Sample records for licl-kcl eutectic salts

  1. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  2. The Thermodynamic Analysis of Chemistry Stability of Eutectic Salt Phase Change Materials

    Microsoft Academic Search

    Jun Chen; Jin Wang; Jin Song Liu; Jian Hua Liu

    2009-01-01

    This paper analyses the chemistry stability of eutectic salt phase change materials according to chemical thermodynamic principle, and introduces the methods and steps of thermodynamic calculation and analysis during the process of confecting eutectic salt materials. The paper takes thermodynamic calculation according to the two phase-change materials, Na2CO3-SiO2 and Na2SO4-SiO2. By comparing the relational graph of Gibbs free energy and

  3. Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction

    PubMed Central

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  4. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk [Korea Atomic Energy Research Institute, 1045 Daedeok-daaro, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  5. The electrochemical behaviour of ferrocene in deep eutectic solvents based on quaternary ammonium and phosphonium salts

    Microsoft Academic Search

    L. Bahadori; N. S. Abdul Manan; M. H. Chakrabarti; M. A. Hashim; F. S. Mjalli; I. M. Alnashef; M. A. Hussain; C. T. J. Low

    2013-01-01

    The electrochemical behaviour of ferrocene (Fc) is investigated in six different deep eutectic solvents (DESs) formed by means of hydrogen bonding between selected ammonium and phosphonium salts with glycerol and ethylene glycol. Combinations of cyclic voltammetry and chronoamperometry are employed to characterise the DESs. The reductive and oxidative potential limits are reported versus the Fc\\/Fc+ couple. The diffusion coefficient, D,

  6. Cyclic voltammetry of metallic acetylacetonate salts in quaternary ammonium and phosphonium based deep eutectic solvents

    Microsoft Academic Search

    M. H. Chakrabarti; N. P. Brandon; F. S. Mjalli; L. Bahadori; I. M. Al Nashef; M. A. Hashim; M. A. Hussain; C. T. J. Low; V. Yufit

    2013-01-01

    Seven commercially sourced acetylacetonate salts were investigated in deep eutectic solvents (DESs that were prepared from ethylene glycol and trifluoroacetamide hydrogen bond donors) by cyclic voltammetry, to identify electrolytes suitable for future applications in electrochemical energy storage devices. Although the solubilities are low and on the order of 0.02 mol·L-1 for the most soluble salts, some were found to display

  7. Solubility of sodium salts in ammonium-based deep eutectic solvents

    Microsoft Academic Search

    F. S. Ghareh Bagh; F. S. Mjalli; M. A. Hashim; M. K. O. Hadj-Kali; I. M. Alnashef

    2013-01-01

    The solubility of sodium chloride (NaCl), sodium bromide (NaBr), and sodium carbonate (Na2CO3) was measured in nine ammonium-based deep eutectic solvents (DESs). The aim of the study is to assess the potential use of these DESs as solvents and electrolytes for the separation of sodium metal from its salts. The studied DESs were prepared by combining ammonium salts with various

  8. Binary eutectics formed between ammonium nitrate and amine salts of 5-nitrotetrazole I. preparation and initial characterization

    Microsoft Academic Search

    K.-Y. Lee; M. D. Coburn

    1983-01-01

    We have found that both the ammonium salt of 5-nitrotetrazole (ANT) and the ethylenediamine salt of 5-nitrotetrazole (ENT) form eutectics with ammonium nitrate (AN). Initial characterization and small-scale sensitivity tests of CO2-balanced AN\\/ANT and AN\\/ENT formulations were performed; it was found that both eutectics were less sensitive in all tests than pure ANT or ENT, respectively. The phase diagrams of

  9. Study on a regeneration process of LiCl-KCl eutectic based waste salt generated from the pyrochemical process

    SciTech Connect

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.; Kim, J.H.; Lee, T.K.; Park, H.S.; Kim, I.T.; Park, G.I. [Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 3054-353 (Korea, Republic of)

    2013-07-01

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  10. The electrochemical behaviour of ferrocene in deep eutectic solvents based on quaternary ammonium and phosphonium salts.

    PubMed

    Bahadori, Laleh; Manan, Ninie Suhana Abdul; Chakrabarti, Mohammed Harun; Hashim, Mohd Ali; Mjalli, Farouq Sabri; AlNashef, Inas Muen; Hussain, Mohd Azlan; Low, Chee Tong John

    2013-02-01

    The electrochemical behaviour of ferrocene (Fc) is investigated in six different deep eutectic solvents (DESs) formed by means of hydrogen bonding between selected ammonium and phosphonium salts with glycerol and ethylene glycol. Combinations of cyclic voltammetry and chronoamperometry are employed to characterise the DESs. The reductive and oxidative potential limits are reported versus the Fc/Fc(+) couple. The diffusion coefficient, D, of ferrocene in all studied DESs is found to lie between 8.49 × 10(-10) and 4.22 × 10(-8) cm(2) s(-1) (these do not change significantly with concentration). The standard rate constant for heterogeneous electron transfer across the electrode/DES interface is determined to be between 1.68 × 10(-4) and 5.44 × 10(-4) cm s(-1) using cyclic voltammetry. These results are of the same order of magnitude as those reported for other ionic liquids in the literature. PMID:23247115

  11. EXAFS study into the speciation of metal salts dissolved in ionic liquids and deep eutectic solvents.

    PubMed

    Hartley, Jennifer M; Ip, Chung-Man; Forrest, Gregory C H; Singh, Kuldip; Gurman, Stephen J; Ryder, Karl S; Abbott, Andrew P; Frisch, Gero

    2014-06-16

    The speciation of metals in solution controls their reactivity, and this is extremely pertinent in the area of metal salts dissolved in ionic liquids. In the current study, the speciation of 25 metal salts is investigated in four deep eutectic solvents (DESs) and five imidazolium-based ionic liquids using extended X-ray absorption fine structure. It is shown that in diol-based DESs M(I) ions form [MCl2](-) and [MCl3](2-) complexes, while all M(II) ions form [MCl4](2-) complexes, with the exception of Ni(II), which exhibits a very unusual coordination by glycol molecules. This was also found in the X-ray crystal structure of the compound [Ni(phen)2(eg)]Cl2·2eg (eg = ethylene glycol). In a urea-based DES, either pure chloro or chloro-oxo coordination is observed. In [C6mim][Cl] pure chloro complexation is also observed, but coordination numbers are smaller (typically 3), which can be explained by the long alkyl chain of the cation. In [C2mim][SCN] metal ions are entirely coordinated by thiocyanate, either through the N or the S atom, depending on the hardness of the metal ion according to the hard-soft acid-base principle. With weaker coordinating anions, mixed coordination between solvent and solute anions is observed. The effect of hydrate or added water on speciation is insignificant for the diol-based DESs and small in other liquids with intermediate or strong ligands. One of the main findings of this study is that, with respect to metal speciation, there is no fundamental difference between deep eutectic solvents and classic ionic liquids. PMID:24897923

  12. An optimal method for phosphorylation of rare earth chlorides in LiCl-KCl eutectic based waste salt

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Kim, J. H.; Cho, Y. Z.; Choi, J. H.; Lee, T. K.; Park, H. S.; Park, G. I.

    2013-11-01

    A study on an optimal method for the phosphorylation of rare earth chlorides in LiCl-KCl eutectic waste salt generated the pyrochemical process of spent nuclear fuel was performed. A reactor with a pitched four blade impeller was designed to create a homogeneous mixing zone in LiCl-KCl eutectic salt. A phosphorylation test of NdCl3 in the salt was carried out by changing the operation conditions (operation temperature, stirring rate, agent injection amount). Based on the results of the test, a proper operation condition (450 °C, 300 rpm, 1 eq. of phosphorylation agent) for over a 0.99 conversion ratio of NdCl3 to NdPO4 was determined. Under this condition, multi-component rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Y) chlorides were effectively converted into phosphate forms. It was confirmed that the existing regeneration process of LiCl-KCl eutectic waste salt can be greatly improved and simplified through these phosphorylation test results.

  13. A novel group of quaternary ammonium salts as ionic liquids and deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Sparrow, Christopher R.

    2011-12-01

    A growing number of non-toxic and biodegradable deep eutectic solvents (DES) have been discovered in recent years. This group encompasses the solidified crystalline material 3-(2-aminopyrimidin-1-yl)propanoate (3-2AP), a primary ammonium cation that is a construct of a typical DES. Synthesis of 3-(2-aminopyrimidin-1-yl)propanoate by quarternerization of the amine in the aromatic ring creates a novel deep eutectic solvent. An additional alteration to the DES construct is observed with the formation of a zwitterion between the positively charged quartenary amine group and the negatively charged carboxylate counter ion. The molecular arrangement, or construct, of a deep eutectic solvent will determine both its structure and application in industry. This report describes the synthesis and characterization of an 80:20 urea/3-2AP eutectic mixture with a melting point of 50°C, nearly 120°C lower than the melting temperature of 3-2AP (172.5°C). A cytotoxicity profile for 3-2AP exposed to A549 bronchoaveolar carcinoma cells revealed an LD50 of 337.65 mug/ml.

  14. Absorption characteristics of anions (I-, Br-, and Te2-) into zeolite in molten LiCl-KCl eutectic salt

    NASA Astrophysics Data System (ADS)

    Uozumi, Koichi; Sugihara, Kei; Kinoshita, Kensuke; Koyama, Tadafumi; Tsukada, Takeshi; Terai, Takayuki; Suzuki, Akihiro

    2014-04-01

    The behaviors of anion fission product (FP) elements to be absorbed into zeolite in molten LiCl-KCl eutectic salt were studied using iodine, bromine, and tellurium. First, the type-A zeolite was selected as the most suitable type of zeolite among type-A, type-X, and type-Y zeolites through experiments in which zeolites were heated together with LiCl-KCl-KI salt. As the next step, experiments in which the type-A zeolite was immersed in molten LiCl-KCl salt containing various concentrations of iodine, bromine, or tellurium were performed. The degree of absorption of the anion FP elements was evaluated using the separation factor (SF) value versus chlorine. Although the SF values for iodine and tellurium were higher than 1.0, which meant that these elements were absorbed into the type-A zeolite more intensively than chlorine in the salt, the corresponding value for bromine was approximately 1.0. The effects of coexisting cation FPs were also examined using cesium, strontium, and neodymium, and it was revealed that the SF values for iodine were less than those in the case without cation addition. On the other hand, the SF values for tellurium were not affected by the coexistence of cesium and strontium. Finally, the feasibility of the present pyroprocess flowsheet was evaluated by calculating the inventory of each anion FP in an electrorefiner based on the obtained SF values instead of temporary values for the anion FPs absorption, which were set due to lack of experimental data.

  15. Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries.

    PubMed

    Boisset, Aurélien; Menne, Sebastian; Jacquemin, Johan; Balducci, Andrea; Anouti, Mérièm

    2013-12-14

    In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF6; or nitrate, NO3). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li(+), X(-) and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO4 (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g(-1) with a good efficiency (99%) is observed in the DES based on the LiNO3 salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs. PMID:24153449

  16. Separation of the isomers of benzene poly(carboxylic acid)s by quaternary ammonium salt via formation of deep eutectic solvents.

    PubMed

    Hou, Yucui; Li, Jian; Ren, Shuhang; Niu, Muge; Wu, Weize

    2014-11-26

    Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency. PMID:25351281

  17. Activity coefficients of actinide and rare-earth chlorides in molten LiCl/KCl eutectic salt

    SciTech Connect

    Bechtel, T.B.; Storvick, T.S. [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemical Engineering] [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemical Engineering

    1999-04-01

    Using a numerical Gibbs free-energy minimization technique, the activity coefficients of actinide and rare-earth chlorides in molten LiCl/KCl eutectic at 450 C have been calculated. Laboratory tests of an electrochemical process for separating actinide metals from rare-earth metals in LiCl/KCl solvent at 450 C provided experimental concentration and cathode potential data. The generalized expansion by Wohl was used to express the concentration dependence of the excess Gibbs free energy. The activity coefficients were expressed in terms of the Wohl volume and interaction energy parameters. The Wohl parameters for the activity coefficient expansions were obtained by minimizing the total Gibbs free energy expressed in terms of the experimental mole fractions. This thermodynamic model will be valuable for process design and scale-up calculations.

  18. Distribution behavior of uranium, neptunium, rare-earth elements ( Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiCl?KCI eutectic salt and liquid cadmium or bismuth

    Microsoft Academic Search

    M. Kurata; Y. Sakamura; T. Hijikata; K. Kinoshita

    1995-01-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCI eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl\\/Bi system were by one or two orders

  19. Evaluation of Composite Alumina Nanoparticle and Nitrate Eutectic Materials for use in Concentrating Solar Power Plants 

    E-print Network

    Malik, Darren R.

    2010-07-14

    The focus of this research was to create and characterize high temperature alumina and nitrate salt eutectic nanofluids for use in thermal energy storage (TES) systems. The nitrate eutectic was originally used in the TES system demonstrated as part...

  20. Study of Eutectic Formation

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.

    1985-01-01

    The objectives of this program are to determine the influence of convection on the microstructure of eutectics and to develop a technique for revealing the longitudinal microstructure of the MnBi-Bi eutectic. Both objectives aim at trying to explain the observed influence of space processing on the microstructure of MnBi-Bi. A computer program was developed and used to determine the concentration field in front of a growing lamellar eutectic. From this the deviation of the interfacial concentration from the eutectic composition was calculated as a function of eutectic composition, freezing rate, convection, and lamellar spacing.

  1. Eutectic composite explosives containing ammonium nitrate

    SciTech Connect

    Stinecipher, M.M.

    1981-01-01

    The eutectic of ammonium nitrate (AN), the ammonium salt of 3,5-dinitro-1,2,4-triazole was prepared and its sensitivity and performance were studied. It was found that this AN formulation was unusual in that it performed ideally at small diameter, which indicated that it was a monomolecular explosive. Sensitivity tests included type 12 impact, Henkin thermal and wedge tests, and performance tests included rate stick/plate dent, cylinder, and aquarium tests. Results were compared with calculations, standard explosives, and another eutectic, ethylendiamine dinitrate (EDD)/AN.

  2. Directionally solidified ceramic eutectics

    NASA Technical Reports Server (NTRS)

    Ashbrook, R. L.

    1977-01-01

    The aligned structures which result from the directional solidification (DS) of ceramic eutectics are of interest because of their potential for use in electronic devices and as structural materials. Techniques for growing DS ceramic eutectics are briefly discussed. The principles and controlling parameters of DS eutectic growth are described. The criteria for plane-front growth and the effect of growth rate on interlamellar or interfiber spacing are discussed. Examples of the effect of growth parameters on the alignment of the microstructure are given. Examples of the mechanical properties of directionally solidified oxide-oxide ceramics are also cited.

  3. Scientific Correspondence Are Natural Deep Eutectic Solvents the Missing Link in

    E-print Network

    Galis, Frietson

    Scientific Correspondence Are Natural Deep Eutectic Solvents the Missing Link in Understanding and deep eutectic solvents (DES) have been revisited by chemical engineering, because such solvents can replace conventional organic solvents. Mixing salts and/or organic compounds may cause a considerable

  4. Study of eutectic formation

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Eisa, G. F.; Baskaran, V.; Richardson, D. C.

    1984-01-01

    A theory was developed for the influence of convection on the microstructure of lamellar eutectics. Convection is predicted to produce a coarser microstructure, especially at low freezing rates and large volume fractions of the minority phase. Similary convection is predicted to lower the interfacial undercooling, especially at low freezing rates. Experiments using spin-up/spin-down were performed on the Mn-Bi eutectic. This stirring had a dramatic effect on the microstructure, not only making it coarser but at low freezing rates also changing the morphology of the MnBi. The coarsering persisted to moderately high freezing rates. At the lowest freezing rate, vigorous stirring caused the MnBi to be concentrated at the periphery of the ingot and absent along the center. Progress was made on developing a technique for revealing the three-dimensional microstructure of the MnBi eutectic by time-lapse videotaping while etching.

  5. Prediction of deep eutectic solvents densities at different temperatures

    Microsoft Academic Search

    K. Shahbaz; F. S. Mjalli; M. A. Hashim; I. M. Alnashef

    2011-01-01

    Predicting densities of nonconventional solvents like deep eutectic solvents (DESs) as a function of temperature is of considerable importance in the development and design of new processes utilizing these solvents. Because of the nature of bonding existing between the salt and the hydrogen bond donor, conventional methods result in very large deviations. In this study, the density of DESs based

  6. Processing eutectics in space

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Galasso, F. S.

    1974-01-01

    Experimental work is reported which was directed toward obtaining interface shape control while a numerical thermal analysis program was being made operational. An experimental system was developed in which the solid-liquid interface in a directionally solidified aluminum-nickel eutectic could be made either concave to the melt or convex to the melt. This experimental system provides control over the solid-liquid interface shape and can be used to study the effect of such control on the microstructure. The SINDA thermal analysis program, obtained from Marshall Space Flight Center, was used to evaluate experimental directional solidification systems for the aluminum-nickel and the aluminum-copper eutectics. This program was applied to a three-dimensional ingot, and was used to calculate the thermal profiles in axisymmetric heat flow. The results show that solid-liquid interface shape control can be attained with physically realizable thermal configurations and the magnitudes of the required thermal inputs were indicated.

  7. A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells

    Microsoft Academic Search

    Huei-Ru Jhong; David Shan-Hill Wong; Chi-Chao Wan; Yung-Yun Wang; Tzu-Chien Wei

    2009-01-01

    We utilize a quaternary ammonium salt-derivative ionic liquid called G.CI which is a eutectic mixture of glycerol and choline iodide as electrolyte for dye-sensitized solar cells. Such eutectic compound belongs to a new series of ionic liquid called deep eutectic solvents (DES), which possess many outstanding features compared to the traditional imidazolium-based ionic liquids including cheap raw materials, simple preparation

  8. Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques

    Microsoft Academic Search

    K. Shahbaz; S. Baroutian; F. S. Mjalli; M. A. Hashim; I. M. Alnashef

    2012-01-01

    As applications of deep eutectic solvents are growing fast as green alternatives, prediction of physical properties data for such systems becomes a necessity for engineering application designs and new process developments. In this study, densities of three classes of deep eutectic solvents, based on a phosphonium and two ammonium salts, were measured. Two predictive models based on artificial intelligence and

  9. Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer

    Microsoft Academic Search

    Frank van der Ham; Marcelo Martins Seckler; Geert Jan Witkamp

    2004-01-01

    Eutectic freeze crystallization (EFC) is a technique for simultaneous crystallization of ice and salt that is energetically more efficient than conventional evaporative crystallization. In this paper, a new type of crystallizer is introduced for simultaneously conducting EFC and separating the ice from the salt crystals, the cooled disk column crystallizer (CDCC). Crystallization is achieved by indirect cooling with wiped disks

  10. Processing eutectics in space

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Galasso, S. F.

    1975-01-01

    The investigations of directional solidification have indicated the necessity of establishing a secure foundation in earth-based laboratory processing in order to properly assess low-gravity processing. Emphasis was placed on evaluating the regularity of microstructure of the rod-like eutectic Al-Al3Ni obtained under different conditions of growth involving the parameters of thermal gradient, solidification rate, and interfacial curvature. In the case of Al-Al3Ni, where the Al3Ni phase appears as facets rods, solidification rate was determined to be a controlling parameter. Zone melting of thin eutectic films showed that for films of the order of 10 to 20 micrometers thick, the extra surface energy appears to act to stabilize a regular microstructure. The results suggest that the role of low-gravity as provided in space-laboratory processing of materials is to be sought in the possibility of generating a higher thermal gradient in the solidifying ingot for a given power input-output arrangement than can be obtained under normal one-g processes.

  11. Heat transfer measurements in a forced convection loop with two molten-fluoride salts: LiF--BeF--ThF--UF and eutectic NaBF--NaF

    Microsoft Academic Search

    M. D. Silverman; W. R. Huntley; H. E. Robertson

    1976-01-01

    Heat transfer coefficients were determined experimentally for two molten-fluoride salts (LiF-BeF-ThF-UF (72-16-12-0.3 mole %) and NaBF-NaF (92-8 mole %) proposed as the fuel salt and coolant salt, respectively, for molten-salt breeder reactors. Information was obtained over a wide range of variables, with salt flowing through 12.7-mm-OD (0.5-in.) Hastelloy N tubing in a forced convection loop (FCL-2b). Satisfactory agreement with the

  12. Distribution behavior of plutonium and americium in LiCl–KCl eutectic\\/liquid cadmium systems

    Microsoft Academic Search

    Y Sakamura; O Shirai; T Iwai; Y Suzuki

    2001-01-01

    The thermodynamics of plutonium and americium in LiCl–KCl eutectic\\/liquid cadmium systems was studied with interest in the oxidation state of americium in the salt phase. The standard potential of plutonium vs. the Ag\\/AgCl (1 wt% AgCl) electrode, E0Pu\\/Pu(III), in the LiCl–KCl eutectic was measured in the temperature range of 400–500°C and given by the equation with a standard deviation, ?=0.0009

  13. Protease activation in glycerol-based deep eutectic solvents

    Microsoft Academic Search

    Hua Zhao; Gary A. Baker; Shaletha Holmes

    2011-01-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation–anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200°C. In this work, the transesterification activities of cross-linked proteases (subtilisin and ?-chymotrypsin), immobilized on

  14. Applications of molten salts in plutonium processing

    SciTech Connect

    Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1987-01-01

    Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900/sup 0/C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics.

  15. Treatment of textile wastewaters using Eutectic Freeze Crystallization.

    PubMed

    Randall, D G; Zinn, C; Lewis, A E

    2014-01-01

    A water treatment process needs to recover both water and other useful products if the process is to be viewed as being financially and environmentally sustainable. Eutectic Freeze Crystallization (EFC) is one such sustainable water treatment process that is able to produce both pure ice (water) and pure salt(s) by operating at a specific temperature. The use of EFC for the treatment of water is particularly useful in the textile industry because ice crystallization excludes all impurities from the recovered water, including dyes. Also, EFC can produce various salts with the intention of reusing these salts in the process. This study investigated the feasibility of EFC as a treatment method for textile industry wastewaters. The results showed that EFC can be used to convert 95% of the wastewater stream to pure ice (98% purity) and sodium sulfate. PMID:25116506

  16. Structure-property relationships in eutectic composites

    NASA Technical Reports Server (NTRS)

    Hertzberg, R. W.

    1976-01-01

    The preparation of a composite material of eutectic composition directly from the molten state is investigated. The manufacture of eutectic composites by unidirectional solidification is reviewed, and it is shown how two-phase composite structures of given relative volume fraction can be produced with a range of particle sizes. Crystallographic relationships and the thermal stability of interfaces in controlled eutectic structures are examined, the mechanical behavior of aligned eutectic microstructures is discussed, and characteristics of eutectic composites having mechanical properties of engineering significance are evaluated. Specific properties of the Ni-Nb eutectic alloy are reviewed to demonstrate the effect of structure control (through directional solidification) on the mechanical response of a eutectic composite. It is noted that unidirectionally solidified eutectic composites possess highly aligned and thermally stable microstructures and also exhibit excellent combinations of strength and ductility to very high temperature levels.

  17. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    Microsoft Academic Search

    Ajay K. Misra

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points

  18. Directionally solidified eutectic ceramic oxides

    Microsoft Academic Search

    Javier LLorca; Victor M. Orera

    2006-01-01

    The processing, structure and properties (mechanical and functional) of directionally solidified eutectic ceramic oxides are reviewed with particular attention to the developments in the last 15 years. The article analyzes in detail the control of the microstructure from the processing variables, the recently gained knowledge on their microstructure (crystallographic orientation, interface structure, residual stresses, etc.), the microstructural and chemical stability

  19. Corrosion of selected alloys in eutectic lithium-sodium-potassium carbonate at 900C

    Microsoft Academic Search

    R. T. Coyle; T. M. Thomas; P. Schissel

    1986-01-01

    There is an ongoing interest at the US Department of Energy in using molten salts as high temperature sensible heat storage media in advanced solar thermal systems. In this report, the compatibility of selected alloys in eutectic lithium-sodium-potassium carbonate, the salt that will be used in the near-term engineering experiments, has been evaluated at 900C. Several combinations of oxidation potential

  20. Advanced salt receiver for solar power towers

    SciTech Connect

    Romero, M.; Sanchez, M.; Barrera, G. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Instituto de Energias Renovables/Direccion de Tecnologia; Leon, J.; Sanchez, M. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Tabernas (Spain). Plataforma Solar de Almeria

    1995-11-01

    Falling Film receivers constitute an alternative to the traditional Salt in Tube receivers, widely used and tested in the Central Receiver Systems. This report presents an innovative concept of Internal Film Receiver (IFR), in which a film made of a eutectic mixture of molten salts flows down the back side of a stainless steel panel. The installation with 550 kW nominal power, molten salt inlet temperature 300 C and outlet temperature 550 C is described.

  1. Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems

    Microsoft Academic Search

    L. Bahadori; M. H. Chakrabarti; F. S. Mjalli; I. M. Alnashef; N. S. A. Manan; M. A. Hashim

    2013-01-01

    Seven deep eutectic solvents (DESs) containing ammonium based salts are prepared by means of hydrogen bonding with acid, amine, amide and nitrate based compounds. The major physicochemical properties of the DESs in terms of density, viscosity, electrical conductivity, molar conductivity and pH are investigated prior to ascertaining their electrochemical characteristics by means of cyclic voltammetry and chronoamperometry. Nitrate based DESs

  2. Electrical conductivity of ammonium and phosphonium based deep eutectic solvents: Measurements and artificial intelligence-based prediction

    Microsoft Academic Search

    F. S. G. Bagh; K. Shahbaz; F. S. Mjalli; I. M. AlNashef; M. A. Hashim

    2013-01-01

    The evaluation of deep eutectic solvents (DESs) as a new generation of solvents for various practical application requires an insight of the main physical, chemical, and thermodynamic properties. In this study, the experimental measurements of the electrical conductivity of two classes of DESs based on ammonium and phosphonium salts at different compositions and temperatures were reported. The results revealed that

  3. Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries

    Microsoft Academic Search

    M. H. Chakrabarti; F. S. Mjalli; I. M. Alnashef; M. A. Hashim; M. A. Hussain; L. Bahadori; C. T. J. Low

    2014-01-01

    Ionic liquids (ILs) and deep eutectic solvents (DESs) have been applied in various fields such as electrolytes for lithium ion batteries, electrodeposition, electropolishing and even in fuel cells. ILs and molten salts have found some applications in redox flow batteries (RFBs) in the past and recently some metal ion based ILs have been proposed and used by Sandia National Laboratories.

  4. Aligned CoCo 2 Si eutectics

    Microsoft Academic Search

    J. D. Livingston

    1976-01-01

    The addition of W, Ta, or Al to Co-rich Co-Si alloys suppresses the formation of Co3Si and produces stable eutectics between the Co2Si and the Co-rich solid-solution phase. The Co-Si-W and Co-Si-Ta alloys solidified as three-phase eutectics. The Co-Si-Al alloy solidified as a two-phase eutectic, but a third phase precipitated on cooling. Interesting morphological changes were produced by epitaxial precipitation

  5. Electrode reaction of plutonium at liquid cadmium in LiCl–KCl eutectic melts

    Microsoft Academic Search

    O. Shirai; M. Iizuka; T. Iwai; Y. Suzuki; Y. Arai

    2000-01-01

    The electrode reaction of the Pu3+\\/Pu couple at the surface of a liquid Cd electrode was investigated by cyclic voltammetry at 723, 773 and 823 K in LiCl?KCl eutectic melt. It was found that the diffusion of Pu3+ in the salt phase was a rate-determining step in the cathodic reaction, but the dissolution of Pu from the liquid Cd phase

  6. Homogeneous eutectic of Pb-Sb

    NASA Technical Reports Server (NTRS)

    Winter, J. M., Jr.

    1977-01-01

    Dendrite free eutectic mixture of Pb-Sb is expected to be superelastic material that can be used in formation of shaped charge liners for industrial explosive metal-forming processes and other applications.

  7. Germanium nanowire growth below the eutectic temperature.

    PubMed

    Kodambaka, S; Tersoff, J; Reuter, M C; Ross, F M

    2007-05-01

    Nanowires are conventionally assumed to grow via the vapor-liquid-solid process, in which material from the vapor is incorporated into the growing nanowire via a liquid catalyst, commonly a low-melting point eutectic alloy. However, nanowires have been observed to grow below the eutectic temperature, and the state of the catalyst remains controversial. Using in situ microscopy, we showed that, for the classic Ge/Au system, nanowire growth can occur below the eutectic temperature with either liquid or solid catalysts at the same temperature. We found, unexpectedly, that the catalyst state depends on the growth pressure and thermal history. We suggest that these phenomena may be due to kinetic enrichment of the eutectic alloy composition and expect these results to be relevant for other nanowire systems. PMID:17478716

  8. Eutectic Contact Inks for Solar Cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1985-01-01

    Low-resistance electrical contacts formed on solar cells by melting powders of eutectic composition of semiconductor and dopant. Process improves cell performance without subjecting cell to processing temperatures high enough to degrade other characteristics.

  9. The promise of eutectics for aircraft turbines

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1977-01-01

    The current status of the first generation eutectics, gamma/gamma transition - delta and NiTaC-13, is described in detail. Several second generation systems, such as gamma/gamma transition - alpha and NiTaC 3-116A, gamma - beta, and COTAC 74 are also reviewed with particular emphasis on their critical physical and mechanical properties, future research directions, and potential applications. Results of recent cost-benefit analyses of eutectic turbine blades are discussed.

  10. Eutectic experiment development for space processing

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1972-01-01

    A ground base test plan and a specimen evaluation scheme have been developed for the aluminum-copper eutectic solidification experiment to be run in the M518 multipurpose electric furnace during the Skylab mission. Besides thermal and solidification studies a detailed description is given of the quantitative metallographic technique which is appropriate for characterizing eutectic structures. This method should prove a key tool for evaluating specimen microstructure which is the most sensitive indicator of changes produced during solidification. It has been recommended that single grain pre-frozen eutectic specimens be used to simplify microstructural evaluation and to eliminate any porosity in the as-cast eutectic specimens. High purity (99.999%) materials from one supplier should be employed for all experiments. Laboratory studies indicate that porosity occurs in the MRC as-cast eutectic ingots but that this porosity can be eliminated by directional freezing. Chemical analysis shows that the MRC ingots are slightly Al rich and contain about .03% impurity. Because of the impurity content the lower cooldown rate (1.2 C/min) should be used for eutectic freezing if MRC material is used in the M518 furnace.

  11. Protease activation in glycerol-based deep eutectic solvents

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2011-01-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and ?-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 ?mo l min?1 g?1) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally. PMID:21909232

  12. Directionally solidified eutectic alloy gamma-beta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1977-01-01

    A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation.

  13. Some physicochemical studies on organic eutectics

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Singh, S. K.; Singh, R. A.

    2007-03-01

    The phase diagrams of phenothiazine with each of m-nitrobenzoic acid ( m-NBA) and m-dinitrobenzene ( m-DNB) have been studied by thaw-melt method. These materials have been characterized by X-ray diffraction. Growth behavior of the parent components, eutectic and charge transfer complex (CTC) studied by measuring the rate of movement of the growth front in a capillary suggests the applicability of Hillig-Turnbull equation for the system. Microstructure and electrical conductivities of congruent melting complexes and eutectics have been determined. The low electrical conductivities of these materials have been due to weak interaction and mixed stacking of donor and acceptor. Excess thermodynamics functions of the charge-transfer (CT) materials and eutectics have been determined.

  14. Eutectic growth under acoustic levitation conditions.

    PubMed

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5 x 10(3) kg/m(3) are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of "lamellas-broken lamellas-dendrites." This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface. PMID:12513291

  15. Lamellar eutectic growth with anisotropic interphase boundaries

    NASA Astrophysics Data System (ADS)

    Akamatsu, S.; Bottin-Rousseau, S.; Faivre, G.; Ghosh, S.; Plapp, M.

    2015-06-01

    We present a numerical study of the effect of a free-energy anisotropy of the solid- solid interphase boundaries on the formation of tilted lamellar microstructures during directional solidification of nonfaceted binary eutectic alloys. We used two different methods - phase-field (PF) and dynamic boundary-integral (BI) - to simulate the growth of periodic eutectic patterns in two dimensions. For a given Wulff plot of the interphase boundary, which characterizes a eutectic grain with a given relative orientation of the two solid phases, the lamellar tilt angle depends on the angle between the thermal axis z and a reference crystallographic axis. Both PF and BI results confirm the general validity of a recent approximate theory which assumes that, at the trijunctions, the surface tension vector of the interphase boundary is parallel to z. In particular, a crystallographic locking of the lamellae onto a direction close to a deep minimum in the Wulff plot is well reproduced in the simulations.

  16. Fundamental Properties of Salts

    SciTech Connect

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  17. Tin-silver-copper eutectic temperature and composition

    Microsoft Academic Search

    M. E. Loomans; M. E. Fine

    2000-01-01

    A careful investigation of the Sn-Ag-Cu phase diagram near the ternary eutectic composition was undertaken using annealed\\u000a alloys and differential scanning calorimetry to settle some uncertainties in the eutectic composition. The eutectic composition\\u000a was found to be 3.5 wt pct Ag, 0.9 wt pct Cu, and the balance Sn. The published eutectic temperature, 217 C, was confirmed.\\u000a A value of

  18. Contact melting and the structure of binary eutectic near the eutectic point

    E-print Network

    Oleksiy Bystrenko; Valeriy Kartuzov

    2014-09-04

    Computer simulations of contact melting and associated interfacial phenomena in binary eutectic systems were performed on the basis of the standard phase-field model with miscibility gap in solid state. It is shown that the model predicts the existence of equilibrium three-phase (solid-liquid-solid) states above the eutectic temperature, which suggest the explanation of the phenomenon of phase separation in liquid eutectic observed in experiments. The results of simulations provide the interpretation for the phenomena of contact melting and formation of diffusion zone observed in the experiments with binary metal-silicon systems.

  19. Microstructure Of MnBi/Bi Eutectic Alloy

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Eisa, G. F.; Baskaran, B.; Richardson, Donald C.

    1988-01-01

    Collection of three reports describes studies of directional solidification of MnBi/Bi eutectic alloy. Two of the reports, "Influence of Convection on Lamellar Spacing of Eutectics" and "Influence of Convection on Eutectic Microstructure," establish theoretical foundation for remaining document. Reports seek to quantify effect of convection on concentration field of growing lamellar eutectic. Remaining report, "Study of Eutectic Formation," begins by continuing theoretical developments. New technique under development by one of the authors helps to reveal three-dimensional microstructures of alloys.

  20. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  1. Eutectic spacing and faults of directionally solidified Al–Al 3Ni eutectic

    Microsoft Academic Search

    Y. X. Zhuang; X. M. Zhang; L. H. Zhu; Z. Q. Hu

    2001-01-01

    The Al–Al3Ni eutectic was directionally solidified at a thermal gradient of 4.5K\\/mm in a vacuum Bridgman-type furnace in order to study eutectic spacing selection criterion. The microstructure was examined in transverse and longitudinal sections and the interrod spacings were measured at different growth velocity. It has been shown that the interrod spacing is not unique and displays a limited range

  2. Electrochemical studies of kinetic properties of titanium- and vanadium-hydrogen systems at intermediate temperatures using molten salt techniques

    Microsoft Academic Search

    Bor Yann Liaw; G. Deublein; R. A. Huggins

    1995-01-01

    A novel molten salt technique for studying hydrogen transport in Ti an V metals is described. The molten-salt electrolytes were eutectic mixtures of alkali halides dissolved with excess LiH, operating in temperature ranges typically above 300 C, to which electrochemical techniques were difficult to apply conventionally. The authors used the molten salt technique to investigate the thermodynamic properties of the

  3. Are deep eutectic solvents benign or toxic?

    Microsoft Academic Search

    M. Hayyan; M. A. Hashim; A. Hayyan; M. A. Al-Saadi; I. M. AlNashef; M. E. S. Mirghani; O. K. Saheed

    2013-01-01

    In continuation of investigation for environmentally benign protocol for new solvents termed deep eutectic solvents (DESs), it is herein reported results concerning the toxicity and cytotoxicity of choline chloride (ChCl) based DESs with four hydrogen bond donors including glycerine, ethylene glycol, triethylene glycol and urea. The toxicity was investigated using two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and

  4. Phase equilibria of toluene\\/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha

    Microsoft Academic Search

    M. A. Kareem; F. S. Mjalli; M. A. Hashim; M. K. O. Hadj-Kali; F. S. Ghareh Bagh; I. M. Alnashef

    2013-01-01

    In this work, the liquid-liquid extraction of toluene from hydrocarbons mixtures (toluene\\/heptane) was investigated using deep eutectic solvents as solvents. Ethyltriphenylphosphonium iodide as a salt with either ethylene glycol or sulfolane as hydrogen-bond donors (HBDs) were utilized for synthesizing six DESs. (Liquid + liquid) equilibria data were determined experimentally for the ternary system (toluene + heptane + DES) at (30,

  5. Evaluating the Performance of Deep Eutectic Solvents for Use in Extractive Denitrification of Liquid Fuels by the Conductor-like Screening Model for Real Solvents

    Microsoft Academic Search

    Hanee F. Hizaddin; Anantharaj Ramalingam; Mohd Ali Hashim; Mohamed K. O. Hadj-Kali

    2014-01-01

    A total of 94 deep eutectic solvents (DESs) based on different combinations of salt cation, anion, hydrogen-bond donor (HBD) and salt:HBD molar ratio are screened via the conductor-like screening model for real solvents for potential use in the extractive denitrification of diesel. Five nonbasic and six basic nitrogen compounds were included in this study. The activity coefficient at infinite dilution,

  6. A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil

    Microsoft Academic Search

    Adeeb Hayyan; Mohd Ali Hashim; Farouq S. Mjalli; Maan Hayyan; Inas M. AlNashef

    2013-01-01

    This study explores the possibility of producing low grade crude palm oil (LGCPO)-based biodiesel using a two-stage process in which a phosphonium-based deep eutectic solvent (P-DES) and an alkali are used as catalysts. The pre-treatment of LGCPO was conducted using a P-DES composed of a hydrogen bond donor (i.e. p-toluenesulfonic acid monohydrate) and a salt (i.e. allyltriphenylphosphonium bromide) as a

  7. A novel ammonium based eutectic solvent for the treatment of free fatty acid and synthesis of biodiesel fuel

    Microsoft Academic Search

    A. Hayyan; M. A. Hashim; M. Hayyan; F. S. Mjalli; I. M. AlNashef

    2013-01-01

    In this work, low grade crude palm oil (LGCPO) with high free fatty acids (FFA) content is introduced as a possible biodiesel production feedstock alternative. The pre-treatment of LGCPO was conducted using ammonium-based deep eutectic solvent which consisted of hydrogen bond donor (i.e. p-toluenesulfonic acid monohydrate) (PTSA) and salt (i.e. N,N-diethylenethanol ammonium chloride) as a novel recyclable catalyst (DEAC-DES). The

  8. A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent

    Microsoft Academic Search

    A. Hayyan; M. A. Hashim; M. Hayyan; F. S. Mjalli; I. M. Alnashef

    2014-01-01

    In this study, the free fatty acids (FFA) content in acidic crude palm oil (ACPO) was converted to fatty acid methyl esters (FAME) using a choline chloride based deep eutectic solvent (ChCl-DES) for the first time. This DES is composed of a mixture of a hydrogen bond donor (i.e. p-toluenesulfonic acid monohydrate) and a salt (i.e. choline chloride). The pre-treatment

  9. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel†

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2012-01-01

    The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation–anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym® 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol® oil 812 with methanol, catalyzed by Novozym® 435 in choline acetate/glycerol (1 : 1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel. PMID:21283901

  10. Expansion of solidified lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Glasbrenner, H.; Gröschel, F.; Grimmer, H.; Patorski, J.; Rohde, M.

    2005-08-01

    Lead bismuth eutectic (LBE) has been proposed both as spallation target and as coolant in a future accelerator driven system (ADS). Therefore this alloy should be fully characterised and its physical properties should be completely known before use. Experiments on the volumetric expansion of LBE were performed by variation of cooling rates, holding times and different starting temperatures of the melt. X-ray diffraction and optical metallurgical examination on LBE has been carried out in order to clarify the reasons for the volumetric expansion of LBE. Additionally thermal expansion of LBE solid was revealed. The results achieved will be discussed and at the end a model assumption will be given trying to explain the processes taking place to an ideal eutectic mixture.

  11. Two-stage eutectic metal brushes

    DOEpatents

    Hsu, John S (Oak Ridge, TN) [Oak Ridge, TN

    2009-07-14

    A two-stage eutectic metal brush assembly having a slip ring rigidly coupled to a shaft, the slip ring being electrically coupled to first voltage polarity. At least one brush is rigidly coupled to a second ring and slidingly engaged to the slip ring. Eutectic metal at least partially fills an annulus between the second ring and a stationary ring. At least one conductor is rigidly coupled to the stationary ring and electrically coupled to a second voltage polarity. Electrical continuity is maintained between the first voltage polarity and the second voltage polarity. Periodic rotational motion is present between the stationary ring and the second ring. Periodic rotational motion is also present between the brush and the slip ring.

  12. ac impedance measurements of molten salt thermal batteries

    NASA Astrophysics Data System (ADS)

    Singh, Pritpal; Guidotti, Ronald A.; Reisner c, David

    Non-destructive testing of thermal batteries without activating them is a challenging proposition. Molten salt thermal batteries are activated by raising their temperature to above the melting point of the salt constituting the electrolyte. One approach that we have considered is to raise the temperature of the molten salt electrolyte to a temperature below the melting point so that the battery does not get activated yet may provide sufficient mobility of the ionic species to be able to obtain some useful ac impedance measurements. This hypothesis was put to the test for two Li(Si)/FeS 2 molten salt batteries with two electrolytes of different melting points—a standard LiCl-KCl eutectic that melts at 352 °C and a LiBr-KBr-LiCl eutectic with a melting point of 319 °C. ac impedance measurements as a function of frequency and temperature below the melting point are presented for single cells and batteries.

  13. Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    SciTech Connect

    Misra, A.K.; Whittenberger, J.D.

    1986-05-01

    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF/sub 2/ and NaF-60MgF/sub 2/ which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.

  14. Fluorescence Spectroscopic Studies of (Amide + Electrolyte) Deep Eutectic Systems Biswajit Guchhait and Ranjit Biswas*

    E-print Network

    Biswas, Ranjit

    glass transition. Keywords: deep eutectic solvents, fluorescence measurements, viscosity decoupling Refs liquid at or near room temperature. These systems are known as deep eutectic solvents (DES) and exhibit1 Fluorescence Spectroscopic Studies of (Amide + Electrolyte) Deep Eutectic Systems Biswajit

  15. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids.

    PubMed

    Abbott, Andrew P; Boothby, David; Capper, Glen; Davies, David L; Rasheed, Raymond K

    2004-07-28

    Deep Eutectic Solvents (DES) can be formed between a variety of quaternary ammonium salts and carboxylic acids. The physical properties are significantly affected by the structure of the carboxylic acid but the phase behavior of the mixtures can be simply modeled by taking account of the mole fraction of carboxylic acid in the mixture. The physical properties such as viscosity, conductivity, and surface tension of these DES are similar to ambient temperature ionic liquids and insight into the cause of these properties is gained using hole-theory. It is shown that the conductivity and viscosity of these liquids is controlled by ion mobility and the availability of voids of suitable dimensions, and this is consistent with the fluidity of other ionic liquids and molten salts. The DES are also shown to be good solvents for metal oxides, which could have potential application for metal extraction. PMID:15264850

  16. Solidification of eutectic system alloys in space (M-19)

    NASA Technical Reports Server (NTRS)

    Ohno, Atsumi

    1993-01-01

    It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are cast by the Ohno Continuous Casting Process and they show the unidirectionally solidified structure. Each flight and ground sample was made of these same rods. The dimensions of all samples are 4.5 mm in diameter and 23.5 mm in length. Each sample is put in a graphite capsule and then vacuum sealed in a double silica ampoule. Then the ampoule is put in the tantalum cartridge and sealed by electron beam welding. For onbard experiments, a Continuous Heating Furnance (CHF) will be used for melting and solidifying samples under microgravity conditions. Six flight samples will be used. Four samples are hypo-eutectic and two are hyper-eutectic alloys. The surface of the two hypo-eutectic alloy samples are covered with aluminum oxide film to prevent Marangoni convection expected under microgravity conditions. Each sample will be heated to 700 C and held at that temperature for 5 min. After that the samples will be allowed to cool to 500 C in the furnace and they will be taken out of the furnace for He gas cooling. The heating and cooling diagrams for the flight experiments are shown. After collecting the flight samples, the solidified structures of the samples will be examined and the mechanisms of eutectic solidification under microgravity conditions will be determined. It is likely that successful flight experiment results will lead to production of high quality eutectic alloys and eutectic composite materials in space.

  17. Eutectic growth in unidirectionally solidified Fe-Cr-Ni alloy

    SciTech Connect

    Okane, Toshimitsu; Umeda, Takateru [Univ. of Tokyo (Japan)

    1998-12-31

    In this report, transition of solidified phases for directionally solidified Fe-Cr-Ni alloys has been investigated in low growth rate range by using Bridgman type furnace. The ferritic-austenite eutectic growth has been confirmed like a plane front growth of ferrite single phase under low growth rate condition. The transition velocity between eutectic and ferrite cell growth has a good agreement with the result of calculation based on the phase selection criterion and the interface temperature calculation for ferrite, austenite and eutectic phases. These results show that the phase prediction by calculating interface temperature can be applied not only to competitive growth between single phases like peritectic systems, but also to eutectic systems. Furthermore, under the condition of eutectic coupled growth to be occurred in steady state, the changes of solidified phases and their morphologies in the initial transient are discussed.

  18. Deep eutectic solvents as novel extraction media for protein partitioning.

    PubMed

    Zeng, Qun; Wang, Yuzhi; Huang, Yanhua; Ding, Xueqin; Chen, Jing; Xu, Kaijia

    2014-05-21

    Four kinds of green deep eutectic solvent (DES) were synthesized, including choline chloride (ChCl)-urea, tetramethylammonium chloride (TMACl)-urea, tetrapropylammonium bromide (TPMBr)-urea and ChCl-methylurea. An aqueous two-phase system (ATPS) based ChCl-urea DES was studied for the first time for the extraction of bovine serum albumin (BSA). Single factor experiments proved that the extraction efficiency of BSA was influenced by the mass of the DES, concentration of K2HPO4 solution, separation time and extraction temperature. The optimum conditions were determined through an orthogonal experiment with the four factors described above. The results showed that under the optimum conditions, the average extraction efficiency could reach up to 99.94%, 99.72%, 100.05% and 100.05% (each measured three times). The relative standard deviations (RSD) of extraction efficiencies in precision, repeatability and stability experiments were 0.5533% (n = 5), 0.8306% (n = 5) and 0.9829% (n = 5), respectively. UV-vis and FT-IR spectra confirmed that there were no chemical interactions between BSA and the DES in the extraction process, and the CD spectra proved that the conformation of BSA did not change after extraction. The conductivity, DLS and TEM were combined to investigate the microstructure of the top phase and the possible mechanism for the extraction. The results showed that hydrophobic interactions, hydrogen bonding interactions and the salting-out effect played important roles in the transfer process, and the aggregation and surrounding phenomenon were the main driving forces for the separation. All of these results proved that ionic liquid (IL)-based ATPSs could potentially be substituted with DES-based ATPSs to offer new possibilities in the extraction of proteins. PMID:24699681

  19. CORROSION STUDIES FOR A FUSED SALT-LIQUID METAL EXTRACTION PROCESS FOR THE LIQUID METAL FUEL REACTOR

    Microsoft Academic Search

    H. Susskind; F. B. Hill; L. Green; S. Kalish; L. E. Kukacka; W. E. McNulty; E. Jr. Wirsing

    1960-01-01

    Corrosion screening tests were carried out on potential materials of ;\\u000a construction for use in a fused salt-liquid metal extraction process plant. The ;\\u000a corrodents of interest were NaCl--KCl-- MgCl eutectic, LiCl--KCl eutectic, ;\\u000a Bi-- U fuel, and BiCl, either separately or in various combinations. ;\\u000a Screening tests to determine the resistance of a wide range of commercial alloys ;

  20. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    NASA Astrophysics Data System (ADS)

    Geng, D. L.; Xie, W. J.; Wei, B.

    2012-10-01

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition.

  1. Eutectic propeties of primitive Earth's magma ocean

    NASA Astrophysics Data System (ADS)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and/or (c) appearance of a broad band of diffuse X-ray scattering associated to the presence of silicate liquid. The pressure evolution of the eutectic temperature is found below the melting curve of pure MgSiO3 perovskite [7] for more than 500 K and also below the solidus curve of pyrolite [4] for 100-200 K at 60 GPa. References [1] B. T. Tonks, H. J. Melosh, Journal of Geophysical Research 98 5319 (1993). [2] Litasov, K., and Ohtani, E. Physics of The Earth and Planetary Interiors, 134(1-2), 105-127, (2002). [3] E. Ito, A. Kubo, T. Katsura et al., Phys. Earth Planet. Inter. 143-144 397 (2004). [4] A. Zerr, R. Boehler, Nature 506-508 (1994). [5] J. A. Akins, S. N. Luo, P. D. Asimov et al., Geophys. Res. Lett. 31 doi:10.1029/2004GL020237 (2004). [6] Schultz et al. International Journal of High Pressure Research. 25, 1, 71-83 (2005). [7] Zerr, A. and Boehler, R. Science, 262, 553-555 (1993).

  2. Shear Strength of Eutectic Sn-Bi Lead-Free Solders After Corrosion Testing and Thermal Aging

    NASA Astrophysics Data System (ADS)

    Mostofizadeh, Milad; Pippola, Juha; Frisk, Laura

    2014-05-01

    Low-cost manufacturing in the electronics industry is becoming more demanding, particularly in the production of consumer electronics. Such manufacturing processes require reliable and low-cost lead-free solders. Among the low temperature lead-free solders, eutectic Sn-Bi solder has attracted a great deal of interest since it offers good reliability comparable to that of Sn-Pb solders. In this paper, the shear strength of eutectic 42Sn-58Bi (wt.%) lead-free solder was studied using combinations of environmental tests including thermal aging at 100 °C, salt spray test, and a sequential combination of these tests. Microstructural studies on samples were performed at different time intervals of testing. To study the effect of salt spray and thermal aging on the mechanical reliability, shear testing was performed on the samples. Failure analysis including fractography on samples was conducted at different time intervals using a scanning electron microscope. Considerable corrosion was observed after the salt spray test. This was found to have a significant effect on the shear strength of the solder joints. Additionally, thermal aging was found to cause coarsening and to increase the thickness of intermetallic layers. This was also found to adversely affect the shear strength. The combination test was found to have the most significant effect, as the lowest shear strengths were seen after this testing.

  3. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox. William R.; Regel, Liya L.

    1999-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the projects in the present grant is to test hypotheses for the reported influence of microgravity on the microstructure of eutectics. The prior experimental results on the influence of microgravity on the microstructure of eutectics have been contradictory. With lamellar eutectics, microgravity had a negligible effect on the microstructure. Microgravity experiments with fibrous eutectics sometimes showed a finer microstructure and sometimes a coarser microstructure. Most research has been done on the MnBi/Bi rod-like eutectic. Larson and Pirich obtained a two-fold finer microstructure both from microgravity and by use of a magnetic field to quench buoyancy-driven convection. Smith, on the other hand, observed no change in microgravity. Prior theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in front of a growing eutectic sufficiently to cause a measurable change in microstructure. We assumed that the bulk melt was at the eutectic composition and that freezing occurred at the extremum, i.e. with minimum total undercooling at the freezing interface. There have been four hypotheses attempting to explain the observed changes in microstructure of fibrous eutectics caused by convection: I .A fluctuating freezing rate, combined with unequal kinetics for fiber termination and branching. 2. Off-eutectic composition, either in the bulk melt due to an off-eutectic feed or at the freezing interface because of departure from the extremum condition. 3. Presence of a strong habit modifying impurity whose concentration at the freezing interface would be altered by convection. At the beginning of the present grant, we favored the first of these hypotheses and set out to test it both experimentally and theoretically. We planned the following approaches: I .Pass electric current pulses through the MnBi/Bi eutectic during directional solidification in order to produce an oscillatory freezing rate. 2. Directionally solidify the MnBi/Bi eutectic on Mir using the QUELD II gradient freeze furnace developed by Professor Smith at Queen's University. 3. Select another fibrous eutectic system for investigation using the Accelerated Crucible Rotation Technique to introduce convection. 4. Develop theoretical models for eutectic solidification with an oscillatory freezing rate. Because of the problems with Mir, we substituted ground-based experiments at Queen's University with QUELD II vertical and horizontal, with and without vibration of the furnace. The Al-Si system was chosen for the ACRT experiments. Three related approaches were used to model eutectic solidification with an oscillatory freezing rate. A sharp interface model was used to calculate composition oscillations at the freezing interface in response to imposed freezing rate oscillations.

  4. Corrosion of ODS steels in lead–bismuth eutectic

    Microsoft Academic Search

    P. Hosemann; H. T. Thau; A. L. Johnson; S. A. Maloy; N. Li

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic steels are advanced materials being developed for high temperature applications. Their properties (high temperature strength, creep resistance, corrosion\\/oxidation resistance) make them potentially usable for high temperature applications in liquid metal cooled systems like liquid lead–bismuth eutectic cooled reactors and spallation sources. Corrosion tests on five different ODS alloys were performed in flowing liquid lead–bismuth eutectic

  5. Nanostructures from directionally solidified NiAl–W eutectic alloys

    Microsoft Academic Search

    Achim Walter Hassel; Andrew Jonathan Smith; Srdjan Milenkovic

    2006-01-01

    A directionally solidified eutectic NiAl–W alloy was employed as a source for NiAl nanopore arrays, W-nanowire arrays and W-nanowires. The NiAl–W eutectic alloy containing 1.5at.% W. A growth rate of 30mmh?1 was used at a temperature gradient of 40Kcm?1 in a Bridgman-type directional solidification furnace. A combined stability diagram was derived from the Pourbaix diagrams of the three elements involved

  6. Preparation of directionally solidified eutectics in some oxohalide systems

    SciTech Connect

    Chemekova, T.Yu.; Udalov, Yu.P.

    1987-09-01

    Directionally solidified eutectics of systems formed by oxides and halides can be employed for developing materials with anisotropic properties. Preparation of directionally solidified eutectics by the method of zone melting with a heater submerged in the melt makes it possible to monitor visually the entire growth process. This method is apparently optimal, since it makes it possible to control the temperature gradient and the solidification rate over wide limits.

  7. The microstructure of MnBi/Bi eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ravishankar, P. S.; Wilcox, W. R.; Larson, D. J.

    1980-01-01

    Directionally solidified eutectic alloys of the system MnBi/Bi have been investigated with reference to the dependence of the fiber spacing on the growth rate and the interfacial temperature gradient. It is found that the fiber spacing varies as the inverse square root of the growth rate and does not depend on the temperature gradient in contrast to the claims that all faceted/non-faceted eutectics should show a temperature gradient influence.

  8. Characterization of low-melting electrolytes for potential geothermal borehole power supplies: The LiBr-KBr-LiF eutectic

    SciTech Connect

    Guidotti, R.A.; Reinhardt, F.W.

    1998-05-01

    The suitability of modified thermal-battery technology for use as a potential power source for geothermal borehole applications is under investigation. As a first step, the discharge processes that take place in LiSi/LiBr-KBr-LiF/FeS{sub 2} thermal cells were studied at temperatures of 350 C and 400 C using pelletized cells with immobilized electrolyte. Incorporation of a reference electrode allowed the relative contribution of each electrode to the overall cell polarization to be determined. The results of single-cell tests are presented, along with preliminary data for cells based on a lower-melting CsBr-LiBr-KBr eutectic salt.

  9. Regular rod-like eutectic spacing selection during directional solidified NiAl–9Mo eutectic in situ composite

    Microsoft Academic Search

    Jianfei Zhang; Jun Shen; Zhao Shang; Zhourong Feng; Lingshui Wang; Hengzhi Fu

    2011-01-01

    NiAl–9Mo (at%) eutectic alloy was produced by a Bridgman type crystal growing facility with Zone Melting Liquid Metal Cooling technique at the growth rate range from 60 to 200?m\\/s. The variation of rod eutectic spacing with growth rates was characterized. Statistical distributions of spacings at each growth rate were also determined. It was confirmed that the relationship between growth rate

  10. Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis.

    PubMed

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Nashef, Enas Muen; Jamal, Parveen

    2015-04-01

    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance. PMID:25661309

  11. Are deep eutectic solvents benign or toxic?

    PubMed

    Hayyan, Maan; Hashim, Mohd Ali; Hayyan, Adeeb; Al-Saadi, Mohammed A; AlNashef, Inas M; Mirghani, Mohamed E S; Saheed, Olorunnisola Kola

    2013-02-01

    In continuation of investigation for environmentally benign protocol for new solvents termed deep eutectic solvents (DESs), it is herein reported results concerning the toxicity and cytotoxicity of choline chloride (ChCl) based DESs with four hydrogen bond donors including glycerine, ethylene glycol, triethylene glycol and urea. The toxicity was investigated using two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity effect was tested using the Artemia salina leach. It was found that there was no toxic effect for the tested DESs on all of the studied bacteria confirming their benign effects on these bacteria. Nevertheless, it was found that the cytotoxicity of DESs was much higher than their individual components (e.g. glycerine, ChCl) indicating that their toxicological behavior is different. For our best knowledge this is the first time that toxicity and cytotoxicity of DESs were studied. The toxicity and cytotoxicity of DESs varied depending on the structure of components. Careful usage of the terms non-toxicity and biodegradability must be considered. More investigation on this matter is required. PMID:23200570

  12. Influence of convection on eutectic microstructure

    NASA Technical Reports Server (NTRS)

    Baskaran, V.; Eisa, G. F.; Wilcox, W. R.

    1985-01-01

    When the MnBi-Bi eutectic is directionally solidified, it forms fibers of MnBi in a matrix of bismuth. When the material solidified in space at rates of 30 and 50 cm/hr, the average fiber spacing lambda was about one half of the value obtained in cases in which the same material solidified on earth. Neither an altered temperature gradient nor a fluctuating freezing rate are apparently responsible for the change in lambda, and the possibility is studied that natural convection increases lambda on earth by perturbing the compositional field in the melt ahead of the growing solid. A theoretical analysis is conducted along with some experiments. On the basis of the theoretical results for lamellar growth, it is concluded that the spacing lambda increases with increasing stirring, especially at small freezing rates. The experiments indicate that at low growth rates the cross-sectional area of the MnBi blades increases with increased stirring and with decreased growth rate.

  13. Luminescence and scintillation properties of Ce dope SrHfO3 based eutectics

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Kurosawa, Shunsuke; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-03-01

    Ce doped SrHfO3/SrAl12O19 eutectics were grown by the micro pulling down (?-PD) method and their directionally solidified eutectic system has been investigated. Investigations of obtained eutectic structure, luminescence and scintillation performances were also performed. Eutectics were grown at the speed of 0.60-0.90 mm/min. In the eutectics, Ce3+ 4f-5d emission was observed at 410 nm. The eutectics showed light yield of around 300 photon/5.5 meV alpha-ray by 241Am excitation. Scintillation decay time was 26.4 ns (45%) with slower decay component of 263 ns (55%).

  14. Particle-shape control of molten salt synthesized lead titanate

    Microsoft Academic Search

    Y. Ito; B. Jadidian; M. Allahverdi; A. Safari

    2000-01-01

    Lead titanate PbTiO3 (PT) powders with different morphologies were synthesized using a molten salt method. Amorphous PT powder was prepared from an aqueous nitrate solution, mixed with a eutectic of NaCl-KCl, and then heated at 850°C for 1 h. The effect of additives such as LiF, NaF and LiCl on the particle morphology and size of the derived PT was

  15. Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field

    Microsoft Academic Search

    D. Kearney; U. Herrmann; P. Nava; B. Kelly; R. Mahoney; J. Pacheco; R. Cable; N. Potrovitza; D. Blake; H. Price

    2003-01-01

    An evaluation was carried out to investigate the feasibility of utilizing a molten salt as the heat transfer fluid (HTF) and for thermal storage in a parabolic trough solar field to improve system performance and to reduce the levelized electricity cost. The operating SEGS1 plants currently use a high temperature synthetic oil consisting of a eutectic mixture of biphenyl\\/diphenyl oxide.

  16. Bath Salts

    MedlinePLUS

    Synthetic cathinones, often called “bath salts,” are powerful, illegal, and can cause hallucinations and violent behavior, among other dangerous effects. Twitter Facebook RSS 582 Exposures Jan. 1, ...

  17. Salts & Solubility

    NSDL National Science Digital Library

    2012-12-27

    In this online interactive simulation, learners will add different salts to water and then watch the salts dissolve and achieve a dynamic equilibrium with solid precipitate. Learners will also compare the number of ions in NaCl to other slightly soluble salts, and they will relate the charges on ions to the number of ions in the formula of a salt. Learners will also learn how to calculate Ksp values. This activity includes an online simulation, sample learning goals, a teacher's guide, and translations in over 20 languages.

  18. Micro/macro solidification modeling of columnar eutectic growth

    NASA Astrophysics Data System (ADS)

    Judson, Ward Michael

    2000-11-01

    A general multidimensional model of alloy solidification is presented in which a velocity-dependent freezing temperature is coupled with the macroscale energy equation. The velocity dependence of the freezing temperature ( Tf˜v ) results from the microscale species diffusion for microstructures with coupled eutectic growth. At solidification rates ( ˜ 1--10 mm/s) that are representative of gravity permanent mold and die casting processes, consideration of the nonequilibrium conditions at the interface affects the prediction of the macroscale thermal field. Near-eutectic alloys freeze with a macroscopically discrete solid-liquid interface at a temperature below the equilibrium eutectic temperature. The model is illustrated with unidirectional solidification of a near-eutectic alloy in a finite domain and solved numerically with a fixed-grid Galerkin finite element method. The numerical algorithm includes inexpensive steps to compute the interface speed explicitly. By nondimensionalizing the governing equations the effect of coupled eutectic growth on heat transport is clearly identified so that the model's sensitivity to important parameters can be investigated. Additionally, the average eutectic spacing can be determined with the temperature field, rather than post-determination from a standard, uncoupled solution of the energy equation. The eutectic coupling results indicate that the predicted solid-liquid interface location lags behind the uncoupled solution; therefore, decreasing the amount of solid formed, increasing the total solidification time, and increasing the average eutectic spacing. A procedure is also illustrated for computing mechanical properties using experimental correlations and the computed interface velocity history. The effect of the eutectic undercooling is then studied in a square domain and a realistic three-dimensional production casting geometry. In order to address the multidimensional cases, a phase-field formulation is developed. Although the interface is considered to have a small finite thickness, the utility of the method is good for complex evolving solid-liquid interfaces and the velocity-dependent freezing temperature is satisfied implicitly. After demonstrating sufficient numerical accuracy, numerical results are presented for the square domain and three-dimensional geometry. Limitations of the phase-field method are discussed, and the conjugate heat transfer problem is studied to address boundary condition issues.

  19. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples.

    PubMed

    Tang, Baokun; Zhang, Heng; Row, Kyung Ho

    2015-03-01

    Deep eutectic solvents, as a new type of eco-friendly solvent, have attracted increasing attention in chemistry for the extraction and separation of target compounds from various samples. To summarize the application of deep eutectic solvents, this review highlights some of the unique properties of deep eutectic solvents and deep-eutectic-solvent-based materials, as well as their applications in extraction and separation. In this paper, the available data and references in this field are reviewed to summarize the application developments of deep eutectic solvents. Based on the development of deep eutectic solvents, the exploitation of new deep eutectic solvents and deep-eutectic-solvent-based materials are expected to diversify into extraction and separation. PMID:25581398

  20. Ternary eutectic growth of Ag-Cu-Sb alloy within ultrasonic field

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hong, Zhenyu; Wei, Bingbo

    2007-08-01

    The liquid to solid transformation of ternary Ag42.4Cu21.6Sb36 eutectic alloy was accomplished in an ultrasonic field with a frequency of 35 kHz, and the growth mechanism of this ternary eutectic was examined. Theoretical calculations predict that the sound intensity in the liquid phase at the solidification interface increases gradually as the interface moves up from the sample bottom to its top. The growth mode of ( ? + ? + Sb) ternary eutectic exhibits a transition of “divorced eutectic—mixture of anomalous and regular structures—regular eutectic” along the sample axis due to the inhomogeneity of sound field distribution. In the top zone with the highest sound intensity, the cavitation effect promotes the three eutectic phases to nucleate independently, while the acoustic streaming efficiently suppresses the coupled growth of eutectic phases. In the meantime, the ultrasonic field accelerates the solute transportation at the solid-liquid interface, which reduces the solute solubility of eutectic phases.

  1. Salt Painting

    NSDL National Science Digital Library

    2012-06-26

    In this art meets chemistry activity, early learners discover the almost magical absorbent properties of salt while creating ethereal watercolor paintings. Learners first use watercolor to paint an image. Then, they sprinkle salt on the wet paint and observe. Use the provided discussion questions to encourage reflection.

  2. Directionally solidified eutectic gamma-gamma nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Jackson, M. R. (inventor)

    1977-01-01

    A directionally solidified multivariant eutectic gamma-gamma prime nickel-base superalloy casting having improved high temperature properties was developed. The alloy is comprised of a two phase eutectic structure consisting essentially of on a weight percent base, 6.0 to 9.0 aluminum, 5.0 to 17.0 tantalum, 0-10 cobalt, 0-6 vanadium, 0-6 rhenium, 2.0-6.0 tungsten, and the balance being nickel, subject to the proviso that the sum of the atomic percentages of aluminum plus tantalum is within the range of from 19-22, and the ratio of atomic percentages of tantalum to aluminum plus tantalum is within the range of from 0.12 to 0.23. Embedded within the gamma nickel-base matrix are aligned eutectic gamma prime phase (primarily nickel-aluminum-tantalum) reinforcing fibers.

  3. New synthetic route of polyoxometalate-based hybrids in choline chloride\\/urea eutectic media

    Microsoft Academic Search

    Shi-Ming Wang; Yun-Wu Li; Xiao-Jia Feng; Yang-Guang Li; En-Bo Wang

    2010-01-01

    The deep eutectic solvents synthetic method was initially explored as a facile synthesis route to prepare new polyoxometalate (POM)-based hybrids. Such a method can not only avoid poor solubility, lower yields and the potential explosion, but also act as a new type of noxious, convenient and environmental friendly organic reagents. Using the choline chloride\\/urea eutectic mixture as the deep eutectic

  4. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration

    Microsoft Academic Search

    Xiaogang Jian; T. T. Meek; Q. Han

    2006-01-01

    The eutectic silicon in A356 alloy can be refined and modified using either chemical, quench, or superheating modification. We observed, for the first time, that the eutectic silicon can also be significantly refined using high-intensity ultrasonic vibration. Rosette-like eutectic silicon is formed during solidification of specimen treated with high-intensity ultrasonic vibration.

  5. Refinement of Eutectic Silicon Phase of Aluminum A356 Alloy Using High-Intensity Ultrasonic Vibration

    SciTech Connect

    Jian, Xiaogang [ORNL; Han, Qingyou [ORNL

    2006-01-01

    The eutectic silicon in A356 alloy can be refined and modified using either chemical, quench, or superheating modification. We observed, for the first time, that the eutectic silicon can also be significantly refined using high-intensity ultrasonic vibration. Rosette-like eutectic silicon is formed during solidification of specimen treated with high-intensity ultrasonic vibration.

  6. Prebiotic phosphate ester syntheses in a deep eutectic solvent.

    PubMed

    Gull, Maheen; Zhou, Manshui; Fernández, Facundo M; Pasek, Matthew A

    2014-02-01

    We report a route to synthesize a wide range of organophosphates of biological significance in a deep eutectic solvent (2:1 urea and choline chloride), utilizing various orthophosphate sources. Heating an organic alcohol in the solvent along with a soluble phosphorus source yields phosphorus esters of choline as well as that of the added organic in yields between 15 to 99 %. In addition, phosphite analogs of biological phosphates and peptides were also formed by the simple mixing of reagents and heating at 60-70 °C in the deep eutectic solvent. The presented dehydration reactions are relevant to prebiotic and green chemistry in alternative solvents. PMID:24368625

  7. Structure Property Relationships in Imidazole-based Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Terheggen, Logan; Cosby, Tyler; Sangoro, Joshua

    2015-03-01

    Deep eutectic mixtures of levulinic acid with a systematic series of imidazoles are measured by broadband dielectric spectroscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy to investigate the impact of steric interactions on charge transport and structural dynamics. An enhancement of dc conductivity is found in each of the imidazoles upon the addition of levulinic acid. However, the extent of increase is dependent upon the alkyl substitution on the imidazole ring. These results highlight the importance of molecular structure on hydrogen bonding and charge transport in deep eutectic mixtures.

  8. Lead-bismuth eutectic technology for Hyperion reactor

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Kapernick, R. J.; McClure, P. R.; Trapp, T. J.

    2013-10-01

    A small lead-bismuth eutectic-cooled reactor concept (referred to as the Hyperion reactor concept) is being studied at Los Alamos National Laboratory and Hyperion Power Generation. In this report, a critical assessment of the lead-bismuth eutectic technology for Hyperion reactor is presented based on currently available knowledge. Included are: material compatibility, oxygen control, thermal hydraulics, polonium control. The key advances in the technology and their applications to Hyperion reactor design are analyzed. Also, the near future studies in main areas of the technology are recommended for meeting the design requirements.

  9. Effects of heating on salt-occluded zeolite

    SciTech Connect

    Lewis, M.A.; Hash, M.C.; Pereira, C.; Ackerman, J.P.

    1996-05-01

    The electrometallurgical treatment of spent nuclear fuel generates a waste stream of fission products in the electrolyte, LiCl-KCl eutectic salt. Argonne National Laboratory is developing a mineral waste form for this waste stream. The waste form consists of a composite formed by hot pressing salt-occluded zeolite and a glass binder. Pressing conditions must be judiciously chosen. For a given pressure, increasing temperatures and hold times give denser products but the zeolite is frequently converted to sodalite. Reducing the temperature or hold time leads to a porous zeolite composite. Therefore, conditions that affect the thermal stability of salt-occluded zeolite both with and without glass are being investigated in an ongoing study. The parameters varied in this stage of the work were heating time, temperature, salt loading, and glass content. The heat-treated samples were examined primarily by X-ray diffraction. Large variations were found in the rate at which salt-occluded zeolite converted to other phases such as nepheline, salt, and sodalite. The products depended on the initial salt loading. Heating times required for these transitions depended on the procedure and temperature used to prepare the salt-occluded zeolite. Mixtures of glass and zeolite reacted much faster than the pure salt-occluded zeolite and were almost always converted to sodalite.

  10. Prediction of the surface tension of deep eutectic solvents

    Microsoft Academic Search

    K. Shahbaz; F. S. Mjalli; M. A. Hashim; I. M. AlNashef

    2012-01-01

    Surface tension is one of the important deep eutectic solvents (DESs) physical properties which provides considerable information related to the molecular influence on the intensity of interactions in the mixture. Due to the absence of DESs surface tension experimental data, prediction methods of this property become of high importance. In this work, two simple methods for the prediction of DESs

  11. Structure of directionally solidified InSb-Sb eutectic alloy

    SciTech Connect

    Umehara, Y.; Koda, S.

    1987-11-01

    The eutectic alloy of InSb-Sb has been directionally solidified at various rates in order to investigate the structure changes due to solidification conditions. The boundary energy between the InSb and Sb phases was determined from a dislocation model of the interface.

  12. Eutectic epsilon-near-zero metamaterial terahertz waveguides

    E-print Network

    . Tzortzakis1,3, * 1 Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology that subwavelength waveguiding of terahertz radiation is achieved within an alkali­halide eutectic metamaterial or crystals [12]. Recently it has been shown that alkali­halide polari- tonic materials can be structured

  13. Eutectic alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Moore, P.

    1980-01-01

    These 250 abstracts from the international literature provide summaries of the preparation, treatments, composition and structure, and properties of eutectic alloys. Techniques for directional solidification and treatments including glazing, coating, and fiber reinforcement are discussed. In addition to the mechanical and thermal properties, the superconducting, corrosion, resistance, and thermionic emission and adsorption properties are described.

  14. Microstructural evolution of eutectic Au-Sn solder joints

    SciTech Connect

    Song, Ho Geon

    2002-05-31

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  15. Lamellar eutectic growth at large thermal gradient: I. Stationary patterns

    E-print Network

    Paris-Sud XI, Université de

    'inclinaison ». Abstract. 2014 We study stationary front profiles of directionally solidified lamellar eutectics. We show, Classification Physics Abstracts 61.50C - 64.60 - 64.70D - 81.30F 1. Introduction. Directional solidification rod patterns parallel to the common (Oz) direction of the pulling velocity V and of the external

  16. Plastic and Anelastic Responses of Ice-I/Magnesium Sulfate Hydrate Eutectic Aggregates

    NASA Astrophysics Data System (ADS)

    McCarthy, C.; Cooper, R. F.; Goldsby, D. L.; Kirby, S. H.; Durham, W. B.

    2006-12-01

    The presence of non-ice material (e.g. salt-hydrate) on the surface of icy satellites requires that we consider the influence of a second phase on the mechanical properties of ice. We are investigating experimentally the flow-strength and relaxation response (attenuation) of two-phase aggregates of magnesium sulfate hydrate and ice-I through compression creep tests (T = 240-250K; ? = 0.9-9.0 MPa) in a 1-atm, dead-weight, deformation apparatus modified for cryogenic use. All samples in our study crystallize from a homogeneous liquid solution that produces a classical eutectic microstructure. A misting and hot-pressing technique allows us to control grain size, or more accurately, colony size, in the samples. The steady-state (secondary) creep response of the ice/hydrate aggregate reveals that it has a viscosity that is at least an order of magnitude greater than that of pure polycrystalline ice at the same stress and temperature in what appears to be a dislocation creep regime. Since heterophase boundaries are found to be an effective barrier to dislocation motion, we attribute the increase in strength to the high volume of incoherent interfaces that the eutectic microstructure provides. We are also examining the transient (primary) creep in the strain response; this relaxation is an indication of the dissipative quality of the material from which we may begin to understand how mechanical energy (such as that from tidal loading) could be absorbed (dissipated) in the crust as heat. Information gleaned from these experiments can help constrain models of crustal thickness and surface dynamics on Europa.

  17. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1998-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the present projects is to test hypotheses for the reported influence of microgravity on the microstructure of three fibrous eutectics (MnBi-Bi, InSb-NiSb, Al3Ni-Al). A secondary objective is to determine the influence of convection on the microstructure of other eutectic alloys. Two doctoral students and a masters student supported as a teaching assistant were recruited for this research. Techniques were developed for directional solidification of MnBi-Bi eutectics with periodic application of current pulses to produce an oscillatory freezing rate. Image analysis techniques were developed to obtain the variation in MnBi fiber spacing, which was found to be normally distributed. The mean and standard deviation of fiber spacing were obtained for several freezing conditions. Eighteen ampoules were prepared for use in the gradient freeze furnace QUELD developed at Queen's University for use in microgravity. Nine of these ampoules will be solidified soon at Queen's in a ground-based model. We hope to solidify the other nine in the QUELD that is mounted on the Canadian Microgravity Isolation Mount on MIR. Techniques are being developed for directional solidification of the Al-Si eutectic at different freezing rates, with and without application of accelerated crucible rotation to induce convection. For the first time, theoretical methods are being developed to analyze eutectic solidification with an oscillatory freezing rate. In a classical sharp-interface model, we found that an oscillatory freezing rate increases the deviation of the average interfacial composition from the eutectic, and increases the undercooling of the two phases by different amounts. This would be expected to change the volume fraction solidifying and the fiber spacing. Because of difficulties in tracking the freezing interfaces of the two solid phases, a phase-field model is also being developed. A paper demonstrating application of phase field methods to periodic structures has been submitted for publication.

  18. Investigations of neutron characteristics for salt blanket models; integral fission cross section measurements of neptunium, plutonium, americium and curium isotopes

    SciTech Connect

    Novoselov, G. F.; Gavrilov, V. V.; Kuvshinov, M. (Mikhail); Bogdanov, V. M. (Vladimir Mikha?lovich); Maslov, Georgi? Vladimirovich,; Vyachin, V. (Vladimir); Mashnik, S. G. (Stepan G.); Gorelov, V. I. (Vladimir Ivanovich); Fomushkin, E. F.

    2001-01-01

    Neutron characteristics of salt blanket micromodels containing eutectic mixtures of sodium, zirconium and uranium sulphides were measured on FKBN-2M, BIGR and MAKET installations. The effective fission cross sections of neptunium, plutonium, americium and curium isotopes were measured on the neutron spectra formed by micromodels. KEYWORDS: transmutation, minor actinides, fluoride salts, micromodel, critical assembly, neutron spectrum, multiplication coefficient, fission, effective cross section, nuclear track detector, nuclear data library

  19. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  20. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L [ORNL] [ORNL

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  1. Hydride-containing molten salts and their technology implications

    NASA Astrophysics Data System (ADS)

    Liaw, Bor Y.

    1993-03-01

    Hydride-conducting molten salts such as LiH in eutectic LiCl-KCl are attractive electrolyte systems for intermediate-temperature applications. The chemically reducing characteristics of these hydride melts provide a unique method to clean metal surfaces. The high conductivity of these hydride melts makes them the best electrolytes for hydrogen-based energy applications at intermediate temperatures. We will review some earlier work on hydride-conducting molten salts and their potential applications in energy technology. We will also describe some recent work on these hydride-containing molten salts for energy conversion and storage applications, including hydrogen sensing and hydrogen storage, electrochemical characterizations, and thermodynamic and kinetic investigations of metal-hydrogen reactions. More recently, lithium deuteride containing eutectic LiCl-KCl melts have been used for excess heat production by the process of electrolysis to charge deuterium into metal matrix such as Pd and Ti. From these studies we illustrate the prospects of this hydride molten salt technology and its implications for the use in intermediate-temperature electro-chemical energy conversion configurations. It will also reveal some interesting electrochemical aspects involved in the processes.

  2. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  3. Salt Marsh

    NSDL National Science Digital Library

    High school level and higher description of Spartina salt marshes with pictures. Page is full of fantastic photographs most featuring a descriptive caption. Topics discussed include zonation, succession, and the intertidal zone. The habitat's associated flora and fauna are discussed. Organisms of particular interest include: Spartina alterniflora, Spartina patens, Geukenzia demissa, Mytilus edulis, Distichlis spicata, Salicornia, Melampus bidentatus, Ilyanassa obsoleta, and Hydrobia totteni.

  4. Chlorate salts and solutions on Mars

    NASA Astrophysics Data System (ADS)

    Hanley, Jennifer; Chevrier, Vincent F.; Berget, Deanna J.; Adams, Robert D.

    2012-04-01

    Chlorate (ClO3-) is an intermediate oxidation species between chloride (Cl-) and perchlorate (ClO4-), both of which were found at the landing site by the Wet Chemistry Lab (WCL). The chlorate ion is almost as stable as perchlorate, and appears to be associated with perchlorate in most terrestrial reservoirs (e.g. Atacama and Antarctica). It is possible that chlorate contributed to the ion sensor response on the WCL, yet was masked by the strong perchlorate signal. However, very little is known about chlorate salts and their effect on the stability of water. We performed evaporation rate experiments in our Mars simulation chamber, which enabled us to determine the activity of water for various concentrations. From this we constructed solubility diagrams for NaClO3, KClO3, Mg(ClO3)2 and Ca(ClO3)2, and determined the Pitzer parameters for each salt. Chlorate salt eutectic temperatures range from 270 K (KClO3) to 204 K (Mg(ClO3)2). Modeling the addition of chlorate to the initial WCL solutions shows that it precipitates in concentrations comparable to other common salts, such as gypsum and epsomite, and implies that chlorates may play an important role in the wet chemistry on Mars.

  5. Eutectic bonding of boron-aluminum structural components. II

    NASA Technical Reports Server (NTRS)

    Niemann, J. T.; Garrett, R. A.

    1974-01-01

    Eutectic bonding is a diffusion brazing process developed for fabricating boron-aluminum components from composite monolayer. This process relies on the diffusion of a thin surface film of copper into the aluminum matrix to form a liquid phase when heated above the copper-aluminum eutectic temperature of 1018 F. This type of fabrication offers design flexibility in that skin thickness may be varied, the stiffness geometry and orientation can be varied, and local reinforcement can be added. In addition, this type of boron-aluminum structure offers high efficiency. Also, this method of construction can be cost-comparative with complex titanium shapes; simple tooling permits easy layup, bonding is a one-step operation, and little finish machining is required.

  6. Corrosion of ODS steels in lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Hosemann, P.; Thau, H. T.; Johnson, A. L.; Maloy, S. A.; Li, N.

    2008-02-01

    Oxide dispersion strengthened (ODS) ferritic steels are advanced materials being developed for high temperature applications. Their properties (high temperature strength, creep resistance, corrosion/oxidation resistance) make them potentially usable for high temperature applications in liquid metal cooled systems like liquid lead-bismuth eutectic cooled reactors and spallation sources. Corrosion tests on five different ODS alloys were performed in flowing liquid lead-bismuth eutectic in the DELTA Loop at the Los Alamos National Laboratory at 535 °C for 200 h and 600 h. The tested materials were chromium alloyed ferritic/martensitic steels (12YWT, 14YWT, MA957) and Cr-Al alloyed steels (PM2000, MA956). It was shown that the Al alloyed ODS steel above 5.5 wt% Al (PM2000) is highly resistant to corrosion and oxidation in the conditions examined, and that the corrosion properties of the ODS steels depend strongly on their grain size.

  7. Glucose-based deep eutectic solvents: Physical properties

    Microsoft Academic Search

    A. Hayyan; F. S. Mjalli; I. M. Alnashef; Y. M. Al-Wahaibi; T. Al-Wahaibi; M. A. Hashim

    2013-01-01

    Deep eutectic solvents (DESs) are considered nowadays as green ionic liquid (IL) analogues. Despite their relatively short period of introduction as a special class of ILs, they have been under an increasing emphasis by the scientific community due to their favorable properties. In the present study, a glucose based DES of choline chloride (2-hydroxyethyl-trimethylammonium chloride) with the monosaccharide sugar d-glucose

  8. Creep of directionally solidified alumina\\/YAG eutectic monofilaments

    Microsoft Academic Search

    L. E. Matson; N. Hecht

    2005-01-01

    Multi-phase—single crystal oxide fibers offer the best choice for reinforcing oxide matrix composites because they have superior creep resistance up to 1700°C without significant strength loss at moderate temperatures due to growth of processing flaws. In this work, Directionally Solidified Al2O3–YAG eutectic fibers were grown at various rates by the Edge-defined, Film-fed Growth (EFG) method and their microstructure, microstructural stability

  9. Unidirectional solidification of Co-Cr-C monovariant eutectic alloys

    Microsoft Academic Search

    E. R. Thompson; F. D. Lemkey

    1970-01-01

    Compositions on the eutectic liquidus line between Co-25 wt pct Cr-3.5 wt pct C and Co-45 wt pct Cr-2.2 wt pct C wherein the simultaneous freezing of a metal matrix and a carbide occur have been solidified unidirectionally. The composite structures formed consist of a cobalt matrix containing substantial amounts of soluble chromium with the carbide phase, (Cr, Co)7C3, as

  10. Magnetic properties of directionally solidified MnBi-Bi eutectics

    Microsoft Academic Search

    C. Graham; M. Notis; J.-C. Boulbes

    1972-01-01

    Samples consisting of approximately parallel arrays of ferromagnetic MnBi rods in a Bi matrix have been grown by directional solidification of eutectic Mn-Bi alloys. The rods are of order 1?m in diameter, and very long in comparison to their diameter. Room-temperature intrinsic coercive fields up to 30 kOe have been attained, suggesting that the rods show single-domain behavior. The measured

  11. An approximate formula for recalescence in binary eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1993-01-01

    In alloys, solidification takes place along various paths which may be ascertained via phase diagrams; while there would be no single formula applicable to all alloys, an approximate formula for a specific solidification path would be useful in estimating the fraction of the solid formed during recalescence. A formulation is here presented of recalescence in binary eutectic alloys. This formula is applied to Ag-Cu alloys which are of interest in containerless solidification, due to their formation of supersaturated solutions.

  12. Fatigue crack propagation behaviour of unidirectionally solidified ?\\/??-? eutectic alloys

    Microsoft Academic Search

    Philip E. Bretz; Richard W. Hertzberg

    1979-01-01

    Fatigue crack propagation (FCP) studies were conducted on a series of?\\/??-? (Ni-Nb-Al) alloys by subjecting them to cyclic four-point bending loads at room temperature. The aluminium contents of the alloys investigated ranged from 1.5% to 2.5% by weight, with the niobium contents adjusted to maintain controlled eutectic microstructures. In addition to studies of as-grown alloys, heat treatments were performed on

  13. ?SR studies of superconductivity in eutectically grown mixed ruthenates

    NASA Astrophysics Data System (ADS)

    Shiroka, T.; Fittipaldi, R.; Cuoco, M.; De Renzi, R.; Maeno, Y.; Lycett, R. J.; Ramos, S.; Forgan, E. M.; Baines, C.; Rost, A.; Granata, V.; Vecchione, A.

    2012-04-01

    The low-temperature magnetic behavior of the double-layered ruthenate Sr3Ru2O7, as grown from a eutectic Sr2RuO4-Sr3Ru2O7 system, was investigated via zero- and transverse-field muon-spin rotation. The gradual increase of the muon relaxation rate observed below 2.5 K, even in the absence of applied magnetic fields, indicates the occurrence of a spontaneous breaking of time-reversal symmetry. The onset of the latter at a temperature above 1.5 K, the Tc of the single phase Sr2RuO4, provides evidence about an unconventional superconducting state in the eutectic phase, which most likely takes place at the interface between the Sr2RuO4 and Sr3Ru2O7 domains, or even inside the Sr3Ru2O7 phase. We show that the superconducting state manifests a two-component behavior in the transverse-field response with change-over at about T=2.5 K and T=1.5 K. The comparison with zero-field ?SR data in the Ru-Sr2RuO4 eutectic system rules out the possibility of spurious effects due to embedded Ru islands.

  14. Metastable Eutectic Equilibrium in Natural Environments: Recent Development and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica compositions of circumstellar dust presolar and solar nebula grains in the matrix of the collected aggregate IDPs (Interplanetary Dust Particles). Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra) fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous, and typically nano-to micrometer-sized, metastable eutectic materials.

  15. Metastable Eutectic Equilibrium in Natural Environments: Recent Developments and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Fans J. M.; Nuth, Joseph A., II; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica, compositions of circumstellar dust, presolar and solar nebula grains in the matrix of the collected aggregate IDPs. Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra)fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous and typically nano- to micrometer-sized, metastable eutectic materials.

  16. Studies of directionally solidified eutectic Bi\\/MnBi at low growth velocities

    Microsoft Academic Search

    Ron G. Pirich

    1984-01-01

    A deviation from the interrod spacing (?) and growth velocity (V) relation ?2V = constant, anticipated for diffusion-only rod eutectic growth, has been observed at growth velocities ?5 cm\\/h (14 µm\\/s)\\u000a in directionally solidified eutectic Bi-Mn (Bi\\/MnBi). At lower growth velocities,V? 0.5 cm\\/h, a breakdown in the aligned rod eutectic, cooperative growth mechanism, has also been noted. The ?2V relation

  17. A numerical model for eutectic spacing selection in the CBr 4?C 2Cl 6 eutectic system

    NASA Astrophysics Data System (ADS)

    Liu, Jincheng; Elliott, R.

    1995-03-01

    It is well established that the lamellar eutectic structure exhibits a limited range of spacings rather than a unique spacing during steady state growth at a constant growth velocity. The minimum observed spacing corresponds to the extremum spacing predicted by the Jackson and Hunt analysis of eutectic growth. However, the maximum observed spacing is much less than the maximum spacing predicted by their analysis. The assumption of a planar interface by Jackson and Hunt is relaxed in this paper and a numerical model is developed which uses the boundary element method and an iterative technique to obtain the solute distribution for a selfconsistent curved interface shape. The maximum selfconsistent spacing, for which a selfconsistent interface exists, is determined for several growth velocities. The maximum selfconsistent spacings calculated in this way show good agreement with the maximum spacings observed in the CBr 4?C 2Cl 6 eutectic system. The interface shape for the maximum selfconsistent spacings has a limiting slope which is far from vertical and the deepest point on the selfconsistent interface at the maximum spacing does not lie in a deep pocket.

  18. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite

    PubMed Central

    Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem

    2014-01-01

    The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties. PMID:25265897

  19. Stress production and relief in the gold/silicon eutectic die-attach process

    NASA Astrophysics Data System (ADS)

    Hund, T. D.; Burchett, S. N.

    1983-06-01

    Eutectic braze thickness and package cooling rate for stress relief in eutectically bonded die were evaluated. Two package types, a 30 pin leadless chip carrier and a 28 pin flat pack were used as models in finite element stress calculations to study these parameters on the maximum principal stress, maximum circumferential stress, and maximum shear stress. Bonding temperature, creep rate, silicon tensile strength, and the effects of surface defects on silicon tensile strength were studied to evaluate their effects on stresses in the die. It is indicated that with a thicker eutectic braze and a slower cooling rate, die can be eutectically attached without excessive stress.

  20. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite.

    PubMed

    Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem

    2014-01-01

    The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties. PMID:25265897

  1. Electrochemical fabrication of nanoporous copper films in choline chloride-urea deep eutectic solvent.

    PubMed

    Zhang, Q B; Abbott, Andrew P; Yang, C

    2015-05-27

    Nanoporous copper films were fabricated by a facile electrochemical alloying/dealloying process without the need of a template. A deep eutectic solvent made from choline chloride (ChCl) and urea was used with zinc oxide as the metal salt. Cyclic voltammetry was used to characterise the electrochemical reduction of zinc and follow Cu-Zn alloy formation on the copper substrate at elevated temperatures from 353 to 393 K. The alloy formation was confirmed by X-ray diffraction spectra. 3D, open and bicontinuous nanoporous copper films were obtained by in situ electrochemically etching (dealloying) of the zinc component in the Cu-Zn surface alloys at an appropriate potential (-0.4 V vs. Ag). This dealloying process was found to be highly temperature dependent and surface diffusion controlled, which involved the self-assembly of copper atoms at the alloy/electrolyte interface. Additionally, the effects of the deposition parameters, including deposition temperature, current density as well as total charge density on resulting the microstructure were investigated by scanning electron microscopy, and atomic force microscope. PMID:25972227

  2. Prebiotic chemistry in eutectic solutions at the water-ice matrix.

    PubMed

    Menor-Salván, César; Marín-Yaseli, Margarita R

    2012-08-21

    A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry. PMID:22660387

  3. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties.

    PubMed

    García-Argüelles, Sara; Serrano, M Concepción; Gutiérrez, María C; Ferrer, M Luisa; Yuste, Luis; Rojo, Fernando; del Monte, Francisco

    2013-07-30

    Bacterial infection related to the implantation of medical devices represents a serious clinical complication, with dramatic consequences for many patients. In past decades, numerous attempts have been made to develop materials with antibacterial and/or antifouling properties by the incorporation of antibiotic and/or antiseptic compounds. In this context, deep eutectic solvents (DESs) are acquiring increasing interest not only as efficient carriers of active principle ingredients (APIs) but also as assistant platforms for the synthesis of a wide repertoire of polymer-related materials. Herein, we have successfully prepared biodegradable poly(octanediol-co-citrate) polyesters with acquired antibacterial properties by the DES-assisted incorporation of quaternary ammonium or phosphonium salts into the polymer network. In the resulting polymers, the presence of these salts (i.e., choline chloride, tetraethylammonium bromide, hexadecyltrimethylammonium bromide, and methyltriphenylphosphonium bromide) inhibits bacterial growth in the early postimplantation steps, as tested in cultures of Escherichia coli on solid agar plates. Later, positive polymer cytocompatibility is expected to support cell colonization, as anticipated from in vitro preliminary studies with L929 fibroblasts. Finally, the attractive elastic properties of these polyesters permit matching those of soft tissues such as skin. For all of these reasons, we envisage the utility of some of these antibacterial, biocompatible, and biodegradable polyesters as potential candidates for the preparation of antimicrobial wound dressings. These results further emphasize the enormous versatility of DES-assisted synthesis for the incorporation, in the synthesis step, of a wide palette of APIs into polymeric networks suitable for biomedical applications. PMID:23808373

  4. Enhanced electroanalysis in lithium potassium eutectic (LKE) using microfabricated square microelectrodes.

    PubMed

    Corrigan, Damion K; Blair, Ewen O; Terry, Jonathan G; Walton, Anthony J; Mount, Andrew R

    2014-11-18

    Molten salts (MSs) are an attractive medium for chemical and electrochemical processing and as a result there is demand for MS-compatible analysis technologies. However, MSs containing redox species present a challenging environment in which to perform analytical measurements because of their corrosive nature, significant thermal convection and the high temperatures involved. This paper outlines the fabrication and characterization of microfabricated square microelectrodes (MSMs) designed for electrochemical analysis in MS systems. Their design enables precise control over electrode dimension, the minimization of stress because of differential thermal expansion through design for high temperature operation, and the minimization of corrosive attack through effective insulation. The exemplar MS system used for characterization was lithium chloride/potassium chloride eutectic (LKE), which has potential applications in pyrochemical nuclear fuel reprocessing, metal refining, molten salt batteries and electric power cells. The observed responses for a range of redox ions between 400 and 500 °C (673 and 773 K) were quantitative and typical of microelectrodes. MSMs also showed the reduced iR drop, steady-state diffusion-limited response, and reduced sensitivity to convection seen for microelectrodes under ambient conditions and expected for these electrodes in comparison to macroelectrodes. Diffusion coefficients were obtained in close agreement with literature values, more readily and at greater precision and accuracy than both macroelectrode and previous microelectrode measurements. The feasibility of extracting individual physical parameters from mixtures of redox species (as required in reprocessing) and of the prolonged measurement required for online monitoring was also demonstrated. Together, this demonstrates that MSMs provide enhanced electrode devices widely applicable to the characterization of redox species in a range of MS systems. PMID:25284431

  5. Corrosion of materials in molten alkali carbonate salt at 900 degrees C

    Microsoft Academic Search

    R. T. Coyle; T. M. Thomas; P. Schissel

    1985-01-01

    This work was done to assess the compatibility of selected ceramics and alloys with ternary eutectic lithium-sodium-potassium carbonate at 900°C. This salt has been chosen for use in pilot-scale studies of the Direct Absorption Receiver, which will be evaluated at the Advanced Components Test Facility. The candidate containment materials for the receiver were identified in earlier work at SERI and

  6. Phase diagram of the LiNO3-NaNO3-NaCl-Sr(NO3)2 salt system

    NASA Astrophysics Data System (ADS)

    Rasulov, A. I.; Gasanaliev, A. M.; Mamedova, A. K.; Gamataeva, B. Yu.

    2015-04-01

    The phase diagram of the quaternary LiNO3-NaNO3-NaCl-Sr(NO3)2 system is studied by means of differential thermal analysis, and the compositions and crystallization temperatures of nonvariant equilibrium phases are revealed. The temperature dependence of conductivity in eutectic and peritectic salt compositions is investigated.

  7. Pattern Formation and Growth Kinetics in Eutectic Systems

    SciTech Connect

    Jing Teng

    2007-12-01

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to characterize the cell shape and tip undercooling and the experimental results are compared with the predictions of the model. From the investigation of cell/dendrite transition, a model is proposed, from which the condition for the onset of the transition can be obtained.

  8. Microstructure of directionally solidified CrAs/GaAs eutectic

    SciTech Connect

    Holmes, D.E.; Koo, L.Y. [Electronic Materials Engineering, Camarillo, CA (United States)] [Electronic Materials Engineering, Camarillo, CA (United States)

    1995-04-01

    The microstructure of the CrAs/GaAs eutectic directionally solidified by both the Czochralski (Cz) and vertical Bridgman (VB) methods consists of arrays of CrAs rods oriented along the axis of solidification in a GaAs matrix. Microdefects in Cz material including striations, terminations and nucleations, coalescence and branching, and oscillatory instabilities are prevalent and are the result of dynamic morphological adjustment under fluctuating conditions of microscopic solidification. In contrast, selected regions of VB material exhibit near-ideal hexagonal packing of circular rods in the matrix. Cause-effect relationships between microstructure and conditions of solidification were determined and are presented and discussed.

  9. Development of high temperature fasteners using directionally solidified eutectic alloys

    NASA Technical Reports Server (NTRS)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  10. Charge Transport and Structural Dynamics in Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Cosby, Tyler; Holt, Adam; Terheggen, Logan; Griffin, Philip; Benson, Roberto; Sangoro, Joshua

    2015-03-01

    Charge transport and structural dynamics in a series of imidazole and carboxylic acid-based deep eutectic mixtures are investigated by broadband dielectric spectroscopy, dynamic light scattering, 1H nuclear magnetic resonance spectroscopy, calorimetry, and Fourier transform infrared spectroscopy. It is found that the extended hydrogen-bonded networks characteristic of imidazoles are broken down upon addition of carboxylic acids, resulting in an increase in dc conductivity of the mixtures. These results are discussed within the framework of recent theories of hydrogen bonding and proton transport.

  11. Interface diffusion in eutectic Pb–Sn solder

    Microsoft Academic Search

    D. Gupta; K. Vieregge; W. Gust

    1998-01-01

    Interface diffusion of 210Pb and 113Sn radioactive tracers in oriented Pb–62wt%Sn eutectic specimens showing lamellar structure has been measured. The product of the interface diffusion coefficient and the width, ?Di, shows an Arrhenius relationship below 400K. The values of the Arrhenius parameters, Qi and ?D°i, for the 210Pb and 113Sn tracers are 84.8kJ\\/mol, 7×10?10m3\\/s and 77kJ\\/mol, 7×10?12m3\\/s, respectively. An interface

  12. Divorced Eutectic Solidification of Mg-Al Alloys

    NASA Astrophysics Data System (ADS)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-04-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed ? -Mg phase followed by the nucleation of the ? -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  13. Creep in Directionally Solidified NiAl-Mo Eutectics

    SciTech Connect

    Dudova, Marie [Institute of Physics, Czech Republic; Kucharova, Kveta [Institute of Physics, Czech Republic; Bartak, Tomas [Institute of Physics, Czech Republic; Bei, Hongbin [ORNL; George, Easo P [ORNL; Somsen, Ch. [Ruhr University, Bochum, Germany; Dlouhy, A. [Institute of Physics of Materials, Brno, Czech Republic

    2011-01-01

    A directionally solidified NiAl-Mo eutectic and an NiAl intermetallic, having respective nominal compositions Ni-45.5Al-9Mo and Ni-45.2Al (at.%), were loaded in compression at 1073 and 1173 K. Formidable strengthening by regularly distributed Mo fibres (average diameter 600 nm, volume fraction 14%) was observed. The fibres can support compression stresses transferred from the plastically deforming matrix up to a critical stress of the order of 2.5 GPa, at which point they yield. Microstructural evidence is provided for the dislocation-mediated stress transfer from the NiAl to the Mo phase.

  14. Directional solidification of Pb-Sn eutectic with vibration

    NASA Technical Reports Server (NTRS)

    Caram, Rubens; Banan, Mohsen; Wilcox, William R.

    1991-01-01

    Pb-Sn eutectic alloy was directionally solidified at 1.4 to 3.2 cm/hr with forced convection induced by axial vibration of the growth ampoule with a frequency of 10 to 40 Hz and an amplitude of 0.5 to 1.0 mm. To determine the exact growth rate, an interface demarcation technique was applied. The lamellar spacing was increased 10 to 40 percent in ingots solidified with vibration compared to those solidified without vibration. The average intensity of convection in the melt under axial vibration of the ampoule was estimated by comparing the experimental results with a theoretical model.

  15. Composition gradients in electrolyzed LiCl-KCl eutectic melts

    NASA Astrophysics Data System (ADS)

    Vallet, C. E.; Heatherly, D. E.; Braunstein, J.

    1983-12-01

    Analysis of transport in a mixed electrolyte has previously predicted significant composition gradients in the LiCl-KCl electrolyte of high temperature LiS/ batteries. Composition gradients in quenched electrolyzed LiCl-KCl eutectic contained in yttria felt are measured with high distance resolution by scanning electron microscopy with energy dispersive X-ray spectroscopy. The reported results include composition profiles of LiCl-KCl coontained in porous Y2O3 and electrolyzed in three cells, two with solid Li-Al electrodes and one with a porous Li-Al anode.

  16. Composition gradients in electrolyzed LiCl-KCL eutectic melts

    SciTech Connect

    Vallet, C.E.; Braunstein, J.; Heatherly, D.E.

    1983-12-01

    Analysis of transport in a mixed electrolyte has previously predicted significant composition gradients in the LiCl-KCl electrolyte of high temperature Li/S batteries. Composition gradients in quenched electrolyzed LiCl-KCl eutectic contained in yttria felt are measured with high distance resolution by scanning electron microscopy with energy dispersive x-ray spectroscopy. The reported results include composition profiles of LiCl-KCl contained in porous Y/sub 2/O/sub 3/ and electrolyzed in three cells, two with solid Li-Al electrodes and one with a porous Li-Al anode.

  17. Low-Temperature Interface Reaction between Titanium and the Eutectic Silver-Copper Brazing Alloy

    E-print Network

    Paris-Sud XI, Université de

    is of 780 °C) should be favourable to the preservation of the microstructure and composition of the titanium1 Low-Temperature Interface Reaction between Titanium and the Eutectic Silver-Copper Brazing Alloy zones formed at 790 °C between solid titanium and liquid Ag-Cu eutectic alloys (pure and Ti

  18. The eutectic characteristic of MC-type carbide precipitation in a DS nickel-base superalloy

    Microsoft Academic Search

    W. R. Sun; J. H. Lee; S. M. Seo; S. J. Choe; Z. Q. Hu

    1999-01-01

    The precipitation of MC-type carbide in a DS nickel-base superalloy has been studied. The nucleating temperature of the MC carbide was determined by analysis. The MC carbide and ? phase were complementary in composition, and the eutectic reaction of (?+MC) took place in different forms at varied solidification rate. The (?+MC) eutectic reaction was an important factor of determining the

  19. Lead–gold eutectic: An alternative liquid target material candidate for high power spallation neutron sources

    Microsoft Academic Search

    Marisa Medarde; Rainer Moormann; Ruggero Frison; Robert J. Pu?niak; Ekaterina Pomjakushina; Kazimierz Conder; Ernests Platacis; Yong Dai; Daniela Kiselev; Luca Zanini; Szabina Török; Peter Zagyvai; Stephan Heinitz; Jörg Neuhausen; Dorothea Schumann; Knud Thomsen

    2011-01-01

    One of the main technical concerns of Megawatt-class spallation neutron sources is the removal of the heat deposited in the target station. A way to overcome it is to use targets consisting of flowing liquid metals, but the already tested materials – mercury and lead–bismuth eutectic (LBE) – are not unproblematic. We show here that another eutectic alloy containing lead

  20. Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen

    Microsoft Academic Search

    Paul W Stott; Adrian C Williams; Brian W Barry

    1998-01-01

    The formation of eutectic systems between ibuprofen (ibu) and seven terpene skin penetration enhancers was studied and, by using the eutectic systems as donors, the effects of melting point depression of the delivery system on transdermal delivery were investigated. A range of ibu:terpene binary mixtures were melted together, cooled, and recrystallised. Composition\\/melting point phase diagrams were determined by DSC and

  1. Competitive stochastic growth model for the 3D morphology of eutectic Si in Al-Si alloys

    E-print Network

    Schmidt, Volker

    Competitive stochastic growth model for the 3D morphology of eutectic Si in Al-Si alloys Gerd for the simulation of the 3D morphology of eutectic silicon in Al-Si alloys, which represents the colonies-Si alloys, coral-like eutectic Si, stochastic growth model, multivariate time series, FIB-SEM tomography

  2. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 9, NO. 1, MARCH 2000 3 Localized Silicon Fusion and Eutectic Bonding for

    E-print Network

    Lin, Liwei

    and Eutectic Bonding for MEMS Fabrication and Packaging Y. T. Cheng, Liwei Lin, Member, IEEE, and Khalil Najafi, Fellow, IEEE Abstract--Silicon fusion and eutectic bonding processes based on the technique of localized separately in the silicon-to-glass fusion bonding and silicon-to-gold eutectic bonding experiments

  3. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    SciTech Connect

    Wu, Hsin-jay; Chen, Sinn-wen [Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsin-Chu 300, Taiwan (China); Foo, Wei-jian [Engineering Science Programme, National University of Singapore, Blk EA, 06-10, 9 Engineering Drive, Singapore 117576 (Singapore); Jeffrey Snyder, G. [Materials Science, California Institute of Technology, 1200 California Blvd., Pasadena, California 91125 (United States)

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  4. Localized removal of the Au-Si eutectic bonding layer for the selective release of microstructures

    NASA Astrophysics Data System (ADS)

    Gradin, Henrik; Braun, Stefan; Stemme, Göran; van der Wijngaart, Wouter

    2009-10-01

    This paper presents and investigates a novel technique for the footprint and thickness-independent selective release of Au-Si eutectically bonded microstructures through the localized removal of their eutectic bond interface. The technique is based on the electrochemical removal of the gold in the eutectic layer and the selectivity is provided by patterning the eutectic layer and by proper electrical connection or isolation of the areas to be etched or removed, respectively. The gold removal results in a porous silicon layer, acting similar to standard etch holes in a subsequent sacrificial release etching. The paper presents the principle and the design requirements of the technique. First test devices were fabricated and the method successfully demonstrated. Furthermore, the paper investigates the release mechanism and the effects of different gold layouts on both the eutectic bonding and the release procedure.

  5. Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character

    PubMed Central

    Rice, James W.; Fu, Jinxia; Suuberg, Eric M.

    2010-01-01

    To better characterize the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the anthracene (1) + pyrene (2) system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at 404 K at x1 = 0.22. A model based on eutectic formation can be used to predict the enthalpy of fusion associated with the mixture. For mixtures that contain x1 < 0.90, the enthalpy of fusion is near that of pure pyrene. This and X-ray diffraction results indicate that mixtures of anthracene and pyrene have pyrene-like crystal structures and energetics until the composition nears that of pure anthracene. Solid-vapor equilibrium studies show that mixtures of anthracene and pyrene form solid azeotropes at x1 of 0.03 and 0.14. Additionally, mixtures at x1 = 0.99 sublime at the vapor pressure of pure anthracene, suggesting that anthracene behavior is not significantly influenced by x2 = 0.01 in the crystal structure. PMID:21116474

  6. Eutectic Solder Bonding for Highly Manufacturable Microelectromechanical Systems Probe Card

    NASA Astrophysics Data System (ADS)

    Kim, Bonghwan

    2011-06-01

    We developed eutectic solder bonding for the microelectromechanical systems (MEMS) probe card. We tested various eutectic solder materials, such as Sn, AgSn, and AuSn, and investigated the bonding ability of Sn-based multi-element alloys and their resistance to chemical solutions. The Sn-based alloys were formed by sputtering, electroplating, and the use of solder paste. According to our experimental results, Sn-rich solders, such as Ag3.5Sn, Ag3.5Sn96Cu0.5, and Sn, were severely damaged by silicon wet etchant such as potassium hydroxide (KOH) and tetramethylammonium hydroxide (TMAH). On the other hand Au80Sn20 was resistant to those chemicals. In order to verify the joint bondability of the solders, we used a cantilever probe beam, and bump which were made of nickel and nickel alloy. After flip-chip bonding of the cantilever beam and the bump with Au80Sn20 solder paste, we measured the contact force to verify the mechanical strength. We then re-inspected it with X-rays and found no voids in the joint.

  7. Ice/hydrohalite crystallization structures in sub-eutectic freezing experiments in the system NaCl-H20 and possible implications for the properties of frozen brines in Europa: A preliminary report

    NASA Astrophysics Data System (ADS)

    Rieck, K.; Kirby, S. H.; Stern, L. A.

    2005-12-01

    Sulfates are likely to be the most abundant solutes in the subsurface Europan liquid ocean. NaCl may also be a significant component of such liquids based on the compositions of stony meteorites like those thought to be among the source materials for the silicates in Europa's interior. The system NaCl-H20 exhibits a eutectic at -20.8°C and 23.3 weight percent NaCl between ice Ih and hydrohalite (NaCl.2H20). This low eutectic temperature compared to Mg and Na sulfate hydrate/ice eutectics indicates that hydrohalite should be among the last salts to crystallize in brine upwellings along rifts and other places where resurfacing by melt extrusion occurs on Europa. We conducted a suite of freezing experiments on NaCl brines with 20.3, 23.3, and 26.6 (saturated) weight percent NaCl by holding these liquids at a few degrees below the eutectic temperature. These runs produced ice-rich, eutectic and hydrohalite-rich aggregates of both phases, respectively, as confirmed by cryogenic x-ray diffraction and x-ray fluorescence spectroscopy. Based on direct observations of crystals forming at the tops and bottoms of the sample chambers and on refractive index measurements of subsequently melted sample material, marked fractional crystallization and segregation by density of ice, hydrohalite, and residual liquids occurred in the 20.3 and 26.6% samples and less so in for the eutectic composition. Crystallization of very fine grained eutectic intergrowths was recognized in cryogenic SEM images of all these samples and they were especially prominent in samples frozen from saturated brine. These samples were very difficult to cleave compared to pure polycrystalline ice, and hence are likely to have high fracture toughness. Direct measurements of this property and also the effects of partial melting on ductile flow rates are planned on such samples. Refracturing of such regions of fine eutectoid ice/hydrohalite intergrowths is likely to be inhibited in refrozen rifts compared to more ice-rich regions on Europa.

  8. Preliminary study of the electrolysis of aluminum sulfide in molten salts

    SciTech Connect

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1983-02-01

    A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

  9. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, Narayan (10516 Royal Birkdale, NE., Albuquerque, NM 87111); Ingersoll, David (5824 Mimosa Pl., NE., Albuquerque, NM 87111)

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  10. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1995-11-28

    Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.

  11. PySALT: the SALT science pipeline

    NASA Astrophysics Data System (ADS)

    Crawford, Steven M.; Still, Martin; Schellart, Pim; Balona, Luis; Buckley, David A. H.; Dugmore, Garith; Gulbis, Amanda A. S.; Kniazev, Alexei; Kotze, Marissa; Loaring, Nicola; Nordsieck, Kenneth H.; Pickering, Timothy E.; Potter, Stephen; Romero Colmenero, Encarni; Vaisanen, Petri; Williams, Theodore; Zietsman, Ewald

    2010-07-01

    PySALT is the python/PyRAF-based data reduction and analysis pipeline for the Southern African Large Telescope (SALT), a modern 10m class telescope with a large user community consisting of 13 partner institutions. The two first generation instruments on SALT are SALTICAM, a wide-field imager, and the Robert Stobie Spectrograph (RSS). Along with traditional imaging and spectroscopy modes, these instruments provide a wide range of observing modes, including Fabry-Perot imaging, polarimetric observations, and high-speed observations. Due to the large user community, resources available, and unique observational modes of SALT, the development of reduction and analysis software is key to maximizing the scientific return of the telescope. PySALT is developed in the Python/PyRAF environment and takes advantage of a large library of open-source astronomical software. The goals in the development of PySALT are: (1) Provide science quality reductions for the major operational modes of SALT, (2) Create analysis tools for the unique modes of SALT, and (3) Create a framework for the archiving and distribution of SALT data. The data reduction software currently provides support for the reduction and analysis of regular imaging, high-speed imaging, and long slit spectroscopy with planned support for multi-object spectroscopy, high-speed spectroscopy, Fabry-Perot imaging, and polarimetric data sets. We will describe the development and current status of PySALT and highlight its benefits through early scientific results from SALT.

  12. Effects of ultrasound and temperature on copper electro reduction in Deep Eutectic Solvents (DES).

    PubMed

    Mandroyan, Audrey; Mourad-Mahmoud, Mahmoud; Doche, Marie-Laure; Hihn, Jean-Yves

    2014-11-01

    This paper concerns a preliminary study for a new copper recovery process from ionic solvent. The aim of this work is to study the reduction of copper in Deep Eutectic Solvent (choline chloride-ethylene glycol) and to compare the influence of temperature and the ultrasound effects on kinetic parameters. Solutions were prepared by dissolution of chloride copper salt CuCl2 (to obtain Copper in oxidation degree II) or CuCl (to obtain Copper in oxidation degree I) and by leaching metallic copper directly in DES. The spectrophotometry UV-visible analysis of the leached solution showed that the copper soluble form obtained is at oxidation degree I (Copper I). Both cyclic voltammetry and linear voltammetry were performed in the three solutions at three temperatures (25, 50 and 80°C) and under ultrasonic conditions (F=20kHz, PT=5.8W) to calculate the mass transfer diffusion coefficient kD and the standard rate coefficient k°. These parameters are used to determine that copper reduction is carried out via a mixed kinetic-diffusion control process. Temperature and ultrasound have the same effect on mass transfer for reduction of Cu(II)/Cu(I). On the other hand, temperature is more beneficial than ultrasound for mass transfer of Cu(I)/Cu. Standard rate constant improvement due to temperature increase is of the same order as that obtained with ultrasound. But, by combining higher temperature and ultrasound (F=20kHz, PT=5.6W at 50°C), reduction limiting current is increased by a factor of 10 compared to initial conditions (T=25°C, silent), because ultrasonic stirring is more efficient in lower viscosity fluid. These values can be considered as key-parameters in the design of copper recovery in global processes using ultrasound. PMID:24629581

  13. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    PubMed

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. PMID:25732422

  14. Solvatochromic probe behavior within choline chloride-based deep eutectic solvents: effect of temperature and water.

    PubMed

    Pandey, Ashish; Pandey, Siddharth

    2014-12-18

    Deep eutectic solvents (DESs) have shown potential as promising environmentally friendly alternatives to conventional solvents. Many common and popular DESs are obtained by simply mixing a salt and a H-bond donor. Properties of such a DES depend on its constituents. Change in temperature and addition of water, a benign cosolvent, can change the physicochemical properties of DESs. The effect of changing temperature and addition of water on solvatochromic probe behavior within three DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, and urea, respectively, in 1:2 mol ratios termed ethaline, glyceline, and reline is presented. Increase in temperature results in reduced H-bond donating acidity of the DESs. Dipolarity/polarizability and H-bond accepting basicity do not change with changing temperature of the DESs. The response of the fluorescence probe pyrene also indicates a decrease in the polarity of the DESs as temperature is increased. Addition of water to DES results in increased dipolarity/polarizability and a decrease in H-bond accepting basicity. Except for pyrene, solvatochromic probes exhibit responses close to those predicted from ideal-additive behavior with slight preferential solvation by DES within the aqueous mixtures. Pyrene response reveals significant preferential solvation by DES and/or the presence of solvent-solvent interactions, especially within aqueous mixtures of ethaline and glyceline, the DESs constituted of H-bond donors with hydroxyl functionalities. FTIR absorbance and Raman spectroscopic measurements of aqueous DES mixtures support the outcomes from solvatochromic probe responses. Aqueous mixtures of ethaline and glyceline possess relatively more interspecies H-bonds as compared to aqueous mixtures of reline, where interstitial accommodation of water within the reline molecular network appears to dominate. PMID:25418894

  15. Microstructure and Strength of NiTi-Nb Eutectic Braze Joining NiTi Wires

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Wang, Cong; Dunand, David C.

    2015-04-01

    NiTi wires were brazed together via liquid eutectic formation between NiTi and Nb powders deposited at the wire contact region. The brazed region shows proeutectic NiTi(Nb) in contact with the wires, sandwiching a NiTi-Nb eutectic structure, whose microhardness and stiffness, as characterized via nanoindentation, are higher than the NiTi wires, while also showing signs of high ductility. NiTi-Nb eutectic bonding may thus be a viable approach for producing shape-memory NiTi scaffolds brazed from stacked, woven, or braided wires.

  16. Evaporation of mercury impurity from liquid lead-bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Aerts, A.; Danaci, S.; Gonzalez Prieto, B.; Van den Bosch, J.; Neuhausen, J.

    2014-05-01

    The equilibrium evaporation of mercury from dilute solutions in liquid lead-bismuth eutectic (LBE) was studied in argon atmosphere. Mercury present as impurity in LBE was evaporated and detected by atomic fluorescence spectroscopy. A method which could accurately simulate the experimental data was developed. Coefficients of the Henry constant temperature correlation for mercury dissolved in LBE were determined. Experiments with samples from several different batches of LBE revealed that mercury at mole fractions between 10-6 and 10-12 and temperatures between 150 and 350 °C evaporated from liquid LBE close to ideal behavior. Evaporation of mercury from solid LBE on the other hand was unexpectedly high. These results are important for safety evaluations of LBE based spallation targets and accelerator driven systems.

  17. Glass transition and mixing thermodynamics of a binary eutectic system.

    PubMed

    Tu, Wenkang; Chen, Zeming; Gao, Yanqin; Li, Zijing; Zhang, Yaqi; Liu, Riping; Tian, Yongjun; Wang, Li-Min

    2014-02-28

    A quantitative evaluation of the contribution of mixing thermodynamics to glass transition is performed for a binary eutectic benzil and m-nitroaniline system. The microcalorimetric measurements of the enthalpy of mixing give small and positive values, typically ~200 J mol(-1) for the equimolar mixture. The composition dependence of the glass transition temperature, T(g), is found to show a large and negative deviation from the ideal mixing rule. The Gordon-Taylor and Couchman-Karasz models are subsequently applied to interpret the T(g) behavior, however, only a small fraction of the deviation is explained. The analyses of the experimental results manifest quantitatively the importance of the mixing thermodynamics in the glass transition in miscible systems. PMID:24413254

  18. Deep eutectic solvent pretreatment and subsequent saccharification of corncob.

    PubMed

    Procentese, Alessandra; Johnson, Erin; Orr, Valerie; Garruto Campanile, Anna; Wood, Jeffery A; Marzocchella, Antonio; Rehmann, Lars

    2015-09-01

    Ionic liquid (ILs) pretreatment of lignocellulosic biomass has attracted broad scientific interest, despite high costs, possible toxicity and energy intensive recycling. An alternative group of ionic solvents with similar physicochemical properties are deep eutectic solvents (DESs). Corncob residues were pretreated with three different DES systems: choline chloride and glycerol, choline chloride and imidazole, choline chloride and urea. The pretreated biomass was characterised in terms of lignin content, sugars concentration, enzymatic digestibility and crystallinity index. A reduction of lignin and hemicellulose content resulted in increased crystallinity of the pretreated biomass while the crystallinity of the cellulose fraction could be reduced, depending on DES system and operating conditions. The subsequent enzymatic saccharification was enhanced in terms of rate and extent. A total of 41g fermentable sugars (27g glucose and 14g xylose) could be recovered from 100g corncob, representing 76% (86% and 63%) of the initially available carbohydrates. PMID:26005926

  19. Directional solidification of Pb-Sn eutectic with vibration

    NASA Technical Reports Server (NTRS)

    Caram, Rubens; Banan, Mohsen; Wilcox, William R.

    1991-01-01

    Pb-Sn eutectic alloy was directionally solidified at 1.4 to 3.2 cm/h with forced convection induced by axial vibration of the growth ampoule with a frequency of 10 to 40 Hz and an amplitude of 0.5 to 1.0 mm. To determine the exact growth rate, an interface demarcation technique was applied. The lamellar spacing was increased 10 to 40 percent in ingots solidified with vibration, compared to those solidified without vibration. The number of grain boundaries was increased by vibration. The average intensity of convection in the melt under axial vibration of the ampoule was estimated by comparing the experimental results with a theoretical model.

  20. Directional solidification of Pb-Sn eutectics with vibration

    NASA Technical Reports Server (NTRS)

    Caram, Rubens; Banan, Mohsen; Wilcox, William R.

    1991-01-01

    Pb-Sn eutectic alloy was directionally solidified at 1.4 to 3.2 cm/hr with forced convection induced by axial vibration of the growth ampoule with a frequency of 10 to 40 Hz and an amplitude of 0.5 to 1.0 mm. To determine the exact growth rate, an interface demarcation technique was applied. The lamellar spacing was increased 10 to 40 percent in ingots solidified with vibration compared to those solidified without vibration. The number of grain boundaries was increased by vibration. The average intensity of convection in the melt under axial vibration of the ampoule was estimated by comparing the experimental results with a theoretical model.

  1. Traceable Co-C eutectic points for thermocouple calibration

    SciTech Connect

    Jahan, F.; Ballico, M. J. [National Measurement Institute, Lindfield, NSW 2070 (Australia)] [National Measurement Institute, Lindfield, NSW 2070 (Australia)

    2013-09-11

    National Measurement Institute of Australia (NMIA) has developed a miniature crucible design suitable for measurement by both thermocouples and radiation thermometry, and has established an ensemble of five Co-C eutectic-point cells based on this design. The cells in this ensemble have been individually calibrated using both ITS-90 radiation thermometry and thermocouples calibrated on the ITS-90 by the NMIA mini-coil methodology. The assigned ITS-90 temperatures obtained using these different techniques are both repeatable and consistent, despite the use of different furnaces and measurement conditions. The results demonstrate that, if individually calibrated, such cells can be practically used as part of a national traceability scheme for thermocouple calibration, providing a useful intermediate calibration point between Cu and Pd.

  2. Lead-bismuth eutectic as advanced reactor collant : operational experience

    SciTech Connect

    Woloshun, K. A. (Keith A.); Watts, V. (Valentina); Li, N. (Ning)

    2004-01-01

    Some proposed advanced reactor concepts would be cooled by lead or lead-bismuth eutectic (LBE). An LBE test loop was designed and built at Los Alamos to develop the engineering and materials technology necessary to successfully implement LBE as a coolant (Fig. 1). Operational since December 2001, this test loop has been used to develop and demonstrate safe operation, oxygen concentration and metal corrosion control, instrumentation, thermal-hydraulic performance of heat exchangers and recuperators, and free convection and forced pumping. This paper discusses the technology development and lessons learned from the operation of this facility. A LBE test loop has been operational since December 2001. Using procedures, training, and engineering controls, this loop has operated without an accident. Continuous improvements in operation procedures and instrumentation over these years have resulted in a facility of high reliability, providing the groundwork for the use of LBE as a reactor coolant for temperatures up to 550 C.

  3. Highlights of the Salt Extraction Process

    NASA Astrophysics Data System (ADS)

    Abbasalizadeh, Aida; Seetharaman, Seshadri; Teng, Lidong; Sridhar, Seetharaman; Grinder, Olle; Izumi, Yukari; Barati, Mansoor

    2013-11-01

    This article presents the salient features of a new process for the recovery of metal values from secondary sources and waste materials such as slag and flue dusts. It is also feasible in extracting metals such as nickel and cobalt from ores that normally are difficult to enrich and process metallurgically. The salt extraction process is based on extraction of the metals from the raw materials by a molten salt bath consisting of NaCl, LiCl, and KCl corresponding to the eutectic composition with AlCl3 as the chlorinating agent. The process is operated in the temperature range 973 K (700°C) to 1173 K (900°C). The process was shown to be successful in extracting Cr and Fe from electric arc furnace (EAF) slag. Electrolytic copper could be produced from copper concentrate based on chalcopyrite in a single step. Conducting the process in oxygen-free atmosphere, sulfur could be captured in the elemental form. The method proved to be successful in extracting lead from spent cathode ray tubes. In order to prevent the loss of AlCl3 in the vapor form and also chlorine gas emission at the cathode during the electrolysis, liquid aluminum was used. The process was shown to be successful in extracting Nd and Dy from magnetic scrap. The method is a highly promising process route for the recovery of strategic metals. It also has the added advantage of being environmentally friendly.

  4. Effect of high magnetic fields on the microstructure in directionally solidified Bi Mn eutectic alloy

    NASA Astrophysics Data System (ADS)

    Li, Xi; Ren, Zhongming; Fautrelle, Yves

    2007-02-01

    The eutectic Bi/MnBi alloy has been directionally solidified in the presence of an axial magnetic field to investigate the influence of high magnetic fields on the growth of eutectic Bi/MnBi. The morphology and magnetic properties of the specimens indicate that a high magnetic field promotes the formation of MnBi fiber and makes the directional solidification structure of the eutectic more regular. The MnBi inter-rod spacing and rod diameters gradually increase with the magnetic field intensity. Furthermore, the magnetic field enhances the faceted growth of MnBi phase and the magnetic coercivities of the alloy. This may be attributed to the magnetic anisotropy and the shift of the eutectic point by the magnetic field.

  5. Pre-eutectic densification in MgF/sub 2/-CaF/sub 2/

    SciTech Connect

    Hu, S C; De Jonghe, L C

    1982-04-01

    Increased densification rates were found as much as 200/sup 0/C below the eutectic temperature (980/sup 0/C) for MgF/sub 2/ containing small amounts of CaF/sub 2/. Constant heating rate and constant temperature sintering data, as well as microstructural developments indicated that solid state grain-boundary transport rates had been enhanced by the eutectic forming additive. The effect saturated at about 1 wt % CaF/sub 2/. The results suggest that densification of ceramic powders could be favorably affected without a substantial increase in the grain growth rate, by the addition of small amounts of eutectic forming additives, and sintering below the eutectic temperature. 6 figures.

  6. Effect of boron on the microstructure of near-eutectic Al-Si alloys

    SciTech Connect

    Wu Yuying [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Jinan 250061, Shandong (China)]. E-mail: wyy532001@163.com; Liu Xiangfa [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Jinan 250061, Shandong (China); Bian Xiufang [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Jinan 250061, Shandong (China)

    2007-02-15

    The effect of boron on the microstructure of a near-eutectic Al-Si alloy (ZL109) was investigated by scanning electron microscopy (SEM) and electron beam microprobe analysis (EPMA). It was found that {alpha}-Al dendrites and eutectic clusters were significantly refined by the addition of boron. Another interesting discovery is that the near-eutectic alloy exhibited hypereutectic structure characteristics when the level of boron added exceeds 0.3%, i.e., primary Si is precipitated in the eutectic microstructure. A new type of nucleation substrate for the primary Si is found, Al {sub x}Ca {sub m}B {sub n}Si. This appears to be the main reason for the precipitation of primary Si.

  7. Study of uranium solubility in gallium-indium eutectic alloy by emf method

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Osipenko, A. G.; Raspopin, S. P.; Kormilitsyn, M. V.

    2013-02-01

    Activity, activity coefficients and solubility of uranium in Ga-In eutectic alloy as well as activity of uranium in U-Ga and U-In alloys were determined between 573 and 1073 K using electromotive force (emf) method.

  8. Using deep eutectic solvents to electrodeposit CoSm films and nanowires

    Microsoft Academic Search

    P. Cojocaru; L. Magagnin; E. Gomez; E. Vallés

    2011-01-01

    A Deep Eutectic Solvent of 1 chlorine chloride: 2 urea eutectic mixture at 70°C has been tested as useful to electrodeposit both magnetic SmCo films and nanowires. Galvanostatic deposition allows obtaining homogeneous deposits over metallic substrate with variable composition as a function of the current density applied. The deposits obtained at 0.5–1.5mAcm?2 were uniform and they correspond to a cobalt

  9. Phase composition, microstructure and electrical properties of alumina-zirconia eutectic composites

    Microsoft Academic Search

    R. ?i?ka; V. Trnovcová; M. Yu Starostin

    2002-01-01

    Oxide eutectic composites prepared by a directional solidification are noticeable for their good mechanical properties and\\u000a high temperature stability in oxidizing environments. In this paper we study the influence of stabilizers (Y, Sc) on the phase\\u000a composition, microstructure and electrical properties of Al2O3 - ZrO2 eutectic composites. At a hypereutectic composition of the melt, we have prepared the composites with

  10. Fracture behavior of directionally solidified YâAlâOââ\\/AlâOâ eutectic fiber

    Microsoft Academic Search

    Jenn-Ming Yang; S. M. Jeng; Sekyung Chang

    1996-01-01

    The strength and fracture of a directionally solidified YâAlâOââ\\/AlâOâ eutectic fiber were investigated. The fiber was grown continuously by an edge-defined film-fed growth technique. The microstructure was characterized using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The tensile strength and Weibull`s modulus of the eutectic fibers were determined in the as-fabricated state and after extended thermal exposure at 1,460

  11. Deformation and fracture of a directionally solidified NiAl28Cr6Mo eutectic alloy

    Microsoft Academic Search

    X. F. Chen; D. R. Johnson; R. D. Noebe; B. F. Oliver

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases

  12. The aging response of Al-Cu and Al-Cu-Mg directionally solidified eutectics

    Microsoft Academic Search

    C. G. Rhodes; G. Garmong

    1972-01-01

    The microstructure and mechanical properties of directionally solidified Al-Cu eutectic and the microstructure of directionally\\u000a solidified Al-Cu-Mg eutectic alloys have been studied in as-grown, quenched, and aged conditions. In both systems the microstructure\\u000a of the aluminum-rich ? phase responded to aging treatments in a manner like that of dilute alloys of comparable composition.\\u000a The cooling rate of the alloys from

  13. Microstructure and crystallographic orientation relationship in directionally solidified Mg–Mg 17Al 12eutectic

    Microsoft Academic Search

    Sigrid Guldberg; Nils Ryum

    2000-01-01

    The microstructure and crystallographic orientation relationship of the Mg- and the Mg17Al12-phase in a directionally solidified Mg–Al-eutectic have been study in the light microscope and in the scanning electron microscope equipped with an electron back scattering facility. The effects of the addition of small amounts of Sr on the microstructure were also studied. The Mg–Al-eutectic solidified with a lamellar morphology

  14. Suppression of ambient temperature creep by eutectic phase for hexagonal close-packed metal

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tetsuya; Abe, Tomonori; Itoh, Shun; Satoh, Yuhki; Abe, Hiroaki

    2014-03-01

    Zr-Si alloys were designed to contain eutectic phase surrounding the parent phase to suppress creep behavior of claddings. Creep tests conducted at 294-573 K showed that creep behavior was inhibited and that the creep failure time of new Zr alloy became longer than that of a conventional alloy: Zircaloy-4. Results show that the eutectic phase can suppress creep at operating temperatures prevailing in current nuclear power plants.

  15. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    SciTech Connect

    Shen, Junjun, E-mail: junjun.shen@hzg.de; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Materials Mechanics, Solid-State Joining Processes, Max-Planck-Str. 1, 21502 Geesthacht (Germany)

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  16. Effect of erbium on properties and microstructure of Al-Si eutectic alloy

    Microsoft Academic Search

    Pengfei XING; Bo GAO; Yanxin ZHUANG; Kaihua LIU; Ganfeng TU

    2010-01-01

    Eutectic Al-12.6 wt.%Si alloys with various contents of the rare earth element Er were prepared by the conventional casting technique. The effect of Er on the microstructure and properties of the eutectic Al-Si alloys was investigated using optical microscopy, scanning electron microscopy as well as the friction and wear tests. It was found that the addition of Er obviously improved

  17. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.

    2014-05-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  18. Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging

    Microsoft Academic Search

    Y. T. Cheng; Liwei Lin; Khalil Najafi

    2000-01-01

    Silicon fusion and eutectic bonding processes based on the technique of localized heating have been successfully demonstrated. Phosphorus-doped polysilicon and gold films are applied separately in the silicon-to-glass fusion bonding and silicon-to-gold eutectic bonding experiments. These films are patterned as line-shape resistive heaters with widths of 5 or 7 ?m for the purpose of heating and bonding. In the experiments,

  19. On the properties of the eutectic alloy Al 3(Nb,Cr) + Cr(Al,Nb)

    Microsoft Academic Search

    S. A. Souza; P. L. Ferrandini; E. A. Souza; A. O. dos Santos; R. Caram

    2008-01-01

    The eutectic alloy Al3(Nb,Cr)+Cr(Al,Nb) forms an in situ composite and the Al3Nb presents high specific strength and low oxidation rate that may be improved by the combination with other phases. The purpose of this work is to investigate physical, mechanical and oxidation properties of the eutectic alloy. Therefore, Rietveld analysis was carried out for furnace cooled and water quenched samples

  20. Directional solidification and characterization of the Cd–Sn eutectic alloy

    Microsoft Academic Search

    E. Çad?rl?; H. Kaya; M. Gündüz

    2007-01-01

    The Cd–67.8wt.% Sn eutectic alloy was prepared by melting together appropriate amounts of cadmium and tin (both of 99.99% purity) in a graphite crucible in a vacuum melting furnace. Then, this eutectic alloy was poured into graphite crucibles in a hot filling furnace and the samples were solidified. These samples were directionally solidified upward with different growth rate ranges (8.1–165?m\\/s)

  1. Microstructures from a directionally solidified NiAl-Cr eutectic deformed at room temperature

    SciTech Connect

    Chen, X.F.; Johnson, D.R.; Oliver, B.F. (Univ. of Tennessee, Knoxville, TN (United States). Material Science and Engineering Dept.)

    1994-04-15

    Directionally solidified alloys based on the NiAl-Cr eutectic have shown promise as high temperature structural materials. This eutectic is characterized by a fibrous microstructure consisting of chromium rods embedded within a NiAl matrix. The reinforcing metal phase provides improvements in the elevated temperature strength and the room temperature fracture toughness of the NiAl matrix. The fracture toughness of the NiAl-Cr eutectic is much greater than that of NiAl. The directionally solidified NiAl-Cr eutectic has a fracture toughness of approximately 18--21 MPa[radical]m while polycrystalline NiAl has a fracture toughness of 6 MPa[radical]m. Single crystals of NiAl oriented with a [001] notch plane have a fracture toughness of 8 MPa[radical]m. Recently, the fracture resistance of fibrous NiAl-refractory metal eutectics has been described by crack trapping and crack bridging mechanisms. However, mechanical property data for NiAl-Cr eutectic are sparse, especially those generated at room temperature. Typically, the fracture behavior is characterized by scanning electron microscopy (SEM) and optical microscopy. To complement these existing data, observations of the deformation and fracture behavior by transmission electron microscopy (TEM) are reported here.

  2. Gravity-induced anomalies in interphase spacing reported for binary eutectics.

    PubMed

    Smith, Reginald W

    2002-10-01

    It has been reasoned that desirable microstructural refinement in binary eutectics could result from freezing in reduced-gravity. It is recognized that the interphase spacing in a binary eutectic is controlled by solute transport and that, on Earth, buoyancy-driven convection may enhance this. Hence, it has been presumed that the interphase spacing ought to decrease when a eutectic alloy is frozen under conditions of much-reduced gravity, where such buoyancy effects would be largely absent. The result of such speculation has been that many workers have frozen various eutectics under reduced gravity and have reported that, although some eutectics became finer, others showed no change, and some even became coarser. This reported varied behavior will be reviewed in the light of long term studies by the author at Queen's University, including recent microgravity studies in which samples of two eutectic alloy systems, MnBi-Bi and MnSb-Sb, were frozen under very stable conditions and showed no change in interphase spacing. PMID:12446324

  3. Thermal storage in ammonium alum/ammonium nitrate eutectic for solar space heating applications

    SciTech Connect

    Jotshi, C.K.; Hsieh, C.K.; Goswami, D.Y.; Klausner, J.F.; Srinivasan, N. [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical Engineering

    1998-02-01

    Ammonium alum and ammonium nitrate in the weight ratio of 1:1 form a eutectic that melts at 53 C and solidifies at 48 C. The thermophysical properties of this eutectic were measured in detail and the eutectic was found to have properties desirable for energy storage for solar space heating applications. The eutectic was encapsulated in 0.0254-m diameter high-density polyethylene (HDPE) balls and packed into a cylindrical bed in a scale model for testing its heat transfer characteristics when exposed to an air flow. Test results indicate that the thermal extraction efficiency of the model was 89% with an uncertainty of {+-} 8.0%. The packed bed had a Stanton number value in close agreement with that predicted with an empirical equation for sensible heat extraction from the eutectic in the solid phase. This Stanton number was increased by about 74% for sensible heat extraction from the eutectic in the liquid phase, a phenomenon not previously reported in the literature.

  4. Directionally solidified pseudo-binary eutectics of Ni-Cr-(Hf, Zr)

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Ashbrook, R. L.

    1975-01-01

    A pseudo-binary eutectic, in which the intermetallic Ni7Hf2 reinforces the Ni-Cr solid solution phase, was previously predicted in the Ni-Cr-Hf system by a computer analysis. The experimental determination of pseudo binary eutectic compositions and the directional solidification of the Ni-Cr-Hf, Zr, and Ni-Cr-Zr eutectic alloys are discussed. To determine unknown eutectics, chemical analyses were made of material bled from near eutectic ingots during incipient melting. Nominal compositions in weight percent of Ni-18.6Cr-24.0HF, Ni19.6Cr-12.8Zr-2.8Hf, and Ni-19.2Cr-14.8Zr formed aligned pseudo-binary eutectic structures. The melting points were about 1270 C. The reinforcing intermetallic phases were identified as noncubic (Ni,Cr)7Hf2 and (Ni,Cr)7(Hf,Zr)2, and face centered cubic (Ni,Cr)5Zr. The volume fraction of the reinforcing phases were about 0.5.

  5. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Dai, Fuping; Wei, Bingbo

    2007-08-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic compound may grow cooperatively within ternary eutectic microstructures, they seldom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of solute solubility.

  6. Fractal characteristic of laser zone remelted Al 2O 3/YAG eutectic in situ composite

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Su, Haijun; Tang, Bo; Liu, Lin; Fu, Hengzhi

    2008-01-01

    Directionally solidified alumina-based eutectic in situ composite has complex, irregular and self-similar microstructure composed of two or more phases to form three dimensionally interpenetrating network as "Chinese Script" type structure. In this paper, the fractal analysis is applied to Al 2O 3/Y 3Al 5O 12 (YAG) eutectic in situ composite prepared by laser zone remelting in order to quantitatively characterize the microstructure morphology and mechanical property. The fractal dimension of the eutectic microstructure is determined by the box counting technique according to the scanning electron microscope micrograph. The relationships between the fractal dimension and the laser processing parameter, eutectic spacing, and mechanical properties are studied. The results indicate that the eutectic morphology of Al 2O 3/YAG in situ composite has typical fractal characteristic. The fractal dimension changes from 1.61 to 1.82 when the laser-scanning rate increases from 10 to 400 ?m/s. With the increase of the fractal dimension, the eutectic spacing decreases while the hardness and the fracture toughness all increase.

  7. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  8. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 - 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  9. Salt tectonics on Venus

    SciTech Connect

    Wood, C.A.; Amsbury, D.

    1986-05-01

    The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

  10. Prussian blue nanospheres synthesized in deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Sheng, Qinglin; Liu, Ruixiao; Zheng, Jianbin

    2012-10-01

    A novel route for controlled synthesis of Prussian blue nanospheres (PB NSs) with different sizes by using deep eutectic solvents (DES) as both solvent and template provider was demonstrated. The size-controlled PB NSs were obtained directly by the coordination of Fe(CN)64- ion with Fe3+ ion in the DES. The probable mechanism of formation of PB NSs was discussed based on the characterization results of UV-visible, X-ray diffraction, X-ray photoelectronic spectrum and transfer electron microscopy. Furthermore, the electrochemical and electrocatalytic properties of the synthesized PB NSs were investigated, and it has demonstrated that the PB NSs exhibited excellent catalytic activity for H2O2 reduction, and then extended this strategy to glucose sensing, by detecting H2O2 formed from the enzymatic reaction of glucose oxidase with its substrate glucose. The linear calibration range for glucose was from 0.9 ?M to 0.12 mM, with a correlation coefficient of 0.998. The limit of detection was 0.3 ?M and the sensitivity was 61.7 A cm-2 M-1. The present study provides a general platform for the controlled synthesis of novel nanomaterials in DES and can be extended to other optical, electronic and magnetic nanocompounds.A novel route for controlled synthesis of Prussian blue nanospheres (PB NSs) with different sizes by using deep eutectic solvents (DES) as both solvent and template provider was demonstrated. The size-controlled PB NSs were obtained directly by the coordination of Fe(CN)64- ion with Fe3+ ion in the DES. The probable mechanism of formation of PB NSs was discussed based on the characterization results of UV-visible, X-ray diffraction, X-ray photoelectronic spectrum and transfer electron microscopy. Furthermore, the electrochemical and electrocatalytic properties of the synthesized PB NSs were investigated, and it has demonstrated that the PB NSs exhibited excellent catalytic activity for H2O2 reduction, and then extended this strategy to glucose sensing, by detecting H2O2 formed from the enzymatic reaction of glucose oxidase with its substrate glucose. The linear calibration range for glucose was from 0.9 ?M to 0.12 mM, with a correlation coefficient of 0.998. The limit of detection was 0.3 ?M and the sensitivity was 61.7 A cm-2 M-1. The present study provides a general platform for the controlled synthesis of novel nanomaterials in DES and can be extended to other optical, electronic and magnetic nanocompounds. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31830j

  11. Utah: Salt Lake Region

    Atmospheric Science Data Center

    2014-05-15

    article title:  Winter and Summer Views of the Salt Lake Region     View Larger Image Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the ...

  12. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D. (New Lenox, IL)

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  13. Directional solidification of Al2-Cu-Al and Al3-Ni-Al eutectics during TEXUS rocket flight

    NASA Technical Reports Server (NTRS)

    Favier, J. J.; Degoer, J.

    1984-01-01

    One lamellar eutectic sample and one fiber-like eutectic sample were solidified directionally during the TEXUS-6 rocket flight. The microstructures and the results of the thermal analysis, obtained from the temperatures recorded on the cartridge skin, are compared. No appreciable modifications of the regularity of the eutectic structures were observed by passing from 1 g to 0.0001 g in these experiments. No steady state growth conditions were achieved in these experiments.

  14. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Phongikaroon, Supathorn; Sattarov, Akhdiyor; Simpson, Michael; Sooby, Elizabeth; Tsvetkov, Pavel

    2013-04-01

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  15. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    SciTech Connect

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel [Dept. of Physics, Texas A and M University, College Station, TX 77843 and Dept. of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Phongikaroon, Supathorn; Simpson, Michael [Dept. of Chemical Engineering, University of Idaho, Idaho Falls ID 83402 (United States)

    2013-04-19

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  16. Plant salt tolerance

    Microsoft Academic Search

    Jian-Kang Zhu

    2001-01-01

    Soil salinity is a major abiotic stress in plant agriculture worldwide. This has led to research into salt tolerance with the aim of improving crop plants. However, salt tolerance might have much wider implications because transgenic salt-tolerant plants often also tolerate other stresses including chilling, freezing, heat and drought. Unfortunately, suitable genetic model systems have been hard to find. A

  17. Shaking the Salt Habit

    MedlinePLUS

    ... Don't salt food before you taste it; enjoy the natural taste of food. Take the salt shaker off the table. Adding more salt at the table adds to your daily sodium intake without adding much to the flavor of your food. Eat less ...

  18. Plant salt tolerance

    Microsoft Academic Search

    Viswanathan Chinnusamy; Jian-Kang Zhu

    Soil salinity adversely affects crop productivity and quality. The success of breeding programs aimed at salinity tolerant crop varieties is limited by the lack of a clear understanding of the molecular basis of salt tolerance. Recent advances in genetic analysis of Arabidopsis mutants defective in salt tolerance, and molecular cloning of these loci, have showed some insight into salt stress

  19. Prussian blue nanospheres synthesized in deep eutectic solvents.

    PubMed

    Sheng, Qinglin; Liu, Ruixiao; Zheng, Jianbin

    2012-11-01

    A novel route for controlled synthesis of Prussian blue nanospheres (PB NSs) with different sizes by using deep eutectic solvents (DES) as both solvent and template provider was demonstrated. The size-controlled PB NSs were obtained directly by the coordination of Fe(CN)(6)(4-) ion with Fe(3+) ion in the DES. The probable mechanism of formation of PB NSs was discussed based on the characterization results of UV-visible, X-ray diffraction, X-ray photoelectronic spectrum and transfer electron microscopy. Furthermore, the electrochemical and electrocatalytic properties of the synthesized PB NSs were investigated, and it has demonstrated that the PB NSs exhibited excellent catalytic activity for H(2)O(2) reduction, and then extended this strategy to glucose sensing, by detecting H(2)O(2) formed from the enzymatic reaction of glucose oxidase with its substrate glucose. The linear calibration range for glucose was from 0.9 ?M to 0.12 mM, with a correlation coefficient of 0.998. The limit of detection was 0.3 ?M and the sensitivity was 61.7 A cm(-2) M(-1). The present study provides a general platform for the controlled synthesis of novel nanomaterials in DES and can be extended to other optical, electronic and magnetic nanocompounds. PMID:23034657

  20. Interphase anisotropy effects on lamellar eutectics: a numerical study.

    PubMed

    Ghosh, Supriyo; Choudhury, Abhik; Plapp, Mathis; Bottin-Rousseau, Sabine; Faivre, Gabriel; Akamatsu, Silvère

    2015-02-01

    In directional solidification of binary eutectics, it is often observed that two-phase lamellar growth patterns grow tilted with respect to the direction z of the imposed temperature gradient. This crystallographic effect depends on the orientation of the two crystal phases ? and ? with respect to z. Recently, an approximate theory was formulated that predicts the lamellar tilt angle as a function of the anisotropy of the free energy of the solid(?)-solid(?) interphase boundary. We use two different numerical methods-phase field (PF) and dynamic boundary integral (BI)-to simulate the growth of steady periodic patterns in two dimensions as a function of the angle ?(R) between z and a reference crystallographic axis for a fixed relative orientation of ? and ? crystals, that is, for a given anisotropy function (Wulff plot) of the interphase boundary. For Wulff plots without unstable interphase-boundary orientations, the two simulation methods are in excellent agreement with each other and confirm the general validity of the previously proposed theory. In addition, a crystallographic "locking" of the lamellae onto a facet plane is well reproduced in the simulations. When unstable orientations are present in the Wulff plot, it is expected that two distinct values of the tilt angle can appear for the same crystal orientation over a finite ?(R) range. This bistable behavior, which has been observed experimentally, is well reproduced by BI simulations but not by the PF model. Possible reasons for this discrepancy are discussed. PMID:25768518

  1. The effect of porosity and gamma-gamma-prime eutectic content on the fatigue behavior of hydrogen charged PWA 1480

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Dreshfield, R. L.; Gabb, T. P.

    1991-01-01

    The study addresses the effect of systematically varying gamma-gamma-prime eutectic content and porosity level on the fatigue life of a hydrogen-charged single crystal PWA 1480 superalloy. Four microstructural variants are produced, and differences in gamma-gamma-prime eutectic morphology among the four processing variants are analyzed. Single valued tensile test data indicate that the tensile and yield strength of the PWA 1480 are degraded by hydrogen charging, with the exception of the material given a eutectic solution treatment. It is shown that the reduction of the fatigue life can be minimized by a duplex thermomechanical treatment consisting of a eutectic solution followed by hot isostatic pressing.

  2. Simultaneous extraction of flavonoids from Chamaecyparis obtusa using deep eutectic solvents as additives of conventional extractions solvents.

    PubMed

    Tang, Baokun; Park, Ha Eun; Row, Kyung Ho

    2015-01-01

    Three flavones (quercetin, myricetin and amentoflavone) were extracted from Chamaecyparis obtusa leaves using deep eutectic solvents (DESs) as additives to conventional extractions solvents. Sixteen DESs were synthesized from different salts and hydrogen bond donors. In addition, C. obtusa was extracted under optimal conditions of methanol as the solvent in the heating process (60°C) for 120 min at a solid/liquid ratio of 80%. Under these optimal conditions, a good linear relationship was observed at analyte concentrations ranging from 5.0 to 200.0 ?g/mL (R(2) > 0.999). The extraction recovery ranged from 96.7 to 103.3% with the inter- and intraday relative standard deviations of <4.97%. Under the optimal conditions, from C. obtusa, the quantities of quercetin, myricetin and amentoflavone extracted were 325.90, 8.66 and 50.34 µg/mL, respectively. Overall, DESs are expected to have a wide range of applications. PMID:25228687

  3. Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution.

    PubMed

    Lehmann, Christian; Bocola, Marco; Streit, Wolfgang R; Martinez, Ronny; Schwaneberg, Ulrich

    2014-06-01

    Chemoenzymatic cellulose degradation is one of the key steps for the production of biomass-based fuels under mild conditions. An effective cellulose degradation process requires diverse physico-chemical dissolution of the biomass prior to enzymatic degradation. In recent years, "green" solvents, such as ionic liquids and, more recently, deep eutectic liquids, have been proposed as suitable alternatives for biomass dissolution by homogenous catalysis. In this manuscript, a directed evolution campaign of an ionic liquid tolerant ?-1,4-endoglucanase (CelA2) was performed in order to increase its performance in the presence of choline chloride/glycerol (ChCl:Gly) or 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), as a first step to identify residues which govern ionic strength resistance and obtaining insights for employing cellulases on the long run in homogenous catalysis of lignocellulose degradation. After mutant library screening, variant M4 (His288Phe, Ser300Arg) was identified, showing a dramatically reduced activity in potassium phosphate buffer and an increased activity in the presence of ChCl:Gly or [BMIM]Cl. Further characterization showed that the CelA2 variant M4 is activated in the presence of these solvents, representing a first report of an engineered enzyme with an ionic strength activity switch. Structural analysis revealed that Arg300 could be a key residue for the ionic strength activation through a salt bridge with the neighboring Asp287. Experimental and computational results suggest that the salt bridge Asp287-Arg300 generates a nearly inactive CelA2 variant and activity is regained when ChCl:Gly or [BMIM]Cl are supplemented (~5-fold increase from 0.64 to 3.37 ?M 4-MU/h with the addition ChCl:Gly and ~23-fold increase from 3.84 to 89.21 ?M 4-pNP/h with the addition of [BMIM]Cl). Molecular dynamic simulations further suggest that the salt bridge between Asp287 and Arg300 in variant M4 (His288Phe, Ser300Arg) modulates the observed salt activation. PMID:24802079

  4. A quantitative study of factors influencing lamellar eutectic morphology during solidification

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F. S.

    1981-01-01

    The factors that influence the shape of the solid-liquid interface of a lamellar binary eutectic alloy are evaluated. Alloys of carbon tetrabromide and hexachloroethane which serve as a transparent analogue of lamellar metallic eutectics are used. The observed interface shapes are analyzed by computer-aided methods. The solid-liquid interfacial free energies of each of the individual phases comprising the eutectic system are measured as a function of composition using a 'grain boundary groove' technique. The solid-liquid interfacial free energy of the two phases are evaluated directly from the eutectic interface. The phase diagram for the system, the heat of fusion as a function of composition, and the density as a function of composition are measured. The shape of the eutectic interface is controlled mainly by the solid-liquid and solid-solid interfacial free energy relationships at the interface and by the temperature gradient present, rather than by interlamellar diffusion in the liquid at the interface, over the range of growth rates studied.

  5. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  6. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    SciTech Connect

    Chen, X.F.; Johnson, D.R.; Noebe, R.D.; Oliver, B.F.

    1995-05-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  7. Thermal storage in ammonium alum/ammonium nitrate eutectic for solar space heating

    SciTech Connect

    Goswami, D.Y.; Jotshi, C.K.; Klausner, J.F.; Hsieh, C.K.; Srinivasan, N. [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical Engineering

    1995-10-01

    Ammonium alum and ammonium nitrate in the weight ratio of 1:1 forms a eutectic that melts at 53 C and crystallizes at 48 C. The latent heat of fusion of this eutectic was found to be 215 kJ/kg. Its enthalpy as measured by drop calorimetry was found to be 287 kJ/kg in the temperature range of 24--65 C, which is 1.67 times greater than water (172.2 kJ/kg) and 8.75 times greater than rock (32.8 kJ/kg). Upon several heating/cooling cycles, phase separation was observed. However, by adding 5% attapulgite clay to this eutectic mixture, phase separation was prevented. This eutectic was encapsulated in 0.0254m diameter HDPE hollow balls and subjected to about 1,100 heating/cooling cycles in the temperature range between 25 and 65 C. At the end of these cycles, the decrease in enthalpy was found to be 5%. A scale model of the heat storage unit was fabricated to investigate the heat transfer characteristics of this eutectic encapsulated in HDPE balls. The thermal extraction efficiency of the system was measured with the recirculation of hot air during charging and was found to be in the range of 85--98%.

  8. Melts microheterogeneity in binary metallic systems having eutectic and monotectic transformations

    NASA Astrophysics Data System (ADS)

    Zhukova, L. A.; Aksyonova, O. P.; Zhukov, A. A.

    2008-02-01

    The distinctive features of limited solubility in liquid eutectic and monotectic metallic systems have been discovered. The monodispersed emulsion model has been elaborated for a description of the specific microheterogeneous structure of eutectic melts. It includes the transitional shells (TS) at the interface boundaries having the eutectic composition and the closest packing of atoms. By means of the thermodynamic analysis a possibility of a metastable equilibrium of the emulsion has been determined when dimensional and interface energy parameters of the emulsion adopt certain values. The metastable state is characterized by the colloidal sizes of disperse particles and the interface tension values typical for immiscible melts. The existence of the emulsion has been confirmed by the calorimetric experimental data on Sn-Pb and Al-Si systems. Structure factors and RDF's of the TS have been calculated by the original treatment of experimental diffraction data on Sn-Pb and Ag-Ge melts. The evidence of different microheterogeneity scales in liquid eutectic and monotectic systems has been obtained. From two immiscible phases only the liquid based on the light-melted metal shows the short-range microinhomogeneity and the second one is a homogeneous solution. So, the microheterogeneity in eutectic and monotectic melts has different nature.

  9. PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE

    SciTech Connect

    Gupta, N.

    2012-03-26

    In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach at the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 C. This paper discusses the thermal models and the results for the extended fire conditions (1500 F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.

  10. The Effect of Silica Nanoparticles on Corrosion of Steel by Molten Carbonate Eutectics 

    E-print Network

    Padmanaban Iyer, Ashwin

    2011-08-08

    a base salt or the nano-composite salt. 3) Salts were prepared using the aqueous method. Salt (Base salt +Nanoparticle) was first dissolved in water. It was then subject to rapid evaporation, ensuring a nice fine fry powder at the end....2 Experimental Process/Methods .............................................................................. 28 3.2.1 Material Preparation ......................................................................................... 29 3.2.2 Sample Bomb and Frame...

  11. Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents.

    PubMed

    Dai, Yuntao; van Spronsen, Jaap; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-11-22

    Mixtures of solid chemicals may become liquid under certain conditions. These liquids are characterized by the formation of strong ionic (ionic liquids) or hydrogen bonds (deep eutectic solvents). Due to their extremely low vapor pressure, they are now widely used in polymer chemistry and synthetic organic chemistry, yet little attention has been paid to their use as extraction solvents of natural products. This review summarizes the preparation of ionic liquids and deep eutectic solvents with natural product components and recent progress in their applications to the extraction and analysis of natural products as well as the recovery of extracted compounds from their extracts. Additionally, various factors affecting extraction features of ionic liquids and deep eutectic solvents, as well as potential useful technologies including microwave and ultrasound to increase the extraction efficiency, are discussed. PMID:24188074

  12. Influence of microgravity on solidification behavior of Al-Al3Ni eutectic alloy

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Luo, X.-H.; Li, Y.-Y.

    Directional solidification experiments of Al-Al 3 Ni eutectic alloy were performed in the Multi-functional Crystal Growing Furnace on board the unmanned Chinese Shenzhou spacecraft and in the laboratory on earth respectively to compare their solidification behavior under microgravity and normal gravity conditions The specimens gained were investigated using metallographic SEM XRD and Image analysis techniques Many significant differences both macroscopic and microscopic were observed between the specimens solidified in space and on the earth Especially the mean inter-fiber spacing and spacing distribution range obtained under microgravity were found larger than those obtained under normal gravity An off-eutectic theory was tried to explain those differences and achieved a good agreement In combination with the analyses on reported experimental results in other works it could be deduced that the change of inter-fibre spacing of eutectic alloy with microgravity is determined by the alloy system

  13. Magnetic properties of directionally solidified MnSb/Sb eutectic composite

    SciTech Connect

    Pan, Y.; Sun, G. [Southeast Univ., Nanjing (China). Dept. of Mechanical Engineering] [Southeast Univ., Nanjing (China). Dept. of Mechanical Engineering

    1999-09-10

    MnSb is the only ferromagnetic compound in the first-row transition-metal antimonides; it is highly anisotropic and proposed to be an important magnetic material for a variety of potential applications. The controlled eutectics consisting of MnSb and other components may constitute functional in-situ composites without any contamination and wetting problem between the components because of multiphase cooperative growth. The anisotropic MnSb/Sb composite is expected to possess interesting magnetic properties if MnSb is embedded in a diamagnetic antimony matrix as regular eutectic by directional solidification. However, very little has been published on MnSb/Sb eutectic composites. In the composite, the shape, size, orientation and distribution of magnetic components are important parameters which determine the quality of the materials. Consideration of these factors leads to the investigation on the relationships between microstructure, magnetic property and temperature dependence of the property in this system.

  14. Application of eutectic ceramic mixtures for the functional components of high temperature SOFC's

    SciTech Connect

    Gerk, C.; Willert-Porada, M.

    1998-07-01

    A novel design for a high temperature SOFC, based on lamellar electrode-electrolyte segments obtained by solidification of an oxidic eutectic melt on an electrolyte substrate is presented. Such composite electrodes contain NiO or MnO - 8Y-ZrO{sub 2} lamellae, which after reduction/oxidation yield electrode-electrolyte lamellae with 1--2 {micro}m width and a vertical dimension of >100 {micro}m, depending upon the amount of eutectic melt solidified on a polycrystalline substrate. The nucleation of the eutectic on a polycrystalline substrate followed by a semi-directional crystallization of the two phases yields a gradient of 3-phase boundaries over the height of such an electrode, with the number of 3-phase boundaries increasing towards the substrate.

  15. One-Pot Multi-component Synthesis of 1,4-Dihydropyridine Derivatives in Biocompatible Deep Eutectic Solvents

    E-print Network

    Pednekar, Suhas; Ghadge, Nitin

    2013-01-01

    An efficient protocol for the synthesis of differently substituted 1, 4-dihydropyridines in deep eutectic solvents under solvent-free conditions is reported herewith. Excellent yields of the resultant products have been obtained. Recyclability studies have also been performed for deep eutectic solvents with very little loss in activity up to five recycles.

  16. Revised form of Jackson–Hunt theory: application to directional solidification of MnBi\\/Bi eutectics

    Microsoft Academic Search

    L. L Zheng; D. J Larson Jr; H Zhang

    2000-01-01

    A generalized eutectic theory, which defaults to the prior theories by Jackson–Hunt and Trivedi et al. under their boundary conditions, has been developed to consider phase relations, solidification temperature and interface velocity over the entire parametric range, and for both lamellar and rod eutectic morphologies. The analytical solution reveals that ?2V and ??T, though varying with the Peclet number, are

  17. Photochemistry of triarylsulfonium salts

    SciTech Connect

    Dektar, J.L.; Hacker, N.P. (Almaden Research Center, San Jose, CA (USA))

    1990-08-01

    The photolysis of triphenylsulfonium, tris(4-methylphenyl)sulfonium, tris(4-chlorophenyl)sulfonium, several monosubstituted (4-F, 4-Cl, 4-Me, 4-MeO, 4-PhS, and 4-PhCO), and disubstituted (4,4{prime}-Me{sub 2} and 4,4{prime}-(MeO){sub 2}) triphenylsulfonium salts was examined in solution. It was found that direct irradiation of triphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts, gave the new rearrangement products. The mechanism for direct photolysis is proposed to occur from the singlet excited states to give a predominant heterolytic cleavage along with some homolytic cleavage.

  18. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    SciTech Connect

    Knowlton, W.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  19. A Dash of Salt 

    E-print Network

    Supercinski, Danielle

    2006-01-01

    more landscapes damaged from too much salt in the water (containing dissolved salts near or in excess of 1,000 parts per million) used for irrigation. ?We just do not have good guidelines to assess potential salinity hazards to landscape plants... with El Paso Water Utilities on plant response to soil salinity. Landscape plant lists for salt tolerance assessment and Photo Guide: Landscape plant response to salinity covers more than 100 species of plants used for landscapes in the Southwest...

  20. Microstructural variations induced by gravity level during directional solidification of near-eutectic iron-carbon type alloys

    NASA Astrophysics Data System (ADS)

    Stefanescu, Doru M.; Curreri, Peter A.; Fiske, Michael R.

    1986-07-01

    The effects of gravity on the microstructure of directionally solidified near-eutectic cast irons are studied, using a Bridgman-type automatic directional solidification furnace aboard a NASA KC-135 aircraft which flies parabolic arcs and generates alternating periods of low-g (0.01 to 0.001 g, 30 seconds long) and high-g (1.8 g, 1.5 minutes long). Results show a refinement of the interlamellar spacing of the eutectic during low-g processing of metastable Fe-C eutectic alloys. Low-g processing of stable Fe-C-Si eutectic alloys (lamellar or spheroidal graphite) results in a coarsening of the eutectic grain structure. Secondary dendrite arm spacing of austenite increases in low-g and decreases in high-g. The effectiveness of low-gravity in the removal of buoyancy-driven graphite phase segregation is demonstrated.

  1. Numerical study of the effect of the shape of the phase diagram on the eutectic freezing temperature

    SciTech Connect

    Ode, M.; Shimono, M. [National Institute for Materials Science (NIMS), Tsukuba (Japan)] [National Institute for Materials Science (NIMS), Tsukuba (Japan); Sasajima, N.; Yamada, Y. [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ, AIST), Tsukuba (Japan)] [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ, AIST), Tsukuba (Japan); Bloembergen, P. [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ, AIST), Tsukuba, Japan and National Institute of Metrology, Beijing 100013 (China)] [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ, AIST), Tsukuba, Japan and National Institute of Metrology, Beijing 100013 (China)

    2013-09-11

    To evaluate the reliability of metal-carbon eutectic systems as fixed points for the next generation of high-temperature standards the effect of thermodynamic properties related to the shape of eutectic phase diagram on the freezing temperature is investigated within the context of the numerical multi-phase-field model. The partition coefficient and liquidus slopes of the two solids involved in the eutectic reaction are varied deliberately and independently. The difference between the eutectic temperature and the freezing temperature is determined in dependence of the solid/liquid (s/l) interface shape and concentration. Where appropriate reference is made to the Jackson-Hunt analytical theory. It is shown that there are mainly two typical conditions to decrease the undercooling: 1) a small liquidus slope and 2) the associated difference between the eutectic composition and the liquid composition during solidification.

  2. Microstructural variations induced by gravity level during directional solidification of near-eutectic iron-carbon type alloys

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Fiske, Michael R.; Curreri, Peter A.

    1986-01-01

    The effects of gravity on the microstructure of directionally solidified near-eutectic cast irons are studied, using a Bridgman-type automatic directional solidification furnace aboard a NASA KC-135 aircraft which flies parabolic arcs and generates alternating periods of low-g (0.01 to 0.001 g, 30 seconds long) and high-g (1.8 g, 1.5 minutes long). Results show a refinement of the interlamellar spacing of the eutectic during low-g processing of metastable Fe-C eutectic alloys. Low-g processing of stable Fe-C-Si eutectic alloys (lamellar or spheroidal graphic) results in a coarsening of the eutectic grain structure. Secondary dendrite arm spacing of austenite increases in low-g and decreases in high-g. The effectiveness of low-gravity in the removal of buoyancy-driven graphite phase segregation is demonstrated.

  3. Eutectic Sn\\/Pb solder bump and under bump metallurgy: interfacial reactions and adhesion

    Microsoft Academic Search

    Se-Young Jang; Kyung-Wook Paik

    1998-01-01

    In flip-chip interconnection on organic substrates using eutectic tin\\/lead solder bumps, a highly reliable under bump metallurgy (UBM) is required to maintain adhesion and solder wettability. Various UBM systems such as 1?m Al\\/0.2?m Ti\\/5?m Cu, 1?m Al\\/02?m Ti\\/1?m Cu, 1?m Al\\/0.2?m Ni\\/1?m Cu and 1?m Al\\/0.2?m Pd\\/1?m Cu, applied under eutectic tin\\/lead solder bumps, have been investigated with regard to

  4. Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes.

    PubMed

    Pena-Pereira, Francisco; Namie?nik, Jacek

    2014-07-01

    In recent years, ionic liquids and deep eutectic mixtures have demonstrated great potential in extraction processes relevant to several scientific and technological activities. This review focuses on the applicability of these sustainable solvents in a variety of extraction techniques, including but not limited to liquid- and solid-phase (micro) extraction, microwave-assisted extraction, ultrasound-assisted extraction and pressurized liquid extraction. Selected applications of ionic liquids and deep eutectic mixtures on analytical method development, removal of environmental pollutants, selective isolation, and recovery of target compounds, purification of fuels, and azeotrope breaking are described and discussed. PMID:24811900

  5. The influences of convection on directional solidification of eutectic Bi/MnBi

    NASA Technical Reports Server (NTRS)

    Larson, David J., Jr.

    1988-01-01

    Eutectic alloys of Bi-Mn were directionally solidified using the Bridgman-Stockbarger technique to determine the influences of gravitationally-driven thermo-solutal convection on the Bi-MnBi rod eutectic. Experiments were conducted that varied the level of convection by varying the growth parameters and growth orientation, by microgravity damping, by applied magnetic field damping, and by imposing forced convection. Peltier interface demarcation and in situ thermocouple measurements were used to monitor interface velocity and thermal gradient and to evaluate interface planarity.

  6. Worth its salt?

    NASA Astrophysics Data System (ADS)

    The idea that all underground salt deposits can serve as storage sites for toxic and nuclear waste does not always hold water—literally. According to Daniel Ronen and Brian Berkowitz of Israel's Weizmann Institute of Science and Yoseph Yechieli of the Geological Survey of Israel, some buried salt layers are in fact highly conductive of liquids, suggesting that wastes buried in their confines could easily leech into groundwater and nearby soil.When drilling three wells into a 10,000-year-old salt layer near the Dead Sea, the researchers found that groundwater had seeped into the layer and had absorbed some of its salt.

  7. How polar are choline chloride-based deep eutectic solvents?

    PubMed

    Pandey, Ashish; Rai, Rewa; Pal, Mahi; Pandey, Siddharth

    2014-01-28

    Developing and characterizing green solvents with low toxicity and cost is one of the most important issues in chemistry. Deep Eutectic Solvents (DESs), in this regard, have shown tremendous promise. Compared to popular organic solvents, DESs possess negligible VOCs and are non-flammable. Compared to ionic liquids, which share many characteristics but are ionic compounds and not ionic mixtures, DESs are cheaper to make, much less toxic and mostly biodegradable. An estimate of the polarity associated with DESs is essential if they are to be used as green alternatives to common organic solvents in industries and academia. As no one physical parameter can satisfactorily represent solute-solvent interactions within a medium, polarity of DESs is assessed through solvatochromic optical spectroscopic responses of several UV-vis absorbance and molecular fluorescence probes. Information on the local microenvironment (i.e., the cybotactic region) that surrounds several solvatochromic probes [betaine dye, pyrene, pyrene-1-carboxaldehyde, 1-anilino-8-naphthalene sulfonate (ANS), p-toluidinyl-6-naphthalene sulfonate (TNS), 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN), coumarin-153, and Nile Red] for four common and popular DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, urea, and malonic acid, respectively, in 1?:?2 molar ratios termed ethaline, glyceline, reline, and maline is obtained and used to assess the effective polarity afforded by each of these DESs. The four DESs as indicated by these probe responses are found to be fairly dipolar in nature. Absorbance probe betaine dye and fluorescence probes ANS, TNS, PRODAN, coumarin-153, and Nile Red, whose solvatochromic responses are based on photoinduced charge-transfer, imply ethaline and glyceline, DESs formed using alcohol-based H-bond donors, to be relatively more dipolar in nature as compared to reline and maline. The pyrene polarity scale, which is based on polarity-induced changes in vibronic bands, indicates reline, the DES composed of urea as the hydrogen bond donor, to be significantly more dipolar than the other three DESs. Response of pyrene-1-carboxaldehyde, a polarity probe based on inversion of n-?* and ?-?* states, hints at maline to be the most dipolar of the four DESs. The molecular structure of the H-bond donor in a DES clearly controls the dipolarity afforded by the DES. H-bonding and other specific solute-solvent interactions are found to play an important role in solvatochromic probe behavior for the four DESs. The cybotactic region of a probe dissolved in a DES affords information on the polarity of the DES towards solutes of similar nature and functionality. PMID:24305780

  8. Improving crop salt tolerance

    Microsoft Academic Search

    T. J. Flowers

    2004-01-01

    Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very

  9. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  10. Acids and Salts (GCMP)

    NSDL National Science Digital Library

    Acids and Salts: this is a resource in the collection "General Chemistry Multimedia Problems". This problem will explore a few properties of common acids and their salts. General Chemistry Multimedia Problems ask students questions about experiments they see presented using videos and images. The questions asked apply concepts from different parts of an introductory course, encouraging students to decompartmentalize the material.

  11. Integrated Salt Studies

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Kukla, Peter A.

    2015-04-01

    The growing importance of salt in the energy, subsurface storage, and chemical and food industries also increases the challenges with prediction of geometries, kinematics, stress and transport in salt. This requires an approach, which integrates a broader range of knowledge than is traditionally available in the different scientific and engineering disciplines. We aim to provide a starting point for a more integrated understanding of salt, by presenting an overview of the state of the art in a wide range of salt-related topics, from (i) the formation and metamorphism of evaporites, (ii) rheology and transport properties, (iii) salt tectonics and basin evolution, (iv) internal structure of evaporites, (v) fluid flow through salt, to (vi) salt engineering. With selected case studies we show how integration of these domains of knowledge can bring better predictions of (i) sediment architecture and reservoir distribution, (ii) internal structure of salt for optimized drilling and better cavern design, (iii) reliable long-term predictions of deformations and fluid flow in subsurface storage. A fully integrated workflow is based on geomechanical models, which include all laboratory and natural observations and links macro- and micro-scale studies. We present emerging concepts for (i) the initiation dynamics of halokinesis, (ii) the rheology and deformation of the evaporites by brittle and ductile processes, (iii) the coupling of processes in evaporites and the under- and overburden, and (iv) the impact of the layered evaporite rheology on the structural evolution.

  12. Lowering Salt in Your Diet

    MedlinePLUS

    ... this page Home For Consumers Consumer Updates Lowering Salt in Your Diet Search the Consumer Updates Section ... mail Consumer Updates RSS Feed Everyone needs some salt to function. Also known as sodium chloride, salt ...

  13. Geometry Effects on the Electromigration of Eutectic SN\\/PB Flip-Chip Solder Bumps

    Microsoft Academic Search

    Dennis H. Eaton; James D. Rowatt; Walter J. Dauksher

    2006-01-01

    This work investigates the effect of passivation opening diameter and underbump metallization (UBM) diameter on the electromigration (EM) resistance of Sn\\/Pb eutectic solder bumps. For the bump geometries studied, the electromigration lifetime depends strongly on the UBM area but weakly on the passivation opening area. The applicability of Black's model for extrapolating lifetime from accelerated currents to operating currents is

  14. Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst

    Microsoft Academic Search

    K. Shahbaz; F. S. Mjalli; M. A. Hashim; I. M. Alnashef

    2011-01-01

    The production of biodiesel through transesterification requires numerous purification steps to remove the unreacted components and unwanted products for the biodiesel grade to satisfy the international standard specifications EN 14214 and ASTM D6751. The residual catalyst (KOH) is one of those impurities which must be removed at the end of alkali-catalyzed transesterification reaction. In this work, nine Deep eutectic solvents

  15. Prediction of refractive index and density of deep eutectic solvents using atomic contributions

    Microsoft Academic Search

    K. Shahbaz; F. S. G. Bagh; F. S. Mjalli; I. M. AlNashef; M. A. Hashim

    2013-01-01

    Deep eutectic solvents (DESs) are considered as potential alternatives for ionic liquids (ILs). The evaluation of DESs as new generation of solvents for various practical application requires enough knowledge about some main physical, chemical, and thermodynamic properties. In this study, due to lack of data for DESs' refractive indices, the refractive indices of twenty four DESs based on ammonium and

  16. Deep eutectic solvents as novel extraction media for phenolic compounds from model oil.

    PubMed

    Gu, Tongnian; Zhang, Mingliang; Tan, Ting; Chen, Jia; Li, Zhan; Zhang, Qinghua; Qiu, Hongdeng

    2014-10-11

    Deep eutectic solvents (DES) as a new kind of green solvent were used for the first time to excellently extract phenolic compounds from model oil. It was also proved that DES could be used to extract other polar compounds from non-polar or weakly-polar solvents by liquid-phase microextraction. PMID:25144155

  17. Using deep eutectic solvents for the removal of glycerol from palm oil-based biodiesel

    Microsoft Academic Search

    K. Shahbaz; Farouq. S. Mjalli; M. A. Hashim; I. M. Al Nashef

    2010-01-01

    One of the essential steps in the manufacture of biodiesel is its purification from the glycerol by-product. The produced biodiesel should have a low glycerol content which is regarded as one of the important needed pointers for passing the international biodiesel standards. Low cost Deep Eutectic Solvents (DES) have been tested for their solvation properties. In this work, DESs were

  18. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents

    Microsoft Academic Search

    M. Hayyan; M. A. Hashim; M. A. Al-Saadi; A. Hayyan; I. M. AlNashef; M. E. S. Mirghani

    2013-01-01

    In this work, the cytotoxicity and toxicity of phosphonium-based deep eutectic solvents (DESs) with three hydrogen bond donors, namely glycerine, ethylene glycol, and triethylene glycol were investigated. The cytotoxicity effect was tested using brine shrimp (. Artemia salina). The toxicity was investigated using the two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli

  19. Differential capacity of a deep eutectic solvent based on choline chloride and glycerol on solid electrodes

    Microsoft Academic Search

    Marta Figueiredo; Cristiana Gomes; Renata Costa; Ana Martins; Carlos M. Pereira; Fernando Silva

    2009-01-01

    The properties of the interface between platinum, gold and glassy carbon electrodes and a deep eutectic ionic liquid based on choline chloride and glycerol were assessed using cyclic voltammetry and electrochemical impedance spectroscopy. The double layer differential capacitance, obtained from electrochemical impedance, reveals a slight dependence of the potential but it is sensitive to the electrode material. In contrast to

  20. Thermoelectric and morphological effects of peltier pulsing on directional solidification of eutectic Bi-Mn

    Microsoft Academic Search

    R. P. Silberstein; D. J. Larson; B. Dressler

    1984-01-01

    We have carried out extensive in situ thermal measurements during Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi\\/MnBi. We have observed that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. We have separated the contributions of the Peltier, Thomson, and Joule heats, and studied them as a function of pulse intensity and

  1. Damage by eutectic particle cracking in aluminum casting alloys A356\\/357

    Microsoft Academic Search

    Q. G. Wang; C. H. Caceres; J. R. Griffiths

    2003-01-01

    The strain dependence of particle cracking in aluminum alloys A356\\/357 in the T6 temper has been studied in a range of microstructures produced by varying solidification rate and Mg content, and by chemical (Sr) modification of the eutectic silicon. The damage accumulates linearly with the applied strain for all microstructures, but the rate depends on the secondary dendrite arm spacing

  2. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The Jackson and Hunt (JH) theory has been modified to relax the assumption of isothermal solid liquid interface used in their treatment. Based on the predictions of this modified theory, the traditional definitions of regular and irregular eutectics are revised. For regular eutectics, the new model identifies a range of spacing within the limits defined by the minimum undercooling of the a and beta phases. For the irregular Al-Si eutectic system, two different spacing selection mechanisms were identified: (1) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda (sub t); (2) the average spacing (lambda (sub av) greater than lambda (sub t) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model, a semiempirical expression has been developed to account for the influence of the temperature gradient, which is dominant in the irregular Al-Si system. The behavior of the Fe-Fe3C eutectic is also discussed. The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  3. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Stefanescu, D. M.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Jackson and Hunt (JH) theory has been modified to relax the assumption of isothermal solid/liquid interface(SLI) used in their treatment. Based on the predictions of this modified theory the traditional definitions of regular and irregular eutectics are revised. For regular eutectics the new model identifies a range of spacing within the limits defined by the minimum undercooling of the alpha and beta phase. For the irregular Al-Si eutectic system two different spacing selection mechanisms were identified: a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing (lambda(sub av) greater than lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semiempirical expression has been developed to account for the influence of the temperature gradient, which is dominant in the irregular Al-Si system. The behavior of the Fe-Fe3C eutectic is also discussed The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  4. REVIEW OF THE INFLUENCE OF CONVECTION ON THE MICROSTRUCTURE OF FIBROUS EUTECTICS

    E-print Network

    Regel, Liya L.

    convection. Most experiments were performed on the MnBi-Bi eutectic. The rod spacing depended on the growth that directional solidification in microgravity caused a significant reduction in the fiber spacing of the MnBi experiments showed that the effect was real and reproducible [3-13]. Since Larson's ASTP experiment on Mn-Bi

  5. Critical temperature of the leadbismuth eutectic (LBE) alloy Abdul-Majeed Azad *

    E-print Network

    Azad, Abdul-Majeed

    ; boiling point = 2022 K) and Pb (melting point = 600 K; boiling point = 1837 K) as well as the Pb­Bi eutectic alloy (LBE, melting point = 396 K; boil- ing point = 1943 K) have been serious contenders for use neutron absorption and activation, high boiling point and poor interaction with water and air, etc

  6. Damage by eutectic particle cracking in aluminum casting alloys A356/357

    NASA Astrophysics Data System (ADS)

    Wang, Q. G.; Caceres, C. H.; Griffiths, J. R.

    2003-12-01

    The strain dependence of particle cracking in aluminum alloys A356/357 in the T6 temper has been studied in a range of microstructures produced by varying solidification rate and Mg content, and by chemical (Sr) modification of the eutectic silicon. The damage accumulates linearly with the applied strain for all microstructures, but the rate depends on the secondary dendrite arm spacing and modification state. Large and elongated eutectic silicon particles in the unmodified alloys and large ?-phase (Al9FeMg3Si5) particles in alloy A357 show the greatest tendency to cracking. In alloy A356, cracking of eutectic silicon particles dominates the accumulation of damage while cracking of Fe-rich particles is relatively unimportant. However, in alloy A357, especially with Sr modification, cracking of the large ?-phase intermetallics accounts for the majority of damage at low and intermediate strains but becomes comparable with silicon particle cracking at large strains. Fracture occurs when the volume fraction of cracked particles (eutectic silicon and Fe-rich intermetallics combined) approximates 45 pct of the total particle volume fraction or when the number fraction of cracked particles is about 20 pct. The results are discussed in terms of Weibull statistics and existing models for dispersion hardening.

  7. Free energy change of off-eutectic binary alloys on solidification

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  8. Eutectic freeze crystallization: Application to process streams and waste water purification

    Microsoft Academic Search

    F. van der Ham; G. J. Witkamp; J. de Graauw; G. M. van Rosmalen

    1998-01-01

    Two case studies are presented using eutectic freeze crystallization (EFC) as an alternative for evaporative crystallization: a 7.8 ton day?1 35 w% aqueous sodium nitrate and a 24 ton day?1 12 w% copper sulfate stream. The proposed crystallizer is a cooled disk column crystallizer (CDCC), using indirect cooling for heat transfer. In single stage operation, the formed ice crystals are

  9. Quantitative modeling of diffusional coarsening in eutectic tin\\/lead solders

    Microsoft Academic Search

    W. Dreyer

    2000-01-01

    This paper presents a quantitative computer simulation of the coarsening phenomenon observed in eutectic tin\\/lead and other solder materials used for joining microelectronic components. The mathematical model is based on phase field theory and allows predicting the development of tin concentration over time within a representative volume element (RVE) of the solder. It accounts for the chemical free energy of

  10. Experimental investigation of forced-convection heat-transfer characteristics of lead-bismuth eutectic

    NASA Technical Reports Server (NTRS)

    Lubarsky, Bernard

    1951-01-01

    The forced-convection heat-transfer characteristics of lead-bismuth eutectic were experimentally investigated. Experimental values of Nusselt number for lead-bismuth fell considerably below predicted values. The addition of a wetting agent did not change the heat transfer characteristics.

  11. Evaluation of magnesium-aluminum eutectic to improve combustion efficiency in low burning rate propellants

    NASA Technical Reports Server (NTRS)

    Northam, B. G.; Sullivan, E. M.

    1973-01-01

    A previous investigation indicated that combustion efficiency of low burning-rate propellants could be improved if the aluminum fuel was replaced by aluminum particles coated with a magnesium-aluminum eutectic alloy (ALCAL). The purpose of the present investigation was to evaluate the possibility of improving the combustion efficiency of these propellants by admixing the eutectic with the aluminum rather than coating the aluminum. Tests of three propellants similar in every respect except for the metal fuel were conducted in test motors with 4.54 kg (10 lbm) of propellant. The first propellant used aluminum fuel; the second contained aluminum admixed with magnesium-aluminum eutectic; the third used ALCAL. The test results show the the admixed fuel gave better low burning-rate combustion efficiency than the other two. The test results also showed that the ALCAL was deficient in that much, if not all, of the coating material could be found as the fine particles in a bimodal mix of aluminum and eutectic. The combustion efficiency of low burning-rate aluminized propellants can be significantly improved by mixing a small amount of magnesium-aluminum alloy with the aluminum fuel.

  12. The Effect of Silica Nanoparticles on Corrosion of Steel by Molten Carbonate Eutectics

    E-print Network

    Padmanaban Iyer, Ashwin

    2011-08-08

    The effect of silica nanoparticles on corrosion of steel by molten carbonate eutectic (42.7 percent Li2CO3, K2CO3) was investigated. The experimental design was based on static coupon immersion methodology where a coupon (material under study...

  13. High cycle fatigue of tantalum carbide reinforced nickel base eutectics at room temperature

    Microsoft Academic Search

    D. E. Graham; D. A. Woodford

    1979-01-01

    The high cycle fatigue response of two advanced tantalum carbide strengthened eutectic superalloys has been determined at room temperature. Since these alloys will be coated in service, the effects of variables associated with coating processes were given special attention. Both alloys showed a well defined fatigue limit. It was concluded that the maximum stress obtained in the cycle at the

  14. GENERATION OF ULTRA-FINE EUTECTIC MICROSTRUCTURES IN AS-SOLIDIFIED METALS

    E-print Network

    Floreano, Dario

    undercooling competition observed is confirmed by directional solidification and samples solidifiedGENERATION OF ULTRA-FINE EUTECTIC MICROSTRUCTURES IN AS-SOLIDIFIED METALS Étienne Landry-Désy1 Al-Cu-Si sample (600 µm thick) 2 1 DECREASING COOLING RATE The liquid directly contacting the cold

  15. Mechanical Properties and Fracture Behavior of Directionally Solidified NiAl-V Eutectic Composites

    NASA Astrophysics Data System (ADS)

    Milenkovic, Srdjan; Caram, Rubens

    2015-02-01

    Directional solidification of eutectic alloys has been recognized as promising technique for producing in situ composite materials exhibiting balance of properties. Therefore, an in situ NiAl-V eutectic composite has been successfully directionally solidified using Bridgman technique. The mechanical behavior of the composite including fracture resistance, microhardness, and compressive properties at room and elevated temperatures was investigated. Damage evolution and fracture characteristics were also discussed. The obtained results indicate that the NiAl-V eutectic retains high yield strength up to 1073 K (800 °C), above which there is a rapid decrease in strength. Its yield strength is higher than that of binary NiAl and most of the NiAl-based eutectics. The exhibited fracture toughness of 28.5 MPa?m is the highest of all other NiAl-based systems investigated so far. The material exhibited brittle fracture behavior of transgranular type and all observations pointed out that the main fracture micromechanism was cleavage.

  16. Studies of Al-Al 3Ni eutectic mixtures as insertion anodes in rechargeable lithium batteries

    Microsoft Academic Search

    S. Machill; D. Rahner

    1997-01-01

    This contribution will give a short overview of aluminium-nickel eutectic mixture alloys as the anode materials in lithium secondary batteries. These compounds allow to create an alloy matrix of modified grain size with stabilizing properties toward ‘mechanical stressing’ during charge\\/discharge processes of lithium. Several electrochemical techniques have been used to investigate the electrochemical behaviour of these lithium-inserting materials.

  17. CONTROLLED POTENTIAL COULOMETRY IN FUSED LITHIUM CHLORIDE-POTASSIUM CHLORIDE EUTECTIC

    Microsoft Academic Search

    Van Norman

    1962-01-01

    Analyses for Zn(II) and Cd(II) in the fused lithium chloride - potassium ; chloride eutectic at 450 deg C were performed by controlled potential coulometric ; stripping of the predeposited metal from a bismuth pool electrode, and Ni(II) was ; determined by controlled potential stripping of the predeposited metal from a ; platinum gauze electrode. Analyses were performed with an

  18. Resedimented salt deposits

    SciTech Connect

    Slaczka, A.; Kolasa, K. (Jagiellonian Univ., Krakow (Poland))

    1988-08-01

    Carparthian foredeep's Wieliczka salt mine, unique gravity deposits were lately distinguished. They are mainly built of salt particles and blocks with a small admixture of fragments of Miocene marls and Carpathian rocks, deposited on precipitated salt. The pattern of sediment distribution is similar to a submarine fan. Gravels are dominant in the upper part and sands in lower levels, creating a series of lobes. Coarse-grained deposits are represented by disorganized, self-supported conglomerates passing into matrix-supported ones, locally with gradation, and pebbly sandstones consisting of salt grains and scattered boulder-size clasts. The latter may show in the upper part of a single bed as indistinct cross-bedding and parallel lamination. These sediments are interpreted as debris-flow and high-density turbidity current deposits. Salt sandstones (saltstones) which build a lower part of the fan often show Bouma sequences and are interpreted as turbidity-current deposits. The fan deposits are covered by a thick series of debrites (olistostromes) which consist of clay matrix with salt grains and boulders. The latter as represented by huge (up to 100,000 m{sup 3}) salt blocks, fragments of Miocene marls and Carpathian rocks. These salt debrites represent slumps and debris-flow deposits. The material for resedimented deposits was derived from the southern part of the salt basin and from the adjacent, advancing Carpathian orogen. The authors believe the distinct coarsening-upward sequence of the series is the result of progressive intensification of tectonic movements with paroxysm during the sedimentation of salt debrites (about 15 Ma).

  19. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  20. Soluble salts at the Phoenix Lander site, Mars: A reanalysis of the Wet Chemistry Laboratory data

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-07-01

    The Wet Chemistry Laboratory (WCL) on the Phoenix Mars Scout Lander analyzed soils for soluble ions and found Ca2+, Mg2+, Na+, K+, Cl-, SO42-, and ClO4-. The salts that gave rise to these ions can be inferred using aqueous equilibrium models; however, model predictions are sensitive to the initial solution composition. This is problematic because the WCL data is noisy and many different ion compositions are possible within error bounds. To better characterize ion concentrations, we reanalyzed WCL data using improvements to original analyses, including Kalman optimal smoothing and ion-pair corrections. Our results for Rosy Red are generally consistent with previous analyses, except that Ca2+ and Cl- concentrations are lower. In contrast, ion concentrations in Sorceress 1 and Sorceress 2 are significantly different from previous analyses. Using the more robust Rosy Red WCL analysis, we applied equilibrium models to determine salt compositions within the error bounds of the reduced data. Modeling with FREZCHEM predicts that WCL solutions evolve Ca-Mg-ClO4-rich compositions at low temperatures. These unusual compositions are likely influenced by limitations in the experimental data used to parameterize FREZCHEM. As an alternative method to evaluate salt assemblages, we employed a chemical divide model based on the eutectic temperatures of salts. Our chemical divide model predicts that the most probable salts in order of mass abundance are MgSO4·11H2O (meridianiite), MgCO3·nH2O, Mg(ClO4)2·6H2O, NaClO4·2H2O, KClO4, NaCl·2H2O (hydrohalite), and CaCO3 (calcite). If ClO3- is included in the chemical divide model, then NaClO3 precipitates instead of NaClO4·2H2O and Mg(ClO3)2·6H2O precipitates in addition to Mg(ClO4)2·6H2O. These salt assemblages imply that at least 1.3 wt.% H2O is bound in the soil, noting that we cannot account for water in hydrated insoluble salts or deliquescent brines. All WCL solutions within error bounds precipitate Mg(ClO4)2·6H2O and/or Mg(ClO3)2·6H2O salts. These salts have low eutectic temperatures and are highly hygroscopic, which suggests that brines will be stable in soils for much of the Martian summer.

  1. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    PubMed

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the genesis of nanostructure. Furthermore, DES components may modulate nucleation and growth mechanisms by charge neutralization, modification of reduction potentials (or chemical activities), and passivation of particular crystal faces, dictating growth along preferred crystallographic directions. Broad operational windows for electrochemical reactions coupled with their inherent ionic nature facilitate the electrodeposition of alloys and semiconductors inaccessible to classical means and the use of cosolvents or applied potential control provide under-explored strategies for mediating interfacial interactions leading to control over film characteristics. The biocompatibility of DESs suggests intriguing potential for the construction of biomolecular architectures in these novel media. It has been demonstrated that nucleic acid structures can be manipulated in the ionic, crowded, dehydrating (low water activity) DES environment-including the adoption of duplex helical structures divergent from the canonical B form and parallel G-quadruplex DNA persisting near water's boiling point-challenging the misconception that water is a necessity for maintenance of nucleic acid structure/functionality and suggesting an enticing trajectory toward DNA/RNA-based nanocatalysis within a strictly anhydrous medium. DESs offer tremendous opportunities and open intriguing perspectives for generating sophisticated nanostructures within an anhydrous or low-water medium. We conclude this Account by offering our thoughts on the evolution of the field, pointing to areas of clear and compelling utility which will surely see fruition in the coming years. Finally, we highlight a few hurdles (e.g., need for a universal nomenclature, absence of water-immiscible, oriented-phase, and low-viscosity DESs) which, once navigated, will hasten progress in this area. PMID:24892971

  2. Nickel solubility limit in liquid lead-bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Martinelli, L.; Vanneroy, F.; Diaz Rosado, J. C.; L'Hermite, D.; Tabarant, M.

    2010-05-01

    In the framework of the Accelerator-Driven System (ADS), the Pb-Bi eutectic can be used as spallation target for neutron production. The Pb-Bi flow in contact with the ADS structural steels, T 91 (Fe-9Cr martensitic steel) and 316L (Fe-17Cr-10Ni austenitic steel), can dissolve the main steel components: iron, chromium and nickel. According to literature, in low oxygen containing Pb-Bi, the dissolution rates of 316L depend, at least, on the nickel solubility limit as it dissolves preferentially in the Pb-Bi alloy. Consequently, the determination of this physico-chemical data in the temperature range of the ADS operating conditions (350-450 °C) is needed for the prediction of the corrosion rates in ADS. The nickel solubility limit in Pb-Bi is available in the literature from 400 °C to 900 °C but not for lower temperatures. However, the Ni-Bi phase diagram leads one to suppose that the nickel solubility limit law changes for lower temperatures. Consequently in this study, two experimental techniques have been implemented for the determination of the nickel solubility limit at low temperatures. The first one is performed from 400 °C to 500 °C using the Laser Induce Breakdown Spectroscopy (LIBS). The LIBS technique permits to obtain in situ measurements directly performed on liquid Pb-Bi. This characteristic is very interesting as it allows to monitor on line the concentration of the dissolved impurities in the liquid coolant. However, this technique is still under development and optimization on liquid Pb-Bi medium. The second technique is ICP-AES. This technique, commonly used to analyze alloys composition, is interesting as it permits a global analysis of a Pb-Bi sample. Moreover, the measurement made by ICP-AES is very reliable, very accurate and optimized for such analyses. However, this technique is ex situ; this is its main disadvantage. Experiments using ICP-AES were performed from 350 °C to 535 °C. The two techniques lead to the same solubility limit in their common temperature range. However, the experiment using ICP-AES technique revealed a change in the nickel solubility law for the temperatures lower than 415 °C. Consequently, this study recommends the use of two solubility limits relations, which take into account these results, as well as the literature results: the solubility limits laws of Martynov and Rosenblatt. The nickel solubility limit can thus be expressed as: Log S(wt.%)=5.2±0.12-{3500}/{T(K)} for the temperature range: 330-415 °C. This law is the empirical solubility law obtained in this study at the low temperature range. Log S(wt.%)=1.7±0.08-{1009}/{T(K)} for 415-900 °C temperature range. This law is the linear regression made on the overall experimental points available in literature and in this study. According to the Martynov studies, it seems reliable up to 900 °C.

  3. Natural deep eutectic solvents as new potential media for green technology.

    PubMed

    Dai, Yuntao; van Spronsen, Jaap; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-03-01

    Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry. PMID:23427801

  4. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.

    2011-01-01

    Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.

  5. Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions

    NASA Astrophysics Data System (ADS)

    Ludwig, Thomas Hartmut; Li, Jiehua; Schaffer, Paul Louis; Schumacher, Peter; Arnberg, Lars

    2015-01-01

    The effects of combined additions of Ca and P on the eutectic Si in a series of high purity Al-5 wt pct Si alloys have been investigated with the entrained droplet technique and complementary sets of conventional castings. Differential scanning calorimetry (DSC) and thermal analysis were used to investigate the eutectic droplet undercooling and the recalescence undercooling, respectively. Optical microscopy, SEM, EPMA, and TEM were employed to characterize the resultant microstructures. It was found that 250 ppm Ca addition to Al-5Si wt pct alloys with higher P contents leads to a significant increase of the eutectic droplet undercooling. For low or moderate cooling rates, the TEM results underline that Ca additions do not promote Si twinning. Thus, a higher twin density cannot be expected in Ca containing Al-Si alloys after, e.g., sand casting. Consequently, a refinement of the eutectic Si from coarse flake-like to fine plate-like structure, rather than a modification of the eutectic Si to a fibrous morphology, was achieved. This strongly indicates that the main purpose of Ca additions is to counteract the coarsening effect of the eutectic Si imposed by higher P concentrations. Significant multiple Si twinning was observed in melt-spun condition; however, this can be attributed to the higher cooling rate. After DSC heating (slow cooling), most of Si twins disappeared. Thus, the well-accepted impurity-induced twinning mechanism may be not valid in the case of Ca addition. The possible refinement mechanisms were discussed in terms of nucleation and growth of eutectic Si. We propose that the pre-eutectic Al2Si2Ca phase and preferential formation of Ca3P2 deactivate impurity particles, most likely AlP, poisoning the nucleation sites for eutectic Si.

  6. Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR.

    PubMed

    D'Agostino, Carmine; Gladden, Lynn F; Mantle, Mick D; Abbott, Andrew P; Ahmed, Essa I; Al-Murshedi, Azhar Y M; Harris, Robert C

    2015-06-01

    Pulsed field gradient (PFG) NMR has been used to probe self-diffusion of molecular and ionic species in aqueous mixtures of choline chloride (ChCl) based deep eutectic solvents (DESs), in order to elucidate the effect of water on motion and inter-molecular interactions between the different species in the mixtures, namely the Ch(+) cation and hydrogen bond donor (HBD). The results reveal an interesting and complex behaviour of such mixtures at a molecular level. In general, it is observed that the hydroxyl protons ((1)H) of Ch(+) and the hydrogen bond donor have diffusion coefficients significantly different from those measured for their parent molecules when water is added. This indicates a clear and significant change in inter-molecular interactions. In aqueous Ethaline, the hydroxyl species of Ch(+) and HBD show a stronger interaction with water as water is added to the system. In the case of Glyceline, water has little effect on both hydroxyl proton diffusion of Ch(+) and HBD. In Reline, it is likely that water allows the formation of small amounts of ammonium hydroxide. The most surprising observation is from the self-diffusion of water, which is considerably higher that expected from a homogeneous liquid. This leads to the conclusion that Reline and Glyceline form mixtures that are inhomogeneous at a microscopic level despite the hydrophilicity of the salt and HBD. This work shows that PFG NMR is a powerful tool to elucidate both molecular dynamics and inter-molecular interactions in complex liquid mixtures, such as the aqueous DES mixtures. PMID:25994171

  7. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  8. Trace water content of salt in Louisiana salt domes

    Microsoft Academic Search

    L. P. Knauth; M. B. Kumar

    1981-01-01

    The trace water content of salt in six Louisiana salt domes has been determined and has been found to be the lowest of any terrestrial rock type. The average water content of normal domal salt is on the order of 0.003 percent by weight, but anomalous zones within salt stocks can have more than ten times this amount. From the

  9. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  10. Amine salts of nitroazoles

    DOEpatents

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  11. COMPUTATIONAL THERMODYNAMIC MODELING OF HOT CORROSION OF ALLLOYS HAYNES 242 AND HASTELLOYTMN FOR MOLTEN SALT SERVICE

    SciTech Connect

    Michael V. Glazoff; Piyush Sabharwall; Akira Tokuhiro

    2014-09-01

    An evaluation of thermodynamic aspects of hot corrosion of the superalloys Haynes 242 and HastelloyTM N in the eutectic mixtures of KF and ZrF4 is carried out for development of Advanced High Temperature Reactor (AHTR). This work models the behavior of several superalloys, potential candidates for the AHTR, using computational thermodynamics tool (ThermoCalc), leading to the development of thermodynamic description of the molten salt eutectic mixtures, and on that basis, mechanistic prediction of hot corrosion. The results from these studies indicated that the principal mechanism of hot corrosion was associated with chromium leaching for all of the superalloys described above. However, HastelloyTM N displayed the best hot corrosion performance. This was not surprising given it was developed originally to withstand the harsh conditions of molten salt environment. However, the results obtained in this study provided confidence in the employed methods of computational thermodynamics and could be further used for future alloy design efforts. Finally, several potential solutions to mitigate hot corrosion were proposed for further exploration, including coating development and controlled scaling of intermediate compounds in the KF-ZrF4 system.

  12. Salt Plains Microbial Observatory

    NSDL National Science Digital Library

    Mark Buchheim

    This site is home of the Salt Plains Microbial Observatory, located in the Salt Plains National Wildlife Refuge in northern Oklahoma. This area has permitted the first extensive study of a non-marine, terrestrial, hypersaline environment. The web site offers information about the extreme environment, images and video clips of its microbial inhabitants, an image-rich summary of research activities, information about summer courses and research opportunities, a list of publications, and links to other informative resources pertaining to hypersaline environments.

  13. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    SciTech Connect

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

  14. Thermal cycling effect on the nanoparticle distribution and specific heat of a carbonate eutectic with alumina nanoparticles

    E-print Network

    Shankar, Sandhya

    2011-08-08

    The objective of this research was to measure the effect of thermal cycling on the nanoparticle distribution and specific heat of a nanocomposite material consisting of a eutectic of lithium carbonate and potassium carbonate and 1% by mass alumina...

  15. Growth and microstructure evolution of the Nb{sub 2}Al-Al{sub 3}Nb eutectic in situ composite

    SciTech Connect

    Rios, C.T. [State University of Campinas, P.O. Box 6122, Campinas, SP 13083-970 (Brazil); Ferrandini, P.L. [Centro Universitario da FEI, C.P.85, CEP:09850-901, SP-Brasil (Brazil); Milenkovic, S. [State University of Campinas, P.O. Box 6122, Campinas, SP 13083-970 (Brazil); Caram, R. [State University of Campinas, P.O. Box 6122, Campinas, SP 13083-970 (Brazil)]. E-mail: rcaram@fem.unicamp.br

    2005-03-15

    In situ composite materials obtained by directional growth of eutectic alloys usually show improved properties, that make them potential candidates for high temperature applications. The eutectic alloy found in the Al-Nb system is composed of the two intermetallic phases Al{sub 3}Nb (D0{sub 22}) and Nb{sub 2}Al (D8{sub b}). This paper describes the directional solidification of an Al-Nb eutectic alloy using a Bridgman type facility at growth rates varying from 1.0 to 2.9 cm/h. Longitudinal and transverse sections of grown samples were characterized regarding the solidification microstructure by using optical and scanning electron microscopy, energy dispersive spectroscopy (EDS) and X-ray diffraction. Despite both phases being intermetallic compounds, the eutectic microstructure obtained was very regular. The results obtained were discussed regarding the effect of the growth rate on the microstructure, lamellar-rod transition and variation of phase volume fraction.

  16. A study of early corrosion behaviors of FeCrAl alloys in liquid lead–bismuth eutectic environments

    Microsoft Academic Search

    Jun Lim; Hyo On Nam; Il Soon Hwang; Ji Hyun Kim

    2010-01-01

    Lead and lead–bismuth eutectic (LBE) alloy have been increasingly receiving attention as heavy liquid metal coolants (HLMC) for future nuclear energy systems. The compatibility of structural materials and components with lead–bismuth eutectic liquid at high temperature is one of key issues for the commercialization of lead fast reactors. In the present study, the corrosion behaviors of iron-based alumina-forming alloys (Kanthal-AF®,

  17. Microstructures and hydrogen permeability of directionally solidified Nb–Ni–Ti alloys with the Nb–NiTi eutectic microstructure

    Microsoft Academic Search

    Kyosuke Kishida; Yuji Yamaguchi; Katsushi Tanaka; Haruyuki Inui; Sho Tokui; Kazuhiro Ishikawa; Kiyoshi Aoki

    2008-01-01

    The microstructures and hydrogen permeability properties were investigated for Nb–NiTi eutectic alloys directionally solidified in an optical floating zone furnace. Rod-type eutectic microstructures with Nb rods aligned parallel to the growth direction are obtained with an alloy having a composition of Nb–41Ni–40Ti grown at relatively slow growth rates below 2.5mm\\/h. The hydrogen permeability depends on the relative direction of aligned

  18. Crystallographically aligned metal-oxide composite made by reduction of a directionally solidified oxide-oxide eutectic

    Microsoft Academic Search

    A. Revcolevschi; G. Dhalenne

    1985-01-01

    Aligned metal-oxide composite materials have been grown from the melt by directional solidification at eutectic composition of several binary metal-oxide systems. The resulting microstructures consist of metallic fibres ~1 µm in diameter imbedded in an oxide matrix1,2. The occurrence of such fibrous structures, as opposed to lamellar structures, corresponds to eutectic compositions for which the volume fraction of the minor

  19. Microstructure characteristics and interface morphology evolvement of Si-TaSi 2 eutectic in situ composite for field emission

    Microsoft Academic Search

    Chunjuan Cui; Jun Zhang; Bo Li; Min Han; Lin Liu; Hengzhi Fu

    2007-01-01

    As one of the semiconductor-metal eutectic (SME) composites, Si-TaSi2 eutectic composite has many characters such as the high melting point of TaSi2 material, the large density of TaSi2 fibers incorporated into the Si matrix, three-dimensional array of Schottky junctions grown in the composite spontaneously. So it is an ideal candidate for field emission array cathodes. In this paper, the directionally

  20. Microstructure and mechanical behavior of in-situ directional solidified NiAl\\/Cr(Mo) eutectic composite

    Microsoft Academic Search

    J.-M. Yang; S. M. Jeng; K. Bain; R. A. Amato

    1997-01-01

    NiAl-based composites reinforced with refractory metals in-situ by the directional solidification technique have been recognized as promising candidate materials for high temperature structural applications. An in-situ NiAl\\/Cr(Mo) eutectic composite has been successfully fabricated using an edge-defined film-fed growth technique. The purpose of adding Mo into the NiAl\\/Cr eutectic system is to control the morphology of the Cr from a fibrous

  1. Salt Made the World Go Round: MRBLOCH Salt Archive

    NSDL National Science Digital Library

    Bloch, David.

    Don't you just love it when everything can be summed up with one simple explanantion? Created by David Bloch, this Website proves that life as we know depends upon salt. Sections of the site look at salt in relation to a wide range of areas of study, such as Physiology, Geology, Archaeology, Paleoclimatology, Religion, and Economics. For example, the Economics section provides information on the use of salt as money, the history of the control of salt by monopolies, and the influence of the salt trade on transportation. The Religion section points out the importance of salt in religious practices, such as Jewish koshering and Egyptian embalming. Also included are links to over fifty additional salt sites, an email list, and an announcement for Salt 2000, the 8th World Salt Symposium, to be held in the Hague in May 2000.

  2. A feasibility study of a diffusion barrier between Ni-Cr-Al coatings and nickel-based eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems have been proposed for potential use on eutectic alloy components in high-temperature gas turbine engines. In a study to prevent the deterioration of such systems by diffusion, a tungsten sheet 25 microns thick was placed between eutectic alloys and an Ni-Cr-Al layer. Layered test specimens were aged at 1100 C for as long as 500 h. Without the tungsten barrier the delta phase of the eutectic deteriorated by diffusion of niobium into the Ni-Cr-Al. Insertion of the tungsten barrier stopped the diffusion of niobium from the delta phase. Chromium diffusion from the Ni-Cr-Al into the gamma/gamma-prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time, and tungsten diffused into both the Ni-Cr-Al and the eutectic. When the delta platelets were aligned parallel rather than perpendicular to the Ni-Cr-Al layer, diffusion into the eutectic was reduced.

  3. In situ PM-IRRAS of a glassy carbon electrode/deep eutectic solvent interface.

    PubMed

    Vieira, Luciana; Schennach, Robert; Gollas, Bernhard

    2015-05-01

    The interface of a 1?:?2 molar choline chloride/ethylene glycol deep eutectic solvent with a glassy carbon electrode has been investigated by polarization modulation reflection-absorption spectroscopy (PM-IRRAS). Temporal spectral changes at open circuit potential show the experiments to be surface sensitive and indicate slow adsorption of electrolyte molecules on the electrode surface. In situ spectroelectrochemical PM-IRRAS measurements reveal characteristic potential-dependent changes of band intensities and wavenumber-shifts in the surface spectra. The potential dependent spectral changes are discussed in terms of adsorption, reduction, desorption and reorientation of choline cations at the interface. Analogies are drawn to the ionic layer structure proposed for the architecture of electrode/ionic liquid interfaces. The results show that in situ PM-IRRAS is generally applicable to glassy carbon electrodes and to electrode interfaces with deep eutectic solvents. PMID:25908481

  4. Relationship between edge drift and atomic migration during electromigration of eutectic SnPb lines

    NASA Astrophysics Data System (ADS)

    Yoon, Min-Seung; Lee, Shin-Bok; Kim, Oh-Han; Park, Young-Bae; Joo, Young-Chang

    2006-08-01

    The existence of an incubation stage before edge drift occurs was found by examining the electromigration characteristics of eutectic SnPb solder in an edge drift structure using in situ scanning electron microscopy and the interruptive test method. During this incubation stage, the depletion of Pb was observed at the cathode end. From the change in resistance, the activation energies for the incubation and edge movement stages were calculated to be 0.88 and 1.02eV, respectively. Based on a comparison of the activation energies for each stage with the previously reported values, it is believed that, during the incubation stage, Pb migrated before Sn and that the edge movement resulted from the migration of Sn. These results suggest that Pb depletion is a prerequisite for electromigration-induced void nucleation in eutectic SnPb solder.

  5. TEM/HREM structural characterization of directionally solidified GaAs-CrAs eutectic crystals

    SciTech Connect

    Ruvimov, S.; Liliental-Weber, Z.; Swider, W.; Washburn, J. [Lawrence Berkeley Lab., CA (United States). Material Science Div.; Holmes, D.E. [Electronic Materials Engineering, Camarillo, CA (United States)

    1996-12-31

    Conventional and high resolution electron microscopy have been applied to characterize the microstructure of the CrAs-GaAs eutectic. The CrAs-GaAs eutectic crystals were directionally solidified by the Czochralski method in order to produce an ordered array of CrAs rods embedded in a GaAs matrix. The CrAs rods of 2--3 {micro}m in diameter align parallel to the growth axis of the ingot. Where the GaAs matrix is found to contain structural defects, the CrAs rods are effectively defect-free. The CrAs has an orthorhombic structure with the parameters a = 3.5 {+-} 0.1 {angstrom}, b = 6.2 {+-} 0.1 {angstrom}, c = 5.7 {+-} 0.1 {angstrom}. The c-axis is close to the direction of solidification.

  6. Studies of directionally solidified eutectic Bi/MnBi at low growth velocities

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.

    1984-01-01

    The (lambda-squared)(V) deviation for diffusion-only rod eutectic growth, where lambda is the interrod spacing and V is the growth velocity, was studied at growth velocities less than 5 cm/h in directionally solidified eutectic Bi-Mn (Bi/MnBi). At lower growth velocities, (V less than 0.5 cm/h) morphological instability occurred which resulted in nonaligned, irregularly dispersed MnBi fibers. The (lambda-squared)(V) relation was experimentally determined over a range of growth velocities between 0.1 and 50 cm/h, thermal gradients in the liquid at the liquid-solid interface that varied from 40 to 120 C/cm and solidification orientation with respect to the direction of gravity. Naturally induced, convective instabilities are suggested as a possible growth velocity limit for cooperative growth in the Bi-Mn and related alloy systems.

  7. High temperature oxidation resistant coatings for the directionally solidified Ni-Nb-Cr-Al eutectic superalloy

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Ulion, N. E.; Felten, E. J.

    1977-01-01

    Protective coatings required for the Ni-Nb-Cr-Al directionally solidified eutectic superalloy were developed and evaluated on the basis of oxidation resistance, diffusional stability, thermal fatigue, and creep resistance. NiCrAlY+Pt and NiCrAlY physical vapor-deposition coating systems exhibited the best combination of properties. Burner-rig testing indicated that the useful life of a 127-micron-thick NiCrAlY+Pt coating exceeds 1000 h at 1366 K. Eutectic-alloy creep lives at 1311 K and a stress of 151.7 MN/sq m were greater for NiCrAlY+Pt-coated specimens than for uncoated specimens by a factor of two.

  8. Thermoelectric properties of Bi2Te3-PbTe pseudo binary near the eutectic composition.

    PubMed

    Jung, Kyooho; Jang, Ho Won; Kang, Chong-Yun; Yoo, Myong-Jae; Choi, Won Chel; Kim, Jin-Sang

    2012-04-01

    (Bi2Te3)(1-x)(PbTe)(x) binary systems near eutectic composition were prepared by melting of elemental metals and a sequential water quenching process and their microstructures and thermoelectric properties were investigated. Multiple phases such as Bi2Te3, BiPbTe and PbTe were observed due to phase separation when the composition x was higher than the eutectic point. Also the electrical conduction type of the alloys converted from p-type to n-type in the phase separated alloys. The lattice thermal conductivities in the phase-separated alloys are lower than those in alloys without phase separation, attributable to increased boundary scattering. PMID:22849153

  9. Fatigue of Ni-Ai-Mo aligned eutectics at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Tartaglia, J. M.; Stoloff, N. S.

    1981-11-01

    The elevated-temperature mechanical behavior of two aligned eutectics (Ni-8.1 wt pct Al-26.4 wt pct Mo and Ni-6.3 wt pct Al-31.2 wt pct Mo) has been investigated utilizing monotonic and cyclic testing in vacuum. Tensile yield strength and fatigue resistance increased from 25 to 725 °C, but then were reduced at 825 °C. The fatigue lives of specimens tested at 725 °C decreased sharply with decreasing frequency. A shift from surface to internal crack initiation was observed upon increasing the test temperature from 725 to 825 °C. Stage II crack propagation was observed at both temperatures, in contrast to stage I cracking at 25 °C. The test results are compared to those for other nickel and cobalt-base aligned eutectics to show that the frequency effect on fatigue life is not limited to the Ni-AI-Mo system.

  10. Microstructural Effects on High Cycle Fatigue of Ni-AI-Mo Aligned Eutectics

    NASA Astrophysics Data System (ADS)

    Tartaglia, J. M.; Stoloff, N. S.

    1981-06-01

    Two nickel-base aligned eutectics, AG15 (Ni-8.1 wt pct Al-26.4 wt pct Mo) and AG34 (Ni-6.3 wt pct Al-31.2 wt pct Mo), have been tested in high cycle fatigue at room temperature. Experimental variables were test environment and post-solidification heat treatment. The fatigue lives of both alloys and the crack propagation resistance of AG15 improved substantially in tests performed in vacuum vs those performed in air. AG34 had a higher fatigue limit than AGI5; both alloys showed surface initiation and stage I crack propagation. Post-solidification heat treatment had a beneficial effect on the S-N lives of AG34 specimens. Fatigue resistance of both alloys is compared with that of other nickel or cobalt base eutectics strengthened with brittle fibers.

  11. Eutectic bonding of a Ti sputter coated, carbon aerogel wafer to a Ni foil

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Kanna, R.L.

    1994-06-01

    The formation of high energy density, storage devices is achievable using composite material systems. Alternate layering of carbon aerogel wafers and Ni foils with rnicroporous separators is a prospective composite for capacitor applications. An inherent problem exists to form a physical bond between Ni and the porous carbon wafer. The bonding process must be limited to temperatures less than 1000{degrees}C, at which point the aerogel begins to degrade. The advantage of a low temperature eutectic in the Ni-Ti alloy system solves this problem. Ti, a carbide former, is readily adherent as a sputter deposited thin film onto the carbon wafer. A vacuum bonding process is then used to join the Ni foil and Ti coating through eutectic phase formation. The parameters required for successfld bonding are described along with a structural characterization of the Ni foil-carbon aerogel wafer interface.

  12. Compatibility of martensitic\\/austenitic steel welds with liquid lead bismuth eutectic environment

    Microsoft Academic Search

    J. Van den Bosch; A. Almazouzi

    2009-01-01

    The high-chromium ferritic\\/martensitic steel T91 and the austenitic stainless steel 316L are to be used in contact with liquid lead–bismuth eutectic (LBE), under high irradiation doses. Both tungsten inert gas (TIG) and electron beam (EB) T91\\/316L welds have been examined by means of metallography, scanning electron microscopy (SEM-EDX), Vickers hardness measurements and tensile testing both in inert gas and in

  13. Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis

    Microsoft Academic Search

    Diana Lindberg; Mario de la Fuente Revenga; Mikael Widersten

    2010-01-01

    A special group of ionic liquids, deep eutectic solvents (DESs) have been tested as cosolvents in enzyme-catalyzed hydrolysis of a chiral (1,2)-trans-2-methylstyrene oxide. The choline chloride:ethane diol (ET), choline chloride:glycerol (GLY) and choline:chloride:urea (REL) DESs were included in the reaction mixtures with epoxide and the potato epoxide hydrolase StEH1. The effect of the DESs on enzyme function was primarily elevations

  14. Synthesis and Characterization of CuCl Nanoparticles in Deep Eutectic Solvents

    Microsoft Academic Search

    YING HUANG; FEI SHEN; JING LA; GENXIANG LUO; JUNLING LAI; CHUNSHENG LIU; GANG CHU

    2012-01-01

    In the present work, CuCl nanoparticles were fabricated in deep eutectic solvents (DES) which is a new kind of ionic liquid with special properties. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of polyvinylpyrrolidone (PVP), the molar ratio of ascorbic acid to copper chloride and the mixing method

  15. The kinetics of the Cu 2+\\/Cu + redox couple in deep eutectic solvents

    Microsoft Academic Search

    David Lloyd; Tuomas Vainikka; Lasse Murtomäki; Kyösti Kontturi; Elisabet Ahlberg

    2011-01-01

    Kinetics of electron transfer of the Cu(I)\\/Cu(II) redox couple at a platinum electrode has been studied with chronoamperometry, cyclic voltammetry and impedance spectroscopy in a deep eutectic solvent consisting of choline chloride and ethylene glycol. At 25°C, the reaction was found to be quasi-reversible with a relatively high rate constant k0 of 9.5±2×10?4cms?1, and a charge transfer coefficient ? of

  16. A novel green approach for the chemical modification of silica particles based on deep eutectic solvents.

    PubMed

    Gu, Tongnian; Zhang, Mingliang; Chen, Jia; Qiu, Hongdeng

    2015-06-01

    Deep eutectic solvents (DESs), as a novel class of green solvents, were successfully applied as eco-friendly and sustainable reaction media for fast surface modification of spherical porous silica, resulting in stationary phases for high-performance liquid chromatography. The new reaction media were advantageous over organic solvents in many aspects, such as the high dispersibility of silica spheres and their non-volatility. PMID:25985926

  17. Electrodeposition of Co, Sm and SmCo from a Deep Eutectic Solvent

    Microsoft Academic Search

    E. Gómez; P. Cojocaru; L. Magagnin; E. Valles

    2011-01-01

    The suitability of 1 choline chloride:2 urea mixture, Deep Eutectic Solvent (DES) for the electrodeposition of cobalt, samarium and cobalt–samarium system has been studied. Its electrochemical window permits deposition analysis to be carried out without interference from parallel reactions. Deposition was studied at 70°C in order to stimulate mass transfer and to lower solution viscosity.Cobalt deposits according to a nucleation

  18. Thermoelectric and morphological effects of peltier pulsing on directional solidification of eutectic Bi-Mn

    Microsoft Academic Search

    R. P. Silberstein; D. J. Larson; B. Dressler

    1984-01-01

    We have carried out extensivein situ thermal measurements during Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi\\/MnBi. We\\u000a have observed that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. We have\\u000a separated the contributions of the Peltier, Thomson, and Joule heats, and studied them as a function of pulse intensity and\\u000a polarity.

  19. Microstructure and creep of eutectic indium\\/tin on copper and nickel substrates

    Microsoft Academic Search

    J. L. Freer; J. W. Jr. Morris

    1992-01-01

    The behavior during creep in shear of eutectic indium-tin joints on copper and nickel substrates was examined in order to\\u000a determine the effect of creep deformation on the microstructure of the alloy. Primary creep was absent in all the samples\\u000a tested. The stress exponent at 20° C was much higher for samples on nickel than for those on copper, indicating

  20. The effect of heat transfer on local solidification kinetics of eutectic Al-Si cast alloy

    Microsoft Academic Search

    C. González-Rivera; M. H. Cruz; H. A. García; J. A. Juarez-Islas

    1999-01-01

    Recently, Fourier thermal analysis (FTA) has been proposed as a suitable technique to obtain information about local solidification\\u000a kinetics in casting alloys. In this work, FTA was applied to a near-eutectic aluminum-silicon cast alloy in order to seek\\u000a experimental evidence supporting the solidification kinetics obtained from this method. Also, a heat-transfer\\/solidification-kinetics\\u000a model was used to compare predictions with experimental results.

  1. Damage by eutectic particle cracking in aluminum casting alloys A356\\/357

    Microsoft Academic Search

    Q. G. Wang; C. H. Caceres; J. R. Griffiths

    2003-01-01

    The strain dependence of particle cracking in aluminum alloys A356\\/357 in the T6 temper has been studied in a range of microstructures\\u000a produced by varying solidification rate and Mg content, and by chemical (Sr) modification of the eutectic silicon. The damage\\u000a accumulates linearly with the applied strain for all microstructures, but the rate depends on the secondary dendrite arm spacing

  2. Interlamellar residual stresses in single grains of NiO-ZrOâ(cubic) directionally solidified eutectics

    Microsoft Academic Search

    Elizabeth C. Dickey; Vinayak P. Dravid; Camden R. Hubbard

    1997-01-01

    Phase-to-phase residual stresses due to thermal expansion mismatch were measured in lamellar NiO-ZrOâ (cubic) directionally solidified eutectics (DSEs). The triaxial strain tensors for both phases were measured using single-crystal X-ray diffractometry techniques on isolated grains of the DSE. From the strain tensors, the stress tensors were calculated, taking into account the full elastic anisotropy of the phases. The resulting stress

  3. Structured porous Ni and Co-YSZ cermets fabricated from directionally solidified eutectic composites

    Microsoft Academic Search

    M. A. Laguna-Bercero; A. Larrea; J. I. Peña; R. I. Merino; V. M. Orera

    2005-01-01

    NiO-YSZ and CoO-YSZ eutectic rods were produced by directional solidification using the laser floating zone method (LFZ). This technique produces highly structured material consisting of alternate lamellae of transition metal oxide and zirconia with variable interlamellar spacing depending on growth conditions. We have chosen conditions for interlamellar spacing of about 1?m. The microstructure is homogeneous and mechanically stable during thermochemical

  4. Stability of the directionally solidified eutectics NiAl-Cr and NiAl-Mo

    Microsoft Academic Search

    J. L. Walter; H. E. Cline

    1973-01-01

    The eutectics NiAl-Cr with cylindrical chromium fibers and NiAl-Mo with faceted molybdenum fibers were heated at 1400?C to\\u000a determine the stability of the composite structure and to compare the stability of the nonfaceted fibers with that of the\\u000a faceted fibers in the NiAl matrix. Fiber size and size distribution and number of fibers per unit area were measured as a

  5. Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy

    Microsoft Academic Search

    H.. Bei; E. P.. George

    2005-01-01

    A NiAl–Mo ternary eutectic alloy, having the nominal composition Ni–45.5Al–9Mo (at.%), was directionally solidified in a high-temperature optical floating zone furnace. Well-aligned rod-like microstructures were obtained, consisting of NiAl matrix and 14% (by volume) continuous Mo fibers having a square cross-section. With increasing growth rate (from 20 to 80 mm\\/h), the spacing and size of the Mo fibers decreased, from

  6. Mechanical behavior of a carbide reinforced Co-Cr eutectic alloy

    Microsoft Academic Search

    E. R. Thompson; D. A. Koss; J. C. Chesnutt

    1970-01-01

    The tensile and creep behavior of a unidirectionally solidified (Co, Cr)-(Cr, Co)7C3 monovariant eutectic alloy have been examined. The effect of fiber orientation on the tensile strength has been studied at temperatures to 2200°F. The composite was found to be anisotropic with considerable strengthening in the longitudinal direction and with the transverse and 45 deg ultimate strengths being limited by

  7. The influence of electric current pulses on the microstructure of the MnBi\\/Bi eutectic

    Microsoft Academic Search

    F. Li; L. L. Regel; W. R. Wilcox

    2001-01-01

    The MnBi\\/Bi eutectic was directionally solidified with freezing rate oscillations caused by electric current pulses. The influence of current pulsing on microstructure depended on the ampoule translation rate V and pulsing conditions. Continuous electric current had a small effect on the microstructure. Current pulsing with the solid positive had a substantial influence, greater than with the solid negative. For V?2cm\\/h,

  8. Influence of freezing rate changes on MnBi-Bi eutectic microstructure

    Microsoft Academic Search

    William R. Wilcox; Krishna Doddi; Manju Nair; David J. Larson

    1983-01-01

    In an attempt to explain the influence of space processing on the microstructure of MnBi-Bi, eutectic mixtures were directionally solidified with a sudden change of translation rate. The MnBi fiber spacing was able to adapt to the changing freezing rate as predicted by heat transfer computations. Thus the microstructure adapts more rapidly than the freezing rate could be changed in

  9. Influence of freezing rate changes of MnBi-Bi eutectic microstructure. [effects of space processing

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Doddi, K.; Nair, M.; Larson, D. J.

    1983-01-01

    In an attempt to explain the influence of space processing on the microstructure of MnBi-Bi, eutectic mixtures were directionally solidified with a sudden change of translation rate. The MnBi fiber spacing was able to adapt to the changing freezing rate as predicted by heat transfer computations. Thus the microstructure adapts more rapidly than the freezing rate could be changed in the present experiments.

  10. Structure and magnetic properties of directionally solidified Bi-MnBi eutectic alloys

    Microsoft Academic Search

    M. R. Notis; D. M. Shah; S. Young; C. Graham

    1979-01-01

    An alloy containing about 2 at% Mn and 98 at% Bi should solidify at 230°C to give a eutectic consisting of about 3 vol % ferromagnetic MnBi in a matrix of diamagnetic Bi. Directional solidification of this alloy produces a structure of elongated parallel MnBi rods with diameters from 0.1 to 1.5 ?m, decreasing with increasing growth rate. Samples solidified

  11. Determination of phase diagrams of eutectic binary alloys with partial solid solubility

    Microsoft Academic Search

    L. J. Gallego; J. A. Somoza; J. A. Alonso; J. M. Lopez

    1988-01-01

    Using a semi-empirical theory largely based on the heat of formation model developed by Miedema and co-workers, we have constructed the phase diagram of the alloy CuAg, a prototypical example of a system of eutectic type with appreciable solid solubility and no intermetallic compounds. This is an advance on the simpler kind of phase diagrams we considered in a previous

  12. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb\\/Bi eutectic alloy

    Microsoft Academic Search

    Rymantas Kazys; Algirdas Voleisis; Reimondas Sliteris; Liudas Mazeika; Rudi Van Nieuwenhove; Peter Kupschus; Hamid Ait Abderrahim

    2005-01-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb\\/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to the description of

  13. Eutectic bonding of austenitic stainless steel 316L to magnesium alloy AZ31 using copper interlayer

    Microsoft Academic Search

    Waled M. Elthalabawy; Tahir I. Khan

    2011-01-01

    The eutectic bonding of magnesium alloy (AZ31) to austenitic stainless steel alloy (316L) was performed using pure Cu interlayers.\\u000a The effect of hold time on the microstructural developments across the joint region and the related effect on bond shear strength\\u000a were studied at a bonding temperature of 530°C. The bonding process took place through a sequential occurrence of solid-state\\u000a diffusion

  14. Selective Au-Si eutectic bonding for Si-based MEMS applications

    SciTech Connect

    Lee, A.; Lehew, S.; Yu, C. [and others

    1995-05-22

    A novel method of fabricating three-dimensional silicon micro electromechanical systems (MEMS) is presented, using selectivity thin film deposited Au-Si eutectic bond pads. Utilizing this process, complicated structures such as microgrippers and microchannels are fabricated. Bond strengths are higher than the silicon fracture strength and the bond areas can be localized and aligned to the processed wafer. The process and the applications are described in this paper.

  15. Corrosion of metals in molten lithium sulphate-potassium sulphate eutectic

    Microsoft Academic Search

    G. M. Abou-Elenien

    1991-01-01

    In conjunction with the development of a new electrochemical flue gas desulphurization process, a study is made of the corrosion of several electrode materials in molten lithium sulphate-potassium sulphate eutectic at 600°C. Measurements of the open-circuit potentials are made in air, oxygen and nitrogen to determine the existence of a stable oxide layer on the electrode surface. Voltammetric measurements are

  16. High cycle fatigue of tantalum carbide reinforced nickel base eutectics at room temperature

    Microsoft Academic Search

    D. E. Graham; D. A. Woodford

    1979-01-01

    The high cycle fatigue response of two advanced tantalum carbide strengthened eutectic superalloys has been determined at\\u000a room temperature. Since these alloys will be coated in service, the effects of variables associated with coating processes\\u000a were given special attention. Both alloys showed a well defined fatigue limit. It was concluded that the maximum stress obtained\\u000a in the cycle at the

  17. Unidirectional solidification of Al–Cu eutectic with the accelerated crucible rotation technique

    Microsoft Academic Search

    D. Ma; W. Q Jie; W Xu; Y Li; S Liu

    1998-01-01

    The accelerated crucible rotation technique (ACRT) has been applied to the unidirectional solidification of Al–Cu eutectic to reveal the effect of forced convection on the solidification microstructures by a systematic experimental investigation combining different rotation methods (the maximum rotation rate ?max=100–400rpm) with various growth velocities (V0=5–60?m\\/s). The results can be concluded as follows: (1)Forced convection introduced by ACRT dramatically changes

  18. The thermal expansion of the directionally solidified AI-CuAI2 eutectic

    Microsoft Academic Search

    Dennis F. Baker; Robert H. Bragg

    1981-01-01

    Alloys of Al-CuAl2 eutectic composition were prepared from 99.999 pct pure materials and directionally solidified in a temperature gradient of about 45 °C\\/cm at different growth rates R. The lambda2R = constant relation was verified and lamellar spacings of 7.5, 3.5, 2.6, 1.8 and 1.4 mum were obtained. Dilatometer specimens were machined with axes aligned in the principal lamellae coordinate

  19. Banding formation and eutectic lamellar growth in directional solidified Ni 50 Al 20 Fe 30 alloy

    Microsoft Academic Search

    J. Chen; J. H. Lee; Y. T. Lee; Z. Q. Hut

    1998-01-01

    Banding formation and eutectic lamellar growth in a directionally solidified Ni50Al20Fe30 alloy were investigated. It was found that the banding area consists of two layers. The first layer is a ? layer, while the\\u000a subsequent one is a ? layer. The composition of various phases around the banding area changes with the solidification process.\\u000a The banding is formed by two

  20. Thermal Stability of FeS2 Cathode Material in "Thermal" Batteries: Effect of Dissolved Oxides in Molten Salt Electrolytes

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.

    2008-09-01

    The thermal stability of FeS2 cathode material for thermal batteries is investigated in the LiCl-KCl eutectic containing up to 10 wt% Li2O (used as anti-peak). The results show that the decomposition of pyrite shifts to higher temperatures in the presence of molten salts as the S2 gas is repressed by the liquid phase. For high lithium oxide contents the decomposition temperature of pyrite decreases by 100 °C. In addition Li2FeS2 as reaction product is evidenced whereas Li3Fe2S4 is expected from literature data.

  1. A New Co-C Eutectic Fixed-Point Cell for Thermocouple Calibration at

    NASA Astrophysics Data System (ADS)

    Failleau, G.; Deuzé, T.; Jouin, D.; Mokdad, S.; Briaudeau, S.; Sadli, M.

    2014-07-01

    The eutectic Co-C is a promising system to serve as a thermometric fixed point beyond the freezing point of copper (). Some national metrology institutes have developed, characterized, and compared their Co-C fixed-point cells based on conventional designs. Indeed, the fixed-point cells constructed are directly inspired by the technologies applied to the fixed points of the ITS-90 to the lower levels of temperature. By studying the eutectic metal-carbon systems, is appears that the high temperatures of implementation give a set of difficulties, such as the strong mechanical stresses on the graphite crucibles, due to the important thermal expansion of the eutectic alloys during their phase transitions. If these devices are suitable with research activities to serve like primary standards, it is not envisaged to propose them for a direct application to the calibration activities for the industry. As regards the limited robustness of the conventional fixed-point cells constructed, an intensive use of these device would not be reasonable, in term of cost for example. In this paper, a new Co-C fixed-point design is introduced. This low cost device has been developed specifically for intensive use in thermocouple calibration activities, with the aim of achieving the lowest level of uncertainties as is practicable. Thus, in this paper, the metrological characterization of this device is also presented, and a direct comparison to a primary Co-C fixed-point cell previously constructed is discussed.

  2. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown ?-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  3. Thermal unfolding and refolding of lysozyme in deep eutectic solvents and their aqueous dilutions.

    PubMed

    Esquembre, Rocio; Sanz, Jesus M; Wall, J Gerard; del Monte, Francisco; Mateo, C Reyes; Ferrer, M Luisa

    2013-07-21

    The stability of hen's egg white lysozyme in different choline chloride-based pseudo-concentrated and neat deep eutectic solvents (DESs) has been studied by means of intrinsic fluorescence and CD spectroscopy. Thermal unfolding experiments carried out in non-diluted urea:choline chloride and glycerol:choline chloride eutectic solvents (UCCl-DES and GCCl-DES, respectively) showed the accumulation at certain temperatures of discrete, partially folded intermediates that displayed a high content of secondary structure and a disrupted tertiary structure. Reversibility of the unfolding process was incomplete in these circumstances, with the urea-based DES showing higher protein structure destabilization upon thermal treatment. On the other hand, aqueous dilution of the eutectic mixtures allowed the recovery of a reversible, two-state denaturation process. Lysozyme activity was also affected in neat and pseudo-concentrated GCCl-DES, with an increasing recovery of activity upon aqueous dilution, and full restoration after DES removal through extensive dialysis. These results suggest that protein interactions at room temperature are reversible and depend on the DES components and on the aqueous content of the original DES dilution. PMID:23722327

  4. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L.

    PubMed

    Dai, Yuntao; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-07-01

    Developing green solvents with low toxicity and cost is an important issue for the biochemical industry. Synthetic ionic liquids and deep eutectic solvents have received considerable attention due to their negligible volatility at room temperature, high solubilization ability, and tunable selectivity. However, the potential toxicity of the synthetic ionic liquids and the solid state at room temperature of most deep eutectic solvents hamper their application as extraction solvents. In this study, a wide range of recently discovered natural ionic liquids and deep eutectic solvents (NADES) composed of natural compounds were investigated for the extraction of phenolic compounds of diverse polarity. Safflower was selected as a case study because its aromatic pigments cover a wide range of polarities. Many advantageous features of NADES (such as their sustainability, biodegradability combined with acceptable pharmaceutical toxicity profiles, and their high solubilization power of both polar and nonpolar compounds) suggest their potential as green solvents for extraction. Experiments with different NADES and multivariate data analysis demonstrated that the extractability of both polar and less polar metabolites was greater with NADES than conventional solvents. The water content in NADES proved to have the biggest effect on the yield of phenolic compounds. Most major phenolic compounds were recovered from NADES with a yield between 75% and 97%. This study reveals the potential of NADES for applications involving the extraction of bioactive compounds from natural sources. PMID:23710664

  5. Solubilization of Genistein in Poly(Ethylene Glycol) via Eutectic Crystal Melting

    NASA Astrophysics Data System (ADS)

    Buddhiranon, Sasiwimon; Kyu, Thein

    2012-02-01

    Genistein (5,7,4'-trihydroxyisoflavone) is a phytoestrogen found in soybean. It possesses various biological/pharmacological functions, e.g., tyrosine kinase inhibitory, anticarcinogenic, antioxidant, anti-inflammatory, and anti-microbial activities. However, genistein has poor water solubility and skin permeability, which have seemingly prohibited the progress to preclinical evaluation. Eutectic melting approach has been performed as a means of solubilizing genistein in poly(ethylene glycol) (PEG). Eutectic phase diagrams of blends containing genistein and PEG having three different molecular weights, i.e., 44k, 7k, and 500 g/mol, were established by means of DSC and compared with the theoretical liquidus and solidus lines, calculated self-consistently by taking into consideration all interactions including amorphous-amorphous, crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The eutectic temperatures were found to decrease with decreasing molecular weight of PEG. Guided by the phase diagram, it was found that genistein can be dissolved in PEG500 up to ˜7 wt% at room temperature. More importantly, the solubility of genistein in PEG can be improved to meet the end-use criteria of the PEG/genistein mixtures.

  6. Resolving Issues of Content Uniformity and Low Permeability Using Eutectic Blend of Camphor and Menthol

    PubMed Central

    Gohel, M. C.; Nagori, S. A.

    2009-01-01

    The aim of present study were to arrest the problem of content uniformity without the use of harmful organic solvent and to improve ex vivo permeability of captopril, a low dose class III drug as per biological classification system. Eutectic mixture of camphor and menthol was innovatively used in the work. Captopril solution in eutectic mixture was blended with Avicel PH 102 and then the mixture was blended with mannitol in different ratios. Formulated batches were characterized for angle of repose and Carr's index. A selected batch was filled in hard gelatin capsule. Tablet dosage form was also developed. Capsules and tablets were characterized for in vitro drug release in 0.1N HCl. Additionally, the captopril tablets were analyzed for content uniformity and ex vivo drug permeation study using rat ileum in modified apparatus. The measurement of angle of repose and Carr's index revealed that the powder blend exhibited good flow property and compressibility. The captopril capsules and tablets exhibited immediate drug release in 0.1 N HCl. The captopril tablets passed content uniformity test as per IP 1996. Ex vivo permeation of captopril, formulated with eutectic mixture, was faster than control. The permeation was increased by 15% at the end of 3 h. Tablets and capsule exhibited reasonable short term stability with no considerable change in performance characteristics. PMID:20376214

  7. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In this paper, we reexamine the Jackson and Hunt (JH) theory and relax the assumption of isothermal solid/liquid interface(SLI) used in their treatment. A modification of the term B. in the expression of the solute concentration profile is also proposed. Based on the predictions of this modified theory the traditional definitions of regular and irregular eutectics are discussed. For regular eutectics the new model identifies a range of spacing within the limits defined by the minimum undercooling of the alpha and beta phase. For the irregular Al-Si eutectic system in particular we identified two different spacing selection mechanisnis: a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing in the microstructure (lambda(sub av) > lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semi-empirical expression has been developed to account for the influence of the temperature gradient. The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  8. Influence of gravity driven convection on the directional solidification of Bi/MnBi eutectic composites

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.; Larson, D. J.

    1982-01-01

    The role of gravity on Bridgman-Stockharger directional solidification of eutectic Bi/MnBi has been studied in reduced gravity aboard NASA sounding rocket SPAR flight experiments and contrasted with normal gravity investigations. The directional solidification of eutectic Bi/MnBi results in a low volume fraction, faceted/nonfaceted aligned rod eutectic whose MnBi rod size, interrod spacing, thermal and magnetic properties are sensitive functions of solidification processing conditions. The morphology of the low-gravity samples showed striking differences compared with identically processed, normal gravity samples grown in the same apparatus. The MnBi rod diameter and interrod spacing distributions were significantly smaller, approximately 50 percent, for the low gravity samples compared with identically processed one gravity samples. Accompanying the smaller MnBi rod diameters observed in the flight samples, was an increase in permanent magnet properties which reached greater than 97 percent of the theoretical maximum. Gravitationally induced thermal instabilities in one-gravity which result in irregular interface movement and associated difficulty of the faceted MnBi phase to branch are suggested to explain the morphological differences between one and low gravity solidification.

  9. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  10. Development of High-Temperature Transport Technologies of Molten Salt Slurry in Pyrometallurgical Reprocessing

    NASA Astrophysics Data System (ADS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    Pyrometallurgical-reprocessing is one of the most promising technologies for advanced fuel cycle with favorable economic potential and intrinsic proliferation resistance. The development of transport technology for molten salt is a key issue in the industrialization of pyro-reprocessing. As for pure molten LiCl-KCl eutectic salt at approximately 773 K, we have already reported the successful results of transport using gravity and a centrifugal pump. However, molten salt in an electrorefiner mixes with insoluble fines when spent fuel is dissolved in porous anode basket. The insoluble consists of noble metal fission products, such as Pd, Ru, Mo, and Zr. There have been very few transport studies of a molten salt slurry (metal fines-molten salt mixture). Hence, transport experiments on a molten salt slurry were carried out to investigate the behavior of the slurry in a tube. The apparatus used in the transport experiments on the molten salt slurry consisted of a supply tank, a 10° inclined transport tube (10 mm inner diameter), a valve, a filter, and a recovery tank. Stainless steel (SS) fines with diameters from 53 to 415 ?m were used. To disperse these fines homogenously, the molten salt and fines were stirred in the supply tank by an impeller at speeds from 1200 to 2100 rpm. The molten salt slurry containing 0.04 to 0.4 vol.% SS fines was transported from the supply tank to the recovery tank through the transportation tube. In the recovery tank, the fines were separated from the molten salt by the filter to measure the transport behavior of molten salt and SS fines. When the velocity of the slurry was 0.02 m/s, only 1% of the fines were transported to the recovery tank. On the other hand, most of the fines were transported when the velocity of the slurry was more than 0.8 m/s. Consequently, the molten salt slurry can be transported when the velocity is more than 0.8 m/s.

  11. Microstructural characterization of a directionally-solidified Ni–33 (at.%) Al–31Cr–3Mo eutectic alloy as a function of withdrawal rate

    Microsoft Academic Search

    S. V. Raj; I. E. Locci

    2001-01-01

    The Ni–33 (at.%)Al–31Cr–3Mo eutectic alloy was directionally-solidified (DS) at different rates, VI, varying between 2.5 to 508 mm h?1. Detailed qualitative and quantitative metallographic and chemical analyses were conducted on the directionally-solidified rods. The microstructures consisted of eutectic colonies with parallel lamellar NiAl\\/(Cr,Mo) plates for solidification rates at and below 12.7 mm h?1. Cellular eutectic microstructures were observed at higher

  12. Processing, Microstructures, and Properties of Cr-Cr3Si, Nb-Nb3Si, and V-V3Si Eutectics

    Microsoft Academic Search

    B. P. Bewlay; J. A. Sutliff; M. R. Jackson; K. M. Chang

    1994-01-01

    The present paper examines the potential of refractory metal-A15 silicide composites as structural materials for high temperature applications. Three eutectic systems are considered, Cr-Cr3Si, Nb-Nb3Si, and V-V3Si, since they all have melting points above 1700°C and densities lower than Ni-based superalloys. Eutectic compositions were selected because directional solidification of eutectics can be used to generate aligned composite microstructures. The present

  13. The Nature of Salt

    NSDL National Science Digital Library

    This is a hands-on lab activity about the composition of salt. Learners will explain the general relationship between an element's Periodic Table Group Number and its tendency to gain or lose electron(s), and explain the difference between molecular compounds and ionic compounds. They will then use household materials to build a model to demonstrate sodium chloride's cubic form and describe the nature of the electrostatic attraction that holds the structure of salt together. Background information, common preconceptions, a glossary and more is included. This activity is part of the Aquarius Hands-on Laboratory Activities.

  14. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  15. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  16. Microstructural development and mechanical behavior of eutectic bismuth-tin and eutectic indium-tin in response to high temperature deformation

    SciTech Connect

    Goldstein, J.L.F. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering; [Lawrence Berkeley Lab., CA (United States)

    1993-11-01

    The mechanical behavior and microstructure of eutectic Bi-Sn and In-Sn solders were studied in parallel in order to better understand high temperature deformation of these alloys. Bi-Sn solder joints were made with Cu substrates, and In-Sn joints were made with either Cu or Ni substrates. The as-cast microstructure of Bi-Sn is complex regular, with the two eutectic phases interconnected in complicated patterns. The as-cast microstructure of In-Sn depends on the substrate. In-Sn on Cu has a non-uniform microstructure caused by diffusion of Cu into the solder during sample preparation, with regions of the Sn-rich {gamma} phase imbedded in a matrix of the In-rich {beta} phase. The microstructure of In-Sn on Ni is uniform and lamellar and the two phases are strongly coupled. The solders deform non-uniformly, with deformation concentrating in a band along the length of the sample for Bi-Sn and In-Sn on Cu, though the deformation is more diffuse in In-Sn than in Bi-Sn. Deformation of In-Sn on Ni spreads throughout the width of the joint. The different deformation patterns affect the shape of the stress-strain curves. Stress-strain curves for Bi-Sn and In-Sn on Cu exhibit sharp decays in the engineering stress after reaching a peak. Most of this stress decay is removed for In-Sn on Ni. The creep behavior of In-Sn also depends on the substrate, with the creep deformation controlled by the soft P phase of the eutectic for In-Sn on Cu and controlled by the harder {gamma} phase for In-Sn on Ni. When In-Sn on Ni samples are aged, the microstructure coarsens and changes to an array of {gamma} phase regions in a matrix of the {beta} phase, and the creep behavior changes to resemble that of In-Sn on Cu. The creep behavior of Bi-Sn changes with temperature. Two independent mechanisms operate at lower temperatures, but there is still some question as to whether one or both of these, or a third mechanism, operates at higher temperatures.

  17. Mixed salt crystallisation fouling

    Microsoft Academic Search

    A Helalizadeh; H Müller-Steinhagen; M Jamialahmadi

    2000-01-01

    The main purpose of this investigation was to study the mechanisms of mixed salt crystallisation fouling on heat transfer surfaces during convective heat transfer and sub-cooled flow boiling. To date, no investigations on the effects of operating parameters on the deposition of mixtures of calcium sulphate and calcium carbonate, which are the most common constituents of scales formed on heat

  18. Avi's Sensational Salt Dough

    NSDL National Science Digital Library

    American Chemical Society

    2006-01-01

    In this activity on page 5 of the PDF, learners mimic the process for making bricks. Learners shape and bake creations from a dough that is made from flour, salt, and water. Use this activity to introduce learners to chemical changes. Safety notes: Follow Milli's safety notes (on page 2) and do this activity with an adult.

  19. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  20. Utah: Salt Lake City

    Atmospheric Science Data Center

    2014-05-15

    ... mountains surrounding Salt Lake City are renowned for the dry, powdery snow that results from the arid climate and location at the ... should be used with the red filter placed over your left eye. The canyons and peaks of the Uinta and Wasatch Mountains are ...

  1. Viscous flow during salt welding

    NASA Astrophysics Data System (ADS)

    Wagner, Bryce H.; Jackson, Martin P. A.

    2011-10-01

    Salt can be partially removed by viscous flow from between wall rocks to form a salt weld. Welds in autochthonous and allochthonous salt can form significant structures in evaporite basins, where petroleum and mineral discovery can hinge on whether salt welds act as seals or windows for migrating hydrocarbons or brines containing dissolved metals. Despite the importance of welds, little is known about salt evacuation during welding. We investigate viscous flow during welding using analytical and numerical models, based on exact solutions to the Navier-Stokes equations for idealized geometries and boundary conditions. We explore two questions: how does salt thin during evacuation, and what are the limits of viscous flow during salt welding? Hydraulic-gradient and displacement boundary conditions are shown to drive salt evacuation, which is rate-limited by drag along the boundaries of a salt layer. Where salt flow is restricted, for example beneath a broad, prograding sediment wedge, up to ~ 50 m salt can remain in an incomplete weld. Where salt flow is unrestricted, for example beneath a subsiding minibasin, viscous flow can remove all but a vanishingly thin (<<1 m) salt layer. In both cases, any remaining salt must be dissolved to leave a weld containing no remnant salt. Evacuation rate increases with increasing differential stress and decreasing flow length and dynamic viscosity of the salt. Translation of wall rock parallel to bedding may result in a fault weld but may also inhibit evacuation if the displacement counteracts flow driven by a hydraulic gradient. Evacuation of multilayered evaporites is controlled by the distribution of layer thickness and viscosity. Multilayered evaporites can be compositionally modified during evacuation.

  2. A low-temperature heat storage system utilizing mixtures of magnesium salt hydrates and ammonium nitrate

    SciTech Connect

    Vaccarino, C.; Barbaccia, A.; Frusteri, F.; Galli, G.; Maisano, G.

    1985-02-01

    The heat storage system based on mixtures of salt hydrates and anhydrous salts desjribed in previous articles has been applied to Mg(NO/sub 3/)/sub 2/.6H/sub 2/O and MgCI/sub 2/. 6H/sub 2/O (alone or in eutectic mixtures), added with NH/sub 4/NO/sub 3/. Calorimetric measurements showed that in the temperature range 25-60/sup 0/C, Mg(NO/sub 3/). 6H/sub 2/O allows a Thermal Energy Storage (TES) capacity of about 56 kcal/kg (equivalent to 86 kcal/liter), which is slightly lower than the values previously recorded with ammonium alum. When the maximum temperature was lowered to 55/sup 0/ and to 50/sup 0/C, in order to be closer to the peak-efficiency of commercial flat-plate collectors, the best results were obtained, respectively, with Mg(NO/sub 3/)/sub 2/ .6H/sub 2/O and with the eutectic mixture Mg(NO/sub 3/)/sub 2/. 6H/sub 2/O - MgCI/sub 2/. 6H/sub 2/O, both added with NH/sub 4/NO/sub 3/. The mixtures of the aforementioned magnesium salts and ammonium nitrate do not show any significant efficiency reduction after many thermal cycles, and at the present stage of the research, they may be considered the most suitable for obtaining heat storages in the temperature range of commercial solar collectors.

  3. Continuous salt precipitation and separation from supercritical water. Part 2. Type 2 salts and mixtures of two salts

    Microsoft Academic Search

    Martin Schubert; Johann W. Regler; Frédéric Vogel

    2010-01-01

    Using a continuously operated laboratory plant for the catalytic hydrothermal gasification of biomass featuring a supercritical water salt separator we investigated the separation performance of three different binary type 2 salt–water mixtures and three ternary salt–water mixtures that consisted either of two type 1 salts or two type 2 salts dissolved in water. It turned out that a concentrated salt

  4. APPLICATIONS OF SALT IN ELECTROFISHING

    E-print Network

    APPLICATIONS OF SALT IN ELECTROFISHING iNlarine Biological Laboratory LIB55.A.K.Y WOODS HOLE, MASS OF SALT IN ELECTROFISHING By Robert E . Lennon and Phillip S . Parker Fishery Research Biologists Leetown. Electric fisliliiK. 2. Salt. i. Farker, Phillip Slieridaii, 192t>- .joiut author, ii. Title. ( Series : IT

  5. Petrofabric Study of Deformed Salt.

    PubMed

    Clabaugh, P S

    1962-05-01

    Petrofabric examination of salt crystals in Grand Saline salt dome reveals a preferred orientation that may bear significantly on other physical properties and on the genesis of salt domes. The symmetry of the orientation patterns indicates that translation gliding in halite may occur predominantly on cubic glide planes. PMID:17798061

  6. Microstructure of the Sn-Cu{sub 6}Sn{sub 5} fibrous eutectic and its modification by segregation

    SciTech Connect

    Drevet, B.; Camel, D.; Favier, J.J. [CEA/DTA/CEREM/DEM, Grenoble (France). Lab. de Recherche de Base en Solidification] [CEA/DTA/CEREM/DEM, Grenoble (France). Lab. de Recherche de Base en Solidification; Dupuy, M. [CEA/DTA/LETI/OPT, Grenoble (France). Section de Caracterisation Physique des Materiaux] [CEA/DTA/LETI/OPT, Grenoble (France). Section de Caracterisation Physique des Materiaux

    1996-10-01

    The influence of segregation due to thermal convection on the microstructure of Sn-Cu{sub 6}Sn{sub 5} fibrous eutectic alloys is studied in a Bridgman type configuration. The eutectic microstructure is characterized by means of image analysis, X-ray diffraction and scanning and transmission electron microscopy. In the absence of segregation, the eutectic is regular and its growth controlled by that of the Cu{sub 6}Sn{sub 5} fibers. The effect of interphases on eutectic spacing, through orientation relationships between fibers and matrix, is also evidenced. The influence of segregation can be summed up by the following effects. At first, in agreement with the Jackson and Hunt model, it leads to a variation of the eutectic spacing which results from a variation of the fiber volume fraction. Then, the spacing is much greater than the one obtained in the absence of segregation, due to a different tin growth plane and non-optimized fiber/matrix orientation relationships. Finally, the absence of steady state leads to a large dispersion of the spacing associated with a microstructural disorder.

  7. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  8. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    SciTech Connect

    Tiwary, C. S., E-mail: cst.iisc@gmail.com; Chattopadhyay, K. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Chakraborty, S.; Mahapatra, D. R. [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2014-05-28

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80?nm.

  9. Thermodynamic description and unidirectional solidification of eutectic organic alloys: IV. Binary systems neopentylglycol-succinonitrile and amino-methyl-propanediol-succinonitrile

    SciTech Connect

    Witusiewicz, V.T. [Department of Materials and Processes, ACCESS e. V., Intzestrasse 5, D-52072 Aachen (Germany)]. E-mail: victor@access.rwth-aachen.de; Sturz, L. [Department of Materials and Processes, ACCESS e. V., Intzestrasse 5, D-52072 Aachen (Germany); Hecht, U. [Department of Materials and Processes, ACCESS e. V., Intzestrasse 5, D-52072 Aachen (Germany); Rex, S. [Department of Materials and Processes, ACCESS e. V., Intzestrasse 5, D-52072 Aachen (Germany)

    2005-01-03

    The temperature and enthalpy of transformations of organic alloys from the binary systems neopentylglycol-succinonitrile (NPG-SCN) and 2-amino-2-methyl-1,3-propanediol-succinonitrile (AMPD-SCN) were measured by means of differential scanning calorimetry (DSC). The phase diagrams of these binary systems were assessed via the CALPHAD approach using Thermo-Calc by simultaneously optimizing the thermodynamic and phase equilibrium data measured in the present work. Proper agreements between the experimental and calculated data for the phase diagrams as well as for the thermochemical properties were achieved. Experiments and calculations show that both the NPG-SCN and the AMPD-SCN systems exhibit a non-variant eutectic reaction with the eutectic point at 90.45 mol% SCN (318.0 K) and at 97.39 mol% SCN (325.7 K), respectively. In the NPG-SCN system the temperature of the eutectic reaction is about 3 K higher than the temperature of the transformation from the ordered crystals (OCs) to the orientationally disordered crystals (ODICs), whereas the eutectic reaction in the AMPD-SCN involves the OCs of AMPD and the ODICs of SCN. Unidirectional solidification experiments were performed with selected NPG-SCN and AMPD-SCN alloys in order to verify phases involved in solid-liquid equilibria and the nature of eutectic growth in these systems. We find that eutectic growth in NPG-SCN eutectic alloy occurs with both solid phases being non-facetted and with a rod-like eutectic structure. The eutectic as well as some hypo-eutectic alloys from the AMPD-SCN system show irregular eutectic growth with a non-facetted BCC{sub A}2 phase of SCN and a facetted monoclinic phase of AMPD.

  10. Kinetic Monte Carlo Simulations of Rod Eutectics and the Surface Roughening Transition in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Bentz, Daniel N.; Betush, William; Jackson, Kenneth A.

    2003-01-01

    In this paper we report on two related topics: Kinetic Monte Carlo simulations of the steady state growth of rod eutectics from the melt, and a study of the surface roughness of binary alloys. We have implemented a three dimensional kinetic Monte Carlo (kMC) simulation with diffusion by pair exchange only in the liquid phase. Entropies of fusion are first chosen to fit the surface roughness of the pure materials, and the bond energies are derived from the equilibrium phase diagram, by treating the solid and liquid as regular and ideal solutions respectively. A simple cubic lattice oriented in the {100} direction is used. Growth of the rods is initiated from columns of pure B material embedded in an A matrix, arranged in a close packed array with semi-periodic boundary conditions. The simulation cells typically have dimensions of 50 by 87 by 200 unit cells. Steady state growth is compliant with the Jackson-Hunt model. In the kMC simulations, using the spin-one Ising model, growth of each phase is faceted or nonfaceted phases depending on the entropy of fusion. There have been many studies of the surface roughening transition in single component systems, but none for binary alloy systems. The location of the surface roughening transition for the phases of a eutectic alloy determines whether the eutectic morphology will be regular or irregular. We have conducted a study of surface roughness on the spin-one Ising Model with diffusion using kMC. The surface roughness was found to scale with the melting temperature of the alloy as given by the liquidus line on the equilibrium phase diagram. The density of missing lateral bonds at the surface was used as a measure of surface roughness.

  11. Creep-fatigue interactions in eutectic tin-lead-based solder alloys. Ph.D. Thesis

    SciTech Connect

    Kuo, C.W.

    1994-01-01

    Eutectic tin-lead solder alloys subjected to cyclic loading at room temperature experience creep-fatigue interactions due to high homologous temperature. At temperature above 0.5 melting point, the dominant damage mechanism can be cavity nucleation and growth, especially for alloys that have fine grain structure and a large volume fraction of dispersoids. The objective of the present study is to model the damage evolution during creep-fatigue interactions and experimentally validate the damage evolution based life predictions in rapidly solidified solder alloys. Four types of solder alloys were considered in this research, namely, conventional 63Sn-37Pb, rapidly solidified 63Sn-37Pb, dispersion-strengthened eutectic solders, and solid solution strengthened eutectic solders. Mechanical properties of the solder alloys and the life times under creep-fatigue conditions were evaluated. Damage produced in the course of creep or fatigue deformation was studied by metallography, scanning electron microscopy, precision density measurement, and the observation of grain boundary sliding. Based on the damage characteristics, the dominant failure mechanism was proved to be cavity growth. Three cavity growth models were applied to four types of solder alloys to predict creep-fatigue life by taking into account the tensile loading component as well as the compressive loading component when reversed process can occur. An algorithm to calculate cavity growth in each fatigue cycle is used to predict the number of fatigue cycles to failure, where failure is defined as a critical cavity size. Calculated lives are compared to experimental data under six types of creep-fatigue loading histories. The method predicts the creep-fatigue lives within a factor of two with the incorporation of appropriate compressive healing factor. Discrepancy between calculated lives and experimental results is discussed.

  12. Continuous melting and thermal-history-dependent freezing in the confined Na-K eutectic alloy

    NASA Astrophysics Data System (ADS)

    Charnaya, E. V.; Lee, M. K.; Tien, Cheng; Chang, L. J.; Wu, Z.-J.; Kumzerov, Yu. A.; Bugaev, A. S.

    2013-04-01

    23Na NMR studies of the Na-K eutectic alloy embedded into porous glass with 7-nm pores showed that melting of Na2K confined nanoparticles is a continuous process with smooth changes in the Knight shift of a narrow resonance line and nuclear spin relaxation between those in the crystalline and liquid states. The intermediate state, which occurs upon melting is stable and more favorable than the liquid state. The inverse freezing transformation can be sharp as at a first-order transition or continuous depending on the initial temperature of cooling. The results suggest revision of theoretical predictions for the melting and freezing transitions in confined geometry.

  13. Creep-fatigue interaction in a cobalt-base aligned eutectic

    NASA Astrophysics Data System (ADS)

    Koburger, C. W.; Duquette, D. J.; Stoloff, N. S.

    1980-07-01

    The effects of microstructure, test temperature and frequency on the high cycle fatigue behavior of two cobalt-base aligned eutectics and a cobalt-base solid solution alloy have been determined. Fatigue resistance of the composites improved when interfiber spacing was reduced or post-solidification heat treatments were performed. Removal of chromium caused a reduction in fatigue life, especially at high stresses. Vacuum environment caused a significant improvement in fatigue endurance limit at 25 °C but not at 825 °C. Reducing test frequency in vacuum reduced fatigue lives at 825 °C, indicating a creep-fatigue interaction was occurring. Additional evidence for a creep-fatigue interaction is discussed.

  14. Fraction eutectic measurements in slowly cooled Pb - 15 wt percent Sn alloys

    NASA Technical Reports Server (NTRS)

    Studer, Anthony C.; Laxmanan, V.

    1988-01-01

    A space shuttle experiment employing the General Purpose Furnace in its isothermal mode of operation is currently manifested for flight circa 1989. The aim of this experiment was to investigate the role of gravity in a slowly, and isothermally, cooled sample of a binary Pb - 15 wt percent Sn alloy. Ground based work in support of the microgravity experiment is discussed. In particular, it is shown that fraction eutectic measurements using an image analyzer, can be used to satisfactorily describe macrosegregation occurring in these slowly cooled ingots.

  15. Selective N Alkylation of Aromatic Primary Amines Catalyzed by Biocatalyst or Deep Eutectic Solvent

    Microsoft Academic Search

    Balvant Singh; Hyacintha Lobo; Ganapati Shankarling

    2011-01-01

    \\u000a Abstract  Biocatalysts or deep eutectic solvents (DES) are effective for selective N-alkylation of various aromatic primary amines. These methods avoided complexity of multiple alkylations giving products in\\u000a good yields. Both DES and lipase can be recycled and re-used at least five times. In addition, these catalysts are biodegradable,\\u000a non-toxic and cost-effective.\\u000a \\u000a \\u000a \\u000a \\u000a Graphical Abstract  

  16. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  17. The slip vectors in an NiAl-Mo directionally solidified eutectic alloy

    SciTech Connect

    Chen, X.F.; Joslin, S.M.; Oliver, B.F.; Brooks, C.R. (Univ. of Tennessee, Knoxville, TN (United States). Materials Science and Engineering Dept.)

    1993-12-01

    Since NiAl is significantly elastically anisotropic, dislocations of b = a<100>, a<110>, and a<111> are all stable. Each of these dislocations have been determined to operate in NiAl under different crystal orientation and test conditions. Generally, the slip vector is a <100> over the entire temperature range for single crystals, tested along a non-<100> direction. In this paper, the authors describe the slip vector that was observed in the NiAl-9Mo-0.1Zr eutectic composite alloy. Although the sample was not deformed under well controlled conditions, the analyses provide information about the deformation mechanism in this composite material.

  18. Embedded binary eutectic alloy nanostructures: a new class of phase change materials.

    PubMed

    Shin, S J; Guzman, J; Yuan, C-W; Liao, Christopher Y; Boswell-Koller, Cosima N; Stone, P R; Dubon, O D; Minor, A M; Watanabe, Masashi; Beeman, Jeffrey W; Yu, K M; Ager, J W; Chrzan, D C; Haller, E E

    2010-08-11

    Phase change materials are essential to a number of technologies ranging from optical data storage to energy storage and transport applications. This widespread interest has given rise to a substantial effort to develop bulk phase change materials well suited for desired applications. Here, we suggest a novel and complementary approach, the use of binary eutectic alloy nanoparticles embedded within a matrix. Using GeSn nanoparticles embedded in silica as an example, we establish that the presence of a nanoparticle/matrix interface enables one to stabilize both nanobicrystal and homogeneous alloy morphologies. Further, the kinetics of switching between the two morphologies can be tuned simply by altering the composition. PMID:20698591

  19. Creep, stress relaxation, and plastic deformation in SnAg and Sn-Zn eutectic solders

    Microsoft Academic Search

    H. Mavoori; J. Chin; S. Vaynman; B. Moran; L. Keer; M. Fine

    1997-01-01

    Because of the high homologous operation temperature of solders used in electronic devices, time and temperature dependent\\u000a relaxation and creep processes affect their mechanical behavior. In this paper, two eutectic lead-free solders (96.5Sn-3.5Ag\\u000a and 91Sn-9Zn) are investigated for their creep and stress relaxation behavior. The creep tests were done in load-control with\\u000a initial stresses in the range of 10-22 MPa

  20. Zero-gravity growth of a sodium chloride-lithium fluoride eutectic mixture

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yeh, C. W.; Yue, B. K.

    1982-01-01

    Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on Earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convective current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and Earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.

  1. Loss of Anatomical Landmarks with Eutectic Mixture of Local Anesthetic Cream for Neonatal Male Circumcision

    PubMed Central

    Plank, Rebeca M.; Kubiak, David W.; Abdullahi, Rasak Bamidele; Ndubuka, Nnamdi; Nkgau, Maggie M.; Dapaah-Siakwan, Fredrick; Powis, Kathleen M.; Lockman, Shahin

    2012-01-01

    We report two cases of newborns who developed marked local edema after application of a eutectic mixture of local anesthetic (EMLA) topical anesthetic cream for neonatal male circumcision (NMC). Although local edema and erythema are known potential side effects of EMLA cream, a common anesthetic used for NMC, the loss of landmarks precluding safe NMC has not previously been reported, and is described here. Although we cannot recommend an alternate local anesthetic for neonates with this reaction to EMLA, based on a review of the published data we think that serious systemic adverse events related to EMLA are extremely rare. PMID:23102766

  2. Microstructural changes in eutectic tin-lead alloy due to severe bending

    SciTech Connect

    SHEN,Y.-L.; ABEYTA,M.C.; FANG,HUEI ELIOT

    2000-02-29

    Severe plastic deformation in an eutectic tin-lead alloy is studied by imposing fast bending at room temperature, in an attempt to examine the microstructural response in the absence of thermally activated diffusion processes. A change in microstructure due to this purely mechanically imposed load is observed: the tin-rich matrix phase appears to be extruded out of the narrow region between neighboring layers of the lead-rich phase and alterations in the colony structure occur. A micromechanism is proposed to rationalize the experimental observations.

  3. (abstract) A Brief, Selective Review of Thermal Cycling Fatigue in Eutectic Tin-Lead Solder

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    This paper reviews selected parts of the current literature relevant to thermo-mechanical fatigue mechanisms in eutectic tin-lead solder, and suggests a general outline to account for some observed failures. The field is found to be complex. One recent experimental study finds some failure modes to be sensitive to joint geometry. Attempts to extrapolate from test environments to service environments have had only limited success. Much work remains to be done before fatigue failures in this material can be considered as under practical control.

  4. The thermal expansion of the directionally solidified AI-CuAI 2 eutectic

    Microsoft Academic Search

    Dennis F. Baker; Robert H. Bragg

    1981-01-01

    Alloys of Al-CuAl2 eutectic composition were prepared from 99.999 pct pure materials and directionally solidified in a temperature gradient\\u000a of about 45 °C\\/cm at different growth ratesR. The ?2R= constant relation was verified and lamellar spacings of 7.5, 3.5, 2.6, 1.8 and 1.4 ?m were obtained. Dilatometer specimens\\u000a were machined with axes aligned in the principal lamellae coordinate directions. Thermal

  5. REVIEW ARTICLE: Metal (carbide) carbon eutectics for thermometry and radiometry: a review of the first seven years

    NASA Astrophysics Data System (ADS)

    Woolliams, Emma R.; Machin, Graham; Lowe, David H.; Winkler, Rainer

    2006-12-01

    Since 1999, when the first high temperature fixed-points based on the metal-carbon eutectic phase transitions were realized, more than 60 papers have been published on this topic. Eutectic based fixed-points are already being considered as secondary reference points for the International Temperature Scale and have been introduced into industrial laboratories. This rapid progress has been possible through the combined effort of scientists around the world, from national metrology institutes, universities and industry. It has been proposed that these fixed-points should be officially adopted as a way to improve the realization and dissemination of temperature scales above the silver point. In radiometry, the availability of stable high temperature fixed-points will give greater flexibility and at some wavelengths the potential for greater accuracy for spectral radiance and irradiance scale realization. This paper summarizes the major progress in eutectic research so far.

  6. Directional solidification of Mo{sub 5}Si{sub 3}-MoSi{sub 2} eutectic

    SciTech Connect

    Borowicz, S.M.; Heatherly, L.; Zee, R.H.; George, E.P.

    1999-07-01

    The Mo-Si phase diagram exhibits a Mo{sub 5}Si{sub 3}-MoSi{sub 2} eutectic at the 54% Si composition. Since the terminal phases have comparable melting points and are equidistant from the eutectic composition, there is the possibility of obtaining lamellar microstructures in this system. In addition, if the alloys are directionally solidified, there is the further possibility of obtaining aligned lamellae. In this study, a high temperature (xenon-arc-lamp) optical floating zone furnace is utilized to directionally solidify Mo-Si alloys of the eutectic composition. Growth conditions are systematically varied to investigate their effects on the solidification microstructure. Growth rates and rotation speeds are identified that result in lamellar microstructures.

  7. Rapid solidification of Al 2O 3/Y 3Al 5O 12/ZrO 2 eutectic in situ composites by laser zone remelting

    NASA Astrophysics Data System (ADS)

    Su, Haijun; Zhang, Jun; Cui, Chunjuan; Liu, Lin; Fu, Hengzhi

    2007-09-01

    Directionally solidified rods and plates of Al 2O 3/YAG/ZrO 2 ternary eutectic in situ composites were grown by the laser zone remelting technique under different growth conditions, aiming to reveal the effect of rapid solidification on the microstructure characteristics, solidification behaviors and mechanical properties. The as-solidified eutectics presented smooth surfaces, well-defined phases, no pores and grain boundaries in their microstructures. The eutectic microstructure displayed a refined entangled network of Al 2O 3 (40%), YAG (43%) and ZrO 2 (17%) phases with sizes in the submicron range. Moreover, the refined ordered/aligned eutectic structure with the lamellar/fibrous and rod-type ZrO 2 in the nano-micron range was also observed. Two kinds of microstructures primarily resulted from the high-temperature gradient and solidification rate of the laser zone remelting. The eutectic interspacing decreased with increasing the scanning rate and the minimal spacing observed was as fine as 0.1-0.2 ?m. The eutectic interfaces showed a typical faceted/faceted growth characteristic and the formation mechanism was detailedly discussed. The mechanical characterization at ambient temperature showed that the hardness and fracture toughness of the eutectic were 16.67 GPa and 8.0 MPa m 1/2, respectively. The small size effect of eutectic phases related with the rapid solidification, the addition of the third component of ZrO 2 and the crack deflection contributed to the improved fracture toughness.

  8. Directionally solidified in situ metal matrix composites. Part 1. Final report, 1 Nov 1974--1 Jan 1976. [Screening of eutectic superalloys for turbine blades

    Microsoft Academic Search

    G. Haour; F. Mollard; B. Lux; A. H. Clauer; I. G. Wright

    1976-01-01

    The aim of the present alloy screening program was to identify new eutectic superalloys suitable for the manufacture of directionally solidified turbine blades operating at up to 1150 C. In the course of this program, five eutectics not previously investigated have been found to meet the corresponding objectives of a melting point above 1200 C, a specific gravity below 9

  9. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

  10. Tribological Properties of a Nano-Eutectic Fe 1.87 C 0.13 Alloy Under Water Environment

    Microsoft Academic Search

    Lin Wang; Jun Yang; Jiqiang Ma; Qinling Bi; Licai Fu; Junying Hao; Weimin Liu

    2010-01-01

    Tribological properties of a nano-eutectic Fe1.87C0.13 alloy were investigated under distilled-water lubrication against AISI52100 steel ball for various applied loads and sliding\\u000a speeds. For comparison, the tribological behavior of annealed coarse-grained Fe1.87C0.13 alloy was also examined under the same testing conditions. Worn surfaces of both alloys were analyzed by using a scanning\\u000a electron microscope (SEM). The wear rate of nano-eutectic

  11. Investigation of interfacial reaction between SnAg eutectic solder and Au\\/Ni\\/Cu\\/Ti thin film metallization

    Microsoft Academic Search

    J. Y. Park; C. W. Yang; J. S. Ha; C.-U. Kim; E. J. Kwon; S. B. Jung; C. S. Kang

    2001-01-01

    This paper reports the formation of intermetallic compounds in Au\\/Ni\\/Cu\\/Ti under-bump-metallization (UBM) structure reacted\\u000a with Ag-Sn eutectic solder. In this study, UBM is prepared by evaporating Au(500 ?)\\/Ni(1000 ?)\\/Cu(7500 ?) \\/Ti (700 ?) thin\\u000a films on top of Si substrates. It is then reacted with Ag-Sn eutectic solder at 260 C for various times to induce different\\u000a stages of the

  12. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  13. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    PubMed Central

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility. PMID:25160691

  14. A study on the subgrain superplasticity of extruded Al-Al{sub 3}Ni eutectic alloy

    SciTech Connect

    Uan, J.Y.; Chen, L.H.; Lui, T.S.

    1997-02-01

    A directionally solidified Al-Al{sub 3}Ni eutectic alloy was extruded to obtain micron-size subgrains with [111] fiber texture. The extrusion temperature was varied to have different distributions of the Al{sub 3}Ni eutectic particles. Choosing the fiber axis as the loading axis, the tensile test results at 500 C indicate that the elongation is concave downward and strain-rate dependent. Reducing the number of intragranular particles increases the maximum elongation as well as the strain rate of maximum elongation. With the particles residing only intergranularly in the as-extruded state, the maximum elongation, which occurs under the initial strain rate of 6.3 {times} 10{sup {minus}3} s{sup {minus}1}, is about 300 pct. This subgrain superplasticity is associated with low strain-rate sensitivity but high resistance against strain softening. The fiber texture is always retained, and the microstructure reveals slip of long parallel dislocations. If intragranular particles are also present in the as-extruded state, the occurrence of dislocation tangling and dynamic recovery will give rise to early onset of strain softening and inferior ductility.

  15. Microstructural stability of directionally solidified eutectic NiAl-Mo under static and thermal cycling conditions

    SciTech Connect

    Kush, M.T.; Holmes, J.W.; Gibala, R. [Univ. of Michigan, Ann Arbor, MI (United States)

    1997-12-31

    The quasi-binary eutectic NiAl-9% Mo with faceted molybdenum fibers was subjected to both thermal annealing conditions and to annealing under thermal cycling conditions to determine the microstructural stability of this alloy. The static temperature tests were run at 0.85T{sub M}--0.97T{sub M} in an argon gas atmosphere. The thermal cycling tests were performed between temperatures of 700 C and 1,200 C by induction heating disk-shaped specimens in an argon gas atmosphere using time-temperature heating and cooling profiles to approximate potential engine applications. To quantify microstructural changes, the fiber size and size distribution and number of fibers per unit area were measured as a function of time at temperature. The overall results demonstrate that the directionally solidified eutectic NiAl-9Mo subjected to thermal fatigue conditions exhibits cell boundary coarsening and large shape changes, whereas the microstructure under static stress-free annealing is stable.

  16. THE THERMAL EXPANSION OF THE DIRECTIONALLY SOLIDIFIED Al-CuAl{sub 2} EUTECTIC

    SciTech Connect

    Baker, Dennis F.; Bragg, Robert H.

    1980-03-01

    Alloys of Al- CuAl{sub 2} eutectic composition were prepared from 99.999% pure materials and directionally solidified in a temperature gradient of about 45°C/cm at different growth rates R. The {lambda}{sup 2}R = constant relation was verified and lamellar spacings of 7.5, 3.5, 2.6, 1.8 and 1.4 ~m were obtained. Dilatometer specimens were machined with axes aligned in the principal lamellae coordinate directions. Thermal expansion was measured by standard dilatometry (Cu standard) using a set point program cycling between room temperature and 500°C . Thermal expansion of the directionally solidified Al-CuAl{sub 2} eutectic is greatest in the growth direction (in the plane of the lamellae), least in the transverse direction (orthogonal to the growth direction in the plane of the lamellae) and intermediate in the vertical direction (normal to the lamellae) . The most significant finding of the study is that the thermal expansion increases with decreasing lamellar spacing between limits defined approximately by the thermal expansion of the CuAl{sub 2} phase alone and the predicted thermal expansion of an isotropic elastic model of the composite.

  17. Eutectic mixed monolayers in equilibrium with phospholipid-bilayers and triolein-liquid phase.

    PubMed Central

    Handa, T; Saito, H; Miyajima, K

    1993-01-01

    Triolein (TO) and phospholipids (egg yolk phosphatidylcholine, egg yolk phosphatidylethanolamine, and bovine brain phosphatidylserine) had low mutual solubilities and separated into the TO-liquid phase and phospholipid-bilayers. Spreading pressures of the TO-phospholipid mixture (i.e., surface pressures of the mixed monolayer in equilibrium with the phase-separating lipid mixture) at the air/saline interface were independent of the lipid composition. On the other hand, collapse pressures of the mixed monolayer of TO and phospholipid (i.e., surface pressures of the mixed monolayer in equilibrium with the TO-liquid phase) at the interface changed with the monolayer composition and were lower than the spreading pressure. The experimental data indicated the spreading and collapse pressures as offering a phase diagram for the presence of equilibrium between the mixed monolayer, the phospholipid-bilayers and the TO-liquid phase. The diagram showed that TO and the phospholipids were miscible in the mixed monolayer, forming an eutectic mixed monolayer. When the mixed monolayer initially had the eutectic composition, no collapse of the monolayer was detected until the surface pressure reached the value of the spreading pressure. No specific complex between TO and the phospholipid is required to explain the stability and collapse of the mixed monolayers. The bulk immiscibility of the lipids elucidated by the spreading pressure-measurements, immediately leads to the phase behaviors observed. PMID:8369406

  18. Research into the microstructure and mechanical behavior of eutectic Bi-Sn and In-Sn

    SciTech Connect

    Goldstein, J.L.F.; Mei, Z.; Morris, J.W. Jr. [Lawrence Berkeley Lab., CA (United States)]|[California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1993-08-01

    This manuscript reports on research into two low-melting, lead-free solder alloys, eutectic Bi-Sn and eutectic In-Sn. The microstructures were found to depend on both cooling rate and substrate, with the greatest variability in the In-Sn alloy. The nature of the intermetallic layer formed at the solder-substrate interface depends on both the solder and the substrate (Cu versus Ni). Also, the microstructure of the Bi-Sn can recrystallize during deformation, which is not the case with In-Sn. Data from creep and constant strain rate tests are given for slowly cooled samples. The creep behavior of In-Sn is constant with temperature, but the creep seems to be controlled by the In-rich phase in In-Sn on Cu and by the Sn-rich phase in In-Sn on Ni. Bi-Sn exhibits different creep behavior at temperatures above 40 {degrees}C than at 20 {degrees}C or lower. Stress-strain curves of Bi-Sn on Cu and In-Sn on Cu are similar, while In-Sn on Ni behaves differently. This is explained in terms of the deformation patterns in the alloys.

  19. Phase Structure and Cyclic Deformation in Eutectic Tin-Lead Alloy: A Numerical Analysis

    SciTech Connect

    FANG,HUEI ELIOT; Li,W; SHEN,Y.-L

    1999-09-09

    This study is devoted to providing a mechanistic rationale of coarsening induced failure in solder alloys during thermomechanical fatigue. Micromechanical modeling of cyclic deformation of eutectic tin-lead alloy was undertaken using the finite element method. The models consist of regularly arranged tin-rich and lead-rich phases, simulating the lamellar array and colony structure in a typical eutectic system. A fine structure and a coarse structure, bearing the same phase fraction but different in the aspect ratio of each lead-rich layer and in the number of lead-rich layers in each colony, are utilized for representing the microstructure before and after coarsening, respectively. Both phases are treated as elastic-plastic solids with their respective properties. For simplicity the creep effect is ignored without compromising the main objective of this study. Cyclic loading under pure shear and uniaxial conditions is modeled. It is found that both the fine and coarse structures exhibit essentially the same macroscopic stress-strain response. The coarse structure, however, shows a greater maximum effective plastic strain on a local scale throughout the deformation. The numerical result implies that, in a solder joint, a locally coarsened region may not be mechanically weaker than its surrounding, but it is subject to early damage initiation due to accumulated plasticity. Other implications regarding solder alloy failure and micromechanical modeling of two-phase materials are discussed.

  20. Density functional theory study of the interfacial properties of Ni/Ni3Si eutectic alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Yuhong; Wen, Zhiqin; Hou, Hua; Guo, Wei; Han, Peide

    2014-06-01

    In order to clarify the heterogeneous nucleation potential of ?-Ni grains on Ni3Si particles in Ni-Ni3Si eutectic alloy, the work of adhesion (Wad), fracture toughness (G), interfacial energy (?i), and electronic structure of the index (0 0 1), (1 1 0) and (1 1 1) Ni/Ni3Si interfaces with two different cohesive manners are investigated using first-principles method based on density functional theory. Results indicate that the center site stacking sequence (OM) is preferable to continue the natural stacking sequence of bulk Ni and Ni3Si. Since OM stacking interfaces have larger Wad, G and ?i than that of the top site stacking (OT) interfaces. The Ni/Ni3Si (1 1 0) interface with OM stacking has the best mechanical properties. Therefore, the formation of this interface can improve the stability, ductility and fracture toughness of Ni-Ni3Si eutectic alloy. The calculated interfacial energy of Ni/Ni3Si (0 0 1), (1 1 0) and (1 1 1) interfaces with OM stacking proves the excellent nucleation potency of Ni3Si particles for ?-Ni phase from thermodynamic considerations. Besides, the electronic structure and chemical bonding of (1 1 0) interface with OM stacking are also discussed.

  1. Review of fuel/cladding eutectic formation in metallic SFR fuel pins

    SciTech Connect

    Denman, M.; Todreas, N.; Driscoll, M. [MIT, 77 Mass Ave, Cambridge, MA 02139 (United States)

    2012-07-01

    Sodium-cooled Fast Reactors (SFRs) remain a strong contender amongst the Generation IV reactor concepts. Metallic fuel has been a primary fuel option for SFR designers in the US and was used extensively in the first generation of SFRs. One of the benefits of metallic fuel is its chemical compatibility with the coolant; unfortunately this compatibility does not extend to steel cladding at elevated temperatures. It has been known that uranium, plutonium, and rare earths diffuse with cladding constituents to form a low melting point fuel/cladding eutectic which acts to thin the cladding once the interfacial temperature rises above the system liquidus temperature. Since the 1960's, many experiments have been performed and published to evaluate the rate of fuel/cladding eutectic formation and the temperature above which melting will begin as a function of fuel/cladding interfacial temperature, time at temperature, fuel constituents (uranium, fissium or uranium (plutonium) zirconium), cladding type (stainless steel 316, stainless steel 306, D9 or HT9), beginning of life linear power, plutonium enrichment and burnup. The results of these tests, however, remain scattered across conference and journal papers spanning 50 years. The tests used to collect this data also varied in experimental procedure throughout the years. This paper will consolidate the experimental data into four groups of similar test conditions and expand upon the testing performed for each group in detail. A companion paper in PSA 2011 will discuss predictive correlations formulated from this database. (authors)

  2. Microstructure and thermoelectric properties of mechanically robust PbTe-Si eutectic composites.

    SciTech Connect

    Sootsman, J. R.; He, J.; Dravid, V. P.; Ballikaya, S.; Vermeulen, D.; Uher, C.; Kanatzidis, M. G. (Materials Science Division); (Northwestern Univ.); (Univ. of Michigan)

    2010-01-01

    The microstructure and thermoelectric properties of the PbTe-Si eutectic system are presented in detail. When rapidly quenched from the melt this system yields materials with thermoelectric properties similar to PbTe itself but with improved mechanical properties. Doping optimization was performed using PbI{sub 2} as an n-type dopant giving precise control of the thermoelectric properties. Electron microscopy indicates that the PbTe-Si system is both a nanocomposite and microcomposite. Despite the added Si, the thermal conductivity of this composite follows closely that of PbTe. The temperature dependence of the Lorenz number was estimated, and it shows a significant departure from the value of metals (L{sub 0}) reaching only 45% of L{sub 0} at 650 K. The optimized ZT for the PbTe-Si(8%) eutectic was 0.9 at 675 K. The improved mechanical robustness of these composites makes them attractive for use in large scale thermoelectric device fabrication.

  3. Solidification and thermal behaviour of binary organic eutectic and monotectic; succinonitrile pyrene system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Pandey, Pinky

    2003-02-01

    Transparent binary alloy models are important in metallurgical and materials science, as phase transformations can be observed during solidification. This communication concerns the solidification and thermal studies of succinonitrile (SCN)-pyrene (PY) system, which is an organic analogue of a metal-nonmetal-type system. Phase diagram of the SCN-PY system, determined by the thaw-melt method shows the formation of a monotectic and a eutectic at 143.3°C and 55.3°C with 0.025 and 0.744 mole fractions of SCN, respectively. The critical solution temperature of the system lies 48.7°C above the monotectic temperature. The growth velocity ( v) data at different undercoolings obtained from the capillary method, obey the Hillig-Turnbull equation, v= u(? T) n. The heats of fusion of the binary as well as single materials were obtained from the DSC (Mettler DSC-4000 system) from which the entropy of fusion, enthalpy of mixing, Jackson's roughness parameter, excess thermodynamic functions, interfacial energy and radius of the critical nucleus were calculated. The optical microphotographs of the eutectic and monotectic show their characteristic features.

  4. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  5. Thermolysis of carboxylic acid salts

    SciTech Connect

    Khlestkin, R.N.; Khlestkina, V.L.; Usanov, N.G.; Gareev, V.M.

    1982-07-01

    The dependence of the thermal stability of carboxylic acid salts on the nature of the anion and cation of the salt was studied. It was found that the capacity for thermal decomposition by salts of aliphatic, naphthenic, aromatic and heterocyclic carboxylic acids (with the exception of alkali salts) varies in inverse proportion to the values of the pK/sub a/ of the acids and to the values of the standard heats of formation of oxides (of the metal which forms the salt) relative to a monovalent bond with oxygen. An empirical equation which permits the thermal stability of many carboxylic acid salts to be predicted is given. Recommendations are developed for evaluating the relative activity of oxide and carbonate catalysts in reactions of vapor-phase conversion of aliphatic carboxylic acids to ketones and their operating temperatures.

  6. Primary aldosteronism and salt.

    PubMed

    Funder, John W

    2015-03-01

    For many years, primary aldosteronism was thought (and taught) to be a relatively rare (< 1 %) and benign form of high blood pressure: now we know that neither is the case. Currently, the prevalence is considered to be 5-10 % of hypertensives, on the basis of more or less stringent cutoffs for the aldosterone/renin ratio and plasma aldosterone concentration: increasingly, evidence is mounting that the true prevalence of (relatively) autonomous aldosterone secretion may be ? 30 % of hypertensives. There is, in addition, a consensus that the risk profile for patients with primary aldosteronism is substantially higher than in age-, sex-, and blood pressure-matched essential hypertensives; the cardiovascular/renal damage in primary aldosteronism is thus not a primary effect of raised blood pressure. The nexus between salt and primary aldosteronism is clear, as equivalently raised or even higher levels of plasma aldosterone in chronic sodium deficiency are homeostatic and do not cause cardiovascular damage, thus ruling out deleterious effects of aldosterone acting alone. In primary aldosteronism the normal homeostatic feedback loops between sodium status and aldosterone levels are disturbed, so that cardiovascular/renal damage reflects inappropriate aldosterone levels for sodium status. One possible actor in such a scenario is endogenous ouabain (or similar compounds), which is elevated in the sodium-loaded state and a vasoconstrictor, and thus potentially be able both to raise blood pressure and to cause cardiovascular/renal damage. A second consideration is that of the epidemiologic data linking a chronically high salt intake to a raised blood pressure. If autonomous aldosterone secretion is in fact present in ? 30 % of hypertensives, this may be the group sensitive to the pressor effects of high salt, with the remainder much less affected. Finally, at a practical level given even the currently accepted prevalence of primary aldosteronism, a radical reconsideration of first-line antihypertensive therapy is proposed. PMID:25502114

  7. Recycling of aluminum salt cake

    Microsoft Academic Search

    B. J. Jody; E. J. Daniels; P. V. Bonsignore; D. E. Karvelas

    1991-01-01

    The secondary aluminum industry generates more than 110 à 10³ tons of salt-cake waste every year. This waste stream contains about 3--5% aluminum, 15--30% aluminum oxide, 30--40% sodium chloride, and 20--30% potassium chloride. As much as 50% of the content of this waste is combined salt (sodium and potassium chlorides). Salt-cake waste is currently disposed of in conventional landfills. In

  8. Bacterial degradation of bile salts

    Microsoft Academic Search

    Bodo Philipp

    2011-01-01

    Bile salts are surface-active steroid compounds. Their main physiological function is aiding the digestion of lipophilic nutrients\\u000a in intestinal tracts of vertebrates. Many bacteria are capable of transforming and degrading bile salts in the digestive tract\\u000a and in the environment. Bacterial bile salt transformation and degradation is of high ecological relevance and also essential\\u000a for the biotechnological production of steroid

  9. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  10. Salt appetite in the elderly.

    PubMed

    Hendi, Khadeja; Leshem, Micah

    2014-11-28

    The present study investigated whether salt appetite in the elderly is impaired similar to thirst because of the commonality of their physiological substrates and whether alterations in salt appetite are related to mood. Elderly (65-85 years, n 30) and middle-aged (45-58 years, n 30) men and women were compared in two test sessions. Thirst, psychophysical ratings of taste solutions, dietary Na and energy intakes, seasoning with salt and sugar, number of salty and sweet snacks consumed, preferred amounts of salt in soup and sugar in tea, and an overall measure of salt appetite and its relationship with mood, nocturia and sleep were measured. Elderly participants were found to be less thirsty and respond less to thirst. In contrast, no impairment of salt appetite was found in them, and although they had a reduced dietary Na intake, it dissipated when corrected for their reduced dietary energy intake. Diet composition and Na intake were found to be similar in middle-aged and elderly participants, despite the lesser intake in elderly participants. There were no age-related differences in the intensity of taste or hedonic profile of Na, in salting habits, in tests of salting soup, or number of salty snacks consumed. No relationship of any measure of salt appetite with mood measured by the Positive and Negative Affect Schedule, frequency of nocturia, or sleep duration was observed. The age-related impairment of the physiology of mineralofluid regulation, while compromising thirst and fluid intake, spares salt appetite, suggesting that salt appetite in humans is not regulated physiologically. Intact salt appetite in the elderly might be utilised judiciously to prevent hyponatraemia, increase thirst and improve appetite. PMID:25287294

  11. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  12. Electrochromic salts, solutions, and devices

    DOEpatents

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky,7,064,212 T. Mark (Los Alamos, NM)

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  13. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  14. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  15. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  16. Nucleated deliquescence of salt

    NASA Astrophysics Data System (ADS)

    Cantrell, Will; McCrory, Charles; Ewing, George E.

    2002-02-01

    We have studied deliquescence on the (001) face of single crystals of NaCl and find that it is a nucleated phenomenon. The phase transition occurs only after the relative humidity exceeds that found over the saturated solution by at least 5%. The contrast between our observations and previous measurements using salt powders or crystallites leads us to the conclusion that deliquescence is controlled by the differences in energy required to solvate ions from the smooth (001) face and from the defect-rich surfaces of particulate samples.

  17. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors.

    PubMed

    Lei, Weiwei; Portehault, David; Dimova, Rumiana; Antonietti, Markus

    2011-05-11

    A simple, high yield, chemical process is developed to fabricate layered h-BN nanosheets and BCNO nanoparticles with a diameter of ca. 5 nm at 700 °C. The use of the eutectic LiCl/KCl salt melt medium enhances the kinetics of the reaction between sodium borohydride and urea or guanidine as well as the dispersion of the nanoparticles in water. The carbon content can be tuned from 0 to 50 mol % by adjusting the reactant ratio, thus providing precise control of the light emission of the particles in the range 440-528 nm while reaching a quantum yield of 26%. Because of their green synthesis, low toxicity, small size, and stability against aggregation in water, the as-obtained photoluminescent BCNO nanoparticles show promise for diagnostics and optoelectronics. PMID:21506566

  18. Should we eat less salt?

    PubMed

    Delahaye, François

    2013-05-01

    High blood pressure is a major cardiovascular risk factor. There is overwhelming evidence that high salt consumption is a major cause of increased blood pressure. There is also a link between high salt consumption and risk of stroke, left ventricular hypertrophy, renal disease, obesity, renal stones and stomach cancer. Reducing salt consumption leads to a decrease in blood pressure and the incidence of cardiovascular disease. There are no deleterious effects associated with reducing salt consumption and it is also very cost-effective. Many organizations and state governments have issued recommendations regarding the suitable amount of salt consumption. In France, the objective is a salt consumption<8g/day in men and<6.5g/day in women and children. As 80% of consumed salt comes from manufactured products in developed countries, reduction of salt consumption requires the participation of the food industry. The other tool is consumer information and education. Salt consumption has already decreased in France in recent years, but efforts must continue. PMID:23769406

  19. Salt sensitivity in chickpea.

    PubMed

    Flowers, Timothy J; Gaur, Pooran M; Gowda, C L Laxmipathi; Krishnamurthy, L; Samineni, Srinivasan; Siddique, Kadambot H M; Turner, Neil C; Vadez, Vincent; Varshney, Rajeev K; Colmer, Timothy D

    2010-04-01

    The growth of chickpea (Cicer arietinum L.) is very sensitive to salinity, with the most susceptible genotypes dying in just 25 mm NaCl and resistant genotypes unlikely to survive 100 mm NaCl in hydroponics; germination is more tolerant with some genotypes tolerating 320 mm NaCl. When growing in a saline medium, Cl(-), which is secreted from glandular hairs on leaves, stems and pods, is present in higher concentrations in shoots than Na(+). Salinity reduces the amount of water extractable from soil by a chickpea crop and induces osmotic adjustment, which is greater in nodules than in leaves or roots. Chickpea rhizobia show a higher 'free-living' salt resistance than chickpea plants, and salinity can cause large reductions in nodulation, nodule size and N(2)-fixation capacity. Recent screenings of diverse germplasm suggest significant variation of seed yield under saline conditions. Both dominance and additive gene effects have been identified in the effects of salinity on chickpea and there appears to be sufficient genetic variation to enable improvement in yield under saline conditions via breeding. Selections are required across the entire life cycle with a range of rhizobial strains under salt-affected, preferably field, conditions. PMID:19843257

  20. A Finite-Element-Based Methodology for Evaluating Solder Electromigration Current Limits of Sn\\/Pb Eutectic Solder Bumps

    Microsoft Academic Search

    Walter Dauksher; Dennis H. Eaton; James D. Rowatt

    2008-01-01

    This paper investigates the effect of current distribution to the bump and current crowding on the electromigration (EM) of Sn\\/Pb eutectic solder bumps. The peak current density in the bump is found to have a significant effect on the EM lifetime of the tested structures and, thus, impacts the maximum allowable bump current. A finite-element model is developed which accurately

  1. Tensile Strength and Microstructure of Al2O3-ZrO2 Hypo-Eutectic Fibers Studied

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali

    2001-01-01

    Oxide eutectics offer high-temperature strength retention and creep resistance in oxidizing environments. Al2O3-ZrO2 eutectic strengths have been studied since the 1970's. Directionally solidified oxide eutectics exhibit improved resistance to slow crack growth and excellent strength retention at high temperatures up to 1400 C. Materials studied typically contain Y2O3 to metastably retain the high-temperature cubic and tetragonal polymorphs at room temperature. Al2O3-ZrO2 is of fundamental interest for creep studies because it combines a creep-resistant material, Al2O3, with a very low creep resistance material, ZrO2. Results on mechanical properties and microstructures of these materials will be used to define compositions for creep testing in future work. Substantial variations from the eutectic alumina to zirconia ratio can be tolerated without a loss in room-temperature strength. The effect of increasing Y2O3 addition on the room-temperature tensile strength of an Al2O3-ZrO2 material containing excess Al2O3 was examined at the NASA Glenn Research Center, where the materials were grown using Glenn's world-class laser growth facilities.

  2. Sono-electrodeposition (20 and 850 kHz) of copper in aqueous and deep eutectic solvents

    Microsoft Academic Search

    Bruno G. Pollet; Jean-Yves Hihn; Timothy J. Mason

    2008-01-01

    This paper reports the effects of ultrasound at different frequencies and powers upon the electrodeposition of copper(II) chloride in aqueous potassium chloride and in glyceline 200 (a deep eutectic solvent – DES) on Pt electrodes in the potential range for copper deposition and dissolution. It is shown that the deposition of copper in both solvents is greatly affected by ultrasound

  3. Prediction of glycerol removal from biodiesel using ammonium and phosphunium based deep eutectic solvents using artificial intelligence techniques

    Microsoft Academic Search

    K. Shahbaz; S. Baroutian; F. S. Mjalli; M. A. Hashim; I. M. AlNashef

    2012-01-01

    Biodiesel total glycerol content is an important characteristic which must pass the EN 14214 and ASTM D6751 international biodiesel quality standards. In this study, the experimental data of glycerol removal by means of deep eutectic solvents (DESs) was used to design a new modeling approach based on Artificial Neural Networks (ANNs) in order to predict glycerol removal. The DESs were

  4. Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: Probing inter-molecular interactions using PFG NMR

    E-print Network

    D'Agostino, Carmine; Gladden, Lynn F.; Mantle, Mick D.; Abbott, Andrew P.; Ahmed, Essa I.; Al-Murshedi, Azhar Y. m.; Harris, Robert C.

    2015-06-02

    Pulsed field gradient (PFG) NMR has been used to probe self-diffusion of molecular and ionic species in aqueous mixtures of choline chloride (ChCl) based deep eutectic solvents (DESs), in order to elucidate the effect of water on motion and inter...

  5. Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8%Si cast alloy

    Microsoft Academic Search

    A. M. A. Mohamed; A. M. Samuel; F. H. Samuel; H. W. Doty

    2009-01-01

    The continuing quest for aluminum castings with enhanced mechanical properties for applications in the automotive industries has intensified the interest in aluminum–silicon alloys. In Al–Si alloys, the properties are influenced by the shape and distribution of the eutectic silicon particles in the matrix, as also by the iron intermetallics and copper phases that occur upon solidification. The detailed microstructure and

  6. Mechanical properties of ZrC-ZrBâ and ZrC-TiBâ directionally solidified eutectics

    Microsoft Academic Search

    CHARLES C. SORRELL; VLADIMIR S. STUBICAN; RICHARD C. BRADT

    1986-01-01

    Lamellar ZrC-ZrBâ and Chinese-script ZrC-TiBâ eutectics were directionally solidified using the floating-zone method of crystal growth. The Knoop microhardness, fracture toughness, and wear resistance were investigated as a function of the phase spacing. Nearly all of the directionally solidified specimens exhibited superior mechanical properties when compared with the individual constituents.

  7. Effect of thermal cycling on structure and properties of a Co, Cr, Ni--TaC directionally solidified eutectic composite

    Microsoft Academic Search

    F. M. Dunlevey; J. F. Wallace

    1973-01-01

    The effect of thermal cycling on the structure and properties of a ; cobalt, chromium, nickel, tantalum carbide directionally solidified eutectic ; composite is reported. It was determined that the stress rupture properties of ; the alloy were decreased by the thermal cycling. The loss in stress rupture ; properties varied with the number of cycles with the loss in

  8. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth.

    PubMed

    Lu, Haiming; Meng, Xiangkang

    2015-01-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size. PMID:26053237

  9. Characterizing the Icy H2O-MgSO4 Eutectic System: Preliminary Results on Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Burks, C. E.; Lucas, K. N.; Golding, N.; Schulson, E. M.

    2011-12-01

    A columnar multiphase ice-rich system, with column diameter of 1-2 mm, has been produced through unidirectional solidification of the H2O-MgSO4 eutectic solution and was characterized using thin sections and scanning electron microscopy (SEM). Phases have been identified using electron dispersion spectroscopy (EDS). Elastic properties were determined using acoustic emission and the ductile-brittle transition was determined from uniaxial compression. Measurements of fracture toughness, by three point bending at -10 oC, indicate the columnar eutectic material is ~1.3 times tougher than freshwater columnar ice, while cantilever bending tests at -10 oC indicate the eutectic system is ~1.6 times stronger. Measurements of the kinetic coefficient of friction, by double shear sliding at temperatures of -10 oC and -175 oC, indicate that friction for the eutectic system is ~1.6 times larger compared to freshwater columnar ice. These initial results are of importance in modeling the behavior of extraterrestrial icy material, with particular attention to Europa and the possibility of a subsurface ocean.

  10. Stressed capsules of austenitic and martensitic steels irradiated in SINQ Target4 in contact with liquid lead–bismuth eutectic

    Microsoft Academic Search

    Y. Dai; D. Gavillet; R. Restani

    2008-01-01

    In the MEGAPIE target, the steels used for the proton beam entrance window and other components in the spallation reaction zone suffer not only from the irradiation damage produced by protons and neutrons but also from the corrosion and embrittlement induced by liquid lead–bismuth eutectic (LBE). Although these effects have been separately studied by a number of authors, the synergistic

  11. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth

    PubMed Central

    Lu, Haiming; Meng, Xiangkang

    2015-01-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size. PMID:26053237

  12. Nickel-plating for active metal dissolution resistance in molten fluoride salts

    NASA Astrophysics Data System (ADS)

    Olson, Luke; Sridharan, Kumar; Anderson, Mark; Allen, Todd

    2011-04-01

    Ni electroplating of Incoloy-800H was investigated with the goal of mitigating Cr dissolution from this alloy into molten 46.5%LiF-11.5%NaF-42%KF eutectic salt, commonly referred to as FLiNaK. Tests were conducted in graphite crucibles at a molten salt temperature of 850 °C. The crucible material graphite accelerates the corrosion process due to the large activity difference between the graphite and the alloy. For the purposes of providing a baseline for this study, un-plated Incoloy-800H and a nearly pure Ni-alloy, Ni-201 were also tested. Results indicate that Ni-plating has the potential to significantly improve the corrosion resistance of Incoloy-800H in molten fluoride salts. Diffusion of Cr from the alloy through the Ni-plating does occur and if the Ni-plating is thin enough this Cr eventually dissolves into the molten salt. The post-corrosion test microstructure of the Ni-plating, particularly void formation was also observed to depend on the plating thickness. Diffusion anneals in a helium environment of Ni-plated Incoloy-800H and an Fe-Ni-Cr model alloy were also investigated to understand Cr diffusion through the Ni-plating. Further enhancements in the efficacy of the Ni-plating as a protective barrier against Cr dissolution from the alloy into molten fluoride salts can be achieved by thermally forming a Cr 2O 3 barrier film on the surface of the alloy prior to Ni electroplating.

  13. Rock-salt mine saw

    SciTech Connect

    Staller, G.E.; Wilson, W.C.; Smith, A.R.

    1985-06-01

    A saw has been developed for cutting rock salt at the Waste Isolation Pilot Plant near Carlsbad, NM. This saw uses commercially available hardware in conjuction with Sandia-designed equipment. It has been used to cut rock salt in situ as well as samples removed from the mine.

  14. Art with Salt and Ice

    NSDL National Science Digital Library

    KCET

    2007-01-01

    This open-ended art project allows learners to create their own colorful ice sculpture by using rock salt and food coloring on a solid block of ice. The entire activity is like a mini-science lesson because it teaches learners the physical reaction of salt on ice.

  15. Salt-gradient solar ponds

    SciTech Connect

    Neeper, D.A.

    1984-01-01

    A description of salt-gradient solar ponds is presented. Guidelines concerning the construction and maintenance of the pond are discussed. A computer model was used to study layer migration in laboratory tanks and in an outdoor pond. The status of solar ponds is briefly discussed. An equation relating heat flux and salt flux at a boundary is included. (BCS)

  16. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...Agriculture 3 2010-01-01 2010-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations...Quality Specifications for Raw Material § 58.721 Salt. Salt shall be free flowing, white refined sodium chloride...

  17. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...Agriculture 3 2013-01-01 2013-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations...Quality Specifications for Raw Material § 58.721 Salt. Salt shall be free flowing, white refined sodium chloride...

  18. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Phosphonocarboxylate salts. 721.6085 Section 721.6085 ...Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant...identified generically as phosphonocarboxylate salts (PMNs P-93-722,...

  19. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Alkylsulfonium salt. 721.7655 Section 721.7655 ...Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant...identified generically as alkylsulfonium salt (PMN P-93-1166) is subject to...

  20. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...Agriculture 3 2012-01-01 2012-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations...Quality Specifications for Raw Material § 58.721 Salt. Salt shall be free flowing, white refined sodium chloride...

  1. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Phosphonocarboxylate salts. 721.6085 Section 721.6085 ...Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant...identified generically as phosphonocarboxylate salts (PMNs P-93-722,...

  2. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...Agriculture 3 2011-01-01 2011-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations...Quality Specifications for Raw Material § 58.721 Salt. Salt shall be free flowing, white refined sodium chloride...

  3. Plant salt-tolerance mechanisms

    DOE PAGESBeta

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore »and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  4. Plant salt-tolerance mechanisms

    DOE PAGESBeta

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  5. Plant salt-tolerance mechanisms

    PubMed Central

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-01-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components may play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made toward engineering salt tolerance in crops, including marker assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future. PMID:24630845

  6. Salt resistant crop plants.

    PubMed

    Roy, Stuart J; Negrão, Sónia; Tester, Mark

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker-assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement. PMID:24679267

  7. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications.

    PubMed

    Dai, Yuntao; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2015-11-15

    Previously it was demonstrated that natural deep eutectic solvents (NADES) are promising green solvents for the extraction of natural products. However, despite their potential, an obvious disadvantage of NADES is the high viscosity. Here we explored the dilution effect on the structures and physicochemical properties of NADES and their improvements of applications using quercetin and carthamin. The results of FT-IR and (1)H NMR experiments demonstrated that there are intensive H-bonding interactions between the two components of NADES and dilution with water caused the interactions weaken gradually and even disappeared completely at around 50% (v/v) water addition. A small amount of water could reduce the viscosity of NADES to the range of water and increase the conductivity by up to 100 times for some NADES. This study provides the basis for modulating NADES in a controllable way for their applications in food processing, enzyme reactions, pharmaceuticals and cosmetics. PMID:25976992

  8. Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning.

    PubMed

    Bakkar, Ashraf

    2014-09-15

    The dust waste formed during steelmaking in electric arc furnace (EAF) is rich in ferrous and nonferrous metals. Recycling of this dust as a raw material in iron or steel-making is hazardous and therefore it is mostly dumped. This paper demonstrates recycling of EAF dust through selective dissolution of metal oxides in a deep eutectic ionic liquid. It was found that about 60% of Zn and 39% of Pb could be dissolved from the dust when stirred for 48h in 1 choline chloride:2 urea ionic liquid at 60°C. The resultant electrolyte was subsequently fed to a conventional three-electrode cell where cyclic voltammetry (CV) measurements were conducted to describe its electrochemical behavior. Two deposition peaks were determined and ascribed to deposition of zinc and lead. Static potentials were successively applied to electrowin metallic zinc. SEM/EDX investigations showed that the zinc electrowon contained remarkable contents of lead. PMID:25156719

  9. Recent progress in G-quadruplex DNA in deep eutectic solvent.

    PubMed

    Zhao, Chuanqi; Qu, Xiaogang

    2013-11-01

    Guanine-rich nucleic acids are known to form four-stranded G-quadruplex structures which are attracting increasing attention in diverse areas such as biology, medicinal chemistry, supramolecular chemistry and nanotechnology. To date, the handling media for DNA has largely been limited to an aqueous phase. Since many chemical reactions and devices are required to be performed under strictly anhydrous conditions, even at high temperature, it is meaningful but challenging to conduct G-quadruplex DNA in water-free medium. Recently, deep eutectic solvent (DES), a related material to ionic liquids (ILs) was considered as a new class of anhydrous media for DNA. This review highlights the stability, structure, folding dynamics and thermodynamics of G-quadruplex in DES. Spectroscopic methodologies, like circular dichroism, UV and fluorescence, are mainly employed in these studies. PMID:23628945

  10. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius).

    PubMed

    Dai, Yuntao; Verpoorte, Robert; Choi, Young Hae

    2014-09-15

    A certain combination of natural products in the solid state becomes liquid, so called natural deep eutectic solvents (NADES). Recently, they have been considered promising new green solvents for foods, cosmetics and pharmaceuticals due to their unique solvent power which can dissolve many non-water-soluble compounds and their low toxicity. However, in addition to the features as solvents, the stabilisation ability of NADES for compounds is important for their further applications. In the study, the stability analysis demonstrates that natural pigments from safflower are more stable in sugar-based NADES than in water or 40% ethanol solution. Notably, the stabilisation capacity of NADES can be adjusted by reducing water content with increasing viscosity. The strong stabilisation ability is due to the formation of strong hydrogen bonding interactions between solutes and NADES molecules. The stabilising ability of NADES for phenolic compounds shows great promise for their applications in food, cosmetic and pharmaceutical industries. PMID:24767033

  11. Charge transport and structural dynamics in carboxylic-acid-based deep eutectic mixtures.

    PubMed

    Griffin, Philip J; Cosby, Tyler; Holt, Adam P; Benson, Roberto S; Sangoro, Joshua R

    2014-08-01

    Charge transport and structural dynamics in the 1:2 mol ratio mixture of lidocaine and decanoic acid (LID-DA), a model deep eutectic mixture (DEM), have been characterized over a wide temperature range using broad-band dielectric spectroscopy and depolarized dynamic light scattering. Additionally, Fourier transform infrared spectroscopy measurements were performed to assess the degree of proton transfer between the neutral parent molecules. From our detailed analysis of the dielectric spectra, we have determined that this carboxylic-acid-based DEM is approximately 25% ionic at room temperature. Furthermore, we have found that the characteristic diffusion rate of mobile charge carriers is practically identical to the rate of structural relaxation at all measured temperatures, indicating that fast proton transport does not occur in LID-DA. Our results demonstrate that while LID-DA exhibits the thermal characteristics of a DEM, its charge transport properties resemble those of a protic ionic liquid. PMID:25025600

  12. Tetrabutylammonium bromide (TBABr)-based deep eutectic solvents (DESs) and their physical properties.

    PubMed

    Yusof, Rizana; Abdulmalek, Emilia; Sirat, Kamaliah; Rahman, Mohd Basyaruddin Abdul

    2014-01-01

    Density, viscosity and ionic conductivity data sets of deep eutectic solvents (DESs) formed by tetrabutylammonium bromide (TBABr) paired with ethlyene glycol, 1,3-propanediol, 1,5-pentanediol and glycerol hydrogen bond donors (HBDs) are reported. The properties of DES were measured at temperatures between 303 K and 333 K for HBD percentages of 66.7% to 90%. The effects of HBDs under different temperature and percentages are systematically analyzed. As expected, the measured density and viscosity of the studied DESs decreased with an increase in temperature, while ionic conductivity increases with temperature. In general, DESs made of TBABr and glycerol showed the highest density and viscosity and the lowest ionic conductivity when compared to other DESs. The presence of an extra hydroxyl group on glycerol in a DES affected the properties of the DES. PMID:24932572

  13. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents.

    PubMed

    Hayyan, Maan; Hashim, Mohd Ali; Al-Saadi, Mohammed A; Hayyan, Adeeb; AlNashef, Inas M; Mirghani, Mohamed E S

    2013-09-01

    In this work, the cytotoxicity and toxicity of phosphonium-based deep eutectic solvents (DESs) with three hydrogen bond donors, namely glycerine, ethylene glycol, and triethylene glycol were investigated. The cytotoxicity effect was tested using brine shrimp (Artemia salina). The toxicity was investigated using the two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity of tested DESs was much higher than that of their individual components, indicating their toxicological behavior was different. It was also found that there was toxic effect on the studied bacteria, indicating their potential application as anti-bacterial agents. To the best of our knowledge, this is the first time the cytotoxicity and toxicity of phosphonium-based DESs were studied. PMID:23820537

  14. Effect of oxidation on the Mechanical Properties of Liquid Gallium and Eutectic Gallium-Indium

    E-print Network

    Xu, Qin; Guo, Qiti; Jaeger, Heinrich; Brown, Eric

    2012-01-01

    Liquid metals exhibit remarkable mechanical properties, in particular large surface tension and low viscosity. However, these properties are greatly affected by oxidation when exposed to air. We measure the viscosity, surface tension, and contact angle of gallium (Ga) and a eutectic gallium-indium alloy (eGaIn) while controlling such oxidation by surrounding the metal with an acid bath of variable concentration. Rheometry measurements reveal a yield stress directly attributable to an oxide skin that obscures the intrinsic behavior of the liquid metals. We demonstrate how the intrinsic viscosity can be obtained with precision through a scaling technique that collapses low- and high-Reynolds number data. Measuring surface tension with a pendant drop method, we show that the oxide skin generates a surface stress that mimics surface tension and develop a simple model to relate this to the yield stress obtained from rheometry. We find that yield stress, surface tension, and contact angle all transition from solid-...

  15. Thermoelectric and morphological effects of Peltier pulsing on directional solidification of eutectic Bi-Mn

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.; Dressler, B.

    1984-01-01

    Extensive in situ thermal measurements using Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi were carried out. Observations indicate that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. The contributions of the Peltier, Thomson, and Joule heats were separated and studied as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.

  16. Effect of applied magnetic fields during directional solidification of eutectic Bi-Mn

    NASA Technical Reports Server (NTRS)

    Decarlo, J. L.; Pirich, R. G.

    1984-01-01

    Samples of rod eutectics Bi/MnBi were directionally solidified in a growth-up Bridgman-Stockbarger configuration in the presence of a transverse magnetic field up to 3 kg to determine whether gravity-driven convective effects could be reduced or eliminated. The experiments were carried out over a range of furnace velocities, V, of 0.2 to 50 cm per hour with a thermal gradient at the liquid-solid interface of 100 C/cm and 150 C/cm. Morphological, thermal and magnetic analyses were carried out on samples grown with and without an applied magnetic field. For samples grown at V greater than 3 cm per hour in a transverse magnetic field, reduced mean rod diameter and interrod spacing occurred as well as undercooling and increased coercive strength. The data agreed with that obtained for low-g growth at 50 cm per hour and 30 cm per hour.

  17. Crack-interface interactions in a tungsten-yttria-stabilized-zirconia directionally solidified eutectic

    SciTech Connect

    Isabell, T.C.; Dravid, V.P. [Northwestern Univ., Evanston, IL (United States); Hill, D.N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-02-01

    A directionally solidified eutectic (DSE) of W-ZrO{sub 2}(Y{sub 2}O{sub 3}) consists of faceted fibers of tungsten embedded in yttria-stabilized cubic zirconia. The W-ZrO{sub 2} interfaces in this system are devoid of any impurity phases of a reaction product. Microindentation-induced cracks and their interactions with interphase interfaces are investigated using scanning and transmission electron microscopy. Crack-interface interactions are found to fall into one of four categories: propagation along the meta-ceramic interface, deflection away from the interface, crack-interface bridging, and shearing of tungsten fibers. Further crack propagation is investigated in situ in a TEM with a propagation induced by local electron beam heating. These crack path selections are analyzed within the framework of phenomenological understanding of crack-interface interactions in composites.

  18. Internal stress superplasticity in directionally solidified Al-Al{sub 3}Ni eutectic composite

    SciTech Connect

    Kitazono, K. [Inst. of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)] [Inst. of Space and Astronautical Science, Sagamihara, Kanagawa (Japan); [Univ. of Tokyo, Hongo, Bunkyo (Japan). Dept. of Materials Science; Sato, E. [Inst. of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)] [Inst. of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)

    1998-12-11

    Thermal cycling creep behavior in fiber-reinforced composites was investigated using a directionally solidified Al-Al{sub 3}Ni eutectic composite. A superplastic elongation of 120% was obtained during a thermal cycling tensile creep test. Compression creep tests were performed under an external stress applied either parallel or perpendicular to the growth direction. The average strain rates for the two directions exhibited the characteristics of internal stress superplasticity: those at low stresses were much higher than the corresponding isothermal creep rates and were proportional to the applied stress. In the case of transverse loading, the thermal cycling creep rate was explained quantitatively using the previously reported internal stress superplasticity model for particle-dispersed composite. In the case of longitudinal loading, it was much lower than that predicted using the model because of the difference in the stress state and the relaxation process. However, thermal cycling creep had very low activation energy, which is a unique characteristic of internal stress superplasticity.

  19. Creep regimes for directionally solidified Al-Al{sub 3}Ni eutectic composite

    SciTech Connect

    Himbeault, D.D. [Atomic Energy of Canada Ltd., Pinawak, Manitoba (Canada); Cahoon, J.R. [Univ. of Manitoba, Winnipeg (Canada). Dept. of Mechanical and Industrial Engineering

    1993-12-01

    Creep characteristics of Al-Al{sub 3}Ni eutectic composites directionally solidified at 2.2 {times} 10{sup {minus}2} mm/s were determined over a wide range of stress and temperature. Four distinct regions of creep were observed. The rate controlling mechanisms for the four regions appear to be high-temperature dislocation climb in the Al matrix, low-temperature climb in the Al matrix, boundary sliding, and a mechanism involving deformation of the Al{sub 3}Ni fibers. Creep rates of the Al-Al{sub 3}Ni composite are several orders of magnitude smaller than for pure Al, and apparently, in the regions where deformation of the Al matrix is rate controlling, only a very small fraction of the matrix is deforming during creep of the composite.

  20. Determination of the elastic moduli of a directionally solidified nickel-based TaC eutectic

    SciTech Connect

    Fisher, E.S.

    1980-01-01

    Measurements of ultrasonic wave velocities in a polycrystalline directionally solidified nickel based eutectic alloy are used to evaluate the three independent single crystal elastic moduli at temperatures between 298 to 925/sup 0/K. The C/sub 11/ and C/sub 44/ moduli are obtained directly from high frequency wave propagation along the D.S. axis, corresponding to <100>. Evaluation of C/sub 12/ requires measurements at lower frequencies to obtain (C/sub 11/-E/sub <100>/). The elastic anisotropy and temperature dependence of the elastic moduli are almost identical to those reported for pure Ni, indicating that neither TaC fiber reinforcement nor ..gamma..' precipitate have strong effects on elastic properties of Ni based turbine blade alloys.

  1. Gravitationally induced convection during directional solidification of off-eutectic Mn-Bi alloys

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.

    1982-01-01

    The effects of thermal and solute gradient, gravity induced convection during vertical directional solidification, on longitudinal macrosegregation of Bi and Mn rich off-eutectic starting compositions, has been studied as a function of composition, growth velocity and gravity vector orientation. Since the morphology of these alloys is characterized by an aligned, rodlike permanent magnet composite when grown cooperatively, the magnetic properties were used to measure composition segregation and the transition from dendritic to composite growth. Severe macrosegregation was observed in all cases studied and the degree of convection inferred by modeling the observed composition segregation using a stagnant film approach. Morphological stability was found to follow a constitutional supercooling-type law for both Bi and Mn rich compositions.

  2. Effect of convection on the microstructure of a lamellar eutectic growing with a stepped interface

    NASA Technical Reports Server (NTRS)

    Seth, Jayshree; Wilcox, W. R.

    1990-01-01

    A two dimensional model developed to study the influence of convective flow on the concentration field ahead of a growing lamellar eutectic is described when one phase projects out into the melt creating a stepped interface. The two dimensional convective flow field, which is periodic in the horizontal direction, was computed numerically using the software FLUENT. The velocity field generated due to the flow of melt over the steps was then incorporated into a finite difference scheme employed to solve the concentration field. The average interfacial composition was calculated and converted to lamellar spacing using the Jackson and Hunt minimum supercooling criterion. It was found that a stepped interface is more sensitive to convection than a planar interface.

  3. Influence of gravity on the microstructure of the MnBi/Bi eutectic

    NASA Technical Reports Server (NTRS)

    Rydzewski, J. H.; Wilcox, W. R.

    1991-01-01

    Directional solidification of MnBiBi eutectic in space produced MnBi fibers that were significantly finer and closer together than when solidification was carried out on earth under otherwise identical conditions. Use of a strong magnetic field during solidification on earth gave about the same results as solidification in space, indicating that convection is the cause of the difference in microstructure. However, 15 years of theoretical and experimental research have failed to reveal the mechanism for this phenomenon. It has been found that temperature gradient has no effect; the concentration field in front of the freezing interface is not altered sufficiently by buoyancy-driven convection to explain it, even if the MnBi fibers project out in front of the Bi matrix; and the Soret effect is not sufficiently large. On the other hand, vigorous forced convection caused a change in microstructure in agreement with theory.

  4. Superconductivity in filamentary eutectic composites. Progress report, June 1, 1980-May 31, 1980

    SciTech Connect

    Zaitlin, M P

    1980-01-01

    Measurements of electrical resistivity and magnetic susceptibility have been performed as a function of temperature on samples of Nb-Th eutectic composite. Samples with Nb filament radii as small as 38A were used which is considerably less than the coherence length xi in Nb of approx. 380A. Surprisingly, measurements of all samples showed a drop in electrical resistance near the transition temperature of bulk Nb and an unmeasurably small resistance by approx. 8K. The magnetic susceptibility showed essentially perfect diamagnetism below approx. 7 to 9K even for samples with the smallest of filament radii. This is in contradiction to theories of the proximity effect which predict a sharp decrease in the transition temperature for samples with a radius smaller than xi. Some measurements in a static magnetic field have also been made.

  5. Eutectic equilibria in the quaternary system Fe-Cr-Mn-C

    NASA Technical Reports Server (NTRS)

    Nowotny, H.; Wayne, S.; Schuster, J. C.

    1982-01-01

    The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.

  6. Massively Parallel Phase-Field Simulations for Ternary Eutectic Directional Solidification

    E-print Network

    Bauer, Martin; Steinmetz, Philipp; Jainta, Marcus; Berghoff, Marco; Schornbaum, Florian; Godenschwager, Christian; Köstler, Harald; Nestler, Britta; Rüde, Ulrich

    2015-01-01

    Microstructures forming during ternary eutectic directional solidification processes have significant influence on the macroscopic mechanical properties of metal alloys. For a realistic simulation, we use the well established thermodynamically consistent phase-field method and improve it with a new grand potential formulation to couple the concentration evolution. This extension is very compute intensive due to a temperature dependent diffusive concentration. We significantly extend previous simulations that have used simpler phase-field models or were performed on smaller domain sizes. The new method has been implemented within the massively parallel HPC framework waLBerla that is designed to exploit current supercomputers efficiently. We apply various optimization techniques, including buffering techniques, explicit SIMD kernel vectorization, and communication hiding. Simulations utilizing up to 262,144 cores have been run on three different supercomputing architectures and weak scalability results are show...

  7. Numerical modeling of solidification and convection in a viscous pure binary eutectic system

    NASA Technical Reports Server (NTRS)

    Oldenburg, Curtis M.; Spera, Frank J.

    1991-01-01

    The solidification and convection of the pure binary eutectic silicate system diopside-anorthite (Di-An) is numerically modeled. A mass-weighted enthalpy of fusion is used to account for the second solid phase (An) which crystallizes at the solidus temperature. Variable under-relaxation is used to aid convergence of the momentum equations in the implementation of the SIMPLER algorithm used to solve the two-dimensional continuum conservation equations. Numerical experiments of the solidification of Di80 melt show that a large temperature drop occurs across the solid and mush regions which decreases convective vigor in the liquid. Interesting compositional segregation patterns are produced during the solidification of Di80.

  8. 3D CAFE modeling of grain structures: application to primary dendritic and secondary eutectic solidification

    NASA Astrophysics Data System (ADS)

    Carozzani, T.; Digonnet, H.; Gandin, Ch-A.

    2012-01-01

    A three-dimensional model is presented for the prediction of grain structures formed in casting. It is based on direct tracking of grain boundaries using a cellular automaton (CA) method. The model is fully coupled with a solution of the heat flow computed with a finite element (FE) method. Several unique capabilities are implemented including (i) the possibility to track the development of several types of grain structures, e.g. dendritic and eutectic grains, (ii) a coupling scheme that permits iterations between the FE method and the CA method, and (iii) tabulated enthalpy curves for the solid and liquid phases that offer the possibility to work with multicomponent alloys. The present CAFE model is also fully parallelized and runs on a cluster of computers. Demonstration is provided by direct comparison between simulated and recorded cooling curves for a directionally solidified aluminum-7 wt% silicon alloy.

  9. Compatibilization of HDPE/agar biocomposites with eutectic-based ionic liquid containing surfactant

    E-print Network

    Shamsuri, AA; Zainudin, ES; Tahir, PM

    2014-01-01

    In this research, eutectic-based ionic liquid specifically choline chloride/glycerol was prepared at a 1:2 mole ratio. The choline chloride/glycerol was added with the different content of surfactant (hexadecyltrimethylammonium bromide). The choline chloride/glycerol-hexadecyltrimethylammonium bromide was introduced into high-density polyethylene/agar biocomposites through melt mixing. The mechanical testing results indicated that the impact strength and tensile extension of the biocomposites increased with the introduction of the choline chloride/glycerol-hexadecyltrimethylammonium bromide. The scanning electron microscope, differential scanning calorimetry and thermal gravimetric analysis results exhibited that significant decrease in the number of agar fillers pull-out, melting point and thermal decomposition temperatures of the biocomposites are also due to the choline chloride/glycerol-hexadecyltrimethylammonium bromide. The Fourier transform infrared spectra and X-ray diffractometer patterns of the bioc...

  10. Microstructure and fatigue of a Ni,Cr, Al-TaC eutectic composite

    NASA Astrophysics Data System (ADS)

    Johnson, W. A.; Stoloff, N. S.

    1980-02-01

    The Ni,10Cr,5Al-TaC aligned eutectic has been heat treated subsequent to solidification to produce several microstructural conditions. High cycle fatigue tests have been conducted at 25 and 825°C, while creep tests were performed at 825 and 950°C. Experimental variables in the fatigue tests were stress level, test frequency, and environment. Post solidification heat treatments caused substantial improvements in fatigue properties at 825°C, but had little effect at room temperature. Elevated temperature fatigue lives were substantially reduced at low test frequencies in vacuum, accompanied by a shift from external to internal crack nucleation sites. Dislocation substructures produced in high temperature fatigue tests resembled those of creep specimens.

  11. Deformation Behavior of the Percolating Eutectic Intermetallic in HPDC and Squeeze-Cast Mg Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Bao; Yang, Kun V.; Nagasekhar, Anumalasetty V.; Cáceres, Carlos H.; Easton, Mark

    2014-09-01

    The structural compliance of the spatially interconnected intermetallic network in a squeeze-cast MRI230D alloy was determined using focused ion beam (FIB) data and finite element (FE) modeling, and compared with data for a high-pressure die-cast AZ91D and three binary Mg-RE alloys from the existing literature. The respective elastic responses were sorted out into two characteristic behaviors: for eutectic volume fractions less than ~22% the behavior was akin to that of highly compliant, bending-dominated structures, whereas for larger fractions, it reproduced that of structurally efficient, stretch-dominated microtruss structures. In all cases, the contribution from the interconnected network added to the total strength of the alloy an amount comparable with the strengthening expected from a similar volume fraction of dispersed particles. Being more compliant, the bending-dominated structures appeared less prone to developing damage by cracking at low strains than the stretch dominated ones.

  12. Deformation Behavior of the Percolating Eutectic Intermetallic in HPDC and Squeeze-Cast Mg Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Bao; Yang, Kun V.; Nagasekhar, Anumalasetty V.; Cáceres, Carlos H.; Easton, Mark

    2014-10-01

    The structural compliance of the spatially interconnected intermetallic network in a squeeze-cast MRI230D alloy was determined using focused ion beam (FIB) data and finite element (FE) modeling, and compared with data for a high-pressure die-cast AZ91D and three binary Mg-RE alloys from the existing literature. The respective elastic responses were sorted out into two characteristic behaviors: for eutectic volume fractions less than ~22% the behavior was akin to that of highly compliant, bending-dominated structures, whereas for larger fractions, it reproduced that of structurally efficient, stretch-dominated microtruss structures. In all cases, the contribution from the interconnected network added to the total strength of the alloy an amount comparable with the strengthening expected from a similar volume fraction of dispersed particles. Being more compliant, the bending-dominated structures appeared less prone to developing damage by cracking at low strains than the stretch dominated ones.

  13. Wetting and Soldering Behavior of Eutectic Au-Ge Alloy on Cu and Ni Substrates

    NASA Astrophysics Data System (ADS)

    Leinenbach, C.; Valenza, F.; Giuranno, D.; Elsener, H. R.; Jin, S.; Novakovic, R.

    2011-07-01

    Au-Ge-based alloys are interesting as novel high-temperature lead-free solders because of their low melting point, good thermal and electrical conductivity, and high corrosion resistance. In the present work, the wetting and soldering behavior of the eutectic Au-28Ge (at.%) alloy on Cu and Ni substrates have been investigated. Good wetting on both substrates with final contact angles of 13° to 14° was observed. In addition, solder joints with bond shear strength of 30 MPa to 35 MPa could be produced under controlled conditions. Cu substrates exhibit pronounced dissolution into the Au-Ge filler metal. On Ni substrates, the NiGe intermetallic compound was formed at the filler/substrate interface, which prevents dissolution of Ni into the solder. Using thin filler metal foils (25 ?m), complete consumption of Ge in the reaction at the Ni interface was observed, leading to the formation of an almost pure Au layer in the soldering zone.

  14. Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy

    SciTech Connect

    Bei, H. [Department of Materials Science and Engineering, University of Tennessee, 434 Dougherty Hall, Knoxville, TN 37996-2200 (United States) and Oak Ridge National Laboratory, Metals and Ceramics Division, 1 Bethel Valley Road, Oak Ridge, TN 37831-6093 (United States)]. E-mail: Hbei1@utk.edu; George, E.P. [Department of Materials Science and Engineering, University of Tennessee, 434 Dougherty Hall, Knoxville, TN 37996-2200 (United States) and Oak Ridge National Laboratory, Metals and Ceramics Division, 1 Bethel Valley Road, Oak Ridge, TN 37831-6093 (United States)]. E-mail: georgeep@ornl.gov

    2005-01-03

    A NiAl-Mo ternary eutectic alloy, having the nominal composition Ni-45.5Al-9Mo (at.%), was directionally solidified in a high-temperature optical floating zone furnace. Well-aligned rod-like microstructures were obtained, consisting of NiAl matrix and 14% (by volume) continuous Mo fibers having a square cross-section. With increasing growth rate (from 20 to 80 mm/h), the spacing and size of the Mo fibers decreased, from {approx}2 to 1 {mu}m (fiber spacing) and 800 to 400 nm (fiber size). X-ray microprobe analyses revealed that the NiAl matrix contained essentially no Mo (<0.1 at.%) and had the composition Ni-45.2Al (at.%), while the composition of the Mo fibers was Mo-10.1Al-3.9Ni (at.%). From electron backscatter diffraction patterns, the following orientation relationships were obtained: <1 0 0>{sub NiAl}//<1 0 0>{sub Mo}, and (0 1 1){sub NiAl}//(0 1 1){sub Mo}. The growth directions and Mo/NiAl interface boundaries were found to be parallel to <1 0 0> and (0 1 1), respectively, in both Mo and NiAl. Nanoindentation was used to probe the mechanical properties of the individual phases in the eutectic microstructure and the modulus and hardness of the NiAl matrix were determined to be 180 and 2.9 GPa, respectively, and those of the Mo fibers 270 and 4.8 GPa. Tensile tests were used to investigate the temperature dependence of the strength and ductility of the composite. Its ductile-to-brittle transition temperature was found to be {approx}675 deg C, and its yield strength about 25-30% higher than that of <1 0 0> NiAl single crystals over the temperature range 600-1000 deg C.

  15. Iodized Salt Sales in the United States

    PubMed Central

    Maalouf, Joyce; Barron, Jessica; Gunn, Janelle P.; Yuan, Keming; Perrine, Cria G.; Cogswell, Mary E.

    2015-01-01

    Iodized salt has been an important source of dietary iodine, a trace element important for regulating human growth, development, and metabolic functions. This analysis identified iodized table salt sales as a percentage of retail salt sales using Nielsen ScanTrack. We identified 1117 salt products, including 701 salt blends and 416 other salt products, 57 of which were iodized. When weighted by sales volume in ounces or per item, 53% contained iodized salt. These findings may provide a baseline for future monitoring of sales of iodized salt. PMID:25763528

  16. What You Always Wanted to Know About Salt

    NSDL National Science Digital Library

    The What You Always Wanted to Know About Salt Web site is maintained by the nonprofit organization the Salt Institute. Information on nearly every aspect of salt can be found here, including salt facts, properties of sodium chloride, salt deposits in the US, the various uses of salt, salt in the winter, the history of salt, and much more.

  17. Recent advances in the molten salt destruction of energetic materials

    SciTech Connect

    Pruneda, C. O., LLNL

    1996-09-01

    We have demonstrated the use of the Molten Salt Destruction (MSD) Process for destroying explosives, liquid gun propellant, and explosives-contaminated materials on a 1.5 kg of explosive/hr bench- scale unit (1, 2, 3, 4, 5). In our recently constructed 5 kg/hr pilot- scale unit we have also demonstrated the destruction of a liquid gun propellant and simulated wastes containing HMX (octogen). MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen, and water. Any inorganic constituents of the waste, such as metallic particles, are retained in the molten salt. The destruction of energetic materials waste is accomplished by introducing it, together with air, into a vessel containing molten salt (a eutectic mixture of sodium, potassium, and lithium carbonates). The following pure explosives have been destroyed in our bench-scale experimental unit located at Lawrence Livermore National Laboratory`s (LLNL) High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K- 6 (keto-RDX), NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following compositions were also destroyed: Comp B, LX- IO, LX- 1 6, LX- 17, PBX-9404, and XM46 (liquid gun propellant). In this 1.5 kg/hr bench-scale unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NO{sub x} were found to be well below 1%. In addition to destroying explosive powders and compositions we have also destroyed materials that are typical of residues which result from explosives operations. These include shavings from machined pressed parts of plastic-bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the process data obtained on the bench-scale unit we designed and constructed a next-generation 5 kg/hr pilot-scale unit, incorporating LLNL`s advanced chimney design. The pilot unit has completed process implementation operations and explosives safety reviews. To date, in this pilot unit we have successfully destroyed liquid gun propellant and dimethylsulfoxide containing HMX in continuous, long-duration runs.

  18. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 63.5 x 123.3 km (38.1 x 74 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 28, 2000

  19. The ionothermal synthesis of metal organic frameworks, Ln(C 9O 6H 3)((CH 3NH) 2CO) 2, using deep eutectic solvents

    Microsoft Academic Search

    Farida Himeur; Irene Stein; David S. Wragg; Alexandra M. Z. Slawin; Philip Lightfoot; Russell E. Morris

    2010-01-01

    Three new isostructural materials Ln(TMA)(DMU)2 (Ln(C9O6H3)((CH3NH)2CO)2; Ln: La 1, Nd 2, Eu 3; TMA: trimesate, DMU: dimethylurea) have been synthesised ionothermally using a choline chloride\\/dimethylurea deep eutectic mixture as the solvent. Normally in ionothermal synthesis the urea portion of the deep eutectic solvent is unstable, breaking down to release ammonium cations that act as templates. In the case of 1–3,

  20. Characterization and comparison of lidocaine-tetracaine and lidocaine-camphor eutectic mixtures based on their crystallization and hydrogen-bonding abilities.

    PubMed

    Gala, Urvi; Chuong, Monica C; Varanasi, Ravi; Chauhan, Harsh

    2015-06-01

    Eutectic mixtures formed between active pharmaceutical ingredients and/or excipients provide vast scope for pharmaceutical applications. This study aimed at the exploration of the crystallization abilities of two eutectic mixtures (EM) i.e., lidocaine-tetracaine and lidocaine-camphor (1:1 w/w). Thermogravimetric analysis (TGA) for degradation behavior whereas modulated temperature differential scanning calorimetry (MTDSC) set in first heating, cooling, and second heating cycles, was used to qualitatively analyze the complex exothermic and endothermic thermal transitions. Raman microspectroscopy characterized vibrational information specific to chemical bonds. Prepared EMs were left at room temperature for 24 h to visually examine their crystallization potentials. The degradation of lidocaine, tetracaine, camphor, lidocaine-tetracaine EM, and lidocaine-camphor EM began at 196.56, 163.82, 76.86, 146.01, and 42.72°C, respectively, which indicated that eutectic mixtures are less thermostable compared to their individual components. The MTDSC showed crystallization peaks for lidocaine, tetracaine, and camphor at 31.86, 29.36, and 174.02°C, respectively (n?=?3). When studying the eutectic mixture, no crystallization peak was observed in the lidocaine-tetracaine EM, but a lidocaine-camphor EM crystallization peak was present at 18.81°C. Crystallization occurred in lidocaine-camphor EM after being kept at room temperature for 24 h, but not in lidocaine-tetracaine EM. Certain peak shifts were observed in Raman spectra which indicated possible interactions of eutectic mixture components, when a eutectic mixture was formed. We found that if the components forming a eutectic mixture have crystallization peaks close to each other and have sufficient hydrogen-bonding capability, then their eutectic mixture is least likely to crystallize out (as seen in lidocaine-tetracaine EM) or vice versa (lidocaine-camphor EM). PMID:25370024

  1. Processing and mechanical properties of in-situ composites from the NiAl?Cr and the NiAl?(Cr,Mo) eutectic systems

    Microsoft Academic Search

    R. D. Noebe; J. D. Whittenberger

    1995-01-01

    In-situ composites based on the NiAl?Cr eutectic system have been successfully produced by containerless processing and evaluated. Molybdenum additions of 0.6 to 6 at.% were used to change the eutectic microstructure. The NiAl?Cr alloys had a fibrous microstructure, while the NiAl?(Cr,Mo) alloys containing 1 at.% or more of molybdenum exhibited a lamellar structure. The room temperature fracture toughness of the

  2. Experimental determination of thermal conductivity of solid and liquid phases in Bi?Sn and Zn?Mg binary eutectic alloys

    Microsoft Academic Search

    Mustafa Erol; Kazm Ke?lio?lu; Recep ?ahingöz; Necmettin Mara?l

    2005-01-01

    The thermal conductivities of solid phases, Ks, for Bi-43 wt.% Sn and Zn-0.15 wt.%Mg binary alloys at their eutectic temperature are found to be 28.0 ? 1.4 and 137.4–6.9\\u000a W\\/Km, respectively, with a radial heat flow apparatus. The thermal conductivity ratios, R, of liquid phase to solid phase\\u000a for the same alloys at their eutectic temperature are found to be

  3. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    PubMed

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-01

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ?29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants. PMID:24675904

  4. Does salt increase thirst?

    PubMed

    Leshem, Micah

    2015-02-01

    Our diet is believed to be overly rich in sodium, and it is commonly believed that sodium intake increases drinking. Hence the concern of a possible contribution of dietary sodium to beverage intake which in turn may contribute to obesity and ill health. Here we examine whether voluntary, acute intake of a sodium load, as occurs in routine eating and snacking, increases thirst and drinking. We find that after ingesting 3.5 or 4.4?g NaCl (men) and 1.9 or 3.7?g (women) on nuts during 15 minutes, there is no increase in thirst or drinking of freely available water in the following 2?h compared with eating similar amounts of sugared or unflavored nuts. This suggests that routine ingestion of boluses of salt (~30-40% of daily intake for men,?~?20-40% for women) does not increase drinking. Methodological concerns such as about nuts as vehicle for sodium suggest further research to establish the generalizability of this unexpected result. PMID:25447020

  5. On the Impurity Parameters for Impurities Detected in the Eutectics Co-C and Pt-C and Their Role in the Estimate of the Uncertainty in the Eutectic Temperatures

    NASA Astrophysics Data System (ADS)

    Bloembergen, Pieter; Dong, Wei; Bai, Cheng-Yu; Wang, Tie-Jun

    2011-12-01

    In this paper, impurity parameters m i and k i have been calculated for a range of impurities I as detected in the eutectics Co-C and Pt-C, by means of the software package Thermo-Calc within the ternary phase spaces Co-C- I and Pt-C- I. The choice of the impurities is based upon a selection out of the results of impurity analyses performed for a representative set of samples for each of the eutectics in study. The analyses in question are glow discharge mass spectrometry (GDMS) or inductively coupled plasma mass spectrometry (ICP-mass). Tables and plots of the impurity parameters against the atomic number Z i of the impurities will be presented, as well as plots demonstrating the validity of van't Hoff's law, the cornerstone to this study, for both eutectics. For the eutectics in question, the uncertainty u( T E - T liq ) in the correction T E - T liq will be derived, where T E and T liq refer to the transition temperature of the pure system and to the liquidus temperature in the limit of zero growth rate of the solid phase during solidification of the actual system, respectively. Uncertainty estimates based upon the current scheme SIE-OME, combining the sum of individual estimates (SIE) and the overall maximum estimate (OME) are compared with two alternative schemes proposed in this paper, designated as IE-IRE, combining individual estimates (IE) and individual random estimates (IRE), and the hybrid scheme SIE-IE-IRE, combining SIE, IE, and IRE.

  6. Energetic salts from nitroformate ion.

    PubMed

    Jadhav, Pandurang M; Radhakrishnan, S; Ghule, Vikas D; Pandey, Raj K

    2015-05-01

    Development of new energetic salts is the key factor in replacing low performance compounds in conventional formulations of high explosives as well as propellants. Ten salts based on the nitroformate anion and various nitrogen-rich cations were designed and their geometric optimizations carried out using the density functional method. With reasonable oxygen balance (from -36% to 0%), heats of formation (47-624 kJ mol(-1)) and high densities (1.81-1.89 g cm(-3)), the detonation velocity (D) and pressure (P) values of salts were calculated as 8.62-9.36 km s(-1) and 33.10-40.01 GPa, respectively. Lastly, the nitroformate salts studied in this work are of prospective interest as high performance explosives. PMID:25935336

  7. Thermodynamic description and unidirectional solidification of eutectic organic alloys: III. Binary systems neopentylglycol-(D)camphor and amino-methyl-propanediol-(D)camphor

    SciTech Connect

    Witusiewicz, V.T. [ACCESS e.V., Intzestrasse 5, D-52072 Aachen (Germany)]. E-mail: victor@access.rwth-aachen.de; Sturz, L. [ACCESS e.V., Intzestrasse 5, D-52072 Aachen (Germany); Hecht, U. [ACCESS e.V., Intzestrasse 5, D-52072 Aachen (Germany); Rex, S. [ACCESS e.V., Intzestrasse 5, D-52072 Aachen (Germany)

    2004-11-08

    The temperature and enthalpy of transformation of organic alloys from the binary systems neopentylglycol-(D)camphor (NPG-DC) and 2-amino-2-methyl-1,3-propanediol-(D)camphor (AMPD-DC) were measured by means of differential scanning calorimetry (DSC). The phase diagrams of these binary systems were assessed via the CALPHAD approach using Thermo-Calc by simultaneously optimizing the thermodynamic and phase equilibrium data measured in the present work. Proper agreements between the experimental and calculated data for the phase diagrams as well as for the thermochemical properties were achieved. Experiments and calculations show that both the NPG-DC and the AMPD-DC system exhibit a nonvariant eutectic reaction with the eutectic point at 36.2 mol% DC and 326.0 K and at 9.3 mol% DC and 362.0 K, respectively. In each system the temperature of the eutectic reaction is higher than the temperature of the transformation from the ordered crystals to the orientationally disordered (plastic) crystals. Unidirectional solidification experiments were performed with several alloys in order to verify the nature of eutectic growth: We find that in both systems eutectic growth occurs with both solid phases being non-facetted and with a lamellar or rod-like eutectic structure. Due to the optical activity of DC its distribution in the solid samples is well detectible in polarised light.

  8. Microstructural and crystallographic relationships in directionally solidified Nb-Cr[sub 2]Nb and Cr-Cr[sub 2]Nb eutectics

    SciTech Connect

    Bewlay, B.P.; Sutliff, J.A.; Jackson, M.R. (General Electric Co., Schenectady, NY (United States). Corporate Research and Development Center); Lipsitt, H.A. (Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering)

    1994-08-01

    The present paper describes processing, microstructures and phase relationships in directionally solidified Cr[sub 2]Nb-Nb and Cr[sub 2]Nb-C eutectics. Both of these eutectics, and the stoichiometric Laves phase Cr[sub 2]Nb, were directionally solidified using cold crucible Czochralski crystal growth with growth rates from 1 to 15 mm/min. Cr[sub 2]Nb-Nb had a rod/ribbon-type structure and Cr[sub 2]Nb-Cr had a lamellar structure. The crystallographic orientation relationships between both Cr and Nb and the Cr[sub 2]Nb Laves phase in the individual eutectics were characterized using transmission electron microscopy. Inter-phase orientation relationships in these eutectics were complicated by the transformation of Cr[sub 2]Nb from the C14 to the C15 crystal structure on post-solidification cooling. Twins were observed in the C15 Cr[sub 2]Nb phase in both the single phase and eutectic samples. The relationship between the twins, the C14-C15 transformation, and the eutectic morphology is also discussed.

  9. Eutectic morphology evolution and Sr-modification in Al-Si based alloys studied by 3D phase-field simulation coupled to Calphad data

    NASA Astrophysics Data System (ADS)

    Eiken, J.; Apel, M.

    2015-06-01

    The mechanical properties of Al-Si cast alloys are mainly controlled by the morphology of the eutectic silicon. Phase-field simulations were carried out to study the evolution of the multidimensional branched eutectic structures in 3D. Coupling to a Calphad database provided thermodynamic data for the multicomponent multiphase Al-Si-Sr-P system. A major challenge was to model the effect of the trace element Sr. Minor amounts of Sr are known to modify the silicon morphology from coarse flakes to fine coral-like fibers. However, the underlying mechanisms are still not fully understood. Two different in literature most discussed mechanisms were modelled: a) an effect of Sr on the growth kinetics of eutectic silicon and b) the formation of Al2Si2Sr on AlP particles, which consumes most potent nucleation sites and forces eutectic silicon to form with lower frequency and higher undercooling. The phase-field simulations only revealed a successful modification of the eutectic morphology when both effects acted in combination. Only in this case a clear depression of the eutectic temperature was observed. The required phase formation sequence L ? fcc-(Al) ? AlP ? Al2Si2Sr ? (Si) determines critical values for the Sr and P content.

  10. Influence of physicochemical properties on the in vitro skin permeation of the enantiomers, racemate, and eutectics of ibuprofen for enhanced transdermal drug delivery.

    PubMed

    Yuan, Xudong; Capomacchia, Anthony C

    2013-06-01

    Physicochemical properties of chiral ibuprofen are significant to formulation scientists because its enantiomers and eutectics possess lower melting points than its racemate. The influence of these properties on transdermal formulation development, especially the relative effect of lowered melting point, on skin permeation must be carefully assessed to provide the most efficacious formulation. Thermodynamic properties and crystalline structures of the enantiomers, eutectics, and racemate of chiral ibuprofen were investigated by differential scanning calorimetry and X-ray powder diffraction. The effect of melting point lowering on membrane permeation rates was mathematically modeled. Model was validated by in vitro skin permeation experiments using different preparations of racemic ibuprofen, enantiomer, and eutectic. Both enantiomer and eutectic formed a two-phase liquid system containing an emulsifiable aqueous phase and an oily phase in the presence of aqueous isopropyl alcohol (aIPA). The eutectic emulsion had the highest permeation rate, a 2.21-fold increase in flux compared with saturated aIPA solutions of the racemate with a 2.03-fold increase in flux. Results from the two-phase liquid system supported those from the mathematical models, albeit somewhat lower, and confirmed their use in predicting maximum flux utilizing thermodynamic data. Study data also supported the idea that eutectic formation, for ibuprofen and probably other chiral drugs, may be one of the best ways to develop topical formulations for improved percutaneous absorption to avoid the use of permeation enhancers or synthetically modifying chemical structure. PMID:23589422

  11. BYU Salt Lake Center Financial Aid Program

    E-print Network

    Hart, Gus

    BYU Salt Lake Center Financial Aid Program 2012 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  12. BYU Salt Lake Center Financial Aid Program

    E-print Network

    Martinez, Tony R.

    BYU Salt Lake Center Financial Aid Program 2011 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  13. BYU Salt Lake Center Financial Aid Program

    E-print Network

    Hart, Gus

    BYU Salt Lake Center Financial Aid Program 2014 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  14. BYU Salt Lake Center Financial Aid Program

    E-print Network

    Olsen Jr., Dan R.

    BYU Salt Lake Center Financial Aid Program 2013 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  15. Microbial biodiversity of Great Salt Lake, Utah

    Microsoft Academic Search

    Bart C. Weimer; Giovanni Rompato; Jacob Parnell; Reed Gann; Balasubramanian Ganesan; Cristian Navas; Martin Gonzalez; Mario Clavel; Steven Albee-Scott

    2009-01-01

    Microbial biodiversity is difficult to measure in extreme environments due to the inability to culture many of the species, especially from hypersaline environments. Great Salt Lake (GSL), Utah, USA offers a unique ecology to study microbial diversity across a salt gradient. GSL has increasing salt from South to North that varies from marine salt concentrations to saturation, respectively. We used

  16. GRAVITY MEASUREMENTS ON THE PAARUP SALT DOME

    Microsoft Academic Search

    IVAR B. RAMBERG; GUSTAF LIND

    The Danish Salt Dome Province, a part of the North Sea Salt Dome Area, occurs in' the deepest part of the Danish Embayment. Permian rock salt has risen almost to the present day surface at many places. Tne southernmost known dome is the Paarup Salt Dome, which constitutes the north-western part of an elongate gravity low on the south-western flank

  17. Moving salt sills and hydrocarbon maturity

    Microsoft Academic Search

    K. Carter; I. Lerche

    1992-01-01

    Salt sills have been observed in the Gulf Coast. The contrast in the thermal conductivity between salt and detrital sediments means that a salt sill focuses heat around its leading edge, resulting in the devlopment of an anomalous temperature pattern in the vicinity of the salt sill. The consequent anomaly in thermal maturity pattern for hydrocarbons is related to four

  18. SALT: South African Large Telescope

    NSDL National Science Digital Library

    South African Astronomical Observatory

    The South African Astronomical Observatory, near Sutherland in Northern Cape, has developed an extensive internet site devoted to SALT; a $30-million project to develop the largest telescope in the southern hemisphere. Visitors with a general interest in the project can follow its progress, scheduled for completion in December of 2004. Astronomers and students will find descriptions of SALT's optical and near-infrared telescopic capabilities. All can enjoy the latest images of the skies above Sutherland gathered by the telescope.

  19. Recycling of aluminum salt cake

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Karvelas, D.E.

    1991-12-01

    The secondary aluminum industry generates more than 110 {times} 10{sup 3} tons of salt-cake waste every year. This waste stream contains about 3--5% aluminum, 15--30% aluminum oxide, 30--40% sodium chloride, and 20--30% potassium chloride. As much as 50% of the content of this waste is combined salt (sodium and potassium chlorides). Salt-cake waste is currently disposed of in conventional landfills. In addition, over 50 {times} 10{sup 3} tons of black dross that is not economical to reprocess a rotary furnace for aluminum recovery ends up in landfills. The composition of the dross is similar to that of salt cake, except that it contains higher concentrations of aluminum (up to 20%) and correspondingly lower amounts of salts. Because of the high solubility of the salts in water, these residues, when put in landfills, represent a potential source of pollution to surface-water and groundwater supplies. The increasing number of environmental regulations on the generation and disposal of industrial wastes are likely to restrict the disposal of these salt-containing wastes in conventional landfills. Processes exist that employ the dissolution and recovery of the salts from the waste stream. These wet-processing methods are economical only when the aluminum concentration in that waste exceeds about 10%. Argonne National Laboratory (ANL) conducted a study in which existing technologies were reviewed and new concepts that are potentially more cost-effective than existing processes were developed and evaluated. These include freeze crystallization, solvent/antisolvent extraction, common-ion effect, high-pressure/high-temperature process, and capillary-effect systems. This paper presents some of the technical and economic results of the aforementioned ANL study.

  20. Sub 200 °C fluxless indium-tin (In-Sn) eutectic bonding for monolithic 3D-IC

    NASA Astrophysics Data System (ADS)

    Yoo, Gwangwe; Park, Jin-Hong

    2014-10-01

    In this work, a low-temperature eutectic bonding process based on the formation of an indium (In)-tin (Sn) alloy is studied at temperatures below 200 °C. The formation of the In-Sn alloy is investigated through a secondary ion mass spectroscopy (SIMS) depth profiling analysis, and the quality of the bonding region is evaluated by using cross-sectional scanning electron microscope(SEM) and shearing force measurements. At 170 °C, which is above the melting temperature of In (156 °C), a large amount of In-Sn alloy is formed without the assistance of any flux owing to the expanded eutectic composite range and the improved quality of the In-Sn contact, resulting in a higher bonding strength (205 N). The obtained results show the feasibility of using a low-temperature fluxless bonding process for the fabrication of upper-level devices in monolithic three-dimensional integrated circuits (3D-ICs).