline morphology. The PL of the Mg 0.3 Zn 0.7 O film exhibits two broad peaks at 3.38 eV and at 3.95 eV that are discussed in terms of the solubility limit of the ZnO-MgO alloy system. Additionally, external deformation of the film did not have a significant impact on its properties as indicated by the Raman LO-mode behavior, making these films attractive for UV flexible applications.« less

  1. Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method

    SciTech Connect

    Vijayaprasath, G.; Murugan, R.; Ravi, G. E-mail: gravicrc@gmail.com; Hayakawa, Y.

    2015-06-24

    We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption of ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.

  2. Heteroepitaxial ZnO films on diamond: Optoelectronic properties and the role of interface polarity

    SciTech Connect

    Schuster, Fabian Hetzl, Martin; Garrido, Jose A.; Stutzmann, Martin; Magén, Cesar; Arbiol, Jordi

    2014-06-07

    We demonstrate the growth of heteroepitaxial ZnO films on (110) diamond substrates by molecular beam epitaxy and report on a major advance in structural quality, as confirmed by XRD and high-resolution TEM measurements. The growth direction is found to be along the polar c-axis with Zn-polarity, deduced from annular bright-field scanning transmission electron microscopy imaging. This is important information, as simulations of the electronic band structure reveal the ZnO polarity to dominate the electronic structure of the interface: the formation of a two-dimensional electron gas on the ZnO side or a two-dimensional hole gas on the diamond side are predicted for Zn- and O-polarity, respectively. In addition, photoluminescence and absorption studies exhibit good optical properties and reveal stimulated emission for optical excitation above a threshold of 30 kW/cm{sup 2}.

  3. Enhanced luminescence in Eu-doped ZnO nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Suzuki, Keigo; Murayama, Koji; Tanaka, Nobuhiko

    2015-07-01

    We found an enhancement of Eu3+ emissions in Eu-doped ZnO nanocrystalline films fabricated by microemulsion method. The Eu3+ emission intensities were increased by reducing annealing temperatures from 633 K to 533 K. One possible explanation for this phenomenon is that the size reduction enhances the energy transfer from ZnO nanoparticles to Eu3+ ions. Also, the shift of the charge-transfer band into the low-energy side of the absorption edge is found to be crucial, which seems to expedite the energy transfer from O atoms to Eu3+ ions. These findings will be useful for the material design of Eu-doped ZnO phosphors.

  4. Enhanced luminescence in Eu-doped ZnO nanocrystalline films

    SciTech Connect

    Suzuki, Keigo Murayama, Koji; Tanaka, Nobuhiko

    2015-07-20

    We found an enhancement of Eu{sup 3+} emissions in Eu-doped ZnO nanocrystalline films fabricated by microemulsion method. The Eu{sup 3+} emission intensities were increased by reducing annealing temperatures from 633 K to 533 K. One possible explanation for this phenomenon is that the size reduction enhances the energy transfer from ZnO nanoparticles to Eu{sup 3+} ions. Also, the shift of the charge-transfer band into the low-energy side of the absorption edge is found to be crucial, which seems to expedite the energy transfer from O atoms to Eu{sup 3+} ions. These findings will be useful for the material design of Eu-doped ZnO phosphors.

  5. Electrical characteristics of ZnO nanorods reinforced polymer nanocomposite thin films

    SciTech Connect

    Bhattacharjee, Snigdha; Roy, Asim

    2015-05-15

    ZnO nanorods have been prepared by simple chemical method, which is used to fabricate organic bistable devices (OBDs). OBDs are fabricated by incorporating different weight percent (wt %) of chemically synthesized Zinc Oxide (ZnO) nanorods into polymethylmethacrylate (PMMA). Current-voltage (I-V) measurements of the spin coated ZnO+PMMA nanocomopsite thin film on indium tin oxide (ITO) coated glass substrate showed current hysteresis behaviour, which is an indication of memory effect. The samples exhibit two distinct resistance states, ON and OFF states, characterised by relatively low and high resistance of the OBDs, respectively. It is also observed that with change in ZnO dopant concentration the value of ON/OFF current changes. Higher ON/OFF current ratio is desired for practical applications. Current conduction mechanism of the devices has been explained invoking various existing models, and it has been found that the trapped-charge-limited conduction mechanism was dominant in our samples.

  6. Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics.

    PubMed

    Alshammari, Fwzah H; Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N

    2016-09-01

    We report ZnO TFTs using Al2O3/Ta2O5 bilayer gate dielectrics grown by atomic layer deposition. The saturation mobility of single layer Ta2O5 dielectric TFT was 0.1 cm(2) V(-1) s(-1), but increased to 13.3 cm(2) V(-1) s(-1) using Al2O3/Ta2O5 bilayer dielectric with significantly lower leakage current and hysteresis. We show that point defects present in ZnO film, particularly VZn, are the main reason for the poor TFT performance with single layer dielectric, although interfacial roughness scattering effects cannot be ruled out. Our approach combines the high dielectric constant of Ta2O5 and the excellent Al2O3/ZnO interface quality, resulting in improved device performance. PMID:27553091

  7. Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Ning, Shuai; Zhan, Peng; Wang, Wei-Peng; Li, Zheng-Cao; Zhang, Zheng-Jun

    2014-12-01

    Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.

  8. Substrate Temperature Effects on Room Temperature Sensing Properties of Nanostructured ZnO Thin Films.

    PubMed

    Reddy, Jonnala Rakesh; Mani, Ganesh Kumar; Shankar, Prabakaran; Rayappan, John Bosco Balaguru

    2016-01-01

    Zinc oxide (ZnO) thin films were deposited on glass substrates using chemical spray pyrolysis technique at different substrate temperatures such as 523, 623 and 723 K. X-ray diffraction (XRD) patterns confirmed the formation of polycrystalline films with hexagonal wurtzite crystal structure and revealed the change in preferential orientation of the crystal planes. Scanning electron micrographs showed the formation of uniformly distributed spherical shaped grains at low deposition temperature and pebbles like structure at the higher temperature. Transmittance of 85% was observed for the film deposited at 723 K. The band gap of the films was found to be increased from 3.15 to 3.23 eV with a rise in deposition temperature. The electrical conductivity of the films was found to be improved with an increase in substrate temperature. Surface of ZnO thin films deposited at 523 K, 623 K and 723 K were found to be hydrophobic with the contact angles of 92°, 105° and 128° respectively. The room temperature gas sensing characteristics of all the films were studied and found that the film deposited at 623 K showed a better response towards ammonia vapour. PMID:27398478

  9. Microfluidic pumps employing surface acoustic waves generated in ZnO thin films

    SciTech Connect

    Du, X. Y.; Flewitt, A. J.; Milne, W. I.; Fu, Y. Q.; Luo, J. K.

    2009-01-15

    ZnO thin film based surface acoustic wave (SAW) devices have been utilized to fabricate microfluidic pumps. The SAW devices were fabricated on nanocrystalline ZnO piezoelectric thin films deposited on Si substrates using rf magnetron sputtering and use a Sezawa wave mode for effective droplet motion. The as-deposited ZnO surface is hydrophilic, with a water contact angle of {approx}75 deg., which prevents droplet pumping. Therefore, the ZnO surface was coated using a self-assembled monolayer of octadecyltrichlorosilane which forms a hydrophobic surface with a water contact angle of {approx}110 deg. Liquid droplets between 0.5 and 1 {mu}l in volume were successfully pumped on the hydrophobic ZnO surface at velocities up to 1 cm s{sup -1}. Under acoustic pressure, the water droplet on an hydrophilic surface becomes deformed, and the asymmetry in the contact angle at the trailing and leading edges allow the force acting upon the droplet to be calculated. These forces, which increase with input voltage above a threshold level, are found to be in the range of {approx}100 {mu}N. A pulsed rf signal has also been used to demonstrate precision manipulation of the liquid droplets. Furthermore, a SAW device structure is demonstrated in which the ZnO piezoelectric only exists under the input and output transducers. This structure still permits pumping, while avoiding direct contact between the piezoelectric material and the fluid. This is of particular importance for biological laboratory-on-a-chip applications.

  10. Nanophotoactivity of Porphyrin Functionalized Polycrystalline ZnO Films.

    PubMed

    Rogero, Celia; Pickup, David F; Colchero, Jaime; Azaceta, Eneko; Tena-Zaera, Ramón; Palacios-Lidón, Elisa

    2016-07-01

    Kelvin probe force microscopy in darkness and under illumination is reported to provide nanoscale-resolved surface photovoltage maps of hybrid materials. In particular, nanoscale charge injection and charge recombination mechanisms occurring in ZnO polycrystalline surfaces functionalized with Protoporphyrin IX (H2PPIX) are analyzed. Local surface potential and surface photovoltage maps not only reveal that upon molecular adsorption the bare ZnO work function increases, but also they allow study of its local dependence. Nanometer-sized regions not correlated with apparent topographic features were identified, presenting values significantly different from the average work function. Depending on the region, the response to the light excitation is different, distinguishing two relaxation processes, one faster than the other. This behavior can be explained in terms of electrons trapped closed to the molecule-semiconductor interface or electrons pushed into the ZnO bulk, respectively. Moreover, the origin of these differences is correlated with the H2PPIX-ZnO bonding and molecules configuration and aggregation. The chenodeoxycholic acid (CDCA) coadsorption leads to a more homogeneous surface potential distribution, confirming the antiaggregate effect of this additive, while the surface photovoltage is mostly dominated by the slow relaxation component. This work reveals the complexity of real device architectures with ill-defined surfaces even in a relatively simple system with only one type of dye molecule and hightlights the importance of nanoscale characterization with appropriate tools. PMID:27303943

  11. Transport and magnetotransport study of Mg doped ZnO thin films

    SciTech Connect

    Agrawal, Arpana; Dar, Tanveer A. Sen, Pratima; Phase, Deodatta M.

    2014-04-14

    We report negative magnetoresistance in pulsed laser deposited single phase ZnO and Mg{sub 0.268}Zn{sub 0.732}O films and attribute it to the presence of oxygen interstitials (O{sub i}) and zinc interstitials (Zn{sub i}) as observed in the X-ray photoelectron spectra of the films. An interesting feature of reduction of negative magnetoresistance at low temperatures and large fields in Mg{sub 0.268}Zn{sub 0.732}O film is observed and is explained by taking into account the localized scattering.

  12. Nitrogen-doped ZnO thin films by use of laser ablation of ZnO(1-x)Nx targets

    NASA Astrophysics Data System (ADS)

    Okato, Takeshi; Osada, Takenori; Obara, Minoru

    2005-04-01

    ZnO is inherently a strong n-type semiconductor due to its intrinsic defects. Among the group V elements (N, As, P, Sb), nitrogen is considered as teh most hopeful dopant for p-type ZnO, because substitute N (N0) is a relatively shallow acceptor. However, technical issues of the low solubility for the desirable defect and compensations from undesirable donor-like defects are imposed on the development of high mobility and low resistivity p-type ZnO. Breaking through these issues is accompanied by the optimization of dopant concentration and reduction of intrinsic defects. In this study, we have investigated the dependence of the nitrogen concentration on its electrical properties. Home-made ZnO1-xNx targets were prepared and used for KrF excimer pulsed-laser deposition (PLD) at precisely controlled growth conditions. Thin films were deposited on c-cut sapphire substrates. The nitrogen concentration was tuned by adjusting the amount of nitrogen in the ablation targets. The film properties were characterized by x-ray diffraction (XRD) and x-ray photoemission spectroscopy (XPS). The electrical properties were measured by van der Pauw method. The as-grown ZnO:N films showed n-type conductivity, however, they were converted to p-type upon post-deposition thermal treatment. Further improvement was demonstrated by introducing a ZnO low-temperature buffer layer which realized the lattice mismatch relaxation.

  13. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.

    PubMed

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration. PMID:26233403

  14. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance

    NASA Astrophysics Data System (ADS)

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s2. By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.

  15. Preparation of dye-adsorbing ZnO thin films by electroless deposition and their photoelectrochemical properties.

    PubMed

    Nagaya, Satoshi; Nishikiori, Hiromasa

    2013-09-25

    Dye-adsorbing ZnO thin films were prepared on ITO films by electroless deposition. The films were formed in an aqueous solution containing zinc nitrate, dimethylamine-borane, and eosin Y at 328 K. The film thickness was 1.2-2.0 μm. Thinner and larger-plane hexagonal columns were produced from the solution containing a higher concentration of eosin Y. A photocurrent was observed in the electrodes containing such ZnO films during light irradiation. The photoelectrochemical performance of the film was improved by increasing the concentration of eosin Y because of increases in the amount of absorbed photons and the electronic conductivity of ZnO. PMID:24020721

  16. Structural and optical properties of Ni added ZnO thin films deposited by sol-gel method

    SciTech Connect

    Murugan, R.; Vijayaprasath, G.; Anandhan, N. E-mail: gravicrc@gmail.com; Ravi, G. E-mail: gravicrc@gmail.com; Mahalingam, T.

    2014-04-24

    Pure and Ni added zinc oxide thin films were prepared by sol-gel method using spin-coating technique on glass substrates. The influences of nickel on ZnO thin films are characterized by Powder X-ray diffraction study. Pure and Ni added thin films are hexagonal wurtzite structure without any secondary phase in c-axis orientation. The SEM images of thin films show uniform sphere like particles covered completely on glass substrates. All the films exhibit transmittance of 85-95% in the visible range up to 800nm and cut-off wavelength observed at 394 nm corresponding to the fundamental absorption of ZnO. The photoluminescence property for pure and Ni added ZnO thin films has been studied and results are presented in detail.

  17. Different magnetic origins of (Mn, Fe)-codoped ZnO powders and thin films

    SciTech Connect

    Fan, Jiuping; Jiang, Fengxian; Quan, Zhiyong; Qing, Xiufang; Xu, Xiaohong

    2012-11-15

    Graphical abstract: The effects of the sample forms, fabricated methods, and process conditions on the structural and magnetic properties of (Mn, Fe)-codoped ZnO powders and films were systematically studied. The origins of ferromagnetism in the vacuum-annealed powder and PLD-deposited film are different. The former originates from the impurities of magnetic clusters, whereas the latter comes from the almost homogenous phase. Highlights: ► The magnetic natures of Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powders and thin films come from different origins. ► The ferromagnetism of the powder is mainly from the contribution of magnetic clusters. ► Whereas the ferromagnetic behavior of the film comes from the almost homogenous phase. -- Abstract: The structural and magnetic properties of (Mn, Fe)-codoped ZnO powders as well as thin films were investigated. The X-ray diffraction and magnetic measurements indicated that the higher sintering temperature facilitates more Mn and Fe incorporation into ZnO. Magnetic measurements indicated that the powder sintered in air at 800 °C showed paramagnetic, but it exhibited obvious room temperature ferromagnetism after vacuum annealing at 600 °C. The results revealed that magnetic clusters were the major contributors to the observed ferromagnetism in vacuum-annealed Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powder. Interestingly, the room temperature ferromagnetism was also observed in the Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O film deposited via pulsed laser deposition from the air-sintered paramagnetic target, but the secondary phases in the film were not detected from X-ray diffraction, transmission electron microscopy, and zero-field cooling and field cooling. Apparently, the magnetic natures of powders and films come from different origins.

  18. Magnetic Coupling of Dissimilar ZnO-Co Granular Films Through a ZnO Spacer

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Jia, Juan; Gao, Yan; Gehring, G. A.; Xu, Xiaohong

    2015-12-01

    An all-oxide granular film (GF) with a sandwich structure containing cobalt metal nanoparticles embedded in ZnO is fabricated by magnetron sputtering. Large and small Co particles can be obtained simultaneously in a sample by depositing nanostructured ZnO-Co layers at high and low temperatures, respectively. The two ZnO-Co layers couple with each other through a ZnO spacer layer, whose thickness tunes the strength of the coupling. Both the magnetic properties and the magnetoresistance (MR) of the samples depend on the sandwich structure. Magnetic interactions can be transferred through the polycrystalline pure ZnO spacer layer even when the layer is as thick as 40nm due to the long spin coherence length. An analysis of the data found that the spin coherence length was greater than ˜17nm at room temperature (RT) in a polycrystalline film with very small grains. Tuning the resistance of the ZnO-Co layer deposited at a low temperature by adding aluminum so that it more nearly matches the resistance of the ZnO-Co layer deposited at a high temperature, dramatically enhances the MR of the sandwich sample. This study illustrates the power of combining films containing different sizes of nanoparticles in order to optimize the MR and so make the ZnO-based films more suitable for applications in spintronics.

  19. Homobuffer thickness effect on the conduction type of non-polar ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pan, X. H.; Ding, P.; Huang, J. Y.; He, H. P.; Ye, Z. Z.; Lu, B.

    2014-10-01

    Non-polar (101bar0) ZnO thin films were epitaxially grown on m-plane sapphire substrates by plasma-assisted molecular beam epitaxy. The homobuffer thickness effect on the conduction type of undoped ZnO thin films is carefully investigated. With a relatively thicker buffer layer, weak p-type conductivity with a hole concentration of 1.6×1016 cm-3, a Hall mobility of 0.33 cm2 V-1 s-1, and a resistivity of 1.2×103 Ω cm are achieved for the film. By careful analysis of results from low temperature photoluminescence and transmission electron microscopy measurements, a correlation of the 3.32-eV emission to the p-type conductivity in the undoped non-polar ZnO films is revealed and discussed. The results are important to help deepen understanding of the origin of p-type behavior in ZnO-based materials.

  20. Reflection Properties of Metallic Gratings on ZnO Films over GaAs Substrates

    NASA Technical Reports Server (NTRS)

    Hickernell, Fred S.; Kim, Yoonkee; Hunt, William D.

    1994-01-01

    A potential application for piezoelectric film deposited on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Metallic gratings are basic elements required for the construction of such devices, and analyzing the reflectivity and the velocity change due to metallic gratings is often a critical design parameter. In this article, Datta and Hunsinger technique is extended to the case of a multilayered structure, and the developed technique is applied to analyze shorted and open gratings on ZnO films sputtered over (001)-cut (110)-propagating GaAs substrates. The analysis shows that zero reflectivity of shorted gratings can be obtained by a combination of the ZnO film and the metal thickness and the metalization ratio of the grating. Experiments are performed on shorted and an open gratings (with the center frequency of about 180 MHz) for three different metal thicknesses over ZnO films which are 0.8 and 2.6 micrometers thick. From the experiments, zero reflectivity at the resonant frequency of the grating is observed for a reasonable thickness (h/Alpha = 0.5%) of aluminum metalization. The velocity shift between the shorted and the open grating is also measured to be 0.18 MHz and 0.25 MHz for 0.8 and 1.6 micrometers respectively. The measured data show relatively good agreement with theoretical predictions.

  1. Photoluminescence, ellipsometric, optical and morphological studies of sprayed Co-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Gençyılmaz, O.; Atay, F.; Akyüz, I.

    2016-06-01

    In this study, undoped and cobalt (Co)-doped zinc oxide (ZnO) films were successfully produced by ultrasonic spray pyrolysis (USP) technique at low temperature (350°C). The optical and surface properties were investigated as a function of Co content. The optical parameters (thickness, refractive index and extinction coefficient) were determined using spectroscopic ellipsometry (SE) and it was seen that the refractive index and extinction coefficient values of Co-doped ZnO films decreased slightly depending on the increasing of Co doping. For investigation, the transmittance and photoluminescence (PL) spectra of the films, UV-Vis spectrophotometer and PL spectroscopy were used at room temperature. The transmittance spectra show that transmittance values decreased and Co+2 ions substitute Zn+2 ions of ZnO lattice. The optical band gap values decreased from 3.26 eV to 2.85 eV with the changing of Co content. The results of PL spectra exhibit the position of the different emission peaks unchanged but the intensity of peaks increased with increasing Co doping. Also, the surface properties of the films were obtained by atomic force microscopy (AFM) and these results indicated that the surface morphology and roughness values were prominently changed with Co doping.

  2. Influence of Fe doping on the structural, optical and acetone sensing properties of sprayed ZnO thin films

    SciTech Connect

    Prajapati, C.S.; Kushwaha, Ajay; Sahay, P.P.

    2013-07-15

    Graphical abstract: All the films are found to be polycrystalline ZnO possessing hexagonal wurtzite structure. The intensities of all the peaks are diminished strongly in the Fe-doped films, indicating their lower crystallinity as compared to the undoped ZnO film. The average crystallite size decreases from 35.21 nm (undoped sample) to 15.43 nm (1 at% Fe-doped sample). - Highlights: • Fe-doped ZnO films show smaller crystallinity with crystallite size: 15–26 nm. • Optical band gap in ZnO films decreases on Fe doping. • Fe-doped films exhibit the normal dispersion for the wavelength range 450–600 nm. • PL spectra of the Fe-doped films show quenching of the broad green-orange emission. • Acetone response of the Fe-doped films increases considerably at 300 °C. - Abstract: The ZnO thin films (undoped and Fe-doped) deposited by chemical spray pyrolysis technique have been analyzed by X-ray powder diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results show that all the films possess hexagonal wurtzite structure of zinc oxide having crystallite sizes in the range 15–36 nm. On 1 at% Fe doping, the surface roughness of the film increases which favors the adsorption of atmospheric oxygen on the film surface and thereby increase in the gas response. Optical studies reveal that the band gap decreases due to creation of some defect energy states below the conduction band edge, arising out of the lattice disorder in the doped films. The refractive index of the films decreases on Fe doping and follows the Cauchy relation of normal dispersion. Among all the films examined, the 1 at% Fe-doped film exhibits the maximum response (∼72%) at 300 °C for 100 ppm concentration of acetone in air.

  3. The role of seeding in the morphology and wettability of ZnO nanorods films on different substrates

    NASA Astrophysics Data System (ADS)

    Rodríguez, Juan; Onna, Diego; Sánchez, Luis; Marchi, M. Claudia; Candal, Roberto; Ponce, Silvia; Bilmes, Sara A.

    2013-08-01

    Spray pyrolysis (SP) and spray-gel (SG) techniques were used to deposit ZnO seeds on Fluor doped tin oxide glasses (FTO), heated at 350 °C or 130 °C, and PET heated at 90 °C. The effect of seeding on the morphology and wettability of ZnO nanorods (NRs) films grown by wet chemical methods was analyzed. The morphology and wettability of ZnO NRs films depend on the seeding process. SP seeds formed from zinc acetate dissolved in water ethanol mixtures yield vertically aligned ZnO NRs, whose diameters and dispersion size are determined by the ethanol/water ratio in the precursor solution. SG seeds formed from a methanol ZnO sol produce a ring patterned distribution on the FTO substrate. The drying of ZnO sol drops impinging on the substrate produces high density of seeds along a ring yielding textured films with NRs vertically oriented on the rings and multi-oriented outside them. This effect was not observed when ZnO NRs grown onto the ZnO/PET substrate, however rod diameter is related with the density of seeds. This way to control the density and diameter of NRs deposited onto a substrate modify the wettability and opens new possibilities for the design of tailored nanomaterials for photochemical applications. Both type of NRs films showed a strong luminescence emission in the UV and in the blue, associated with surface and intrinsic defects.

  4. Growth environment driven physical property changes of ZnO films

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Jeong, Y. E.; Kim, H. K.; Lee, D. Y.; Bae, J. S.; Lee, W. J.; Park, K. H.; Bu, S. D.; Park, Sungkyun

    2014-03-01

    The growth temperature and post-annealing dependent on the thermal stress of undoped ZnO films and oxygen partial pressure dependent physical properties of Pdoped ZnO films were investigated. As the growth temperature increased, the lattice constant increased and approached the bulk value, suggesting a decrease in interfacial strain between the substrate and thin film. For the post annealed films, the interfacial strain decreased further and was close to the bulk value regardless of the post annealing environments. The optical band gap varied according to the growth temperature and post annealing environments due to a decrease in the interfacial strain effect. In the case of the variation of oxygen partial pressure during the growth, the degree of crystallinity and the amount of oxygen vacancies in the films decreased with oxygen partial pressure. All films showed n-type except for a film grown at 100 mTorr, which exhibited p-type. The optical band gap energy also changed with the oxygen partial pressure. The feasible microscopic mechanism of conductivity conversion is explained in terms of the lattice constant, crystallinity, and relative roles of the substituted phosphorous in the Zn-site and/or oxygen vacancies depending on the oxygen partial pressure. This study was supported in part by NRF Korea (2012-005940, 2011-0031933, 2013S1A5B6053791, 2011-330-B00044).

  5. Room Temperature Ferromagnetism in Transition Metal Doped CVD-Grown ZnO Films and Nanostructures

    NASA Astrophysics Data System (ADS)

    Hill, D. H.; Gateau, R.; Bartynski, R. A.; Wu, P.; Lu, Y.; Wielunski, L.; Poltavets, V.; Greenblatt, M.; Arena, D. A.; Dvorak, J.; Calvin, S.

    2006-03-01

    We have characterized the chemical, compositional, and magnetic properties of Mn- and Fe-ion implanted epitaxial ZnO films and single crystal nanostructures grown by MOCVD as candidate room temperature diluted magnetic semiconductors. X-ray absorption spectroscopy (SXAS) shows that Mn-implanted films contain Mn^2+ ions which convert to a mixture of Mn^3+ and Mn^4+ upon annealing. Fe-implanted films contain a mixture of Fe^2+ and Fe^3+ which converts to a higher concentration of Fe^3+ upon annealing. XAS and preliminary analysis of EXAFS data indicate that the TM ions are substitutional for Zn. SQUID magnetometry shows that as-implanted films are ferromagnetic at 5K and the annealed films are ferromagnetic at room temperature. X-ray diffraction shows that the annealed films remain epitaxial with excellent long range order. Rutherford backscattering spectrometry indicates a substantial recovery of local order upon annealing as well. The properties of in-situ Fe-doped MOCVD-grown ZnO epitaxial films and nanostructures will also be discussed.

  6. Investigation of structural and optical properties of ZnO films co-doped with fluorine and indium

    NASA Astrophysics Data System (ADS)

    Keskenler, E. F.; Turgut, G.; Doğan, S.

    2012-07-01

    Undoped ZnO film and ZnO films, which are co-doped with F and In (FIZO) at different concentrations, were synthesized by sol-gel technique and the effects of co-doping of F and In on structural and optical properties of ZnO thin films were investigated. The concentration ratio of [F]/[Zn] was altered from 0.25 to 1.75 with 0.50 step at.% mole and [In]/[Zn] was altered from 0.25 to 1.00 with 0.25 step at.% mole. X-ray diffraction analysis indicates that the films have polycrystalline nature and the (0 0 2) preferred orientation is the stronger peak. No extra phases involving zinc, fluorine and indium compounds were observed even at high F and In content. The grain size of undoped ZnO and FIZO thin films varied between 15 and 20 nm with a small fluctuation. From the SEM images, although the undoped ZnO had a smooth and particle-shaped surface, FIZO films had nanofiber-networks shapes over the surface with average size of 500 nm. The surface morphologies and crystallite sizes for the F and In doped films were slightly different from than those of undoped film. From the optical study, a slight shrinkage of band gap was backwardly observed from 3.36 to 3.25 eV with the increasing of F and In content.

  7. Photoactive Langmuir-Blodgett, Freely Suspended and Free Standing Films of Carboxylate Ligand-Coated ZnO Nanocrystals.

    PubMed

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wadowska, Monika; Wróbel, Zbigniew; Matuła, Kinga; Nogala, Wojciech; Lewiński, Janusz; Hołyst, Robert

    2016-06-01

    A new possibility for the formation of macroscopic and photoactive structures from zinc oxide nanocrystals is described. Photoactive freely suspended and free-standing films of macroscopic area (up to few square millimeters) and submicrometer thickness (up to several hundreds of nanometers) composed of carboxylate ligand-coated zinc oxide nanocrystallites (RCO2-ZnO NCs) of diameter less than 5 nm are prepared according to a modified Langmuir-Schaefer method. First, the suspension of RCO2-ZnO NCs is applied onto the air/water interface. Upon compression, the films become turbid and elastic. The integrity of such structures is ensured by interdigitation of ligands stabilizing ZnO NCs. Great elasticity allows transfer of the films onto a metal frame as a freely suspended film. Such membranes are afterward extracted from the supporting frame to form free-standing films of macroscopic area. Because the integrity of the films is maintained by ligands, no abolishment of quantum confinement occurs, and films retain spectroscopic properties of initial RCO2-ZnO NCs. The mechanism of formation of thin films of RCO2-ZnO NCs at the air/water interface is discussed in detail. PMID:27158733

  8. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  9. Spin-polarized transport current in n-type codoped ZnO thin films measured by Andreev spectroscopy.

    SciTech Connect

    Yates, K. A.; Behan, A. J.; Neal, J. R.; Score, D. S.; Blythe, H. J.; Gehring, G. A.; Heald, S. M.; Branford, W. R.; Cohen, L. F.; Imperial Coll.; Univ. of Sheffield

    2009-12-01

    We use point-contact Andreev-reflection measurements to determine the spin polarization of the transport current in pulse laser deposited thin films of ZnO with 1% Al and with and without 2% Mn. Only films with Mn are ferromagnetic and show spin polarization of the transport current of up to 55 {+-} 0.5% at 4.2 K, in sharp contrast to measurements of the nonmagnetic films without Mn where the polarization is consistent with zero. Our results imply strongly that ferromagnetism in these Al-doped ZnO films requires the presence of Mn.

  10. Recent advances in the transparent conducting ZnO for thin-film Si solar cells

    NASA Astrophysics Data System (ADS)

    Moon, Taeho; Shin, Gwang Su; Park, Byungwoo

    2015-11-01

    The key challenge for solar-cell development lies in the improvement of power-conversion efficiency and the reduction of fabrication cost. For thin-film Si solar cells, researches have been especially focused on the light trapping for the breakthrough in the saturated efficiencies. The ZnO-based transparent conducting oxides (TCOs) have therefore received strong attention because of their excellent light-scattering capability by the texture-etched surface and cost effectiveness through in-house fabrication. Here, we have highlighted our recent studies on the transparent conducting ZnO for thin-film Si solar cells. From the electrical properties and their degradation mechanisms, bilayer deposition and organic-acid texturing approaches for enhancing the light trapping, and finally the relation between textured ZnO and electrical cell performances are sequentially introduced in this review article. [Figure not available: see fulltext.

  11. Structural and optical characterization of MOCVD-grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pagni, O.; James, G. R.; Leitch, A. W. R.

    2004-03-01

    We report on the characterization of ZnO thin films grown by metal organic chemical vapor deposition (MOCVD) using diethyl zinc (DEZ) and tert-butanol (TBOH) as precursors. Substrate temperature proved to be a crucial factor in the crystallization process, as it vastly impacted the structural properties of the samples studied. Highly c-axis oriented films with large grain size (52 nm), low tensile strain (0.6%), uniform substrate coverage and a columnar structure devoid of hexagonal needles were successfully deposited on n-Si (100) substrates. The temperature-dependent luminescence spectra recorded confirmed the excellent quality of the material obtained in this work. Our results so far set TBOH apart as an outstanding oxygen source for the MOCVD growth of ZnO.

  12. Perovskite solar cells based on nanocolumnar plasma-deposited ZnO thin films.

    PubMed

    Ramos, F Javier; López-Santos, Maria C; Guillén, Elena; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Gonzalez-Elipe, Agustin R; Ahmad, Shahzada

    2014-04-14

    ZnO thin films having a nanocolumnar microstructure are grown by plasma-enhanced chemical vapor deposition at 423 K on pre-treated fluorine-doped tin oxide (FTO) substrates. The films consist of c-axis-oriented wurtzite ZnO nanocolumns with well-defined microstructure and crystallinity. By sensitizing CH3NH3PbI3 on these photoanodes a power conversion of 4.8% is obtained for solid-state solar cells. Poly(triarylamine) is found to be less effective when used as the hole-transport material, compared to 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD), while the higher annealing temperature of the perovskite leads to a better infiltration in the nanocolumnar structure and an enhancement of the cell efficiency. PMID:24643984

  13. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    SciTech Connect

    Johnson, Raegan Lynn

    2005-08-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  14. Detailed microstructure analysis of as-deposited and etched porous ZnO films

    NASA Astrophysics Data System (ADS)

    Shang, Congcong; Thimont, Yohann; Barnabé, Antoine; Presmanes, Lionel; Pasquet, Isabelle; Tailhades, Philippe

    2015-07-01

    ZnO nanostructured materials in thin film forms are of particular interest for photovoltaic or photocatalysis processes but they suffer from a lack of simple methods for optimizing their microstructure. We have demonstrated that microporous ZnO thin films with optimized inter grain accessibility can be produce by radio frequency magnetron sputtering process and chemical etching with 2.75 mM HCl solution for different duration. The as-deposited ZnO thin films were first characterized in terms of structure, grain size, inter grain space, open cavity depth and total thickness of the film by XRD, AFM, SEM, profilometry and optical measurements. A specific attention was dedicated to the determination of the surface enhancement factor (SEF) by using basic geometrical considerations and images treatments. In addition, the porous fraction and its distribution in the thickness have been estimated thanks to the optical simulation of the experimental UV-Visible-IR spectrums using the Bruggeman dielectric model and cross section SEM images analysis respectively. This study showed that the microstructure of the as-deposited films consists of a dense layer covered by a porous upper layer developing a SEF of 12-13 m2 m-2. This two layers architecture is not modified by the etching process. The etching process only affects the upper porous layer in which the overall porosity and the inter-grain space increase with the etching duration. Column diameter and total film thickness decrease at the same time when the films are soaked in the HCl bath. The microporous structure obtained after the etching process could generate a great interest for the interfaces electronic exchanges for solar cells, photocatalysis and gas sensors applications.

  15. Physical deoxygenation of graphene oxide paper surface and facile in situ synthesis of graphene based ZnO films

    SciTech Connect

    Ding, Jijun; Wang, Minqiang Zhang, Xiangyu; Ran, Chenxin; Shao, Jinyou; Ding, Yucheng

    2014-12-08

    In-situ sputtering ZnO films on graphene oxide (GO) paper are used to fabricate graphene based ZnO films. Crystal structure and surface chemical states are investigated. Results indicated that GO paper can be effectively deoxygenated by in-situ sputtering ZnO on them without adding any reducing agent. Based on the principle of radio frequency magnetron sputtering, we propose that during magnetron sputtering process, plasma streams contain large numbers of electrons. These electrons not only collide with argon atoms to produce secondary electrons but also they are accelerated to bombard the substrates (GO paper) resulting in effective deoxygenation of oxygen-containing functional groups. In-situ sputtering ZnO films on GO paper provide an approach to design graphene-semiconductor nanocomposites.

  16. Improved UV photoresponse properties of high-quality ZnO thin films through the use of a ZnO buffer layer on flexible polyimide substrates

    NASA Astrophysics Data System (ADS)

    Kim, Mincheol; Leem, Jae-Young; Son, Jeong-Sik

    2016-03-01

    An oxidized ZnO buffer layer was prepared by using thermal oxidation of a Zn buffer layer on a polyimide (PI) substrate; then, ZnO thin films with (sample 1) and without (sample 2) an oxidized ZnO buffer layer were grown by using the sol-gel spin-coating method. The intensities of the ZnO (002) diffraction peaks observed in sample 1 were stronger than those observed in sample 2, implying that the crystal quality was enhanced by the oxidized ZnO buffer layer. Moreover, the residual stress of sample 1 was reduced compared to that of sample 2 due to the decreased number of defects. Sample 2 exhibited defect-related deep-level orange-yellow emissions, which almost disappeared with the introduction of the ZnO buffer layer (sample 1). The values of the responsivity were 0.733 (sample 1) and 0.066 (sample 2) mA/W; therefore, the proposed method could provide a pathway to the easy fabrication of fast-response UV sensors.

  17. Structural, morphological, optical and electrical properties of spray deposited lithium doped CdO thin films

    NASA Astrophysics Data System (ADS)

    Velusamy, P.; Babu, R. Ramesh; Ramamurthi, K.

    2016-05-01

    In the present work, CdO and Li doped CdO thin films were deposited on microscopic glass substrates at 300˚C by a spray pyrolysis experimental setup. The deposited CdO and Li doped CdO thin films were subjected to XRD, SEM, UV-VIS spectroscopy and Hall measurement analyses. XRD studies revealed the polycrystalline nature of the deposited films and confirmed that the deposited CdO and Li doped CdO thin films belong to cubic crystal system. The Scanning electron microscopy analysis revealed the information on shape of CdO and Li doped CdO films. Electrical study reveals the n-type semiconducting nature of CdO and the optical band gap is varied between 2.38 and 2.44 eV, depending on the Li doping concentrations.

  18. Improved sensing response of photo activated ZnO thin film for hydrogen peroxide detection.

    PubMed

    Parthasarathy, S; Nandhini, V; Jeyaprakash, B G

    2016-11-15

    The nanostructured ZnO thin films were deposited using spray pyrolysis technique. Formation of polycrystalinity with hexagonal wurtzite structure was observed from the structural study. Highly dense spherical shaped nanoparticles with fine crystallites were observed from the surface morphological studies. The light induced hydrogen peroxide vapour sensing was done using chemi-resistive method and its effect on the sensing response was studied and reported. PMID:27491004

  19. Orientation Effects in ZnO Films Using Off-Axis Sputtering Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S.; George, M. A.

    1999-01-01

    ZnO is a wide-band-gap oxide material and has been used in numerous applications. It is also a good substrate for fabricating GaN-based (a blue laser candidate) devices. Off-axis sputtering technique is one of the best techniques in synthesizing oxide materials because negative ion bombardment and particle kinetic energy is greatly reduced when adatoms condense on substrates. Since the sputtered material from the target arrive on the substrate surface at a 90 deg. configuration, which differs from the normal sputtering geometry, it is expected that the film uniformity and composition distributions will be affected. However, the details of these properties and mechanisms have not been well studied. ZnO films are synthesized on (0001) sapphire and quartz substrates by off-axis sputtering deposition in various oxygen/argon mixture ratios and pressures at different temperatures. Substrates and sputtering sources are placed at three different orientations that are orthogonal to each other. The normal direction of a substrate is parallel to the gravity vector and the other is perpendicular to it. Film thickness profiles at different growth orientations are determined using a profimeter. All films grown at high temperatures have highly textured structures on quartz substrates and epitaxially grow on sapphire substrates. Because of this process, the film surface is very smooth. X-ray diffraction, scanning probe microscopy, and Fourier transfer infrared spectroscopy, and electrical measurements will be used to characterize these films. Detailed results will be discussed in the presentation.

  20. UV photodetectors based on 3D periodic Au-decorated nanocone ZnO films.

    PubMed

    Fan, Haowen; Sun, Mengwei; Ma, Pengsha; Yin, Min; Lu, Linfeng; Xue, Xinzhong; Zhu, Xufei; Li, Dongdong; Ma, Jing

    2016-09-01

    Thermal nanoimprinting technology was employed to fabricate 3D periodic nanocone ZnO films with different height/pitch values for photodetectors to optimize their light capturing property. The photocurrents of patterned film photodetectors increase with the height/pitch values. The patterned ZnO-Au hybrid film further boosts the ultraviolet (UV) response. Due to the co-contribution of the light trapping of 3D periodic structures and the driving force of the Schottky barrier in the Au/ZnO interface, the patterned ZnO-Au hybrid films with height/pitch of 40 nm/866 nm exhibit the best UV photoresponse (I on/I off = 779.927), which is 3.8 times higher than its film counterpart (I on/I off = 164.1). PMID:27482636

  1. Surface Texture and Structure of ZnO Films Synthesized by Off-Axis Sputtering Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, Sandor L.; George, M. A.; Lowndes, D. H.

    1999-01-01

    Morphology and structure of ZnO films deposited on (0001) sapphire and glass substrates by off-axis sputtering are investigated at various temperatures and pressures. All films show highly textured structures on glass substrates and epitaxial growth on sapphire substrates. The full width at half maximum of theta rocking curves for epitaxial films is less than 0.5 degrees. In textured films, it rises to several degrees. The trend of surface textures in films grown at low pressures is similar to those grown at high temperatures. A morphology transition from large well-defined hexagonal grains to flat surface was observed at a pressure of 50 mtorr and temperature of 550 C. The experiment results are explained by the transport behavior of depositing species.

  2. UV photodetectors based on 3D periodic Au-decorated nanocone ZnO films

    NASA Astrophysics Data System (ADS)

    Fan, Haowen; Sun, Mengwei; Ma, Pengsha; Yin, Min; Lu, Linfeng; Xue, Xinzhong; Zhu, Xufei; Li, Dongdong; Ma, Jing

    2016-09-01

    Thermal nanoimprinting technology was employed to fabricate 3D periodic nanocone ZnO films with different height/pitch values for photodetectors to optimize their light capturing property. The photocurrents of patterned film photodetectors increase with the height/pitch values. The patterned ZnO–Au hybrid film further boosts the ultraviolet (UV) response. Due to the co-contribution of the light trapping of 3D periodic structures and the driving force of the Schottky barrier in the Au/ZnO interface, the patterned ZnO–Au hybrid films with height/pitch of 40 nm/866 nm exhibit the best UV photoresponse (I on/I off = 779.927), which is 3.8 times higher than its film counterpart (I on/I off = 164.1).

  3. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

    PubMed Central

    Maldonado, Arturo; Juarez, Héctor; Pacio, Mauricio; Perez, Rene

    2015-01-01

    Summary This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm), which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process. PMID:25977868

  4. Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-03-01

    Undoped, doped and codoped ZnO thin films were synthesized on glass substrates using a spin coating technique. Zinc acetate dihydrate, ammonium acetate and aluminum nitrate were used as precursor for zinc, nitrogen and aluminum, respectively. X-ray diffraction shows that the thin films have a hexagonal wurtzite structure for the undoped, doped and co-doped ZnO. The transmittance of the films was above 80% and the band gap of the film varied from 3.20 eV to 3.24 eV for undoped and doped ZnO. An energy band diagram to describe the photoluminescence from the thin films was also constructed. This diagram includes the various defect levels and possible quasi-Fermi levels. A minimum resistivity of 0.0834 Ω-cm was obtained for the N and Al codoped ZnO thin films with p-type carrier conductivity. These ZnO films can be used as a window layer in solar cells and in UV lasers.

  5. Mid-infrared extraordinary transmission through Ga-doped ZnO films with 2D hole arrays

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Nader Esfahani, Nima; Vangala, Shiva; Guo, Junpeng; Hendrickson, Joshua R.; Leedy, Kevin D.; Look, David C.

    2014-03-01

    Extraordinary optical transmission (EOT), through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) on Ga-Doped ZnO films and can be tuned utilizing the physical parameters such as film thickness, period, hole size, and hole shape, as well as doping of the film. Analytical and finite-difference time-domain calculations are completed for 1 micron thick films with square, circular, and triangular hole arrays demonstrating SPP coupling and EOT. The fundamental plasmonic modes are observed in each of these hole shapes at wavelengths that correspond to strong EOT peaks. Doping tunability for these structures is also observed. Ga-doped ZnO films are grown via pulsed laser deposition (PLD) on silicon with plasma frequencies in the near-infrared. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms.

  6. Effect of Na contents on fabrication of p-type non-polar m-plane ZnO films

    NASA Astrophysics Data System (ADS)

    Pan, X. H.; Zhou, Y. S.; Chen, S. S.; Ding, P.; Lu, B.; Huang, J. Y.; Ye, Z. Z.

    2014-10-01

    We report on the growth and characterization of Na-doped non-polar ZnO thin films, which have been prepared on m-plane sapphire substrates by plasma-assisted molecular beam epitaxy. The effects of Na contents on structural, morphological, electrical, and optical properties of Na-doped non-polar m-plane ZnO films are investigated. All the doped thin films have uniform m-plane orientation, which benefit from Na-doping. Na content plays a key role in determining the conduction of the ZnO films. An optimized result with a hole concentration of 5.3×1016 cm-3, a Hall mobility of 0.22 cm2 V-1 s-1, and a resistivity of 530 Ω cm is achieved at beam equivalent pressure of the elemental Na source of 8.7×10-9 Torr, and the films are electrically stable over several months.

  7. Real structure of the ZnO epitaxial films on (0001) leucosapphire substrates coated by ultrathin gold layers

    NASA Astrophysics Data System (ADS)

    Muslimov, A. E.; Butashin, A. V.; Kolymagin, A. B.; Vasilyev, A. L.; Kanevsky, V. M.

    2016-01-01

    The real structure of ZnO films formed by magnetron sputtering on (0001) leucosapphire substrates coated by an ultrathin (less than 0.7 nm) Au buffer layer has been studied by high-resolution microscopy. It is shown that modification of the leucosapphire substrate surface by depositing ultrathin Au layers does not lead to the formation of Au clusters at the film-substrate interface but significantly improves the structural quality of ZnO epitaxial films. It is demonstrated that the simplicity and scalability of the technique used to modify the substrate surface in combination with a high (above 2 nm/s) film growth rate under magnetron sputtering make it possible to obtain high-quality (0001) ZnO epitaxial films with an area of 5-6 cm2.

  8. Application of ZnO films to glass substrates by the dipping-pyrolysis method using organic acid salt

    NASA Astrophysics Data System (ADS)

    Kondow, Takeshi; Ninomiya, Kanae

    1992-12-01

    Transparent ZnO films having more than 1 micrometers in thickness were prepared by one dipping-pyrolysis process. The starting solution, produced by dissolving zinc 2- ethylhexanoate, dehydrated caster oil fatty acid and dimethyl silicone oil as a leveling agent into an organic solvent, was coated on the plate glass and cured at 200 degree(s)C and heated up to 500 degree(s)C. The thick ZnO films covered with SiO2 films are very useful for UV cut-offs at about 380 nm and for high transparency in the visible region. The ZnO films with the durable films have a possible application to automobile windows and the like. Characterizations are also reported by scanning electron microscopy (SEM), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), optical spectroscopy and Taber abrasion test.

  9. Synthesis and Characterization of Varying Concentrations of Ag-doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Hachlica, Justin; Wadie-Ibrahim, Patrick; Sahiner, M. Alper

    Silver doped ZnO is a promising compound for photovoltaic solar cell use. Doping this compound with varying amounts of silver will theoretically make this type of thin film more efficient by reducing the overall resistance and increasing the voltage and current output. The extent of this promise is being tested experimentally, by analysis of both the electrical and the surface roughness properties of the cells. Ag-doped Zinc Oxide is deposited by method of Pulsed Laser Deposition (PLD) onto Indium Tin Oxide (ITO) coated Glass. Annealing effects were also observed by varying the temperature at which the annealing occurred after synthesis of the sample. Thickness is confirmed by use of Ellipsometery. X-Ray Diffraction (XRD) measurements confirmed a ZnO crystal structure on the thin films. The active dopant carrier concentrations were determined using a Hall Effect Measuring System. Finally, the photovoltaic properties of the film are recorded by using a Keithley Source Meter. The structural characterization and electrical results of the effect of Ag doping on ZnO will then be discussed.

  10. Photovoltaic performance of Gallium-doped ZnO thin film/Si nanowires heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Emrah Unalan, Husnu; Turan, Rasit

    2016-04-01

    In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1 0 0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)-voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm-2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.

  11. Growth of epitaxial ZnO films on sapphire substrates by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hyndman, Adam R.; Allen, Martin W.; Reeves, Roger J.

    2014-03-01

    Epitaxial layers of ZnO have been grown on c-plane, (0001) sapphire substrates by plasma assisted molecular beam epitaxy. The oxygen:zinc flux ratio was found to be crucial in obtaining a film with a smooth surface and good crystallinity. When increasing film thickness from ~80 to 220 nm we observed an increase in the streakiness of RHEED images, and XRD revealed a reduction in crystal strain and increase in crystal alignment. A film with surface roughness of 0.5 nm and a XRD rocking curve FWHM of 0.1 for the main ZnO peak (0002) was achieved by depositing a low temperature ZnO buffer layer at 450 °C and then growing for 120 minutes at 700 °C with a Zn-cell temperature of 320 °C and an oxygen partial pressure of 7e-7 Torr. We found novel structures on two samples grown outside of our ideal oxygen:zinc flux ratio. SEM images of a sample believed to have been grown in a Zn-rich environment showed flower like structures up to 150 um in diameter which appear to have formed during growth. Another sample believed to have been deposited in a Zn-deficient environment had rings approximately 1.5 um in diameter scattered on its surface.

  12. Characteristics of Sputtered ZnO Thin Films for an Inverted Organic Solar Cell.

    PubMed

    Park, Yong Seob; Park, Chul Min; Lee, Jaehyeong

    2016-05-01

    Several research groups have claimed high energy conversion efficiency in organic solar cells. However, it still has low efficiency and is unstable, because organic materials are easily oxidized by atmospheric humidity and UV light. In this work, ZnO thin film as the blocking layer attributed to the interference of the injection of the hole from the P3HT and no charge carrier recombination. We obtained the maximum power conversion efficiency of 1.9% under AM 1.5 G spectral illumination of 100 MWcm(-2), when we used a ZnO film of 60 nm and the optimized P3HT:PCBM, and Au as the back electrode to solve the reaction problem of Al electrode and to control the work function between the HOMO level of P3HT and the energy level of the metal electrode. Power conversion efficiency of inverted organic solar cell (IOSC) is significantly dependent on the thickness of the ZnO thin film deposited by unbalanced magnetron sputtering method. Also, the stability of IOSC is measured under ambient conditions. PMID:27483875

  13. Tailoring Energy Bandgap of Al Doped ZnO Thin Films Grown by Vacuum Thermal Evaporation Method.

    PubMed

    Vyas, Sumit; Singh, Shaivalini; Chakrabarti, P

    2015-12-01

    The paper presents the results of our experimental investigation pertaining to tailoring of energy bandgap and other associated characteristics of undoped and Al doped ZnO (AZO) thin film by varying the atomic concentration of Al in ZnO. Thin films of ZnO and ZnO doped with Al (1, 3, and 5 atomic percent (at.%)) were deposited on silicon substrate for structural characterization and on glass substrate for optical characterization. The dependence of structural and optical properties of Al doped ZnO on the atomic concentration of Al added to ZnO has been reported. On the basis of the experimental results an empirical formula has been proposed to calculate the energy bandgap of AZO theoretically in the range of 1 to 5 at.% of Al. The study revealed that AZO films are composed of smaller and larger number of grains as compared to pure ZnO counterpart and density of the grains was found to increase as the Al concentration increased (from 1 to 5 at.%). The transmittance in the visible region was greater than 90% and found to increase with increasing Al concentration up to 5 at.%. The optical bandgap was found to increase initially with increase in atomic concentration of Al concentration up to 3 at.% and decrease thereafter with increasing concentration of Al. PMID:26682390

  14. The Electrical Properties of Co-Doped ZnO Thin Films

    SciTech Connect

    Hamid, H. A.; Abdullah, M. J.; Aziz, A. A.

    2010-03-11

    Codoped ZnO thin films were prepared on silicon (111) substrates by cosputtering of aluminium rods and zinc target using DC magnetron sputtering followed by heat treatment at 400 deg. C for 1 hour at different ratios of oxygen and nitrogen gas. Results indicate that gas ratios influenced the film conduction properties, which had the lowest resistivity of 7.985x10{sup -3} cm{sup -3} and highest carrier concentration of 6.89x10{sup 21} cm{sup -3}.

  15. Defect-band mediated ferromagnetism in Gd-doped ZnO thin films

    SciTech Connect

    Venkatesh, S.; Roqan, I. S.; Franklin, J. B.; Ryan, M. P.; McLachlan, M. A.; Alford, N. M.; Lee, J.-S.; Ohldag, Hendrik

    2015-01-07

    Gd-doped ZnO thin films prepared by pulsed laser deposition with Gd concentrations varying from 0.02–0.45 atomic percent (at. %) showed deposition oxygen pressure controlled ferromagnetism. Thin films prepared with Gd dopant levels (

  16. Surface excitons on a ZnO (000-1) thin film

    SciTech Connect

    Kuehn, S. Friede, S.; Elsaesser, T.; Sadofev, S.; Blumstengel, S.; Henneberger, F.

    2013-11-04

    Elementary excitations at the polar (000-1) surface of a 20 nm pseudomorphically grown ZnO thin film are examined by steady state and time-resolved photoluminescence spectroscopy at low temperature. We control the density of emission centers through the deposition of prototypical organic molecules with a carboxylic acid anchor group by the Langmuir-Blodgett technique. Knowledge of the precise film thickness, defect concentrations and number density of deposited molecules leads us to associate the surface exciton emission to defect-related localization centers that are generated through a photochemical process.

  17. Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell

    NASA Astrophysics Data System (ADS)

    Jin, Mi-jin; Jo, Junhyeon; Neupane, Guru P.; Kim, Jeongyong; An, Ki-Seok; Yoo, Jung-Woo

    2013-10-01

    We studied the tuning of structural and optical properties of ZnO thin film and its correlation to the efficiency of inverted solar cell using plasma-enhanced atomic layer deposition (PEALD). The sequential injection of DEZn and O2 plasma was employed for the plasma-enhanced atomic layer deposition of ZnO thin film. As the growth temperature of ZnO film was increased from 100 °C to 300 °C, the crystallinity of ZnO film was improved from amorphous to highly ordered (002) direction ploy-crystal due to self crystallization. Increasing oxygen plasma time in PEALD process also introduces growing of hexagonal wurtzite phase of ZnO nanocrystal. Excess of oxygen plasma time induces enhanced deep level emission band (500 ˜ 700 nm) in photoluminescence due to Zn vacancies and other defects. The evolution of structural and optical properties of PEALD ZnO films also involves in change of electrical conductivity by 3 orders of magnitude. The highly tunable PEALD ZnO thin films were employed as the electron conductive layers in inverted polymer solar cells. Our study indicates that both structural and optical properties rather than electrical conductivities of ZnO films play more important role for the effective charge collection in photovoltaic device operation. The ability to tune the materials properties of undoped ZnO films via PEALD should extend their functionality over the wide range of advanced electronic applications.

  18. Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-01-01

    Nitrogen doped ZnO (NZO) thin films were synthesized on glass substrates by the sol-gel and spin coating method. Zinc acetate dihydrates and ammonium acetate were used as precursors for zinc and nitrogen, respectively. X-ray diffraction study showed that the thin films have a hexagonal wurtzite structure corresponding (002) peak for undoped and doped ZnO thin films. The transmittance of the films was above 80% and the band gap of the film varies from 3.21±0.03 eV for undoped and doped ZnO. The minimum resistivity of NZO thin films was obtained as 0.473 Ω cm for the 4 at% of nitrogen (N) doping with a mobility of 1.995 cm2/V s. The NZO thin films showed p-type conductivity at 2 and 3 at% of N doping. The AC conductivity measurements that were carried out in the frequency range 10 kHz to 0.1 MHz showed localized conduction in the NZO thin films. These highly transparent ZnO films can be used as a possible window layer in solar cells.

  19. Significant mobility enhancement in extremely thin highly doped ZnO films

    SciTech Connect

    Look, David C.; Heller, Eric R.; Yao, Yu-Feng; Yang, C. C.

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H} vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.

  20. A codoping route to realize low resistive and stable p-type conduction in (Li, Ni):ZnO thin films grown by pulsed laser deposition.

    PubMed

    Kumar, E Senthil; Chatterjee, Jyotirmoy; Rama, N; DasGupta, Nandita; Rao, M S Ramachandra

    2011-06-01

    We report on the growth of Li-Ni codoped p-type ZnO thin films using pulsed laser deposition. Two mole percent Li monodoped ZnO film shows highly insulating behavior. However, a spectacular decrease in electrical resistivity, from 3.6 × 10(3) to 0.15 Ω cm, is observed by incorporating 2 mol % of Ni in the Li-doped ZnO film. Moreover, the activation energy drops to 6 meV from 78 meV with Ni incorporation in Li:ZnO lattice. The codoped [ZnO:(Li, Ni)] thin film shows p-type conduction with room temperature hole concentration of 3.2 × 10(17) cm(-3). Photo-Hall measurements show that the Li-Ni codoped p-ZnO film is highly stable even with UV illumination. XPS measurements reveal that most favorable chemical state of Ni is Ni(3+) in (Li, Ni): ZnO. We argue that these Ni(3+) ions act as reactive donors and increase the Li solubility limit. Codoping of Li, with other transitional metal ions (Mn, Co, etc.) in place of Ni could be the key to realize hole-dominated conductivity in ZnO to envisage ZnO-based homoepitaxial devices. PMID:21598966

  1. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    SciTech Connect

    Knoops, Harm C. M. Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish; Kessels, Wilhelmus M. M.; Creatore, Mariadriana

    2015-03-15

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  2. Effect of band gap energy on the electrical conductivity in doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Benramache, Said; Belahssen, Okba; Ben Temam, Hachemi

    2014-07-01

    The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 °C. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of Al, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of Al, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.

  3. Characterization of ZnO film grown on polycarbonate by atomic layer deposition at low temperature

    SciTech Connect

    Lee, Gyeong Beom; Han, Gwon Deok; Shim, Joon Hyung; Choi, Byoung-Ho

    2015-01-15

    ZnO is an attractive material for use in various technological products such as phosphors, gas sensors, and transparent conductors. Recently, aluminum-doped zinc oxide has received attention as a potential replacement for indium tin oxide, which is one of the transparent conductive oxides used in flat panel displays, organic light-emitting diodes, and organic solar cells. In this study, the characteristics of ZnO films deposited on polycarbonate (PC) substrates by atomic layer deposition (ALD) are investigated for various process temperatures. The growth mechanism of these films was investigated at low process temperatures using x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). XRD and XPS were used to determine the preferred orientation and chemical composition of the films, respectively. Furthermore, the difference of the deposition mechanisms on an amorphous organic material, i.e., PC substrate and an inorganic material such as silicon was discussed from the viewpoint of the diffusion and deposition of precursors. The structure of the films was also investigated by chemical analysis in order to determine the effect of growth temperature on the films deposited by ALD.

  4. Transparent conductive Al-doped ZnO thin films grown at room temperature

    SciTech Connect

    Wang Yuping; Lu Jianguo; Bie Xun; Gong Li; Li Xiang; Song Da; Zhao Xuyang; Ye Wenyi; Ye Zhizhen

    2011-05-15

    Aluminum-doped ZnO (ZnO:Al, AZO) thin films were prepared on glass substrates by dc reactive magnetron sputtering from a Zn-Al alloy target at room temperature. The effects of the Ar-to-O{sub 2} partial pressure ratios on the structural, electrical, and optical properties of AZO films were studied in detail. AZO films grown using 100:4 to 100:8 Ar-to-O{sub 2} ratio result in acceptable quality films with c-axis orientated crystals, uniform grains, 10{sup -3} {Omega} cm resistivity, greater than 10{sup 20} cm{sup -3} electron concentration, and high transmittance, 90%, in the visible region. The lowest resistivity of 4.11x10{sup -3} {Omega} cm was obtained under the Ar-to-O{sub 2} partial pressure ratio of 100:4. A relatively strong UV emission at {approx}3.26 eV was observed in the room-temperature photoluminescence spectrum. X-ray photoelectron spectroscopy analysis confirmed that Al was introduced into ZnO and substitutes for Zn and doped the film n-type.

  5. Confinement effects in ultrathin ZnO polymorph films: Electronic and optical properties

    NASA Astrophysics Data System (ADS)

    Sponza, Lorenzo; Goniakowski, Jacek; Noguera, Claudine

    2016-05-01

    Relying on generalized-gradient and hybrid first-principles simulations, this work provides a complete characterization of the electronic properties of ZnO ultrathin films, cut along the body-centered-tetragonal(010), cubane(100), hexagonal boron nitride(0001), zinc-blende(110), and wurtzite (10 1 ¯0 ) and (0001) orientations. The characteristics of the local densities of states are analyzed in terms of the reduction of the Madelung potential on undercoordinated atoms and surface states/resonances appearing at the top of the valence band and bottom of the conduction band. The gap width in the films is found to be larger than in the corresponding bulks, which is assigned to quantum confinement effects. The components of the high-frequency dielectric constant are determined and the absorption spectra of the films are computed. They display specific features just above the absorption threshold due to transitions from or to the surface resonances. This study provides a first understanding of finite-size effects on the electronic properties of ZnO thin films and a benchmark which is expected to foster experimental characterization of ultrathin films via spectroscopic techniques.

  6. Ultrasonically sprayed ZnO films: optical, electrical and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Dimitrov, O.; Nesheva, D.; Levi, Z.; Miloushev, I.; Tenev, T.; Blaskov, V.; Stambolova, I.

    2012-12-01

    Highly transparent, polycrystalline ZnO thin films were deposited by ultrasonic spray pyrolysis. The phase and chemical composition of the films were characterized by X-ray analysis (XRD) and X-ray photoelectron spectroscopy (XPS). According to the XRD analysis the films possess wurtzite structure with preferential (002) orientation. The morphology of the ZnO films was investigated by scanning electron microscopy (SEM). Optical transmittance higher than 80% is found in the visible region. The influence of both the substrate and postdeposition annealing temperatures on the dark conductivity and its activation energy were investigated. It has been found that the conductivity increases with increasing of the substrate and annealing temperatures while the activation energy decreases. These effects have been related to an increase of the density of oxygen vacancies. The sensing properties of the samples were tested in the presence of vapours of water, ammonia, ethanol and acetone. It has been revealed that the substrate temperature influences the gas sensitivity. The films deposited at 200°C have shown the highest sensitivity with the best results registered in the presence of ammonia vapours.

  7. Synthesis, characterization, and hydrogen gas sensing properties of AuNs-catalyzed ZnO sputtered thin films

    NASA Astrophysics Data System (ADS)

    Drmosh, Q. A.; Yamani, Z. H.

    2016-07-01

    Hydrogen present in concentration up to 4 vol.% forms an explosive mixture with air. Its propensity to escape in the event of leak, could lead to quick build-up and formation of an explosive mixture with air in confined spaces, such as an automobile. This necessitates its detection at very low concentration. Zinc oxide (ZnO) is a well-known wide band gap (∼3.37 eV) semiconducting oxide that has been widely used for gas sensing applications. This work reports on the fabrication, characterization and gas sensing performance of nanogold decorated ZnO thin films made by DC reactive sputtering. The sensor films were fabricated by depositing a very thin layer of gold on the sputtered ZnO thin film. The as deposited Au@ZnO films were converted into highly crystalline ZnO film covered with gold nanostructures (AuNs@ZnO) by mild heat treatment. The structural and morphological as well as the compositional homogeneity of the as-deposited and heat-treated ZnO, Au@ZnO and AuNs@ZnO thin films were ascertained. The gas sensing behavior of the AuNs@ZnO thin films towards hydrogen as a function of temperature at different H2 concentrations was investigated and compared with that of pure and heat-treated ZnO films. The effect of the presence of gold nanoparticles on imparting improvement (in terms of higher response signal, high reproducibility and complete reversibility) was established; the optimal operating temperature was about 400 °C. A plausible mechanism for the observed enhancement in the sensing behavior of AuNs@ZnO films towards H2 is proposed.

  8. Electro-optic property of ZnO:X (X=Li,Mg) thin films

    NASA Astrophysics Data System (ADS)

    Nagata, Takahiro; Shimura, Tamaki; Ashida, Atsushi; Fujimura, Norifumi; Ito, Taichiro

    2002-04-01

    We have proposed an application of ZnO:X (X=Li,Mg,Ni,Al etc.) films for monolithic optical integrated circuits (OICs) (Mat. Res. Soc. Symp. Proc. 574 (1999) 317). Although non-doped ZnO has an electro-optic effect, it is only a Pockel's effect. The electro-optic effect of Pb(Zr,Ti)O 3 (Jpn. J. Appl. Phys. 34 (1995) 5091) is superior to ZnO, because that is caused by a non-linear Kerr effect. Our group demonstrated that Li-doped ZnO (ZnO:Li) films exhibited ferroelectric behavior (Appl. Phys. A, in press). ZnO with ferroelectricity should have a non-linear electro-optic effect against the applied voltage. In this paper, to design the ZnO monolithic slab waveguide for electro-optical switch, the refractive indices of top and bottom electrode layers and core layer were investigated. Then, electro-optical property of ZnO:Li,Mg films was evaluated, and the possibility of applying to an optical switch was also discussed.

  9. Velocity surface measurements for ZnO films over /001/-cut GaAs

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Liu, Yongsheng; Jen, Cheng-Kuei

    1994-01-01

    A potential application for a piezoelectic film deposited on a GaAs substrate is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the filmed structure is critical for the optimum design of such devices. In this article, the measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metallized ZnO/SiO2 or Si3N4/GaAs /001/-cut samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. Comparisons, such as measurement accuracy and tradeoffs, between the former (dry) and the latter (wet) method are given. It is found that near the group of zone axes (110) propagation direction the autocollimating SAW property of the bare GaAs changes into a noncollimating one for the layered structure, but a reversed phenomenon exists near the group of zone axes (100) direction. The passivation layer of SiO2 or Si3N4 (less than 0.2 micrometer thick) and the metallization layer change the relative velocity but do not significantly affect the velocity surface. On the other hand, the passivation layer reduces the propagation loss by 0.5-1.3 dB/microseconds at 240 MHz depending upon the ZnO film thickness. Our SAW propagation measurements agree well with theorectical calculations. We have also obtained the anisotropy factors for samples with ZnO films of 1.6, 2.8, and 4.0 micrometer thickness. Comparisons concerning the piezoelectric coupling and acoustic loss between dc triode and rf magnetron sputtered ZnO films are provided.

  10. Interplay between chemical state, electric properties, and ferromagnetism in Fe-doped ZnO films

    SciTech Connect

    Chen, G.; Peng, J. J.; Song, C.; Zeng, F.; Pan, F.

    2013-03-14

    Valence state of Fe ions plays an important role in the physical properties of Fe doped ZnO films. Here, a series of Zn{sub 1-x}Fe{sub x}O films with different Fe concentrations (x = 0, 2.3, 5.4, 7.1, and 9.3 at. %) were prepared to investigate their structural, piezoelectric, ferroelectric, bipolar resistive switching properties, and electrical-control of ferromagnetism at room temperature. The structure characterizations indicate that the chemical state of Fe ions substituting Zn{sup 2+} site changes from Fe{sup 3+} to Fe{sup 2+} with the increase of Fe dopant concentration. We found enhanced piezoelectric and ferroelectric properties in Zn{sub 0.977}Fe{sub 0.023}O films with more Fe{sup 3+} due to the smaller Fe{sup 3+} ionic size in comparison with Zn{sup 2+} while the increase of Fe{sup 2+} concentration by a larger amount of Fe dopant results in the worse ferroelectric and piezoelectric performance. All Pt/Zn{sub 1-x}Fe{sub x}O/Pt devices show bipolar resistive switching properties. Especially, devices with lower Fe dopant concentration exhibit better endurance properties due to their higher crystalline quality. The variation of oxygen vacancies during resistive switching provides an opportunity to tune ferromagnetism of Fe-doped ZnO films, giving rise to the integration of charge and spin into a simple Pt/Zn{sub 1-x}Fe{sub x}O/Pt devices. The multifunctional properties of Fe-doped ZnO films are promising for communication systems and information storage devices.

  11. Impact of growth conditions on ZnO homoepitaxial films on ZnO substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Ming; Boutwell, R. Casey; Schoenfeld, Winston V.

    2013-03-01

    ZnO thin films were epitaxially grown on Zn-polar (0001) ZnO substrates by plasma-assisted molecular beam epitaxy. Surface root mean square (rms) roughness below 0.3 nm was achieved on a large range of growth temperatures by growing on ZnO substrates with 0.5 degree miscut angle toward [11¯00] axis. Surface treatment with acid etching and ozone exposure was required to remove contamination such as silica residual and carboxyl and carbonate groups on the surface. Removal of these surface impurities reduces the likelihood of extrinsic defect migration into the epitaxial films. High growth temperature (> 640°C) and oxygen rich conditions were required for films with terrace steps, but resulted in a very low growth rate (~30nm/h) and low photoluminescence (PL) lifetimes of lower than 50 ps. With moderate growth temperature (~610°C), higher growth rate and higher PL lifetime with up to 380 ps were achieved. EIT was used for the oxygen plasma to reduce reactive oxygen species etching of the surface, resulting in a higher growth rate and fewer defects in the films. Good crystalline quality was evident in Xray rocking curves with consistent narrow full width at half maximum (FWHM) of (0002), (101¯2) and (202¯1) peaks, indicating low threading dislocations. Both room-temperature and low-temperature photoluminescence indicated high optical quality of the resultant films with few non-radiative recombination centers.

  12. Role of indium in highly crystalline ZnO thin films

    SciTech Connect

    Singh, Anil; Chaudhary, Sujeet; Pandya, Dinesh K.

    2013-02-05

    Zinc oxide and indium doped zinc oxide (ZnO:In) transparent conducting thin films were deposited on glass substrates by pulsed DC magnetron sputtering using separate Zn and In targets. The independent control of the In content in ZnO has helped us to explore the role of indium in influencing the oriented (002) growth, crystallinity, conductivity and mobility of the doped films. The lowest resistivity of ZnO:In thin film is 2.73 Multiplication-Sign 10{sup -3} ohm-cm. At the optimal condition of high (002) orientation, ZnO:In films with electrical resistivity of 7.63 Multiplication-Sign 10{sup -3} ohm.cm and mobility of 126.4 cm{sup 2}/V.s are achieved.

  13. Role of indium in highly crystalline ZnO thin films

    NASA Astrophysics Data System (ADS)

    Singh, Anil; Chaudhary, Sujeet; Pandya, Dinesh K.

    2013-02-01

    Zinc oxide and indium doped zinc oxide (ZnO:In) transparent conducting thin films were deposited on glass substrates by pulsed DC magnetron sputtering using separate Zn and In targets. The independent control of the In content in ZnO has helped us to explore the role of indium in influencing the oriented (002) growth, crystallinity, conductivity and mobility of the doped films. The lowest resistivity of ZnO:In thin film is 2.73×10-3 ohm-cm. At the optimal condition of high (002) orientation, ZnO:In films with electrical resistivity of 7.63×10-3 ohm.cm and mobility of 126.4 cm2/V.s are achieved.

  14. Annealing induced reorientation of crystallites in Sn doped ZnO films

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Vasanthi, M.; Thirumurugan, K.; Sakthivel, B.; Karthika, K.

    2014-11-01

    Tin doped ZnO thin films were prepared by employing a simplified spray pyrolysis technique using a perfume atomizer and subsequently annealed under different temperatures from 350 °C to 500 °C in steps of 50 °C. The structural, optical, electrical, photoluminescence and surface morphological properties of the as-deposited films were studied and compared with that of the annealed films. The X-ray diffraction studies showed that as-deposited film exhibits preferential orientation along the (0 0 2) plane and it changes in favour of (1 0 0) plane after annealing. The increase in crystallite size due to annealing is explained on the basis of Ostwald ripening effect. It is found that the optical transmittance and band gap increases with increase in annealing temperature. A slight decrease in resistivity caused by annealing is discussed in correlation with annealing induced defect modifications and surface morphology.

  15. Fabrication of ZnO thin films by the photochemical deposition method

    SciTech Connect

    Azuma, Masaki; Ichimura, Masaya

    2008-12-01

    ZnO thin films were fabricated by the photochemical deposition (PCD) method. The deposition solution contains ZnSO{sub 4}, Na{sub 2}SO{sub 3}, Na{sub 2}S{sub 2}O{sub 3} and a small amount of NH{sub 4}OH for pH adjustment. We blew oxygen or oxygen + ozone (O{sub 3}) gas into the solution to increase the dissolved oxygen content and enhance the oxidation reaction. The films were characterized by Auger electron and optical spectroscopy, and a photoelectrochemical (PEC) measurement. On an indium-tin-oxide (ITO) substrate, the films showed high optical transmission in the visible range. In a current-voltage measurement for films on a p-Si substrate, the O{sub 3} bubbling sample showed rectification properties and photovoltaic effects.

  16. Growth of ZnO thin films doped with (Mn & Co) by spin coating technique

    NASA Astrophysics Data System (ADS)

    Dhruvashi, Rawat, Kusum; Shishodia, P. K.

    2016-05-01

    ZnO thin films co-doped with Mn and Co have been deposited on glass substrates by spin coating technique. Structural, optical and magnetic properties have been investigated as a function of dopant concentration. X-ray diffraction has confirmed the growth of c-axis oriented polycrystalline thin films. No impurity phases have been detected corresponding to metal oxides within the limitation of x-ray diffraction. The optical bandgap has been evaluated from tauc's plots derived from the transmittance spectra in the wavelength range 350-900 nm. Surface morphology of the films has been observed by field emission scanning electron microscope. The field dependence of magnetization (M-H curve) measured by vibrating sample magnetometer shows the ferromagnetic behavior of the films at room temperature. The magnetization versus temperature (M-T) curve has also been measured under zero field cooled and field cooled conditions.

  17. Structural and nonlinear optical behavior of Ag-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Tan, Ming-Yue; Yao, Cheng-Bao; Yan, Xiao-Yan; Li, Jin; Qu, Shu-Yang; Hu, Jun-Yan; Sun, Wen-Jun; Li, Qiang-Hua; Yang, Shou-Bin

    2016-01-01

    We present the structural and nonlinear optical behavior of Ag-doped ZnO (AZO) films prepared by magnetron sputtering. The structural of AZO films are systematically investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The results show that AZO films can still retain a wurtzite structure, although the c-axis as preferred orientation is decreased by Ag doping. As the amounts of the Ag dopant were increased, the crystallinity as well as the absorptivity and optical band gap were increased. Moreover, the nonlinear optical characterized of the AZO films was studied using Z-scan technique. These samples show self-defocusing nonlinearity and good nonlinear absorption behavior which increases with increasing Ag volume fraction. AZO is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.

  18. Investigation of As-doped ZnO films synthesized via thermal annealing of ZnSe/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Maksimov, O.; Liu, B. Z.

    2008-06-01

    We synthesized ZnO films via oxidative annealing of ZnSe/GaAs heterostructures and investigated their structural and optical properties. Films were polycrystalline, c-axis oriented and exhibited superior optical properties. In addition, we detected nanometer-size As clusters into the ZnO film and a Ga xO y layer at the ZnO/GaAs interface. Formation of an interfacial layer can prevent use of this technique for p-type doping and complicates identification of the origin of p-type response in the annealed ZnO/GaAs heterostructures.

  19. Synthesis and characterization of porous structured ZnO thin film for dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Mummoorthi, M.; Dharuman, V.

    2016-05-01

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  20. The porous nature of ZnO thin films deposited by sol-gel Spin-Coating technique

    NASA Astrophysics Data System (ADS)

    Karyaoui, M.; Ben Jaballah, A.; Mechiak, R.; Chtourou, R.

    2012-02-01

    Zinc oxide (ZnO) thin films were deposited on silicon and quartz substrates, by sol-gel method, using zinc acetate dehydrate [Zn(CH3COO)2.2H2O] dissolved in isopropanol and glycerol. The structural, morphologic and optical properties of ZnO thin films subsequently annealed at 700°C in air for 30 min have leads to a porous nature of these films. To calculate, the refraction index and the extinction coefficient values, Cauchy formalism is used to evaluate the Spectroscopic Ellipsometry results. Two distinct configurations were proposed for each sample: in the first, the film is considered as mixture of randomly distributed voids and ZnO crystallites while in the second, the effect of porosity gradient is highlighted. This optical analysis gives a better agreement between experiment and theory for a wide range of wavelengths regarding the second configuration.

  1. Fabrication and photoelectric properties of Er3+ and Yb3+ co-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Wang, Xiangfu; Meng, Lan; Yan, Xiaohong

    2016-01-01

    In this paper, the Er3+ and Yb3+ co-doped ZnO films deposited by a novel thermal decomposition method under different annealing temperature process have been reported. The effects of annealing temperature on the morphology and properties of the films are systematically studied. The resulting spectra demonstrate that the Er3+ and Yb3+ co-doped ZnO films possessed the property of up-conversion, converting IR light into visible light that can be absorbed by amorphous silicon solar cell. After all, inner photoelectric effect of the Er3+ and Yb3+ co-doped ZnO films in the amorphous as a light scattering layer are also found with an infrared 980 nm laser as excitation source.

  2. Improvement in the Grain Growth of Plasma-Treated Nano-Sized ZnO Films and Their Characterization.

    PubMed

    Chen, Mi; Chou, Ching-Chuan; Lin, Ching-Cheng; Koo, Horng-Show

    2015-11-01

    The well-aligned ZnO nanorods were rapidly grown on an indium tin oxide (ITO)-coated glass substrate using Al-doped ZnO (AZO) thin film as seed layer by the microwave-assisted hydrothermal chemical route. The optimal growth conditions for the well-aligned ZnO nanorods were obtained by modulating H2 plasma pretreatment time for the seed layer and synthesis time for ZnO nanorods. The H2 plasma effect of the seed layer on the alignment, growth rate and crysallinity of ZnO nanods is also demonstrated. The synthesized ZnO nanorods were annealed in atmosphere of N2, O2 and H2 + N2 mixed gas to improve the related physical characteristics, the ZnO nanorods on grapheme/ITO substrate were also investigated. The results show that the alignment and growth rate of ZnO nanorods depends on the physical characteristics and roughness of the seed layer, which can be improved by H2 plasma pretreatment. The average growth rate of ZnO nanorods synthesized by microwave hydrothermal technique is about 2.2 μm/hr which significantly superior to other conventional techniques. After the appropriate N2 annealing treatment, good quality and well-aligned ZnO nanorods, which are single crystal with stacking defects and pyramid or candle shape, were obtained. A fundamental model of the effect of H2 plasma pretreatment on the surface of seed layer and the growth of ZnO nanorods using a microwave-assisted hydrothermal chemical route is also described. PMID:26726662

  3. Photocatalytic activities of wet oxidation synthesized ZnO and ZnO-TiO2 thick porous films

    NASA Astrophysics Data System (ADS)

    Chen, Ruiqun; Han, Jie; Yan, Xiaodong; Zou, Chongwen; Bian, Jiming; Alyamani, Ahmed; Gao, Wei

    2011-05-01

    Highly porous zinc oxide (ZnO) film was produced by using reactive magnetron sputtering zinc target followed by wet oxidation. Titanium dioxide (TiO2) was mixed to the porous films by using either TiO2 target magnetron sputter deposition or sol-spin method. The film thickness could reach 50 μm with uniform porosity. On the sputtering prepared ZnO-TiO2 film surface, fine nanorods with small anatase TiO2 nano-clusters on the tips were observed by SEM and TEM, and the titanium (Ti) composition was determined by XPS as 0.37%. The sol-spin treatment could increase the Ti composition to 4.9%, with reduced pore size compared to the untreated ZnO porous film. Photoluminescence measurements showed that the Ti containing porous film has strong ultraviolet-visible light emission. In the photo-catalysis testing, ZnO and ZnO-TiO2 have similar photo-catalysis activity under 365 nm UV irradiation, but under visible light, the photocatalysis activities of ZnO-TiO2 films were twice higher than that of ZnO porous film, implying promising applications of this porous oxide composite for industrial and dairy farm wastewater treatment.

  4. Excitonic transition dynamics on front and back surfaces of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Kyun; Kwon, Bong-Joon; Cho, Yong-Hoon; Ko, Hang-Ju; Yao, Takafumi

    2011-11-01

    We report strong excitonic transitions and exciton-phonon couplings in the photoluminescence (PL) of ZnO thin films grown on MgO/sapphire (buffer/substrate) by plasma-assisted molecular-beam epitaxy. The room temperature (RT) PL spectra showed that the dominant emission contributions from the front surface area (FS) and the back surface area (BS) are the free exciton (FX) emission and its first longitudinal optical (LO)-phonon replica, respectively. We found that the one LO-phonon replica at the BS of ZnO can be even more intense than the direct (zero-phonon) FX transition at elevated temperatures. Time-resolved PL spectra revealed that the lifetime of FX recombination from FS is longer than that from BS, which is attributed to the reduction of nonradiative recombination at FS. This indicates that the existence of native defects or trap centers, which can be reduced by the proper initial growth condition, and the exciton-phonon interaction couplings play important roles in the excitonic transition properties of ZnO thin films.

  5. NEXAFS and XMCD studies of single-phase Co doped ZnO thin films.

    PubMed

    Singh, Abhinav Pratap; Kumar, Ravi; Thakur, P; Brookes, N B; Chae, K H; Choi, W K

    2009-05-01

    A study of the electronic structure and magnetic properties of Co doped ZnO thin films synthesized by ion implantation followed by swift heavy ion irradiation is presented using near-edge x-ray absorption fine structure (NEXAFS) and x-ray magnetic circular dichroism (XMCD) measurements. The spectral features of NEXAFS at the Co L(3,2)-edge show entirely different features than that of metallic Co clusters and other Co oxide phases. The atomic multiplet calculations are performed to determine the valence state, symmetry and the crystal field splitting, which show that in the present system Co is in the 2+ state and substituted at the Zn site in tetrahedral symmetry with 10Dq = -0.6 eV. The ferromagnetic character of these materials is confirmed through XMCD spectra. To rule out the possibilities of defect induced magnetism, the results are compared with Ar annealed and Ar-ion implanted pure ZnO thin films. The presented results confirm the substitution of Co at the Zn site in the ZnO matrix, which is responsible for room temperature ferromagnetism. PMID:21825451

  6. Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls

    NASA Astrophysics Data System (ADS)

    Maiolo, L.; Mirabella, S.; Maita, F.; Alberti, A.; Minotti, A.; Strano, V.; Pecora, A.; Shacham-Diamand, Y.; Fortunato, G.

    2014-09-01

    A fully flexible pH sensor using nanoporous ZnO on extended gate thin film transistor (EGTFT) fabricated on polymeric substrate is demonstrated. The sensor adopts the Low Temperature Polycrystalline Silicon (LTPS) TFT technology for the active device, since it allows excellent electrical characteristics and good stability and opens the way towards the possibility of exploiting CMOS architectures in the future. The nanoporous ZnO sensitive film, consisting of very thin (20 nm) crystalline ZnO walls with a large surface-to-volume ratio, was chemically deposited at 90 °C, allowing simple process integration with conventional TFT micro-fabrication processes compatible with wide range of polymeric substrates. The pH sensor showed a near-ideal Nernstian response (˜59 mV/pH), indicating an ideality factor α ˜ 1 according to the conventional site binding model. The present results can pave the way to advanced flexible sensing systems, where sensors and local signal conditioning circuits will be integrated on the same flexible substrate.

  7. Enhancement of intrinsic emission from ultrathin ZnO films using Si nanopillar template

    PubMed Central

    2012-01-01

    Highly efficient room-temperature ultraviolet (UV) luminescence is obtained in heterostructures consisting of 10-nm-thick ultrathin ZnO films grown on Si nanopillars fabricated using self-assembled silver nanoislands as a natural metal nanomask during a subsequent dry etching process. Atomic layer deposition was applied for depositing the ZnO films on the Si nanopillars under an ambient temperature of 200°C. Based on measurements of photoluminescence (PL), an intensive UV emission corresponding to free-exciton recombination (approximately 3.31 eV) was observed with a nearly complete suppression of the defect-associated, broad-range visible emission peak. As compared to the ZnO/Si substrate, the almost five-times-of-magnitude enhancement in the intensity of PL, which peaked around 3.31 eV in the present ultrathin ZnO/Si nanopillars, is presumably attributed to the high surface/volume ratio inherent to the Si nanopillars. This allowed considerably more amount of ZnO material to be grown on the template and led to markedly more efficient intrinsic emission. PMID:22616734

  8. The structure, photoluminescence, optical and magnetic properties of ZnO films doped with ferromagnetic impurities

    NASA Astrophysics Data System (ADS)

    Gritskova, E. V.; Mukhamedshina, D. M.; Mit', K. A.; Dolya, N. A.; Abdullin, Kh. A.

    2009-12-01

    In this paper we report on ZnO-CoO thin films grown by sol-gel technology with using different solvent. As precursors zinc acetate dehydrate (Zn(CH 3COO) 2·2H 2O), cobalt acetate tetrahydrate (Co(CH 3COO) 2·4H 2O) as well as manganese chloride (MnCl 2) were used. The films grown from solvent with methanol have a highly preferred orientation along the (1 0 0) plane. The films deposited from C=0.5 and 0.7 mol/l solvent with isopropanol and monoethanolamin and in smaller degree the C=0.3 mol/l film consist of disordered crystallites whereas the C=0.1 mol/l film has the intensive (0 0 2) peak, revealing a more obvious [0 0 2] preferred orientation. The all obtained films are highly transparent. The PL of ZnO-CoO films are more intensive in ultra-violet region in comparison the PL of ZnO film. The ESR spectra of ZnO-CoO multilayer films were investigated.

  9. Low-temperature synthesis of one-dimensional ZnO nanostructures on screen-printed carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Park, Seung-Sik; Lee, Jin-Moo; Yoon, Seung-Il; Lee, Dong-Gu; Kim, Sung-Jin; Kim, Sang-Hyeob; Maeng, Sunglyul; Kim, Sang-Woo

    2008-05-01

    One-dimensional (1D) ZnO nanostructures including nanowires, nanobelts, and nanorods were synthesized on screen-printed multi-walled carbon nanotube (MW-CNT) films in a thermal chemical vapor deposition process by gold (Au) nanoparticle-catalyst and self-catalyst driving at low temperatures of 400 and 500 °C. ZnO nanowires and nanobelts by introducing Au nanoparticles were grown via the vapor-liquid-solid (VLS) mechanism, while ZnO nanorods were realized via a self-catalytic VLS process. It was found that the diameter of ZnO nanowires strongly depends on that of Au nanoparticles, indicating the typical metal catalyst-driving VLS process. On the other hand, ZnO nanorods without Au-alloyed tips are comprised of hexagonal facets, suggesting self-catalytic VLS formation of the ZnO nanorods on the MW-CNT films. Room temperature photoluminescence spectra of the 1D ZnO nanostructures exhibit an ultraviolet emission band around 378 nm and deep-level emission band centered around 505 nm.

  10. Giant temperature coefficient of resistance in Co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhou, X. F.; Zhang, H.; Yan, H.; He, C. L.; Lu, M. H.; Hao, R. Y.

    2014-03-01

    A novel high-performance thermistor material based on Co-doped ZnO thin films is presented. The films were deposited by the pulsed laser deposition technique on Si (111) single-crystal substrates. The structural and electronic transport properties were correlated as a function of parameters such as substrate temperature and Co-doped content for Zn1- x Co x O ( x=0.005,0.05,0.10 and 0.15) to prepare these films. The Zn1- x Co x O films were deposited at various substrate temperatures between 20 and 280 °C. A value of 20 %/K for the negative temperature coefficient of resistance (TCR) with a wide range near room temperature was obtained. It was found that both TCR vs. temperature behavior and TCR value were strongly affected by cobalt doping level and substrate temperature. In addition, a maximal TCR value of over 20 % K-1 having a resistivity value of 3.6 Ω cm was observed in a Zn0.9Co0.1O film near 260 °C, which was deposited at 120 °C and shown to be amorphous by X-ray diffraction. The result proved that the optimal Co concentration could help us to achieve giant TCR in Co-doped ZnO films. Meanwhile, the resistivities of the films ranged from 0.4 to 270 Ω cm. A Co-doped ZnO/Si film is a strong candidate of thermometric materials for non-cooling and high-performance bolometric applications.

  11. Physical Property Evaluation of ZnO Thin Film Fabricated by Low-Temperature Process for Flexible Transparent TFT.

    PubMed

    Khafe, Adie Bin Mohd; Watanabe, Hiraku; Yamauchi, Hiroshi; Kuniyoshi, Shigekazu; Iizuka, Masaaki; Sakai, Masatoshi; Kudo, Kazuhiro

    2016-04-01

    The usual silicon-based display back planes require fairly high process temperature and thus the development of a low temperature process is needed on flexible plastic substrates. A new type of flexible organic light emitting transistor (OLET) had been proposed and investigated in the previous work. By using ultraviolet/ozone (UV/O3) assisted thermal treatments on wet processed zinc oxide field effect transistor (ZnO-FET), through low-process temperature, ZnO-FETs were fabricated which succeeded to achieve target drain current value and mobility. In this study, physical property evaluation of ZnO was conducted in term of their crystallinity, the increase composition of ZnO formed inside the thin film and the decrease of the carbon impurities originated from aqueous solution of the ZnO itself. The X-ray diffraction (XRD) evaluation showed UV/03 assisted thermal treatment has no obvious effect towards crystallinity of ZnO in the range of low process temperature. Moreover, through X-ray photoelectron spectroscopy (XPS) evaluation and Fourier transform infrared (FT-IR) spectroscopy evaluation, more carbon impurities disappeared from the ZnO thin film and the increase of composition amount of ZnO, when the thin film was subjected to UV/O3 assisted thermal treatment. Therefore, UV/O3 assisted thermal treatment contributed in carbon impurities elimination and accelerate ZnO formation in ZnO thin film, which led to the improvement in the electrical property of ZnO-FET in the low-process temperature. PMID:27451599

  12. Investigation on non-polar m-plane ZnO and Na-doped p-type ZnO films grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chen, W.; Pan, X. H.; Chen, S. S.; He, H. P.; Huang, J. Y.; Lu, B.; Ye, Z. Z.

    2015-10-01

    Non-polar ZnO and Na-doped ZnO films were epitaxially grown on m-plane sapphire substrates by plasma-assisted molecular beam epitaxy. The films exhibit dominant () ( m-plane) orientation as identified by the X-ray diffraction pattern. The quality of the obtained m-plane ZnO film is evidenced by X-ray diffraction rocking curves full width at half maximum of 1125 arcsec for the () reflection and 1427 arcsec for the () reflection, respectively. Hall-effect measurements show that the m-plane Na-doped ZnO film exhibits p-type conductivity with a hole concentration of 2.50 × 1017 cm-3, while the m-plane ZnO film exhibits compensatory conductivity. Na atoms substituting for Zn atoms are believed to be the origin of p-type conductivity. The Na-related acceptor level is deduced to be ~120 meV by temperature-dependent photoluminescence, indicating the superiority of m-plane ZnO film in p-type doping compared with the polar ZnO film.

  13. Effect of self-organization, defects, impurities, and autocatalytic processes on the parameters of ZnO films and nanorods

    SciTech Connect

    Mezdrogina, M. M. Eremenko, M. V.; Levitskii, V. S.; Petrov, V. N.; Terukov, E. I.; Kaidashev, E. M.; Langusov, N. V.

    2015-11-15

    The effects of the parameters of ZnO-film deposition onto different substrates using the method of ac magnetron sputtering in a gas mixture of argon and oxygen hare studied. The phenomenon of self-organization is observed, which leads to invariability of the surface morphology of the ZnO films upon a variation in the substrate materials and deposition parameters. The parameters of the macro- and micro-photoluminescence spectra of the films differ insignificantly from the parameters of the photoluminescence spectra of bulk ZnO crystals obtained by the method of hydrothermal growth. The presence of intense emission with a narrow full-width at half-maximum (FWHM) in different regions of the spectrum allows ZnO films obtained by magnetron sputtering doped with rare-earth metal impurities (REIs) to be considered as a promising material for the creation of optoelectronic devices working in a broad spectral range. The possibility of the implementation of magnetic ordering upon legierung with REIs significantly broadens the functional possibilities of ZnO films. The parameters of the photoluminescence spectra of ZnO nanorods are determined by their geometrical parameters and by the concentration and type of the impurities introduced.

  14. Annealing effect on the optical and electrical properties of ZnO thin film grown on inp substrate

    NASA Astrophysics Data System (ADS)

    Ghosh, K.; Majumdar, S.; Bhunia, S.

    2012-06-01

    ZnO thin films have been fabricated by sublimation process on indium phosphide (InP) (111) substrates. These films were annealed at various temperatures in order to study the annealing effect on the optical and electrical properties of ZnO thin film grown on InP substrate. From photoluminescence study it was observed that the near band edge peak, i.e., excitonic peak, decreases drastically with the increase of annealing temperature. This indicates that at higher annealing temperature the recombinations are taking place in non-radiative way. It was also observed that the defect related broad peak around 500 nm, i.e., green luminescence peak for ZnO, increases at higher annealing temperatures. As O vacancy is responsible for the green luminescence, so more oxygen vacancies have been introduced at higher annealing temperatures. The electrical characterization of ZnO film revealed that the resistivity of the film increases with the increasing annealing temperatures. Ionised Zn interstitials contribute to carrier concentration in ZnO. Evaporation of Zn interstitials at higher annealing temperatures may have decreased the carrier concentration which in tern had increased the resistivity.

  15. Distribution pattern and allocation of defects in hydrogenated ZnO thin films.

    PubMed

    Gurylev, Vitaly; Su, Chung-Yi; Perng, Tsong-Pyng

    2016-06-21

    A polycrystalline ZnO thin film prepared by atomic layer deposition was annealed in hydrogen at 10 bar and 350-450 °C. Hydrogenation induced simultaneous formation of oxygen and zinc vacancies whose concentrations were closely related to the temperature of treatment. Spatial distributions of these defects were analyzed by photoluminescence confocal mapping which revealed that their localized appearances are linked to each other. It was also demonstrated that nanomechanical mapping of elastic modulus distribution could be used to assess the allocation of accumulated defects on the topmost surface of ZnO with a depth resolution of only several atomic layers. The higher the temperature of hydrogenation, the higher the concentration, and more uniform the distribution of surface defects. In addition, the correlation between the surface morphology and the accumulated defects was established. PMID:27244648

  16. Slope selection-driven Ostwald ripening in ZnO thin film growth

    NASA Astrophysics Data System (ADS)

    González-González, A.; Polop, C.; Vasco, E.

    2012-07-01

    The morphology evolution of polycrystalline ZnO films grown by pulsed laser deposition was investigated by atomic force microscopy and compared with morphologies simulated in 2 + 1 dimensions from a mesoscopic continuum model of selection of surface slopes. The distinctive feature of such an evolution is that the competition between grains gives rise to a singular grain coarsening mechanism, which although it matches the fingerprints of the Ostwald ripening, it remains operative under atypical growth conditions (temperatures as low as 0.28Tmelting and grains with sizes ranged between 20-500 nm) and is driven by the faceting of the grain faces. The resulting pyramidal single-crystalline grains from such a coarsening mechanism have been correlated with the enhanced ultraviolet lasing activity at room temperature of nanostructured ZnO.

  17. Exciton and core-level electron confinement effects in transparent ZnO thin films

    PubMed Central

    Mosquera, Adolfo A.; Horwat, David; Rashkovskiy, Alexandr; Kovalev, Anatoly; Miska, Patrice; Wainstein, Dmitry; Albella, Jose M.; Endrino, Jose L.

    2013-01-01

    The excitonic light emission of ZnO films have been investigated by means of photoluminescence measurements in ultraviolet-visible region. Exciton confinement effects have been observed in thin ZnO coatings with thickness below 20 nm. This is enhanced by a rise of the intensity and a blue shift of the photoluminescence peak after extraction of the adsorbed species upon annealing in air. It is found experimentally that the free exciton energy (determined by the photoluminescence peak) is inversely proportional to the square of the thickness while core-level binding energy is inversely proportional to the thickness. These findings correlate very well with the theory of kinetic and potential confinements.

  18. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Venkatesh, S.; Baras, A.; Lee, J.-S.; Roqan, I. S.

    2016-03-01

    We studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaron percolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (˜40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetism in doped/un-doped ZnO.

  19. ZnO buffer layer for metal films on silicon substrates

    DOEpatents

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  20. Transparent and conductive Al/F and In co-doped ZnO thin films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Hadri, A.; Taibi, M.; El hat, A.; Mzerd, A.

    2016-02-01

    In doped ZnO (IZO), In-Al co-doped ZnO (IAZO) and In-F co-doped ZnO (IFZO) were deposited on glass substrates at 350 °C by spray pyrolysis technique. The structural, optical and electrical properties of as-deposited thin films were investigated and compared. A polycrystalline and (002) oriented wurtzite crystal structure was confirmed by X-ray patterns for all films; and the full width at half -maximum (FWHM) of (002) diffraction peak increased after co-doping. The investigation of the optical properties was performed using Uv-vis spectroscopy. The average transmittances of all the films were between 70 and 85%. Hall Effect measurements showed that the electrical conductivity of co-doped films increased as compared with IZO thin film. The highest conductivity of about 16.39 Ω-1 cm-1 was obtained for as-deposited IFZO thin film. In addition, the thin films were annealed at 350 °C for two hour under Ar atmosphere and their optical, electrical properties and the associated photoluminescence (PL) responses of selected films were analysed. After annealing, the electrical conductivity of all thin films was improved and the optical transmittance remained above 70%. Room temperature PL revealed that the annealed IAZO thin film had a strong green emission than that of IZO film.

  1. Infrared detection of hydrogen-generated free carriers in polycrystalline ZnO thin films

    SciTech Connect

    Wolden, Colin A.; Barnes, Teresa M.; Baxter, Jason B.; Aydil, Eray S.

    2005-02-15

    The changes in the free-carrier concentration in polycrystalline ZnO films during exposure to H{sub 2} and O{sub 2} plasmas were studied using in situ attenuated total reflection Fourier transform infrared spectroscopy. The carrier concentration and mobility were extracted from the free-carrier absorption in the infrared using a model for the dielectric function. The electron density in polycrystalline zinc oxide films may be significantly increased by >10{sup 19} cm{sup -3} by brief exposures to hydrogen plasma at room temperature and decreased by exposure to O{sub 2} plasmas. Room-temperature oxygen plasma removes a fraction of the H at donor sites but both elevated temperatures ({approx}225 deg. C) and O{sub 2} plasma were required to remove the rest. We demonstrate that combinations of O{sub 2} and H{sub 2} plasma treatments can be used to manipulate the carrier density in ZnO films. However, we also show the existence of significant drifts ({approx}15%) in the carrier concentrations over very long time scales (hours). Possible sites for H incorporation in polycrystalline films and reasons for the observed carrier-concentration changes are proposed.

  2. Fast and enhanced broadband photoresponse of a ZnO nanowire array/reduced graphene oxide film hybrid photodetector from the visible to the near-infrared range.

    PubMed

    Liu, Hao; Sun, Qi; Xing, Jie; Zheng, Zhiyuan; Zhang, Zhili; Lü, Zhiqing; Zhao, Kun

    2015-04-01

    In the present work, a ZnO nanowire array/reduced graphene oxide film hybrid nanostructure was realized, and the photovoltaic responses from the visible to the near-infrared range were investigated. Compared with the pure ZnO nanowire array and rGO thin film, the hybrid composite exhibited a fast and greatly enhanced broadband photovoltaic response that resulted from the formation of interfacial Schottky junctions between ZnO and rGO. PMID:25768384

  3. Conductive ZnO:Zn Composites for High-Rate Sputtering Deposition of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Zhou, Li Qin; Dubey, Mukul; Simões, Raul; Fan, Qi Hua; Neto, Victor

    2015-02-01

    We report an electrically conductive composite prepared by sintering ZnO and metallic Zn powders. Microstructure analysis combined with electrical conductivity studies indicated that when the proportion of metallic Zn reached a threshold (˜20 wt.%), a metal matrix was formed in accordance with percolation theory. This composite has potential as a sputtering target for deposition of high-quality ZnO. Use of the ZnO:Zn composite completely eliminates target poisoning effects in reactive sputtering of the metal, and enables deposition of thin ZnO films at rates much higher than those obtained by sputtering of pure ZnO ceramic targets. The optical transmittance of the ZnO films prepared by use of this composite is comparable with that of films produced by radio frequency sputtering of pure ZnO ceramic targets. The sputtering characteristics of the conductive ZnO:Zn composite target are reported, and possible mechanisms of the high rate of deposition are also discussed.

  4. ZnO thin films and nanostructures for emerging optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Rogers, D. J.; Teherani, F. H.; Sandana, V. E.; Razeghi, M.

    2010-02-01

    ZnO-based thin films and nanostructures grown by PLD for various emerging optoelectronic applications. AZO thin films are currently displacing ITO for many TCO applications due to recent improvements in attainable AZO conductivity combined with processing, cost and toxicity advantages. Advances in the channel mobilities and Id on/off ratios in ZnO-based TTFTs have opened up the potential for use as a replacement for a-Si in AM-OLED and AM-LCD screens. Angular-dependent specular reflection measurements of self-forming, moth-eye-like, nanostructure arrays grown by PLD were seen to have <0.5% reflectivity over the whole visible spectrum for angles of incidence between 10 and 60 degrees. Such nanostructures may be useful for applications such as AR coatings on solar cells. Compliant ZnO layers on mismatched/amorphous substrates were shown to have potential for MOVPE regrowth of GaN. This approach could be used as a means to facilitate lift-off of GaN-based LEDs from insulating sapphire substrates and could allow the growth of InGaN-based solar cells on cheap substrates. The green gap in InGaN-based LEDs was combated by substituting low Ts PLD n-ZnO for MOCVD n-GaN in inverted hybrid heterojunctions. This approach maintained the integrity of the InGaN MQWs and gave LEDs with green emission at just over 510 nm. Hybrid n-ZnO/p-GaN heterojunctions were also seen to have the potential for UV (375 nm) EL, characteristic of ZnO NBE emission. This suggests that there was significant hole injection into the ZnO and that such LEDs could profit from the relatively high exciton binding energy of ZnO.

  5. Optoelectronic Characterization of Ta-Doped ZnO Thin Films by Pulsed Laser Deposition.

    PubMed

    Koo, Horng-Show; Peng, Jo-Chi; Chen, Mi; Chin, Hung-I; Chen, Jaw-Yeh; Wu, Maw-Kuen

    2015-11-01

    Transparent conductive oxide of Ta-doped ZnO (TZO) film with doping amount of 3.0 wt% have been deposited on glass substrates (Corning Eagle XG) at substrate temperatures of 100 to 500 degrees C by the pulsed laser deposition (PLD) technique. The effect of substrate temperature on the structural, optical and electronic characteristics of Ta-doped ZnO (TZO) films with 3.0 wt% dopant of tantalum oxide (Ta2O5) was measured and demonstrated in terms of X-ray diffraction (XRD), ultraviolet-visible spectrometer (UV-Vis), four-probe and Hall-effect measurements. X-ray diffraction pattern shows that TZO films grow in hexagonal crystal structure of wurtzite phase with a preferred orientation of the crystallites along (002) direction and exhibits better physical characteristics of optical transmittance, electrical conductivity, carrier concentration and mobility for the application of window layer in the optoelectronic devices of solar cells, OLEDs and LEDs. The lowest electrical resistivity (ρ) and the highest carrier concentration of the as-deposited film deposited at 300 degrees C are measured as 2.6 x 10(-3) Ω-cm and 3.87 x 10(-20) cm(-3), respectively. The highest optical transmittance of the as-deposited film deposited at 500 degrees C is shown to be 93%, compared with another films deposited below 300 degrees C. It is found that electrical and optical properties of the as-deposited TZO film are greatly dependent on substrate temperature during laser ablation deposition. PMID:26726672

  6. Persistent Conductivity in Post-Growth Doped ZnO Films Following Pulsed UV Laser Irradiation

    SciTech Connect

    Wang, Lisa J.; Exarhos, Gregory J.

    2010-12-30

    Solution and rf sputter deposited doped ZnO films were subjected to cumulative 4-nsec pulses of 355 nm light from a pulsed Nd:YAG laser at fluences between 5 and 150 mJ/cm2. Film densification, change in refractive index, and an increase in conductivity were observed following room temperature irradiation in air, a carbon monoxide reducing environment, or under vacuum. At fluences between 20 and 80 mJ/cm2, the films did not damage catastrophically under irradiation and high visible transparency persisted. The increase in conductivity is attributed to creation of oxygen vacancies and subsequent promotion of free carriers into the conduction band. Effects were most pronounced in films treated in vacuum. All treated films became insulating again upon equilibration in air at room temperature after several days. Films were characterized by means of UV-VIS-NIR transmission spectroscopy, Raman spectroscopy and Hall measurements. Analysis of interference fringes in measured transmission spectra allowed evaluation of optical properties. Raman measurements showed an increase of LO mode intensity with respect to TO mode intensity as the films became more conducting in accord with previous work. Results of this study are not only important for continued development of transparent conducting oxides, but also provide compelling evidence for the role of free carriers as initiators of the laser damage process in these wide bandgap metal oxide films.

  7. Sol-gel derived ZnO thin films: Effect of amino-additives

    NASA Astrophysics Data System (ADS)

    Hosseini Vajargah, P.; Abdizadeh, H.; Ebrahimifard, R.; Golobostanfard, M. R.

    2013-11-01

    Zinc oxide thin films were dip-coated from an alcoholic sol of zinc acetate with different amino-additives including monoethanolamine, diethanolamine, triethanolamine, triethylamine, and ethylenediamine. Sol-gel behavior, crystal structure, optoelectronic and morphological properties of thin films were investigated with focus on the effects of different amines and drying conditions. Investigations explicate the role of chemical and physical properties of amines such as organic chains, polarity, and boiling point as the main factors that cause distinct sol-gel behavior and film properties. It is shown that different amines in different molar ratios together with drying temperature cause dramatic impacts on sol transparency, stability, and consequently on structural, optoelectronic, and morphological properties of films. Notably, monoethanolamine and triethylamine films demonstrate a preferred orientation stimulated by increased molar ratio of amines. Further investigations indicated the positive effect of elevated drying temperature particularly on those films prepared from sols with high-boiling-point stabilizers. The variation of film optoelectronics seems to depend mainly on heat treatment, whereas sol chemistry influences the optical properties indirectly through the structural alteration. Peculiar morphologies in the ethylenediamine films disappeared with adjusting the drying conditions. The size of ZnO grains were approximately independent of amine types and primarily affected by the heat treatment

  8. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    PubMed

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. PMID:25835032

  9. Influence of water content in mixed solvent on surface morphology, wettability, and photoconductivity of ZnO thin films

    PubMed Central

    2014-01-01

    ZnO thin films have been synthesized by means of a simple hydrothermal method with different solvents. The effect of deionized water content in the mixed solvents on the surface morphology, crystal structure, and optical property has been investigated by scanning electron microscopy, X-ray diffraction, and UV-Vis spectrophotometer. A large number of compact and well-aligned hexagonal ZnO nanorods and the maximal texture coefficient have been observed in the thin film, which is grown in the mixed solvent with x = 40%. A lot of sparse, diagonal, and pointed nanorods can be seen in the ZnO thin film, which is grown in the 40-mL DI water solution. The optical band gap decreases firstly and then increases with the increase of x. Reversible wettability of ZnO thin films were studied by home-made water contact angle apparatus. Reversible transition between hydrophobicity and hydrophilicity may be attributed to the change of surface chemical composition, surface roughness and the proportion of nonpolar planes on the surface of ZnO thin films. Photocurrent response of ZnO thin films grown at different solvents were measured in air. The response duration of the thin film, which is grown in the solvent with x = 40%, exhibits a fast growth in the beginning but cannot approach the saturate current value within 100 s. The theoretical mechanism for the slower growth or decay duration of the photocurrent has been discussed in detail. PMID:25249823

  10. Growth and characterization of uniform ZnO films as piezoelectric materials using a hydrothermal growth technique

    NASA Astrophysics Data System (ADS)

    Makarona, E.; Fritz, C.; Niarchos, G.; Speliotis, Th.; Arapoyanni, A.; Tsamis, C.

    2011-06-01

    ZnO nanostructures, especially in the form of dense arrays of nanorods or belts have the ability to efficiently convert mechanical energy to electrical energy. One of the drawbacks though for the exploitation of nanorod technology for commercial devices is the ability to make the electrical contacts to these nanostructured piezoelectric converting elements. Although technologies have been developed that provide solutions for electrical contact issues, metal contact on uniform thin films are much simpler, and can readily be implemented to commercial mass-produced applications. At the same time it is known that high piezoelectric coefficients ZnO uniform films with columnar grains having their c-axis perpendicular to the substrate are required. In this work, we investigate the growth of uniform ZnO films, using a low temperature, low cost hydrothermal process typically used for the fabrication of ZnO nanorods. Under appropriate conditions coalescence of the nanorods occur resulting in uniform films with a columnar structure. The study focuses on understanding the role of the growth factors in order to be able to fully control the proposed process. Moreover, the hydrothermal method is further exploited for the fabrication of uniform ZnO nanostructures on patterned substrates with Au interdigitated electrodes (IDE) using standard lithography as a proof-of-concept of the applicability of the method to standard microfabrication techniques. The piezoelectric films with the IDEs are electrically characterized in order to assess the electrical properties of the grown films. From this analysis, process conditions have been identified for the growth of uniform nanostructured ZnO films, suitable for piezoelectric microgenerators.

  11. Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.

    PubMed

    Choi, Eun Chang; Cha, Ji-Hyun; Jung, Duk-Young; Hong, Byungyou

    2016-05-01

    The CuIn(x)Ga(1-x)Se2 (CIGS) using the solution-based fabrication method is attractive for thin film solar cells because of its possibilities for large-area and low-cost production. ZnO films between transparent conductive oxide (TCO) and the CdS films can improve the performances of CIGS thin-film solar cells. In this study, we investigated the characteristics of ZnO film between TCO and CIGS layers in a solar cell (AZO/ZnO/CdS/CIGS/Mo), which were deposited at various thicknesses to investigate the role of the films in CIGS solar cells. It was confirmed that the conversion efficiency of a CIGS solar cell depends on the ZnO film. For a ZnO film thickness of 80 nm, the highest power conversion efficiency that a solar cell achieved was J(sc) of 18.73 mA/cm2. PMID:27483877

  12. Effect of In doping on the properties and antibacterial activity of ZnO films prepared by spray pyrolysis.

    PubMed

    Manoharan, C; Pavithra, G; Dhanapandian, S; Dhamodharan, P

    2015-01-01

    Pure and In-doped ZnO thin films were deposited onto glass substrates by spray pyrolysis technique. XRD results showed that all films were polycrystalline in nature with the wurzite structure. A change in preferential orientation from (002) to (101) plane was observed with increase in content of Indium. A reduce in crystallite size was observed with increase of In content. The small sized grains with the porous nature of the film was observed from SEM analysis. AFM study depicted polycrystalline nature and uniformly distributed grains with small pores in the doped film. A decrease in band gap was noticed with increase in In content. The absence of green emission in PL spectra indicated the decreased oxygen defects. The decrease in the resistivity with increase of Hall mobility was noted for the doped film. A better antibacterial activity was observed against Staphylococcus aureus by doped ZnO thin film. PMID:25997176

  13. ZnO double layer film with a novel organic sensitizer as an efficient photoelectrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Chuan-Pei; Chen, Ping-Wei; Li, Chun-Ting; Huang, Yi-June; Li, Sie-Rong; Chang, Ling-Yu; Chen, Pei-Yu; Lin, Lu-Yin; Vittal, R.; Sun, Shih-Sheng; Lin, Jiang-Jen; Ho, Kuo-Chuan

    2016-09-01

    A novel organic sensitizer, coded CR147, is applied to sensitize a ZnO-based dye-sensitized solar cell (DSSC). The common problem of ZnO dissolution and Zn2+/dye agglomeration, caused by the use of ruthenium-based dyes, is solved by the application of this CR147 dye. The highest power conversion efficiency (η) of 4.77% is achieved for the DSSC using a photoanode with a film of commercial ZnO nanoparticles (Csbnd ZnO) and the CR147 dye, while the η is only 3.41% for the DSSC with the commercial N719 dye. The cell performance with the CR147 dye is further improved by using a photoanode with the double layer ZnO film (D-ZnO), composed of an underlayer with coral-like ZnO nanocrystals and an overlayer with hexagonal club-like ZnO submicrocrystals. The DSSC with the D-ZnO film exhibits an η of 6.89%, which is ca. 45% higher than that of the DSSC with the Csbnd ZnO film (4.77%). This higher efficiency is attributed to the superior charge transfer and light-scattering abilities provided by coral-like ZnO nanocrystals and hexagonal clubs-like ZnO submicrocrystals, respectively, with reference to these parameters of Csbnd ZnO.

  14. Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring

    SciTech Connect

    Nomenyo, K.; Kostcheev, S.; Lérondel, G.; Gadallah, A.-S.; Rogers, D. J.

    2014-05-05

    Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguiding is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.

  15. Annealing temperature dependency of ZnO thin films memristive behavior

    NASA Astrophysics Data System (ADS)

    Shaari, N. A. A.; Kasim, S. M. M.; Rusop, M.; Herman, S. H.

    2016-07-01

    The work focuses on the effect of different annealing temperature on the ZnO-based memristive device. Zinc oxide was deposited on the ITO substrate by sol-gel spincoating technique. The deposited ZnO thin films were then annealed from 50°C to 450°C in a furnace for 60 minutes each. The electrodes Platinum (Pt) were sputtered by using JEOL JFC-1600 Auto Fine Coater. The thin film thicknesses were measured by Veeco Dektak 150 Surface Profiler. The thickness of the thin film annealed at 350°C is the thinnest, which is 54.78nm and from the electrical characterization it also shown the switching characteristic behavior. The surface morphology and topology to examine the existence of nanoparticles

  16. Synthesis of ZnO nanowires for thin film network transistors

    NASA Astrophysics Data System (ADS)

    Dalal, S. H.; Unalan, H. E.; Zhang, Y.; Hiralal, Pritesh; Gangloff, L.; Flewitt, Andrew J.; Amaratunga, Gehan A. J.; Milne, William I.

    2008-08-01

    Zinc oxide nanowire networks are attractive as alternatives to organic and amorphous semiconductors due to their wide bandgap, flexibility and transparency. We demonstrate the fabrication of thin film transistors (TFT)s which utilize ZnO nanowires as the semiconducting channel. These thin film transistors can be transparent and flexible and processed at low temperatures on to a variety of substrates. The nanowire networks are created using a simple contact transfer method that is easily scalable. Apparent nanowire network mobility values can be as high as 3.8 cm2/Vs (effective thin film mobility: 0.03 cm2/Vs) in devices with 20μm channel lengths and ON/OFF ratios of up to 104.

  17. Compositional and Structural Study of Gd Implanted ZnO Films

    SciTech Connect

    Murmu, Peter P.; Kennedy, John V.; Markwitz, Andreas; Ruck, Ben J.

    2009-07-23

    We report a compositional and structural study of ZnO films implanted with 30 keV Gd ions. The depth profile of the implanted ions, measured by Rutherford backscattering spectrometry, matches predictions of DYNAMIC-TRIM calculations. However, after annealing at temperatures above 550 deg. C the Gd ions are observed to migrate towards the bulk, and at the same time atomic force microscope images of the film surfaces show significant roughening. Raman spectroscopy shows that the annealed films have a reduced number of crystalline defects. The overall results are useful for developing an implantation-annealing regime to produce well characterized samples to investigate magnetism in the ZnO:Gd system.

  18. Influence of Te and Se doping on ZnO films growth by SILAR method

    NASA Astrophysics Data System (ADS)

    Güney, Harun; Duman, Ćaǧlar

    2016-04-01

    The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness of the material varied with Se and/or Te and varying concentrations.

  19. Origin of carrier scattering in polycrystalline Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Oka, Nobuto; Kusayanagi, Minehide; Nakatomi, Satoshi; Shigesato, Yuzo

    2014-10-01

    We observed the carrier transport phenomena in polycrystalline Al-doped ZnO (AZO) films with carrier densities ranging from 2.0 × 1019 to 1.1 × 1021 cm-3. A comparison of the optical carrier density and Hall carrier density indicates that the conduction band in AZO films is nonparabolic above 2.0 × 1020 cm-3. A transition from grain boundary scattering to ionized impurity scattering is observed at a doping level of ˜4.0 × 1020 cm-3. The trap density at the grain boundary increases with increasing Al concentration in the films, implying that the doping level plays a decisive role in the trap density. The excellent fitting of the optical mobility and carrier density using the Brooks-Herring model shows that the acceptor concentration increases with increasing doping level.

  20. Local vibrational modes competitions in Mn-doped ZnO epitaxial films with tunable ferromagnetism

    SciTech Connect

    Cao, Qiang; Fu, Maoxiang; Liu, Guolei Zhang, Huaijin; Yan, Shishen; Chen, Yanxue; Mei, Liangmo; Jiao, Jun

    2014-06-28

    We reported spectroscopic investigations of high quality Mn-doped ZnO (ZnMnO) films grown by oxygen plasma-assisted molecular beam epitaxy. Raman scattering spectra revealed two local vibrational modes (LVMs) associated with Mn dopants at 523 and 712 cm{sup −1}. The LVMs and magnetic properties of ZnMnO films can be synchronously modulated by post annealing processing or by introducing tiny Co. The relative intensity of two LVMs clearly shows competitions arising from uncompensated acceptor and donor defects competition for ferromagnetic and nonmagnetic films. The experimental results indicated that LVM at 523 cm{sup −1} is attributed to Mn—(Zinc-vacancy) complexes, while LVM at 712 cm{sup −1} is attributed to Mn—(Oxygen-vacancy) complexes.

  1. Single phase formation of Co-implanted ZnO thin films by swift heavy ion irradiation: Optical studies

    SciTech Connect

    Kumar, Ravi; Singh, Fouran; Angadi, Basavaraj; Choi, Ji-Won; Choi, Won-Kook; Jeong, Kwangho; Song, Jong-Han; Khan, M. Wasi; Srivastava, J. P.; Kumar, Ajay; Tandon, R. P.

    2006-12-01

    Low temperature photoluminescence and optical absorption studies on 200 MeV Ag{sup +15} ion irradiated Co-implanted ZnO thin films were studied. The Co clusters present in as implanted samples were observed to be dissolved using 200 MeV Ag{sup +15} ion irradiation with a fluence of 1x10{sup 12} ions/cm{sup 2}. The photoluminescence spectrum of pure ZnO thin film was characterized by the I{sub 4} peak due to the neutral donor bound excitons and the broad green emission. The Co-doped ZnO films show three sharp levels and two shoulders corresponding to 3t{sub 2g} and 2e{sub g} levels of crystal field splitted Co d orbitals, respectively. The ultraviolet-visible absorption spectroscopy also shows the systematic variation of band gap after 200 MeV Ag{sup +15} ion irradiation.

  2. Effect of substrate temperature on residual stress of ZnO thin films prepared by ion beam deposition

    NASA Astrophysics Data System (ADS)

    Jeon, Ju-Won; Kim, Myoung; Jang, Lee-Woon; Hoffman, J. L.; Kim, Nam Soo; Lee, In-Hwan

    2012-02-01

    We have investigated the effect of substrate temperature on micro-structural properties of ZnO thin films prepared by ion beam deposition technique. ZnO thin films were deposited on AlN-buffered Si (111) and sapphire (001) substrates at various substrate temperatures. The structural properties and surface morphologies were examined by high resolution X-ray diffraction (XRD) and field emission scanning electron microscopy, respectively. The RMS roughness was measured by atomic force microscopy. XRD measurements confirmed that the ZnO thin films were grown well on the AlN-buffered Si (111) and sapphire (001) substrates along the c-axis. Minimization of residual stress was carried out by tuning the substrate temperature. The structural properties were notably improved with increasing substrate temperature.

  3. The influence of substrate curvature on structural, optical properties of Cu, Co codoped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Liu, Huilian; Li, Weijun; Li, Hongbo; Sun, Yunfei; Song, Junlin; Yang, Jinghai; Gao, Ming; Liu, Xiaoyan

    2015-07-01

    The influence of substrate curvature on structural, optical properties of Cu, Co codoped ZnO thin films were investigated in this study. XRD analysis indicated that the crystal quality of the ZnO films could been influenced by the substrate curvature. The biaxial stress of our samples was measured by side-inclination X-ray diffraction technique. The results indicated that the type of the stress was biaxial compressive stress. Optical absorption spectra showed the absorption edge of our samples displayed blueshift with decreasing substrate curvature. Gauss fit for PL emission spectra showed that the substrate curvature affected the PL properties of the Cu, Co codoped ZnO thin films deposited on polystyrene particles. The various substrates induced defect-related emission increased in visible region.

  4. Optoelectronic properties of ZnO film on silicon after SF6 plasma treatment and milliseconds annealing

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Gao, Kun; Zhou, Shengqiang; Wu, Jiada; Cai, Hua; Gordan, Ovidiu D.; Zahn, Dietrich R. T.; Larkin, G.; Helm, M.; Skorupa, W.

    2014-12-01

    Zinc oxide thin film is one of the most promising candidates for the transparent conductive layer in microelectronic and photovoltaic applications, due to its low resistivity and high transmittance in the visible spectral range. In this letter, we present optoelectronic and structural properties of fluorine doped ZnO films deposited at low temperature on a silicon substrate. The fluorine doping was made by post-deposition SF6 plasma treatment and activation by the millisecond range flash lamp annealing. Both the microstructural and optical investigations confirm the formation of a high-quality, highly doped n-type ZnO layer. The current-voltage characteristics show a heterojunction between n+-ZnO and Si. Moreover, it is shown that the SF6 plasma treatment efficiently passivates the surface state and bulk defects in the ZnO film.

  5. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy

    SciTech Connect

    Xiu, F.X.; Yang, Z.; Mandalapu, L.J.; Liu, J.L.; Beyermann, W. P.

    2006-01-30

    Phosphorus-doped p-type ZnO films were grown on r-plane sapphire substrates using molecular-beam epitaxy with a solid-source GaP effusion cell. X-ray diffraction spectra and reflection high-energy electron diffraction patterns indicate that high-quality single crystalline (1120) ZnO films were obtained. Hall and resistivity measurements show that the phosphorus-doped ZnO films have high hole concentrations and low resistivities at room temperature. Photoluminescence (PL) measurements at 8 K reveal a dominant acceptor-bound exciton emission with an energy of 3.317 eV. The acceptor energy level of the phosphorus dopant is estimated to be 0.18 eV above the valence band from PL spectra, which is also consistent with the temperature dependence of PL measurements.

  6. Growth and conduction mechanism of As-doped p-type ZnO thin films deposited by MOCVD

    SciTech Connect

    Ma, Y.; Gao, Q.; Wu, G.G.; Li, W.C.; Gao, F.B.; Yin, J.Z.; Zhang, B.L.; Du, G.T.

    2013-03-15

    Highlight: ► P-type As-doped ZnO thin films was fabricated by MOCVD after post-growth annealing. ► The formation mechanism of p-ZnO with high hole concentration above 10{sup 19} cm{sup −3} was elucidated. ► Besides As{sub Zn}–2V{sub Zn} complex, C impurities also played an important role in realizing p-ZnO. ► The formations of As{sub O} and O-C-O complex were partially contributed to the p-type ZnO: As films. - Abstract: As-doped p-type ZnO thin films were fabricated by metal organic chemical vapor deposition (MOCVD) after in situ annealing in a vacuum. The p-type conduction mechanism was suggested by the analysis of X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy. It was found that most of the As dopants in p-ZnO thin films formed As{sub Zn}–2V{sub Zn} shallow acceptor complex, simultaneously, carbon impurities also played an important role in realizing p-type conductivity in ZnO. Substitutional carbon on oxygen site created passivated defect bands by combining with Ga atoms due to the donor-acceptor pair Coulomb binding, which shifted the valence-band maximum upwards for ZnO and thus increased the hole concentration.

  7. The influence of Au film thickness and annealing conditions on the VLS-assisted growth of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Govatsi, K.; Chrissanthopoulos, A.; Dracopoulos, V.; Yannopoulos, S. N.

    2014-05-01

    High temperature evaporation methods, such as the vapor-liquid-solid mechanism, have been exploited for the controlled growth of ZnO nanostructures on various substrates. While Au is the most frequently used catalyst for growing ZnO nanowires, its morphological features on the substrate, which determine the size and shape of the nanostructures grown, have not yet been methodically explored. In the current work, we investigated the details of the thermal dewetting of Au films into nanoparticles on Si substrates. Au films of various thicknesses ranging from 2 to 15 nm were annealed under slow and fast rates at various temperatures and the morphological details of the nanoparticles formed were investigated. The dependence of the mean particle size on the nominal film thickness is in fair agreement with theoretical predictions. The vapor-liquid-solid method was employed to investigate the role of the Au nanoparticles on the growth details of ZnO nanowires. The efficient and high throughput growth of ZnO nanowires, for a given growth time, is realized in cases of thin Au films, i.e. when the thickness is lower than 10 nm. Based on these experimental findings, a two-step mechanism is proposed to account for the growth of ZnO nanorods ending in ultrathin (˜30 nm), micron-long tips.

  8. Nano-structural Characteristics of N-doped ZnO Thin Films and Fabrication of Film Bulk Acoustic Resonator Devices

    SciTech Connect

    Lee, E. J.; Zhang, R. R.; Yoon, G. W.; Park, J. D.

    2011-12-23

    N-doped ZnO thin films (ZnO:N) with c-axis preferred orientation were prepared on p-Si(100) wafers, using an RF magnetron sputter deposition. For ZnO deposition, N{sub 2}O gas was employed as a dopant source and various deposition conditions such as N{sub 2}O gas fraction and RF power were applied. In addition, the film bulk acoustic resonator (FBAR) devices with three kinds of top electrodes patterns were fabricated by using the N-doped ZnO thin films as the piezoelectric layers. The depth profiles of the nitrogen [N] atoms incorporated into the ZnO thin films were investigated by an Auger Electron Spectroscopy (AES) and the nano-scale structural characteristics of the N-doped ZnO (ZnO:N) thin films were also investigated by a scanning electron microscope (SEM) technique. The fabricated resonators were evaluated by measuring the return loss (S{sub 11}) characteristics using a probe station and E8361A PNA Network Analyzer.

  9. Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation

    SciTech Connect

    Miyata, Toshihiro; Honma, Yasunori; Minami, Tadatsugu

    2007-07-15

    Highly transparent and conductive B-doped ZnO (BZO) thin films have been prepared by a newly developed vacuum arc plasma evaporation method that provided high-rate film depositions using sintered BZO pellets and fragments. The obtained electrical and optical properties of the deposited BZO thin films were considerably affected by the deposition conditions as well as the preparation method of the BZO pellets and fragments used. The lowest thin film resistivity was obtained with a B doping content [B/(B+Zn) atomic ratio] of approximately 1 at. %. A resistivity as low as 5x10{sup -4} {omega} cm and an average transmittance above about 80% in the wavelength range of 400-1300 nm were obtained in BZO films prepared with a thickness above approximately 400 nm at a substrate temperature of 200 deg. C. In addition, a low resistivity of 7.97x10{sup -4} {omega} cm and average transmittances above about 80% in the visible wavelength range were obtained in a BZO film prepared at a substrate temperature of 100 deg. C and an O{sub 2} gas flow rate of 10 SCCM (SCCM denotes cubic centimeter per minute at STP). The deposition rate of BZO films was typically 170 nm/min with a cathode plasma power of 4.5 kW.

  10. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films

    SciTech Connect

    Banerjee, P; Lee, W. J.; Bae, K. R.; Lee, Sang Bok; Rubloff, Gary W

    2010-01-01

    Al-doped ZnO (AZO) films of ∼100 nm thickness with various Aldoping were prepared at 150 °C by atomic layer deposition on quartz substrates. At low Aldoping, the films were strongly textured along the [100] direction, while at higher Aldoping the films remained amorphous. Atomic force microscopy results showed that Al–O cycles when inserted in a ZnOfilm, corresponding to a few atomic percent Al, could remarkably reduce the surface roughness of the films. Hall measurements revealed a maximum mobility of 17.7 cm{sup 2} /V s . Film resistivity reached a minima of 4.4×10{sup −3}  Ω cm whereas the carrier concentration reached a maxima of 1.7×10{sup 20}  cm{sup −3} , at 3 at. % Al. The band gap of AZO films varied from 3.23 eV for undoped ZnOfilms to 3.73 eV for AZO films with 24.6 at. % Al. Optical transmittance over 80% was obtained in the visible region. The detrimental impact of increased Al resulting in decreased conductivity due to doping past 3.0 at. % is evident in the x-ray diffraction data, as an abrupt increase in the optical band gap and as a deviation from the Burstein–Moss effect.

  11. Physical and Optical Properties of SnO2/ZnO Film Prepared by an RF Magnetron Sputtering Method.

    PubMed

    Park, Jooyoung; Lee, Ikjae; Kim, Jaeyong

    2016-03-01

    Al-, Ga-, and In-doped ZnO thin films are widely used in many technical applications, such as in solar cells and on transparent conducting oxides having high optical transmission and low resistivity values. We prepared SnO2-doped ZnO thin films on quartz substrates by using an RF magnetron sputtering method at a substrate temperature of 350 degrees C. The ratio of SnO2 to ZnO was varied from 0 to 5:5 to investigate the effects of Sn on structure and physical properties of ZnO film. The samples were synthesized at a base pressure of 1.3 x 10(-4) Pa with a working pressure of 1.3 Pa and an RF power of 40 W under Ar atmosphere. The results of X-ray diffraction data revealed that pure ZnO films exhibit a strong (002) orientation and a polycrystalline wurzite hexagonal structure. However, as increasing the SnO2 concentration, ZnO transforms to an amorphous phase. The results of the Hall-effect-measurement system revealed that the resistivity values of the films increased as increasing the doping level of SnO2. The AFM data of morphology and microstructure showed that the grain size decreased with increasing SnO2 contents while the total area of grain the boundary increased. The average value of the transmittance of the films in the visible light range was 80-95% and was shifted toward to the shorter wavelengths of the absorption edges with increasing SnO2 contents. PMID:27455746

  12. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    NASA Astrophysics Data System (ADS)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  13. Synthesis of Various Nanopatterns of ZnO Thin Film Using Sol Gel Method

    NASA Astrophysics Data System (ADS)

    Julia, Sri; Yuliarto, Brian; Nugraha

    2010-10-01

    In order to achieve the different types of nanostructures of Zinc Oxide thin film using the low cost method, this research applied sol gel method and varying volume of solvent composition as the parameter. The volume of solvent composition was varying in amount of 75% distilled water + 25% ethanol, 50% distilled water + ethanol, and 25% distilled water + 75% ethanol. These compositions yield the different in pH value of solution, consequently yield the different of nanopatterns. Other parameter which also used is varying the substrates. In this investigation, kind of substrates used were glass, alumina and silicon. Through these parameters, the morphology of ZnO thin films was formed in various nanopatterns and observed by X-ray diffraction (XRD) and Scanning Electron Microscopic (SEM). X-ray diffraction determined all of the grown films are true ZnO, with wurtzite hexagonal crystal phase. Various patterns that obtained from SEM investigation are nanorod, flowerlike, nanoball and nanofiber. Uniquely, our flowerlike structure is arranged by nanosheet and nanofiber. The particle size of nanorods and nanoballs is about ±250 nm, while particle size of nanosheets is found to be ±500 nm and nanofiber is in the range of ± hundreds nm.

  14. Towards solution-processed ambipolar hybrid thin-film transistors based on ZnO nanoparticles and P3HT polymer

    NASA Astrophysics Data System (ADS)

    Diallo, Abdou Karim; Gaceur, Meriem; Berton, Nicolas; Margeat, Olivier; Ackermann, Jörg; Videlot-Ackermann, Christine

    2013-06-01

    Solution-processed n-channel oxide semiconductor thin-film transistors (TFTs) were fabricated using zinc oxide (ZnO) nanoparticles. Polycrystalline fused-ZnO nanoparticle films were produced by spin-coating ZnO nanosphere dispersions following by a subsequent heat treatment. The solution-processable semiconductor ink based on ZnO was prepared by dispersing the synthesized ZnO nanospheres in isopropanol mixed with ethanolamine to various concentrations from 20 to 80 mg/mL. Such concentration dependence on morphology and microstructure of thin films was studied on spin-coated ZnO films by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Spin-coated ZnO films involved as active layers in transistor configuration delivered an almost ideal output characteristic (Id-Vd) with an electron mobility up to 3 × 10-2 cm2/V s. As a p-channel semiconductor, a poly(3-hexylthiophene) (P3HT) solution-processable ink was deposited by spin-coating on top of closely packed ZnO nanoparticles-based films to form an uniform overlying layer. A hybrid (inorganic-organic) interface was formed by the direct contact between ZnO and P3HT leading to carrier redistribution. Such solution-processed hybrid thin-film transistors delivered in air well balanced electron and hole mobilities as 3.9 × 10-5 and 2 × 10-5 cm2/V s, respectively.

  15. Comparative studies of nonpolar (10-10) ZnO films grown by using atomic layer deposition and radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Choi, Nak-Jung; Son, Hyo-Soo; Choi, Hyun-Jun; Kim, Kyoung-Kook; Lee, Sung-Nam

    2014-08-01

    We comparatively investigated the crystal and the optical properties of nonpolar (10-10) ZnO films grown on m-plane sapphire substrates by using atomic layer deposition (ALD) and radio frequency (RF) magnetron sputtering. From high-resolution X-ray ω/2 θ scans, the (100) peak of the ALD-grown ZnO film was clearly developed at ~ 15.9 ° while that of the RF sputter-grown ZnO was broadly observed at 15.6 ~ 15.9 °, indicating that a nonpolar (10-10) ZnO film would be preferentially grown on an m-plane sapphire substrate. The photoluminescence bandedge emission intensity of the ALD-grown (10-10) ZnO film was ten times higher than that of the RF sputtergrown ZnO film. In addition, the electroluminescence intensity of a semipolar (11-22) GaN-based light-emitting diode (LED) with an ALD-grown (10-10) ZnO film as a transparent conductive oxide material was much higher than that of a semipolar (11-22) GaN-based LED with RF sputter-grown (10-10) ZnO film.

  16. Characteristics of ZnO thin films doped by various elements

    NASA Astrophysics Data System (ADS)

    Kahraman, S.; Çakmak, H. M.; Çetinkaya, S.; Bayansal, F.; Çetinkara, H. A.; Güder, H. S.

    2013-01-01

    We have investigated the effects of Al, K and Co dopant elements on the properties of ZnO thin films deposited by CBD method on glass substrates. Changing in morphology, structural parameters, ionization energies of impurity levels, absorption behavior and optical band gap values were investigated through scanning electron microscopy (SEM), X-Ray diffraction (XRD), resistance-temperature measurement (R-T) and ultraviolet-visible spectroscopy (UV-vis) techniques. From the SEM observations, various morphologies (rod-like, flower-like and rice-like) were observed. Those morphological variations were attributed to the change in stable growth mechanism of intrinsic ZnO, induced by different atomic radius and different electronegativity of dopants. XRD results indicated that all orientations are well indexed to hexagonal phase crystalline ZnO. The impurity level ionization energy values (ΔE) were estimated as 0.32/0.13/0.07 eV; 0.34/0.15 eV; 0.40/0.13 eV and 0.48/0.22 eV for the Al, K, Co doped samples and i-ZnO, respectively. Optical band gap values were found that the doped samples' were higher than the intrinsic one's. This increasing (blue shift) was attributed to a deterioration which occurred in the lattice of the structures after doping. This effect was also supported by the structural results.

  17. High efficiency a-Si solar cells with ZnO films

    SciTech Connect

    Wenas, W.W.; Dairiki, K.; Yamada, A.; Konagai, M.; Takahashi, K.; Jang, J.H.; Lim, K.S.

    1994-12-31

    In this study special importance is attached to the ZnO/p and n/ZnO interfaces. A-Si solar cells with a structure of glass/ZnO/delta doped p/buffer/i/n/ZnO/Ag/Al have been fabricated. By optimizing the grain size of the films along with their electrical and optical properties, a high conversion efficiency of 12.5% was obtained under AM-1.5 illumination. The collection efficiency of the cell at 700 nm reached 60%. Furthermore, effects of interface states represented by a barrier E{sub n} at the n/metal contact were investigated. It was found that this barrier affected the performance of the cells, particularly when n-layer became thin. Finally, to demonstrate the electrical role of the ZnO at back contact, p-i-n a-Si solar cells having thin n-layer combined with ZnO back contact were fabricated. It was surprisingly found that the performance of the cells with ZnO at back contact did not deteriorate though the thickness of n-layer was reduced to 3nm.

  18. Deposition of F-doped ZnO transparent thin films using ZnF2-doped ZnO target under different sputtering substrate temperatures

    PubMed Central

    2014-01-01

    Highly transparent and conducting fluorine-doped ZnO (FZO) thin films were deposited onto glass substrates by radio-frequency (RF) magnetron sputtering, using 1.5 wt% zinc fluoride (ZnF2)-doped ZnO as sputtering target. Structural, electrical, and optical properties of the FZO thin films were investigated as a function of substrate temperature ranging from room temperature (RT) to 300°C. The cross-sectional scanning electron microscopy (SEM) observation and X-ray diffraction analyses showed that the FZO thin films were of polycrystalline nature with a preferential growth along (002) plane perpendicular to the surface of the glass substrate. Secondary ion mass spectrometry (SIMS) analyses of the FZO thin films showed that there was incorporation of F atoms in the FZO thin films, even if the substrate temperature was 300°C. Finally, the effect of substrate temperature on the transmittance ratio, optical energy gap, Hall mobility, carrier concentration, and resistivity of the FZO thin films was also investigated. PMID:24572004

  19. Alternate deposition and hydrogen doping technique for ZnO thin films

    NASA Astrophysics Data System (ADS)

    Myong, Seung Yeop; Lim, Koeng Su

    2006-08-01

    We propose an alternate deposition and hydrogen doping (ADHD) technique for polycrystalline hydrogen-doped ZnO thin films, which is a sublayer-by-sublayer deposition based on metalorganic chemical vapor deposition and mercury-sensitized photodecomposition of hydrogen doping gas. Compared to conventional post-deposition hydrogen doping, the ADHD process provides superior electrical conductivity, stability, and surface roughness. Photoluminescence spectra measured at 10 K reveal that the ADHD technique improves ultraviolet and violet emissions by suppressing the green and yellow emissions. Therefore, the ADHD technique is shown to be very promising aid to the manufacture of improved transparent conducting electrodes and light emitting materials.

  20. Self-erasing and rewritable wettability patterns on ZnO thin films

    SciTech Connect

    Kekkonen, Ville; Hakola, Antti; Kajava, Timo; Ras, Robin H. A.; Sahramo, Elina; Malm, Jari; Karppinen, Maarit

    2010-07-26

    Self-erasing patterns allow a substrate to be patterned multiple times or could store temporary information for secret communications, and are mostly based on photochromic molecules to change the color of the pattern. Herein we demonstrate self-erasing patterns of wettability on thin ZnO films made by atomic layer deposition. Hydrophilic patterns are written using UV light and decay spontaneously, i.e. become hydrophobic, or are erased aided by vacuum conditions or heat. We demonstrate that these patterns can be applied for channels to confine flow of water without physical walls.

  1. Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films.

    PubMed

    Sapkal, R T; Shinde, S S; Mahadik, M A; Mohite, V S; Waghmode, T R; Govindwar, S P; Rajpure, K Y; Bhosale, C H

    2012-09-01

    Zinc oxide (ZnO) thin films have been successfully deposited onto fluorine doped tin oxide coated glass at substrate temperature of 400 °C and used as electrode in photoelectrocatalytic reactor. The untreated textile effluent was circulated through photoelectrocatalytic reactor under UVA illumination for the decolorization and degradation. Textile effluent was decolorized by 93% within 3h at room temperature with significant reduction in COD (69%). High performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR) analysis of samples before and after decolorization confirmed the degradation of dyes molecules from textile effluent into simpler oxidizable products. Phytotoxicity study revealed reduction in toxic nature of textile effluent after treatment. PMID:22727863

  2. Polar dependent in-plane electric transport of epitaxial ZnO thin films on SrTiO(3) substrates.

    PubMed

    Sun, Gaofeng; Zhao, Kehan; Wu, Yunlong; Wang, Yuhang; Liu, Na; Zhang, Liuwan

    2012-07-25

    Polar (001) and nonpolar (110) ZnO epitaxial thin films were grown on SrTiO(3) substrates by the pulsed laser deposition method and the in-plane electric transport was investigated. Both films display semiconducting behavior. The polar thin films have linear I-V relations with mobility increasing almost linearly with temperature. In contrast, for nonpolar ZnO thin films, the I-V curves are symmetric and nonlinear with room temperature resistivity 30 times larger than that of polar thin films. We conclude that in nonpolar ZnO thin films the bound polarization charge induced barrier limits the carrier transport. Instead, for polar thin films, the polar effect on the in-plane transport is negligible, and the charged dislocation scattering is dominant. Our observations suggest the polar effect should be considered in the design of ZnO related devices. PMID:22713690

  3. Polar dependent in-plane electric transport of epitaxial ZnO thin films on SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Sun, Gaofeng; Zhao, Kehan; Wu, Yunlong; Wang, Yuhang; Liu, Na; Zhang, Liuwan

    2012-07-01

    Polar (001) and nonpolar (110) ZnO epitaxial thin films were grown on SrTiO3 substrates by the pulsed laser deposition method and the in-plane electric transport was investigated. Both films display semiconducting behavior. The polar thin films have linear I-V relations with mobility increasing almost linearly with temperature. In contrast, for nonpolar ZnO thin films, the I-V curves are symmetric and nonlinear with room temperature resistivity 30 times larger than that of polar thin films. We conclude that in nonpolar ZnO thin films the bound polarization charge induced barrier limits the carrier transport. Instead, for polar thin films, the polar effect on the in-plane transport is negligible, and the charged dislocation scattering is dominant. Our observations suggest the polar effect should be considered in the design of ZnO related devices.

  4. Microstructural and conductivity comparison of Ag films grown on amorphous TiO2 and polycrystalline ZnO

    SciTech Connect

    Dannenberg, Rand; Stach, Eric; Glenn, Darin; Sieck, Peter; Hukari, Kyle

    2001-03-26

    8 nm thick Ag films were sputter deposited onto amorphous TiO{sub 2} underlayers 25 nm thick, and also amorphous TiO{sub 2} (25 nm)/ZnO (5 nm) multiunderlayers. The substrates were back-etched Si with a 50 nm thick LPCVD Si{sub 3}N{sub 4} electron transparent membrane. The ZnO, sputtered onto amorphous TiO{sub 2}, formed a continuous layer with a grain size of 5 nm in diameter, on the order of the film thickness. There are several microstructural differences in the Ag dependent on the underlayers, revealed by TEM. First a strong {l_brace}0001{r_brace} ZnO to {l_brace}111{r_brace} Ag fibre-texture relationship exists. On TiO{sub 2} the Ag microstructure shows many abnormal grains whose average diameter is about 60-80 nm, whereas the films on ZnO show few abnormal grains. The background matrix of normal grains on the TiO{sub 2} is roughly 15 nm, while the normal grain size on the ZnO is about 25 nm. Electron diffraction patterns show that the film on ZnO has a strong {l_brace}111{r_brace} orientation, and dark field images with this diffraction condition have a grain size of about 30 nm. In a region near the center of the TEM grid where there is the greatest local heating during deposition, Ag films grown on amorphous TiO{sub 2} are discontinuous, whereas on ZnO, the film is continuous. When films 8 nm films are grown on solid glass substrates, those with ZnO underlayers have sheet resistances of 5.68 {Omega}/, whereas those on TiO{sub 2} are 7.56 {Omega}/, and when 16 nm thick, the corresponding sheet resistances are 2.7 {Omega}/ and 3.3 {Omega}/. The conductivity difference is very repeatable. The improved conductivity is thought to be a combined effect of reduced grain boundary area per unit volume, the predominance of low grain boundary resistivity Coincidence Site Lattice boundaries from the Ag {l_brace}111{r_brace} orientation, and Ag planarization on ZnO resulting in less groove formation on deposition, concluded from atomic force microscopy.

  5. Elastic properties of Li+ doped lead zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Rajaramakrishna, R.; Lakshmikantha, R.; Anavekar, R. V.

    2014-04-01

    Glasses in the system 0.25PbO-(0.25-x) ZnO-0.5B2O3-xLi2O have been prepared by the melt quenching technique. Elastic properties, DSC studies have been employed to study the role of Li2O in the present glass system. Elastic properties and Debye temperature have been determined using pulsed echo ultrasonic interferometer operating at 10MHz. Sound velocities Vl, Vt and elastic moduli decrease up to 5 mol% and then gradually increase with increase in Li2O concentration. Debye temperature and the glass transition temperature decreases with increase in Li2O. Densities remains almost constant up to 15 mol% Li2O concentration and increases monotonically while the molar volume decreases with the increase of Li2O concentration. The results are discussed in view of the borate structural network and dual role of Zn and Pb in these glasses.

  6. Effects of Precursor Concentration on Structural and Optical Properties of ZnO Thin Films Grown on Muscovite Mica Substrates by Sol-Gel Spin-Coating.

    PubMed

    Kim, Younggyu; Leem, Jae-Young

    2016-05-01

    The structural and optical properties of the ZnO thin films grown on mica substrates for different precursor concentrations were investigated. The surface morphologies of all the samples indicated that they consisted of granular structures with spherical nano-sized crystallites. The thickness of the ZnO thin films increased significantly and the optical band gap exhibited a blue shift with an increase in the precursor concentration. It is remarkable that the highest I(NBE)/I(DLE) ratio was observed for the ZnO thin film with 0.8 M precursor concentration, even though cracks formed on the surface of this film. PMID:27483897

  7. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    NASA Astrophysics Data System (ADS)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-05-01

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnO thin films. The minimum resistivity of 2.54 × 10-3 Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.

  8. Fabrication and characterization of ZnO nanowires by wet oxidation of Zn thin film deposited on Teflon substrate

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Abdullah, M. J.; Ali, M. K. M.; Ahmed, Naser M.; Bououdina, M.

    2015-10-01

    In this study, ZnO nanowires (NWs) were successfully grown for the first time on to Teflon substrate by a wet oxidation of a Zn thin film coated by RF sputtering technique. The sputtered Zn thin film was oxidized at 100 °C for 5 h under water-vapour using a horizontal furnace. This oxidation process transformed Zn thin film into ZnO with wire-like nanostructure. XRD analysis confirms the formation of single nanocrystalline ZnO phase having a low compressive strain. FESEM observations reveal high density of ZnO NWs with diameter ranging from 34 to 52 nm and length about 2.231 μm, which are well distributed in different direction. A flexible ZnO NWs-based metal-semiconductor-metal UV photodetector was fabricated. Photo-response and sensitivity measurements under low power illumination (375 nm, 1.5 mW/cm2) showed a high sensitivity of 2050%, which can be considered a relatively fast response and baseline recovery for UV detection.

  9. Lateral photovoltaic effect co-observed with unipolar resistive switching behavior in Cu-doped ZnO film

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Li, Zheng; Yin, Guilin; Ge, Meiying; He, Dannong; Wang, Hui

    2014-09-01

    Unipolar resistive switching (RS) behavior was first observed in Cu-doped ZnO film based on ZnO/SiO2/Si structure, which was a novel phenomenon as memory films grown on Si substrate usually showed a bipolar one. The results demonstrate Cu-doped ZnO a new candidate for memory material. By introducing an external electric-field before the sweeping process, we have verified that the RS behavior was a localized effect. The non-linear I-V character, which suggested a junction of the proposed Cu-doped ZnO/SiO2/Si structure, leads to the lateral photovoltaic effect (LPE) investigation. In photovoltaic mode, which is the simplest configuration, the position sensitivity of lateral photovoltage observed on Cu-doped ZnO film achieves 24.82 mV/mm and the nonlinearity is within 9.95%, indicating that Cu-doped ZnO could serve as a LPE material directly. The dual effects accommodate functions of detector and memristor in the same structure and make Cu-doped ZnO a competitive material for advanced multi-functional device.

  10. Effect of different sol concentrations on the properties of nanocrystalline ZnO thin films grown on FTO substrates by sol-gel spin-coating

    NASA Astrophysics Data System (ADS)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Kim, Dongwan; Park, Minju; Kim, Haeun; Lee, Wookbin; Leem, Jae-Young; Kim, Jong Su; Kim, Jin Soo

    2014-08-01

    Nanocrystalline ZnO thin films grown on fluorine-doped tinoxide (FTO) substrates were fabricated using the spin-coating method. The structural and the optical properties of the ZnO thin films prepared using different sol concentrations were investigated by using field-emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), photoluminescence (PL) measurements, and ultraviolet-visible (UV-vis) spectrometry. The surface morphology of the ZnO thin films, as observed in the SEM images, exhibited a mountain-chain structure. XRD results indicated that the thin films were preferentially orientated along the direction of the c-axis and that the grain size of the ZnO thin films increased with increasing sol concentration. The PL spectra showed a strong ultraviolet emission peak at 3.22 eV and a broad orange emission peak at 2.0 eV. The intensities of deep-level emission (DLE) gradually increased with increasing sol concentration from 0.4 to 1.0 M. The transmittance spectra of the ZnO thin films showed that the ZnO thin films were transparent (~85%) in the visible region and exhibited sharp absorption edges at 375 nm. Thus, The Urbach energy of ZnO thin films decreased with increasing sol concentration.

  11. Superior environment resistance of quartz crystal microbalance with anatase TiO2/ZnO nanorod composite films

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Wei, Li; Shaodan, Wang; Yu, Bai

    2015-08-01

    The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO2/ZnO composite film is synthesized by surface modification with TiO2 via sol-gel methods. Results show the anatase TiO2/ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO2/ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules.

  12. SEM and XRD Characterization of ZnO Nanostructured Thin Films Prepared by Sol-Gel Method with Various Annealing Temperatures

    NASA Astrophysics Data System (ADS)

    Amizam, S.; Abdullah, N.; Rafaie, H. A.; Rusop, M.

    2010-03-01

    ZnO thin films were fabricated by the sol-gel method using Zn(CH3COO)2.2H2O (zinc acetate) as starting material. A homogenous and stable solution was prepared by dissolving the zinc acetate in a solution of ethanol and ethanolamine. Deposition of ZnO solution on Si substrate was performed by spin-coating technique and annealed at various temperatures from 200° C to 600° C. The surface morphologies and structural properties of the obtained product were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM analysis showed that the surface boundaries of ZnO thin films were decreased with the increasing of annealing temperature. X-ray analysis showed that the crystallinity of ZnO thin films increased with increasing annealing temperature. The effect of annealing temperature of ZnO thin films was studied.

  13. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Sheeba, N. H.; Naduvath, J.; Abraham, A.; Weiss, M. P.; Diener, Z. J.; Remillard, S. K.; DeYoung, P. A.; Philip, R. R.

    2014-10-01

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  14. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    SciTech Connect

    Sheeba, N. H.; Naduvath, J.; Abraham, A. Philip, R. R.; Weiss, M. P. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; Diener, Z. J. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; Remillard, S. K. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; DeYoung, P. A. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu

    2014-10-15

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  15. Effect of depth of traps in ZnO polycrystalline thin films on ZnO-TFTs performance

    NASA Astrophysics Data System (ADS)

    Medina-Montes, Maria I.; Baldenegro-Perez, Leonardo A.; Sanchez-Zeferino, Raul; Rojas-Blanco, Lizeth; Becerril-Silva, Marcelino; Quevedo-Lopez, Manuel A.; Ramirez-Bon, Rafael

    2016-09-01

    ZnO thin films were processed by radio frequency magnetron sputtering at room temperature on p-Si/SiO2 substrates under pure argon (Ar:O2 = 100:0 vol.%) and argon-oxygen mixture (Ar:O2 = 99:1 vol.%) gas environment. Morphological, optical and electrical characteristics of the ZnO films are reported, and they show a clear relationship with the gas mixture employed for the sputtering process. Scanning Electron Microscopy revealed the formation of grains of 15.3 and 19.9 nm average sizes and thicknesses of 59 nm and 82 nm for films growth in pure argon and argon-oxygen, respectively. Photoluminescence measurements at room temperature showed the violet emission band (centered at 3 eV) which was only detected in the ZnO film grown under pure argon. From thermally stimulated conductivity measurements two traps with 0.27 and 0.14 eV activation energies were identified for films grown in pure argon and argon-oxygen mixture, respectively. The trap at 0.27 eV is associated with a level located below the conduction band edge and it is supported by the PL band centered at 3 eV. Both types of ZnO films were used as the active channel layer in thin film transistors with thermal SiO2 as gate dielectric. Field effect mobility, threshold voltage and current ratio were improved in the devices with ZnO channel deposited with the argon-oxygen mixture (99% Ar/1% O2 vol.). Threshold voltage decreased from 25 V to 15 V, field effect mobility and current ratio increased from 0.8 to 2.4 cm2/Vs and from 102 to 106, in that order.

  16. Evidence of Negative Capacitance in Piezoelectric ZnO Thin Films Sputtered on Interdigital Electrodes.

    PubMed

    Laurenti, Marco; Verna, Alessio; Chiolerio, Alessandro

    2015-11-11

    The scaling paradigm known as Moore's Law, with the shrinking of transistors and their doubling on a chip every two years, is going to reach a painful end. Another less-known paradigm, the so-called Koomey's Law, stating that the computing efficiency doubles every 1.57 years, poses other important challenges, since the efficiency of rechargeable energy sources is substantially constant, and any other evolution is based on device architecture only. How can we still increase the computational power/reduce the power consumption of our electronic environments? A first answer to this question comes from the quest for new functionalities. Within this aim, negative capacitance (NC) is becoming one of the most intriguing and studied phenomena since it can be exploited for reducing the aforementioned limiting effects in the downscaling of electronic devices. Here we report the evidence of negative capacitance in 80 nm thick ZnO thin films sputtered on Au interdigital electrodes (IDEs). Highly (002)-oriented ZnO thin films, with a fine-grained surface nanostructure and the desired chemical composition, are deposited at room temperature on different IDEs structures. Direct-current electrical measurements highlighted the semiconducting nature of ZnO (current density in the order of 1 × 10(-3) A/cm(2)). When turned into the alternating current regime (from 20 Hz to 2 MHz) the presence of NC values is observed in the low-frequency range (20-120 Hz). The loss of metal/semiconductor interface charge states under forward bias conditions, together with the presence of oxygen vacancies and piezoelectric/electrostriction effects, is believed to be at the basis of the observed negative behavior, suggesting that ZnO thin-film-based field-effect transistors can be a powerful instrument to go beyond the Boltzmann limit and the downscaling of integrated circuit elements required for the fabrication of portable and miniaturized electronic devices, especially for electric household

  17. Low temperature electron transport in phosphorus-doped ZnO films grown on Si substrates

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Hao, M. R.; Guo, W.; Heeg, T.; Schlom, D. G.; Shen, W. Z.; Pan, X. Q.

    2012-07-01

    Low temperature magneto-transport properties and electron dephasing mechanisms of phosphorus-doped ZnO thin films grown on (1 1 1) Si substrates with Lu2O3 buffer layers using pulsed laser deposition were investigated in detail by quantum interference and weak localization theories under magnetic fields up to 10 T. The dephasing length follows the temperature dependence with an index p≈1.6 at higher temperatures indicating electron-electron interaction, yet becomes saturated at lower temperatures. Consistent with photoluminescence measurements and the multi-band simulation of the electron concentration, such behavior was associated with the dislocation densities obtained from x-ray diffraction and mobility fittings, where charged edge dislocations acting as inelastic Coulomb scattering centers were affirmed responsible for electron dephasing. Owing to the temperature independence of the dislocation density, the phosphorus-doped ZnO film maintained a Hall mobility of 4.5 cm2 V-1 s-1 at 4 K.

  18. ZnO transparent conductive oxide for thin film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  19. Optical analysis of doped ZnO thin films using nonparabolic conduction-band parameters

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Jeong, J.-h.; Park, J. K.; Baik, Y. J.; Kim, I. H.; Seong, T.-Y.; Kim, W. M.

    2012-06-01

    The optical properties of impurity doped ZnO thin films were analyzed by taking into account the nonparabolicity in the conduction-band and the optically determined carrier concentration and mobility were correlated with those measured by Hall measurement. The Drude parameters obtained by applying a simple Drude model combined with the Lorentz oscillator model for the optical transmittance and reflectance spectrum were analyzed by using the carrier density dependent bare band effective mass determined by the first-order nonparabolicity approximation. The squared plasma energy multiplied by the carrier density dependent effective mass yielded fairly linear relationship with respect to the carrier concentration in wide carrier density range of 1019 - 1021 cm-3, verifying the applicability of the nonparabolicity parameter for various types of impurity doped ZnO thin films. The correlation between the optical and Hall analyses was examined by taking the ratios of optical to Hall measurements for carrier density, mobility, and resistivity by introducing a parameter, Rdl, which represents the ratio of the resistances to electron transport from the inside of the lattice and from the crystallographic defects. For both the carrier concentration and mobility, the ratios of optical to Hall measurements were shown to exhibit a monotonically decreasing function of Rdl, indicating that the parameter Rdl could be used as a yardstick in correlating the optically determined carrier density and mobility with those measured by Hall analysis.

  20. High electron mobility ZnO film for high-performance inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng; Ding, Kai

    2015-04-01

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm2/(V.s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of JSC, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  1. High electron mobility ZnO film for high-performance inverted polymer solar cells

    SciTech Connect

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng Ding, Kai

    2015-04-20

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm{sup 2}/(V·s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′] dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of J{sub SC}, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  2. Resistive switching behavior of RF magnetron sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, R.; Angappane, S.

    2015-06-01

    The resistive switching characteristics of RF magnetron sputtered zinc oxide thin films have been studied. The x-ray diffraction studies confirm the formation of crystalline ZnO on Pt/TiO2/SiOx/Si substrate. We have fabricated Cu/ZnO/Pt device using a shadow masking technique for resistive switching study. Our Cu/ZnO/Pt device exhibits a unipolar resistive switching behaviour. The switching observed in our device could be related to oxygen vacancies or Cu ions that generate the conducting filaments responsible for resistive switching. We found HRS to LRS resistance ratio of as high as ˜200 for our Cu/ZnO/Pt device. The higher resistance ratio and stability of Cu/ZnO/Pt device would make our RF magnetron sputtered zinc oxide thin films suitable for non volatile memory applications.

  3. Bi-stable resistive switching characteristics in Ti-doped ZnO thin films

    PubMed Central

    2013-01-01

    Ti-doped ZnO (ZnO/Ti) thin films were grown on indium tin oxide substrates by a facile electrodeposition route. The morphology, crystal structure and resistive switching properties were examined, respectively. The morphology reveals that grains are composed of small crystals. The (002) preferential growth along c-axis of ZnO/Ti could be observed from structural analysis. The XPS study shows the presence of oxygen vacancies in the prepared films. Typical bipolar and reversible resistance switching effects were observed. High ROFF/RON ratios (approximately 14) and low operation voltages within 100 switching cycles are obtained. The filament theory and the interface effect are suggested to be responsible for the resistive switching phenomenon. PMID:23557254

  4. Electrophoretic deposition of transparent ZnO thin films from highly stabilized colloidal suspensions.

    PubMed

    Verde, M; Peiteado, M; Caballero, A C; Villegas, M; Ferrari, B

    2012-05-01

    The parameters that control the stability of ZnO-nanoparticles suspensions and their deposition by electrophoretic deposition were studied, so as to organize the assembly and compaction of nanoparticles. The addition of cationic polyelectrolyte - Polyethylenimine (PEI) - with different molecular weights was investigated, in order to study their effectiveness and the influence of the molecular weight of the organic chain on suspensions dispersion. It was found that PEI with the highest molecular weight provided better dispersion conditions. Cathodic EPD was performed under previously optimized suspensions conditions and over electropolished stainless steel substrates. Experimental results showed that the EPD process in these conditions allows obtaining dense transparent ZnO thin films. Deposition times and intensities were optimized by analyzing the resulting thin films characteristics. Finally, the deposits were characterized by FE-SEM, AFM, and different spectroscopic techniques. PMID:21999953

  5. Resistive switching behavior of RF magnetron sputtered ZnO thin films

    SciTech Connect

    Rajalakshmi, R.; Angappane, S.

    2015-06-24

    The resistive switching characteristics of RF magnetron sputtered zinc oxide thin films have been studied. The x-ray diffraction studies confirm the formation of crystalline ZnO on Pt/TiO{sub 2}/SiO{sub x}/Si substrate. We have fabricated Cu/ZnO/Pt device using a shadow masking technique for resistive switching study. Our Cu/ZnO/Pt device exhibits a unipolar resistive switching behaviour. The switching observed in our device could be related to oxygen vacancies or Cu ions that generate the conducting filaments responsible for resistive switching. We found HRS to LRS resistance ratio of as high as ∼200 for our Cu/ZnO/Pt device. The higher resistance ratio and stability of Cu/ZnO/Pt device would make our RF magnetron sputtered zinc oxide thin films suitable for non volatile memory applications.

  6. Sputter deposition of Al-doped ZnO films with various incident angles

    SciTech Connect

    Sato, Yasushi; Yanagisawa, Kei; Oka, Nobuto; Nakamura, Shin-ichi; Shigesato, Yuzo

    2009-09-15

    Al-doped ZnO (AZO) films were sputter deposited on glass substrates heated at 200 degree sign C under incident angles of sputtered particles at 0 degree sign (incidence normal to substrate), 20 deg., 40 deg., 60 deg., and 80 deg. In the case of normal incidence, x-ray diffraction pole figures show a strong [001] preferred orientation normal to the film surface. In contrast, in the case wherein the incident angles were higher than 60 degree sign , the [001] orientation inclined by 25 deg. - 35 deg. toward the direction of sputtered particles. Transmission electron microscopy revealed that the tilt angle of the [001] orientation increased with increasing angle of the incident sputtered particles, whereas the columnar structure did not show any sign of inclination with respect to the substrate plane.

  7. Interaction between O{sub 2} and ZnO films probed by time-dependent second-harmonic generation

    SciTech Connect

    Andersen, S. V.; Vandalon, V.; Bosch, R. H. E. C.; Loo, B. W. H. van de; Kessels, W. M. M.; Pedersen, K.

    2014-02-03

    The interaction between O{sub 2} and ZnO thin films prepared by atomic layer deposition has been investigated by time-dependent second-harmonic generation, by probing the electric field induced by adsorbed oxygen molecules on the surface. The second-harmonic generated signal decays upon laser exposure due to two-photon assisted desorption of O{sub 2}. Blocking and unblocking the laser beam for different time intervals reveals the adsorption rate of O{sub 2} onto ZnO. The results demonstrate that electric field induced second-harmonic generation provides a versatile non-contact probe of the adsorption kinetics of molecules on ZnO thin films.

  8. Electrochemical tailoring of lamellar-structured ZnO films by interfacial surfactant templating.

    PubMed

    Tan, Yiwei; Steinmiller, Ellen M P; Choi, Kyoung-Shin

    2005-10-11

    Zinc oxide films with ordered lamellar structures can be electrochemically produced by interfacial surfactant templating. This method utilizes amphiphile assemblies at the solid-liquid interface (i.e., the surface of a working electrode) as a template to electrodeposit inorganic nanostructures. To gain the ability to precisely tailor inorganic lamellar structures, the effect of various chemical and electrochemical parameters on the repeat distances, homogeneity, orientation, and quality of the interfacial amphiphilic bilayers were investigated. Surfactants with anionic headgroups (e.g., 1-hexadecanesulfonate sodium salt, dodecylbenzenesulfonate sodium salt, dioctyl sulfosuccinate sodium salt, mono-dodecyl phosphate, and sodium dodecyl sulfate) are critical because they incorporate Zn(2+) ions into their bilayer assemblies as counterions and guide the lamellar growth of ZnO films. Unlike surfactant structures in solution, the interfacial surfactant assemblies are insensitive to the surfactant concentration in solution. The use of organic cosolvents (e.g., ethylene glycol, dimethyl sulfoxide) can increase the homogeneity of bilayer assemblies when multiple repeat distances are possible in a pure aqueous medium. In addition, organic cosolvents can make the interfacial structure responsive to the change in bulk surfactant concentrations. The presence of quaternary alkylammonium salts (e.g., cetyltrimethylammonium bromide) as cationic cosurfactants improves the ordering of anionic bilayers significantly. Consequently, it also affects the orientation of lamellar structures relative to the substrate as well as the surface texture of the films. The quality of lamellar structures incorporated in ZnO films is also dependent on the deposition potentials that determine deposition rates. A higher degree of ordering is achieved when a slower deposition rate (I < 0.15 mA/cm(2)) is used. The results described here will provide a useful foundation to design and optimize synthetic

  9. ZnO thin film deposition using colliding plasma plumes and single plasma plume: Structural and optical properties

    SciTech Connect

    Gupta, Shyam L. Thareja, Raj K.

    2013-12-14

    We report the comparative study on synthesis of thin films of ZnO on glass substrates using IR laser ablated colliding plasma plumes and conventional pulsed laser deposition using 355 nm in oxygen ambient. The optical properties of deposited films are characterized using optical transmission in the UV-visible range of spectrum and photoluminescence measurements. X-ray diffraction and atomic force microscopy are used to investigate the surface morphology of synthesized ZnO films. The films synthesized using colliding plumes created with 1064 nm are non-polar a-plane ZnO with transmission in UV-visible (300–800 nm) region ∼60% compared to polycrystalline thin film deposited using single plume which has chunk deposition and poor optical response. However, deposition with 355 nm single plume shows polar c-axis oriented thin film with average roughness (∼thickness) of ∼86 nm (∼850 nm) compared to ∼2 nm (∼3 μm) for 1064 nm colliding plumes. These observed differences in the quality and properties of thin films are attributed to the flux of mono-energetic plasma species with almost uniform kinetic energy and higher thermal velocity reaching the substrate from interaction/stagnation zone of colliding plasma plumes.

  10. Sol-Gel and Thermally Evaporated Nanostructured Thin ZnO Films for Photocatalytic Degradation of Trichlorophenol

    NASA Astrophysics Data System (ADS)

    Abdel Aal, A.; Mahmoud, Sawsan A.; Aboul-Gheit, Ahmed K.

    2009-07-01

    In the present work, thermal evaporation and sol-gel coating techniques were applied to fabricate nanostructured thin ZnO films. The phase structure and surface morphology of the obtained films were investigated by X-ray diffractometer (XRD) and scanning electron microscope (SEM), respectively. The topography and 2D profile of the thin ZnO films prepared by both techniques were studied by optical profiler. The results revealed that the thermally evaporated thin film has a comparatively smoother surface of hexagonal wurtzite structure with grain size 12 nm and 51 m2/g. On the other hand, sol-gel films exhibited rough surface with a strong preferred orientation of 25 nm grain size and 27 m2/g surface area. Following deposition process, the obtained films were applied for the photodegradation of 2,4,6-trichlorophenol (TCP) in water in presence of UV irradiation. The concentrations of TCP and its intermediates produced in the solution during the photodegradation were determined by high performance liquid chromatography (HPLC) at defined irradiation times. Complete decay of TCP and its intermediates was observed after 60 min when the thermal evaporated photocatalyst was applied. However, by operating sol-gel catalyst, the concentration of intermediates initially increased and then remained constant with irradiation time. Although the degradation of TCP followed first-order kinetic for both catalysts, higher photocatalytic activity was exhibited by the thermally evaporated ZnO thin film in comparison with sol-gel one.

  11. Growth of residual stress-free ZnO films on SiO2/Si substrate at room temperature for MEMS devices

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra; Ranwa, Sapana; Akhtar, Jamil; Kumar, Mahesh

    2015-06-01

    ZnO thick Stress relaxed films were deposited by reactive magnetron sputtering on 2"-wafer of SiO2/Si at room temperature. The residual stress of ZnO films was measured by measuring the curvature of wafer using laser scanning method and found in the range of 0.18 x 109 to 11.28 x 109 dyne/cm2 with compressive in nature. Sputter pressure changes the deposition rates, which strongly affects the residual stress and surface morphologies of ZnO films. The crystalline wurtzite structure of ZnO films were confirmed by X-ray diffraction and a shift in (0002) diffraction peak of ZnO towards lower 2θ angle was observed with increasing the compressive stress in the films. The band gap of ZnO films shows a red shift from ˜3.275 eV to ˜3.23 eV as compressive stress is increased, unlike the stress for III-nitride materials. A relationship between stress and band gap of ZnO was derived and proposed. The stress-free growth of piezoelectric films is very important for functional devices applications.

  12. Growth of residual stress-free ZnO films on SiO{sub 2}/Si substrate at room temperature for MEMS devices

    SciTech Connect

    Singh, Jitendra; Akhtar, Jamil; Ranwa, Sapana; Kumar, Mahesh

    2015-06-15

    ZnO thick Stress relaxed films were deposited by reactive magnetron sputtering on 2”-wafer of SiO{sub 2}/Si at room temperature. The residual stress of ZnO films was measured by measuring the curvature of wafer using laser scanning method and found in the range of 0.18 x 10{sup 9} to 11.28 x 10{sup 9} dyne/cm{sup 2} with compressive in nature. Sputter pressure changes the deposition rates, which strongly affects the residual stress and surface morphologies of ZnO films. The crystalline wurtzite structure of ZnO films were confirmed by X-ray diffraction and a shift in (0002) diffraction peak of ZnO towards lower 2θ angle was observed with increasing the compressive stress in the films. The band gap of ZnO films shows a red shift from ∼3.275 eV to ∼3.23 eV as compressive stress is increased, unlike the stress for III-nitride materials. A relationship between stress and band gap of ZnO was derived and proposed. The stress-free growth of piezoelectric films is very important for functional devices applications.

  13. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    PubMed

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)<10(-6) g m(-2) day(-1)) as well as the defect-free nature of the ALD dielectric and ZnO channel layers, the TFTs exhibit excellent device performance with high stability and flexibility: field-effect mobility>20 cm2 V(-1) s(-1), subthreshold swing<0.4 V decade(-1) after extended bias-stressing (>10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times). PMID:26436832

  14. Study of p-type ZnO and MgZnO Thin Films for Solid State Lighting

    SciTech Connect

    Liu, Jianlin

    2015-07-31

    This project on study of p-type ZnO and MgZnO thin films for solid state lighting was carried out by research group of Prof. Jianlin Liu of UCR during the four-year period between August 2011 and July 2015. Tremendous progress has been made on the proposed research. This final report summarizes the important findings.

  15. Size dependent electron-phonon coupling in N, Li, In, Ga, F and Ag doped ZnO thin films.

    PubMed

    Shinde, S S; Bhosale, C H; Rajpure, K Y

    2012-12-01

    Polarized micro-Raman measurements are performed to study the phonon modes of N, Li, In, Ga, F and Ag doped ZnO thin films, grown by spray pyrolysis on corning glass substrates. The E(2)(high) mode displays a visible asymmetric line shape. The size and dopant dependence onto coupling strength between electron and LO phonon is experimentally estimated. PMID:23010630

  16. Electron irradiation effects on electrical and optical properties of sol-gel prepared ZnO films

    SciTech Connect

    Bhat, J. S.; Patil, A. S.; Swami, N.; Mulimani, B. G.; Gayathri, B. R.; Deshpande, N. G.; Kim, G. H.; Seo, M. S.; Lee, Y. P.

    2010-08-15

    The effects of electron beam irradiation on the electrical and the optical properties of zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films, prepared by the sol-gel technique, were investigated. The grain size, surface morphology, sheet resistance, optical constants, absorption edge, and direct and indirect optical band gaps of these films were analyzed before and after exposure to electron beam. The decrease in the structural homogeneity and the crystallinity of the films after exposure to electron irradiation is observed. The irradiation causes increase in the sheet resistance and blueshift in the absorption edge for both ZnO and ZnO:Al films. The change in carrier concentration due to doping as well as the exposure to electron beam are responsible for the modified electrical and optical properties.

  17. Evaluation of transverse piezoelectric coefficient of ZnO thin films deposited on different flexible substrates: a comparative study on the vibration sensing performance.

    PubMed

    Joshi, Sudeep; Nayak, Manjunatha M; Rajanna, K

    2014-05-28

    We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 ± 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d31) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d31 coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology. PMID:24773266

  18. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films

    PubMed Central

    2012-01-01

    We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol–gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO thin film doped with 1.5 mol% of Ga after post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region. We have studied the structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and photoluminescence were estimated. PMID:23173885

  19. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    NASA Astrophysics Data System (ADS)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  20. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature.

    PubMed

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-12-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications. PMID:26956599

  1. Homoepitaxial growth of dense ZnO(0 0 0 1) and ZnO (1 1 2 bar0) films via MOVPE on selected ZnO substrates

    NASA Astrophysics Data System (ADS)

    Pierce, J. M.; Adekore, B. T.; Davis, R. F.; Stevie, F. A.

    2005-09-01

    Deposition via metalorganic vapor phase epitaxy of a low-temperature (480 °C) layer followed by a high-temperature (800 °C) densification step was employed for the growth of each ∼200 nm thick, contiguous ZnO(0 0 0 1) layer on a ZnO(0 0 0 1)-oriented substrate. Multiple iterations of this process resulted in films as thick as 2 μm. Ultra-high-purity (UHP) O2 served as the principal source of atomic oxygen; however, nitrous oxide (N2O) and nitrogen dioxide (NO2) were also investigated as potential oxygen sources in the pure state as well as in mixtures with oxygen produced in the chamber and for nitrogen doping of the growing (0 0 0 1) films. Carbon and hydrogen, derived from the decomposition of the diethylzinc precursor, and N were incorporated into the films primarily during the low-temperature step. Films grown using N2O+O2 contained an average of 5×1017 cm-3 atomic nitrogen; films using NO2+O2 had an average nitrogen concentration of 9×1019 cm-3. The low-temperature growths on ZnO(0 0 0 1) using O2 and N2O+O2 resulted in the formation of a needle microstructure; a spaghetti-like network microstructure formed when using NO2+O2 at the same temperature. Lateral growth at 800 °C from sites within the needle and network microstructures resulted in dense films containing shallow hexagonal pits that increased in number and depth with an increase in film thickness. Triple-axis XRD measurements indicated that the crystal structure of the films mimic the underlying substrates. Growth on [1 1 2bar 0]-oriented ZnO substrates at the single temperature of 600 °C resulted in a dense film composed of needles oriented in-plane along [0 0 0 1]. Atomic force microscopy and secondary ion mass spectroscopy revealed an rms value of 5.4 nm and hydrogen of concentration of 6.5×1018 with the carbon concentration below the detection limit of 1.3×1019 atoms/cm3.

  2. Homogeneous and stable p-type doping of graphene by MeV electron beam-stimulated hybridization with ZnO thin films

    SciTech Connect

    Song, Wooseok; Kim, Yooseok; Hwan Kim, Sung; Youn Kim, Soo; Cha, Myoung-Jun; Song, Inkyung; Jeon, Cheolho; Sung Jung, Dae; Lim, Taekyung; Lee, Sumi; Ju, Sanghyun; Chel Choi, Won; Wook Jung, Min; An, Ki-Seok; Park, Chong-Yun

    2013-02-04

    In this work, we demonstrate a unique and facile methodology for the homogenous and stable p-type doping of graphene by hybridization with ZnO thin films fabricated by MeV electron beam irradiation (MEBI) under ambient conditions. The formation of the ZnO/graphene hybrid nanostructure was attributed to MEBI-stimulated dissociation of zinc acetate dihydrate and a subsequent oxidation process. A ZnO thin film with an ultra-flat surface and uniform thickness was formed on graphene. We found that homogeneous and stable p-type doping was achieved by charge transfer from the graphene to the ZnO film.

  3. Wurtzite ZnO (001) films grown on cubic MgO (001) with bulk-like opto-electronic properties

    SciTech Connect

    Zhou Hua; Wang Huiqiong; Chen Xiaohang; Zhan Huahan; Kang Junyong; Wu Lijun; Zhu Yimei; Zhang Lihua; Kisslinger, Kim

    2011-10-03

    We report the growth of ZnO (001) wurtzite thin films with bulk-like opto-electronic properties on MgO (001) cubic substrates using plasma-assisted molecular beam epitaxy. In situ reflection high-energy electron diffraction patterns and ex situ high resolution transmission electron microscopy images indicate that the structure transition from the cubic MgO substrates to the hexagonal films involves 6 ZnO variants that have the same structure but different orientations. This work demonstrates the possibility of integrating wurtzite ZnO films and functional cubic substrates while maintaining their bulk-like properties.

  4. Broad-band three dimensional nanocave ZnO thin film photodetectors enhanced by Au surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Sun, Mengwei; Xu, Zhen; Yin, Min; Lin, Qingfeng; Lu, Linfeng; Xue, Xinzhong; Zhu, Xufei; Cui, Yanxia; Fan, Zhiyong; Ding, Yiling; Tian, Li; Wang, Hui; Chen, Xiaoyuan; Li, Dongdong

    2016-04-01

    ZnO semiconductor films with periodic 3D nanocave patterns were fabricated by the thermal nanoimprinting technology, which is promising for photodetectors with enhanced light harvesting capability. The Au nanoparticles were further introduced into the ZnO films, which boosts the UV response of ZnO films and extends the photodetection to visible regions. The best UV photoresponse was detected on the 3D nanocave ZnO-Au hybrid films, attributing to the light trapping mechanism of 3D periodic structures and the driving force of the Schottky barrier at the ZnO/Au interface, while the high visible photoresponse of ZnO-Au hybrid films mainly results from the hot electron generation and injection process over the Schottky junctions mediated by Au surface plasmon resonances. The work provides a cost-effective pathway to develop large-scale periodic 3D nanopatterned thin film photodetectors and is promising for the future deployment of high performance optoelectronic devices.ZnO semiconductor films with periodic 3D nanocave patterns were fabricated by the thermal nanoimprinting technology, which is promising for photodetectors with enhanced light harvesting capability. The Au nanoparticles were further introduced into the ZnO films, which boosts the UV response of ZnO films and extends the photodetection to visible regions. The best UV photoresponse was detected on the 3D nanocave ZnO-Au hybrid films, attributing to the light trapping mechanism of 3D periodic structures and the driving force of the Schottky barrier at the ZnO/Au interface, while the high visible photoresponse of ZnO-Au hybrid films mainly results from the hot electron generation and injection process over the Schottky junctions mediated by Au surface plasmon resonances. The work provides a cost-effective pathway to develop large-scale periodic 3D nanopatterned thin film photodetectors and is promising for the future deployment of high performance optoelectronic devices. Electronic supplementary information

  5. Influence of post-annealing temperature on properties of ZnO:Li thin films

    NASA Astrophysics Data System (ADS)

    Chen, L. L.; He, H. P.; Ye, Z. Z.; Zeng, Y. J.; Lu, J. G.; Zhao, B. H.; Zhu, L. P.

    2006-03-01

    Li-doped ZnO thin films were prepared on glass substrates by DC reactive magnetron sputtering. The influence of post-annealing temperature on the electrical, structural, and optical properties of the films was investigated. A conversion from p-type conduction to n-type in a range of temperature was confirmed by Hall measurement. The optimal p-type conduction is achieved at the annealing temperature of 500 °C with a resistivity of 57 Ω cm, carrier concentration of 1.07 × 10 17 cm -3 and Hall mobility of 1.03 cm 2 V -1 s -1. From the temperature-dependent PL analysis, the energy level of Li Zn acceptor was determined to be ˜140 meV above the valence band.

  6. Achieving Antifingerprinting and Antibacterial Effects in Smart-Phone Panel Applications Using ZnO Thin Films without a Protective Layer.

    PubMed

    Choi, Hyung-Jin; Park, Byeong-Ju; Eom, Ji-Ho; Choi, Min-Ju; Yoon, Soon-Gil

    2016-01-13

    When crystalline ZnO films with a thickness of 30 nm and hydrophilic properties were deposited at room temperature onto a glass substrate via radio frequency sputtering, they exhibited antifingerprinting qualities following annealing treatment that was simple and accomplished at low temperature (100 °C). Hydrophobic properties were achieved using as-deposited ZnO films with hydrophilic properties via annealing treatment without the deposition of a protective layer with hydrophobic properties. The annealed 30 nm ZnO films showed a high transmittance (∼91.3%) comparable to that of a glass substrate at a wavelength of 550 nm. The annealed films showed strong antibacterial activity against E. coli and S. aureus bacteria. The ZnO films with a thickness of 30 nm showed predominant mechanical durability with strong antibacterial activity for smart-phone panel applications. PMID:26691534

  7. Photoluminescence study of p-type vs. n-type Ag-doped ZnO films

    SciTech Connect

    Myers, M. A.; Jian, J.; Khranovskyy, V.; Lee, J. H.; Wang, Han; Wang, Haiyan E-mail: hwang00@tamu.edu

    2015-08-14

    Silver doped ZnO films have been grown on sapphire (0001) substrates by pulsed laser deposition. Hall measurements indicate that p-type conductivity is realized for the films deposited at 500 °C and 750 °C. Transmission electron microscopy images show more obvious and higher density of stacking faults (SFs) present in the p-type ZnO films as compared to the n-type films. Top view and cross sectional photoluminescence of the n- and p-type samples revealed free excitonic emission from both films. A peak at 3.314 eV, attributed to SF emission, has been observed only for the n-type sample, while a weak neutral acceptor peak observed at 3.359 eV in the p-type film. The SF emission in the n-type sample suggests localization of acceptor impurities nearby the SFs, while lack of SF emission for the p-type sample indicates the activation of the Ag acceptors in ZnO.

  8. Broad-band three dimensional nanocave ZnO thin film photodetectors enhanced by Au surface plasmon resonance.

    PubMed

    Sun, Mengwei; Xu, Zhen; Yin, Min; Lin, Qingfeng; Lu, Linfeng; Xue, Xinzhong; Zhu, Xufei; Cui, Yanxia; Fan, Zhiyong; Ding, Yiling; Tian, Li; Wang, Hui; Chen, Xiaoyuan; Li, Dongdong

    2016-04-28

    ZnO semiconductor films with periodic 3D nanocave patterns were fabricated by the thermal nanoimprinting technology, which is promising for photodetectors with enhanced light harvesting capability. The Au nanoparticles were further introduced into the ZnO films, which boosts the UV response of ZnO films and extends the photodetection to visible regions. The best UV photoresponse was detected on the 3D nanocave ZnO-Au hybrid films, attributing to the light trapping mechanism of 3D periodic structures and the driving force of the Schottky barrier at the ZnO/Au interface, while the high visible photoresponse of ZnO-Au hybrid films mainly results from the hot electron generation and injection process over the Schottky junctions mediated by Au surface plasmon resonances. The work provides a cost-effective pathway to develop large-scale periodic 3D nanopatterned thin film photodetectors and is promising for the future deployment of high performance optoelectronic devices. PMID:27073045

  9. Role of oxygen vacancy in ferromagnetic Mn-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Yoo, Y. J.; Kim, P. J.; Lee, Y. P.; Kim, T. H.; Kang, J.-H.

    2006-03-01

    We report that Zn1-XMnXO (x = 0.4) films grown by reactive magnetron co-sputtering have ferromagnetism at temperatures above 300 K. The ferromagnetic behavior is sensitive to not only the carrier concentration but also the film growth parameters, such as the substrate, substrate temperature, deposition rate and oxygen partial pressure (PO2) during deposition. In this study, we focused on the role of oxygen vacancy for the ferromagnetism in Zn1-xMnxO films with x <= 0.05. In order to fabricate high-quality samples, the preparation was performed in an ultrahigh vacuum, and the accurate PO2 was monitored using a residual gas analyzer during deposition. The magnetic and the structural properties of films were characterized by SQUID and XRD, respectively. The normal-mode and oxygen-resonance-mode RBS were carried out to confirm the mount of Mn, Zn and O contents. The film, prepared at an oxygen partial pressure of 2.2x10-7 Torr, exhibits a strong ferromagnetism with Tc above 300 K, while the films at an partial pressure of higher than 1.2x10-6 Torr show the nonmagnetic behaviors. Our results can be elucidated with a theoretical model by Coey[1] that the oxygen vacancy could results in the magnetic ordering of Mn-doped ZnO film by the enhancement of overlap between s-band and imputity d-band. [1] J. M. D. Coey et al., Nat. Mater. 4, 173 (2005).

  10. Structural, morphological and optical studies of ripple-structured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Navin, Kumar; Kurchania, Rajnish

    2015-11-01

    Ripple-structured ZnO thin films were prepared on Si (100) substrate by sol-gel spin-coating method with different heating rates during preheating process and finally sintered at 500 °C for 2 h in ambient condition. The structural, morphological and photoluminescence (PL) properties of the nanostructured films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and PL spectroscopy. XRD analysis revealed that films have hexagonal wurtzite structure and texture coefficient increases along (002) plane with preheating rate. The faster heating rate produced higher crystallization and larger average crystallite size. The AFM and SEM images indicate that all the films have uniformly distributed ripple structure with skeletal branches. The number of ripples increases, while the rms roughness, amplitude and correlation length of the ripple structure decrease with preheating rates. The PL spectra show the presence of different defects in the structure. The ultraviolet emission improved with the heating rate which indicates its better crystallinity.

  11. Structural and optical studies on Nd doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Deepa Rani, T.; Tamilarasan, K.; Elangovan, E.; Leela, S.; Ramamurthi, K.; Thangaraj, K.; Himcinschi, C.; Trenkmann, I.; SchuIze, S.; Hietschold, M.; Liebig, A.; Salvan, G.; Zahn, D. R. T.

    2015-01-01

    Thin films of Zn1-xNdxO were deposited by spray pyrolysis on Si(111) substrates preheated at 400 °C temperature and were studied as a function of neodymium (Nd)-doping concentration. X-ray diffraction (XRD) patterns confirmed that the deposited films possess hexagonal wurtzite ZnO structure. Further, it is observed that the doped films show a preferential orientation along the c-axis (0 0 2), which is perpendicular to the substrate. The un-doped films seem to be having a bit low-crystallinity, which is corroborated by the scanning electron microscope (SEM) analysis that showed nano-crystalline like features. Further, SEM analysis showed that the Nd doping triggers the formation bubble-like structure on top of the nano-crystalline structure. The SEM microstructures are interpreted with the Micro-Raman studies. Photoluminescence (PL) and XRD characterizations indicate that above 5 at.% doping concentrations, the Nd atoms preferentially agglomerate in the large islands.

  12. Dye-sensitized solar cell using sprayed ZnO nanocrystalline thin films on ITO as photoanode.

    PubMed

    Dhamodharan, P; Manoharan, C; Dhanapandian, S; Venkatachalam, P

    2015-02-01

    ZnO thin films had been successfully prepared by spray pyrolysis (SP) technique on ITO/Glass substrates at different substrate temperature in the range 250-400°C using Zinc acetylacetonate as precursor. The X-ray diffraction studies confirmed the hexagonal wurtzite structure with preferred orientation along (002) plane at substrate temperature 350°C and the crystallite size was found to vary from 18 to 47nm. The morphology of the films revealed the porous nature with the roughness value of 8-13nm. The transmittance value was found to vary from 60% to 85% in the visible region depending upon the substrate temperature and the band gap value for the film deposited at 350°C was 3.2eV. The obtained results revealed that the structures and properties of the films were greatly affected by substrate temperature. The near band edge emission observed at 398nm in PL spectra showed better crystallinity. The measured electrical resistivity for ZnO film was ∼3.5×10(-4)Ωcm at the optimized temperature 350°C and was of n-type semiconductor. The obtained porous nature with increased surface roughness of the film and good light absorbing nature of the dye paved way for implementation of quality ZnO in DSSCs fabrication. DSSC were assembled using the prepared ZnO film on ITO coated glass substrate as photoanode and its photocurrent - voltage performance was investigated. PMID:25459731

  13. Dye-sensitized solar cell using sprayed ZnO nanocrystalline thin films on ITO as photoanode

    NASA Astrophysics Data System (ADS)

    Dhamodharan, P.; Manoharan, C.; Dhanapandian, S.; Venkatachalam, P.

    2015-02-01

    ZnO thin films had been successfully prepared by spray pyrolysis (SP) technique on ITO/Glass substrates at different substrate temperature in the range 250-400 °C using Zinc acetylacetonate as precursor. The X-ray diffraction studies confirmed the hexagonal wurtzite structure with preferred orientation along (0 0 2) plane at substrate temperature 350 °C and the crystallite size was found to vary from 18 to 47 nm. The morphology of the films revealed the porous nature with the roughness value of 8-13 nm. The transmittance value was found to vary from 60% to 85% in the visible region depending upon the substrate temperature and the band gap value for the film deposited at 350 °C was 3.2 eV. The obtained results revealed that the structures and properties of the films were greatly affected by substrate temperature. The near band edge emission observed at 398 nm in PL spectra showed better crystallinity. The measured electrical resistivity for ZnO film was ∼3.5 × 10-4 Ω cm at the optimized temperature 350 °C and was of n-type semiconductor. The obtained porous nature with increased surface roughness of the film and good light absorbing nature of the dye paved way for implementation of quality ZnO in DSSCs fabrication. DSSC were assembled using the prepared ZnO film on ITO coated glass substrate as photoanode and its photocurrent - voltage performance was investigated.

  14. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    NASA Astrophysics Data System (ADS)

    Ceylan, Abdullah; Ozcan, Yusuf; Orujalipoor, Ilghar; Huang, Yen-Chih; Jeng, U.-Ser; Ide, Semra

    2016-06-01

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  15. Post-annealing effect on the room-temperature ferromagnetism in Cu-doped ZnO thin films

    SciTech Connect

    Hu, Yu-Min Kuang, Chein-Hsiun; Han, Tai-Chun; Yu, Chin-Chung; Li, Sih-Sian

    2015-05-07

    In this work, we investigated the structural and magnetic properties of both as-deposited and post-annealed Cu-doped ZnO thin films for better understanding the possible mechanisms of room-temperature ferromagnetism (RT-FM) in ZnO-based diluted magnetic oxides. All of the films have a c-axis-oriented wurtzite structure and display RT-FM. X-ray photoelectron spectroscopy results showed that the incorporated Cu ions in as-deposited films are in 1+ valence state merely, while an additional 2+ valence state occurs in post-annealed films. The presence of Cu{sup 2+} state in post-annealed film accompanies a higher magnetization value than that of as-deposited film and, in particular, the magnetization curves at 10 K and 300 K of the post-annealed film separate distinctly. Since Cu{sup 1+} ion has a filled 3d band, the RT-FM in as-deposited Cu-doped ZnO thin films may stem solely from intrinsic defects, while that in post-annealed films is enhanced due to the presence of CuO crystallites.

  16. Structural and optical properties of Al-doped ZnO films coated by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Bo; Huang, Bo; Zhang, Liang-Tang; Li, Jing; Wu, Sun-Tao

    2007-12-01

    The Al-doped ZnO (AZO) films were deposited on glass by RF magnetron sputtering under different sputtering power: 75W, 120W, 160W and 200W. During the films deposition, the other sputtering conditions were maintained constant. The crystal structures of the AZO films were characterized and analyzed by X-ray diffraction. The surface morphologies of the films were observed by SEM. The transmission spectra of the films were measured using a spectrophotometer within the range from 200 to 800 nm at room temperature. The results indicate each of the films has a preferential c-axis orientation and the grain size increases with the increase of sputtering power. All the films exhibit a high transmittance in visible region and have sharp ultraviolet absorption characteristics.

  17. Environmental stability of solution processed Al-doped ZnO naoparticulate thin films using surface modification technique

    NASA Astrophysics Data System (ADS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2014-12-01

    The environmental stability of solution processed Al-doped ZnO (AZO) thin films was enhanced by functionalizing the film surface with a thin self-assembled molecular layer. Functionalization of AZO films was performed using two types of molecules having identical 12-carbon alkyl chain termination but different functional groups: dodecanethiol (DDT) and dodecanoic acid (DDA). Surface modified AZO films were examined using electrical resistivity measurements, contact angle measurements and quantitative nanomechanical property mapping atomic force microscopy. The hydrophobic layer inhibits the penetration of oxygen and water into the AZO's grain boundaries thus significantly increasing the environmental stability over unmodified AZO. Surface modified AZO films using DDT exhibited lower electrical resistivity compared to DDA functionalized AZO films. Our study demonstrates a new approach for improving the physical properties of oxide based nanoparticulate films for device applications.

  18. Aging and annealing effects on properties of Ag-N dual-acceptor doped ZnO thin films

    SciTech Connect

    Swapna, R.; Amiruddin, R.; Santhosh Kumar, M. C.

    2013-02-05

    Ag-N dual acceptor doping into ZnO has been proposed to realize p-ZnO thin film of different concentrations (1, 2 and 4 at.%) by spray pyrolysis at 623 K and then 4 at.% films annealed at 673 K and 723 K for 1 hr. X-ray diffraction studies reveal that all the films are preferentially oriented along (002) plane. Energy dispersive spectroscopy (EDS) confirms the presence of Ag and N in 2 at.% ZnO:(Ag, N) film. Hall measurement shows that 4 at.% ZnO:(Ag, N) film achieved minimum resistivity with high hole concentration. The p-type conductivity of the ZnO:(Ag, N) films is retained even after 180 days. Photoluminescence (PL) spectra of ZnO:(Ag, N) films show low density of native defects.

  19. Hydrogen induced electric conduction in undoped ZnO and Ga-doped ZnO thin films: Creating native donors via reduction, hydrogen donors, and reactivating extrinsic donors

    SciTech Connect

    Akazawa, Housei

    2014-09-01

    The manner in which hydrogen atoms contribute to the electric conduction of undoped ZnO and Ga-doped ZnO (GZO) films was investigated. Hydrogen atoms were permeated into these films through annealing in an atmospheric H{sub 2} ambient. Because the creation of hydrogen donors competes with the thermal annihilation of native donors at elevated temperatures, improvements to electric conduction from the initial state can be observed when insulating ZnO films are used as samples. While the resistivity of conductive ZnO films increases when annealing them in a vacuum, the degree of increase is mitigated when they are annealed in H{sub 2}. Hydrogenation of ZnO crystals was evidenced by the appearance of OH absorption signals around a wavelength of 2700 nm in the optical transmittance spectra. The lowest resistivity that was achieved by H{sub 2} annealing was limited to 1–2 × 10{sup −2} Ω cm, which is one order of magnitude higher than that by native donors (2–3 × 10{sup −3} Ω cm). Hence, all native donors are converted to hydrogen donors. In contrast, GZO films that have resistivities yet to be improved become more conductive after annealing in H{sub 2} ambient, which is in the opposite direction of GZO films that become more resistive after vacuum annealing. Hydrogen atoms incorporated into GZO crystals should assist in reactivating Ga{sup 3+} donors.

  20. 7-Octenyltrichrolosilane/trimethyaluminum hybrid dielectrics fabricated by molecular-atomic layer deposition on ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lee, Mingun; Lucero, Antonio T.; Cheng, Lanxia; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    We demonstrate the fabrication of 7-octenytrichlorosilane (7-OTS)/trimethylaluminum (TMA) organic–inorganic hybrid films using molecular-atomic layer deposition (MALD). The properties of 7-OTS/TMA hybrid films are extensively investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and electrical measurements. Our results suggest that uniform and smooth amorphous hybrid thin films with excellent insulating properties are obtained using the MALD process. Films have a relatively high dielectric constant of approximately 5.0 and low leakage current density. We fabricate zinc oxide (ZnO) based thin film transistors (TFTs) using 7-OTS/TMA hybrid material as a back gate dielectric with the top ZnO channel layer deposited in-situ via MALD. The ZnO TFTs exhibit a field effect mobility of approximately 0.43 cm2 V‑1 s‑1, a threshold voltage of approximately 1 V, and an on/off ratio of approximately 103 under low voltage operation (from ‑3 to 9 V). This work demonstrates an organic–inorganic hybrid gate dielectric material potentially useful in flexible electronics application.

  1. New insights in the structural and morphological properties of sol-gel deposited ZnO multilayer films

    NASA Astrophysics Data System (ADS)

    Demes, T.; Ternon, C.; Riassetto, D.; Roussel, H.; Rapenne, L.; Gélard, I.; Jimenez, C.; Stambouli, V.; Langlet, M.

    2016-08-01

    This study shows how the structural and morphological properties of sol-gel deposited ZnO films can be precisely tuned and selectively controlled. For that purpose, ZnO films have been deposited through a multilayer sol-gel route using solutions of zinc acetate dihydrate (ZAD) diluted in 1-butanol. The opto-geometrical, morphological, and structural properties of these films have been thoroughly studied in relation to the ZAD concentration in butanol, number of deposited single-layers, and heat-treatment conditions. On this basis, different physical processes occurring over the multilayer deposition procedure have been discussed to explain how the experimental parameters influence the film properties and enable to tune the grain size, texture coefficient, and surface coverage rate in a wide range of values. This work is a first step toward the optimized growth of ZnO nanowires on sol-gel films and their subsequent integration in 2D or 3D nanowire-based biosensors.

  2. Growth of controllable ZnO film by atomic layer deposition technique via inductively coupled plasma treatment

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Wei; Chang, Wen-Chih; Lin, Su-Jien; Chueh, Yu-Lun

    2012-12-01

    An inductively coupled plasma technique (ICP), namely, remote-plasma treatment was introduced to ionize the water molecules as the precursor for the deposition of ZnO film via the atomic layer deposition processes. Compared with the H2O gas as the precursor for the ALD growth, the ionized water molecules can provide a lesser energy to uniformly stabilize oxidization processes, resulting in a better film quality with a higher resistivity owing to less formation of intrinsic defects at a lower growth temperature. The relationship between resistivity and formation mechanisms have been discussed and investigated through analyses of atomic force microscopy, photonluminescence, and absorption spectra, respectively. Findings indicate that the steric hindrance of the ligands plays an important rule for the ALD-ZnO film sample with the ICP treatment while the limited number of bonding sites will be dominant for the ALD-ZnO film without the ICP treatment owing to decreasing of the reactive sites via the ligand-exchange reaction during the dissociation process. Finally, the enhanced aspect-ratio into the anodic aluminum oxide with the better improved uniform coating of ZnO layer after the ICP treatment was demonstrated, providing an important information for a promising application in electronics based on ZnO ALD films.

  3. Growth of controllable ZnO film by atomic layer deposition technique via inductively coupled plasma treatment

    SciTech Connect

    Huang, Hsin-Wei; Chang, Wen-Chih; Lin, Su-Jien; Chueh, Yu-Lun

    2012-12-15

    An inductively coupled plasma technique (ICP), namely, remote-plasma treatment was introduced to ionize the water molecules as the precursor for the deposition of ZnO film via the atomic layer deposition processes. Compared with the H{sub 2}O gas as the precursor for the ALD growth, the ionized water molecules can provide a lesser energy to uniformly stabilize oxidization processes, resulting in a better film quality with a higher resistivity owing to less formation of intrinsic defects at a lower growth temperature. The relationship between resistivity and formation mechanisms have been discussed and investigated through analyses of atomic force microscopy, photonluminescence, and absorption spectra, respectively. Findings indicate that the steric hindrance of the ligands plays an important rule for the ALD-ZnO film sample with the ICP treatment while the limited number of bonding sites will be dominant for the ALD-ZnO film without the ICP treatment owing to decreasing of the reactive sites via the ligand-exchange reaction during the dissociation process. Finally, the enhanced aspect-ratio into the anodic aluminum oxide with the better improved uniform coating of ZnO layer after the ICP treatment was demonstrated, providing an important information for a promising application in electronics based on ZnO ALD films.

  4. Oxygen-dependent phosphorus networking in ZnO thin films grown by low temperature rf sputtering

    NASA Astrophysics Data System (ADS)

    Pugel, D. Elizabeth; Vispute, R. D.; Hullavarad, S. S.; Venkatesan, T.; Varughese, B.

    2007-03-01

    Radio frequency (rf) sputtered films of 10at.% P2O5-doped zinc oxide (ZnO) were deposited at temperatures (Td) below the sublimation point of P2O5 (Td<350°C) and at a range of oxygen pressures p(O2). Ultraviolet-visible optical transmission measurements, x-ray photoelectron spectroscopy (XPS), and x-ray diffraction were used to examine the effects of p(O2) during deposition on the band gap and on the bonding behavior of phosphorus. At both deposition temperatures studied (room temperature with unintentional heating and 125°C), an increase in phosphorus concentration with increasing p(O2) was observed. However, the dependence of the band gap behavior on p(O2) was observed to be dramatically different for the two deposition temperatures: room-temperature-deposited films show a redshift while films deposited at 125°C show a blueshift. Analysis of the oxygen 1s XPS peak shows a progressive formation of nonbridging (Zn-O-P) bond networks for room temperature films, whereas films grown at 125°C show increased (P-O-P) bond networks with increasing p(O2). This indicates that a small degree of thermal activation considerably modifies the bonding behavior of phosphorus in ZnO. Implications of these results for the use of phosphorus as a p-type dopant for ZnO are discussed.

  5. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    DOE PAGESBeta

    Venkatesh, S.; Baras, A.; Lee, J. -S.; Roqan, I. S.

    2016-03-24

    Here, we studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (~40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetismmore » in doped/un-doped ZnO.« less

  6. Strong free-carrier electro-optic response of sputtered ZnO films

    SciTech Connect

    Dominici, Lorenzo; Michelotti, Francesco; Auf der Maur, Matthias

    2012-09-01

    We report on the anisotropic electro-optic response of sputtered ZnO films and its dispersion towards both the frequency of the modulating voltage and the wavelength of the probing beam. The observed dispersion put in evidence two mechanisms. A fast and weak electrorefraction response, due to the nonlinear polarization of bound electrons, and a strong and slow carrier refraction term, ascribed to the modulation of free carriers. The former corresponds to an electro-optical coefficient of approximately -0.5 pm/V, while the latter may reach a magnitude up to 20 times stronger. This term relaxes at about 12 kHz and is largely wavelength dependent, due to a combination of effects. Also bias voltages lead to its quenching, likely extending the depletion regions at grain boundaries.

  7. Bendable ZnO thin film surface acoustic wave devices on polyethylene terephthalate substrate

    SciTech Connect

    He, Xingli; Guo, Hongwei; Chen, Jinkai; Wang, Wenbo; Xuan, Weipeng; Xu, Yang E-mail: jl2@bolton.ac.uk; Luo, Jikui E-mail: jl2@bolton.ac.uk

    2014-05-26

    Bendable surface acoustic wave (SAW) devices were fabricated using high quality c-axis orientation ZnO films deposited on flexible polyethylene terephthalate substrates at 120 °C. Dual resonance modes, namely, the zero order pseudo asymmetric (A{sub 0}) and symmetric (S{sub 0}) Lamb wave modes, have been obtained from the SAW devices. The SAW devices perform well even after repeated flexion up to 2500 με for 100 times, demonstrating its suitability for flexible electronics application. The SAW devices are also highly sensitive to compressive and tensile strains, exhibiting excellent anti-strain deterioration property, thus, they are particularly suitable for sensing large strains.

  8. Highly Sensitive Ultraviolet Photodetectors Fabricated from ZnO Quantum Dots/Carbon Nanodots Hybrid Films

    PubMed Central

    Guo, Deng-Yang; Shan, Chong-Xin; Qu, Song-Nan; Shen, De-Zhen

    2014-01-01

    Ultraviolet photodetectors have been fabricated from ZnO quantum dots/carbon nanodots hybrid films, and the introduction of carbon nanodots improves the performance of the photodetectors greatly. The photodetectors can be used to detect very weak ultraviolet signals (as low as 12 nW/cm2). The detectivity and noise equivalent power of the photodetector can reach 3.1 × 1017 cmHz1/2/W and 7.8 × 10−20 W, respectively, both of which are the best values ever reported for ZnO-based photodetectors. The mechanism for the high sensitivity of the photodetectors has been attributed to the enhanced carrier-separation at the ZnO/C interface. PMID:25502422

  9. Vibration optimization of ZnO thin film bulk acoustic resonator with ring electrodes

    NASA Astrophysics Data System (ADS)

    Zhao, Zinan; Qian, Zhenghua; Wang, Bin

    2016-04-01

    A rectangular ZnO thin film bulk acoustic resonator with ring electrodes is presented in this paper to demonstrate the existence of a nearly uniform displacement distribution at the central part of this typical resonator. The variational formulation based on two-dimensional scalar differential equations provides a theoretical foundation for the Ritz method adopted in our analysis. The resonant frequencies and vibration distributions for the thickness-extensional modes of this ring electrode resonator are obtained. The structural parameters are optimized to achieve a more uniform displacement distribution and therefore a uniform mass sensitivity, which guarantee the high accuracy and repeatable measurement for sensor detection in an air or a liquid environment. These results provide a fundamental reference for the design and optimization of the high quality sensor.

  10. High performance ethanol sensing films fabricated from ZnO and In2O3 nanofibers with a double-layer structure

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Juan; Qiao, Guan-Jun

    2012-06-01

    ZnO and In2O3 nanofibers are synthesized via electrospinning methods, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), infrared (IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The nanofibers are deposited on ceramic substrates to form sensing films with various structures (ZnO nanofiber films, ZnO-In2O3 nanofiber films, and ZnO-In2O3-ZnO nanofiber films), and their sensing properties are investigated at different temperatures. Compared with ZnO nanofiber films and ZnO-In2O3-ZnO nanofiber films, the obtained ZnO-In2O3 nanofiber films exhibit improved and excellent sensing properties to ethanol. The highest sensitivity (the ratio of sensor resistance in air to that in target ambience) of 25 is obtained when the ZnO-In2O3 films are exposed to 100 ppm ethanol at 210 °C, while the corresponding values are only 8 for ZnO nanofiber films at 300 °C and 17 for ZnO-In2O3-ZnO nanofiber films at 210 °C. Rapid sensing reactions are also obtained as the response and recovery times of ZnO-In2O3 nanofiber films to 100 ppm ethanol are only about 2 and 1 s, respectively. These high sensing performances are explained by referring the heterocontacts formed by the double-layer structure.

  11. Controlling the electrical properties of ZnO films by forming zinc and oxide bridges by a plasma and electron-assisted process

    SciTech Connect

    Shimoi, Norihiro; Tanaka, Yasumitsu; Harada, Takamitsu; Tanaka, Shun-ichiro

    2012-06-15

    A new method to produce electrically steady ZnO films without any heating process has been developed by using plasma and electron beams to facilitate bonding between the metallic component and the oxygen on coated ZnO films. Both plasma atmosphere and electron beams can function as sources of nonequilibrium bonding energy, forming bridges between the zinc present in the zinc complex and the oxygen in the ZnO particles to construct a zinc-oxide thin film. Our results confirm that it is possible to achieve low conductive characteristics by controlling the acceleration voltage of electrons used to irradiate the ZnO coating. The electrically steady films fabricated have various potential applications, being particularly well-suited to electrical devices on a plastic medium.

  12. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  13. Investigation of ZnO thin films deposited on ferromagnetic metallic buffer layer by molecular beam epitaxy toward realization of ZnO-based magnetic tunneling junctions

    SciTech Connect

    Belmoubarik, M.; Nozaki, T.; Sahashi, M.; Endo, H.

    2013-05-07

    Deposition of ZnO thin films on a ferromagnetic metallic buffer layer (Co{sub 3}Pt) by molecular beam epitaxy technique was investigated for realization of ZnO-based magnetic tunneling junctions with good quality hexagonal ZnO films as tunnel barriers. For substrate temperature of 600 Degree-Sign C, ZnO films exhibited low oxygen defects and high electrical resistivity of 130 {Omega} cm. This value exceeded that of hexagonal ZnO films grown by sputtering technique, which are used as tunnel barriers in ZnO-MTJs. Also, the effect of oxygen flow during deposition on epitaxial growth conditions and Co{sub 3}Pt surface oxidation was discussed.

  14. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  15. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    SciTech Connect

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2011-07-15

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10{sup -4}{Omega} cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm{sup 2}/Vs and carrier concentrations on the order of 10{sup 20} cm{sup -3}. All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10{sup -3}-10{sup -4}{Omega} cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  16. Epitaxial growth of non-polar m-plane ZnO thin films by pulsed laser deposition

    SciTech Connect

    Li, Yang; Zhang, Yinzhu; He, Haiping; Ye, Zhizhen; Jiang, Jie; Lu, Jianguo; Huang, Jingyun

    2012-09-15

    Highlights: ► Unique m-plane ZnO films were deposited on m-plane sapphire substrate by PLD. ► The epitaxial relationship between the film and the substrate was studied. ► The surface morphology showed stripes due to in-plane anisotropy. ► PL spectra showed strong NBE emission and weak deep level emission. -- Abstract: Non-polar ZnO thin films were deposited on m-plane sapphire substrates by pulsed laser deposition at various temperatures from 300 to 700 °C. The effects of growth temperature on surface morphology, structural, electrical, and optical properties of the films were investigated. All the films exhibited unique m-plane orientation indicated by X-ray diffraction and transmission electron microscopy. Based on the scanning electron microscopy and atomic force microscopy, the obtained films had smooth and highly anisotropic surface, and the root mean square roughness was less than 10 nm above 500 °C. The maximum electron mobility was ∼18 cm{sup 2}/V s, with resistivity of ∼0.26 Ω cm for the film grown at 700 °C. Room temperature photoluminescence of the m-plane films was also investigated.

  17. Effects of annealing pressure and Ar+ sputtering cleaning on Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Wang, Jiwei; Mei, Yong; Lu, Xuemei; Fan, Xiaoxing; Kang, Dawei; Xu, Panfeng; Tan, Tianya

    2016-11-01

    Post-treatments of Al-doped ZnO films fabricated by sol-gel method were studied in condition of annealing in air, vacuum and protective ambient, as well as the follow-up Ar+ sputtering cleaning. The effect of annealing pressure on resistivity of AZO films was investigated from 105 to 10-4 Pa, where the resistivity decreased four orders of magnitude as the pressure decreased and approached to its minimum at 10 Pa. It was observed that the main decreasing of resistivity occurred in a very narrow range of middle vacuum (between 100 and 10 Pa) and high vacuum was dispensable. The XRD and XPS characterizations demonstrated that the radical increasing of oxygen vacancy, Zn interstitial and substitution of Al3+ for Zn2+ under middle vacuum were responsible for the significant enhancement of conductivity. The follow-up Ar+ sputtering cleaning can further decrease the resistivity through removing the chemisorbed oxygen on film surface and grain boundaries, meanwhile fulfil the surface texture process, and thus improve both electrical and optical performances for applications.

  18. An economic approach to fabricate photo sensor based on nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Huse, Nanasaheb; Upadhye, Deepak; Sharma, Ramphal

    2016-05-01

    Nanostructural ZnO Thin Films have been synthesized by simple and economic Chemical Bath Deposition technique onto glass substrate with bath temperature at 60°C for 1 hour. Structural, Optical, Electrical and topographical properties of the prepared Thin Films were investigated by GIXRD, I-V Measurement System, UV-Visible Spectrophotometer and AFM respectively. Calculated lattice parameters are in good agreement with the standard JCPDS card (36-1451) values, exhibits Hexagonal Wurtzite crystal structure. I-V Measurement curve has shown ohmic nature in dark condition and responds to light illumination which reveals Photo sensor properties. After illumination of 60W light, decrease in resistance was observed from 110.9 KΩ to 104.4 KΩ. The change in current and calculated Photo sensitivity was found to be 3.51 µA and 6.3% respectively. Optical band gap was found to be 3.24 eV. AFM images revealed uniform deposition over entire glass substrate with 32.27 nm average roughness of the film.

  19. Spontaneous shape transition of thin films into ZnO nanowires with high structural and optical quality.

    PubMed

    Guillemin, Sophie; Sarigiannidou, Eirini; Appert, Estelle; Donatini, Fabrice; Renou, Gilles; Bremond, Georges; Consonni, Vincent

    2015-10-28

    ZnO nanowires are usually formed by physical and chemical deposition techniques following the bottom-up approach consisting in supplying the reactants on a nucleation surface heated at a given temperature. We demonstrate an original alternative approach for the formation of ZnO nanowire arrays with high structural and optical quality, which is based on the spontaneous transformation of a ZnO thin film deposited by sol-gel process following a simple annealing. The development of these ZnO nanowires occurs through successive shape transitions, including the intermediate formation of pyramid-shaped islands. Their nucleation under near-equilibrium conditions is expected to be governed by thermodynamic considerations via the total free energy minimization related to the nanowire shape. It is further strongly assisted by the drastic reordering of the matter and by recrystallization phenomena through the massive transport of zinc and oxygen atoms towards the localized growth areas. The spontaneous shape transition process thus combines the easiness and low-cost of sol-gel process and simple annealing with the assets of the vapor phase deposition techniques. These findings cast a light on the fundamental mechanisms driving the spontaneous formation of ZnO nanowires and, importantly, reveal the great technological potential of the spontaneous shape transition process as a promising alternative approach to the more usual bottom-up approach. PMID:26416227

  20. Solution-processed flexible ZnO transparent thin-film transistors with a polymer gate dielectric fabricated by microwave heating

    NASA Astrophysics Data System (ADS)

    Yang, Chanwoo; Hong, Kipyo; Jang, Jaeyoung; Chung, Dae Sung; An, Tae Kyu; Choi, Woon-Seop; Eon Park, Chan

    2009-11-01

    We report the development of solution-processed zinc oxide (ZnO) transparent thin-film transistors (TFTs) with a poly(2-hydroxyethyl methacrylate) (PHEMA) gate dielectric on a plastic substrate. The ZnO nanorod film active layer, prepared by microwave heating, showed a highly uniform and densely packed array of large crystal size (58 nm) in the [002] direction of ZnO nanorods on the plasma-treated PHEMA. The flexible ZnO TFTs with the plasma-treated PHEMA gate dielectric exhibited an electron mobility of 1.1 cm2 V-1 s-1, which was higher by a factor of ~8.5 than that of ZnO TFTs based on the bare PHEMA gate dielectric.

  1. Pretreatment of polyethylene terephthalate substrate for the growth of Ga-doped ZnO thin film.

    PubMed

    Kim, D W; Kang, J H; Lim, Y S; Lee, M H; Seo, W S; Park, H H; Seo, K H; Park, M G

    2011-02-01

    The effect of the pretreatment of polyethylene terephthalate (PET) substrate on the growth of transparent conducting Ga-doped ZnO (GZO) thin film was investigated. Because of its high gas and moisture absorption and easy gas permeation, PET substrate was annealed at 100 degrees C in a vacuum chamber prior to the sputtering growth of GZO thin film for the outgassing of impurity gases. GZO thin film was deposited on the pretreated PET substrate by rf-magnetron sputtering and significantly improved electrical properties of GZO thin film was achieved. Electrical and structural characterizations of the GZO thin films were carried out by 4-point probe, Hall measurement, and scanning electron microscopy, and the effects of the pretreatment on the improved properties of GZO thin films were discussed. This result is not only useful to PET substrate, but also could be applicable to other plastic substrates which inevitably containing the moisture and impurity gases. PMID:21456250

  2. Reversible Change in Electrical and Optical Properties in Epitaxially Grown Al-Doped ZnO Thin Films

    SciTech Connect

    Noh, J. H.; Jung, H. S.; Lee, J. K.; Kim, J. Y; Cho, C. M.; An, J.; Hong, K. S.

    2008-01-01

    Aluminum-doped ZnO (AZO) films were epitaxially grown on sapphire (0001) substrates using pulsed laser deposition. As-deposited AZO films had a low resistivity of 8.01 x 10{sup -4} {Omega} cm. However, after annealing at 450 C in air, the electrical resistivity of the AZO films increased to 1.97 x 10{sup -1} {Omega} cm because of a decrease in the carrier concentration. Subsequent annealing of the air-annealed AZO films in H{sub 2} recovered the electrical conductivity of the AZO films. In addition, the conductivity change was reversible upon repeated air and H{sub 2} annealing. A photoluminescence study showed that oxygen interstitial (O{sub i}) is a critical material parameter allowing for the reversible control of the electrical conducting properties of AZO films.

  3. Epitaxial growth of ZnO thin films on ScAlMgO 4 (0 0 0 1) by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Wessler, B.; Steinecker, A.; Mader, W.

    2002-07-01

    Epitaxial zinc oxide films were produced on the low misfit (0.3%) substrate ScAlMgO 4 (0 0 0 1) by chemical solution deposition (CSD). Epitaxial growth of ZnO films was achieved by spin coating a precursor solution of zinc acetate dihydrate and ethanolamine in 2-methoxyethanol, heating at 300°C, then at 500°C, and finally at 850°C. X-ray diffraction ( θ/2 θ-scans/off-axis ϕ-scans) as well as electron diffraction show that the axes a and c of ZnO and ScAlMgO 4 are parallel. The absolute orientation of the ZnO film was determined by electron microdiffraction patterns to be [0 0 0 1¯] . Electron microscopy did not reveal any reaction between film and substrate. The structure of the interface between ZnO and ScAlMgO 4 was characterized in detail by high-resolution TEM methods. Exit wave reconstruction from focus series was carried out to localize the positions of atoms at the interface. It was found that the ZnO film coherently continues the terminating tetrahedral (Mg,Al)O 4 layer of the ScAlMgO 4 substrate to result in an ABAB stacking of the oxygen layers across the interface as in the wurtzite structure. The structural model is in agreement with the absolute orientation of the ZnO film.

  4. Microstructural and Optical properties of transition metal (Cu) doped ZnO diluted magnetic semiconductor nano thin films fabricated by sol gel method

    NASA Astrophysics Data System (ADS)

    Ozturk, Ozgur; Asikuzun, Elif; Tasci, A. Tolga; Arda, Lutfi; Demirozu Senol, Sevim; Celik, Sukru; Terzioglu, Cabir

    Undoped and Cu (Copper) doped ZnO (Zn1-xCuxO) semiconductor thin films were produced by using sol-gel method. Cu was doped 1%, 2%, 3%, 4% and 5% ratio. Methanol and monoethanolamine (MEA) were used as solvent and stabilizer. In this study, the effect of Cu doping was investigated on microstructural and optical properties of ZnO DMS thin films. XRD, SEM, AFM and UV-VIS spectrometer measurements were performed for the microstructural and optical characterization. XRD, SEM and AFM results were showed that all of Cu doped ZnO based thin films have a hexagonal structure. The grain size of Cu doped ZnO thin films and morphology of surface were changed with increasing Cu doping. The optical transmittance of transition metal (Cu) doped ZnO thin films were decreased with doping. Keywords:Diluted Magnetic Semiconductor (DMS), Thin Film, Cu-doping, Bandgap Energy, ZnO. This research has been supported by the Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KU-BAP-05/2015-12 and the Scientific and Technological Research Council of Turkey (TUBITAK) Project No. 114F259.

  5. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    SciTech Connect

    Deepu, D. R.; Jubimol, J.; Kartha, C. Sudha; Louis, Godfrey; Vijayakumar, K. P.; Kumar, K. Rajeev

    2015-06-24

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin film solar cells.

  6. Transparent conducting impurity-doped ZnO thin films prepared using oxide targets sintered by millimeter-wave heating

    SciTech Connect

    Minami, Tadatsugu; Okada, Kenji; Miyata, Toshihiro; Nomoto, Juni-chi; Hara, Youhei; Abe, Hiroshi

    2009-07-15

    The preparation of transparent conducting impurity-doped ZnO thin films by both pulsed laser deposition (PLD) and magnetron sputtering deposition (MSD) using impurity-doped ZnO targets sintered with a newly developed energy saving millimeter-wave (28 GHz) heating technique is described. Al-doped ZnO (AZO) and V-co-doped AZO (AZO:V) targets were prepared by sintering with various impurity contents for 30 min at a temperature of approximately 1250 degree sign C in an air or Ar gas atmosphere using the millimeter-wave heating technique. The resulting resistivity and its thickness dependence obtainable in thin films prepared by PLD using millimeter-wave-sintered AZO targets were comparable to those obtained in thin films prepared by PLD using conventional furnace-sintered AZO targets; a low resistivity on the order of 3x10{sup -4} {Omega} cm was obtained in AZO thin films prepared with an Al content [Al/(Al+Zn) atomic ratio] of 3.2 at. % and a thickness of 100 nm. In addition, the resulting resistivity and its spatial distribution on the substrate surface obtainable in thin films prepared by rf-MSD using a millimeter-wave-sintered AZO target were almost the same as those obtained in thin films prepared by rf-MSD using a conventional powder AZO target. Thin films prepared by PLD using millimeter-wave-sintered AZO:V targets exhibited an improved resistivity stability in a high humidity environment. Thin films deposited with a thickness of approximately 100 nm using an AZO:V target codoped with an Al content of 4 at. % and a V content [V/(V+Zn) atomic ratio] of 0.2 at. % were sufficiently stable when long-term tested in air at 90% relative humidity and 60 degree sign C.

  7. Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application to photocatalysis

    SciTech Connect

    Kenanakis, G.; Katsarakis, N.

    2014-12-15

    Highlights: • Al–ZnO thin films and nanostructures were obtained by ultrasonic spray pyrolysis. • The texture and morphology of the samples depend on the deposition parameters. • The photocatalytic degradation of stearic acid was studied upon UV-A irradiation. - Abstract: Pure and Al-doped ZnO (Al = 1, 3, 5%) nanostructured thin films were grown at 400 °C on glass substrates by ultrasonic spray pyrolysis, a simple, environmental-friendly and inexpensive method, using aqueous solutions as precursors. The structural and morphological characteristics of the samples depend drastically on deposition parameters; ZnO nanostructured films, nanopetals and nanorods were systematically obtained by simply varying the precursor solution and/or the spraying time. Transmittance measurements have shown that all samples are transparent in the visible wavelength region. Finally, the photocatalytic properties of the samples were investigated against the degradation of stearic acid under UV-A light illumination (365 nm); both pure and Al-doped ZnO nanostructured thin films show good photocatalytic activity regarding the degradation of stearic acid, due to their good crystallinity and large surface area.

  8. A MEMS based acetone sensor incorporating ZnO nanowires synthesized by wet oxidation of Zn film

    NASA Astrophysics Data System (ADS)

    Behera, Bhagaban; Chandra, Sudhir

    2015-01-01

    In this work, we report a simple and efficient method for synthesis of ZnO nanowires by thermal oxidation of Zn film and their integration with MEMS technologies to fabricate a sensor for acetone vapour detection. ZnO nanowires were prepared by thermal oxidation of sputter deposited Zn film. The nanostructured ZnO was characterized by x-ray diffraction, a scanning electron microscope and room temperature photoluminescence measurements. The ZnO nanowires synthesis process was integrated with MEMS technologies to obtain a sensor for volatile organic compounds, incorporating an on-chip Ni microheater and an interdigited electrode structure. To reduce the heat loss from the on-chip microheater, the sensor was made on a thin silicon diaphragm obtained via a modified reactive ion etching process. This resulted in considerable power saving during sensor operation. For this, a three-mask process was used. The performance of the microheater was simulated on COMSOL and validated experimentally. The sensor has been tested for acetone vapour sensing and the operating parameters were optimized. The sensor has the ability to detect acetone vapour at 5 parts per million (ppm) concentrations when operated at 100 °C. The sensor consumed only 36 mW power and showed a high-sensitivity value of 26.3% for 100 ppm of acetone vapour.

  9. ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays.

    PubMed

    Mesko, Marcel; Ou, Qiongrong; Matsuda, Takafumi; Ishikawa, Tomokazu; Veis, Martin; Antos, Roman; Ogino, Akihisa; Nagatsu, Masaaki

    2009-06-24

    We report on ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays. We observed a significant reduction of the internal multiple light scattering phenomena, which are characteristic for ZnO micropowders. The microsized grains of the commercially available ZnO:Zn (P 15) were reduced to the nanometre scale by pulsed laser ablation at an oxygen ambient pressure of 10 kPa. Our investigations show no crystalline change and no shift of the broad green emission peak at 500 nm for the ZnO nanopowder. For the application in field emission displays, we demonstrate the possibility of achieving cathodoluminescence with a fine pitch size of 100 microm of the patterned pixels without requiring additional electron beam focusing and without a black matrix. Moreover, the presented results show the feasibility of employing ZnO nanopowder as a detection material for the phosphorus screen method, which is able to localize emission sites of carbon nanotube films and arrays with an accuracy comparable to scanning anode field emission microscopy. PMID:19487805

  10. ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays

    NASA Astrophysics Data System (ADS)

    Meško, Marcel; Ou, Qiongrong; Matsuda, Takafumi; Ishikawa, Tomokazu; Veis, Martin; Antoš, Roman; Ogino, Akihisa; Nagatsu, Masaaki

    2009-06-01

    We report on ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays. We observed a significant reduction of the internal multiple light scattering phenomena, which are characteristic for ZnO micropowders. The microsized grains of the commercially available ZnO:Zn (P 15) were reduced to the nanometre scale by pulsed laser ablation at an oxygen ambient pressure of 10 kPa. Our investigations show no crystalline change and no shift of the broad green emission peak at 500 nm for the ZnO nanopowder. For the application in field emission displays, we demonstrate the possibility of achieving cathodoluminescence with a fine pitch size of 100 µm of the patterned pixels without requiring additional electron beam focusing and without a black matrix. Moreover, the presented results show the feasibility of employing ZnO nanopowder as a detection material for the phosphorus screen method, which is able to localize emission sites of carbon nanotube films and arrays with an accuracy comparable to scanning anode field emission microscopy.

  11. Microstructures and optical properties of Cu-doped ZnO films prepared by radio frequency reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ma, Ligang; Ma, Shuyi; Chen, Haixia; Ai, Xiaoqian; Huang, Xinli

    2011-09-01

    Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.

  12. Defect analysis by transmission electron microscopy of epitaxial Al-doped ZnO films grown on (0001) ZnO and a-sapphire by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rengachari, Mythili; Bikowski, André; Ellmer, Klaus

    2016-07-01

    Microstructural investigations by cross section Transmission Electron Microscopy have been carried out on Al-doped ZnO films epitaxially grown on (0001) ZnO and a-sapphire by RF magnetron sputtering, since it is known that crystallographic defects influence the physical properties of ZnO films. Threading dislocations and basal stacking faults were the predominant defects observed in these films, which were dependent on the type of the substrate and its orientation. The orientational relationship between the ZnO:Al film and the a-sapphire was determined to be ( 11 2 ¯ 0 )sapphire||(0001)ZnO:Al and [0001]sapphire||[ 11 2 ¯ 0 ]ZnO:Al. The density of dislocations in the heteroepitaxial film of ZnO:Al on a-sapphire was higher than that of the homoepitaxial film of ZnO:Al on undoped ZnO, due to the difference in the lattice mismatch, which also affected the crystallinity of the film.

  13. Growth, Electronic and Magnetic Properties of Doped ZnO Epitaxial and Nanocrystalline Films

    SciTech Connect

    Chambers, Scott A.; Schwartz, Dana A.; Liu, William K.; Kittilstved, Kevin R.; Gamelin, Daniel R.

    2007-07-01

    We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room temperature ferromagnetism in epitaxial Co:ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co:ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn:ZnO nanoparticle films also exhibit room temperature ferromagnetism. However, the inverse systems, N-capped Co:ZnO and O-capped Mn:ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveal that the resonances Co(I) ↔ Co(II) + e-CB and Mn(III) ↔ Mn(II) + h+VB are energetically favorable, consistent with strong hybridization of Co (Mn) with the conduction (valence) band of ZnO. In contrast, the resonances Mn(I) ↔ Mn(II) + e-CB and Co(III) ↔ Co(II) + h+CB are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co:ZnO (Mn:ZnO) is mediated by electrons (holes).

  14. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    SciTech Connect

    Pathirane, M. Iheanacho, B.; Lee, C.-H.; Wong, W. S.; Tamang, A.; Knipp, D.; Lujan, R.

    2015-10-05

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm–800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  15. Characterization of planar pn heterojunction diodes constructed with Cu2O nanoparticle films and single ZnO nanowires.

    PubMed

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-05-01

    In this study, we fabricate planar pn heterojunction diodes composed of Cu2O nanoparticle (NP) films and single ZnO nanowires (NWs) on SiO2 (300 nm)/Si substrates and investigate their characteristics in the dark and under the illumination of white light and 325 nm wavelength light. The diode at bias voltages of +/- 1 V shows rectification ratios of 10 (in the dark) and 34 (under the illumination of white light). On the other hand, the diode exposed to the 325 nm wavelength light exhibits Ohmic characteristics which are associated with efficient photocurrent generation in both the Cu2O NP film and the single ZnO NW. PMID:23858873

  16. Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition

    SciTech Connect

    Zhang Jian; Yang Hui; Zhang Qilong; Dong Shurong; Luo, J. K.

    2013-01-07

    ZnO films deposited by plasma-enhanced atomic layer deposition (PEALD) have been used to investigate resistive memory behavior. The bipolar resistance switching properties were observed in the Al/PEALD-ZnO/Pt devices. The resistance ratio for the high and low resistance states (HRS/LRS) is more than 10{sup 3}, better than ZnO devices deposited by other methods. The dominant conduction mechanisms of HRS and LRS are trap-controlled space charge limited current and Ohmic behavior, respectively. The resistive switching behavior is induced upon the formation/disruption of conducting filaments. This study demonstrated that the PEALD-ZnO films have better properties for the application in 3D resistance random access memory.

  17. Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping

    SciTech Connect

    Lee, J. J.; Xing, G. Z. Yi, J. B.; Li, S.; Chen, T.; Ionescu, M.

    2014-01-06

    Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200 Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu{sup 3+} ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices.

  18. Enhanced photoluminescence of nonpolar p-type ZnO film by surface plasmon resonance and electron transfer.

    PubMed

    Chen, Shanshan; Pan, Xinhua; He, Haiping; Chen, Wei; Chen, Cong; Dai, Wen; Zhang, Honghai; Ding, Ping; Huang, Jingyun; Lu, Bin; Ye, Zhizhen

    2015-02-15

    Nonpolar oriented Na-doped ZnO films were grown on m-plane sapphire substrates by plasma-assisted molecular beam epitaxy. The films show repeatable p-type conductivity with a hole concentration of about 3.0×10(16) cm(-3) as identified by the Hall-effect measurements. 10-fold enhancement in the near-band-edge (NBE) emission of the nonpolar p-type ZnO by employing Pt nanoparticle surface plasmons has been observed. In addition, the deep level emission has been entirely suppressed. The underlying mechanism behind the enhancement of NBE emission and the quenching of defect emission is a combination of the electron transfer and the resonant coupling between NBE emission and Pt nanoparticle surface plasmons. PMID:25680172

  19. Mechanical, structural and thermal properties of Ag-Cu and ZnO reinforced polylactide nanocomposite films.

    PubMed

    Ahmed, Jasim; Arfat, Yasir Ali; Castro-Aguirre, Edgar; Auras, Rafael

    2016-05-01

    Plasticized polylactic acid (PLA) based nanocomposite films were prepared by incorporating polyethylene glycol (PEG) and two selected nanoparticles (NPs) [silver-copper (Ag-Cu) alloy (<100 nm) and zinc oxide (ZnO) (<50 and <100 nm)] through solvent casting method. Incorporation of Ag-Cu alloy into the PLA/PEG matrix increased the glass transition temperature (Tg) significantly. The crystallinity of the nanocomposites (NCs) was significantly influenced by NP incorporation as evidenced from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The PLA nanocomposite reinforced with NPs exhibited much higher tensile strength than that of PLA/PEG blend. Melt rheology of NCs exhibited a shear-thinning behavior. The mechanical property drastically reduced with a loading of NPs, which is associated with degradation of PLA. SEM micrographs exhibited that both Ag-Cu alloy and ZnO NPs were dispersed well in the PLA film matrix. PMID:26893045

  20. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection

    SciTech Connect

    Wang Guoping; Chu Sheng; Zhan Ning; Liu Jianlin; Lin Yuqing; Chernyak, Leonid

    2011-01-24

    ZnO p-n homojunctions based on Sb-doped p-type nanowire array and n-type film were grown by combining chemical vapor deposition (for nanowires) with molecular-beam epitaxy (for film). Indium tin oxide and Ti/Au were used as contacts to the ZnO nanowires and film, respectively. Characteristics of field-effect transistors using ZnO nanowires as channels indicate p-type conductivity of the nanowires. Electron beam induced current profiling confirmed the existence of ZnO p-n homojunction. Rectifying I-V characteristic showed a turn-on voltage of around 3 V. Very good response to ultraviolet light illumination was observed from photocurrent measurements.