Science.gov

Sample records for ligand-induced tyrosine phosphorylation

  1. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91).

    PubMed Central

    Greenlund, A C; Farrar, M A; Viviano, B L; Schreiber, R D

    1994-01-01

    Herein we report that interferon-gamma (IFN gamma) induces the rapid and reversible tyrosine phosphorylation of the IFN gamma receptor. Using a panel of receptor intracellular domain mutants, we show that a membrane-proximal LPKS sequence (residues 266-269) is required for ligand-induced tyrosine kinase activation and/or kinase-receptor association and biological responsiveness, and a functionally critical membrane-distal tyrosine residue (Y440) is a target of the activated enzyme. The biological significance of Y440 phosphorylation was demonstrated by showing that a receptor-derived nonapeptide corresponding to receptor residues 436-444 and containing phosphorylated Y440 bound specifically to p91, blocked p91 phosphorylation and inhibited the generation of an active p91-containing transcription factor complex. In contrast, nonphosphorylated wild-type, phosphorylated mutant, or phosphorylated irrelevant peptides did not. Moreover, the phosphorylated Y440-containing peptide did not interact with a related but distinct latent transcription factor (p113) which is activatible by IFN alpha but not IFN gamma. These results thus document the specific and inducible association of p91 with the phosphorylated IFN gamma receptor and thereby elucidate the mechanism by which ligand couples the IFN gamma receptor to its signal transduction system. Images PMID:8156998

  2. Soluble CD40 ligand induces β3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling

    PubMed Central

    Prasad, K. S. Srinivasa; Andre, Patrick; He, Ming; Bao, Ming; Manganello, Jeanne; Phillips, David R.

    2003-01-01

    We earlier reported that the soluble form of the CD40 ligand (sCD40L), is involved in thrombosis by stabilizing platelet thrombi. In this article, we have determined the mechanism by which this protein affects platelet biology. Addition of sCD40L to washed platelets was found to activate the receptor function of αIIbβ3 as measured by the induction of fibrinogen binding and the formation of platelet microparticles. Mutation in the KGD sequence (D117E) of sCD40L, the αIIbβ3-binding domain in the N terminus of the protein resulted in a loss of the platelet-stimulatory activity of this protein. Integrilin, a αIIbβ3 antagonist, but not an antibody to CD40 that blocked the ligand-binding activity, inhibited these platelet-stimulatory events. CD40-/- platelets bound fibrinogen and formed microparticles similar to WT platelets, again indicating that CD40 is not involved in sCD40L-induced platelet activation. Exposure of platelets to sCD40L, but not D117E-sCD40L-coated surfaces, induced platelet thrombi formation under arterial shear rate. sCD40L-induced platelet stimulation resulted in the phosphorylation of tyrosine-759 in the cytoplasmic domain of β3. Platelets from the diYF mouse strain, expressing β3 in which both cytoplasmic tyrosines are mutated to phenylalanine, were defective in sCD40L-induced platelet stimulation. These data indicate that sCD40L is a primary platelet agonist and that platelet stimulation is induced by the binding of the KGD domain of sCD40L to αIIbβ3, triggering outside-in signaling by tyrosine phosphorylation of β3. PMID:14519852

  3. Cisplatin stimulates protein tyrosine phosphorylation in macrophages.

    PubMed

    Kumar, R; Shrivastava, A; Sodhi, A

    1995-03-01

    Cisplatin [cis-dichlorodiamine platinum (II)], a potent anti-tumor compound, stimulates immune responses by activating monocyte-macrophages and other cells of the immune system. The mechanism by which cisplatin activates these cells is poorly characterized. Since protein tyrosine phosphorylation appears to be a major intracellular signalling event that mediates cellular responses, we examined whether cisplatin alters tyrosine phosphorylation in macrophages. We found that cisplatin increased tyrosine phosphorylation of several proteins in peritoneal macrophages and in P388D1 and IC-21 macrophage cell lines. Treatment of macrophages with tyrosine kinase inhibitors, genestein and lavendustin A, inhibited cisplatin-stimulated protein tyrosine phosphorylation in macrophages. Macrophages treated with cisplatin also exhibit increased fluorescence with anti-phosphotyrosine-FITC antibody. These data indicate that protein tyrosine phosphorylation plays a role in cisplatin-induced activation of macrophages. PMID:7539662

  4. Histone tyrosine phosphorylation comes of age

    PubMed Central

    Singh, Rakesh Kumar

    2011-01-01

    Histones were discovered over a century ago and have since been found to be the most extensively post-translationally modified proteins, although tyrosine phosphorylation of histones had remained elusive until recently. The year 2009 proved to be a landmark year for histone tyrosine (Y) phosphorylation as five research groups independently discovered this modification. Three groups describe phosphorylation of Y142 in the variant histone H2A.X, where it may be involved in the cellular decision making process to either undergo DNA repair or apoptosis in response to DNA damage. Further, one group suggests that phosphorylation of histone H3 on Y99 is crucial for its regulated proteolysis in yeast, while another found that Y41 phosphorylation modulates chromatin architecture and oncogenesis in mammalian cells. These pioneering studies provide the initial conceptual framework for further analyses of the diverse roles of tyrosine phosphorylation on different histones, with far reaching implications for human health and disease. PMID:20935492

  5. Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit.

    PubMed

    Kamiyoshihara, Yusuke; Tieman, Denise M; Huber, Donald J; Klee, Harry J

    2012-09-01

    Perception of the plant hormone ethylene is essential to initiate and advance ripening of climacteric fruits. Since ethylene receptors negatively regulate signaling, the suppression is canceled upon ethylene binding, permitting responses including fruit ripening. Although receptors have autophosphorylation activity, the mechanism whereby signal transduction occurs has not been fully determined. Here we demonstrate that LeETR4, a critical receptor for tomato (Solanum lycopersicum) fruit ripening, is multiply phosphorylated in vivo and the phosphorylation level is dependent on ripening stage and ethylene action. Treatment of preclimacteric fruits with ethylene resulted in accumulation of LeETR4 with reduced phosphorylation whereas treatments of ripening fruits with ethylene antagonists, 1-methylcyclopropene and 2,5-norbornadiene, induced accumulation of the phosphorylated isotypes. A similar phosphorylation pattern was also observed for Never ripe, another ripening-related receptor. Alteration in the phosphorylation state of receptors is likely to be an initial response upon ethylene binding since treatments with ethylene and 1-methylcyclopropene rapidly influenced the LeETR4 phosphorylation state rather than protein abundance. The LeETR4 phosphorylation state closely paralleled ripening progress, suggesting that the phosphorylation state of receptors is implicated in ethylene signal output in tomato fruits. We provide insights into the nature of receptor on and off states. PMID:22797658

  6. Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa

    SciTech Connect

    Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. )

    1990-09-01

    Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

  7. Cysteine mutations cause defective tyrosine phosphorylation in MEGF10 myopathy

    PubMed Central

    Mitsuhashi, Satomi; Mitsuhashi, Hiroaki; Alexander, Matthew S; Sugimoto, Hiroyuki; Kang, Peter B

    2013-01-01

    Recessive mutations in MEGF10 are known to cause a congenital myopathy in humans. Two mutations in the extracellular EGF-like domains of MEGF10, C326R and C774R, were associated with decreased tyrosine phosphorylation of MEGF10 in vitro. Y1030 was identified to be the major tyrosine phosphorylation site in MEGF10 and is phosphorylated at least in part by c-Src. Overexpression of wild-type MEGF10 enhanced C2C12 myoblast proliferation, while overexpression of Y1030F mutated MEGF10 did not. We conclude that MEGF10-mediated signaling via tyrosine phosphorylation helps to regulate myoblast proliferation. Defects in this signaling pathway may contribute to the disease mechanism of MEGF10 myopathy. PMID:23954233

  8. Mycobacterium tuberculosis supports protein tyrosine phosphorylation

    PubMed Central

    Kusebauch, Ulrike; Ortega, Corrie; Ollodart, Anja; Rogers, Richard S.; Sherman, David R.; Moritz, Robert L.; Grundner, Christoph

    2014-01-01

    Reversible protein phosphorylation determines growth and adaptive decisions in Mycobacterium tuberculosis (Mtb). At least 11 two-component systems and 11 Ser/Thr protein kinases (STPKs) mediate phosphorylation on Asp, His, Ser, and Thr. In contrast, protein phosphorylation on Tyr has not been described previously in Mtb. Here, using a combination of phospho-enrichment and highly sensitive mass spectrometry, we show extensive protein Tyr phosphorylation of diverse Mtb proteins, including STPKs. Several STPKs function as dual-specificity kinases that phosphorylate Tyr in cis and in trans, suggesting that dual-specificity kinases have a major role in bacterial phospho-signaling. Mutation of a phosphotyrosine site of the essential STPK PknB reduces its activity in vitro and in live Mtb, indicating that Tyr phosphorylation has a functional role in bacterial growth. These data identify a previously unrecognized phosphorylation system in a human pathogen that claims ∼1.4 million lives every year. PMID:24927537

  9. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  10. Simultaneous Identification of Tyrosine Phosphorylation and Sulfation Sites Utilizing Tyrosine-Specific Bromination

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Seo; Song, Si-Uk; Kim, Hie-Joon

    2011-11-01

    Tyrosine phosphorylation and sulfation play many key roles in the cell. Isobaric phosphotyrosine and sulfotyrosine residues in peptides were determined by mass spectrometry using phosphatase or sulfatase to remove the phosphate or the sulfate group. Unique Br signature was introduced to the resulting tyrosine residues by incubation with 32% HBr at -20 °C for 20 min. MS/MS analysis of the brominated peptide enabled unambiguous determination of the phosphotyrosine and the sulfotyrosine sites. When phosphotyrosine and sulfotyrosine as well as free tyrosine were present in the same peptide, they could be determined simultaneously using either phosphatase or sulfatase following acetylation of the free tyrosine.

  11. A Crystallographic Snapshot of Tyrosine Trans-phosphorylation in Action

    SciTech Connect

    Chen, H.; Xu, C; Ma, J; Eliseenkova, A; Li, W; Pollock, P; Pitteloud, N; Miller, W; Neubert, T; Mohammadi, M

    2008-01-01

    Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 {angstrom} away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.

  12. Integrin Ligation Results in Nephrin Tyrosine Phosphorylation In Vitro

    PubMed Central

    Verma, Rakesh; Venkatareddy, Madhusudan; Kalinowski, Anne; Patel, Sanjeevkumar R.; Garg, Puneet

    2016-01-01

    Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin β1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand. PMID:26848974

  13. Inhibition of Bcr serine kinase by tyrosine phosphorylation.

    PubMed Central

    Liu, J; Wu, Y; Ma, G Z; Lu, D; Haataja, L; Heisterkamp, N; Groffen, J; Arlinghaus, R B

    1996-01-01

    The first exon of the BCR gene encodes a new serine/threonine protein kinase. Abnormal fusion of the BCR and ABL genes, resulting from the formation of the Philadelphia chromosome (Ph), is the hallmark of Ph-positive leukemia. We have previously demonstrated that the Bcr protein is tyrosine phosphorylated within first-exon sequences by the Bcr-Abl oncoprotein. Here we report that in addition to tyrose 177 (Y-177), Y-360 and Y283 are phosphorylated in Bcr-Abl proteins in vitro. Moreover, Bcr tyrosine 360 is phosphorylated in vivo within both Bcr-Abl and Bcr. Bcr mutant Y177F had a greatly reduced ability to transphosphorylate casein and histone H1, whereas Bcr mutants Y177F and Y283F had wild-type activities. In contrast, the Y360F mutation had little effect on Bcr's autophosphorylation activity. Tyrosine-phosphorylated Bcr, phosphorylated in vitro by Bcr-Abl, was greatly inhibited in its serine/threonine kinase activity, impairing both auto- and transkinase activities of Bcr. Similarly, the isolation of Bcr from cells expressing Bcr-Abl under conditions that preserve phosphotyrosine residues also reduced Bcr's kinase activity. These results indicate that tyrosine 360 of Bcr is critical for the transphosphorylation activity of Bcr and that in Ph-positive leukemia, Bcr serine/threonine kinase activity is seriously impaired. PMID:8622703

  14. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress.

    PubMed

    Ihara, Yoshito; Yasuoka, Chie; Kageyama, Kan; Wada, Yoshinao; Kondo, Takahito

    2002-09-20

    In mouse pancreatic insulin-producing betaTC cells, oxidative stress due to H(2)O(2) causes tyrosine phosphorylation in various proteins. To identify proteins bearing phosphotyrosine under stress, the proteins were affinity purified using an anti-phosphotyrosine antibody-conjugated agarose column. A protein of 180kDa was identified as clathrin heavy chain (CHC) by electrophoresis and mass spectrometry. Immunoprecipitated CHC showed tyrosine phosphorylation upon H(2)O(2) treatment and the phosphorylation was suppressed by the Src kinase inhibitor, PP2. The phosphorylation status of CHC affected the intracellular localization of CHC and the clathrin-dependent endocytosis of transferrin under oxidative stress. In conclusion, CHC is a protein that is phosphorylated at tyrosine by H(2)O(2) and this phosphorylation status is implicated in the intracellular localization and functions of CHC under oxidative stress. The present study demonstrates that oxidative stress affects intracellular vesicular trafficking via the alteration of clathrin-dependent vesicular trafficking. PMID:12237126

  15. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding

    PubMed Central

    Ting, Pamela Y.; Johnson, Christian W.; Fang, Cong; Cao, Xiaoqing; Graeber, Thomas G.; Mattos, Carla; Colicelli, John

    2015-01-01

    RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr137. Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr137 phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr137 is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRASY137F and HRASY137E revealed conformation changes radiating from the mutated residue. Although consistent with Tyr137 participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr137 phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRASG12V with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr137 allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.—Ting, P. Y., Johnson, C. W., Fang, C., Cao, X., Graeber, T. G., Mattos, C., Colicelli, J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. PMID:25999467

  16. Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases

    SciTech Connect

    Kanner, S.B.; Reynolds, A.B.; Vines, R.R.; Parsons, J.T. )

    1990-05-01

    Cellular transformation by oncogenic retroviruses encoding protein tyrosine kinases coincides with the tyrosine-specific phosphorylation of multiple protein substrates. Previous studies have shown that tyrosine phosphorylation of a protein of 120 kDa, p120, correlated with src transformation in chicken embryo fibroblasts. Additionally, the authors previously identified two phosphotyrosine-containing cellular proteins, p130 and p110, that formed stable complexes with activated variants of pp60{sup src}, the src-encoded tyrosine kinase. To study transformation-relevant tyrosine kinase substrates, they have generated monoclonal antibodies to individual tyrosine phosphoproteins, including p130, p120, p110, and five additional phosphoproteins (p210, p125, p118, p85, and p185/p64). These antibodies detected several of the same tyrosine phosphoproteins in chicken embryo fibroblasts transformed by avian retroviruses Y73 and CT10, encoding the yes and crk oncogenes, respectively. Protein substrates in mouse, rat, hamster, and human cells overexpressing activated variants of chicken pp60{sup src} were also detected by several of the monoclonal antibodies.

  17. CRSBP-1/LYVE-1 ligands disrupt lymphatic intercellular adhesion by inducing tyrosine phosphorylation and internalization of VE-cadherin

    PubMed Central

    Hou, Wei-Hsien; Liu, I-Hua; Tsai, Cheng C.; Johnson, Frank E.; Huang, Shuan Shian; Huang, Jung San

    2011-01-01

    Cell-surface retention sequence (CRS) binding protein (CRSBP-1) is a membrane glycoprotein identified by its ability to bind PDGF-BB and VEGF-A via their CRS motifs (clusters of basic amino acid residues). CRSBP-1 is identical to LYVE-1 and exhibits dual ligand (CRS-containing proteins and hyaluronic acid) binding activity, suggesting the importance of CRSBP-1 ligands in lymphatic function. Here, we show that CRSBP-1 ligands induce disruption of VE-cadherin-mediated intercellular adhesion and opening of intercellular junctions in lymphatic endothelial cell (LEC) monolayers as determined by immunofluorescence microscopy and Transwell permeability assay. This occurs by interaction with CRSBP-1 in the CRSBP-1–PDGFβR–β-catenin complex, resulting in tyrosine phosphorylation of the complex, dissociation of β-catenin and p120-catenin from VE-cadherin, and internalization of VE-cadherin. Pretreatment of LECs with a PDGFβR kinase inhibitor abolishes ligand-stimulated tyrosine phosphorylation of VE-cadherin, halts the ligand-induced disruption of VE-cadherin intercellular adhesion and blocks the ligand-induced opening of intercellular junctions. These CRSBP-1 ligands also induce opening of lymphatic intercellular junctions that respond to PDGFβR kinase inhibitor in wild-type mice (but not in Crsbp1-null mice) as evidenced by increased transit of injected FITC–dextran and induced edema fluid from the interstitial space into lymphatic vessels. These results disclose a novel mechanism involved in the opening of lymphatic intercellular junctions. PMID:21444752

  18. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    PubMed

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases. PMID:23716717

  19. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission.

    PubMed

    Jungas, Thomas; Perchey, Renaud T; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud; Davy, Alice

    2016-08-29

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  20. Inverse correlation between tyrosine phosphorylation and collagenase production in chondrocytes.

    PubMed Central

    Cruz, T F; Mills, G; Pritzker, K P; Kandel, R A

    1990-01-01

    Collagenase production by chondrocytes appears to play a major role in the development of osteoarthritis. Although the mechanisms regulating collagenase production by chondrocytes are not known, incubation of bovine chondrocytes in serum markedly decreases collagenase production. Since serum has been demonstrated to increase levels of phosphotyrosine (P-Tyr) in several cell types, we determined the effect of altering intracellular levels of P-Tyr on collagenase production. Both orthovanadate, a potent inhibitor of tyrosine phosphatases, and serum caused a marked increase in tyrosine phosphorylation. The increase in P-Tyr was associated with a decrease in the production of collagenase, suggesting that two processes may be linked. Orthovanadate caused an increase in P-Tyr in the absence of serum, suggesting that P-Tyr levels in resting chondrocytes are regulated through activity of both tyrosine kinases and phosphatases. Orthovanadate and serum induced a synergistic increase in P-Tyr levels, suggesting that serum functions through increasing kinase activity rather than decreasing phosphatase activity. In the absence of serum, concentrations of orthovanadate which maximally inhibited collagenase production primarily increased phosphorylation of a 36 kDa protein, suggesting that the phosphorylation of this protein may play a major role in regulating collagenase production. Orthovanadate had limited effects on chondrocyte proteoglycan synthesis, morphology or viability in the presence or absence of serum, suggesting that the decrease in collagenase production was not due to non-specific inhibition of protein synthesis or cellular toxicity. Inhibition of tyrosine phosphatases by orthovanadate or activation of tyrosine kinases by addition of serum correlated with the inhibition of collagenase production. Images Fig. 1. Fig. 2. PMID:1697163

  1. Protein tyrosine phosphorylation during meiotic divisions of starfish oocytes

    SciTech Connect

    Peaucellier, G.; Andersen, A.C.; Kinsey, W.H. )

    1990-04-01

    We have used an antibody specific for phosphotyrosine to investigate protein phosphorylation on tyrosine during hormone-induced maturation of starfish oocytes. Analysis of immunoprecipitates from cortices of in vivo labeled Marthasterias glacialis oocytes revealed the presence of labeled phosphotyrosine-containing proteins only after hormone addition. Six major phosphoproteins of 195, 155, 100, 85, 45, and 35 kDa were detected. Total activity in immunoprecipitates increased until first polar body emission and was greatly reduced upon completion of meiosis but some proteins exhibited different kinetics. The labeling of the 155-kDa protein reached a maximum at germinal vesicle breakdown, while the 35-kDa appeared later and disappeared after polar body emission. Similar results were obtained with Asterias rubens oocytes. In vitro phosphorylation of cortices showed that tyrosine kinase activity is a major protein kinase activity in this fraction, the main endogenous substrate being a 68-kDa protein. The proteins phosphorylated on tyrosine in vitro were almost similar in extracts from oocytes treated or not with the hormone.

  2. Gα13 Stimulates the Tyrosine Phosphorylation of Ric-8A

    PubMed Central

    Yan, Mingda; Ha, Ji Hee

    2015-01-01

    The G12 family of heterotrimeric G proteins is defined by their α-subunits, Gα12 and Gα13. These α-subunits regulate cellular homeostasis, cell migration, and oncogenesis in a context-specific manner primarily through their interactions with distinct proteins partners that include diverse effector molecules and scaffold proteins. With a focus on identifying any other novel regulatory protein(s) that can directly interact with Gα13, we subjected Gα13 to tandem affinity purification-coupled mass spectrometric analysis. Our results from such analysis indicate that Gα13 potently interacts with mammalian Ric-8A. Our mass spectrometric analysis data also indicates that Ric-8A, which was tandem affinity purified along with Gα13, is phosphorylated at Ser-436, Thr-441, Thr-443 and Tyr-435. Using a serial deletion approach, we have defined that the C-terminus of Gα13 containing the guanine-ring interaction site is essential and sufficient for its interaction with Ric-8A. Evaluation of Gα13-specific signaling pathways in SKOV3 or HeyA8 ovarian cancer cell lines indicate that Ric-8A potentiates Gα13-mediated activation of RhoA, Cdc42, and the downstream p38MAPK. We also establish that the tyrosine phosphorylation of Ric-8A, thus far unidentified, is potently stimulated by Gα13. Our results also indicate that the stimulation of tyrosine-phosphorylation of Ric-8A by Gα13 is partially sensitive to inhibitors of Src-family of kinases, namely PP2 and SI. Furthermore, we demonstrate that Gα13 promotes the translocation of Ric-8A to plasma membrane and this translocation is attenuated by the Src-inhibitors, SI1 and PP2. Thus, our results demonstrate for the first time that Gα13 stimulates the tyrosine phosphorylation of Ric-8A and Gα13-mediated tyrosine-phosphorylation plays a critical role in the translocation of Ric-8A to plasma membrane. PMID:27096001

  3. Tyrosine Phosphorylation in Toll-Like Receptor Signaling

    PubMed Central

    Chattopadhyay, Saurabh; Sen, Ganes C.

    2014-01-01

    There is a wealth of knowledge about how different Ser/Thr protein kinases participate in Toll-like receptor (TLR) signaling. In many cases, we know the identities of the Ser/Thr residues of various components of the TLR-signaling pathways that are phosphorylated, the functional consequences of the phosphorylation and the responsible protein kinases. In contrast, the analysis of Tyr-phosphorylation of TLRs and their signaling proteins is currently incomplete, because several existing analyses are not systematic or they do not rely on robust experimental data. Nevertheless, it is clear that many TLRs require, for signaling, ligand-dependent phosphorylation of specific Tyr residues in their cytoplasmic domains; the list includes TLR2, TLR3, TLR4, TLR5, TLR8 and TLR9. In this article, we discuss the current status of knowledge on the effect of Tyr-phosphorylation of TLRs and their signaling proteins on their biochemical and biological functions, the possible identities of the relevant protein tyrosine kinases (PTKs) and the nature of regulations of PTK-mediated activation of TLR signaling pathways. PMID:25022196

  4. NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22

    PubMed Central

    Spalinger, Marianne R.; Kasper, Stephanie; Gottier, Claudia; Lang, Silvia; Atrott, Kirstin; Vavricka, Stephan R.; Scharl, Sylvie; Gutte, Petrus M.; Grütter, Markus G.; Beer, Hans-Dietmar; Contassot, Emmanuel; Chan, Andrew C.; Dai, Xuezhi; Rawlings, David J.; Mair, Florian; Becher, Burkhard; Falk, Werner; Fried, Michael; Rogler, Gerhard

    2016-01-01

    Inflammasomes form as the result of the intracellular presence of danger-associated molecular patterns and mediate the release of active IL-1β, which influences a variety of inflammatory responses. Excessive inflammasome activation results in severe inflammatory conditions, but physiological IL-1β secretion is necessary for intestinal homeostasis. Here, we have described a mechanism of NLRP3 inflammasome regulation by tyrosine phosphorylation of NLRP3 at Tyr861. We demonstrated that protein tyrosine phosphatase non-receptor 22 (PTPN22), variants in which are associated with chronic inflammatory disorders, dephosphorylates NLRP3 upon inflammasome induction, allowing efficient NLRP3 activation and subsequent IL-1β release. In murine models, PTPN22 deficiency resulted in pronounced colitis, increased NLRP3 phosphorylation, but reduced levels of mature IL-1β. Conversely, patients with inflammatory bowel disease (IBD) that carried an autoimmunity-associated PTPN22 variant had increased IL-1β levels. Together, our results identify tyrosine phosphorylation as an important regulatory mechanism for NLRP3 that prevents aberrant inflammasome activation. PMID:27043286

  5. The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm.

    PubMed

    Alvau, Antonio; Battistone, Maria Agustina; Gervasi, Maria Gracia; Navarrete, Felipe A; Xu, Xinran; Sánchez-Cárdenas, Claudia; De la Vega-Beltran, Jose Luis; Da Ros, Vanina G; Greer, Peter A; Darszon, Alberto; Krapf, Diego; Salicioni, Ana Maria; Cuasnicu, Patricia S; Visconti, Pablo E

    2016-07-01

    Sperm capacitation is required for fertilization. At the molecular level, this process is associated with fast activation of protein kinase A. Downstream of this event, capacitating conditions lead to an increase in tyrosine phosphorylation. The identity of the tyrosine kinase(s) mediating this process has not been conclusively demonstrated. Recent experiments using stallion and human sperm have suggested a role for PYK2 based on the use of small molecule inhibitors directed against this kinase. However, crucially, loss-of-function experiments have not been reported. Here, we used both pharmacological inhibitors and genetically modified mice models to investigate the identity of the tyrosine kinase(s) mediating the increase in tyrosine phosphorylation in mouse sperm. Similar to stallion and human, PF431396 blocks the capacitation-associated increase in tyrosine phosphorylation. Yet, sperm from Pyk2(-/-) mice displayed a normal increase in tyrosine phosphorylation, implying that PYK2 is not responsible for this phosphorylation process. Here, we show that PF431396 can also inhibit FER, a tyrosine kinase known to be present in sperm. Sperm from mice targeted with a kinase-inactivating mutation in Fer failed to undergo capacitation-associated increases in tyrosine phosphorylation. Although these mice are fertile, their sperm displayed a reduced ability to fertilize metaphase II-arrested eggs in vitro. PMID:27226326

  6. Receptor Tyrosine Kinases, TYRO3, AXL, and MER, Demonstrate Distinct Patterns and Complex Regulation of Ligand-induced Activation*

    PubMed Central

    Tsou, Wen-I; Nguyen, Khanh-Quynh N.; Calarese, Daniel A.; Garforth, Scott J.; Antes, Anita L.; Smirnov, Sergey V.; Almo, Steve C.; Birge, Raymond B.; Kotenko, Sergei V.

    2014-01-01

    TYRO3, AXL, and MER receptors (TAMs) are three homologous type I receptor-tyrosine kinases that are activated by endogenous ligands, protein S (PROS1) and growth arrest-specific gene 6 (GAS6). These ligands can either activate TAMs as soluble factors, or, in turn, opsonize phosphatidylserine (PS) on apoptotic cells (ACs) and serve as bridging molecules between ACs and TAMs. Abnormal expression and activation of TAMs have been implicated in promoting proliferation and survival of cancer cells, as well as in suppressing anti-tumor immunity. Despite the fact that TAM receptors share significant similarity, little is known about the specificity of interaction between TAM receptors and their ligands, particularly in the context of ACs, and about the functional diversity of TAM receptors. To study ligand-mediated activation of TAMs, we generated a series of reporter cell lines expressing chimeric TAM receptors. Using this system, we found that each TAM receptor has a unique pattern of interaction with and activation by GAS6 and PROS1, which is also differentially affected by the presence of ACs, PS-containing lipid vesicles and enveloped virus. We also demonstrated that γ-carboxylation of ligands is essential for the full activation of TAMs and that soluble immunoglobulin-like TAM domains act as specific ligand antagonists. These studies demonstrate that, despite their similarity, TYRO3, AXL, and MER are likely to perform distinct functions in both immunoregulation and the recognition and removal of ACs. PMID:25074926

  7. Phosphorylation of tyrosine residues of calmodulin in Rous sarcoma virus-transformed cells.

    PubMed Central

    Fukami, Y; Nakamura, T; Nakayama, A; Kanehisa, T

    1986-01-01

    Calmodulin, a wide-spread eukaryotic Ca2+-binding protein, was phosphorylated at its tyrosine residues in Rous sarcoma virus (RSV)-transformed chicken and rat cells but not in normal chicken embryo fibroblasts. In contrast, serine and threonine phosphorylation of calmodulin was found to occur in both normal and virus-transformed cells. In an in vitro system containing purified src kinase from RSV-transformed cells, tyrosine phosphorylation of calmodulin by the src kinase was inhibited by Ca2+. Furthermore, the tyrosine-phosphorylated calmodulin showed slower mobility than that of nonphosphorylated calmodulin in NaDodSO4/polyacrylamide gel electrophoresis when Ca2+ was present. These results suggest that the structure of calmodulin Ca2+ complex may be altered by tyrosine phosphorylation. It is thus inferred that Ca2+ may regulate the level of tyrosine phosphorylation of calmodulin in RSV-transformed cells, and phosphorylation in turn may attenuate the function of this protein in vivo. Images PMID:2424020

  8. Induction of protein tyrosine phosphorylation in macrophages incubated with tumor cells.

    PubMed

    Sodhi, A; Shrivastava, A; Kumar, R

    1995-03-01

    The cellular and molecular interaction between monocyte/macrophage and tumor cells leading to macrophage activation is not clearly understood. Since protein tyrosine phosphorylation appears to be a major intracellular signalling event, we checked whether the tumor cells alter tyrosine phosphorylation of proteins in macrophages. We found that both L929 and Yac-1 tumor cells induced increased tyrosine phosphorylation of several polypeptides in peritoneal as well as P388D-1 and IC-21 macrophages. Macrophages co-cultured with tumor cells also showed increased fluorescence with anti-phosphotyrosine-FITC antibody. These observations suggest that increased tyrosine phosphorylation plays a role in tumor cell-induced activation of macrophages. PMID:7539664

  9. Tyrosine Phosphorylation of SGEF Regulates RhoG Activity and Cell Migration

    PubMed Central

    Okuyama, Yusuke; Umeda, Kentaro; Negishi, Manabu; Katoh, Hironori

    2016-01-01

    SGEF and Ephexin4 are members of the Ephexin subfamily of RhoGEFs that specifically activate the small GTPase RhoG. It is reported that Ephexin1 and Ephexin5, two well-characterized Ephexin subfamily RhoGEFs, are tyrosine-phosphorylated by Src, and that their phosphorylation affect their activities and functions. In this study, we show that SGEF, but not Ephexin4, is tyrosine-phosphorylated by Src. Tyrosine phosphorylation of SGEF suppresses its interaction with RhoG, the elevation of RhoG activity, and SGEF-mediated promotion of cell migration. We identified tyrosine 530 (Y530), which is located within the Dbl homology domain, as a major phosphorylation site of SGEF by Src, and Y530F mutation blocked the inhibitory effect of Src on SGEF. Taken together, these results suggest that the activity of SGEF is negatively regulated by tyrosine phosphorylation of the DH domain. PMID:27437949

  10. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    SciTech Connect

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.; Baraban, J.M. )

    1989-04-01

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipid system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation.

  11. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism

    PubMed Central

    Hitosugi, Taro; Fan, Jun; Chung, Tae-Wook; Lythgoe, Katherine; Wang, Xu; Xie, Jianxin; Ge, Qingyuan; Gu, Ting-Lei; Polakiewicz, Roberto D.; Roesel, Johannes L.; Chen, Zhuo (Georgia); Boggon, Titus J.; Lonial, Sagar; Fu, Haian; Khuri, Fadlo R.; Kang, Sumin; Chen, Jing

    2011-01-01

    SUMMARY Many tumor cells rely on aerobic glycolysis instead of oxidative phosphorylation for their continued proliferation and survival. Myc and HIF-1 are believed to promote such a metabolic switch by, in part, upregulating gene expression of pyruvate dehydrogenase (PDH) kinase 1 (PDHK1), which phosphorylates and inactivates mitochondrial PDH and consequently pyruvate dehydrogenase complex (PDC). Here we report that tyrosine phosphorylation enhances PDHK1 kinase activity by promoting ATP and PDC binding. Functional PDC can form in mitochondria outside of matrix in some cancer cells and PDHK1 is commonly tyrosine phosphorylated in human cancers by diverse oncogenic tyrosine kinases localized to different mitochondrial compartments. Expression of phosphorylation-deficient, catalytic hypomorph PDHK1 mutants in cancer cells leads to decreased cell proliferation under hypoxia and increased oxidative phosphorylation with enhanced mitochondrial utilization of pyruvate, and reduced tumor growth in xenograft nude mice. Together, tyrosine phosphorylation activates PDHK1 to promote the Warburg effect and tumor growth. PMID:22195962

  12. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    PubMed Central

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  13. Ligand-induced Ordering of the C-terminal Tail Primes STING for Phosphorylation by TBK1.

    PubMed

    Tsuchiya, Yuko; Jounai, Nao; Takeshita, Fumihiko; Ishii, Ken J; Mizuguchi, Kenji

    2016-07-01

    The innate immune protein Stimulator of interferon genes (STING) promotes the induction of interferon beta (IFN-β) production via the phosphorylation of its C-terminal tail (CTT) by TANK-binding kinase 1 (TBK1). Potent ligands of STING are, therefore, promising candidates for novel anti-cancer drugs or vaccine adjuvants. However, the intrinsically flexible CTT poses serious problems in in silico drug discovery. Here, we performed molecular dynamics simulations of the STING fragment containing the CTT in ligand-bound and unbound forms and observed that the binding of a potent ligand cyclic GMP-AMP (cGAMP) induced a local structure in the CTT, reminiscent of the known structure of a TBK1 substrate. The subsequent molecular biological experiments confirmed the observed dynamics of the CTT and identified essential residues for the activation of the IFN-β promoter, leading us to propose a new mechanism of STING activation. PMID:27333035

  14. Tumor-promoting phorbol ester stimulates tyrosine phosphorylation in U-937 monocytes.

    PubMed Central

    Grunberger, G; Zick, Y; Taylor, S I; Gorden, P

    1984-01-01

    Solubilized lectin-purified extracts from human monocyte-like cells (U-937) and freshly isolated human mononuclear cells preincubated in the presence of phorbol 12-myristate 13-acetate (PMA) stimulated phosphorylation of synthetic tyrosine-containing polymers and of casein. Tyrosine phosphorylation was confirmed by phospho amino acid analysis. PMA stimulated phosphorylation of exogenous substrates in a time- and concentration-dependent manner. This phosphorylation reaction did not require addition of phospholipid, diolein, or calcium. Biologically inactive phorbol compounds did not stimulate phosphorylation in this system. In addition, PMA enhanced phosphorylation of a Mr approximately equal to 140,000 protein as well as several other endogenous proteins in the U-937 extracts. PMA treatment stimulated predominantly phosphorylation on tyrosine residues of the Mr 140,000 protein. Tyrosine phosphorylation, typical of growth-promoting peptides such as insulin or epidermal growth factor, is believed to play a role in regulating normal and disordered cellular growth and proliferation. The demonstration of PMA-stimulated tyrosine phosphorylation might provide a clue to the mechanism of cellular differentiation and proliferation induced by the tumor promoter. Images PMID:6201862

  15. Electrical stimulation increases phosphorylation of tyrosine hydroxylase in superior cervical ganglion of rat.

    PubMed Central

    Cahill, A L; Perlman, R L

    1984-01-01

    Electrical stimulation of the superior cervical ganglion of the rat increased the phosphorylation of tyrosine hydroxylase (tyrosine 3-monooxygenase, EC 1.14.16.2) in this tissue. Ganglia were incubated with [32P]Pi for 90 min and were then electrically stimulated via the preganglionic nerve. Tyrosine hydroxylase was isolated from homogenates of the ganglia by immunoprecipitation followed by polyacrylamide gel electrophoresis. 32P-labeled tyrosine hydroxylase was visualized by radioautography, and the incorporation of 32P into the enzyme was quantitated by densitometry of the radioautograms. Stimulation of ganglia at 20 Hz for 5 min increased the incorporation of 32P into tyrosine hydroxylase to a level 5-fold that found in unstimulated control ganglia. The increase in phosphorylation of tyrosine hydroxylase was dependent on the duration and frequency of stimulation. Preganglionic stimulation did not increase the phosphorylation of tyrosine hydroxylase in a medium that contained low Ca2+ and high Mg2+. Increases in phosphorylation were reversible; within 30 min after the cessation of stimulation, the incorporation of 32P into tyrosine hydroxylase decreased to the level found in unstimulated ganglia. The nicotinic antagonist hexamethonium reduced the increase in 32P incorporation into tyrosine hydroxylase by about 50%, while the muscarinic antagonist atropine had no effect. Thus, preganglionic stimulation appeared to increase the phosphorylation of tyrosine hydroxylase in part by a nicotinic mechanism and in part by a noncholinergic mechanism. Antidromic stimulation of ganglia also increased the phosphorylation of tyrosine hydroxylase. Two-dimensional gel electrophoresis revealed that electrical stimulation also increased the incorporation of 32P into at least six other phosphoproteins in the ganglion. Images PMID:6150485

  16. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    PubMed Central

    Mijakovic, Ivan; Petranovic, Dina; Macek, Boris; Cepo, Tina; Mann, Matthias; Davies, Julian; Jensen, Peter R.; Vujaklija, Dusica

    2006-01-01

    Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (ScSSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation of SSBs is a conserved process of post-translational modification in taxonomically distant bacteria. PMID:16549871

  17. Tyrosine phosphorylation of band 3 protein in Ca2+/A23187-treated human erythrocytes.

    PubMed Central

    Minetti, G; Piccinini, G; Balduini, C; Seppi, C; Brovelli, A

    1996-01-01

    Human erythrocytes were induced to release membrane vesicles by treatment with Ca2+ and ionophore A23187. In addition to the biochemical changes already known to accompany loading of human erythrocytes with Ca2+, the present study reveals that tyrosine phosphorylation of the anion exchanger band 3 protein also occurs. The relationship between tyrosine phosphorylation of band 3 and membrane vesiculation was analysed using quinine (a non-specific inhibitor of the Ca(2+)-activated K+ channel, and the only known inhibitor of Ca(2+)-induced vesiculation) and charybdotoxin, a specific inhibitor of the apamin-insensitive K(+)-channel. Both inhibitors suppressed tyrosine phosphorylation of band 3. In the presence of quinine, membrane vesiculation was also suppressed. In contrast, at the concentration of charybdotoxin required to suppress tyrosine phosphorylation of band 3, membrane vesiculation was only mildly inhibited (16-23% inhibition), suggesting that tyrosine phosphorylation of band 3 is not necessary for membrane vesiculation. Phosphorylation of band 3 was in fact observed when erythrocytes were induced to shrink in a Ca(2+)-independent manner, e.g. by treatment with the K+ ionophore valinomycin or with hypertonic solutions. These observations suggest that band 3 tyrosine phosphorylation occurs when cell volume regulation is required. PMID:8973551

  18. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    SciTech Connect

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. S.; Qian, Weijun

    2009-08-01

    Protein tyrosine phosphorylation is a central regulatory mechanism in cell signaling. To extensively characterize the site-specific tyrosine phosphorylation in human cells, we present here a global survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying anti-phosphotyrosine (pTyr) peptide immunoaffinity purification (IP) coupled with high sensitivity LC-MS/MS. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and an acute stimulated condition with epidermal growth factor (EGF). The estimated false discovery rate is 1.0% as measured by comparison against a scrambled database search. Comparison of these data to the literature showed significant agreement in site matches. Additionally 281 sites were not previously observed in HMEC culture were found. Twenty-nine of these sites have not been reported in any human cell or tissue system. The global profiling also allowed us to examine the phosphorylation stoichiometry differences based on spectral count information. Comparison of the data to a previous global proteome profiling study illustrates that most of the highly phoshorylated proteins are of relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed for many of the identified proteins, suggesting potentially more important functional roles for those highly phosphorylated pTyr sites within a given protein. By mapping to major signaling networks such as EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which should allow us to select interesting targeted involved in a given pathway for more directed studies. This extensive HMEC tyrosine phosphorylation dataset represents an important database

  19. Related proteins are phosphorylated at tyrosine in response to mitogenic stimuli and at meiosis.

    PubMed Central

    Cooper, J A

    1989-01-01

    Forty-two-kilodalton proteins that contain phosphotyrosine in metaphase-arrested Xenopus laevis eggs are closely related to p42, a protein that is phosphorylated at tyrosine when somatic cells are exposed to mitogenic stimuli. Images PMID:2779558

  20. Cadmium inhibits mouse sperm motility through inducing tyrosine phosphorylation in a specific subset of proteins.

    PubMed

    Wang, Lirui; Li, Yuhua; Fu, Jieli; Zhen, Linqing; Zhao, Na; Yang, Qiangzhen; Li, Sisi; Li, Xinhong

    2016-08-01

    Cadmium (Cd) has been reported to impair male fertility, primarily by disrupting sperm motility, but the underlying molecular mechanism remains unclear. Here we investigated the effects of Cd on sperm motility, tyrosine phosphorylation, AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, and ATP levels in vitro. Our results demonstrated that Cd inhibited sperm motility, GAPDH activity, AMPK activity and ATP production, and induced tyrosine phosphorylation of 55-57KDa proteins. Importantly, all the parameters affected by Cd were restored to normal levels when incubated with 10μM Cd in the presence of 30μM ethylene diamine tetraacetic acid (EDTA). Interestingly, changes of tyrosine phosphorylation levels of 55-57KDa proteins are completely contrary to that of other parameters. These results suggest that Cd-induced tyrosine phosphorylation of 55-57KDa proteins might act as an engine to block intracellular energy metabolism and thus decrease sperm motility. PMID:27233480

  1. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators.

    PubMed

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei; Mijakovic, Ivan

    2015-09-01

    Reversible phosphorylation of bacterial transcriptional regulators (TRs) belonging to the family of two-component systems (TCSs) is a well-established mechanism for regulating gene expression. Recent evidence points to the fact that reversible phosphorylation of bacterial TRs on other types of residue, i.e. serine, threonine, tyrosine and cysteine, is also quite common. The phosphorylation of the ester type (phospho-serine/threonine/tyrosine) is more stable than the aspartate phosphorylation of TCSs. The kinases which catalyse these phosphorylation events (Hanks-type serine/threonine protein kinases and bacterial protein tyrosine kinases) are also much more promiscuous than the TCS kinases, i.e. each of them can phosphorylate several substrate proteins. As a consequence, the dynamics and topology of the signal transduction networks depending on these kinases differ significantly from the TCSs. Here, we present an overview of different classes of bacterial TR phosphorylated and regulated by serine/threonine and tyrosine kinases. Particular attention is given to examples when serine/threonine and tyrosine kinases interact with TCSs, phosphorylating either the histidine kinases or the response regulators. We argue that these promiscuous kinases connect several signal transduction pathways and serve the role of signal integration. PMID:26220449

  2. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    PubMed Central

    Shi, Lei; Pigeonneau, Nathalie; Ravikumar, Vaishnavi; Dobrinic, Paula; Macek, Boris; Franjevic, Damjan; Noirot-Gros, Marie-Francoise; Mijakovic, Ivan

    2014-01-01

    Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD, and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells. PMID:25278935

  3. Adhesion of fibroblasts to fibronectin stimulates both serine and tyrosine phosphorylation of paxillin.

    PubMed Central

    Bellis, S L; Perrotta, J A; Curtis, M S; Turner, C E

    1997-01-01

    Tyrosine phosphorylation of paxillin by the focal adhesion kinase (FAK) has been implicated as a signal transduction mechanism associated with cell adhesion and cytoskeletal reorganization. The potential role of serine phosphorylation of paxillin in these events has not been well characterized. In this study we have examined the phosphorylation profile of paxillin both in vitro and in vivo. By using glutathione S-transferase-paxillin fusion proteins in precipitation-kinase assays in vitro we observed that a fusion protein spanning amino acid residues 54-313 of paxillin, and containing a FAK-binding site, precipitated substantial serine kinase activity as well as FAK activity from a smooth-muscle lysate. Together these kinases phosphorylated paxillin on tyrosine residue 118, a site that has been identified previously as a target for FAK phosphorylation, and on serine residues 188 and/or 190. The binding site for the serine kinase, the identity of which is currently unknown, was further mapped to residues 168-191 of paxillin. To assess the physiological relevance of these sites phosphorylated in vitro, the profile of paxillin phosphorylation in vivo stimulated by seeding fibroblasts on fibronectin was characterized. As expected, plating cells on fibronectin enhanced the tyrosine phosphorylation of paxillin. However, 96% of the phosphorylation of paxillin occurred on serine residues. Comparison by two-dimensional phosphopeptide analyses indicated that the major sites of tyrosine and serine phosphorylation detected in the assays in vitro co-migrate with phosphopeptides derived from paxillin phosphorylated in vivo in response to plating cells on fibronectin. These findings support a role for both tyrosine and serine kinases in the signal transduction pathway linking integrin activation to paxillin phosphorylation. PMID:9230116

  4. Tyrosine Phosphorylation and Dephosphorylation in Burkholderia cenocepacia Affect Biofilm Formation, Growth under Nutritional Deprivation, and Pathogenicity

    PubMed Central

    Andrade, Angel; Tavares-Carreón, Faviola; Khodai-Kalaki, Maryam

    2015-01-01

    Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important posttranslational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF and the low-molecular-weight protein tyrosine phosphatases BCAM0208, BceD, and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208, and BceD contribute to biofilm formation, while BCAL2200 is required for growth under nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low-molecular-weight protein tyrosine phosphatase genes resulted in the attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larval infection model. Experimental evidence indicates that BCAM1331 displays reduced tyrosine autophosphorylation activity compared to that of BceF. With the artificial substrate p-nitrophenyl phosphate, the phosphatase activities of the three low-molecular-weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 became tyrosine phosphorylated in vivo and catalyzed its autodephosphorylation. Together, our data suggest that despite having similar biochemical activities, low-molecular-weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia. PMID:26590274

  5. Tyrosine phosphorylation of WIP releases bound WASP and impairs podosome assembly in macrophages

    PubMed Central

    Vijayakumar, Vineetha; Monypenny, James; Chen, Xing Judy; Machesky, Laura M.; Lilla, Sergio; Thrasher, Adrian J.; Antón, Inés M.; Calle, Yolanda; Jones, Gareth E.

    2015-01-01

    ABSTRACT Podosomes are integrin-containing adhesion structures commonly found in migrating leukocytes of the monocytic lineage. The actin cytoskeletal organisation of podosomes is based on a WASP- and Arp2/3-mediated mechanism. WASP also associates with a second protein, WIP (also known as WIPF1), and they co-localise in podosome cores. Here, we report for the first time that WIP can be phosphorylated on tyrosine residues and that tyrosine phosphorylation of WIP is a trigger for release of WASP from the WIP–WASP complex. Using a knockdown approach together with expression of WIP phosphomimics, we show that in the absence of WIP–WASP binding, cellular WASP is rapidly degraded, leading to disruption of podosomes and a failure of cells to degrade an underlying matrix. In the absence of tyrosine phosphorylation, the WIP–WASP complex remains intact and podosome lifetimes are extended. A screen of candidate kinases and inhibitor-based assays identified Bruton's tyrosine kinase (Btk) as a regulator of WIP tyrosine phosphorylation. We conclude that tyrosine phosphorylation of WIP is a crucial regulator of WASP stability and function as an actin-nucleation-promoting factor. PMID:25413351

  6. Synaptic Clustering of PSD-95 Is Regulated by c-Abl through Tyrosine Phosphorylation

    PubMed Central

    de Arce, Karen Perez; Varela-Nallar, Lorena; Farias, Olivia; Cifuentes, Alejandra; Bull, Paulina; Couch, Brian A.; Koleske, Anthony J.; Inestrosa, Nibaldo C.; Alvarez, Alejandra R.

    2010-01-01

    The c-Abl tyrosine kinase is present in mouse brain synapses, but its precise synaptic function is unknown. We found that c-Abl levels in the rat hippocampus increase postnatally, with expression peaking at the first postnatal week. In 14 d in vitro hippocampal neuron cultures, c-Abl localizes primarily to the postsynaptic compartment, in which it colocalizes with the postsynaptic scaffold protein postsynaptic density protein-95 (PSD-95) in apposition to presynaptic markers. c-Abl associates with PSD-95, and chemical or genetic inhibition of c-Abl kinase activity reduces PSD-95 tyrosine phosphorylation, leading to reduced PSD-95 clustering and reduced synapses in treated neurons. c-Abl can phosphorylate PSD-95 on tyrosine 533, and mutation of this residue reduces the ability of PSD-95 to cluster at postsynaptic sites. Our results indicate that c-Abl regulates synapse formation by mediating tyrosine phosphorylation and clustering of PSD-95. PMID:20220006

  7. Selective Sensing of Tyrosine Phosphorylation in Peptides Using Terbium(III) Complexes.

    PubMed

    Sumaoka, Jun; Akiba, Hiroki; Komiyama, Makoto

    2016-01-01

    Phosphorylation of tyrosine residues in proteins, as well as their dephosphorylation, is closely related to various diseases. However, this phosphorylation is usually accompanied by more abundant phosphorylation of serine and threonine residues in the proteins and covers only 0.05% of the total phosphorylation. Accordingly, highly selective detection of phosphorylated tyrosine in proteins is an urgent subject. In this review, recent developments in this field are described. Monomeric and binuclear Tb(III) complexes, which emit notable luminescence only in the presence of phosphotyrosine (pTyr), have been developed. There, the benzene ring of pTyr functions as an antenna and transfers its photoexcitation energy to the Tb(III) ion as the emission center. Even in the coexistence of phosphoserine (pSer) and phosphothreonine (pThr), pTyr can be efficintly detected with high selectivity. Simply by adding these Tb(III) complexes to the solutions, phosphorylation of tyrosine in peptides by protein tyrosine kinases and dephosphorylation by protein tyrosine phosphatases can be successfully visualized in a real-time fashion. Furthermore, the activities of various inhibitors on these enzymes are quantitatively evaluated, indicating a strong potential of the method for efficient screening of eminent inhibitors from a number of candidates. PMID:27375742

  8. Selective Sensing of Tyrosine Phosphorylation in Peptides Using Terbium(III) Complexes

    PubMed Central

    Sumaoka, Jun; Akiba, Hiroki; Komiyama, Makoto

    2016-01-01

    Phosphorylation of tyrosine residues in proteins, as well as their dephosphorylation, is closely related to various diseases. However, this phosphorylation is usually accompanied by more abundant phosphorylation of serine and threonine residues in the proteins and covers only 0.05% of the total phosphorylation. Accordingly, highly selective detection of phosphorylated tyrosine in proteins is an urgent subject. In this review, recent developments in this field are described. Monomeric and binuclear TbIII complexes, which emit notable luminescence only in the presence of phosphotyrosine (pTyr), have been developed. There, the benzene ring of pTyr functions as an antenna and transfers its photoexcitation energy to the TbIII ion as the emission center. Even in the coexistence of phosphoserine (pSer) and phosphothreonine (pThr), pTyr can be efficintly detected with high selectivity. Simply by adding these TbIII complexes to the solutions, phosphorylation of tyrosine in peptides by protein tyrosine kinases and dephosphorylation by protein tyrosine phosphatases can be successfully visualized in a real-time fashion. Furthermore, the activities of various inhibitors on these enzymes are quantitatively evaluated, indicating a strong potential of the method for efficient screening of eminent inhibitors from a number of candidates. PMID:27375742

  9. Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition.

    PubMed

    Yen, Hsin-Yung; Liu, Ying-Chih; Chen, Nai-Yu; Tsai, Chia-Feng; Wang, Yi-Ting; Chen, Yu-Ju; Hsu, Tsui-Ling; Yang, Pan-Chyr; Wong, Chi-Huey

    2015-06-01

    Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation. PMID:25971727

  10. Thrombin Ca(2+)-dependently stimulates protein tyrosine phosphorylation in BC3H1 muscle cells.

    PubMed Central

    Offermanns, S; Bombien, E; Schultz, G

    1993-01-01

    The proteinase thrombin, known to act via heptahelical G-protein-coupled receptors, is a mitogenic agent for different cell types, including the mouse muscle cell line BC3H1. In this study, the effect of thrombin on tyrosine phosphorylation was examined using anti-phosphotyrosine antibodies. Thrombin was found to induce phosphorylation of 65-70 and 110-120 kDa proteins in BC3H1 cells. The effect of thrombin was concentration-dependent, being half-maximal and maximal at concentrations of 0.03 and 1 unit/ml respectively. The thrombin-induced increase in phosphorylation was rapid (< or = 10 s) and transient, with a peak response after about 1-2 min. The effect of thrombin could be mimicked by the thrombin receptor agonist peptide SFLLRN-NH2. Preincubation of cells with pertussis toxin (PT) had no effect on thrombin-induced tyrosine phosphorylation. Epidermal growth factor, platelet-derived growth factor and insulin stimulated tyrosine phosphorylation of different proteins, among which were 65-70 and 110-120 kDa proteins. The phorbol ester 12-myristate 13-acetate (PMA) as well as the Ca2+ ionophore A23187 both stimulated tyrosine phosphorylation of proteins identical to those phosphorylated by thrombin, suggesting that activation of protein kinase C (PKC) and elevation of the cytosolic Ca2+ concentration alone are sufficient to induce tyrosine phosphorylation. However, calphostin C and other PKC inhibitors, which completely inhibited tyrosine phosphorylation induced by PMA, had no influence on the effect of thrombin, whereas loading of cells with the intracellular Ca2+ chelator bis-(O-aminophenoxy)ethane-NNN'N'-tetra-acetic acid totally blocked thrombin-stimulated tyrosine phosphorylation. Thus tyrosine phosphorylation stimulated by thrombin is an early PT-insensitive cellular response which is either directly mediated by elevation of cytosolic Ca2+ concentration or by a presently unknown mechanism that requires an elevated cytosolic Ca2+ concentration. Images Figure 1

  11. Tyrosine Phosphorylation of Caspase-8 Abrogates Its Apoptotic Activity and Promotes Activation of c-Src

    PubMed Central

    Tsang, Jennifer LY; Jia, Song Hui; Parodo, Jean; Plant, Pamela; Lodyga, Monika; Charbonney, Emmanuel; Szaszi, Katalin; Kapus, Andras; Marshall, John C.

    2016-01-01

    Src family tyrosine kinases (SFKs) phosphorylate caspase-8A at tyrosine (Y) 397 resulting in suppression of apoptosis. In addition, the phosphorylation of caspase-8A at other sites including Y465 has been implicated in the regulation of caspase-8 activity. However, the functional consequences of these modifications on caspase-8 processing/activity have not been elucidated. Moreover, various Src substrates are known to act as potent Src regulators, but no such role has been explored for caspase-8. We asked whether the newly identified caspase-8 phosphorylation sites might regulate caspase-8 activation and conversely, whether caspase-8 phosphorylation might affect Src activity. Here we show that Src phosphorylates caspase-8A at multiple tyrosine sites; of these, we have focused on Y397 within the linker region and Y465 within the p12 subunit of caspase-8A. We show that phosphomimetic mutation of caspase-8A at Y465 prevents its cleavage and the subsequent activation of caspase-3 and suppresses apoptosis. Furthermore, simultaneous phosphomimetic mutation of caspase-8A at Y397 and Y465 promotes the phosphorylation of c-Src at Y416 and increases c-Src activity. Finally, we demonstrate that caspase-8 activity prevents its own tyrosine phosphorylation by Src. Together these data reveal that dual phosphorylation converts caspase-8 from a pro-apoptotic to a pro-survival mediator. Specifically, tyrosine phosphorylation by Src renders caspase-8 uncleavable and thereby inactive, and at the same time converts it to a Src activator. This novel dynamic interplay between Src and caspase-8 likely acts as a potent signal-integrating switch directing the cell towards apoptosis or survival. PMID:27101103

  12. PSD-93 MEDIATES TYROSINE-PHOSPHORYLATION OF THE N-METHYL-D-ASPARTATE RECEPTORS

    PubMed Central

    Sato, Yuko; Tao, Yuan-Xiang; Su, Qingning; Johns, Roger A

    2009-01-01

    Src family protein kinases (SFKs)-mediated tyrosine-phosphorylation regulates N-methyl-D-aspartate (NMDA) receptor synaptic function. Some members of the membrane-associated guanylate kinase (MAGUK) family of proteins bind to both SFKs and NMDA receptors, but it is unclear whether the MAGUK family of proteins is required for SFKs-mediated tyrosine-phosphorylation of the NMDA receptors. Here, we showed by co-immunoprecipitation that PSD-93, a member of the MAGUK family of proteins, interacts with the NMDA receptor subunits NR2A and NR2B as well as with Fyn, a member of the SFKs, in mouse cerebral cortex. Using a biochemical fractionation approach to isolate subcellular compartments revealed that the expression of Fyn, but not of other members of the SFKs (Lyn, Src, and Yes), was significantly decreased in synaptosomal membrane fractions derived from the cerebral cortex of PSD-93 knockout mice. Interestingly, we found that PSD-93 disruption causes reduction of tyrosine-phosphorylated NR2A and NR2B in the same fraction. Moreover, PSD-93 deletion markedly blocked the SFKs-mediated increase in tyrosine-phosphorylated NR2A and NR2B through the protein kinase C pathway after induction with 4β-PMA in cultured cortical neurons. Our findings indicate that PSD-93 appears to mediate tyrosine-phosphorylation of the NMDA receptors and synaptic localization of Fyn. PMID:18423999

  13. Functions of the major tyrosine phosphorylation site of the PDGF receptor beta subunit.

    PubMed Central

    Kazlauskas, A; Durden, D L; Cooper, J A

    1991-01-01

    Two tyrosine phosphorylation sites in the human platelet-derived growth factor receptor (PDGFR) beta subunit have been mapped previously to tyrosine (Y)751, in the kinase insert, and Y857, in the kinase domain. Y857 is the major site of tyrosine phosphorylation in PDGF-stimulated cells. To evaluate the importance of these phosphorylations, we have characterized the wild-type (WT) and mutant human PDGF receptor beta subunits in dog kidney epithelial cells. Replacement of either Y751 or Y857 with phenylalanine (F) reduced PDGF-stimulated DNA synthesis to approximately 50% of the WT level. A mutant receptor with both tyrosines mutated was unable to initiate DNA synthesis, as was a kinase-inactive mutant receptor. Transmodulation of the epidermal growth factor receptor required Y857 but not Y751. We also tested the effects of phosphorylation site mutations on PDGF-stimulated receptor kinase activity. PDGF-induced tyrosine phosphorylation of two cellular proteins, phospholipase C gamma 1 (PLC gamma 1) and the GTPase activating protein of Ras (GAP), was assayed in epithelial cells expressing each of the mutant receptors. Tyrosine phosphorylation of GAP and PLC gamma 1 was reduced markedly by the F857 mutation but not significantly by the F751 mutation. Reduced kinase activity of F857 receptors was also evident in vitro. Immunoprecipitated WT receptors showed a two- to fourfold increase in specific kinase activity if immunoprecipitated from PDGF-stimulated cells. The F751 receptors showed a similar increase in activity, but F857 receptors did not. Our data suggest that phosphorylation of Y857 may be important for stimulation of kinase activity of the receptors and for downstream actions such as epidermal growth factor receptor transmodulation and mitogenesis. Images PMID:1653029

  14. Reactive oxygen species induce reversible PECAM-1 tyrosine phosphorylation and SHP-2 binding.

    PubMed

    Maas, Matthias; Wang, Ronggang; Paddock, Cathy; Kotamraju, Srigiridhar; Kalyanaraman, Balaraman; Newman, Peter J; Newman, Debra K

    2003-12-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) functions to control the activation and survival of the cells on which it is expressed. Many of the regulatory functions of PECAM-1 are dependent on its tyrosine phosphorylation and subsequent recruitment of the Src homology (SH2) domain containing protein tyrosine phosphatase SHP-2. The recent demonstration that PECAM-1 tyrosine phosphorylation occurs in cells exposed to the reactive oxygen species hydrogen peroxide (H2O2) suggested that this form of oxidative stress may also support PECAM-1/SHP-2 complex formation. In the present study, we show that PECAM-1 tyrosine phosphorylation in response to exposure of cells to H2O2 is reversible, involves a shift in the balance between kinase and phosphatase activities, and supports binding of SHP-2 and recruitment of this phosphatase to cell-cell borders. We speculate, however, that the unique ability of H2O2 to reversibly oxidize the reactive site cysteine residues of protein tyrosine phosphatases may result in transient inactivation of the SHP-2 that is bound to PECAM-1 under these conditions. Finally, we provide evidence that PECAM-1 tyrosine phosphorylation and SHP-2 binding in endothelial cells requires exposure to an "oxidative burst" of H2O2, but that exposure of these cells to sufficiently high concentrations of H2O2 for a sufficiently long period of time abrogates binding of SHP-2 to tyrosine-phosphorylated PECAM-1. These findings support a role for PECAM-1 as a sensor of oxidative stress, perhaps most importantly during the process of inflammation. PMID:12893640

  15. Clustering of Neuronal K+-Cl− Cotransporters in Lipid Rafts by Tyrosine Phosphorylation*

    PubMed Central

    Watanabe, Miho; Wake, Hiroaki; Moorhouse, Andrew J.; Nabekura, Junichi

    2009-01-01

    The neuronal K+-Cl− cotransporter (KCC2) is a membrane transport protein that extrudes Cl− from neurons and helps maintain low intracellular [Cl−] and hyperpolarizing GABAergic synaptic potentials. Depolarizing γ-aminobutyric acid (GABA) responses in neonatal neurons and following various forms of neuronal injury are associated with reduced levels of KCC2 expression. Despite the importance for plasticity of inhibitory transmission, less is known about cellular mechanisms involved in more dynamic changes in KCC2 function. In this study, we investigated the role of tyrosine phosphorylation in KCC2 localization and function in hippocampal neurons and in cultured GT1-7 cells. Mutation to the putative tyrosine phosphorylation site within the long intracellular carboxyl terminus of KCC2(Y1087D) or application of the tyrosine kinase inhibitor genistein shifted the GABA reversal potential (EGABA) to more depolarized values, indicating reduced KCC2 function. This was associated with a change in the expression pattern of KCC2 from a punctate distribution to a more uniform distribution, suggesting that functional tyrosine-phosphorylated KCC2 forms clusters in restricted membrane domains. Sodium vanadate, a tyrosine phosphatase inhibitor, increased the proportion of KCC2 associated with lipid rafts membrane domains. Loss of tyrosine phosphorylation also reduced oligomerization of KCC2. A loss of the punctuate distribution and oligomerization of KCC2 and a more depolarized EGABA were seen when the 28-amino-acid carboxyl terminus of KCC2 was deleted. These results indicate that direct tyrosine phosphorylation of KCC2 results in membrane clusters and functional transport activity, suggesting a mechanism by which intracellular Cl− concentrations and GABA responses can be rapidly modulated. PMID:19679663

  16. Tyrosine 402 phosphorylation of Pyk2 is involved in ionomycin-induced neurotransmitter release.

    PubMed

    Zhang, Zhao; Zhang, Yun; Mou, Zheng; Chu, Shifeng; Chen, Xiaoyu; He, Wenbin; Guo, Xiaofeng; Yuan, Yuhe; Takahashi, Masami; Chen, Naihong

    2014-01-01

    Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca²⁺ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402. PMID:24718602

  17. Regulation of the cystic fibrosis transmembrane conductance regulator anion channel by tyrosine phosphorylation.

    PubMed

    Billet, Arnaud; Jia, Yanlin; Jensen, Tim; Riordan, John R; Hanrahan, John W

    2015-09-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) channel is activated by PKA phosphorylation of a regulatory domain that interacts dynamically with multiple CFTR domains and with other proteins. The large number of consensus sequences for phosphorylation by PKA has naturally focused most attention on regulation by this kinase. We report here that human CFTR is also phosphorylated by the tyrosine kinases p60c-Src (proto-oncogene tyrosine-protein kinase) and the proline-rich tyrosine kinase 2 (Pyk2), and they can also cause robust activation of quiescent CFTR channels. In excised patch-clamp experiments, CFTR activity during exposure to Src or Pyk2 reached ∼80% of that stimulated by PKA. Exposure to PKA after Src or Pyk2 caused a further increase to the level induced by PKA alone, implying a common limiting step. Channels became spontaneously active when v-Src or the catalytic domain of Pyk2 was coexpressed with CFTR and were further stimulated by the tyrosine phosphatase inhibitor dephostatin. Exogenous Src also activated 15SA-CFTR, a variant that lacks 15 potential PKA sites and has little response to PKA. PKA-independent activation by tyrosine phosphorylation has implications for the mechanism of regulation by the R domain and for the physiologic functions of CFTR. PMID:26062600

  18. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Gil, J.; Lehmann, W.; Sinnett-Smith, J.; Rozengurt, E. )

    1991-06-01

    The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of M{sub r} 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunoprecipitation of {sup 32}P{sub i}-labeled cells and immunoblotting of unlabeled cells with monoclonal antiphosphotyrosine antibodies, elution with phenyl phosphate, and phospho amino acid analysis. Phosphotyrosyl proteins generated by bombesin and vasopressin did not correspond either by apparent molecular weight or by immunological and biochemical criteria to several known tyrosine kinase substrates, including phospholipase C{sub {gamma}}, the microtubule-associated protein 2 kinase, GTPase-activating protein, or phosphatidylinositol kinase. The effect was rapid (within seconds), concentration dependent, and inhibited by specific receptor antagonists for both bombesin and vasopressin. The endothelin-related peptide, vasoactive intestinal contractor, also elicited a rapid and concentration-dependent tyrosine/serine phosphorylation of a similar set of substrates. These results demonstrate that neuropeptides, acting through receptors linked to GTP-binding proteins, stimulate tyrosine phosphorylation of a common set of substrates in quiescent Swiss 3T3 cells and suggest the existence of an additional signal transduction pathway in neuropeptide-induced mitogenesis.

  19. Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus

    SciTech Connect

    Nakayama, Yuji; Kawana, Akiko; Igarashi, Asae; Yamaguchi, Naoto . E-mail: nyama@p.chiba-u.ac.jp

    2006-07-15

    Chk tyrosine kinase phosphorylates Src-family kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. In this study, we explored the role of the N-terminal unique domain of Chk in nuclear localization and Chk-induced tyrosine phosphorylation in the nucleus. In situ binding experiments showed that the N-terminal domain of Chk was associated with the nucleus and the nuclear matrix. The presence of the N-terminal domain of Chk led to a fourfold increase in cell population exhibiting Chk-induced tyrosine phosphorylation in the nucleus. Expression of Chk but not kinase-deficient Chk induced tyrosine phosphorylation of a variety of proteins ranging from 23 kDa to {approx}200 kDa, especially in Triton X-100-insoluble fraction that included chromatin and the nuclear matrix. Intriguingly, in situ subnuclear fractionations revealed that Chk induced tyrosine phosphorylation of proteins that were associated with the nuclear matrix. These results suggest that various unidentified substrates of Chk, besides Src-family kinases, may be present in the nucleus. Thus, our findings indicate that the importance of the N-terminal domain to Chk-induced tyrosine phosphorylation in the nucleus, implicating that these nuclear tyrosine-phosphorylated proteins may contribute to inhibition of cell proliferation.

  20. Nephrin Tyrosine Phosphorylation Is Required to Stabilize and Restore Podocyte Foot Process Architecture.

    PubMed

    New, Laura A; Martin, Claire E; Scott, Rizaldy P; Platt, Mathew J; Keyvani Chahi, Ava; Stringer, Colin D; Lu, Peihua; Samborska, Bozena; Eremina, Vera; Takano, Tomoko; Simpson, Jeremy A; Quaggin, Susan E; Jones, Nina

    2016-08-01

    Podocytes are specialized epithelial cells of the kidney blood filtration barrier that contribute to permselectivity via a series of interdigitating actin-rich foot processes. Positioned between adjacent projections is a unique cell junction known as the slit diaphragm, which is physically connected to the actin cytoskeleton via the transmembrane protein nephrin. Evidence indicates that tyrosine phosphorylation of the intracellular tail of nephrin initiates signaling events, including recruitment of cytoplasmic adaptor proteins Nck1 and Nck2 that regulate actin cytoskeletal dynamics. Nephrin tyrosine phosphorylation is altered in human and experimental renal diseases characterized by pathologic foot process remodeling, prompting the hypothesis that phosphonephrin signaling directly influences podocyte morphology. To explore this possibility, we generated and analyzed knockin mice with mutations that disrupt nephrin tyrosine phosphorylation and Nck1/2 binding (nephrin(Y3F/Y3F) mice). Homozygous nephrin(Y3F/Y3F) mice developed progressive proteinuria accompanied by structural changes in the filtration barrier, including podocyte foot process effacement, irregular thickening of the glomerular basement membrane, and dilated capillary loops, with a similar but later onset phenotype in heterozygous animals. Furthermore, compared with wild-type mice, nephrin(Y3F/Y3F) mice displayed delayed recovery in podocyte injury models. Profiling of nephrin tyrosine phosphorylation dynamics in wild-type mice subjected to podocyte injury indicated site-specific differences in phosphorylation at baseline, injury, and recovery, which correlated with loss of nephrin-Nck1/2 association during foot process effacement. Our results define an essential requirement for nephrin tyrosine phosphorylation in stabilizing podocyte morphology and suggest a model in which dynamic changes in phosphotyrosine-based signaling confer plasticity to the podocyte actin cytoskeleton. PMID:26802179

  1. SOCS3 tyrosine phosphorylation as a potential bio-marker for myeloproliferative neoplasms associated with mutant JAK2 kinases

    PubMed Central

    Elliott, Joanne; Suessmuth, Yvonne; Scott, Linda M.; Nahlik, Krystyna; McMullin, Mary Frances; Constantinescu, Stefan N.; Green, Anthony R.; Johnston, James A.

    2009-01-01

    JAK2 V617F, identified in the majority of patients with myeloproliferative neoplasms, tyrosine phosphorylates SOCS3 and escapes its inhibition. Here, we demonstrate that the JAK2 exon 12 mutants described in a subset of V617F-negative MPN cases, also stabilize tyrosine phosphorylated SOCS3. SOCS3 tyrosine phosphorylation was also observed in peripheral blood mononuclear cells and granulocytes isolated from patients with JAK2 H538QK539L or JAK2 F537-K539delinsL mutations. JAK kinase inhibitors, which effectively inhibited the proliferation of cells expressing V617F or K539L, also caused a dose-dependent reduction in both mutant JAK2 and SOCS3 tyrosine phosphorylation. We propose, therefore, that SOCS3 tyrosine phosphorylation may be a novel bio-marker of myeloproliferative neoplasms resulting from a JAK2 mutation and a potential reporter of effective JAK2 inhibitor therapy currently in clinical development. PMID:19229050

  2. IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION

    EPA Science Inventory

    IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION.

    T. L. Knuckles1 R. Jaskot2, J. Richards2, and K.Dreher2.
    1Department of Molecular and Biomedical Sciences, College of Veterinary Medicin...

  3. Quantitative profiling of spreading-coupled protein tyrosine phosphorylation in migratory cells

    PubMed Central

    Xie, Yajun; Wang, Jinlong; Zhang, Yuanya; Liu, Xiaofei; Wang, Xiaorong; Liu, Kehui; Huang, Xiahe; Wang, Yingchun

    2016-01-01

    Protein tyrosine phosphorylation is an important mechanism that regulates cytoskeleton reorganization and cell spreading of migratory cells. A number of cytoskeletal proteins are known to be tyrosine phosphorylated (pY) in different cellular processes. However, the profile of pY proteins during different stages of cell spreading has not been available. Using immunoafffinity enrichment of pY proteins coupled with label free quantitative proteomics, we quantitatively identified 447 pY proteins in the migratory ECV-304 cells at the early spreading (adhesion) and the active spreading stages. We found that pY levels of the majority of the quantified proteins were significantly increased in the active spreading stage compared with the early spreading stage, suggesting that active cell spreading is concomitant with extra tyrosine phosphorylation. The major categories of proteins impacted by tyrosine phosphorylation are involved in cytoskeleton and focal adhesion regulation, protein translation and degradation. Our findings, for the first time, dissect the cell spreading-specific pY signals from the adhesion induced pY signals, and provide a valuable resource for the future mechanistic research regarding the regulation of cell spreading. PMID:27554326

  4. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    PubMed Central

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  5. A GAPDH Mutant Defective in Src-Dependent Tyrosine Phosphorylation Impedes Rab2-Mediated Events

    PubMed Central

    Tisdale, Ellen J.; Artalejo, Cristina R.

    2013-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple intracellular activities in addition to its role in gluconeogenesis. Indeed, we have reported that GAPDH is required for Rab2-mediated retrograde transport from vesicular tubular clusters (VTCs). These diverse GAPDH activities are the result of post-translational modifications that confer a new function to the enzyme. In that regard, GAPDH is tyrosine phosphorylated by Src. To establish the functional significance of this modification for GAPDH activity in Rab2-dependent events, an amino acid substitution was made at tyrosine 41 (GAPDH Y41F). The inability of Src to phosphorylate purified recombinant GAPDH Y41F was confirmed in an in vitro kinase assay. The mutant was then employed in a quantitative membrane-binding assay that measures Rab2 recruitment of soluble components to VTCs. As we observed with GAPDH wild type, Rab2 promoted GAPDH Y41F binding to membranes in a dose-dependent manner indicating that GAPDH tyrosine phosphorylation is not required for VTC association. However, GAPDH was tyrosine phosphorylated on VTCs. Importantly, GAPDH Y41F blocked VSV-G transport in an assay that reconstitutes endoplasmic reticulum (ER) to Golgi trafficking indicating that phosphorylation of tyrosine 41 is essential for GAPDH activity in the early secretory pathway. The block in transport is due to the decreased binding of atypical protein kinase C iota/lambda (aPKCι/λ) to GAPDH Y41F, which reduces β-COP association with the VTC and subsequent formation of Rab2-mediated retrograde vesicles. Our results suggest that Src plays a pivotal role in regulating the interaction of Rab2 effectors on the VTC. PMID:17488287

  6. Mammalian liver cytochrome c is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration

    PubMed Central

    Yu, Hong; Lee, Icksoo; Salomon, Arthur R.; Yu, Kebing; Hüttemann, Maik

    2009-01-01

    Cytochrome c (Cyt c) is part of the mitochondrial electron transport chain (ETC), accepting electrons from bc1 complex and transferring them to cytochrome c oxidase (CcO). The ETC generates the mitochondrial membrane potential, which is used by ATP synthase to produce ATP. In addition, the release of Cyt c from the mitochondria often commits a cell to undergo apoptosis. Considering its central role in life (respiration) and death (apoptosis) decisions one would expect tight regulation of Cyt c function. Reversible phosphorylation is a main cellular regulatory mechanism, but the effect of cell signaling targeting the mitochondrial oxidative phosphorylation system is not well understood, and only a small number of proteins that can be phosphorylated have been identified to date. We have recently shown that Cyt c isolated from cow heart tissue is phosphorylated on tyrosine 97 in vivo, which leads to inhibition of respiration in the reaction with CcO. In this study we isolated Cyt c from a different organ, cow liver, under conditions preserving the physiological phosphorylation state. Western analysis with a phospho-tyrosine specific antibody suggested that liver Cyt c is phosphorylated. Surprisingly, the phosphorylation site was unambiguously assigned to Tyr-48 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS), and not to the previously identified phospho-Tyr-97 in cow heart. As is true of Tyr-97, Tyr-48 is conserved in eukaryotes. As one possible consequence of Tyr-48 phosphorylation we analyzed the in vitro reaction kinetics with isolated cow liver CcO revealing striking differences. Maximal turnover of Tyr-48 phosphorylated Cyt c was 3.7 s−1 whereas dephosphorylation resulted in a 2.2 fold increase in activity to 8.2 s−1. Effects of Tyr-48 phosphorylation based on the Cyt c crystal structure are discussed. PMID:18471988

  7. Immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated inhibitory signaling is regulated by sequential phosphorylation mediated by distinct nonreceptor tyrosine kinases: a case study involving PECAM-1.

    PubMed

    Tourdot, Benjamin E; Brenner, Michelle K; Keough, Kathleen C; Holyst, Trudy; Newman, Peter J; Newman, Debra K

    2013-04-16

    The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing nonreceptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton's tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals. PMID:23418871

  8. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    SciTech Connect

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  9. Estradiol receptor: phosphorylation on tyrosine in uterus and interaction with anti-phosphotyrosine antibody.

    PubMed Central

    Migliaccio, A; Rotondi, A; Auricchio, F

    1986-01-01

    Estradiol receptor from rat uteri incubated with [32P] orthophosphate has been purified by diethylstilbestrol--Sepharose followed by heparin--Sepharose chromatography. The purified receptor, analyzed by centrifugation through sucrose gradients after incubation with monoclonal antibodies against purified estradiol receptor, appears to be labeled with 32P. The receptor preparation has been further purified by immunoaffinity chromatography and submitted to SDS--poly-acrylamide gel electrophoresis. A heavily 32P-labeled 68 kd protein and a very lightly 32P-labeled 48 kd protein, probably a proteolytic product of the 68 kd protein, were detected. Phosphoamino acid analysis of the receptor eluted from the immunoaffinity column shows that its 32P-labeling occurs exclusively on tyrosine. This is the first report on phosphorylation on tyrosine of a steroid receptor in tissue. It is consistent with our previous finding that a uterus estradiol receptor-kinase, which confers hormone binding ability to the estradiol receptor, in vitro phosphorylates this receptor exclusively on tyrosine. Calf uterus receptor binds with high specificity and affinity to monoclonal anti-phosphotyrosine antibodies covalently bound to Sepharose (Kd = 0.28 nM). Dephosphorylation of the receptor by nuclei containing the calf uterus nuclear phosphatase abolishes the interaction with antibodies. These results suggest that also in calf uterus, estradiol receptor is phosphorylated on tyrosine. Anti-phosphotyrosine antibodies bound to Sepharose have been used to partially purify the estradiol receptor from calf uterus. Images Fig. 2. Fig. 3. PMID:2431901

  10. Induction of macrophage procoagulant activity by murine hepatitis virus strain 3: role of tyrosine phosphorylation.

    PubMed Central

    Dackiw, A P; Zakrzewski, K; Nathens, A B; Cheung, P Y; Fingerote, R; Levy, G A; Rotstein, O D

    1995-01-01

    The induction of a unique macrophage procoagulant molecule by murine hepatitis virus strain 3 correlates with the severity of viral hepatitis. The role of tyrosine phosphorylation in the signalling pathway leading to procoagulant expression was studied. Murine hepatitis virus strain 3 initiated a rapid increase in phosphotyrosine accumulation. Tyrosine kinase inhibition precluded this increase and abrogated expression of the virus-induced procoagulant mouse fibrinogen-like protein (musfiblp) gene. These findings suggest that manipulation of this signalling pathway in vivo might represent a novel approach to treating this disease. PMID:7543590

  11. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function

    PubMed Central

    Ko, Han Seok; Lee, Yunjong; Shin, Joo-Ho; Karuppagounder, Senthilkumar S.; Gadad, Bharathi Shrikanth; Koleske, Anthony J.; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.

    2010-01-01

    Mutations in PARK2/Parkin, which encodes a ubiquitin E3 ligase, cause autosomal recessive Parkinson disease (PD). Here we show that the nonreceptor tyrosine kinase c-Abl phosphorylates tyrosine 143 of parkin, inhibiting parkin's ubiquitin E3 ligase activity and protective function. c-Abl is activated by dopaminergic stress and by dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) in vitro and in vivo by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), leading to parkin inactivation, accumulation of the parkin substrates aminoacyl-tRNA synthetase-interacting multifunctional protein type 2 (AIMP2) (p38/JTV-1) and fuse-binding protein 1 (FBP1), and cell death. STI-571, a c-Abl-family kinase inhibitor, prevents the phosphorylation of parkin, maintaining parkin in a catalytically active and protective state. STI-571’s protective effects require parkin, as shRNA knockdown of parkin prevents STI-571 protection. Conditional knockout of c-Abl in the nervous system also prevents the phosphorylation of parkin, the accumulation of its substrates, and subsequent neurotoxicity in response to MPTP intoxication. In human postmortem PD brain, c-Abl is active, parkin is tyrosine-phosphorylated, and AIMP2 and FBP1 accumulate in the substantia nigra and striatum. Thus, tyrosine phosphorylation of parkin by c-Abl is a major posttranslational modification that inhibits parkin function, possibly contributing to pathogenesis of sporadic PD. Moreover, inhibition of c-Abl may be a neuroprotective approach in the treatment of PD. PMID:20823226

  12. Protein Tyrosine Phosphatase φ Regulates Paxillin Tyrosine Phosphorylation and Mediates Colony-Stimulating Factor 1-Induced Morphological Changes in Macrophages

    PubMed Central

    Pixley, Fiona J.; Lee, Pierre S. W.; Condeelis, John S.; Stanley, E. Richard

    2001-01-01

    Removal of colony-stimulating factor 1 (CSF-1) causes macrophages to round up and to increase their expression of protein tyrosine phosphatase φ (PTPφ). This is accompanied by the disruption of focal complexes and the formation of ruffles. Here we have overexpressed wild-type (WT) PTPφ and a phosphatase-inactive (C325S) mutant in a macrophage cell line in the presence and absence of CSF-1. In the presence of CSF-1, WT PTPφ induces cell rounding and ruffle formation, while C325S PTPφ has no effect. In contrast, in CSF-1-starved cells, C325S PTPφ behaves in a dominant negative fashion, preventing rounding and ruffling. Furthermore, C325S PTPφ increases adhesion in cycling cells, while WT PTPφ enhances motility. In WT PTPφ-overexpressing cells, the focal contact protein paxillin is selectively depleted from focal complexes and specifically dephosphorylated on tyrosine. In contrast, paxillin is hyperphosphorylated in C325S PTPφ-expressing cells. Moreover, a complex containing PTPφ, paxillin, and a paxillin-associated tyrosine kinase, Pyk2, can be immunoprecipitated from macrophage lysates, and the catalytic domain of PTPφ selectively binds paxillin and Pyk2 in vitro. Although PTPφ and Pyk2 do not colocalize with paxillin in focal complexes, all three proteins are colocalized in dorsal ruffles. The results suggest that paxillin is dephosphorylated by PTPφ in dorsal ruffles, using Pyk2 as a bridging molecule, resulting in a reduced pool of tyrosine-phosphorylated paxillin available for incorporation into focal complexes, thereby mediating CSF-1 regulation of macrophage morphology, adhesion, and motility. PMID:11238916

  13. Tyrosine phosphorylation of CD19 in pre-B and mature B cells.

    PubMed Central

    Chalupny, N J; Kanner, S B; Schieven, G L; Wee, S F; Gilliland, L K; Aruffo, A; Ledbetter, J A

    1993-01-01

    Cross-linking of B cell surface immunoglobulins (sIg) results in activation of mature B cells and stimulates a molecular signaling mechanism for antigen-specific B cell expansion and differentiation. This signaling pathway is dependent on tyrosine (Tyr) phosphorylation and results in the activation of sIg-associated src family kinases and p72SYK. Rapid Tyr phosphorylation occurs on multiple protein substrates. Here we show that activation of B cells by cross-linking sIg results in an increase in Tyr phosphorylation of the lineage-restricted B cell surface antigen CD19, and show that it is a major substrate of activated Tyr kinase following sIg stimulation. Lower levels of constitutive CD19 Tyr phosphorylation occurred in most sIg+ mature B cell lines examined and in normal dense tonsillar B cells. We also find that when CD19 is Tyr-phosphorylated it becomes competent to interact with SH2 domains suggesting a mechanism whereby, following B cell activation, CD19 could be linked to intracellular signaling pathways. In sIg- pre-B cell lines, CD19 was expressed but was not constitutively phosphorylated on tyrosine. Upon CD19 cross-linking, Tyr phosphorylation of CD19 was induced in sIg- pre-B cell lines. CD19 cross-linking also directly induced Tyr phosphorylation of CD19 and other substrates in mature B cells. The ability of CD19 to signal in the absence of sIg expression may provide important stimulation in pre-B cell development. Images PMID:7687539

  14. Alterations in connexin 43 during diabetic cardiomyopathy: competition of tyrosine nitration versus phosphorylation

    PubMed Central

    COOK, Angela C.; SCHANBACHER, Brandon L.; BAUER, John Anthony

    2014-01-01

    Objective Cardiac conduction abnormalities are observed early in the progression of Type I diabetes, but the mechanism(s) involved are undefined. Connexin 43, a critical component of ventricular gap junctions, depends on tyrosine phosphorylation status to modulate channel conductance - alterations in connexin 43 content, distributions, and/or phosphorylation status may be involved in cardiac rhythm disturbances. We tested the hypothesis that cardiac content/distribution of connexin 43 are altered in a rat model of Type I diabetic cardiomyopathy, investigating a mechanistic role for tyrosine. Methods We conducted electrocardiographic analyses during the progression of diabetic cardiomyopathy in rats dosed with streptozotocin (65mg/kg), at 3, 7, and 35 days post-induction of diabetes. Following functional analyses, we conducted immunohistochemical and immunoprecipitation studies to assess alterations in connexin 43. Results We observed significant evidence of ventricular conduction abnormalities (QRS complex, Q-T interval) as early as 7 days post-streptozotocin, persisting throughout the study. Connexin 43 levels were increased 7d post- streptozotocin and remained elevated throughout the study. Connexin 40 content was unchanged relative to controls throughout the study. Changes in Connexin 43 distribution were also observed; connexin 43 staining was dispersed from myocyte short axis junctions. Connexin 43 tyrosine phosphorylation declined during the progression of diabetes, with concurrent increases in tyrosine nitration. Conclusions These data suggest that alterations in connexin 43 content and distribution occur during experimental diabetes and likely contribute to alterations in cardiac function, and that oxidative modification of tyrosine-mediated signaling may play a mechanistic role. PMID:24796789

  15. Characterization of a Mn sup 2+ -dependent membrane serine kinase that is activated by tyrosine phosphorylation

    SciTech Connect

    Singh, T.J. )

    1991-03-11

    It is hypothesized that the insulin receptor (IR) tyrosine kinase may directly phosphorylate and activate one or more serine kinases. The identities of such serine kinases as well as their modes of activation are unclear. The authors have described a serine kinase from rat liver membranes that copurifies with the IR on wheat germ agglutinin (WGA)-sepharose. The kinase is activated after phosphorylation of the WGA-sepharose-purified fraction by casein kinase-1, casein kinase-2, or casein kinase-3. A tyrosine kinase, possibly IR tyrosine kinase, also participates in the activation process since a phosphotyrosine phosphatase inhibitor such as vanadate, p-nitrophenyl phosphate, or phosphotyrosine is required in reaction mixtures for activation to be observed. By contrast, phosphoserine and phosphothreonine do not support activation. The activated kinase can use IR {beta}-subunit, myelin basic protein (MBP), and histones as substrates. IR {beta}-subunit phosphorylation was stimulated by MBP, histones, and polylysine, and inhibited by heparin and poly(glu, tyr). The kinase prefers Mn{sup 2+} over Mg{sup 2+} as a metal cofactor.

  16. Characterizing Tyrosine Phosphorylation Signaling in Lung Cancer Using SH2 Profiling

    PubMed Central

    Li, Jiannong; Bai, Yun; Koomen, John; Mayer, Bruce J.; Haura, Eric B.

    2010-01-01

    Background Tyrosine kinases drive the proliferation and survival of many human cancers. Thus profiling the global state of tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be used to classify tumors for prognosis and prediction. However, the comprehensive analysis of tyrosine phosphorylation of large numbers of human cancer specimens is technically challenging using current methods. Methodology/Principal Findings We used a phosphoproteomic method termed SH2 profiling to characterize the global state of phosphotyrosine (pTyr) signaling in human lung cancer cell lines. This method quantifies the phosphorylated binding sites for SH2 domains, which are used by cells to respond to changes in pTyr during signaling. Cells could be grouped based on SH2 binding patterns, with some clusters correlated with EGF receptor (EGFR) or K-RAS mutation status. Binding of specific SH2 domains, most prominently RAS pathway activators Grb2 and ShcA, correlated with EGFR mutation and sensitivity to the EGFR inhibitor erlotinib. SH2 binding patterns also reflected MET activation and could identify cells driven by multiple kinases. The pTyr responses of cells treated with kinase inhibitors provided evidence of distinct mechanisms of inhibition. Conclusions/Significance This study illustrates the potential of modular protein domains and their proteomic binding profiles as powerful molecular diagnostic tools for tumor classification and biomarker identification. PMID:20976048

  17. Serine/Threonine/Tyrosine Protein Kinase Phosphorylates Oleosin, a Regulator of Lipid Metabolic Functions1[OA

    PubMed Central

    Parthibane, Velayoudame; Iyappan, Ramachandiran; Vijayakumar, Anitha; Venkateshwari, Varadarajan; Rajasekharan, Ram

    2012-01-01

    Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A2 activities. The regulation of these distinct dual activities in a single protein is unclear. Here, we report that a serine/threonine/tyrosine protein kinase phosphorylates oleosin. Using bimolecular fluorescence complementation analysis, we demonstrate that this kinase interacts with OLE3 and that the fluorescence was associated with chloroplasts. Oleosin-green fluorescent protein fusion protein was exclusively associated with the chloroplasts. Phosphorylated OLE3 exhibited reduced monoacylglycerol acyltransferase and increased phospholipase A2 activities. Moreover, phosphatidylcholine and diacylglycerol activated oleosin phosphorylation, whereas lysophosphatidylcholine, oleic acid, and Ca2+ inhibited phosphorylation. In addition, recombinant peanut (Arachis hypogaea) kinase was determined to predominantly phosphorylate serine residues, specifically serine-18 in OLE3. Phosphorylation levels of OLE3 during seed germination were determined to be higher than in developing peanut seeds. These findings provide direct evidence for the in vivo substrate selectivity of the dual-specificity kinase and demonstrate that the bifunctional activities of oleosin are regulated by phosphorylation. PMID:22434039

  18. Fyn is required for oxidative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1.

    PubMed Central

    Sanguinetti, Amy R; Cao, Haiming; Corley Mastick, Cynthia

    2003-01-01

    Caveolin-1 is phosphorylated on Tyr(14) in response to both oxidative and hyperosmotic stress. In the present paper, we show that this phosphorylation requires activation of the Src family kinase Fyn. Stress-induced caveolin phosphorylation was abolished by three Src kinase inhibitors, SU6656, PP2 and PD180970, and was not observed in fibroblasts derived from a Src, Yes and Fyn triple-knockout mouse (SYF-/-). Using cell lines derived from single-kinase-knockout mice (Src-/-, Yes-/- and Fyn-/-), we show that expression of Fyn, but not Src or Yes, is required for stress-induced caveolin phosphorylation. Heterologous expression of Fyn in the SYF-/- and Fyn-/- cells was sufficient to reconstitute stress-induced caveolin phosphorylation, and overexpression of Fyn in wild-type cells induced hyperphosphorylation of caveolin. Fyn was autophosphorylated following oxidative stress, verifying activation of this kinase. Interestingly, there was a concomitant increase in the phosphorylation of Fyn on its Csk (C-terminal Src kinase) site, indicating feedback inhibition. Csk binds to phosphocaveolin [Cao, Courchesne and Mastick (2002) J. Biol. Chem. 277, 8771-8774] and should phosphorylate any co-localized Src-family kinases. Oxidative-stress-induced phosphorylation of caveolin-1 also requires expression of Abl [Sanguinetti and Mastick (2003) Cell Signal. 15, 289-298]. Using inhibitors and cells derived from knockout mice, we verified a requirement for both Abl and Fyn in stress-induced caveolin phosphorylation in a single cell type. Our data suggest a novel mechanism for attenuation of Src-kinase activity by Abl: stable tyrosine phosphorylation of a scaffolding protein, caveolin, and recruitment of Csk. Paxillin, a substrate of both Abl and Src, organizes a similar regulatory complex. PMID:12921535

  19. Development of a 5-plex SILAC Method Tuned for the Quantitation of Tyrosine Phosphorylation Dynamics

    PubMed Central

    Tzouros, Manuel; Golling, Sabrina; Avila, David; Lamerz, Jens; Berrera, Marco; Ebeling, Martin; Langen, Hanno; Augustin, Angélique

    2013-01-01

    The propagation of phosphorylation downstream of receptor tyrosine kinases is a key dynamic cellular event involved in signal transduction, which is often deregulated in disease states such as cancer. Probing phosphorylation dynamics is therefore crucial for understanding receptor tyrosine kinases' function and finding ways to inhibit their effects. MS methods combined with metabolic labeling such as stable isotope labeling with amino acids in cell culture (SILAC) have already proven successful in deciphering temporal phosphotyrosine perturbations. However, they are limited in terms of multiplexing, and they also are time consuming, because several experiments need to be performed separately. Here, we introduce an innovative approach based on 5-plex SILAC that allows monitoring of phosphotyrosine signaling perturbations induced by a drug treatment in one single experiment. Using this new labeling strategy specifically tailored for phosphotyrosines, it was possible to generate the time profiles for 318 unique phosphopeptides belonging to 215 proteins from an erlotinib-treated breast cancer cell line model. Hierarchical clustering of the time profiles followed by pathway enrichment analysis highlighted epidermal growth factor receptor (EGFR or ErbB1) and ErbB2 signaling as the major pathways affected by erlotinib, thereby validating the method. Moreover, based on the similarity of its time profile to those of other proteins in the ErbB pathways, the phosphorylation at Tyr453 of protein FAM59A, a recently described adaptor of EGFR, was confirmed as tightly involved in the signaling cascade. The present investigation also demonstrates the remote effect of EGFR inhibition on ErbB3 phosphorylation sites such as Tyr1289 and Tyr1328, as well as a potential feedback effect on Tyr877 of ErbB2. Overall, the 5-plex SILAC is a straightforward approach that extends sample multiplexing and builds up the arsenal of methods for tyrosine phosphorylation dynamics. PMID:23882028

  20. DMBA induces tyrosine phosphorylation of PLC-[gamma]1 and activates the tyrosine kinases lck and fyn in the HPB-ALL human T-cell line

    SciTech Connect

    Archuleta, M.M.; Schieven, G.L.; Ledbetter, J.A.; Burchiel, S.W. . Coll. of Pharmacy)

    1993-01-01

    Previous studies in this laboratory have demonstrated that DMBA alters biochemical events associated with lymphocyte activation including formation of the second messenger IP[sub 3] and the release of intracellular Ca[sup 2+]. The purpose of the present studies was to evaluate the mechanisms by which DMBA induces IP[sub 3] formation and Ca[sup 2+] release by examining phosphorylation of membrane associated proteins and activation of protein tyrosine kinases lck and fyn. These studies demonstrated that exposure of HPB-ALL cells to 10[mu]M DMBA resulted in a time- and dose-dependent increase in tyrosine phosphorylation of PLC-[gamma]1 that correlated with our earlier findings of IP[sub 3] formation and Ca[sup 2+] release. These results indicate that the effects of DMBA on the PI-PLC signaling pathway are in part, the result of DMBA-induced tyrosine phosphorylation of the PLC-[gamma]1 enzyme. The mechanism of DMBA- induced tyrosine phosphorylation of PLC-[gamma]1 may be due to activation of fyn or lck kinase activity, since it was found that DMBA increased the activity of these PTKs by more than 2-fold. Therefore, these studies demonstrate that DMBA may disrupt T cell activation by stimulating PTK activation with concomitant tyrosine phosphorylation of PLC-[gamma]1, release of IP[sub 3], and mobilization of intracellular Ca[sup 2+].

  1. DMBA induces tyrosine phosphorylation of PLC-{gamma}1 and activates the tyrosine kinases lck and fyn in the HPB-ALL human T-cell line

    SciTech Connect

    Archuleta, M.M.; Schieven, G.L.; Ledbetter, J.A.; Burchiel, S.W.

    1993-02-01

    Previous studies in this laboratory have demonstrated that DMBA alters biochemical events associated with lymphocyte activation including formation of the second messenger IP{sub 3} and the release of intracellular Ca{sup 2+}. The purpose of the present studies was to evaluate the mechanisms by which DMBA induces IP{sub 3} formation and Ca{sup 2+} release by examining phosphorylation of membrane associated proteins and activation of protein tyrosine kinases lck and fyn. These studies demonstrated that exposure of HPB-ALL cells to 10{mu}M DMBA resulted in a time- and dose-dependent increase in tyrosine phosphorylation of PLC-{gamma}1 that correlated with our earlier findings of IP{sub 3} formation and Ca{sup 2+} release. These results indicate that the effects of DMBA on the PI-PLC signaling pathway are in part, the result of DMBA-induced tyrosine phosphorylation of the PLC-{gamma}1 enzyme. The mechanism of DMBA- induced tyrosine phosphorylation of PLC-{gamma}1 may be due to activation of fyn or lck kinase activity, since it was found that DMBA increased the activity of these PTKs by more than 2-fold. Therefore, these studies demonstrate that DMBA may disrupt T cell activation by stimulating PTK activation with concomitant tyrosine phosphorylation of PLC-{gamma}1, release of IP{sub 3}, and mobilization of intracellular Ca{sup 2+}.

  2. Tyrosine phosphorylation modulates store-operated calcium entry in cultured rat epididymal basal cells.

    PubMed

    Zuo, Wu-Lin; Du, Jian-Yang; Huang, Jie-Hong; Li, Sheng; Zhang, Geng; Chen, Si-Liang; Ruan, Ye-Chun; Cheng, Christopher H K; Zhou, Wen-Liang

    2011-04-01

    Store-operated calcium entry (SOCE) is essential for many cellular processes. In this study, we investigated modulation of SOCE by tyrosine phosphorylation in rat epididymal basal cells. The intracellular Ca(2+) ([Ca(2+)]i) measurement showed that SOCE occurred in rat epididymal basal cells by pretreating the cells with thapsigargin (Tg), the inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPase. To identify the role of Ca(2+) channels in this response, we examined the effects of transient receptor potential canonical channel blockers 2-aminoethoxydiphenyl borate (2-APB), 1-[β-[3-(4-methoxyphenyl)pro-poxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride(SKF96365), Gd(3+), and non-selective cation channel blocker Ni(2+) respectively on SOCE and found that these blockers could inhibit the Ca(2+) influx to different extent. Furthermore, we studied the regulation of SOCE by tyrosine kinase pathway. The inhibitor of tyrosine kinase genistein remarkably suppressed the SOCE response, whereas sodium orthovanadate, the inhibitor of tyrosine phosphatase, greatly enhanced it. The results suggest that tyrosine kinase pathway plays a significant role in the initiation of SOCE and positively modulates SOCE in epididymal basal cells. PMID:20857412

  3. Tyrosine Phosphorylation of CagA from Chinese Helicobacter pylori Isolates in AGS Gastric Epithelial Cells

    PubMed Central

    Zhang, Youli; Argent, Richard H.; Letley, Darren P.; Thomas, Rachael J.; Atherton, John C.

    2005-01-01

    Helicobacter pylori strains possessing the cag pathogenicity island (PaI) are associated with the development of gastroduodenal diseases, including gastric cancer. cag PaI products induce the secretion of interleukin-8 (IL-8) from epithelial cells and facilitate the translocation of CagA into the cell cytosol. In East Asia, where the incidence of gastric cancer is high, most strains possess the cag PaI. To date, however, no cag PaI phenotypic data have been provided for strains isolated in mainland China. Here we used 31 Chinese strains to determine the genotypic and phenotypic status of the cag PaI. All strains possessed cagA and cagE, and we observed a variation in the length of cagA variable regions. Nucleotide sequencing of the cagA variable region revealed that CagA was of two types, a short “Western” form with two tyrosine phosphorylation sites and a longer “East Asian” form with three tyrosine phosphorylation sites. Coculture of strains with AGS epithelial cells showed that strains could induce IL-8 secretion from the cells and that CagA with three phosphorylation sites became more phosphorylated than that with two and could induce significantly (P < 0.001) more cells to elongate. We hypothesize that the preponderance of the more active East Asian form of cagA may underlie the high rate of gastric cancer in China. PMID:15695680

  4. Oestradiol stimulates tyrosine phosphorylation and hormone binding activity of its own receptor in a cell-free system.

    PubMed Central

    Auricchio, F; Migliaccio, A; Di Domenico, M; Nola, E

    1987-01-01

    Recent experiments have shown that calf uterus oestrogen receptor exists in a tyrosine-phosphorylated hormone binding form and in non-phosphorylated, non-hormone binding form. We report here that physiological concentrations of oestradiol in complex with the receptor stimulate the calf uterus receptor kinase that converts the non-hormone binding receptor into hormone binding receptor through phosphorylation of the receptor on tyrosine. The activity of this enzyme has been followed by reactivation of hormone binding sites and phosphorylation on tyrosine of calf uterus phosphatase-inactivated receptor. Phosphorylation of the receptor has been demonstrated by interaction of kinase 32P-phosphorylated proteins with anti-receptor antibody followed either by sucrose gradient centrifugation or SDS-PAGE of the immunoprecipitated proteins. Hormone stimulation of the kinase is inhibited by receptor occupancy of the anti-oestrogen tamoxifen. Oestradiol-receptor complex increases the affinity of the kinase for the dephosphorylated receptor. Findings of this report are consistent with the observation that several protein tyrosine kinases that are associated with peptide hormone receptors are stimulated by the binding of the hormone to the receptor. This is the first report on the activation of a tyrosine kinase by a steroid hormone. The finding that hormones can regulate their own receptor binding activity through a tyrosine kinase is also new. Images Fig. 2. Fig. 4. Fig. 5. PMID:3691476

  5. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    SciTech Connect

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-11-25

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by {approx} 68% and {approx} 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.

  6. Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation

    PubMed Central

    Kaiser, Christina; James, Stephen R

    2004-01-01

    Background Insulin receptor substrate (IRS) proteins are key moderators of insulin action. Their specific regulation determines downstream protein-protein interactions and confers specificity on growth factor signalling. Regulatory mechanisms that have been identified include phosphorylation of IRS proteins on tyrosine and serine residues and ubiquitination of lysine residues. This study investigated other potential molecular mechanisms of IRS-1 regulation. Results Using the sos recruitment yeast two-hybrid system we found that IRS-1 and histone deacetylase 2 (HDAC2) interact in the cytoplasmic compartment of yeast cells. The interaction mapped to the C-terminus of IRS-1 and was confirmed through co-immunoprecipitation in vitro of recombinant IRS-1 and HDAC2. HDAC2 bound to IRS-1 in mammalian cells treated with phorbol ester or after prolonged treatment with insulin/IGF-1 and also in the livers of ob/ob mice but not PTP1B knockout mice. Thus, the association occurs under conditions of compromised insulin signalling. We found that IRS-1 is an acetylated protein, of which the acetylation is increased by treatment of cells with Trichostatin A (TSA), an inhibitor of HDAC activity. TSA-induced increases in acetylation of IRS-1 were concomitant with increases in tyrosine phosphorylation in response to insulin. These effects were confirmed using RNA interference against HDAC2, indicating that HDAC2 specifically prevents phosphorylation of IRS-1 by the insulin receptor. Conclusions Our results show that IRS-1 is an acetylated protein, a post-translational modification that has not been previously described. Acetylation of IRS-1 is permissive for tyrosine phosphorylation and facilitates insulin-stimulated signal transduction. Specific inhibition of HDAC2 may increase insulin sensitivity in otherwise insulin resistant conditions. PMID:15522123

  7. Insensitivity of cardiac delayed-rectifier IKr to tyrosine phosphorylation inhibitors and stimulators

    PubMed Central

    Missan, Sergey; Zhabyeyev, Pavel; Linsdell, Paul; McDonald, Terence F

    2006-01-01

    The rapidly activating delayed-rectifying K+ current (IKr) in heart cells is an important determinant of repolarisation, and decreases in its density are implicated in acquired and inherited long QT syndromes. The objective of the present study on IKr in guinea-pig ventricular myocytes was to evaluate whether the current is acutely regulated by tyrosine phosphorylation. Myocytes configured for ruptured-patch or perforated-patch voltage-clamp were depolarised with 200-ms steps to 0 mV for measurement of IKr tail amplitude on repolarisations to −40 mV. IKr in both ruptured-patch and perforated-patch myocytes was only moderately (14–20%) decreased by 100 μM concentrations of protein tyrosine kinase (PTK) inhibitors tyrphostin A23, tyrphostin A25, and genistein. However, similar-sized decreases were induced by PTK-inactive analogues tyrphostin A1 and daidzein, suggesting that they were unrelated to inhibition of PTK. Ruptured-patch and perforated-patch myocytes were also treated with promoters of tyrosine phosphorylation, including phosphotyrosyl phosphatase (PTP) inhibitor orthovanadate, exogenous c-Src PTK, and four receptor PTK activators (insulin, insulin-like growth factor-1, epidermal growth factor, and basic fibroblast growth factor). None of these treatments had a significant effect on the amplitude of IKr. We conclude that Kr channels in guinea-pig ventricular myocytes are unlikely to be regulated by PTK and PTP. PMID:16715119

  8. Calmodulin-stimulated phosphorylation of 17 beta-estradiol receptor on tyrosine.

    PubMed Central

    Migliaccio, A; Rotondi, A; Auricchio, F

    1984-01-01

    The calf uterine 17 beta-estradiol receptor is a phosphoprotein. Phosphorylation-dephosphorylation of the receptor is controlled by a cytosol receptor kinase that activates the hormone binding and by a nuclear phosphatase that inactivates this binding. This report concerns the nature of the 17 beta-estradiol receptor kinase. Highly purified calf uterus 17 beta-estradiol receptor preinactivated by the nuclear phosphatase was used as substrate of the purified receptor kinase. Ca2+ and calmodulin stimulate both the kinase-dependent activation of the hormone binding and 32P incorporation from [gamma-32P]-ATP into the receptor. Maximal stimulation of hormone binding activation requires 1 microM Ca2+ and 0.6 microM calmodulin. Fifteen micromolar trifluoperazine is the lowest concentration that will prevent completely Ca2+-calmodulin stimulation of the kinase. The receptor is phosphorylated by the receptor kinase exclusively on tyrosine. Phosphorylation of proteins on tyrosine is a rare event implicated in hormone-induced cell growth and cell transformation. Images PMID:6207535

  9. Integrin β3 Crosstalk with VEGFR Accommodating Tyrosine Phosphorylation as a Regulatory Switch

    PubMed Central

    Malinin, Nikolay L.; Deshmukh, Lalit; Meller, Julia; Mahabeleshwar, Ganapati H.; Weber, Malory E.; Kerr, Bethany A.; Vinogradova, Olga; Byzova, Tatiana V.

    2012-01-01

    Integrins mediate cell adhesion, migration, and survival by connecting intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the importance of the interaction between β3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. Here we present in vitro evidence of the direct association between the cytoplasmic tails (CTs) of β3 and VEGFR2. Specifically, the membrane-proximal motif around 801YLSI in VEGFR2 mediates its binding to non-phosphorylated β3CT, accommodating an α-helical turn in integrin bound conformation. We also show that Y747 phosphorylation of β3 enhances the above interaction. To demonstrate the importance of β3 phosphorylation in endothelial cell functions, we synthesized β3CT-mimicking Y747 phosphorylated and unphosphorylated membrane permeable peptides. We show that a peptide containing phospho-Y747 but not F747 significantly inhibits VEGF-induced signaling and angiogenesis. Moreover, phospho-Y747 peptide exhibits inhibitory effect only in WT but not in β3 integrin knock-out or β3 integrin knock-in cells expressing β3 with two tyrosines substituted for phenylalanines, demonstrating its specificity. Importantly, these peptides have no effect on fibroblast growth factor receptor signaling. Collectively these data provide novel mechanistic insights into phosphorylation dependent cross-talk between integrin and VEGFR2. PMID:22363548

  10. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation

    SciTech Connect

    Devaux, Patricia; Messling, Veronika von; Songsungthong, Warangkhana; Springfeld, Christoph; Cattaneo, Roberto . E-mail: cattaneo.roberto@mayo.edu

    2007-03-30

    The measles virus (MV) P gene encodes three proteins: P, an essential polymerase cofactor, and C and V, which have multiple functions including immune evasion. We show here that the MV P protein also contributes to immune evasion, and that tyrosine 110 is required to block nuclear translocation of the signal transducer and activator of transcription factors (STAT) after interferon type I treatment. In particular, MV P inhibits STAT1 phosphorylation. This is shown not only by transient expression but also by reverse genetic analyses based on a new functional infectious cDNA derived from a MV vaccine vial (Moraten strain). Our study also identifies a conserved sequence around P protein tyrosine 110 as a candidate interaction site with a cellular protein.

  11. Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation.

    PubMed

    Avril, Tony; Freeman, Sylvie D; Attrill, Helen; Clarke, Rosemary G; Crocker, Paul R

    2005-05-20

    Siglec-5 (CD170) is a member of the recently described human CD33-related siglec subgroup of sialic acid binding Ig-like lectins and is expressed on myeloid cells of the hemopoietic system. Similar to other CD33-related siglecs, Siglec-5 contains two tyrosine-based motifs in its cytoplasmic tail implicated in signaling functions. To investigate the role of these motifs in Siglec-5-dependent signaling, we used transfected rat basophil leukemia cells as a model system. Tyrosine phosphorylation of Siglec-5 led to recruitment of the tyrosine phosphatases SHP-1 and SHP-2, as seen in both pull-down assays and microscopy. Siglec-5 could efficiently inhibit FcepsilonRI-mediated calcium fluxing and serotonin release after co-cross-linking. Surprisingly, a double tyrosine to alanine mutant of Siglec-5 could still mediate strong inhibition of serotonin release in the absence of detectable tyrosine phosphorylation, whereas a double tyrosine to phenylalanine mutant lost all inhibitory activity. In comparison, suppression of Siglec-5-dependent adhesion to red blood cells was reversed by either tyrosine to alanine or tyrosine to phenylalanine mutations of the membrane proximal tyrosine-based motif. Using an in vitro phosphatase assay with synthetic and recombinant forms of the cytoplasmic tail, it was shown that a double alanine mutant of Siglec-5 had weak, but significant SHP-1 activating properties similar to those of wild type, non-phosphorylated cytoplasmic tail, whereas a double phenylalanine mutant was inactive. These findings establish that Siglec-5 can be classified as an inhibitory receptor with the potential to mediate SHP-1 and/or SHP-2-dependent signaling in the absence of tyrosine phosphorylation. PMID:15769739

  12. Protein tyrosine phosphorylation during capacitation in sperm of a rare red deer, Tarim wapiti (Cervus elaphus yarkandensis).

    PubMed

    Tulake, Kuerban; Wang, Xuguang; Chen, Yong; Yu, Chucai; Jing, Binyu; Li, Heping

    2015-03-01

    High efficiency of in vitro capacitation of deer sperm has not yet been achieved as low sperm penetration rates were reported in in vitro fertilization studies. Our main goal in this study was to identify the changes of frozen-thawed sperm of the rare red deer Tarim wapiti (Cervus elaphus yarkandensis) and detect the effect of bovine serum albumin (BSA), serum, and heparin on the protein tyrosine phosphorylation of frozen-thawed sperm. The frozen-thawed sperm of Tarim wapiti was suspended in improved modified tyrode-albumin-lactate-pyruvate medium and cultured in 5% CO2 at 38.5°C, and the status of protein tyrosine phosphorylation of sperm was detected by Western blotting. Although the results showed that the type number and expression of protein tyrosine phosphorylation of frozen-thawed wapiti sperm were decreased, the tyrosine-phosphorylated proteins such as 10, 14, 40, 47, and 55kDa were increased significantly during the process of capacitation culture (1-2h). In addition, tyrosine-phosphorylated proteins were promoted by BSA rather than serum, and estrus sheep serum (ESS) rather than estrus deer serum. When ESS and heparin were used together at 4h after capacitation, four main tyrosine phosphorylation proteins (10±2, 14±2, 25±3, and 47±3kDa) had a significantly higher expression than that at 2h after capacitation. We demonstrated that these proteins were involved in wapiti sperm in vitro capacitation, heparin in the incubation media was necessary for the capacitation and tyrosine phosphorylation protein was promoted by ESS. PMID:25638741

  13. Formaldehyde-induced paxillin-tyrosine phosphorylation and paxillin and P53 downexpression in Hela cells.

    PubMed

    Zhao, Yun; Wei, Chenxi; Wu, Yang; Ma, Ping; Ding, Shumao; Yuan, Junlin; Shen, Dingwen; Yang, Xu

    2016-02-01

    Formaldehyde (FA) is an environmental pollutant and an endogenous product believed to be involved in tumorigenesis. However, the underlying mechanism of observed FA effects has not been clearly defined. Paxillin is a focal adhesion protein that may play an important role in several signaling pathways. Many paxillin-interacting proteins are involved in the regulation of actin cytoskeleton organization, which is necessary for cell motility events associated with diverse biological responses, such as embryonic development, wound repair and tumor metastasis. P53 is important in multicellular organisms, where it regulates the cell cycle and thus functions as a tumor suppressor that is involved in preventing cancer. In this study, we investigated the effects of FA on paxillin-tyrosine phosphorylation and P53 expression in Hela cells by Western blot and immunofluorescence. Western blot analysis revealed that nonlethal concentrations of FA (0.5, 1.0 and 2.0 mM, with the exposure time for 0.5, 1.0 and 2.0 h, respectively) had downregulated paxillin and wild-type p53 genes expression while upregulated paxillin-tyrosine phosphorylation significantly. At the same time, phosphotyrosine at the focal adhesion sites detected by immunofluorescence assay obviously increased in Hela cells incubated with 2.0 mM FA for 2 h. The results suggested that paxillin and p53 genes expression may be involved in FA-related adverse effects and the mechanism may be involved in paxillin-tyrosine phosphorylation. PMID:26400731

  14. Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells.

    PubMed

    Osawa, M; Masuda, M; Harada, N; Lopes, R B; Fujiwara, K

    1997-03-01

    Fluid flow triggers signal transducing events, modulates gene expression, and remodels cytoskeletal structures in vascular endothelial cells (ECs). However, the primary steps of mechanoreception are still unknown. We have recently reported that a glycoprotein is rapidly tyrosine-phosphorylated in bovine ECs exposed to fluid flow or osmotic shock. Here were cloned a 3.4 kb cDNA encoding this protein and found that this was bovine PECAM-1. The tyrosine-phosphorylation level of PECAM-1 immunoprecipitated from mechanically stimulated bovine or human ECs increased. The PECAM-1 phosphorylation was not induced by reagents that triggered Ca2+ mobilization in ECs. An autophosphorylatable band comigrating with c-Src was co-immunoprecipitated with anti-PECAM-1, and c-Src phosphorylated and bound to a GST fusion protein containing the PECAM-1 cytoplasmic domain. A spliced mRNA form lacking amino acid residues 703-721 in the cytoplasmic domain was also expressed in bovine ECs, c-Src neither phosphorylated nor bound to the fusion protein containing the spliced PECAM-1 cytoplasmic domain which lacked one (Tyr 713) of the six tyrosine residues in the PECAM-1 cytoplasmic domain. These results suggest that the YSEI motif containing Tyr 713 is the Src phosphorylation/binding site. Our study is the first demonstration of inducible tyrosine phosphorylation of PECAM-1 and suggests involvement of PECAM-1 and Src family kinases in the sensing/signal transduction of mechanical stimuli in ECs. PMID:9084985

  15. The effect of oviductal fluid on protein tyrosine phosphorylation in cryopreserved boar spermatozoa differs with the freezing method.

    PubMed

    Kumaresan, A; Johannisson, A; Saravia, F; Bergqvist, A S

    2012-02-01

    Sperm capacitation takes place in the oviduct and protein tyrosine phosphorylation of sperm proteins is a crucial step in capacitation and acquisition of fertilizing potential. Cryopreserved spermatozoa show altered expression of protein tyrosine phosphorylation in the oviduct. The present study compared two freezing methods (conventional-conventional freezing (CF) and simplified-simplified freezing (SF) methods) for their effect on the ability of boar spermatozoa to undergo protein tyrosine phosphorylation in response to oviductal fluid (ODF). Cryopreserved boar-spermatozoa were incubated with pre- and post-ovulatory ODF for 6 h at 38 °C under 5% CO(2). Aliquots of sperm samples were taken at hourly intervals and analyzed for kinematics and protein tyrosine phosphorylation. Global protein tyrosine phosphorylation in spermatozoa was measured using flow cytometry and different patterns of phosphorylation were assessed using confocal microscopy. Immediately after thawing, no significant difference was observed in post-thaw sperm motility, velocity and global tyrosine phosphorylation between the two methods of freezing although the freezing method significantly (P < 0.05) influenced the effect of oviductal fluid on these parameters during incubation. While spermatozoa frozen by the CF method showed a significantly higher (P < 0.001) proportion of phosphorylation in response to preovulatory ODF during incubation, spermatozoa frozen by the SF method did not elicit such significant response as there was no significant difference in the proportion of tyrosine phosphorylated spermatozoa between treatments at any given time during incubation. If the CF method was used, the proportion of spermatozoa displaying either tail or full sperm phosphorylation increased in response to both preovulatory (EODF) and postovulatory oviductal fluid. However, if the SF method was used, a significant increase in these patterns was noticed only in the EODF treated group. The present study

  16. Tyrosine phosphorylation of HSC70 and its interaction with RFC mediates methotrexate resistance in murine L1210 leukemia cells.

    PubMed

    Liu, Tuoen; Singh, Ratan; Rios, Zechary; Bhushan, Alok; Li, Mengxiong; Sheridan, Peter P; Bearden, Shawn E; Lai, James C K; Agbenowu, Senyo; Cao, Shousong; Daniels, Christopher K

    2015-02-01

    We previously identified and characterized a 66-68 kDa membrane-associated, tyrosine phosphorylated protein in murine leukemia L1210 cells as HSC70 which is a methotrexate (MTX)-binding protein. In order to further characterize the functional role of HSC70 in regulating MTX resistance in L1210 cells, we first showed that HSC70 colocalizes and interacts with reduced folate carrier (RFC) in L1210 cells by confocal laser scanning microscopy and Duolink in situ proximity ligation assay. The tyrosine phosphorylation status of HSC70 found in the membrane fraction was different from the parental L1210/0 and cisplatin (CDDP)-MTX cross resistant L1210/DDP cells. In MTX-binding assays, HSC70 from L1210/DDP cells showed less affinity for MTX-agarose beads than that of L1210/0 cells. In addition, genistein (a tyrosine phosphorylation inhibitor) significantly enhanced the resistance of L1210/0 cells to MTX. Moreover, site-directed mutation studies indicated the importance of tyrosine phosphorylation of HSC70 in regulating its binding to MTX. These findings suggest that tyrosine phosphorylation of HSC70 regulates the transportation of MTX into the cells via the HSC70-RFC system and contributes to MTX resistance in L1210 cells. PMID:25444929

  17. Regulation of Tyrosine Hydroxylase Expression and Phosphorylation in Dopamine Transporter-Deficient Mice.

    PubMed

    Salvatore, Michael F; Calipari, Erin S; Jones, Sara R

    2016-07-20

    Tyrosine hydroxylase (TH) and dopamine transporters (DATs) regulate dopamine (DA) neurotransmission at the biosynthesis and reuptake steps, respectively. Dysfunction or loss of these proteins occurs in impaired locomotor or addictive behavior, but little is known about the influence of DAT expression on TH function. Differences in TH phosphorylation, DA tissue content, l-DOPA biosynthesis, and DA turnover exist between the somatodendritic and terminal field compartments of nigrostriatal and mesoaccumbens pathways. We examined whether differential DAT expression affects these compartmental differences in DA regulation by comparing TH expression and phosphorylation at ser31 and ser40. In heterozygous DAT knockout (KO) (+/-) mice, DA tissue content and DA turnover were unchanged relative to wild-type mice, despite a 40% reduction in DAT protein expression. In DAT KO (-/-) mice, DA turnover increased in all DA compartments, but DA tissue content decreased (90-96%) only in terminal fields. TH protein expression and phosphorylation were differentially affected within DA pathway compartments by relative expression of DAT. TH protein decreased (∼74%), though to a significantly lesser extent than DA, in striatum and nucleus accumbens (NAc) in DAT -/- mice, with no decrease in substantia nigra or ventral tegmental area. Striatal ser31 TH phosphorylation and recovery of DA relative to TH protein expression in DAT +/- and DAT -/- mice decreased, whereas ser40 TH phosphorylation increased ∼2- to 3-fold in striatum and NAc of DAT -/- mice. These results suggest that DAT expression affects TH expression and phosphorylation largely in DA terminal field compartments, further corroborating evidence for dichotomous regulation of TH between somatodendritic and terminal field compartments of the nigrostriatal and mesoaccumbens pathways. PMID:27124386

  18. Endogenous reactive oxygen species content and modulation of tyrosine phosphorylation during sperm capacitation.

    PubMed

    Donà, G; Fiore, C; Tibaldi, E; Frezzato, F; Andrisani, A; Ambrosini, G; Fiorentin, D; Armanini, D; Bordin, L; Clari, G

    2011-10-01

    Generation of controlled amounts of reactive oxygen species (ROS) and phosphorylation of protein tyrosine (Tyr) residues are two main cellular changes involved in sperm capacitation. This study examined the relationship between tyrosine-phosphorylation (Tyr-P) and endogenous ROS production during sperm capacitation, and correlated them with both sperm motility and functionality expressed as acrosome-reacted cells. Immediate ROS generation was observed to peak after a 45-min incubation, followed by a rapid decrease in ROS content and successive regeneration of the ROS peak in 3 h and later. These two peaks were directly correlated with both the Tyr-P process involving sperm heads and tails, and the acrosome reaction (69 ± 8% and 65 ± 4%, respectively). The period of low-ROS content resulted in low Tyr-P patterns, located exclusively in the cell midpiece, and drastic reduction in acrosome-reacted cells. Ascorbic acid addition inhibited both Tyr-P patterns and acrosome reactions, whereas NADPH induced high ROS generation, with Tyr-P patterns located only on sperm tails, and prevented the acrosome reaction. Sperm hyperactivation was insensitive to ROS content. This is an important parameter for evaluation of sperm capacitation, which is achieved only when both ROS generation reaches a peak and Tyr-P involves the sperm head. PMID:20738429

  19. Elevated intracellular calcium concentration increases secretory processing of the amyloid precursor protein by a tyrosine phosphorylation-dependent mechanism.

    PubMed Central

    Petryniak, M A; Wurtman, R J; Slack, B E

    1996-01-01

    Secretory cleavage of the amyloid precursor protein (APP), a process that releases soluble APP derivatives (APPs) into the extracellular space, is stimulated by the activation of muscarinic receptors coupled to phosphoinositide hydrolysis. The signalling pathways involved in the release process exhibit both protein kinase C- and protein tyrosine phosphorylation-dependent components [Slack, Breu, Petryniak, Srivastava and Wurtman (1995) J. Biol. Chem. 270, 8337-8344]. The possibility that elevations in intracellular Ca2+ concentration initiate the tyrosine phosphorylation-dependent release of APPs was examined in human embryonic kidney cells expressing muscarinic m3 receptors. Inhibition of protein kinase C with the bisindolylmaleimide GF 109203X decreased the carbachol-evoked release of APPs by approx. 30%, as shown previously. The residual response was further decreased, in an additive manner, by the Ca2+ chelator EGTA, or by the tyrosine kinase inhibitor tyrphostin A25. The Ca2+ ionophore, ionomycin, like carbachol, stimulated both the release of APPs and the tyrosine phosphorylation of several proteins, one of which was identified as paxillin, a component of focal adhesions. The effects of ionomycin on APPs release and on protein tyrosine phosphorylation were concentration-dependent, and occurred over similar concentration ranges; both effects were inhibited only partly by GF 109203X, but were abolished by EGTA or by tyrosine kinase inhibitors. The results demonstrate for the first time that ionophore-induced elevations in intracellular Ca2+ levels elicit APPs release via increased tyrosine phosphorylation. Part of the increase in APPs release evoked by muscarinic receptor activation might be attributable to a similar mechanism. PMID:9003386

  20. Iterative tyrosine phosphorylation controls non-canonical domain utilization in Crk.

    PubMed

    Sriram, G; Jankowski, W; Kasikara, C; Reichman, C; Saleh, T; Nguyen, K-Q; Li, J; Hornbeck, P; Machida, K; Liu, T; Li, H; Kalodimos, C G; Birge, R B

    2015-08-01

    Crk, the prototypical member of a class of Src homology-2 (SH2) and Src homology-3 (SH3) domain containing proteins that controls the coordinated assembly of signaling complexes, is regulated by phosphorylation of Y221 in the linker region, which forms an intramolecular SH2-pY221 auto-clamp to interrupt SH2-N-terminal SH3 domain (SH3N) signaling. Here, we show using LC-MS/MS and by generating phospho-specific antibodies that, iteratively with Y221, the Crk C-terminal SH3 domain (SH3C) is routinely phosphorylated on Y239 and/or Y251 by several extracellular stimuli known to engage Crk. Although phosphorylation at Y221 auto-inhibits the Crk SH2, phosphorylation of the SH3C generates an unconventional phosphoSH3C-SH3N unit in which the SH3N is fully functional to bind polyproline type II ligands and the phosphoSH3C binds de novo to other SH2 domains. Using high-throughput SH2 domain profiling, artificial neural network and position-specific scoring matrix-based bioinformatics approaches, and unbiased mass spectometry, we found that the phosphoSH3C binds several SH2 domain containing proteins, including specific non-receptor tyrosine kinases-Abl via pY251 and C-terminal Src kinase via pY239. Functionally, we show that the phosphoSH3C modulates the Abl-mediated phenotypes of cell spreading and motility. Together, these studies describe a versatile mechanism wherein phosphorylation of Crk at Y221 is not an off switch but redirects signaling from the SH2-SH3N axis to a phosphoSH3C-SH3N axis, with the SH3N as a common denominator. PMID:25381819

  1. Tyrosine phosphorylation/dephosphorylation of myosin II essential light chains of Entamoeba histolytica trophozoites regulates their motility.

    PubMed

    Bonilla-Moreno, Raúl; Pérez-Yépez, Eloy-Andrés; Villegas-Sepúlveda, Nicolás; Morales, Fernando O; Meza, Isaura

    2016-08-01

    Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites. PMID:27318258

  2. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk

    PubMed Central

    Shi, Lei; Pigeonneau, Nathalie; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2014-01-01

    Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis. PMID:25374563

  3. Identification of Fer tyrosine kinase localized on microtubules as a platelet endothelial cell adhesion molecule-1 phosphorylating kinase in vascular endothelial cells.

    PubMed

    Kogata, Naoko; Masuda, Michitaka; Kamioka, Yuji; Yamagishi, Akiko; Endo, Akira; Okada, Masato; Mochizuki, Naoki

    2003-09-01

    Platelet endothelial adhesion molecule-1 (PECAM-1) is a part of intercellular junctions and triggers intracellular signaling cascades upon homophilic binding. The intracellular domain of PECAM-1 is tyrosine phosphorylated upon homophilic engagement. However, it remains unclear which tyrosine kinase phosphorylates PECAM-1. We sought to isolate tyrosine kinases responsible for PECAM-1 phosphorylation and identified Fer as a candidate, based on expression cloning. Fer kinase specifically phosphorylated PECAM-1 at the immunoreceptor tyrosine-based inhibitory motif. Notably, Fer induced tyrosine phosphorylation of SHP-2, which is known to bind to the immunoreceptor tyrosine-based inhibitory motif of PECAM-1, and Fer also induced tyrosine phosphorylation of Gab1 (Grb2-associated binder-1). Engagement-dependent PECAM-1 phosphorylation was inhibited by the overexpression of a kinase-inactive mutant of Fer, suggesting that Fer is responsible for the tyrosine phosphorylation upon PECAM-1 engagement. Furthermore, by using green fluorescent protein-tagged Fer and a time-lapse fluorescent microscope, we found that Fer localized at microtubules in polarized and motile vascular endothelial cells. Fer was dynamically associated with growing microtubules in the direction of cell-cell contacts, where p120catenin, which is known to associate with Fer, colocalized with PECAM-1. These results suggest that Fer localized on microtubules may play an important role in phosphorylation of PECAM-1, possibly through its association with p120catenin at nascent cell-cell contacts. PMID:12972546

  4. Identification of tyrosines 154 and 307 in the extracellular domain and 653 and 766 in the intracellular domain as phosphorylation sites in the heparin-binding fibroblast growth factor receptor tyrosine kinase (flg).

    PubMed Central

    Hou, J.; McKeehan, K.; Kan, M.; Carr, S. A.; Huddleston, M. J.; Crabb, J. W.; McKeehan, W. L.

    1993-01-01

    Four tyrosine residues have been identified as phosphorylation sites in the tyrosine kinase isoform of the heparin-binding fibroblast growth factor receptor flg (FGF-R1). Baculoviral-insect cell-derived recombinant FGF-R1 was phosphorylated and fragmented with trypsin while immobilized on heparin-agarose beads. Phosphotyrosine peptides were purified by chromatography on immobilized anti-phosphotyrosine antibody and analyzed by Edman degradation and electrospray tandem mass spectrometry. Tyrosine residue 653, which is in a homologous spatial position to major autophosphorylation sites in the catalytic domain of the src and insulin receptor kinases, is the major intracellular FGF-R1 phosphorylation site. Residue 766 in the COOH-terminus outside the kinase domain is a secondary site. Tyrosine residues 154 and 307, which are in the extracellular domain of transmembrane receptor isoforms and are in an unusual sequence context for tyrosine phosphorylation, were also phosphorylated. PMID:8443592

  5. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    SciTech Connect

    Haering, H.U.; White, M.F.; Machicao, F.; Ermel, B.; Schleicher, E.; Obermaier, B.

    1987-01-01

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with (/sup 32/P)orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa ..beta..-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor ..beta..-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the /sup 32/P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission.

  6. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    PubMed Central

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-01-01

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ) and tagged a green fluorescent protein (GFP) at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc), extracellular signal-regulated kinase (ERK) and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis. PMID:27463710

  7. BAZ1B is dispensable for H2AX phosphorylation on Tyrosine 142 during spermatogenesis

    PubMed Central

    Broering, Tyler J.; Wang, Yuan-Liang; Pandey, Ram Naresh; Hegde, Rashmi S.; Wang, Shao-Chun; Namekawa, Satoshi H.

    2015-01-01

    ABSTRACT Meiosis is precisely regulated by the factors involved in DNA damage response in somatic cells. Among them, phosphorylation of H2AX on Serine 139 (γH2AX) is an essential signal for the silencing of unsynapsed sex chromosomes during male meiosis. However, it remains unknown how adjacent H2AX phosphorylation on Tyrosine 142 (pTyr142) is regulated in meiosis. Here we investigate the meiotic functions of BAZ1B (WSTF), the only known Tyr142 kinase in somatic cells, using mice possessing a conditional deletion of BAZ1B. Although BAZ1B deletion causes ectopic γH2AX signals on synapsed autosomes during the early pachytene stage, BAZ1B is dispensable for fertility and critical events during spermatogenesis. BAZ1B deletion does not alter events on unsynapsed axes and pericentric heterochromatin formation. Furthermore, BAZ1B is dispensable for localization of the ATP-dependent chromatin remodeling protein SMARCA5 (SNF2h) during spermatogenesis despite the complex formation between BAZ1B and SMARCA5, known as the WICH complex, in somatic cells. Notably, pTyr142 is regulated independently of BAZ1B and is dephosphorylated on the sex chromosomes during meiosis in contrast with the presence of adjacent γH2AX. Dephosphorylation of pTyr142 is regulated by MDC1, a binding partner of γH2AX. These results reveal the distinct regulation of two adjacent phosphorylation sites of H2AX during meiosis, and suggest that another kinase mediates Tyr142 phosphorylation. PMID:25979708

  8. Phosphorylation of synthetic peptides by a tyrosine protein kinase from the particulate fraction of a lymphoma cell line.

    PubMed Central

    Casnellie, J E; Harrison, M L; Pike, L J; Hellström, K E; Krebs, E G

    1982-01-01

    The particulate fraction from a lymphoma cell line, LSTRA, was found to contain an apparent high level of tyrosine protein kinase activity. When this fraction was incubated with [gamma-32P]ATP in the presence of 10 mM MnCl2, hydrolyzed, and assayed, 70--80% of the radioactivity recovered in phosphoamino acids was in phosphotyrosine. Gel electrophoresis of the proteins showed that a large portion of the 32P was in a single protein with a molecular weight of approximately 58,000. The phosphorylated residue in this protein was identified as phosphotyrosine. Detergent extracts of the particulate fraction from LSTRA cells contained both the Mr 58,000 protein and the enzyme responsible for its phosphorylation. These extracts were found to catalyze the phosphorylation of the tyrosine residue in the synthetic peptide, Ile-Glu-Asp-Asn-Glu-Tyr-Thr-Ala-Arg-Gln-Gly, corresponding to the sequence around the tyrosine that is phosphorylated in pp60src; the Km for the peptide in this reaction was 5 mM. High-performance liquid chromatography was used to assay for this phosphorylation. A second peptide was synthesized that contained two additional arginine residues whose presence permitted the phosphorylation of the peptide to be measured by a simple assay using phosphocellulose paper. The Km for this peptide was 3--4 mM, indicating that the presence of the additional arginine residues did not alter the apparent affinity of the kinase for the peptide. Images PMID:6804939

  9. A tyrosine-phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3',5'-monophosphates and calcium.

    PubMed

    Vijayaraghavan, S; Trautman, K D; Goueli, S A; Carr, D W

    1997-06-01

    Sperm motility is regulated by protein phosphorylation. We have recently shown that a serine/threonine phosphatase system is involved in motility regulation. Two of the components of the phosphatase system, GSK-3 and PP1gamma2, are regulated by tyrosine phosphorylation. During our investigation of sperm tyrosine-phosphorylated proteins we discovered a 55-kDa protein whose tyrosine phosphorylation correlates closely to the motility state of sperm. This protein is tyrosine phosphorylated to a much higher degree in motile caudal than in immotile caput epididymal sperm. Motility inhibition of caudal epididymal sperm by protein kinase A (PKA) anchoring inhibition or by ionomycin-induced calcium overload led to the virtual disappearance of tyrosine phosphorylation of the 55-kDa protein. Conversely, treatment of sperm with motility activators, isobutylmethylxanthine or 8-bromo-cAMP, resulted in increased tyrosine phosphorylation of the protein. The protein was present in the soluble 100 000 x g supernatants of sperm extracts and was heat labile. Chromatography through diethylaminoethyl-cellulose and Western blot analysis showed that this 55-kDa protein is not a regulatory subunit of PKA or alpha-tubulin. Our results represent the identification of a soluble protein whose tyrosine phosphorylation varies directly with motility and suggest that motility regulation may involve cross talk between PKA, calcium, and tyrosine kinase pathways. PMID:9166697

  10. A computational study of the phosphorylation mechanism of the insulin receptor tyrosine kinase.

    PubMed

    Zhou, Baojing; Wong, Chung F

    2009-04-30

    Although various groups have studied the phosphorylation mechanism of the insulin receptor tyrosine kinase (IRK), an unanimous picture has not yet emerged. In this work, we performed a computational study to gain further insights. We first built a structural model of the reactant complex with the guide of several crystal structures and previous computational studies of the cyclic AMP-dependent protein kinase. We then optimized the structure by performing geometry optimization using a quantum mechanical model containing nearly 300 atoms. A reaction path was then traced between the reactant and the product by using a multiple coordinate-driven method. The calculations mapped out a sequence of structural changes depicting the conversion of the reactant to the product. Analysis of the structural changes revealed the formation of a dissociative transition state and the involvement of a proton transfer from the hydroxyl group of the tyrosyl residue of the peptide substrate to a conserved aspartate in the active site of the enzyme. The proton transfer began well before the transition state was reached and finished only shortly before the product was completely formed. In addition, the formation of a hydrogen bonding network among Arg1136, Asp1132, the gamma-phosphate of ATP, and the tyrosine residue of the substrate appeared to hold the latter two in a near-attack position for reaction. The model estimated a reaction barrier of 14 kcal/mol, semiquantitatively in accord with experiment. PMID:19334696

  11. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    PubMed Central

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  12. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    EPA Science Inventory

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)
    Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  13. Effects of platelet inhibitors on propyl gallate-induced platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activation.

    PubMed

    Xiao, Hongyan; Kovics, Richard; Jackson, Van; Remick, Daniel G

    2004-04-01

    Propyl gallate (PG) is a platelet agonist characterized by inducing platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activity. The mechanisms of platelet activation following PG stimulation were examined by pre-incubating platelets with well-defined platelet inhibitors using platelet aggregation, protein tyrosine phosphorylation, activated plasma clotting time, and annexin V binding by flow cytometry. PG-induced platelet aggregation and tyrosine phosphorylation of multiple proteins were substantially abolished by aspirin, apyrase, and abciximab (c7E3), suggesting that PG is associated with activation of platelet cyclooxygenase 1, adenosine phosphate receptors, and glycoprotein IIb/IIIa, respectively. The phosphorylation of the cytoskeletal enzyme pp60(c-src) increased following PG stimulation, but was blunted by pre-incubation of platelets with aspirin, apyrase, and c7E3, suggesting that tyrosine kinase is important for the signal transduction of platelet aggregation. Propyl gallate also activates platelet factor 3 by decreasing the platelet coagulation time and increasing platelet annexin V binding. Platelet incubation with aspirin, apyrase, and c7E3 did not alter PG-induced platelet coagulation and annexin V binding. The results suggest that platelet factor 3 activation and membrane phosphotidylserine expression were not involved with activation of platelet cyclooxygenase, adenosine phosphate receptors, and glycoprotein IIb/IIIa. PG is unique in its ability to stimulate platelet aggregation and coagulation simultaneously, and platelet inhibitors in this study affect only platelet aggregation but not platelet coagulation. PMID:15060414

  14. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  15. Striatal vessels receive phosphorylated tyrosine hydroxylase-rich innervation from midbrain dopaminergic neurons

    PubMed Central

    Afonso-Oramas, Domingo; Cruz-Muros, Ignacio; Castro-Hernández, Javier; Salas-Hernández, Josmar; Barroso-Chinea, Pedro; García-Hernández, Sonia; Lanciego, José L.; González-Hernández, Tomás

    2014-01-01

    Nowadays it is assumed that besides its roles in neuronal processing, dopamine (DA) is also involved in the regulation of cerebral blood flow. However, studies on the hemodynamic actions of DA have been mainly focused on the cerebral cortex, but the possibility that vessels in deeper brain structures receive dopaminergic axons and the origin of these axons have not been investigated. Bearing in mind the evidence of changes in the blood flow of basal ganglia in Parkinson’s disease (PD), and the pivotal role of the dopaminergic mesostriatal pathway in the pathophysiology of this disease, here we studied whether striatal vessels receive inputs from midbrain dopaminergic neurons. The injection of an anterograde neuronal tracer in combination with immunohistochemistry for dopaminergic, vascular and astroglial markers, and dopaminergic lesions, revealed that midbrain dopaminergic axons are in close apposition to striatal vessels and perivascular astrocytes. These axons form dense perivascular plexuses restricted to striatal regions in rats and monkeys. Interestingly, they are intensely immunoreactive for tyrosine hydroxylase (TH) phosphorylated at Ser19 and Ser40 residues. The presence of phosphorylated TH in vessel terminals indicates they are probably the main source of basal TH activity in the striatum, and that after activation of midbrain dopaminergic neurons, DA release onto vessels precedes that onto neurons. Furthermore, the relative weight of this “vascular component” within the mesostriatal pathway suggests that it plays a relevant role in the pathophysiology of PD. PMID:25206324

  16. Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast.

    PubMed Central

    Sia, R A; Herald, H A; Lew, D J

    1996-01-01

    A morphogenesis checkpoint in budding yeast delays nuclear division (and subsequent cell cycle progression) in cells that have failed to make a bud. We show that the ability of this checkpoint to delay nuclear division requires the SWE1 gene, encoding a protein kinase that inhibits the master cell cycle regulatory kinase Cdc28. The timing of nuclear division in cells that cannot make a bud is exquisitely sensitive to the dosage of SWE1 and MIH1 genes, which control phosphorylation of Cdc28 at tyrosine 19. In contrast, the timing of nuclear division in budded cells does not rely on Cdc28 phosphorylation, suggesting that the morphogenesis checkpoint somehow turns on this regulatory pathway. We show that SWE1 mRNA levels fluctuate during the cell cycle and are elevated in cells that cannot make a bud. However, regulation of SWE1 mRNA levels by the checkpoint is indirect, acting through a feedback loop requiring Swe1 activity. Further, the checkpoint is capable of delaying nuclear division even when SWE1 transcription is deregulated. We propose that the checkpoint delays nuclear division through post-translational regulation of Swe1 and that transcriptional feedback loops enhance the efficacy of the checkpoint. Images PMID:8930890

  17. Patterns of phosphorylated tyrosine hydroxylase vary with song production in female starlings

    PubMed Central

    Ellis, Jesse M. S.; Riters, Lauren V.

    2013-01-01

    Vocal signal production in male songbirds is well studied, but the neural correlates of female song production are poorly understood. In European starlings, females sing to defend nesting resources, and song can be considered agonistically motivated. Across vertebrates catecholamines strongly influence motivated, agonistic social behaviors. The present study was designed to provide insight into a possible role for catecholamine activity in territorial song in female starlings. We presented females that were defending nest-cavities with an unfamiliar female and assessed song production. We then measured immunolabeling for phosphorylated tyrosine hydroxylase (pTH-ir), a rate-limiting enzyme for catecholamine synthesis, in brain regions in which catecholamines stimulate agonistic behavior. Females that sang had higher pTH-ir in the caudomedial ventral tegmental area and the lateral septum than females that did not sing. Furthermore, the number of songs produced correlated positively with pTH-ir in the medial preoptic nucleus. Phosphorylation of TH is thought to occur after catecholamine release, so these results link increased catecholamine activity in several brain regions governing agonistic behavior to territorial song production in females. PMID:23270608

  18. Nordihydroguaiaretic acid inhibits IFN-gamma-induced STAT tyrosine phosphorylation in rat brain astrocytes.

    PubMed

    Jeon, Sae-Bom; Ji, Kyung-Ae; You, Hye-Jin; Kim, Jae-Hong; Jou, Ilo; Joe, Eun-Hye

    2005-03-11

    The Janus kinase (JAK) and signal transducers and activators of transcription (STAT) signal cascades are major pathways that mediate the inflammatory functions of interferon-gamma (IFN-gamma), an important pro-inflammatory cytokine. Therefore, regulation of JAK/STAT signaling should modulate IFN-gamma-mediated inflammation. In this study, we found that nordihydroguaiaretic acid (NDGA), a well-known lipoxygenase (LO) inhibitor, suppressed IFN-gamma-induced inflammatory responses in brain astrocytes. In the presence of NDGA, interferon regulatory factor-1 expression was significantly reduced. Expression of monocyte chemotactic protein-1 and interferon-gamma inducible protein-10 mRNA in response to IFN-gamma was significantly suppressed in the presence of NDGA, as was tyrosine-phosphorylation of JAK and STAT. However, the 5-LO products, leukotriene B(4) (LTB(4)) and leukotriene C(4), were not detected in cells treated with IFN-gamma, indicating that the effect of NDGA seemed to be independent of 5-LO inhibition. In addition, two other 5-LO inhibitors (Rev5901 and AA861) did not mimic the effect of NDGA, and the 5-LO metabolites, 5-hydroxyeicosatetraenoic acid and LTB(4), were unable to reverse NDGA-driven suppression of STAT activation or affect basal STAT phosphorylation. Taken together, these results suggest that NDGA regulates IFN-gamma-mediated inflammation through mechanisms unrelated to the inhibition of 5-LO. PMID:15694390

  19. LIMK Regulates Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP

    PubMed Central

    Lagoutte, Emilie; Villeneuve, Clémentine; Lafanechère, Laurence; Wells, Claire M.; Jones, Gareth E.; Chavrier, Philippe; Rossé, Carine

    2016-01-01

    During their metastatic spread, cancer cells need to remodel the extracellular matrix in order to migrate through stromal compartments adjacent to the primary tumor. Dissemination of breast carcinoma cells is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14), the main invadopodial matrix degradative component. Here, we identify MT1-MMP as a novel interacting partner of dual-specificity LIM Kinase-1 and -2 (LIMK1/2), and provide several evidence for phosphorylation of tyrosine Y573 in the cytoplasmic domain of MT1-MMP by LIMK. Phosphorylation of Y573 influences association of F-actin binding protein cortactin to MT1-MMP-positive endosomes and invadopodia formation and matrix degradation. Moreover, we show that LIMK1 regulates cortactin association to MT1-MMP-positive endosomes, while LIMK2 controls invadopodia-associated cortactin. In turn, LIMK1 and LIMK2 are required for MT1-MMP-dependent matrix degradation and cell invasion in a three-dimensional type I collagen environment. This novel link between LIMK1/2 and MT1-MMP may have important consequences for therapeutic control of breast cancer cell invasion. PMID:27116935

  20. FGFR3 intracellular mutations induce tyrosine phosphorylation in the Golgi and defective glycosylation.

    PubMed

    Gibbs, Linda; Legeai-Mallet, Laurence

    2007-04-01

    Mutations of the Fibroblast Growth Factor Receptor 3 (FGFR3) gene have been implicated in a series of skeletal dysplasias including hypochondroplasia, achondroplasia and thanatophoric dysplasia. The severity of these diseases ranges from mild dwarfism to severe dwarfism and to perinatal lethality, respectively. Although it is considered that the mutations give rise to constitutively active receptors, it remains unclear how the different mutations are functionally linked to the severity of the different pathologies. By examining various FGFR3 mutations in a HEK cell culture model, including the uncharacterized X807R mutation, it was found that only the mutations affecting the intracellular domain, induced premature receptor phosphorylation and inhibited receptor glycosylation, suggesting that premature receptor tyrosine phosphorylation of the native receptor inhibits its glycosylation. Moreover, these mutations appeared to be associated with elevated receptor signaling in the Golgi apparatus. In conclusion, although pathological severity could not be correlated with a single factor arising from FGFR3 mutations, these results suggest that intracellular domain mutations define a distinct means by which mutated FGFR3 could disrupt bone development. PMID:17320202

  1. JAK2 Tyrosine Kinase Phosphorylates and Is Negatively Regulated by Centrosomal Protein Ninein

    PubMed Central

    Jay, Jennifer; Hammer, Alan; Nestor-Kalinoski, Andrea

    2014-01-01

    JAK2 is a cytoplasmic tyrosine kinase critical for cytokine signaling. In this study, we have identified a novel centrosome-associated complex containing ninein and JAK2. We have found that active JAK2 localizes around the mother centrioles, where it partly colocalizes with ninein, a protein involved in microtubule (MT) nucleation and anchoring. We demonstrated that JAK2 is an important regulator of centrosome function. Depletion of JAK2 or use of JAK2-null cells causes defects in MT anchoring and increased numbers of cells with mitotic defects; however, MT nucleation is unaffected. We showed that JAK2 directly phosphorylates the N terminus of ninein while the C terminus of ninein inhibits JAK2 kinase activity in vitro. Overexpressed wild-type (WT) or C-terminal (amino acids 1179 to 1931) ninein inhibits JAK2. This ninein-dependent inhibition of JAK2 significantly decreases prolactin- and interferon gamma (IFN-γ)-induced tyrosyl phosphorylation of STAT1 and STAT5. Downregulation of ninein enhances JAK2 activation. These results indicate that JAK2 is a novel member of centrosome-associated complex and that this localization regulates both centrosomal function and JAK2 kinase activity, thus controlling cytokine-activated molecular pathways. PMID:25332239

  2. Girdin is phosphorylated on tyrosine 1798 when associated with structures required for migration.

    PubMed

    Omori, Kenji; Asai, Masato; Kuga, Daisuke; Ushida, Kaori; Izuchi, Tetsushi; Mii, Shinji; Enomoto, Atsushi; Asai, Naoya; Nagino, Masato; Takahashi, Masahide

    2015-03-20

    The mammalian protein Girdin interacts with several key molecules such as actin, and it functions as a regulator of the cytoskeleton. Silencing of Girdin mRNA results in defective migration in a variety of cultured cells. Moreover, knockout of Girdin causes phenotypes related to defective migration, including hypoplasia of olfactory bulbs and a widened rostral migratory stream (RMS) in mice. To elucidate the molecular basis underlying cellular migration, we generated site- and phosphorylation state-specific antibodies against human Girdin peptides carrying four putative phosphorylation sites (serine1386 [S1386], S1416, tyrosine1764 [Y1764] and Y1798) that had been identified by mutagenesis analyses or mass spectrometric studies. We found that these residues were phosphorylated in an epidermal growth factor (EGF)-dependent manner. Among the four antibodies we developed, the antibody that targeted Girdin when phosphorylated at Y1798 (pY1798) worked well for immunohistochemistry of paraffin-embedded tissues as well as for cultured cells. Immunocytochemistry of HEK293FT cells transfected with an EGF receptor expression plasmid exhibited punctate signals with pY1798. These signals colocalized with those of endocytosed EGF receptors after EGF stimulation. Signals from pY1798 were also observed on lamellipodia, filopodia, focal adhesion and stress fibers in NIH3T3 cells under conventional culture conditions. Immunohistochemistry of paraffin-embedded mouse brain at P14 using anti-pY1798 antibody displayed signals at the hilum-side (internal side) of the dentate gyrus of the hippocampus, the RMS, the accessory olfactory bulb and the olfactory bulb in which Girdin expression was detected. Primary culture of RMS neurons showed punctate signals of pY1798 at the tips of leading processes as well as in the cytoplasm, whereas no signals were observed when neurons were treated with Src inhibitor, PP2. Our data revealed the changes in the phosphorylation status of Y1798 in Girdin

  3. ECD of Tyrosine Phosphorylation in a Triple Quadrupole Mass Spectrometer with a Radio-Frequency-Free Electromagnetostatic Cell

    PubMed Central

    Voinov, Valery G.; Bennett, Samuel E.; Beckman, Joseph S.; Barofsky, Douglas F.

    2014-01-01

    A radio frequency-free electromagnetostatic (EMS) cell devised for electron-capture dissociation (ECD) of ions has been retrofitted into the collision-induced dissociation (CID) section of a triple quadrupole mass spectrometer to enable recording of ECD product-ion mass spectra and simultaneous recording of ECD-CID product-ion mass spectra. This modified instrument can be used to produce easily interpretable ECD and ECD-CID product-ion mass spectra of tyrosine-phosphorylated peptides that cover over 50% of their respective amino-acid sequences and readily identify their respective sites of phosphorylation. ECD fragmentation of doubly protonated, tyrosine-phosphorylated peptides, which was difficult to observe with FT-ICR instruments, occurs efficiently in the EMS cell. PMID:25037842

  4. ECD of Tyrosine Phosphorylation in a Triple Quadrupole Mass Spectrometer with a Radio-Frequency-Free Electromagnetostatic Cell

    NASA Astrophysics Data System (ADS)

    Voinov, Valery G.; Bennett, Samuel E.; Beckman, Joseph S.; Barofsky, Douglas F.

    2014-10-01

    A radio frequency-free electromagnetostatic (EMS) cell devised for electron-capture dissociation (ECD) of ions has been retrofitted into the collision-induced dissociation (CID) section of a triple quadrupole mass spectrometer to enable recording of ECD product-ion mass spectra and simultaneous recording of ECD-CID product-ion mass spectra. This modified instrument can be used to produce easily interpretable ECD and ECD-CID product-ion mass spectra of tyrosine-phosphorylated peptides that cover over 50% of their respective amino-acid sequences and readily identify their respective sites of phosphorylation. ECD fragmentation of doubly protonated, tyrosine-phosphorylated peptides, which was difficult to observe with FT-ICR instruments, occurs efficiently in the EMS cell.

  5. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    SciTech Connect

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjoh, Chisato; Yamauchi, Shota; Takeuchi, Kenji; Sada, Kiyonao

    2014-03-10

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 446} in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr{sup 183} and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 426} of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr{sup 426} is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr{sup 426} was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr{sup 426} following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation.

  6. PDGF-BB-mediated activation of p42(MAPK) is independent of PDGF beta-receptor tyrosine phosphorylation.

    PubMed

    Cartel, N J; Liu, J; Wang, J; Post, M

    2001-10-01

    Herein, we investigated the activity of mitogen-activated protein kinase (MAPK), a key component of downstream signaling events, which is activated subsequent to platelet-derived growth factor (PDGF)-BB stimulation. Specifically, p42(MAPK) activity peaked 60 min after addition of PDGF-BB, declined thereafter, and was determined not to be a direct or necessary component of glycosaminoglycan (GAG) synthesis. PDGF-BB also activated MAPK kinase 2 (MAPKK2) but had no effect on MAPKK1 and Raf-1 activity. Chemical inhibition of Janus kinase, phosphatidylinositol 3-kinase, Src kinase, or tyrosine phosphorylation inhibition of the PDGF beta-receptor (PDGFR-beta) did not abrogate PDGF-BB-induced p42(MAPK) activation or its threonine or tyrosine phosphorylation. A dominant negative cytoplasmic receptor for hyaluronan-mediated motility variant 4 (RHAMMv4), a regulator of MAPKK-MAPK interaction and activation, did not inhibit PDGF-BB-induced p42(MAPK) activation nor did a construct expressing PDGFR-beta with cytoplasmic tyrosines mutated to phenylalanine. However, overexpression of a dominant negative PDGFR-beta lacking the cytoplasmic signaling domain abrogated p42(MAPK) activity. These results suggest that PDGF-BB-mediated activation of p42(MAPK) requires the PDGFR-beta but is independent of its tyrosine phosphorylation. PMID:11557582

  7. Glycoprotein VI/Fc receptor γ chain-independent tyrosine phosphorylation and activation of murine platelets by collagen

    PubMed Central

    2004-01-01

    We have investigated the ability of collagen to induce signalling and functional responses in suspensions of murine platelets deficient in the FcRγ (Fc receptor γ) chain, which lack the collagen receptor GPVI (glycoprotein VI). In the absence of the FcRγ chain, collagen induced a unique pattern of tyrosine phosphorylation which was potentiated by the thromboxane analogue U46619. Immunoprecipitation studies indicated that neither collagen alone nor the combination of collagen plus U46619 induced phosphorylation of the GPVI-regulated proteins Syk and SLP-76 (Src homology 2-containing leucocyte protein of 76 kDa). A low level of tyrosine phosphorylation of phospholipase Cγ2 was observed, which was increased in the presence of U46619, although the degree of phosphorylation remained well below that observed in wild-type platelets (∼10%). By contrast, collagen-induced phosphorylation of the adapter ADAP (adhesion- and degranulation-promoting adapter protein) was substantially potentiated by U46619 to levels equivalent to those observed in wild-type platelets. Collagen plus U46619 also induced significant phosphorylation of FAK (focal adhesion kinase). The functional significance of collagen-induced non-GPVI signals was highlighted by the ability of U46619 and collagen to induce the secretion of ATP in FcRγ chain-deficient platelets, even though neither agonist was effective alone. Protein tyrosine phosphorylation and the release of ATP were abolished by the anti-(α2 integrin) antibodies Ha1/29 and HMα2, but not by blockade of αIIbβ3. These results illustrate a novel mechanism of platelet activation by collagen which is independent of the GPVI–FcRγ chain complex, and is facilitated by binding of collagen to integrin α2β1. PMID:15283702

  8. Growth hormone (GH) induces tyrosine-phosphorylated proteins in mouse L cells that express recombinant GH receptors.

    PubMed Central

    Wang, X; Xu, B; Souza, S C; Kopchick, J J

    1994-01-01

    Porcine and bovine GH receptor (GHR) cDNAs were stably expressed in mouse L cells, which normally do not possess detectable levels of mouse GHR. Expression of the GHR cDNAs resulted in specific binding of 125I-labeled GH by these cell lines. To study GHR-related signaling events in these cells, protein tyrosine phosphorylation was examined. In GH-treated cells, a tyrosine-phosphorylated protein with a molecular mass of approximately 95 kDa (pp95) was increased dramatically (approximately 100-fold) relative to non-GH-treated cells. The amount of pp95 within the cells after GH treatment was positively correlated with the number of GHRs on the cells. Tyrosine phosphorylation of pp95 could not be induced by prolactin, insulin, insulin-like growth factor I, interleukin 2, epidermal growth factor, platelet-derived growth factor, or fibroblast growth factor. Phosphorylation of pp95 was found to be a rapid event that could be observed 60 sec after GH treatment. Also, pp95 appears to exist as a complex of two proteins, i.e., pp95 and pp96. The GH-induced response by these cells may be of use in screening GH analogs for biological activity. Images PMID:7509070

  9. Taxol shares the ability of bacterial lipopolysaccharide to induce tyrosine phosphorylation of microtubule-associated protein kinase.

    PubMed

    Ding, A; Sanchez, E; Nathan, C F

    1993-11-15

    Microtubule-associated proteins may mediate the activation of macrophages by bacterial LPS. Three lines of evidence support this hypothesis: a) Taxol, a microtubule-binding diterpene, mimics the ability of LPS to induce cytokines and down-regulate receptors for TNF-alpha. In recombinant inbred mouse strains differing at the Lps gene, responsiveness to these effects of Taxol co-segregates with responsiveness to LPS. b) In vitro, LPS binds specifically to MT and preferentially to beta-tubulin. c) LPS activates microtubule-associated protein-2 kinase (MAPK). The present studies bring together and extend these lines of evidence. a) Taxol, like LPS, rapidly induces tyrosine phosphorylation of MAPK in mouse macrophages, and triggers MAPK to phosphorylate an exogenous substrate. b) Tyrosine phosphorylation of MAPK is an extremely rapid cellular response both to taxol and LPS. c) Macrophages from C3H/HeJ mice, which carry a defective Lps gene, fail to activate MAPK in response to taxol or LPS, although they activate MAPK in response to insulin or IFN-gamma. These results suggest that tyrosine phosphorylation of MAPK is among the earliest known response of macrophages to LPS. Taxol mimics LPS with respect to immediate MAPK activation, later transcriptional events, and the genetic control of both sets of responses. LPS and taxol thus appear to share an early step in a functionally important signal transduction pathway that may involve MT. PMID:7901279

  10. The mixed-lineage kinase DLK undergoes Src-dependent tyrosine phosphorylation and activation in cells exposed to vanadate or platelet-derived growth factor (PDGF).

    PubMed

    Daviau, Alex; Di Fruscio, Marco; Blouin, Richard

    2009-04-01

    Some data in the literature suggest that serine/threonine phosphorylation is required for activation of the mixed-lineage kinases (MLKs), a subgroup of mitogen-activated protein kinase kinase kinases (MAPKKKs). In this report, we demonstrate that the MLK family member DLK is activated and concurrently tyrosine-phosphorylated in cells exposed to the protein tyrosine phosphatase inhibitor vanadate. Tyrosine phosphorylation appears crucial for activation as incubation of vanadate-activated DLK molecules with a tyrosine phosphatase substantially reduced DLK enzymatic activity. Interestingly, the effects of vanadate on DLK are completely blocked by treatment with a Src family kinase inhibitor, PP2, or the expression of short hairpin RNA (shRNA) directed against Src. DLK also fails to undergo vanadate-stimulated tyrosine phosphorylation and activation in fibroblasts which lack expression of Src, Yes and Fyn, but reintroduction of wild-type Src or Fyn followed by vanadate treatment restores this response. In addition to vanadate, stimulation of cells with platelet-derived growth factor (PDGF) also induces tyrosine phosphorylation and activation of DLK by a Src-dependent mechanism. DLK seems important for PDGF signaling because its depletion by RNA interference substantially reduces PDGF-stimulated ERK and Akt kinase activation. Thus, our findings suggest that Src-dependent tyrosine phosphorylation of DLK may be important for regulation of its activity, and they support a role for DLK in PDGF signaling. PMID:19146952

  11. Bisphenol A accelerates capacitation-associated protein tyrosine phosphorylation of rat sperm by activating protein kinase A.

    PubMed

    Wan, Xiaofeng; Ru, Yanfei; Chu, Chen; Ni, Zimei; Zhou, Yuchuan; Wang, Shoulin; Zhou, Zuomin; Zhang, Yonglian

    2016-06-01

    Bisphenol A (BPA) is a synthetic estrogen-mimic chemical. It has been shown to affect many reproductive endpoints. However, the effect of BPA on the mature sperm and the mechanism of its action are not clear yet. Here, our in vitro studies indicated that BPA could accelerate sperm capacitation-associated protein tyrosine phosphorylation in time- and dose-dependent manners. In vivo, the adult male rats exposed to a high dose of BPA could result in a significant increase in sperm activity. Further investigation demonstrated that BPA could accelerate capacitation-associated protein tyrosine phosphorylation even if sperm were incubated in medium devoid of BSA, HCO3 (-), and Ca(2+) However, this action of BPA stimulation could be blocked by H89, a highly selective blocker of protein kinase A (PKA), but not by KH7, a specific inhibitor of adenylyl cyclase. These data suggest that BPA may activate PKA to affect sperm functions and male fertility. PMID:27174873

  12. Nitric oxide attenuates hydrogen peroxide-induced barrier disruption and protein tyrosine phosphorylation in monolayers of intestinal epithelial cell.

    PubMed

    Katsube, Takanori; Tsuji, Hideo; Onoda, Makoto

    2007-06-01

    The intestinal epithelium provides a barrier to the transport of harmful luminal molecules into the systemic circulation. A dysfunctional epithelial barrier is closely associated with the pathogenesis of a variety of intestinal and systemic disorders. We investigated here the effects of nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) on the barrier function of a human intestinal epithelial cell line, Caco-2. When treated with H(2)O(2), Caco-2 cell monolayers grown on permeable supports exhibited several remarkable features of barrier dysfunction as follows: a decrease in transepithelial electrical resistance, an increase in paracellular permeability to dextran, and a disruption of the intercellular junctional localization of the scaffolding protein ZO-1. In addition, an induction of tyrosine phosphorylation of numerous cellular proteins including ZO-1, E-cadherin, and beta-catenin, components of tight and adherens junctions, was observed. On the other hand, combined treatment of Caco-2 monolayers with H(2)O(2) and an NO donor (NOC5 or NOC12) relieved the damage to the barrier function and suppressed the protein tyrosine phosphorylation induced by H(2)O(2) alone. These results suggest that NO protects the barrier function of intestinal epithelia from oxidative stress by modulating some intracellular signaling pathways of protein tyrosine phosphorylation in epithelial cells. PMID:17451824

  13. Swim training of monosodium L-glutamate-obese mice improves the impaired insulin receptor tyrosine phosphorylation in pancreatic islets.

    PubMed

    Miranda, Rosiane Aparecida; Branco, Renato Chaves Souto; Gravena, Clarice; Barella, Luiz Felipe; da Silva Franco, Claudinéia Conationi; Andreazzi, Ana Eliza; de Oliveira, Júlio Cezar; Picinato, Maria Cecília; de Freitas Mathias, Paulo Cezar

    2013-06-01

    The goal of the present study was to investigate changes on glucose homoeostasis and of the insulin receptor (IR) and insulin receptor substrate-1 (IRS-1) signalling in pancreatic islets from MSG-obese mice submitted to or not submitted to swim training. Swim training of 90-day-old MSG mice was used to evaluate whether signalling pathways of the IR and IRS-1 in islets are involved with the insulin resistance and glucose intolerance observed in this obese animal model. The results showed that IR tyrosine phosphorylation (pIR) was reduced by 42 % in MSG-obese mice (MSG, 6.7 ± 0.2 arbitrary units (a.u.); control, 11.5 ± 0.4 a.u.); on the other hand, exercise training increased pIR by 76 % in MSG mice without affecting control mice (MSG, 11.8 ± 0.3; control, 12.8 ± 0.2 a.u.). Although the treatment with MSG increased IRS-1 tyrosine phosphorylation (pIRS-1) by 96 % (MSG, 17.02 ± 0.6; control, 8.7 ± 0.2 a.u.), exercise training also increased it in both groups (control, 13.6 ± 0.1; MSG, 22.2 ± 1.1 a.u.). Current research shows that the practice of swim training increases the tyrosine phosphorylation of IRS-1 which can modulate the effect caused by obesity in insulin receptors. PMID:22983867

  14. Protein-tyrosine-phosphatase 2C is phosphorylated and inhibited by 44-kDa mitogen-activated protein kinase.

    PubMed Central

    Peraldi, P; Zhao, Z; Filloux, C; Fischer, E H; Van Obberghen, E

    1994-01-01

    Protein-tyrosine-phosphatase 2C (PTP2C, also named SHPTP2, SHPTP3, or PTP1D) is a cytosolic enzyme with two Src homology 2 domains. We have investigated its regulation by phosphorylation in PC12 rat pheochromocytoma cells. In untreated cells, PTP2C was phosphorylated predominantly on serine residues. A 5-min treatment with epidermal growth factor (EGF) induced an increase in phosphorylation on threonine and, to a lesser degree, on serine. After 45 min of exposure to EGF, PTP2C phosphorylation returned to basal levels. Using an in vitro kinase assay, we found that the 44-kDa mitogen-activated protein kinase, p44mapk, phosphorylated PTP2C on serine and threonine residues. This phosphorylation resulted in a pronounced inhibition of PTP2C enzyme activity measured with phosphorylated EGF receptors as substrate. Moreover, in intact PC12 cells, PTP2C was also inhibited following a short EGF treatment, but its activity returned to normal when the exposure to EGF was maintained for 45 min. The profile of this response to EGF can be inversely correlated to that of the stimulatory action of EGF on p44mapk. These data suggest that the EGF-induced regulation of PTP2C activity is mediated by p44mapk. These findings provide evidence for an additional role of the mitogen-activated protein kinase cascade--namely, the regulation of a PTP. Images PMID:8197172

  15. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation.

    PubMed

    Cieniewicz, Anne M; Cooper, Philip R; McGehee, Jennifer; Lingham, Russell B; Kihm, Anthony J

    2016-08-01

    Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize

  16. Tyrosine 601 of Bacillus subtilis DnaK Undergoes Phosphorylation and Is Crucial for Chaperone Activity and Heat Shock Survival‡

    PubMed Central

    Shi, Lei; Ravikumar, Vaishnavi; Derouiche, Abderahmane; Macek, Boris; Mijakovic, Ivan

    2016-01-01

    In order to screen for cellular substrates of the Bacillus subtilis BY-kinase PtkA, and its cognate phosphotyrosine-protein phosphatase PtpZ, we performed a triple Stable Isotope Labeling by Amino acids in Cell culture-based quantitative phosphoproteome analysis. Detected tyrosine phosphorylation sites for which the phosphorylation level decreased in the ΔptkA strain and increased in the ΔptpZ strain, compared to the wild type (WT), were considered as potential substrates of PtkA/PtpZ. One of those sites was the residue tyrosine 601 of the molecular chaperone DnaK. We confirmed that DnaK is a substrate of PtkA and PtpZ by in vitro phosphorylation and dephosphorylation assays. In vitro, DnaK Y601F mutant exhibited impaired interaction with its co-chaperones DnaJ and GrpE, along with diminished capacity to hydrolyze ATP and assist the re-folding of denatured proteins. In vivo, loss of DnaK phosphorylation in the mutant strain dnaK Y601F, or in the strain overexpressing the phosphatase PtpZ, led to diminished survival upon heat shock, consistent with the in vitro results. The decreased survival of the mutant dnaK Y601F at an elevated temperature could be rescued by complementing with the WT dnaK allele expressed ectopically. We concluded that the residue tyrosine 601 of DnaK can be phosphorylated and dephosphorylated by PtkA and PtpZ, respectively. Furthermore, Y601 is important for DnaK chaperone activity and heat shock survival of B. subtilis. PMID:27148221

  17. Phosphorylation of Mycobacterium tuberculosis protein tyrosine kinase A PtkA by Ser/Thr protein kinases.

    PubMed

    Zhou, Peifu; Wong, Dennis; Li, Wu; Xie, Jianping; Av-Gay, Yossef

    2015-11-13

    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has inflicted about one third of mankind and claims millions of deaths worldwide annually. Signalling plays an important role in Mtb pathogenesis and persistence, and thus represents attractive resource for drug target candidates. Here, we show that protein tyrosine kinase A (PtkA) can be phosphorylated by Mtb endogenous eukaryotic-like Ser/Thr protein kinases (eSTPKs). Kinase assays showed that PknA, PknD, PknF, and PknK can phosphorylate PtkA in dose- and time-dependent manner. Enzyme kinetics suggests that PknA has the highest affinity and enzymatic efficiency towards PtkA. Furthermore, protein-protein interaction assay in surrogate host showed that PtkA interacts with multi-eSTPKs in vivo, including PknA. Lastly, we show that PtkA phosphorylation by eSTPKs occurs on threonine residues and may effect tyrosine phosphorylation levels and thus PtkA activity in vitro. These results demonstrate that PtkA can serve as a substrate to many eSTPKs and suggests that's its activity can be regulated. PMID:26417687

  18. Dopamine Pathology in Schizophrenia: Analysis of Total and Phosphorylated Tyrosine Hydroxylase in the Substantia Nigra

    PubMed Central

    Perez-Costas, Emma; Melendez-Ferro, Miguel; Rice, Matthew W.; Conley, Robert R.; Roberts, Rosalinda C.

    2012-01-01

    Introduction: Despite the importance of dopamine neurotransmission in schizophrenia, very few studies have addressed anomalies in the mesencephalic dopaminergic neurons of the substantia nigra/ventral tegmental area (SN/VTA). Tyrosine hydroxylase (TH) is the rate-limiting enzyme for the production of dopamine, and a possible contributor to the anomalies in the dopaminergic neurotransmission observed in schizophrenia. Objectives: In this study, we had three objectives: (1) Compare TH expression (mRNA and protein) in the SN/VTA of schizophrenia and control postmortem samples. (2) Assess the effect of antipsychotic medications on the expression of TH in the SN/VTA. (3) Examine possible regional differences in TH expression anomalies within the SN/VTA. Methods: To achieve these objectives three independent studies were conducted: (1) A pilot study to compare TH mRNA and TH protein levels in the SN/VTA of postmortem samples from schizophrenia and controls. (2) A chronic treatment study was performed in rodents to assess the effect of antipsychotic medications in TH protein levels in the SN/VTA. (3) A second postmortem study was performed to assess TH and phosphorylated TH protein levels in two types of samples: schizophrenia and control samples containing the entire rostro-caudal extent of the SN/VTA, and schizophrenia and control samples containing only mid-caudal regions of the SN/VTA. Results and Conclusion: Our studies showed impairment in the dopaminergic system in schizophrenia that could be mainly (or exclusively) located in the rostral region of the SN/VTA. Our studies also showed that TH protein levels were significantly abnormal in schizophrenia, while mRNA expression levels were not affected, indicating that TH pathology in this region may occur posttranscriptionally. Lastly, our antipsychotic animal treatment study showed that TH protein levels were not significantly affected by antipsychotic treatment, indicating that these anomalies are an intrinsic

  19. Tyrosine Phosphorylation Based Homo-dimerization of Arabidopsis RACK1A Proteins Regulates Oxidative Stress Signaling Pathways in Yeast

    PubMed Central

    Sabila, Mercy; Kundu, Nabanita; Smalls, Deana; Ullah, Hemayet

    2016-01-01

    Scaffold proteins are known as important cellular regulators that can interact with multiple proteins to modulate diverse signal transduction pathways. RACK1 (Receptor for Activated C Kinase 1) is a WD-40 type scaffold protein, conserved in eukaryotes, from Chlamydymonas to plants and humans, plays regulatory roles in diverse signal transduction and stress response pathways. RACK1 in humans has been implicated in myriads of neuropathological diseases including Alzheimer and alcohol addictions. Model plant Arabidopsis thaliana genome maintains three different RACK1 genes termed RACK1A, RACK1B, and RACK1C with a very high (85–93%) sequence identity among them. Loss of function mutation in Arabidopsis indicates that RACK1 proteins regulate diverse environmental stress signaling pathways including drought and salt stress resistance pathway. Recently deduced crystal structure of Arabidopsis RACK1A- very first among all of the RACK1 proteins, indicates that it can potentially be regulated by post-translational modifications, like tyrosine phosphorylations and sumoylation at key residues. Here we show evidence that RACK1A proteins, depending on diverse environmental stresses, are tyrosine phosphorylated. Utilizing site-directed mutagenesis of key tyrosine residues, it is found that tyrosine phosphorylation can potentially dictate the homo-dimerization of RACK1A proteins. The homo-dimerized RACK1A proteins play a role in providing UV-B induced oxidative stress resistance. It is proposed that RACK1A proteins ability to function as scaffold protein may potentially be regulated by the homo-dimerized RACK1A proteins to mediate diverse stress signaling pathways. PMID:26941753

  20. Tyrosine Phosphorylation Based Homo-dimerization of Arabidopsis RACK1A Proteins Regulates Oxidative Stress Signaling Pathways in Yeast.

    PubMed

    Sabila, Mercy; Kundu, Nabanita; Smalls, Deana; Ullah, Hemayet

    2016-01-01

    Scaffold proteins are known as important cellular regulators that can interact with multiple proteins to modulate diverse signal transduction pathways. RACK1 (Receptor for Activated C Kinase 1) is a WD-40 type scaffold protein, conserved in eukaryotes, from Chlamydymonas to plants and humans, plays regulatory roles in diverse signal transduction and stress response pathways. RACK1 in humans has been implicated in myriads of neuropathological diseases including Alzheimer and alcohol addictions. Model plant Arabidopsis thaliana genome maintains three different RACK1 genes termed RACK1A, RACK1B, and RACK1C with a very high (85-93%) sequence identity among them. Loss of function mutation in Arabidopsis indicates that RACK1 proteins regulate diverse environmental stress signaling pathways including drought and salt stress resistance pathway. Recently deduced crystal structure of Arabidopsis RACK1A- very first among all of the RACK1 proteins, indicates that it can potentially be regulated by post-translational modifications, like tyrosine phosphorylations and sumoylation at key residues. Here we show evidence that RACK1A proteins, depending on diverse environmental stresses, are tyrosine phosphorylated. Utilizing site-directed mutagenesis of key tyrosine residues, it is found that tyrosine phosphorylation can potentially dictate the homo-dimerization of RACK1A proteins. The homo-dimerized RACK1A proteins play a role in providing UV-B induced oxidative stress resistance. It is proposed that RACK1A proteins ability to function as scaffold protein may potentially be regulated by the homo-dimerized RACK1A proteins to mediate diverse stress signaling pathways. PMID:26941753

  1. Cardiac Troponin I Tyrosine 26 Phosphorylation Decreases Myofilament Ca2+ Sensitivity and Accelerates Deactivation

    PubMed Central

    Salhi, Hussam E.; Walton, Shane D.; Hassel, Nathan C.; Brundage, Elizabeth A.; de Tombe, Pieter P.; Janssen, Paul M.L.; Davis, Jonathan P.; Biesiadecki, Brandon J.

    2014-01-01

    Troponin I (TnI), the inhibitory subunit of the troponin complex, can be phosphorylated as a key regulatory mechanism to alter the calcium regulation of contraction. Recent work has identified phosphorylation of TnI Tyr-26 in the human heart with unknown functional effects. We hypothesized that TnI Tyr-26 N-terminal phosphorylation decreases calcium sensitivity of the thin filament, similar to the desensitizing effects of TnI Ser-23/24 phosphorylation. Our results demonstrate Tyr-26 phosphorylation and pseudo-phosphorylation decrease calcium binding to Troponin C (TnC) on the thin filament and calcium sensitivity of force development to a similar magnitude as TnI Ser-23/24 pseudo-phosphorylation. To investigate the effects of TnI Tyr-26 phosphorylation on myofilament deactivation, we measured the rate of calcium dissociation from TnC. Results demonstrate filaments containing Tyr-26 pseudo-phosphorylated TnI accelerate the rate of calcium dissociation from TnC similar to that of TnI Ser-23/24. Finally, to assess functional integration of TnI Tyr-26 with Ser-23/24 phosphorylation, we generated recombinant TnI phospho-mimetic substitutions at all three residues. Our biochemical analyses demonstrated no additive effect on calcium sensitivity or calcium-sensitive force development imposed by Tyr-26 and Ser-23/24 phosphorylation integration. However, integration of Tyr-26 phosphorylation with pseudo-phosphorylated Ser-23/24 further accelerated thin filament deactivation. Our findings suggest that TnI Tyr-26 phosphorylation functions similarly to Ser-23/24 N-terminal phosphorylation to decrease myofilament calcium sensitivity and accelerate myofilament relaxation. Furthermore, Tyr-26 phosphorylation can buffer the desensitization of Ser-23/24 phosphorylation while further accelerating thin filament deactivation. Therefore, the functional integration of TnI phosphorylation may be a common mechanism to modulate Ser-23/24 phosphorylation function. PMID:25252176

  2. Cardiac troponin I tyrosine 26 phosphorylation decreases myofilament Ca2+ sensitivity and accelerates deactivation.

    PubMed

    Salhi, Hussam E; Walton, Shane D; Hassel, Nathan C; Brundage, Elizabeth A; de Tombe, Pieter P; Janssen, Paul M L; Davis, Jonathan P; Biesiadecki, Brandon J

    2014-11-01

    Troponin I (TnI), the inhibitory subunit of the troponin complex, can be phosphorylated as a key regulatory mechanism to alter the calcium regulation of contraction. Recent work has identified phosphorylation of TnI Tyr-26 in the human heart with unknown functional effects. We hypothesized that TnI Tyr-26N-terminal phosphorylation decreases calcium sensitivity of the thin filament, similar to the desensitizing effects of TnI Ser-23/24 phosphorylation. Our results demonstrate that Tyr-26 phosphorylation and pseudo-phosphorylation decrease calcium binding to troponin C (TnC) on the thin filament and calcium sensitivity of force development to a similar magnitude as TnI Ser-23/24 pseudo-phosphorylation. To investigate the effects of TnI Tyr-26 phosphorylation on myofilament deactivation, we measured the rate of calcium dissociation from TnC. Results demonstrate that filaments containing Tyr-26 pseudo-phosphorylated TnI accelerate the rate of calcium dissociation from TnC similar to that of TnI Ser-23/24. Finally, to assess functional integration of TnI Tyr-26 with Ser-23/24 phosphorylation, we generated recombinant TnI phospho-mimetic substitutions at all three residues. Our biochemical analyses demonstrated no additive effect on calcium sensitivity or calcium-sensitive force development imposed by Tyr-26 and Ser-23/24 phosphorylation integration. However, integration of Tyr-26 phosphorylation with pseudo-phosphorylated Ser-23/24 further accelerated thin filament deactivation. Our findings suggest that TnI Tyr-26 phosphorylation functions similarly to Ser-23/24N-terminal phosphorylation to decrease myofilament calcium sensitivity and accelerate myofilament relaxation. Furthermore, Tyr-26 phosphorylation can buffer the desensitization of Ser-23/24 phosphorylation while further accelerating thin filament deactivation. Therefore, the functional integration of TnI phosphorylation may be a common mechanism to modulate Ser-23/24 phosphorylation function. PMID:25252176

  3. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    PubMed

    Hamada-Kawaguchi, Noriko; Nishida, Yasuyoshi; Yamamoto, Daisuke

    2015-01-01

    Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis. PMID:25803041

  4. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).

    PubMed

    Wheadon, Helen; Edmead, Christine; Welham, Melanie J

    2003-11-15

    The cytosolic SHP-2 (Src homology protein tyrosine phosphatase 2) has previously been implicated in IL-3 (interleukin-3) signalling [Bone, Dechert, Jirik, Schrader and Welham (1997) J. Biol. Chem. 272, 14470 -14476; Craddock and Welham (1997) J. Biol. Chem. 272, 29281-29289; Welham, Dechert, Leslie, Jirik and Schrader (1994) J. Biol. Chem. 269, 23764-23768; Qu, Nguyen, Chen and Feng (2001) Blood 97, 911-914]. To investigate the role of SHP-2 in IL-3 signalling in greater detail, we have inducibly expressed WT (wild-type) or two potentially substrate-trapping mutant forms of SHP-2, generated by mutation of Asp-425 to Ala (D425A) or Cyst-459 to Ser (C459S), in IL-3-dependent BaF/3 cells. Effects on IL-3-induced tyrosine phosphorylation, signal transduction and functional responses were examined. Expression of C459S SHP-2 protected the beta-chain of the murine IL-3R (IL-3 receptor), the adaptor protein Gab2 (Grb2-associated binder 2), and a cytosolic protein of 48 kDa from tyrosine dephosphorylation, consistent with them being bona fide substrates of SHP-2 in IL-3 signalling. The tyrosine phosphorylation of a 135 kDa transmembrane protein was also protected upon expression of C459S SHP-2. We have identified the inhibitory immunoreceptor PECAM-1 (platelet endothelial cell adhesion molecule-1)/CD31 (cluster determinant 31) as a component of this 135 kDa substrate and also show that IL-3 can induce tyrosine phosphorylation of PECAM-1. Expression of WT, C459S and D425A forms of SHP-2 had little effect on IL-3-driven proliferation or STAT5 (signal transduction and activators of transcription) phosphorylation or activation of protein kinase B. However, expression of WT SHP-2 increased ERK (extracellular-signal-regulated kinase) activation. Interestingly, expression of C459S SHP-2 decreased ERK activation at later times after IL-3 stimulation, but potentiated IL-3-induced activation of Jun N-terminal kinases. In addition, expression of C459S SHP-2 decreased cell survival in

  5. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).

    PubMed Central

    Wheadon, Helen; Edmead, Christine; Welham, Melanie J

    2003-01-01

    The cytosolic SHP-2 (Src homology protein tyrosine phosphatase 2) has previously been implicated in IL-3 (interleukin-3) signalling [Bone, Dechert, Jirik, Schrader and Welham (1997) J. Biol. Chem. 272, 14470 -14476; Craddock and Welham (1997) J. Biol. Chem. 272, 29281-29289; Welham, Dechert, Leslie, Jirik and Schrader (1994) J. Biol. Chem. 269, 23764-23768; Qu, Nguyen, Chen and Feng (2001) Blood 97, 911-914]. To investigate the role of SHP-2 in IL-3 signalling in greater detail, we have inducibly expressed WT (wild-type) or two potentially substrate-trapping mutant forms of SHP-2, generated by mutation of Asp-425 to Ala (D425A) or Cyst-459 to Ser (C459S), in IL-3-dependent BaF/3 cells. Effects on IL-3-induced tyrosine phosphorylation, signal transduction and functional responses were examined. Expression of C459S SHP-2 protected the beta-chain of the murine IL-3R (IL-3 receptor), the adaptor protein Gab2 (Grb2-associated binder 2), and a cytosolic protein of 48 kDa from tyrosine dephosphorylation, consistent with them being bona fide substrates of SHP-2 in IL-3 signalling. The tyrosine phosphorylation of a 135 kDa transmembrane protein was also protected upon expression of C459S SHP-2. We have identified the inhibitory immunoreceptor PECAM-1 (platelet endothelial cell adhesion molecule-1)/CD31 (cluster determinant 31) as a component of this 135 kDa substrate and also show that IL-3 can induce tyrosine phosphorylation of PECAM-1. Expression of WT, C459S and D425A forms of SHP-2 had little effect on IL-3-driven proliferation or STAT5 (signal transduction and activators of transcription) phosphorylation or activation of protein kinase B. However, expression of WT SHP-2 increased ERK (extracellular-signal-regulated kinase) activation. Interestingly, expression of C459S SHP-2 decreased ERK activation at later times after IL-3 stimulation, but potentiated IL-3-induced activation of Jun N-terminal kinases. In addition, expression of C459S SHP-2 decreased cell survival in

  6. An Evolution-Guided Analysis Reveals a Multi-Signaling Regulation of Fas by Tyrosine Phosphorylation and its Implication in Human Cancers

    PubMed Central

    Chakrabandhu, Krittalak; Huault, Sébastien; Durivault, Jérôme; Lang, Kévin; Ta Ngoc, Ly; Bole, Angelique; Doma, Eszter; Dérijard, Benoit; Gérard, Jean-Pierre; Pierres, Michel; Hueber, Anne-Odile

    2016-01-01

    Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive “Fas apoptosis” to “Fas multisignals” paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases. PMID:26942442

  7. Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus

    PubMed Central

    Deleuze, Charlotte; Duvoid, Anne; Moos, Françoise C; Hussy, Nicolas

    2000-01-01

    In the supraoptic nucleus, taurine, selectively released in an osmodependent manner by glial cells through volume-sensitive anion channels, is likely to inhibit neuronal activity as part of the osmoregulation of vasopressin release. We investigated the involvement of various kinases in the activation of taurine efflux by measuring [3H]taurine release from rat acutely isolated supraoptic nuclei. The protein tyrosine kinase inhibitors genistein and tyrphostin B44 specifically reduced, but did not suppress, both the basal release of taurine and that evoked by a hypotonic stimulus. Inhibition of tyrosine phosphatase by orthovanadate had the opposite effect. The tyrosine kinase and phosphatase inhibitors shifted the relationship between taurine release and medium osmolarity in opposite directions, suggesting that tyrosine phosphorylation modulates the osmosensitivity of taurine release, but is not necessary for its activation. Genistein also increased the amplitude of the decay of the release observed during prolonged hypotonic stimulation. Potentiation of taurine release by tyrosine kinases could serve to maintain a high level of taurine release in spite of cell volume regulation. Taurine release was unaffected by inhibitors and/or activators of PKA, PKC, MEK and Rho kinase. Our results demonstrate a unique regulation by protein tyrosine kinase of the osmosensitivity of taurine efflux in supraoptic astrocytes. This points to the presence of specific volume-dependent anion channels in these cells, or to a specific activation mechanism or regulatory properties. This may relate to the particular role of the osmodependent release of taurine in this structure in the osmoregulation of neuronal activity. PMID:10699075

  8. Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus.

    PubMed

    Deleuze, C; Duvoid, A; Moos, F C; Hussy, N

    2000-03-01

    1. In the supraoptic nucleus, taurine, selectively released in an osmodependent manner by glial cells through volume-sensitive anion channels, is likely to inhibit neuronal activity as part of the osmoregulation of vasopressin release. We investigated the involvement of various kinases in the activation of taurine efflux by measuring [3H]taurine release from rat acutely isolated supraoptic nuclei. 2. The protein tyrosine kinase inhibitors genistein and tyrphostin B44 specifically reduced, but did not suppress, both the basal release of taurine and that evoked by a hypotonic stimulus. Inhibition of tyrosine phosphatase by orthovanadate had the opposite effect. 3. The tyrosine kinase and phosphatase inhibitors shifted the relationship between taurine release and medium osmolarity in opposite directions, suggesting that tyrosine phosphorylation modulates the osmosensitivity of taurine release, but is not necessary for its activation. 4. Genistein also increased the amplitude of the decay of the release observed during prolonged hypotonic stimulation. Potentiation of taurine release by tyrosine kinases could serve to maintain a high level of taurine release in spite of cell volume regulation. 5. Taurine release was unaffected by inhibitors and/or activators of PKA, PKC, MEK and Rho kinase. 6. Our results demonstrate a unique regulation by protein tyrosine kinase of the osmosensitivity of taurine efflux in supraoptic astrocytes. This points to the presence of specific volume-dependent anion channels in these cells, or to a specific activation mechanism or regulatory properties. This may relate to the particular role of the osmodependent release of taurine in this structure in the osmoregulation of neuronal activity. PMID:10699075

  9. Quantification of kinetic changes in protein tyrosine phosphorylation and cytosolic Ca²⁺ concentration in boar spermatozoa during cryopreservation.

    PubMed

    Kumaresan, A; Siqueira, A P; Hossain, M S; Johannisson, A; Eriksson, I; Wallgren, M; Bergqvist, A S

    2012-01-01

    Protein tyrosine phosphorylation in sperm is associated with capacitation in several mammalian species. Although tyrosine phosphorylated proteins have been demonstrated in cryopreserved sperm, indicating capacitation-like changes during cryopreservation, these changes have not yet been quantified objectively. We monitored tyrosine phosphorylation, intracellular calcium and sperm kinematics throughout the cryopreservation process, and studied the relationships among them in boar spermatozoa. Sperm kinetics changed significantly during cryopreservation: curvilinear velocity, average path velocity and straight line velocity all decreased significantly (P < 0.05). While the percentage of sperm with high intracellular calcium declined (P < 0.05), global phosphorylation increased significantly (P < 0.01). Specifically, cooling to 5 °C induced phosphorylation in the spermatozoa. After cooling, a 32-kDa protein not observed in fresh semen appeared and was consistently present throughout the cryopreservation process. While the level of expression of this phosphoprotein decreased after addition of the second extender, frozen-thawed spermatozoa showed an increased expression. The proportion of sperm cells with phosphorylation in the acrosomal area also increased significantly (P < 0.05) during cryopreservation, indicating that phosphorylation might be associated with capacitation-like changes. These results provide the first quantitative evidence of dynamic changes in the subpopulation of boar spermatozoa undergoing tyrosine phosphorylation during cryopreservation. PMID:22541541

  10. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function.

    PubMed

    Paz, Cristina; Cornejo Maciel, Fabiana; Gorostizaga, Alejandra; Castillo, Ana F; Mori Sequeiros García, M Mercedes; Maloberti, Paula M; Orlando, Ulises D; Mele, Pablo G; Poderoso, Cecilia; Podesta, Ernesto J

    2016-01-01

    In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the "classical" protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed. PMID:27375556

  11. Preferential phosphorylation of focal adhesion kinase tyrosine 861 is critical for mediating an anti-apoptotic response to hyperosmotic stress.

    PubMed

    Lunn, J Adrian; Jacamo, Rodrigo; Rozengurt, Enrique

    2007-04-01

    The results presented here demonstrate that focal adhesion kinase (FAK) Tyr-861 is the predominant tyrosine phosphorylation site stimulated by hyperosmotic stress in a variety of cell types, including epithelial cell lines (ileum-derived IEC-18, colon-derived Caco2, and stomach-derived NCI-N87), FAK null fibroblasts re-expressing FAK, and Src family kinase triple null fibroblasts (SYF cells) in which c-Src has been restored (YF cells). We show that hyperosmotic stress-stimulated FAK phosphorylation in epithelial cells is inhibited by Src family kinase inhibitors PP2 and SU6656 and that it does not occur in SYF cells. Unexpectedly, hyperosmotic stress-induced phosphorylation of FAK at Tyr-397, Tyr-576, and most dramatically at Tyr-861 was completely insensitive to the F-actin-disrupting agents, latrunculin A and cytochalasin D. Finally, we show that in FAK null cells exposed to hyperosmotic stress or growth factor withdrawal, re-expression of wild type FAK restored cell survival, whereas re-expression of FAK mutated from tyrosine to phenylalanine at position 861 (FAKY861F) did not. Our results indicate that FAK Tyr-861 phosphorylation is required for mammalian cell survival of hyperosmotic stress. Furthermore, the results suggest that FAK is an upstream regulator (rather than downstream effector) of F-actin reorganization in response to hyperosmotic stress. We propose that FAK/c-Src bipartite enzyme is a sensor of cytoplasmic shrinkage, and that the phosphorylation on FAK Tyr-861 by Src and subsequent reorganization of F-actin can initiate an anti-apoptotic signaling pathway that protects cells from hyperosmotic stress. PMID:17289681

  12. Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells.

    PubMed

    Wehinger, Sergio; Ortiz, Rina; Díaz, María Inés; Aguirre, Adam; Valenzuela, Manuel; Llanos, Paola; Mc Master, Christopher; Leyton, Lisette; Quest, Andrew F G

    2015-05-01

    A considerable body of evidence exists implicating high levels of free saturated fatty acids in beta pancreatic cell death, although the molecular mechanisms and the signaling pathways involved have not been clearly defined. The membrane protein caveolin-1 has long been implicated in cell death, either by sensitizing to or directly inducing apoptosis and it is normally expressed in beta cells. Here, we tested whether the presence of caveolin-1 modulates free fatty acid-induced beta cell death by reexpressing this protein in MIN6 murine beta cells lacking caveolin-1. Incubation of MIN6 with palmitate, but not oleate, induced apoptotic cell death that was enhanced by the presence of caveolin-1. Moreover, palmitate induced de novo ceramide synthesis, loss of mitochondrial transmembrane potential and reactive oxygen species (ROS) formation in MIN6 cells. ROS generation promoted caveolin-1 phosphorylation on tyrosine-14 that was abrogated by the anti-oxidant N-acetylcysteine or the incubation with the Src-family kinase inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7(dimethylethyl)pyrazolo[3,4-d]pyrimidine). The expression of a non-phosphorylatable caveolin-1 tyrosine-14 to phenylalanine mutant failed to enhance palmitate-induced apoptosis while for MIN6 cells expressing the phospho-mimetic tyrosine-14 to glutamic acid mutant caveolin-1 palmitate sensitivity was comparable to that observed for MIN6 cells expressing wild type caveolin-1. Thus, caveolin-1 expression promotes palmitate-induced ROS-dependent apoptosis in MIN6 cells in a manner requiring Src family kinase mediated tyrosine-14 phosphorylation. PMID:25572853

  13. Focal adhesion kinases and calcium/calmodulin-dependent protein kinases regulate protein tyrosine phosphorylation in stallion sperm.

    PubMed

    González-Fernández, Lauro; Macías-García, Beatriz; Loux, Shavahn C; Varner, Dickson D; Hinrichs, Katrin

    2013-06-01

    Protein tyrosine phosphorylation (PY) is a hallmark of sperm capacitation. In stallion sperm, calcium inhibits PY at pH <7.8, mediated by calmodulin. To explore the mechanism of that inhibition, we incubated stallion sperm in media without added calcium, with calcium, or with calcium plus the calmodulin inhibitor W-7 (Ca/W-7 treatment). Treatment with inhibitors of calcium/calmodulin-dependent kinases, protein kinase A (PRKA), or Src family kinases suppressed the PY induced by the absence of added calcium, but not that induced by the Ca/W-7 treatment, indicating that PY in the absence of added calcium occurred via the canonical PRKA pathway, but that PY in the Ca/W-7 treatment did not. This suggested that when calmodulin was inhibited, calcium stimulated PY via a noncanonical pathway. Incubation with PF-431396, an inhibitor of focal adhesion kinases (FAKs), a family of calcium-induced protein tyrosine kinases, inhibited the PY induced both by the absence of added calcium and by the Ca/W-7 treatment. Western blotting demonstrated that both FAK family members, protein tyrosine kinases 2 and 2B, were phosphorylated in the absence of added calcium and in the Ca/W-7 treatment, but not in the presence of calcium without calmodulin inhibitors. Inhibition of FAK proteins inhibited PY in stallion sperm incubated under capacitating conditions (in the presence of calcium, bovine serum albumin, and bicarbonate at pH >7.8). These results show for the first time a role for calcium/calmodulin-dependent kinases in PRKA-dependent sperm PY; a non-PRKA-dependent pathway regulating sperm PY; and the apparent involvement of the FAK family of protein tyrosine kinases downstream in both pathways. PMID:23595906

  14. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    PubMed

    Koland, John G

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  15. The upregulation of NR2A-containing N-methyl-D-aspartate receptor function by tyrosine phosphorylation of postsynaptic density 95 via facilitating Src/proline-rich tyrosine kinase 2 activation.

    PubMed

    Zhao, Chao; Du, Cai-Ping; Peng, Yan; Xu, Zhen; Sun, Chang-Cheng; Liu, Yong; Hou, Xiao-Yu

    2015-04-01

    The activation of postsynaptic N-methyl-D-aspartate (NMDA) receptors is required for long-term potentiation (LTP) of synaptic transmission. Postsynaptic density 95 (PSD-95) serves as a scaffold protein that tethers NMDA receptor subunits, kinases, and signal molecules. Our previous study proves that PSD-95 is a substrate of Src/Fyn and identifies Y523 on PSD-95 as a principal phosphorylation site. In this paper, we try to define an involvement and molecular consequences of PSD-95 phosphorylation by Src in NMDA receptor regulation. We found that either NMDA or chemical LTP induction leads to rapid phosphorylation of PSD-95 by Src in cultured cortical neurons. The phosphorylation of Y523 on PSD-95 potentiates NR2A-containing NMDA receptor current amplitude, implying an important role of Src-mediated PSD-95 phosphorylation in NMDA receptor activation. Comparing to wild-type PSD-95, overexpression of nonphosphorylatable mutant PSD-95Y523F attenuated the NMDA-stimulated NR2A tyrosine phosphorylation that enhances electrophysiological responses of NMDA receptor channels, while did not affect the membrane localization of NR2A subunits. PSD-95Y523D, a phosphomimetic mutant of PSD-95, induced NR2A tyrosine phosphorylation even if there was no NMDA treatment. In addition, the deficiency of Y523 phosphorylation on PSD-95 impaired the facilitatory effect of PSD-95 on the activation of Src and proline-rich tyrosine kinase 2 (Pyk2) and decreased the binding of Pyk2 with PSD-95. These results indicate that PSD-95 phosphorylation by Src facilitates the integration of Pyk2 to PSD-95 signal complex, the activation of Pyk2/Src, as well as the subsequent tyrosine phosphorylation of NR2A, which ultimately results in the upregulation of NMDA receptor function and synaptic transmission. PMID:24981431

  16. Protein modification in the post-mating spermatophore of the signal crayfish Pacifastacus leniusculus: insight into the tyrosine phosphorylation in a non-motile spermatozoon.

    PubMed

    Niksirat, Hamid; Vancová, Marie; Andersson, Liselotte; James, Peter; Kouba, Antonín; Kozák, Pavel

    2016-09-01

    After mating, spermatophores of signal crayfish are stored on the body of the female for a period before fertilization. This study compared the post-mating protein profile and pattern of protein tyrosine phosphorylation of the signal crayfish spermatophore to that of the freshly ejaculated spermatophore and found substantial differences. Two major bands of tyrosine-phosphorylated proteins of molecular weights 10 and 50kDa were observed in the freshly ejaculated spermatophore of the signal crayfish. While the tyrosine-phosphorylated protein band with molecular weight 10kDa was formed by protein(s) of similar pH, the band with molecular weight of 50kDa consisted of proteins of varying pH. In the post-mating spermatophore, the band with molecular weight of 50kDa was not detected, and an increase in the level of protein tyrosine phosphorylation was observed in the 10kDa band. The microtubular radial arms of the spermatozoon showed a positive reaction to an anti-tyrosine antibody conjugated with gold particles in both the freshly ejaculated and post-mating spermatophores. In conclusion, the male gamete of the signal crayfish undergoes molecular modification during post-mating storage on the body of the female including changes in the level of protein expression and protein tyrosine phosphorylation. Structural similarity of the radial arms in the crayfish immotile spermatozoon with flagellum, which is the main site of protein tyrosine phosphorylation in the mammalian motile spermatozoa, raises questions regarding evolution and function of such organelles across the animal kingdom that must be addressed in the future studies. PMID:27481552

  17. Interaction of bacterial fatty-acid-displaced regulators with DNA is interrupted by tyrosine phosphorylation in the helix-turn-helix domain

    PubMed Central

    Derouiche, Abderahmane; Bidnenko, Vladimir; Grenha, Rosa; Pigonneau, Nathalie; Ventroux, Magali; Franz-Wachtel, Mirita; Nessler, Sylvie; Noirot-Gros, Marie-Françoise; Mijakovic, Ivan

    2013-01-01

    Bacteria possess transcription regulators (of the TetR family) specifically dedicated to repressing genes for cytochrome P450, involved in oxidation of polyunsaturated fatty acids. Interaction of these repressors with operator sequences is disrupted in the presence of fatty acids, and they are therefore known as fatty-acid-displaced regulators. Here, we describe a novel mechanism of inactivating the interaction of these proteins with DNA, illustrated by the example of Bacillus subtilis regulator FatR. FatR was found to interact in a two-hybrid assay with TkmA, an activator of the protein-tyrosine kinase PtkA. We show that FatR is phosphorylated specifically at the residue tyrosine 45 in its helix-turn-helix domain by the kinase PtkA. Structural modelling reveals that the hydroxyl group of tyrosine 45 interacts with DNA, and we show that this phosphorylation reduces FatR DNA binding capacity. Point mutants mimicking phosphorylation of FatR in vivo lead to a strong derepression of the fatR operon, indicating that this regulatory mechanism works independently of derepression by polyunsaturated fatty acids. Tyrosine 45 is a highly conserved residue, and PtkA from B. subtilis can phosphorylate FatR homologues from other bacteria. This indicates that phosphorylation of tyrosine 45 may be a general mechanism of switching off bacterial fatty-acid-displaced regulators. PMID:23939619

  18. Breakdown of paraendothelial barrier function during Marburg virus infection is associated with early tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1.

    PubMed

    Böckeler, Michael; Ströher, Ute; Seebach, Jochen; Afanasieva, Tatiana; Suttorp, Norbert; Feldmann, Heinz; Schnittler, Hans-Joachim

    2007-11-15

    Marburg virus (MARV) infection often causes fulminant shock due to pathologic immune responses and alterations of the vascular system. Cytokines released from virus-infected monocytes/macrophages provoke endothelial activation and vascular hyperpermeability and contribute to the development of shock. Tyrosine phosphorylation of cell-junction proteins is important for the regulation of paraendothelial barrier function. We showed that mediators released from MARV-infected monocytes/macrophages, as well as recombinant tumor necrosis factor (TNF)- alpha /H2O2 and interferon (IFN)- gamma , caused tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1) but not of the vascular endothelial (VE) cadherin/catenin complex proteins. Tyrosine phosphorylation of PECAM-1 was associated with delayed opening of interendothelial junctions. Interestingly, we observed an early increase in water permeability in response to TNF- alpha /H2O2 that was not due to an opening of the interendothelial junctions. These data indicate 2 distinct mechanisms for the TNF- alpha /H2O2-mediated decrease in endothelial barrier function involving tyrosine phosphorylation of PECAM-1 but not requiring tyrosine phosphorylation of VE-cadherin or catenin proteins. PMID:17940969

  19. Evidence of 5-HT components in human sperm: implications for protein tyrosine phosphorylation and the physiology of motility

    PubMed Central

    Jiménez-Trejo, Francisco; Tapia-Rodríguez, Miguel; Cerbón, Marco; Kuhn, Donald M; Manjarrez-Gutiérrez, Gabriel; Mendoza-Rodríguez, C Adriana; Picazo, Ofir

    2016-01-01

    Serotonin (5-hydroxytryptamine; C10H12N2O (5-HT)) is produced in the CNS and in some cells of peripheral tissues. In the mammalian male reproductive system, both 5-HT and tryptophan hydroxylase (TPH) have been described in Leydig cells of the testis and in principal cells of the caput epididymis. In capacitated hamster sperm, it has been shown that 5-HT promotes the acrosomal reaction. The aim of this work was to explore the existence of components of the serotoninergic system and their relevance in human sperm physiology. We used both immunocytochemistry and western blot to detect serotoninergic markers such as 5-HT, TPH1, MAOA, 5-HT1B, 5-HT3, and 5HTT; HPLC for TPH enzymatic activity; Computer Assisted Semen Analysis assays to measure sperm motility parameters and pharmacological approaches to show the effect of 5-HT in sperm motility and tyrosine phosphorylation was assessed by western blot. We found the presence of serotoninergic markers (5-HT, TPH1, MAOA, 5-HT1B, 5-HT2A, 5-HT3, 5-HTT, and TPH enzymatic activity) in human sperm. In addition, we observed a significant increase in tyrosine phosphorylation and changes in sperm motility after 5-HT treatment. In conclusion, our data demonstrate the existence of components of a serotoninergic system in human sperm and support the notion for a functional role of 5-HT in mammalian sperm physiology, which can be modulated pharmacologically. PMID:23028123

  20. Tyrosine phosphorylation of RACK1 triggers cardiomyocyte hypertrophy by regulating the interaction between p300 and GATA4.

    PubMed

    Suzuki, Hidetoshi; Katanasaka, Yasufumi; Sunagawa, Yoichi; Miyazaki, Yusuke; Funamoto, Masafumi; Wada, Hiromichi; Hasegawa, Koji; Morimoto, Tatsuya

    2016-09-01

    The zinc finger protein GATA4 is a transcription factor involved in cardiomyocyte hypertrophy. It forms a functional complex with the intrinsic histone acetyltransferase (HAT) p300. The HAT activity of p300 is required for the acetylation and transcriptional activity of GATA4, as well as for cardiomyocyte hypertrophy and the development of heart failure. In the present study, we have identified Receptor for Activated Protein Kinase C1 (RACK1) as a novel GATA4-binding protein using tandem affinity purification and mass spectrometry analyses. We found that exogenous RACK1 repressed phenylephrine (PE)-induced hypertrophic responses, such as myofibrillar organization, increased cell size, and hypertrophy-associated gene transcription, in cultured cardiomyocytes. RACK1 physically interacted with GATA4 and the overexpression of RACK1 reduced PE-induced formation of the p300/GATA4 complex and the acetylation and DNA binding activity of GATA4. In response to hypertrophic stimulation in cultured cardiomyocytes and in the hearts of hypertensive heart disease model rats, the tyrosine phosphorylation of RACK1 was increased, and the binding between GATA4 and RACK1 was reduced. In addition, the tyrosine phosphorylation of RACK1 was required for the disruption of the RACK1/GATA4 complex and for the formation of the p300/GATA4 complex. These findings demonstrate that RACK1 is involved in p300/GATA4-dependent hypertrophic responses in cardiomyocytes and is a promising therapeutic target for heart failure. PMID:27208796

  1. Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet

    SciTech Connect

    Lo, Yuan-Hung; Ho, Po-Chun; Chen, Min-Shan; Hugo, Eric; Ben-Jonathan, Nira; Wang, Shao-Chun

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Proliferating Cell Nuclear Antigen (PCNA) is phosphorylated at Y114. Black-Right-Pointing-Pointer Phospho-Y114 of PCNA is not required for cell proliferation for normal growth. Black-Right-Pointing-Pointer MCE during adipogenesis is abolished in the lack of the phosphorylation. Black-Right-Pointing-Pointer Homozygous Y114F mice are resistant to high fat diet induced obesity. Black-Right-Pointing-Pointer Our results shed light on the interface between proliferation and differentiation. -- Abstract: Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNA{sup F/F}) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNA{sup F/F} MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT

  2. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function

    PubMed Central

    Paz, Cristina; Cornejo Maciel, Fabiana; Gorostizaga, Alejandra; Castillo, Ana F.; Mori Sequeiros García, M. Mercedes; Maloberti, Paula M.; Orlando, Ulises D.; Mele, Pablo G.; Poderoso, Cecilia; Podesta, Ernesto J.

    2016-01-01

    In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the “classical” protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed. PMID:27375556

  3. Src-family protein tyrosine kinase phosphorylates WNK4 and modulates its inhibitory effect on KCNJ1 (ROMK)

    PubMed Central

    Lin, Dao-Hong; Yue, Peng; Yarborough, Orlando; Scholl, Ute I.; Giebisch, Gerhard; Lifton, Richard P.; Rinehart, Jesse; Wang, Wen-Hui

    2015-01-01

    With-no-lysine kinase 4 (WNK4) inhibits the activity of the potassium channel KCNJ1 (ROMK) in the distal nephron, thereby contributing to the maintenance of potassium homeostasis. This effect is inhibited via phosphorylation at Ser1196 by serum/glucocorticoid-induced kinase 1 (SGK1), and this inhibition is attenuated by the Src-family protein tyrosine kinase (SFK). Using Western blot and mass spectrometry, we now identify three sites in WNK4 that are phosphorylated by c-Src: Tyr1092, Tyr1094, and Tyr1143, and show that both c-Src and protein tyrosine phosphatase type 1D (PTP-1D) coimmunoprecipitate with WNK4. Mutation of Tyr1092 or Tyr1143 to phenylalanine decreased the association of c-Src or PTP-1D with WNK4, respectively. Moreover, the Tyr1092Phe mutation markedly reduced ROMK inhibition by WNK4; this inhibition was completely absent in the double mutant WNK4Y1092/1094F. Similarly, c-Src prevented SGK1-induced phosphorylation of WNK4 at Ser1196, an effect that was abrogated in the double mutant. WNK4Y1143F inhibited ROMK activity as potently as wild-type (WT) WNK4, but unlike WT, the inhibitory effect of WNK4Y1143F could not be reversed by SGK1. The failure to reverse WNK4Y1143F-induced inhibition of ROMK by SGK1 was possibly due to enhancing endogenous SFK effect on WNK4 by decreasing the WNK4–PTP-1D association because inhibition of SFK enabled SGK1 to reverse WNK4Y1143F-induced inhibition of ROMK. We conclude that WNK4 is a substrate of SFKs and that the association of c-Src and PTP-1D with WNK4 at Tyr1092 and Tyr1143 plays an important role in modulating the inhibitory effect of WNK4 on ROMK. PMID:25805816

  4. Src-family protein tyrosine kinase phosphorylates WNK4 and modulates its inhibitory effect on KCNJ1 (ROMK).

    PubMed

    Lin, Dao-Hong; Yue, Peng; Yarborough, Orlando; Scholl, Ute I; Giebisch, Gerhard; Lifton, Richard P; Rinehart, Jesse; Wang, Wen-Hui

    2015-04-01

    With-no-lysine kinase 4 (WNK4) inhibits the activity of the potassium channel KCNJ1 (ROMK) in the distal nephron, thereby contributing to the maintenance of potassium homeostasis. This effect is inhibited via phosphorylation at Ser1196 by serum/glucocorticoid-induced kinase 1 (SGK1), and this inhibition is attenuated by the Src-family protein tyrosine kinase (SFK). Using Western blot and mass spectrometry, we now identify three sites in WNK4 that are phosphorylated by c-Src: Tyr(1092), Tyr(1094), and Tyr(1143), and show that both c-Src and protein tyrosine phosphatase type 1D (PTP-1D) coimmunoprecipitate with WNK4. Mutation of Tyr(1092) or Tyr(1143) to phenylalanine decreased the association of c-Src or PTP-1D with WNK4, respectively. Moreover, the Tyr1092Phe mutation markedly reduced ROMK inhibition by WNK4; this inhibition was completely absent in the double mutant WNK4(Y1092/1094F). Similarly, c-Src prevented SGK1-induced phosphorylation of WNK4 at Ser(1196), an effect that was abrogated in the double mutant. WNK4(Y1143F) inhibited ROMK activity as potently as wild-type (WT) WNK4, but unlike WT, the inhibitory effect of WNK4(Y1143F) could not be reversed by SGK1. The failure to reverse WNK4(Y1143F)-induced inhibition of ROMK by SGK1 was possibly due to enhancing endogenous SFK effect on WNK4 by decreasing the WNK4-PTP-1D association because inhibition of SFK enabled SGK1 to reverse WNK4(Y1143F)-induced inhibition of ROMK. We conclude that WNK4 is a substrate of SFKs and that the association of c-Src and PTP-1D with WNK4 at Tyr(1092) and Tyr(1143) plays an important role in modulating the inhibitory effect of WNK4 on ROMK. PMID:25805816

  5. Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors.

    PubMed

    Chowdhury, Dhrubajyoti; Marco, Sonia; Brooks, Ian M; Zandueta, Aitor; Rao, Yijian; Haucke, Volker; Wesseling, John F; Tavalin, Steven J; Pérez-Otaño, Isabel

    2013-02-27

    Selective control of receptor trafficking provides a mechanism for remodeling the receptor composition of excitatory synapses, and thus supports synaptic transmission, plasticity, and development. GluN3A (formerly NR3A) is a nonconventional member of the NMDA receptor (NMDAR) subunit family, which endows NMDAR channels with low calcium permeability and reduced magnesium sensitivity compared with NMDARs comprising only GluN1 and GluN2 subunits. Because of these special properties, GluN3A subunits act as a molecular brake to limit the plasticity and maturation of excitatory synapses, pointing toward GluN3A removal as a critical step in the development of neuronal circuitry. However, the molecular signals mediating GluN3A endocytic removal remain unclear. Here we define a novel endocytic motif (YWL), which is located within the cytoplasmic C-terminal tail of GluN3A and mediates its binding to the clathrin adaptor AP2. Alanine mutations within the GluN3A endocytic motif inhibited clathrin-dependent internalization and led to accumulation of GluN3A-containing NMDARs at the cell surface, whereas mimicking phosphorylation of the tyrosine residue promoted internalization and reduced cell-surface expression as shown by immunocytochemical and electrophysiological approaches in recombinant systems and rat neurons in primary culture. We further demonstrate that the tyrosine residue is phosphorylated by Src family kinases, and that Src-activation limits surface GluN3A expression in neurons. Together, our results identify a new molecular signal for GluN3A internalization that couples the functional surface expression of GluN3A-containing receptors to the phosphorylation state of GluN3A subunits, and provides a molecular framework for the regulation of NMDAR subunit composition with implications for synaptic plasticity and neurodevelopment. PMID:23447623

  6. Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility.

    PubMed

    Dudiki, Tejasvi; Kadunganattil, Suraj; Ferrara, John K; Kline, Douglas W; Vijayaraghavan, Srinivasan

    2015-01-01

    Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function. PMID:26569399

  7. Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility

    PubMed Central

    Dudiki, Tejasvi; Kadunganattil, Suraj; Ferrara, John K.; Kline, Douglas W.; Vijayaraghavan, Srinivasan

    2015-01-01

    Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function. PMID:26569399

  8. p120 Catenin-Associated Fer and Fyn Tyrosine Kinases Regulate β-Catenin Tyr-142 Phosphorylation and β-Catenin-α-Catenin Interaction

    PubMed Central

    Piedra, Jose; Miravet, Susana; Castaño, Julio; Pálmer, Héctor G.; Heisterkamp, Nora; García de Herreros, Antonio; Duñach, Mireia

    2003-01-01

    β-Catenin has a key role in the formation of adherens junction through its interactions with E-cadherin and α-catenin. We show here that interaction of β-catenin with α-catenin is regulated by the phosphorylation of β-catenin Tyr-142. This residue can be phosphorylated in vitro by Fer or Fyn tyrosine kinases. Transfection of these kinases to epithelial cells disrupted the association between both catenins. We have also examined whether these kinases are involved in the regulation of this interaction by K-ras. Stable transfectants of the K-ras oncogene in intestinal epithelial IEC18 cells were generated which show little α-catenin-β-catenin association with respect to control clones; this effect is accompanied by increased Tyr-142 phosphorylation and activation of Fer and Fyn kinases. As reported for Fer, Fyn kinase is constitutively bound to p120 catenin; expression of K-ras induces the phosphorylation of p120 catenin on tyrosine residues increasing its affinity for E-cadherin and, consequently, promotes the association of Fyn with the adherens junction complex. Yes tyrosine kinase also binds to p120 catenin but only upon activation, and stimulates Fer and Fyn tyrosine kinases. These results indicate that p120 catenin acts as a docking protein facilitating the activation of Fer/Fyn tyrosine kinases by Yes and demonstrate the role of these p120 catenin-associated kinases in the regulation of β-catenin-α-catenin interaction. PMID:12640114

  9. Tyrosine phosphorylation of β-catenin affects its subcellular localization and transcriptional activity of β-catenin in Hela and Bcap-37 cells.

    PubMed

    Qian, He-Ya; Zhang, Ding-Guo; Wang, Hong-Wei; Pei, Dong-Sheng; Zheng, Jun-Nian

    2014-06-01

    In order to investigate the relationship between tyrosine phosphorylation of β-catenin and transcriptional activity of β-catenin in Hela and Bcap-37 cells, genistein (a tyrosine kinase inhibitor) was used to inhibit tyrosine phosphorylation in cells. Our results showed the total β-catenin protein levels were mainly equal in Hela, Bcap-37 and HK-2 cells, β-catenin was mainly present in nucleus in Hela and Bcap-37cells, while in HK-2 cell β-catenin was mainly located in cytoplasm. Genistein could inhibit tyrosine phosphorylation of β-catenin and downregulate nuclear β-catenin expression in Hela and Bcap-37 cells. In addition, genistein suppressed Ki-67 promoter activity and Ki-67 protein level, thus promoted cell apoptosis. Furthermore, β-catenin could increase the Ki-67 promoter activity in Hela and Bcap-37 cells. From these findings we conclude that tyrosine phosphorylation of β-catenin can regulate the cellular distribution of β-catenin and affect the transcriptional activity of β-catenin. PMID:24759800

  10. Multisite tyrosine phosphorylation of the N-terminus of Mint1/X11α by Src kinase regulates the trafficking of amyloid precursor protein.

    PubMed

    Dunning, Christopher J R; Black, Hannah L; Andrews, Katie L; Davenport, Elizabeth C; Conboy, Michael; Chawla, Sangeeta; Dowle, Adam A; Ashford, David; Thomas, Jerry R; Evans, Gareth J O

    2016-05-01

    Mint/X11 is one of the four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate β-amyloid peptide, a key player in the pathology of Alzheimer's disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here, we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2-binding motif ((202) YEEI) was identified in the N-terminus of Mint1 that is phosphorylated on tyrosine by C-Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N-terminus inhibits C-Src binding and tyrosine phosphorylation. Previous studies observed that co-expression of wild-type Mint1 and APP causes accumulation of APP in the trans-Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans-Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild-type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP. The regulation of amyloid precursor protein (APP) trafficking is poorly understood. We have discovered that the APP adapter, Mint1, is phosphorylated by C-Src kinase. Mint1 causes APP accumulation in the trans-Golgi network, whereas inhibition of Src or mutation of Mint1-Y202 permits APP recycling. The phosphorylation status of Mint1 could impact on the pathological trafficking of APP in Alzheimer's disease. PMID:26865271

  11. PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation.

    PubMed

    Inagaki, Yuichiro; Hayakawa, Fumihiko; Hirano, Daiki; Kojima, Yuki; Morishita, Takanobu; Yasuda, Takahiko; Naoe, Tomoki; Kiyoi, Hitoshi

    2016-06-24

    Plasma cell differentiation is initiated by antigen stimulation of the B cell receptor (BCR) and is regulated by BLIMP1. Prior to the stimulation of BCR, BLIMP1 is suppressed by PAX5, which is a key transcriptional repressor that maintains B cell identity. The upregulation of BLIMP1 and subsequent suppression of PAX5 by BLIMP1 are observed after the BCR stimulation. These events are considered to trigger plasma cell differentiation; however, the mechanisms responsible currently remain unclear. We herein demonstrated that the BCR signaling component, SYK, caused PAX5 tyrosine phosphorylation in vitro and in cells. Transcriptional repression on the BLIMP1 promoter by PAX5 was attenuated by this phosphorylation. The BCR stimulation induced the phosphorylation of SYK, tyrosine phosphorylation of PAX5, and up-regulation of BLIMP1 mRNA expression in B cells. The tyrosine phosphorylation of PAX5 co-operatively functioned with PAX5 serine phosphorylation by ERK1/2, which was our previous findings, to cancel the PAX5-dependent repression of BLIMP1. This co-operation may be a trigger for plasma cell differentiation. These results imply that PAX5 phosphorylation by a BCR signal is the initial event in plasma cell differentiation. PMID:27181361

  12. Regulatory role of tyrosine phosphorylation in the swelling-activated chloride current in isolated rabbit articular chondrocytes.

    PubMed

    Okumura, Noriaki; Imai, Shinji; Toyoda, Futoshi; Isoya, Eiji; Kumagai, Kousuke; Matsuura, Hiroshi; Matsusue, Yoshitaka

    2009-08-01

    Articular chondrocytes are exposed in vivo to the continually changing osmotic environment and thus require volume regulatory mechanisms. The present study was designed to investigate (i) the functional role of the swelling-activated Cl(-) current (I(Cl,swell)) in the regulatory volume decrease (RVD) and (ii) the regulatory role of tyrosine phosphorylation in I(Cl,swell), in isolated rabbit articular chondrocytes. Whole-cell membrane currents were recorded from chondrocytes in isosmotic, hyposmotic and hyperosmotic external solutions under conditions where Na(+), K(+) and Ca(2+) currents were minimized. The cell surface area was also measured using microscope images from a separate set of chondrocytes and was used as an index of cell volume. The isolated chondrocytes exhibited a RVD during sustained exposure to hyposmotic solution, which was mostly inhibited by the I(Cl,swell) blocker 4-(2-butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl)oxobutyric acid (DCPIB) at 20 microM. Exposure to a hyposmotic solution activated I(Cl,swell), which was also largely inhibited by 20 microM DCPIB. I(Cl,swell) in rabbit articular chondrocytes had a relative taurine permeability (P(tau)/P(Cl)) of 0.21. Activation of I(Cl,swell) was significantly reduced by the protein tyrosine kinase (PTK) inhibitor genistein (30 microM) but was only weakly affected by its inactive analogue daidzein (30 microM). Intracellular application of protein tyrosine phosphatase (PTP) inhibitor sodium orthovanadate (250 and 500 microM) resulted in a gradual activation of a Cl(-) current even in isosmotic solutions. This Cl(-) current was almost completely inhibited by 4,4-diisothiocyanatostilbene-2,2-disulfonate (DIDS, 500 microM) and was also largely suppressed by exposure to hyperosmotic solution, thus indicating a close similarity to I(Cl,swell). Pretreatment of chondrocytes with genistein significantly prevented the activation of the Cl(-) current by sodium orthovanadate, suggesting that the basal

  13. Phosphorylation-Independent Inhibition of Cdc28p by the Tyrosine Kinase Swe1p in the Morphogenesis Checkpoint

    PubMed Central

    McMillan, John N.; Sia, Rey A. L.; Bardes, Elaine S. G.; Lew, Daniel J.

    1999-01-01

    The morphogenesis checkpoint in budding yeast delays cell cycle progression in G2 when the actin cytoskeleton is perturbed, providing time for cells to complete bud formation prior to mitosis. Checkpoint-induced G2 arrest involves the inhibition of the master cell cycle regulatory cyclin-dependent kinase, Cdc28p, by the Wee1 family kinase Swe1p. Results of experiments using a nonphosphorylatable CDC28Y19F allele suggested that the checkpoint stimulated two inhibitory pathways, one that promoted phosphorylation at tyrosine 19 (Y19) and a poorly characterized second pathway that did not require Cdc28p Y19 phosphorylation. We present the results from a genetic screen for checkpoint-defective mutants that led to the repeated isolation of the dominant CDC28E12K allele that is resistant to Swe1p-mediated inhibition. Comparison of this allele with the nonphosphorylatable CDC28Y19F allele suggested that Swe1p is still able to inhibit CDC28Y19F in a phosphorylation-independent manner and that both the Y19 phosphorylation-dependent and -independent checkpoint pathways in fact reflect Swe1p inhibition of Cdc28p. Remarkably, we found that a Swe1p mutant lacking catalytic activity could significantly delay the cell cycle in vivo during a physiological checkpoint response, even when expressed at single copy. The finding that a Wee1 family kinase expressed at physiological levels can inhibit a nonphosphorylatable cyclin-dependent kinase has broad implications for many checkpoint studies using such mutants in other organisms. PMID:10454545

  14. The Interaction of Protein-tyrosine Phosphatase α (PTPα) and RACK1 Protein Enables Insulin-like Growth Factor 1 (IGF-1)-stimulated Abl-dependent and -independent Tyrosine Phosphorylation of PTPα*

    PubMed Central

    Khanna, Ranvikram S.; Le, Hoa T.; Wang, Jing; Fung, Thomas C. H.; Pallen, Catherine J.

    2015-01-01

    Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration. PMID:25694432

  15. The interaction of protein-tyrosine phosphatase α (PTPα) and RACK1 protein enables insulin-like growth factor 1 (IGF-1)-stimulated Abl-dependent and -independent tyrosine phosphorylation of PTPα.

    PubMed

    Khanna, Ranvikram S; Le, Hoa T; Wang, Jing; Fung, Thomas C H; Pallen, Catherine J

    2015-04-10

    Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration. PMID:25694432

  16. Characterization of DYRK2 ( dual-specificity tyrosine-phosphorylation-regulated kinase 2) from Zebrafish ( Dario rerio)

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Tan, Xungang; Zhang, Peijun; Zhang, Yuqing; Xu, Yongli

    2010-07-01

    Proteins of the DYRK (dual-specificity tyrosine-phosphorylation-regulated kinase) family are characterized by the presence of a conserved kinase domain and N-terminal DH box. DYRK2 is involved in regulating key developmental and cellular processes, such as neurogenesis, cell proliferation, cytokinesis, and cellular differentiation. Herein, we report that the ortholog of DYRK2 found in zebrafish shares about 70% identity with that of human, mouse, and chick. RT-PCR showed that DYRK2 is expressed maternally and zygotically. In-situ hybridization results show that DYRK2 is expressed in somite cells that will develop into muscles. Our results provide preliminary evidence for investigating the in-vivo function of DYRK2 in zebrafish muscle development.

  17. Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms.

    PubMed

    Wu, Kuo; Len, Guo-Wei; McAuliffe, Geoff; Ma, Chia; Tai, Jessica P; Xu, Fei; Black, Ira B

    2004-11-01

    Brain-derived growth factor (BDNF) acutely regulates synaptic transmission and modulates hippocampal long-term potentiation (LTP) and long-term depression (LTD), cellular models of plasticity associated with learning and memory. Our previous studies revealed that BDNF rapidly increases phosphorylation of NMDA receptor subunits NR1 and NR2B in the postsynaptic density (PSD), potentially linking receptor phosphorylation to synaptic plasticity. To further define molecular mechanisms governing BDNF actions, we examined tyrosine phosphorylation of GluR1, the most well-characterized subunit of AMPA receptors. Initially, we investigated synaptoneurosomes that contain intact pre- and postsynaptic elements. Incubation of synaptoneurosomes with BDNF for 5 min increased tyrosine phosphorylation of GluR1 in a dose-dependent manner, with a maximal, 4-fold enhancement at 10 ng/ml BDNF. NGF had no effects, suggesting the specificity of BDNF actions. Subsequently, we found that BDNF elicited a maximal, 2.5-fold increase in GluR1 phosphorylation in the PSD at 250 ng/ml BDNF within 5 min, suggesting that BDNF enhances the phosphorylation through postsynaptic mechanisms. Activation of trkB receptors was critical as k252-a, an inhibitor of trk receptor tyrosine kinase, blocked the BDNF-activated GluR1 phosphorylation. In addition, AP-5 and MK 801, NMDA receptor antagonists, blocked BDNF enhancement of phosphorylation in synaptoneurosomes or PSDs. Conversely, NMDA, the specific receptor agonist, evoked respective 3.8- and 2-fold increases in phosphorylation in synaptoneurosomes and PSDs within 5 min, mimicking the effects of BDNF. These findings raise the possibility that BDNF modulates GluR1 activity via changes in NMDA receptor function. Moreover, incubation of synaptoneurosomes or PSDs with BDNF and ifenprodil, a specific NR2B antagonist, reproduced the results of AP-5 and MK-801. Finally, coexposure of synaptoneurosomes or PSDs to BDNF and NMDA was not additive, suggesting that

  18. Cryopreservation-induced alterations in protein tyrosine phosphorylation of spermatozoa from different portions of the boar ejaculate.

    PubMed

    Kumaresan, A; Siqueira, A P; Hossain, M S; Bergqvist, A S

    2011-12-01

    Previous studies have shown that boar sperm quality after cryopreservation differs depending on the ejaculate fraction used and that spermatozoa contained in the first 10mL (P1) of the sperm-rich fraction (SRF) show better cryosurvival than those in the SRF-P1. Since protein tyrosine phosphorylation (PTP) in spermatozoa is related with the tolerance of spermatozoa to frozen storage and cryocapacitation, we assessed the dynamics of cryopreservation-induced PTP and intracellular calcium ([Ca(2+)]i) in spermatozoa, using flow cytometry, from P1 and SRF-P1 of the boar ejaculate at different stages of cryopreservation. Sperm kinetics, assessed using a computer-assisted semen analyzer, did not differ between P1 and SRF-P1 during cryopreservation but the decrease in sperm velocity during cryopreservation was significant (P<0.05) in SRF-P1 compared to P1. There were no significant differences in percentages of spermatozoa with high [Ca(2+)]i between P1 and SRF-P1 in fresh as well as in frozen-thawed semen. A higher (P<0.001) proportion of spermatozoa displayed PTP during the course of cryopreservation indicating a definite effect of the cryopreservation process on sperm PTP. The proportion of spermatozoa with PTP did not differ significantly between portions of the boar ejaculate. However at any given step during cryopreservation the percentage of spermatozoa with PTP was comparatively higher in SRF-P1 than P1. A 32kDa tyrosine phosphorylated protein, associated with capacitation, appeared after cooling suggesting that cooling induces capacitation-like changes in boar spermatozoa. In conclusion, the study has shown that the cryopreservation process induced PTP in spermatozoa and their proportions were similar between portions of SRF. PMID:21893053

  19. The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of β-catenin phosphorylation

    PubMed Central

    Timmerman, Ilse; Hoogenboezem, Mark; Bennett, Anton M.; Geerts, Dirk; Hordijk, Peter L.; van Buul, Jaap D.

    2012-01-01

    Impaired endothelial barrier function results in a persistent increase in endothelial permeability and vascular leakage. Repair of a dysfunctional endothelial barrier requires controlled restoration of adherens junctions, comprising vascular endothelial (VE)-cadherin and associated β-, γ-, α-, and p120-catenins. Little is known about the mechanisms by which recovery of VE-cadherin–mediated cell–cell junctions is regulated. Using the inflammatory mediator thrombin, we demonstrate an important role for the Src homology 2-domain containing tyrosine phosphatase (SHP2) in mediating recovery of the VE-cadherin–controlled endothelial barrier. Using SHP2 substrate-trapping mutants and an in vitro phosphatase activity assay, we validate β-catenin as a bona fide SHP2 substrate. SHP2 silencing and SHP2 inhibition both result in delayed recovery of endothelial barrier function after thrombin stimulation. Moreover, on thrombin challenge, we find prolonged elevation in tyrosine phosphorylation levels of VE-cadherin–associated β-catenin in SHP2-depleted cells. No disassembly of the VE-cadherin complex is observed throughout the thrombin response. Using fluorescence recovery after photobleaching, we show that loss of SHP2 reduces the mobility of VE-cadherin at recovered cell–cell junctions. In conclusion, our data show that the SHP2 phosphatase plays an important role in the recovery of disrupted endothelial cell–cell junctions by dephosphorylating VE-cadherin–associated β-catenin and promoting the mobility of VE-cadherin at the plasma membrane. PMID:22956765

  20. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    SciTech Connect

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.; Ulrich, Robert G.; Burke, Terrence R. Jr Waugh, David S.

    2011-07-01

    The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacing a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors.

  1. MERTK signaling in the retinal pigment epithelium regulates the tyrosine phosphorylation of GDP dissociation inhibitor alpha from the GDI/CHM family of RAB GTPase effectors.

    PubMed

    Shelby, Shameka J; Feathers, Kecia L; Ganios, Anna M; Jia, Lin; Miller, Jason M; Thompson, Debra A

    2015-11-01

    Photoreceptor outer segments (OS) in the vertebrate retina undergo a process of continual renewal involving shedding of disc membranes that are cleared by phagocytic uptake into the retinal pigment epithelium (RPE). In dystrophic Royal College of Surgeons (RCS) rats, OS phagocytosis is blocked by a mutation in the gene encoding the receptor tyrosine kinase MERTK. To identify proteins tyrosine-phosphorylated downstream of MERTK in the RPE, MALDI-mass spectrometry with peptide-mass fingerprinting was used in comparative studies of RCS congenic and dystrophic rats. At times corresponding to peak phagocytic activity, the RAB GTPase effector GDP dissociation inhibitor alpha (GDI1) was found to undergo tyrosine phosphorylation only in congenic rats. In cryosections of native RPE/choroid, GDI1 colocalized with MERTK and the intracellular tyrosine-kinase SRC. In cultured RPE-J cells, and in transfected heterologous cells, MERTK stimulated SRC-mediated tyrosine phosphorylation of GDI1. In OS-fed RPE-J cells, GDI1 colocalized with MERTK and SRC on apparent phagosomes located near the apical membrane. In addition, both GDI1 and RAB5, a regulator of vesicular transport, colocalized with ingested OS. Taken together, these findings identify a novel role of MERTK signaling in membrane trafficking in the RPE that is likely to subserve mechanisms of phagosome formation. PMID:26283020

  2. Dimerization is required for SH3PX1 tyrosine phosphorylation in response to epidermal growth factor signalling and interaction with ACK2

    PubMed Central

    Childress, Chandra; Lin, Qiong; Yang, Wannian

    2005-01-01

    SH3PX1 [SNX9 (sorting nexin 9)] is a member of SNX super-family that is recognized by sharing a PX (phox homology) domain. We have previously shown that SH3PX1, phosphorylated by ACK2 (activated Cdc42-associated tyrosine kinase 2), regulates the degradation of EGF (epidermal growth factor) receptor. In mapping the tyrosine phosphorylation region, we found that the C-terminus of SH3PX1 is required for its tyrosine phosphorylation. Further analysis indicates that this region, known as the coiled-coil domain or the BAR (Bin–amphiphysin–Rvs homology) domain, is the dimerization domain of SH3PX1. Truncation of as little as 13 amino acid residues at the very C-terminus in the coiled-coil/BAR domain of SH3PX1 resulted in no dimerization, no ACK2-catalysed and EGF-stimulated tyrosine phosphorylation and no interaction with ACK2. The intracellular localization of SH3PX1 became dysfunctional upon truncation in the BAR domain. Taken together, our results indicate that the dimerization, which is mediated by the BAR domain, is essential for the intracellular function of SH3PX1. PMID:16316319

  3. Dimerization is required for SH3PX1 tyrosine phosphorylation in response to epidermal growth factor signalling and interaction with ACK2.

    PubMed

    Childress, Chandra; Lin, Qiong; Yang, Wannian

    2006-03-15

    SH3PX1 [SNX9 (sorting nexin 9)] is a member of SNX super-family that is recognized by sharing a PX (phox homology) domain. We have previously shown that SH3PX1, phosphorylated by ACK2 (activated Cdc42-associated tyrosine kinase 2), regulates the degradation of EGF (epidermal growth factor) receptor. In mapping the tyrosine phosphorylation region, we found that the C-terminus of SH3PX1 is required for its tyrosine phosphorylation. Further analysis indicates that this region, known as the coiled-coil domain or the BAR (Bin-amphiphysin-Rvs homology) domain, is the dimerization domain of SH3PX1. Truncation of as little as 13 amino acid residues at the very C-terminus in the coiled-coil/BAR domain of SH3PX1 resulted in no dimerization, no ACK2-catalysed and EGF-stimulated tyrosine phosphorylation and no interaction with ACK2. The intracellular localization of SH3PX1 became dysfunctional upon truncation in the BAR domain. Taken together, our results indicate that the dimerization, which is mediated by the BAR domain, is essential for the intracellular function of SH3PX1. PMID:16316319

  4. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  5. C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease

    PubMed Central

    Lázaro, Diana F.; Pinho, Raquel; Valerius, Oliver; Outeiro, Tiago F.; Braus, Gerhard H.

    2016-01-01

    Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring tyrosine residues Y125, Y133 and Y136 are phosphorylation and nitration sites. Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues. Nitrated tyrosine residues, but not di-tyrosine-crosslinked dimers, contributed to αSyn cytotoxicity and aggregation. Analysis of tyrosine residues involved in nitration and crosslinking revealed that the C-terminus, rather than the N-terminus of αSyn, is modified by nitration and di-tyrosine formation. The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast. A30P formed more dimers than wild-type αSyn, suggesting that dimer formation represents a cellular detoxification pathway in yeast. Deletion of the yeast flavohemoglobin gene YHB1 resulted in an increase of cellular nitrative stress and cytotoxicity leading to enhanced aggregation of A30P αSyn. Yhb1 protected yeast from A30P-induced mitochondrial fragmentation and peroxynitrite-induced nitrative stress. Strikingly, overexpression of neuroglobin, the human homolog of YHB1, protected against αSyn inclusion formation in mammalian cells. In total, our data suggest that C-terminal Y133 plays a major role in αSyn aggregate clearance by supporting the protective S129 phosphorylation for autophagy and by promoting proteasome clearance. C-terminal tyrosine nitration increases pathogenicity and can only be partially detoxified by

  6. ACTH-induced caveolin-1 tyrosine phosphorylation is related to podosome assembly in Y1 adrenal cells

    SciTech Connect

    Colonna, Cecilia . E-mail: ccolonna@fmed.uba.ar; Podesta, Ernesto J.

    2005-04-01

    Y1 adrenocortical cells respond to ACTH with a characteristic rounding-up that facilitates cAMP signaling, critical for transport of cholesterol to the mitochondria and increase in steroid secretion. We here demonstrate that caveolin-1 participates in coupling activation of protein kinase A (PKA) to the control of cell shape. ACTH/8-Br-cAMP induced reorganization of caveolin-1-positive structures in correlation with the cellular rounding-up. Concomitant with this change, there was an increase in the phosphorylation of caveolin-1 (Tyr-14) localized at focal adhesions (FA) with reorganization of FA to rounded, ringlike structures. Colocalization with phalloidin showed that phosphocaveolin is present at the edge of actin filaments and that after ACTH stimulation F-actin dots at the cell periphery become surrounded by phosphocaveolin-1. These observations along with electron microscopy studies revealed these structures as podosomes. Podosome assembly was dependent on both PKA and tyrosine kinase activities because their formation was impaired after treatment with specific inhibitors [myristoylated PKI (mPKI) or PP2, respectively] previous to ACTH/8-Br-cAMP stimulation. These results show for the first time that ACTH induces caveolin-1 phosphorylation and podosome assembly in Y1 cells and support the view that the morphological and functional responses to PKA activation in steroidogenic cells are related to cytoskeleton dynamics.

  7. Tyrosine-Phosphorylated Caveolin-1 Blocks Bacterial Uptake by Inducing Vav2-RhoA-Mediated Cytoskeletal Rearrangements

    PubMed Central

    Kaushansky, Alexis; Pompaiah, Malvika; Thorn, Hans; Brinkmann, Volker; MacBeath, Gavin; Meyer, Thomas F.

    2010-01-01

    Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P+GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function. PMID:20808760

  8. 1,2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to contraction of guinea pig trachea

    SciTech Connect

    Kikuno, Shota; Taguchi, Keiko; Iwamoto, Noriko; Yamano, Shigeru; Cho, Arthur K.; Froines, John R.; Kumagai, Yoshito . E-mail: yk-em-tu@md.tsukuba.ac.jp

    2006-01-15

    1,2-Naphthoquinone (1,2-NQ) has recently been identified as an environmental quinone in diesel exhaust particles (DEP) and atmospheric PM{sub 2.5}. We have found that this quinone is capable of causing a concentration-dependent contraction of tracheal smooth muscle in guinea pigs with EC{sub 5} value of 18.7 {mu}M. The contraction required extracellular calcium and was suppressed by L-type calcium channel blockers nifedipine and diltiazem. It was found that 1,2-NQ activated phospholipase A2 (PLA2)/lipoxygenase (LO)/vanilloid receptor (VR1) signaling. Additionally, 1,2-NQ was capable of transactivating protein tyrosine kinases (PTKs) such as epidermal growth factor receptor (EGFR) in guinea pig trachea, suggesting that phosphorylation of PTKs contributes to 1,2-NQ-induced tracheal contraction. Consistent with this notion, this action was blocked by the PTKs inhibitor genistein and the EGFR antagonist PD153035, indicating that contraction was, at least in part, attributable to PTKs phosphorylation that activates VR1, resulting in increased intracellular calcium content in the smooth muscle cells.

  9. Tyrosine phosphorylation of GluK2 up-regulates kainate receptor-mediated responses and downstream signaling after brain ischemia

    PubMed Central

    Zhu, Qiu-Ju; Kong, Fan-Shu; Xu, Hao; Wang, Yi; Du, Cai-Ping; Sun, Chang-Cheng; Liu, Yong; Li, Ting; Hou, Xiao-Yu

    2014-01-01

    Although kainate receptors play important roles in ischemic stroke, the molecular mechanisms underlying postischemic regulation of kainate receptors remain unclear. In this study we demonstrate that Src family kinases contribute to the potentiation of kainate receptor function. Brain ischemia and reperfusion induce rapid and sustained phosphorylation of the kainate receptor subunit GluK2 by Src in the rat hippocampus, implicating a critical role for Src-mediated GluK2 phosphorylation in ischemic brain injury. The NMDA and kainate receptors are involved in the tyrosine phosphorylation of GluK2. GluK2 binds to Src, and the tyrosine residue at position 590 (Y590) on GluK2 is a major site of phosphorylation by Src kinases. GluK2 phosphorylation at Y590 is responsible for increases in whole-cell currents and calcium influx in response to transient kainate stimulation. In addition, GluK2 phosphorylation at Y590 facilitates the endocytosis of GluK2 subunits, and the activation of JNK3 and its substrate c-Jun after long-term kainate treatment. Thus, Src phosphorylation of GluK2 plays an important role in the opening of kainate receptor channels and downstream proapoptosis signaling after brain ischemia. The present study reveals an additional mechanism for the regulation of GluK2-containing kainate receptors by Src family kinases, which may be of pathological significance in ischemic stroke. PMID:25201974

  10. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKY(Y115E) phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  11. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis

    PubMed Central

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKYY115E phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  12. Casein kinase 2 dependent phosphorylation of neprilysin regulates receptor tyrosine kinase signaling to Akt.

    PubMed

    Siepmann, Martin; Kumar, Sathish; Mayer, Günter; Walter, Jochen

    2010-01-01

    Neprilysin (NEP) is a type II membrane metalloproteinase that cleaves physiologically active peptides at the cell surface thus regulating the local concentration of these peptides available for receptor binding and signal transduction. In addition, the cytoplasmic N-terminal domain of NEP interacts with the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) thereby regulating intracellular signaling via Akt. Thus, NEP serves dual functions in extracellular and intracellular signal transduction. Here, we show that NEP undergoes phosphorylation at serine residue 6 within the N-terminal cytoplasmic domain. In vitro and cell culture experiments demonstrate that Ser 6 is efficiently phosphorylated by protein kinase CK2. The phosphorylation of the cytoplasmic domain of NEP inhibits its interaction with PTEN. Interestingly, expression of a pseudophosphorylated NEP variant (Ser6Asp) abrogates the inhibitory effect of NEP on insulin/insulin-like growth factor-1 (IGF-1) stimulated activation of Akt. Thus, our data demonstrate a regulatory role of CK2 in the interaction of NEP with PTEN and insulin/IGF-1 signaling. PMID:20957047

  13. Role played by paxillin and paxillin tyrosine phosphorylation in hepatocyte growth factor/sphingosine-1-phosphate-mediated reactive oxygen species generation, lamellipodia formation, and endothelial barrier function

    PubMed Central

    Usatyuk, Peter V.; Jacobson, Jeffrey; Cress, Anne E.; Garcia, Joe G. N.; Salgia, Ravi; Natarajan, Viswanathan

    2015-01-01

    Abstract Paxillin is a multifunctional and multidomain focal adhesion adaptor protein. It serves as an important scaffolding protein at focal adhesions by recruiting and binding to structural and signaling molecules. Paxillin tyrosine phosphorylation at Y31 and Y118 is important for paxillin redistribution to focal adhesions and angiogenesis. Hepatocyte growth factor (HGF) and sphingosine-1-phosphate (S1P) are potent stimulators of lamellipodia formation, a prerequisite for endothelial cell migration. The role played by paxillin and its tyrosine phosphorylated forms in HGF- or S1P-induced lamellipodia formation and barrier function is unclear. HGF or S1P stimulated lamellipodia formation, tyrosine phosphorylation of paxillin at Y31 and Y118, and c-Abl in human lung microvascular endothelial cells (HLMVECs). Knockdown of paxillin with small interfering RNA (siRNA) or transfection with paxillin mutants (Y31F or Y118F) mitigated HGF- or S1P-induced lamellipodia formation, translocation of p47phox to lamellipodia, and reactive oxygen species (ROS) generation in HLMVECs. Furthermore, exposure of HLMVECs to HGF or S1P stimulated c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 in a time-dependent fashion, and down-regulation of c-Abl with siRNA attenuated HGF- or S1P-mediated lamellipodia formation, translocation of p47phox to lamellipodia, and endothelial barrier enhancement. In vivo, knockdown of paxillin with siRNA in mouse lungs attenuated ventilator-induced lung injury. Together, these results suggest that c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates HGF- or S1P-mediated lamellipodia formation, ROS generation in lamellipodia, and endothelial permeability. PMID:26697169

  14. NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair

    PubMed Central

    Bone, K M; Wang, P; Wu, F; Wu, C; Li, L; Bacani, J T; Andrew, S E; Lai, R

    2015-01-01

    The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography–mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2Y238F mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2Y238F into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2Y238F abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2Y238F into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR. PMID:25978431

  15. Immunoreceptor tyrosine-based activation motif phosphorylation during engulfment of Neisseria gonorrhoeae by the neutrophil-restricted CEACAM3 (CD66d) receptor.

    PubMed

    McCaw, Shannon E; Schneider, Jutta; Liao, Edward H; Zimmermann, Wolfgang; Gray-Owen, Scott D

    2003-08-01

    Gonorrhea is characterized by a purulent urethral or cervical discharge consisting primarily of neutrophils associated with Neisseria gonorrhoeae. These interactions are facilitated by gonococcal colony opacity-associated (Opa) protein binding to host cellular CEACAM receptors. Of these, CEACAM3 is restricted to neutrophils and contains an immunoreceptor tyrosine-based activation motif (ITAM) reminiscent of that found within certain phagocytic Fc receptors. CEACAM3 was tyrosine phosphorylated by a Src family kinase-dependent process upon infection by gonococci expressing CEACAM-specific Opa proteins. This phosphorylation was necessary for efficient bacterial uptake; however, a less efficient uptake process became evident when kinase inhibitors or mutagenesis of the ITAM were used to prevent phosphorylation. Ligated CEACAM3 was recruited to a cytoskeleton-containing fraction, intense foci of polymerized actin were evident where bacteria attached to HeLa-CEACAM3, and disruption of polymerized actin by cytochalasin D blocked all bacterial uptake by these cells. These data support a model whereby CEACAM3 can mediate the Opa-dependent uptake of N. gonorrhoeae via either an efficient, ITAM phosphorylation-dependent process that resembles phagocytosis or a less efficient, tyrosine phosphorylation-independent mechanism. PMID:12864848

  16. Interferon regulatory factor 4 is activated through c-Src-mediated tyrosine phosphorylation in virus-transformed cells.

    PubMed

    Wang, Ling; Ning, Shunbin

    2013-09-01

    The importance of the oncogenic transcription factor interferon regulatory factor 4 (IRF4) in hematological malignancies has been increasingly recognized. We have previously identified the B cell integration cluster (BIC), the gene encoding miR-155, as the first microRNA (miRNA)-encoding gene transcriptionally targeted by IRF4 in virus-transformed cancer cells. Activation of IRFs is prerequisite for their functions. However, how IRF4 is activated in cancer is an open question. Our phosphoproteome profiling has identified several tyrosine phosphorylation sites on IRF4 in Epstein-Barr virus (EBV)-transformed cells. Further, we show here that c-Src dramatically stimulates IRF4 phosphorylation and activity and that Y61 and Y124 are two key sites responding to c-Src-mediated activation. Consistently, c-Src is constitutively expressed and active in EBV-transformed cells. However, c-Src is unlikely to be a direct kinase for IRF4. Furthermore, we have a polyclonal antibody specific to phospho-IRF4(Y121/124) developed in rabbit. We have further shown that inhibition of c-Src activity reduces p-IRF4(Y121/124) and significantly represses transcription of the IRF4 target BIC in EBV-transformed cells. Our results therefore, for the first time, demonstrate that IRF4 is phosphorylated and activated through a c-Src-mediated pathway in virus-transformed cells. These findings will improve our understanding of IRF4 in neoplasia and will provide profound insights into the interaction of oncogenic viruses with IRF4 in the development of hematological malignancies. PMID:23804646

  17. Cr(VI)-stimulated STAT3 tyrosine phosphorylation and nuclear translocation in human airway epithelial cells requires Lck

    PubMed Central

    O'hara, Kimberley A.; Vaghjiani, Rasilaben J.; Nemec, Antonia A.; Klei, Linda R.; Barchowsky, Aaron

    2006-01-01

    Chronic inhalation of low amounts of Cr(VI) promotes pulmonary diseases and cancers through poorly defined mechanisms. SFKs (Src family kinases) in pulmonary airway cells may mediate Cr(VI) signalling for lung injury, although the downstream effectors of Cr(VI)-stimulated SFKs and how they relate to pathogenic gene induction are unknown. Therefore SFK-dependent activation of transcription factors by non-cytotoxic exposure of human bronchial epithelial cells to Cr(VI) was determined. Protein–DNA binding arrays demonstrated that exposing BEAS 2B cells to 5 μM Cr(VI) for 4 and 24 h resulted in increased protein binding to 25 and 43 cis-elements respectively, while binding to 12 and 16 cis-elements decreased. Of note, Cr(VI) increased protein binding to several STAT (signal transducer and activator of transcription) cis-elements. Cr(VI) stimulated acute tyrosine phosphorylation and nuclear translocation of STAT1 over a 4 h period and a prolonged activation of STAT3 that reached a peak between 48 and 72 h. This prolonged activation was observed for both STAT3α and STAT3β. Immunofluorescent confocal microscopy confirmed that Cr(VI) increased nuclear localization of phosphorylated STAT3 for more than 72 h in both primary and BEAS 2B human airway cells. Cr(VI) induced transactivation of both a STAT3-driven luciferase reporter construct and the endogenous inflammatory gene IL-6 (interleukin-6). Inhibition with siRNA (small interfering RNA) targeting the SFK Lck, but not dominant-negative JAK (Janus kinase), prevented Cr(VI)-stimulated phosphorylation of both STAT3 isoforms and induction of IL-6. The results suggest that Cr(VI) activates epithelial cell Lck to signal for prolonged STAT3 activation and transactivation of IL-6, an important immunomodulator of lung disease progression. PMID:17078813

  18. Identification of a potential general acid/base in the reversible phosphoryl transfer reactions catalyzed by tyrosine recombinases: Flp H305

    PubMed Central

    Whiteson, Katrine L.; Chen, Yu; Chopra, Neeraj; Raymond, Amy C.; Rice, Phoebe A.

    2007-01-01

    Summary Flp provides a unique opportunity to apply the tools of chemical biology to phosphoryl transfer reactions. Flp and other tyrosine recombinases catalyze site-specific DNA rearrangements via a phosphotyrosine intermediate, similar to the mechanism of type Ib topoisomerases [1]. Unlike most related enzymes, Flp’s nucleophilic tyrosine derives from a different protomer than the remainder of its active site [2, 3]. Because the tyrosine can be supplied exogenously, non-natural synthetic analogs can be used. Here we examine the catalytic role of Flp’s conserved H305. DNA cleavage was studied using a peptide containing either tyrosine (pKa≅10), or 3-fluoro-tyrosine (pKa≅8.4). Religation was studied using DNA substrates with 3’-phospho-cresol (pKa≅10) or 3’-para-nitro-phenol (pKa≅7.1) mimicking the covalent protein-DNA intermediate. In both cases, the tyrosine analog with the lower pKa specifically restored the activity of an H305 mutant. These results provide the first experimental evidence that this conserved histidine functions as a general acid/base catalyst in tyrosine recombinases. PMID:17317566

  19. Gi-mediated tyrosine phosphorylation of Grb2 (growth-factor-receptor-bound protein 2)-bound dynamin-II by lysophosphatidic acid.

    PubMed Central

    Kranenburg, O; Verlaan, I; Moolenaar, W H

    1999-01-01

    Lysophosphatidic acid (LPA) is the prototypic G-protein-coupled receptor agonist that activates the Ras-mitogen-activated protein (MAP) kinase cascade through pertussis toxin (PTX)-sensitive Gi and enhanced tyrosine kinase activity. We recently detected a 100 kDa protein (p100) that binds to the C-terminal SH3 domain of growth-factor-receptor-bound protein 2 (Grb2) and becomes tyrosine phosphorylated in a PTX-sensitive manner in LPA-treated Rat-1 cells [Kranenburg, Verlaan, Hordijk and Moolenaar (1997) EMBO J. 16, 3097-3105]. Through glutathione S-transferase-Grb2 affinity purification and microsequencing, we have now identified p100 as dynamin-II, a GTPase that regulates clathrin-mediated endocytosis. We show that in Rat-1 cells, Grb2-bound dynamin-II is rapidly tyrosine phosphorylated in response to LPA in a PTX-sensitive manner. Thus, tyrosine phosphorylation of Grb2-bound dynamin-II may be a critical event in Gi-mediated activation of the Ras-MAP kinase cascade in fibroblasts. PMID:10085221

  20. Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation

    SciTech Connect

    Aoyama, Kazumasa; Fukumoto, Yasunori; Ishibashi, Kenichi; Kubota, Sho; Morinaga, Takao; Horiike, Yasuyoshi; Yuki, Ryuzaburo; Takahashi, Akinori; Nakayama, Yuji; Yamaguchi, Naoto

    2011-12-10

    c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.

  1. CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families.

    PubMed

    Krisch, Linda M; Posselt, Gernot; Hammerl, Peter; Wessler, Silja

    2016-09-01

    CagA is one of the most important virulence factors of the human pathogen Helicobacter pylori CagA expression can be associated with the induction of severe gastric disorders such as gastritis, ulceration, gastric cancer, or mucosa-associated lymphoid tissue (MALT) lymphoma. After translocation through a type IV secretion system into epithelial cells, CagA is tyrosine phosphorylated by kinases of the Src and Abl families, leading to drastic cell elongation and motility. While the functional role of CagA in epithelial cells is well investigated, knowledge about CagA phosphorylation and its associated signal transduction pathways in B cells is only marginal. Here, we established the B cell line MEC1 derived from a B cell chronic lymphocytic leukemia (B-CLL) patient as a new infection model to study the signal transduction in B cells controlled by H. pylori We observed that CagA was rapidly injected, strongly tyrosine phosphorylated, and cleaved into a 100-kDa N-terminal and a 40-kDa C-terminal fragment. To identify upstream signal transduction pathways of CagA phosphorylation in MEC1 cells, pharmacological inhibitors were employed to specifically target Src and Abl kinases. We observed that CagA phosphorylation was strongly inhibited upon treatment with an Src inhibitor and slightly diminished when the Abl kinase inhibitor imatinib mesylate (Gleevec) was applied. The addition of dasatinib to block c-Abl and Src kinases led to a complete loss of CagA phosphorylation. In conclusion, these results demonstrate an important role for Src and Abl tyrosine kinases in CagA phosphorylation in B cells, which represent druggable targets in H. pylori-mediated gastric MALT lymphoma. PMID:27382024

  2. CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families

    PubMed Central

    Krisch, Linda M.; Posselt, Gernot; Hammerl, Peter

    2016-01-01

    CagA is one of the most important virulence factors of the human pathogen Helicobacter pylori. CagA expression can be associated with the induction of severe gastric disorders such as gastritis, ulceration, gastric cancer, or mucosa-associated lymphoid tissue (MALT) lymphoma. After translocation through a type IV secretion system into epithelial cells, CagA is tyrosine phosphorylated by kinases of the Src and Abl families, leading to drastic cell elongation and motility. While the functional role of CagA in epithelial cells is well investigated, knowledge about CagA phosphorylation and its associated signal transduction pathways in B cells is only marginal. Here, we established the B cell line MEC1 derived from a B cell chronic lymphocytic leukemia (B-CLL) patient as a new infection model to study the signal transduction in B cells controlled by H. pylori. We observed that CagA was rapidly injected, strongly tyrosine phosphorylated, and cleaved into a 100-kDa N-terminal and a 40-kDa C-terminal fragment. To identify upstream signal transduction pathways of CagA phosphorylation in MEC1 cells, pharmacological inhibitors were employed to specifically target Src and Abl kinases. We observed that CagA phosphorylation was strongly inhibited upon treatment with an Src inhibitor and slightly diminished when the Abl kinase inhibitor imatinib mesylate (Gleevec) was applied. The addition of dasatinib to block c-Abl and Src kinases led to a complete loss of CagA phosphorylation. In conclusion, these results demonstrate an important role for Src and Abl tyrosine kinases in CagA phosphorylation in B cells, which represent druggable targets in H. pylori-mediated gastric MALT lymphoma. PMID:27382024

  3. Chronic restraint stress induces sperm acrosome reaction and changes in testicular tyrosine phosphorylated proteins in rats

    PubMed Central

    Arun, Supatcharee; Burawat, Jaturon; Sukhorum, Wannisa; Sampannang, Apichakan; Maneenin, Chanwit; Iamsaard, Sitthichai

    2016-01-01

    Background: Stress is a cause of male infertility. Although sex hormones and sperm quality have been shown to be low in stress, sperm physiology and testicular functional proteins, such as phosphotyrosine proteins, have not been documented. Objective: To investigate the acrosome status and alterations of testicular proteins involved in spermatogenesis and testosterone synthesis in chronic stress in rats. Materials and Methods: In this experimental study, male rats were divided into 2 groups (control and chronic stress (CS), n=7). CS rats were immobilized (4 hr/day) for 42 consecutive days. The blood glucose level (BGL), corticosterone, testosterone, acrosome status, and histopathology were examined. The expressions of testicular steroidogenic acute regulatory (StAR), cytochrome P450 side chain cleavage (CYP11A1), and phosphorylated proteins were analyzed. Results: Results showed that BGL (71.25±2.22 vs. 95.60±3.36 mg/dl), corticosterone level (24.33±4.23 vs. 36.9±2.01 ng/ml), acrosome reacted sperm (3.25±1.55 vs. 17.71±5.03%), and sperm head abnormality (3.29±0.71 vs. 6.21±1.18%) were significantly higher in CS group in comparison with control. In contrast, seminal vesicle (0.41±0.05 vs. 0.24±0.07 g/100g), testosterone level (3.37±0.79 vs. 0.61±0.29 ng/ml), and sperm concentration (115.33±7.70 vs. 79.13±3.65×106 cells/ml) of CS were significantly lower (p<0.05) than controls. Some atrophic seminiferous tubules and low sperm mass were apparent in CS rats. The expression of CYP11A1 except StAR protein was markedly decreased in CS rats. In contrast, a 55 kDa phosphorylated protein was higher in CS testes. Conclusion: CS decreased the expression of CYP11A, resulting in decreased testosterone, and increased acrosome-reacted sperm, assumed to be the result of an increase of 55 kDa phosphorylated protein. PMID:27525328

  4. Endogenous ephrinB2 mediates colon-urethra cross-organ sensitization via Src kinase-dependent tyrosine phosphorylation of NR2B.

    PubMed

    Peng, Hsien-Yu; Chen, Gin-Den; Lai, Cheng-Hung; Tung, Kwong-Chung; Chang, Junn-Liang; Lin, Tzer-Bin

    2010-01-01

    Recently, the role of EphB receptor (EphBR) tyrosine kinase and their ephrinB ligands in spinal pain-related neural plasticity has been identified. To test whether Src-family non-receptor tyrosine kinase-dependent glutamatergic N-methyl-d-aspartate receptor (NMDAR) NR2B subunit phosphorylation underlies lumbosacral spinal EphBR activation to mediate cross-organ sensitization between the colon and the urethra, external urethra sphincter electromyogram activity evoked by pelvic nerve stimulation and protein expression in the lumbosacral (L6-S2) dorsal horn were studied before and after intracolonic mustard oil (MO) instillation. We found MO instillation produced colon-urethra reflex sensitization along with an upregulation of endogenous ephrinB2 expression as well as phosphorylation of EphB 1/2, Src-family kinase, and NR2B tyrosine residues. Intrathecal immunoglobulin fusion protein of EphB1 and EphB2 as well as PP2 reversed the reflex sensitization and NR2B phosphorylation caused by MO. All these results suggest that EphBR-ephrinB interactions, which provoke Src-family kinase-dependent NMDAR NR2B phosphorylation at the lumbosacral spinal cord level, are involved in cross-organ sensitization, contributing to the development of viscero-visceral referred pain between the bowel and the urethra. PMID:19864302

  5. Src-Mediated Phosphorylation of the Tyrosine Phosphatase PRL-3 Is Required for PRL-3 Promotion of Rho Activation, Motility and Invasion

    PubMed Central

    Fiordalisi, James J.; Dewar, Brian J.; Graves, Lee M.; Madigan, James P.; Cox, Adrienne D.

    2013-01-01

    The metastasis-associated tyrosine phosphatase PRL-3/PTP4A is upregulated in numerous cancers, but the mechanisms modulating PRL-3 activity other than its expression levels have not been investigated. Here we report evidence for both Src-dependent tyrosine phosphorylation of PRL-3 and Src-mediated regulation of PRL-3 biological activities. We used structural mutants, pharmacological inhibitors and siRNA to demonstrate Src-dependent phosphorylation of endogenous PRL-3 in SW480 colon cancer cells. We also demonstrated that PRL-3 was not tyrosine phosphorylated in SYF mouse embryo fibroblasts deficient in Src, Yes and Fyn unless Src was re-expressed. Further, we show that platelet-derived growth factor (PDGF) can stimulate PRL-3 phosphorylation in a Src-dependent manner. Finally, we show that PRL-3-induced cell motility, Matrigel invasion and activation of the cytoskeleton-regulating small GTPase RhoC were abrogated in the presence of the phosphodeficient PRL-3 mutant Y53F, or by use of a Src inhibitor. Thus, PRL-3 requires the activity of a Src kinase, likely Src itself, to promote these cancer-associated phenotypes. Our data establish a model for the regulation of PRL-3 by Src that supports the possibility of their coordinate roles in signaling pathways promoting invasion and metastasis, and supports simultaneous use of novel molecularly targeted therapeutics directed at these proteins. PMID:23691193

  6. Streptococcus sanguis-induced platelet activation involves two waves of tyrosine phosphorylation mediated by FcgammaRIIA and alphaIIbbeta3.

    PubMed

    Pampolina, Caroline; McNicol, Archibald

    2005-05-01

    The low-affinity IgG receptor, FcgammaRIIA, has been implicated in Streptococcus sanguis-induced platelet aggregation. Therefore, it is likely that signal transduction is at least partly mediated by FcgammaRIIA activation and a tyrosine kinase-dependent pathway. In this study the signal transduction mechanisms associated with platelet activation in response to the oral bacterium, S. sanguis were characterised. In the presence of IgG, S. sanguis strain 2017-78 caused the tyrosine phosphorylation of FcgammaRIIA 30s following stimulation, which led to the phosphorylation of Syk, LAT, and PLCgamma2. These early events were dependent on Src family kinases but independent of either TxA(2) or the engagement of the alpha(IIb)beta(3) integrin. During the lag phase prior to platelet aggregation, FcgammaRIIA, Syk, LAT, and PLCgamma2 were each dephosphorylated, but were re-phosphorylated as aggregation occurred. Platelet stimulation by 2017-78 also induced the tyrosine phosphorylation of PECAM-1, an ITIM-containing receptor that recruits protein tyrosine phosphatases. PECAM-1 co-precipitated with the protein tyrosine phosphatase SHP-1 in the lag phase. SHP-1 was also maximally tyrosine phosphorylated during this phase, suggesting a possible role for SHP-1 in the observed dephosphorylation events. As aggregation occurred, SHP-1 was dephosphorylated, while FcgammaRIIA, Syk, LAT, and PLCgamma2 were rephosphorylated in an RGDS-sensitive, and therefore alpha(IIb)beta(3)-dependent, manner. Additionally, TxA(2) release, 5-hydroxytryptamine secretion and phosphatidic acid formation were all blocked by RGDS. Aspirin also abolished these events, but only partially inhibited alpha(IIb)beta(3) -mediated re-phosphorylation. Therefore, S. sanguis -bound IgG cross links FcgammaRIIA and initiates a signaling pathway that is down-regulated by PECAM-1-bound SHP-1. Subsequent engagement of alpha(IIb)beta(3) leads to SHP-1 dephosphorylation permiting a second wave of signaling leading to TxA(2

  7. Postsynaptic density protein 95-regulated NR2B tyrosine phosphorylation and interactions of Fyn with NR2B in levodopa-induced dyskinesia rat models

    PubMed Central

    Ba, Maowen; Kong, Min; Ma, Guozhao

    2015-01-01

    Context Abnormality in interactions between N-methyl-d-aspartate (NMDA) receptor and its signaling molecules occurs in the lesioned striatum in Parkinson’s disease (PD) and levodopa-induced dyskinesia (LID). It was reported that Fyn-mediated NR2B tyrosine phosphorylation, can enhance NMDA receptor function. Postsynaptic density protein 95 (PSD-95), one of the synapse-associated proteins, regulates interactions between receptor and downstream-signaling molecules. In light of the relationship between PSD-95, NR2B, and Fyn kinases, does PSD-95 contribute to the overactivity of NMDA receptor function induced by dopaminergic treatment? To further prove the possibility, the effects of regulating the PSD-95 expression on the augmented NR2B tyrosine phosphorylation and on the interactions of Fyn and NR2B in LID rat models were evaluated. Methods In the present study, parkinsonian rat models were established by injecting 6-hydroxydopamine. Subsequently, valid PD rats were treated with levodopa (50 mg/kg/day with benserazide 12.5 mg/kg/day, twice daily) intraperitoneally for 22 days to create LID rat models. Then, the effect of pretreatment with an intrastriatal injection of the PSD-95mRNA antisense oligonucleotides (PSD-95 ASO) on the rotational response to levodopa challenge was assessed. The effects of pretreatment with an intrastriatal injection of PSD-95 ASO on the augmented NR2B tyrosine phosphorylation and interactions of Fyn with NR2B in the LID rat models were detected by immunoblotting and immunoprecipitation. Results Levodopa administration twice daily for 22 days to parkinsonian rats shortened the rotational duration and increased the peak turning responses. The altered rotational responses were attenuated by PSD-95 ASO pretreatment. Meanwhile, PSD-95 ASO pretreatment decreased the level of PSD-95 protein expression and reduced both the augmented NR2B tyrosine phosphorylation and interactions of Fyn with NR2B triggered during the levodopa administration in the

  8. Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line

    SciTech Connect

    Zhang Danhui; Kanthasamy, Arthi; Anantharam, Vellareddy; Kanthasamy, Anumantha

    2011-07-15

    Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn impairs the dopaminergic neurotransmitter system remains unclear. We previously demonstrated that caspase-3-dependent proteolytic activation of protein kinase C delta (PKC{delta}) plays a key role in Mn-induced apoptotic cell death in dopaminergic neurons. Recently, we showed that PKC{delta} negatively regulates tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, by enhancing protein phosphatase-2A activity in dopaminergic neurons. Here, we report that Mn exposure can affect the enzymatic activity of TH, the rate-limiting enzyme in dopamine synthesis, by activating PKC{delta}-PP2A signaling pathway in a dopaminergic cell model. Low dose Mn (3-10 {mu}M) exposure to differentiated mesencephalic dopaminergic neuronal cells for 3 h induced a significant increase in TH activity and phosphorylation of TH-Ser40. The PKC{delta} specific inhibitor rottlerin did not prevent Mn-induced TH activity or TH-Ser40 phosphorylation. On the contrary, chronic exposure to 0.1-1 {mu}M Mn for 24 h induced a dose-dependent decrease in TH activity. Interestingly, chronic Mn treatment significantly increased PKC{delta} kinase activity and protein phosphatase 2A (PP2A) enzyme activity. Treatment with the PKC{delta} inhibitor rottlerin almost completely prevented chronic Mn-induced reduction in TH activity, as well as increased PP2A activity. Neither acute nor chronic Mn exposures induced any cytotoxic cell death or altered TH protein levels. Collectively, these results demonstrate that low dose Mn exposure impairs TH activity in dopaminergic cells through activation of PKC{delta} and PP2A activity.

  9. Ephrin-B reverse signaling controls septation events at the embryonic midline through separate tyrosine phosphorylation-independent signaling avenues

    PubMed Central

    Dravis, Christopher; Henkemeyer, Mark

    2011-01-01

    We report that the disruption of bidirectional signaling between ephrin-B2 and EphB receptors impairs morphogenetic cell-cell septation and closure events during development of the embryonic midline. A novel role for reverse signaling is identified in tracheoesophageal foregut septation, as animals lacking the cytoplasmic domain of ephrin-B2 present with laryngotracheoesophageal cleft (LTEC), while both EphB2/EphB3 forward signaling and ephrin-B2 reverse signaling are shown to be required for midline fusion of the palate. In a third midline event, EphB2/EphB3 are shown to mediate ventral abdominal wall closure by acting principally as ligands to stimulate ephrin-B reverse signaling. Analysis of new ephrin-B26YFΔV and ephrin-B2ΔV mutants that specifically ablate ephrin-B2 tyrosine phosphorylation- and/or PDZ domain-mediated signaling indicate there are at least two distinct phosphorylation-independent components of reverse signaling. These involve both PDZ domain interactions and a non-canonical SH2/PDZ-independent form of reverse signaling that may utilize associations with claudin family tetraspan molecules, as EphB2 and activated ephrin-B2 molecules are specifically co-localized with claudins in epithelia at the point of septation. Finally, the developmental phenotypes described here mirror common human midline birth defects found with the VACTERL association, suggesting a molecular link to bidirectional signaling through B-subclass Ephs and ephrins. PMID:21539827

  10. Low Expression of DYRK2 (Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2) Correlates with Poor Prognosis in Colorectal Cancer.

    PubMed

    Yan, Haiyan; Hu, Kaishun; Wu, Wenjing; Li, Yu; Tian, Huan; Chu, Zhonghua; Koeffler, H Phillip; Yin, Dong

    2016-01-01

    Dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) is a member of dual-specificity kinase family, which could phosphorylate both Ser/Thr and Tyr substrates. The role of DYRK2 in human cancer remains controversial. For example, overexpression of DYRK2 predicts a better survival in human non-small cell lung cancer. In contrast, amplification of DYRK2 gene occurs in esophageal/lung adenocarcinoma, implying the role of DYRK2 as a potential oncogene. However, its clinical role in colorectal cancer (CRC) has not been explored. In this study, we analyzed the expression of DYRK2 from Oncomine database and found that DYRK2 level is lower in primary or metastatic CRC compared to adjacent normal colon tissue or non-metastatic CRC, respectively, in 6 colorectal carcinoma data sets. The correlation between DYRK2 expression and clinical outcome in 181 CRC patients was also investigated by real-time PCR and IHC. DYRK2 expression was significantly down-regulated in colorectal cancer tissues compared with adjacent non-tumorous tissues. Functional studies confirmed that DYRK2 inhibited cell invasion and migration in both HCT116 and SW480 cells and functioned as a tumor suppressor in CRC cells. Furthermore, the lower DYRK2 levels were correlated with tumor sites (P = 0.023), advanced clinical stages (P = 0.006) and shorter survival in the advanced clinical stages. Univariate and multivariate analyses indicated that DYRK2 expression was an independent prognostic factor (P < 0.001). Taking all, we concluded that DYRK2 a novel prognostic biomarker of human colorectal cancer. PMID:27532268

  11. Low Expression of DYRK2 (Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2) Correlates with Poor Prognosis in Colorectal Cancer

    PubMed Central

    Wu, Wenjing; Li, Yu; Tian, Huan; Chu, Zhonghua; Koeffler, H. Phillip; Yin, Dong

    2016-01-01

    Dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) is a member of dual-specificity kinase family, which could phosphorylate both Ser/Thr and Tyr substrates. The role of DYRK2 in human cancer remains controversial. For example, overexpression of DYRK2 predicts a better survival in human non-small cell lung cancer. In contrast, amplification of DYRK2 gene occurs in esophageal/lung adenocarcinoma, implying the role of DYRK2 as a potential oncogene. However, its clinical role in colorectal cancer (CRC) has not been explored. In this study, we analyzed the expression of DYRK2 from Oncomine database and found that DYRK2 level is lower in primary or metastatic CRC compared to adjacent normal colon tissue or non-metastatic CRC, respectively, in 6 colorectal carcinoma data sets. The correlation between DYRK2 expression and clinical outcome in 181 CRC patients was also investigated by real-time PCR and IHC. DYRK2 expression was significantly down-regulated in colorectal cancer tissues compared with adjacent non-tumorous tissues. Functional studies confirmed that DYRK2 inhibited cell invasion and migration in both HCT116 and SW480 cells and functioned as a tumor suppressor in CRC cells. Furthermore, the lower DYRK2 levels were correlated with tumor sites (P = 0.023), advanced clinical stages (P = 0.006) and shorter survival in the advanced clinical stages. Univariate and multivariate analyses indicated that DYRK2 expression was an independent prognostic factor (P < 0.001). Taking all, we concluded that DYRK2 a novel prognostic biomarker of human colorectal cancer. PMID:27532268

  12. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH)

    PubMed Central

    Duan, Zhen-Zhen; Zhang, Feng; Li, Feng-Ying; Luan, Yi-Fei; Guo, Peng; Li, Yi-Hang; Liu, Yong; Qi, Su-Hua

    2016-01-01

    It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment. PMID:27385592

  13. Phosphorylation Dependence and Stoichiometry of the Complex Formed by Tyrosine Hydroxylase and 14-3-3γ*

    PubMed Central

    Kleppe, Rune; Rosati, Sara; Jorge-Finnigan, Ana; Alvira, Sara; Ghorbani, Sadaf; Haavik, Jan; Valpuesta, José María; Heck, Albert J. R.; Martinez, Aurora

    2014-01-01

    Phosphorylated tyrosine hydroxylase (TH) can form complexes with 14-3-3 proteins, resulting in enzyme activation and stabilization. Although TH was among the first binding partners identified for these ubiquitous regulatory proteins, the binding stoichiometry and the activation mechanism remain unknown. To address this, we performed native mass spectrometry analyses of human TH (nonphosphorylated or phosphorylated on Ser19 (TH-pS19), Ser40 (TH-pS40), or Ser19 and Ser40 (TH-pS19pS40)) alone and together with 14-3-3γ. Tetrameric TH-pS19 (224 kDa) bound 14-3-3γ (58.3 kDa) with high affinity (Kd = 3.2 nM), generating complexes containing either one (282.4 kDa) or two (340.8 kDa) dimers of 14-3-3. Electron microscopy also revealed one major population of an asymmetric complex, consistent with one TH tetramer and one 14-3-3 dimer, and a minor population of a symmetric complex of one TH tetramer with two 14-3-3 dimers. Lower phosphorylation stoichiometries (0.15–0.54 phosphate/monomer) produced moderate changes in binding kinetics, but native MS detected much less of the symmetric TH:14-3-3γ complex. Interestingly, dephosphorylation of [32P]-TH-pS19 was mono-exponential for low phosphorylation stoichiometries (0.18–0.52), and addition of phosphatase accelerated the dissociation of the TH-pS19:14-3-3γ complex 3- to 4-fold. All together this is consistent with a model in which the pS19 residues in the TH tetramer contribute differently in the association to 14-3-3γ. Complex formation between TH-pS40 and 14-3-3γ was not detected via native MS, and surface plasmon resonance showed that the interaction was very weak. Furthermore, TH-pS19pS40 behaved similarly to TH-pS19 in terms of binding stoichiometry and affinity (Kd = 2.1 nM). However, we found that 14-3-3γ inhibited the phosphorylation rate of TH-pS19 by PKA (3.5-fold) on Ser40. We therefore conclude that Ser40 does not significantly contribute to the binding of 14-3-3γ, and rather has reduced accessibility in

  14. TOPK promotes lung cancer resistance to EGFR tyrosine kinase inhibitors by phosphorylating and activating c-Jun

    PubMed Central

    Wang, Tao; Wang, Ting; Niu, Mengjie; Zhang, Shengli; Jia, Lintao; Li, Shengqing

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR) have shown promising clinical efficacy in non-squamous non-small cell lung cancer (NSCLC); however, resistance is frequently observed in malignant cells, operating through a mechanism that remains largely unknown. The present study shows that T-lymphokine-activated killer cell-originated protein kinase (TOPK) is upregulated in NSCLC and excessively activated in TKI-refractory cells. TOPK dictates the responsiveness of lung cancers to the EGFR-targeted TKI gefitinib through the transcription factor AP-1 component c-Jun. TOPK binds directly to and phosphorylates c-Jun, which consequently activates the transcription of AP-1 target genes, including CCND1 and CDC2. TOPK silencing sensitizes EGFR-TKI-resistant lung cancer cells to gefitinib and increases gefitinib efficacy in preclinical lung adenocarcinoma xenograft models. These findings represent a novel mechanism of lung cancer resistance to TKIs and suggest that TOPK may have value both as a predictive biomarker and as a therapeutic target: TOPK-targeted therapy may synergize with EGFR-targeted therapy in lung cancers. PMID:26745678

  15. PRL-3 mediates the protein maturation of ULBP2 by regulating the tyrosine phosphorylation of HSP60

    PubMed Central

    Leung, Wai-Hang; Vong, Queenie P.; Lin, Wenwei; Bouck, David; Wendt, Susanne; Sullivan, Erin; Li, Ying; Bari, Rafijul; Chen, Taosheng; Leung, Wing

    2015-01-01

    Many malignant cells release the NKG2D ligand ULBP2 from their cell surface to evade immunosurveillance by natural killer cells and CD8 T cells. Although the shedding mechanism remains unclear, various inhibitors of matrix metalloproteinases have been shown to efficiently block the release of soluble ULBP2. The clinical use of these inhibitors however is limited because of adverse side effects. Using high throughput screening technique, we identified a specific inhibitor of phosphatase of regenerating liver 3 (PRL-3) that could reduce the level of soluble ULBP2 in the culture supernatant of various cancer cell lines. Inhibition or gene knockdown of PRL-3 did not reduce ULBP2 shedding but rather suppressed post-translational maturation of ULBP2, resulting in intracellular retention of immature ULBP2. We then found that ULBP2 was constitutively associated with heat shock protein HSP60. Complete maturation of ULBP2 required tyrosine phosphorylation of HSP60 which was mediated by PRL-3. PMID:25687758

  16. Phosphorylation of Mutationally Introduced Tyrosine in the Activation Loop of HER2 Confers Gain-of-Function Activity

    PubMed Central

    Hu, Zexi; Wan, Xiaobo; Hao, Rui; Zhang, Heng; Li, Li; Li, Lin; Xie, Qiang; Wang, Peng; Gao, Yibo; Chen, She; Wei, Min; Luan, Zhidong; Zhang, Aiqun; Huang, Niu; Chen, Liang

    2015-01-01

    Amplification, overexpression, and somatic mutation of the HER2 gene have been reported to play a critical role in tumorigenesis of various cancers. The HER2 H878Y mutation was recently reported in 11% of hepatocellular carcinoma (HCC) patients. However, its functional impact on the HER2 protein and its role in tumorigenesis has not been determined. Here, we show that HER2 H878Y is a gain-of-function mutation. Y878 represents a phosphorylation site, and phospho-Y878 interacts with R898 residue to stabilize the active conformation of HER2, thereby enhancing its kinase activity. H878Y mutant is transforming and the transformed cells are sensitive to HER2 kinase inhibitors. Thus, our study reveals the following novel mechanism underlying the tumorigenic function of the HER2 H878Y mutation: the introduction of a tyrosine residue into the kinase activation loop via mutagenesis modulates the conformation of the kinase, thereby enhancing its activity. PMID:25853726

  17. Tyrosine phosphorylation and activation of a new mitogen-activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists.

    PubMed Central

    Nahas, N; Molski, T F; Fernandez, G A; Sha'afi, R I

    1996-01-01

    The presence of a novel 38 kDa protein that is tyrosine phosphorylated in human neutrophils, a terminally differentiated cell, upon stimulation of these cells with low concentrations of lipopolysaccharide (LPS) in combination with serum has been demonstrated. This 38 kDa protein was identified as the mammalian homologue of HOG1 in yeast, the p38 mitogen-activated protein (MAP) kinase. This conclusion is based on the experimental findings that anti-phosphotyrosine (anti-PY) antibody immunoprecipitates a 38 kDa protein that is recognized by anti-p38 MAP kinase antibody, and conversely, anti-p38 MAP kinase antibody immunoprecipitates a 38 kDa protein that can be recognized by anti-PY antibody. Moreover, this tyrosine phosphorylated protein is found associated entirely with the cytosol. It was also found that this p38 MAP kinase is activated following stimulation of these cells with low concentrations of LPS in combination with serum. This conclusion is based on three experimental findings. First, soluble fractions isolated from LPS-stimulated cells phosphorylate heat shock protein 27 (hsp27) in an in vitro assay, and this effect is not inhibited by protein kinase C and protein kinase A inhibitor peptides. This effect is similar to the effect produced by the commercially available phosphorylated and activated MAPKAP kinase-2 (MAP kinase activated protein kinase-2). Secondly, a 27 kDa protein that aligns with a protein recognized by anti-hsp27 antibody is phosphorylated upon LPS stimulation of intact human neutrophils prelabelled with radioactive phosphate. Lastly, immune complex protein kinase assays, using [gamma-32P]ATP and activating transcription factor 2 (ATF2) as substrates, showed increased p38 MAP kinase activity from LPS-stimulated human neutrophils. The phosphorylation and activation of this p38 MAP kinase can be affected by both G-protein-coupled receptors such as platelet-activating factor (PAF) and non-G-protein-coupled receptors such as the cytokine

  18. Tyrosine phosphorylation is a mandatory proximal step in radiation-induced activation of the protein kinase C signaling pathway in human B-lymphocyte precursors.

    PubMed Central

    Uckun, F M; Schieven, G L; Tuel-Ahlgren, L M; Dibirdik, I; Myers, D E; Ledbetter, J A; Song, C W

    1993-01-01

    Ionizing radiation triggers a signal in human B-lymphocyte precursors that is intimately linked to an active protein-tyrosine kinase regulatory pathway. We show that in B-lymphocyte precursors, irradiation with gamma-rays leads to (i) stimulation of phosphatidylinositol turnover; (ii) downstream activation by covalent modification of multiple serine-specific protein kinases, including protein kinase C; and (iii) activation of nuclear factor kappa B. All of the radiation-induced signals were effectively prevented by the protein-tyrosine kinase inhibitors genistein and herbimycin A. Thus, tyrosine phosphorylation is an important and perhaps mandatory proximal step in the activation of the protein kinase C signaling cascade in human B-lymphocyte precursors. Our report expands current knowledge of the radiation-induced signaling cascade by clarifying the chronological sequence of biochemical events that follow irradiation. Images PMID:8419931

  19. Analysis of the binding of the Src homology 2 domain of Csk to tyrosine-phosphorylated proteins in the suppression and mitotic activation of c-Src.

    PubMed Central

    Sabe, H; Hata, A; Okada, M; Nakagawa, H; Hanafusa, H

    1994-01-01

    Csk (C-terminal Src kinase), a protein-tyrosine kinase, bearing the Src homology 2 and 3 (SH2 and SH3) domains, has been implicated in phosphorylation of c-Src Tyr-527, resulting in suppression of c-Src kinase activity. We found that mutations in the SH2 or SH3 domain of Csk, though they did not affect its kinase activity, resulted in a loss of suppression of c-Src activity in fibroblasts. In normal fibroblasts, tyrosine-phosphorylated paxillin and focal adhesion kinase pp125FAK, which colocalize at focal adhesion plaques, were the major proteins to which the Csk SH2 domain bound. Loss of binding to these proteins by the Csk SH2 mutants correlated with loss of the activity to suppress c-Src. Consistent with this observation, the levels of tyrosine phosphorylation of paxillin and pp125FAK were greatly reduced during mitosis, whereas the kinase activity of c-Src was elevated. We suggest that the SH2 domain is required for Csk to suppress c-Src, perhaps in combination with the SH3 domain, by anchoring Csk to a particular subcellular location where c-Src may exist. Our data also indicate that a certain fraction of the Csk and Src family kinases function at the focal adhesion plaques. The activity of the c-Src kinase localized at the focal adhesion plaques appears to be regulated by cell adhesion to the extracellular matrix. Images PMID:7513429

  20. p56lck-independent activation and tyrosine phosphorylation of p72syk by T-cell antigen receptor/CD3 stimulation.

    PubMed Central

    Couture, C; Baier, G; Altman, A; Mustelin, T

    1994-01-01

    Activation of resting T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex is initiated by rapid tyrosine phosphorylation of cellular proteins. Protein-tyrosine kinases (PTKs) of the src family are known to be important, but the mechanism of their recruitment and their interactions with PTKs of other families are incompletely understood. We show that a member of another family of PTKs, the p72syk kinase, is constitutively bound to the TCR/CD3 complex and becomes tyrosine phosphorylated and activated within 1 min after TCR/CD3 stimulation. This activation did not depend on the presence of p56lck in T cells and in transfected COS cells. In both cases, however, the phosphorylation of cellular substrates was augmented by src family PTKs. We propose that p72syk may act as an immediate receptor-activated kinase upstream of the related p70zap PTK and the src family PTKs p56lck and p59fyn in T cells and that these src family PTKs act as signal amplifiers. Images PMID:7515496

  1. Dissection of Binding between a Phosphorylated Tyrosine Hydroxylase Peptide and 14-3-3ζ: A Complex Story Elucidated by NMR

    PubMed Central

    Hritz, Jozef; Byeon, In-Ja L.; Krzysiak, Troy; Martinez, Aurora; Sklenar, Vladimir; Gronenborn, Angela M.

    2014-01-01

    Human tyrosine hydroxylase activity is regulated by phosphorylation of its N-terminus and by an interaction with the modulator 14-3-3 proteins. We investigated the binding of singly or doubly phosphorylated and thiophosphorylated peptides, comprising the first 50 amino acids of human tyrosine hydroxylase, isoform 1 (hTH1), that contain the critical interaction domain, to 14-3-3ζ, by 31P NMR. Single phosphorylation at S19 generates a high affinity 14-3-3ζ binding epitope, whereas singly S40-phosphorylated peptide interacts with 14-3-3ζ one order-of-magnitude weaker than the S19-phosphorylated peptide. Analysis of the binding data revealed that the 14-3-3ζ dimer and the S19- and S40-doubly phosphorylated peptide interact in multiple ways, with three major complexes formed: 1), a single peptide bound to a 14-3-3ζ dimer via the S19 phosphate with the S40 phosphate occupying the other binding site; 2), a single peptide bound to a 14-3-3ζ dimer via the S19 phosphorous with the S40 free in solution; or 3), a 14-3-3ζ dimer with two peptides bound via the S19 phosphorous to each binding site. Our system and data provide information as to the possible mechanisms by which 14-3-3 can engage binding partners that possess two phosphorylation sites on flexible tails. Whether these will be realized in any particular interacting pair will naturally depend on the details of each system. PMID:25418103

  2. The Counteradhesive Proteins, Thrombospondin 1 and SPARC/Osteonectin, Open the Tyrosine Phosphorylation-Responsive Paracellular Pathway in Pulmonary Vascular Endothelia

    PubMed Central

    Liu, Anguo; Mosher, Deane F.; Murphy-Ullrich, Joanne E.

    2009-01-01

    The counteradhesive proteins are a group of genetically and structurally distinct multidomain proteins that have been grouped together for their ability to inhibit cell-substrate interactions. Three counteradhesive proteins that influence endothelial cell behavior include thrombospondin (TSP)1, SPARC (Secreted Protein Acidic and Rich in Cysteine), also known as osteonectin, and tenascin. More recently, these proteins have been shown to not only regulate cell-matrix interactions but cell-cell interactions as well. TSP1 increases tyrosine phosphorylation of components of the cell-cell adherens junctions or zonula adherens (ZA) and opens the paracellular pathway in human lung microvascular endothelia. The EGF-like repeats of TSP1 activate the epidermal growth factor receptor (EGFR) and ErbB2 and these two receptor protein tyrosine kinase (PTK)s participate in ZA protein tyrosine phosphorylation and barrier disruption in response to the TSP1 stimulus. For the barrier response to TSP1, EGFR/ErbB2 activation is necessary but insufficient. Protein tyrosine phosphatase (PTP)µ counter-regulates phosphorylation of selected tyrosine residues within the cytoplasmic domain of EGFR. Although tenascin, like TSP1, also contains EGF-like repeats and is known to activate EGFR, whether it too opens the paracellular pathway is unknown. In addition to TSP1, tenascin, and the other TSP family members, there are numerous other proteins that also contain EGF-like repeats and participate in hemostasis, wound healing, and tissue remodeling. EGFR not only responds to direct binding of EGF motif-containing ligands but can be transactivated by a wide range of diverse stimuli. In fact, several established mediators of increased vascular permeability and/or lung injury, including thrombin, tumor necrosis factor-α, platelet-activating factor, bradykinin, angiopoietin, and H2O2, each transactivate EGFR. It is conceivable that EGFR serves a pivotal signaling role in a final common pathway for the

  3. A 32-kDa tyrosine-phosphorylated protein shows a protease-dependent increase in dead boar spermatozoa.

    PubMed

    Tabuchi, Tomohito; Shidara, Osamu; Harayama, Hiroshi

    2008-12-01

    Boar sperm TyrP32 is a 32-kDa tyrosine-phosphorylated protein that increases during the capacitation and acrosome reaction and during cryocapacitation. However, it is still unclear whether the increase in TyrP32 is an event that is limited to the process of sperm fertilization, including cryocapacitation. The aims of the present study were to demonstrate that TyrP32 is increased in dead spermatozoa after freeze-thawing without a cryoprotectant and to find the causal factors for this increase. Washed spermatozoa were resuspended in a salt solution and then frozen. The frozen samples were rapidly thawed in a warm water bath and then used for sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE)/Western blotting to detect TyrP32, SDS-PAGE/silver staining of sperm proteins and staining of acrosomal contents with fluorescein isothiocyanate (FITC)-conjugated peanut agglutinin (PNA). In the samples before freezing, TyrP32 was barely detectable, and the distribution of the acrosomal contents was normal in most spermatozoa. One cycle of freeze-thawing induced an increase in TyrP32, a decrease in major sperm proteins and disorder in the acrosomal contents. However, the addition of a protease inhibitor (APMSF, 1 mM) suppressed the increase in TyrP32 and the decrease in the major sperm proteins, although it did not have any influence on the disorder in the acrosomal contents. Additionally, the spermatozoa did not exhibit any flagellar movement after freeze-thawing, which showed that almost all of them were dead. These results indicate that TyrP32 can show a protease-dependent increase in dead spermatozoa after freeze-thawing without a cryoprotectant even though the dead spermatozoa do not undergo cryocapacitation. PMID:18787309

  4. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue.

    PubMed Central

    Kassis, S; Melhuish, T; Annan, R S; Chen, S L; Lee, J C; Livi, G P; Creasy, C L

    2000-01-01

    The serine/threonine protein kinase, Yak1p, functions as a negative regulator of the cell cycle in Saccharomyces cerevisiae, acting downstream of the cAMP-dependent protein kinase. In the present work we report that overexpression of haemagglutinin-tagged full-lengthYak1p and an N-terminally truncated form (residues 148-807) lead to growth arrest in PKA compromised yak1 null yeast cells. Both forms of recombinant Yak1p kinase were catalytically active and preferred myelin basic protein (MBP) as a substrate over several other proteins. Phosphopeptide analysis of bovine MBP by tandem MS revealed two major Yak1p phosphorylation sites, Thr-97 and Ser-164. Peptides containing each site were obtained and tested as Yak1p substrates. Both forms of Yak1p phosphorylated a peptide containing the Ser-164 residue with far more efficient kinetics than MBP. The maximal velocity (V(max)) values of the full-length Yak1p reaction were 110+/-21 (Ser-164) and 8.7+/-1.7 (MBP), and those of N-terminally truncated Yak1p were 560.7+/-74.8 (Ser-164) and 34. 4+/-2.2 (MBP) pmol/min per mg of protein. Although neither form of Yak1p was able to phosphorylate two generic protein tyrosine kinase substrates, both were phosphorylated on tyrosine residues in vivo and underwent tyrosine autophosphorylation when reacted with ATP in vitro. Tandem MS showed that Tyr-530 was phosphorylated both in vivo and in vitro after reaction with ATP. Pre-treatment with protein tyrosine phosphatase 1B removed all of Yak1p phosphotyrosine content and drastically reduced Yak1p activity against exogenous substrates, suggesting that the phosphotyrosine content of the enzyme is essential for its catalytic activity. Although the N-terminally truncated Yak1p was expressed at a lower level than the full-length protein, its catalytic activity and phosphotyrosine content were significantly higher than those of the full-length enzyme. Taken together, our results suggest that Yak1p is a dual specificity protein kinase which

  5. Evidence for the involvement of PECAM-1 in a receptor mediated signal-transduction pathway regulating capacitation-associated tyrosine phosphorylation in human spermatozoa.

    PubMed

    Nixon, Brett; Paul, Jonathan W; Spiller, Cassy M; Attwell-Heap, Abigail G; Ashman, Leonie K; Aitken, R John

    2005-10-15

    Mammalian spermatozoa must become ;capacitated' in the female reproductive tract before they gain the ability to fertilize the oocyte. The attainment of a capacitated state has been correlated with a number of biochemical changes, the most notable of which is a dramatic increase in the tyrosine phosphorylation status of these cells. Despite its biological importance, the mechanisms responsible for initiating this tyrosine phosphorylation cascade in vivo are unknown. Here, we report that this signalling pathway can be elicited in a rapid, dose-dependent and lectin-specific manner by wheat germ agglutinin (WGA), but none of 18 other lectins assessed. This response was abrogated by prior enzymatic cleavage of either sialic acid or GlcNAc residues from the sperm surface and by treatment with a range of pharmacological inhibitors directed against protein kinase A, protein tyrosine kinases and intermediates including Src. Proteomic analysis of the WGA-binding sites on the sperm surface identified the putative cognate receptor as platelet cell adhesion molecule 1 (PECAM-1/CD31). This conclusion was supported by the following evidence: (i) anti-PECAM-1 antibodies identified a molecule of the correct molecular mass in human spermatozoa, (ii) PECAM-1 could be isolated from a pool of sperm surface proteins using WGA immobilized on a solid phase support, (iii) PECAM-1 and WGA co-localized to the sperm surface and (iv) anti-PECAM-1 antibodies could completely block the ability of WGA to stimulate tyrosine phosphorylation in these cells. Collectively, these data provide the first evidence that a receptor-mediated signal transduction pathway triggers human sperm capacitation and identifies PECAM-1 as the probable initiator of this second messenger cascade. PMID:16219692

  6. CFTR Cl– channel functional regulation by phosphorylation of focal adhesion kinase at tyrosine 407 in osmosensitive ion transporting mitochondria rich cells of euryhaline killifish

    PubMed Central

    Marshall, William S.; Watters, Kaitlyn D.; Hovdestad, Leah R.; Cozzi, Regina R. F.; Katoh, Fumi

    2009-01-01

    Summary Cystic fibrosis transmembrane conductance regulator (CFTR) anion channels are the regulated exit pathway in Cl– secretion by teleost mitochondria rich salt secreting (MR) cells of the gill and opercular epithelia of euryhaline teleosts. By confocal light immunocytochemistry, immunogold transmission electron microscopy (TEM), and co-immunoprecipitation, using regular and phospho-antibodies directed against conserved sites, we found that killifish CFTR (kfCFTR) and the tyrosine kinase focal adhesion kinase (FAK) phosphorylated at Y407 (FAK pY407) are colocalized in the apical membrane and in subjacent membrane vesicles of MR cells. We showed previously that basolateral FAK pY407, unlike other FAK phosphorylation sites, is osmosensitive and dephosphorylates during hypotonic shock of epithelial cells (Marshall et al., 2008). In the present study, we found that hypotonic shock and the α2-adrenergic agonist clonidine (neither of which affects cAMP levels) rapidly and reversibly inhibit Cl– secretion by isolated opercular membranes, simultaneous with dephosphorylation of FAK pY407, located in the apical membrane. FAK pY407 is rephosphorylated and Cl– secretion rapidly restored by hypertonic shock as well as by forskolin and isoproterenol, which operate via cAMP and protein kinase A. We conclude that hormone mediated, cAMP dependent and osmotically mediated, cAMP independent pathways converge on a mechanism to activate CFTR and Cl– secretion, possibly through tyrosine phosphorylation of CFTR by FAK. PMID:19617429

  7. Tyrosine phosphorylation of estradiol receptor by Src regulates its hormone-dependent nuclear export and cell cycle progression in breast cancer cells.

    PubMed

    Castoria, G; Giovannelli, P; Lombardi, M; De Rosa, C; Giraldi, T; de Falco, A; Barone, M V; Abbondanza, C; Migliaccio, A; Auricchio, F

    2012-11-15

    We report that in breast cancer cells, tyrosine phosphorylation of the estradiol receptor alpha (ERalpha) by Src regulates cytoplasmic localization of the receptor and DNA synthesis. Inhibition of Src or use of a peptide mimicking the ERalpha p-Tyr537 sequence abolishes ERalpha tyrosine phosphorylation and traps the receptor in nuclei of estradiol-treated MCF-7 cells. An ERalpha mutant carrying a mutation of Tyr537 to phenylalanine (ER537F) persistently localizes in nuclei of various cell types. In contrast with ERalpha wt, ER537F does not associate with Ran and its interaction with Crm1 is insensitive to estradiol. Thus, independently of estradiol, ER537F is retained in nuclei, where it entangles FKHR-driving cell cycle arrest. Chromatin immunoprecipitation analysis reveals that overexpression of ER537F in breast cancer cells enhances FKHR interaction with cyclin D1 promoter. This mutant also counteracts cell transformation by the activated forms of Src or PI3-K. In conclusion, in addition to regulating receptor localization, ERalpha phosphorylation by Src is required for hormone responsiveness of DNA synthesis in breast cancer cells. PMID:22266855

  8. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes

    PubMed Central

    Rajapaksha, Harinda; Forbes, Briony E.

    2015-01-01

    The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His4, Tyr15, Thr49, Ile51) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I. PMID:26217307

  9. Platelet-activating factor increases VE-cadherin tyrosine phosphorylation in mouse endothelial cells and its association with the PtdIns3'-kinase

    PubMed Central

    Hudry-Clergeon, Hélène; Stengel, Dominique; Ninio, Ewa; Vilgrain, Isabelle

    2005-01-01

    Platelet-activating-Factor (PAF), a potent inflammatory mediator, is involved in endothelial permeability. This study was designed to characterize PAF receptor (PAF-R) expression and its specific contribution to the modifications of adherens junctions in mouse endothelial cells. We demonstrated that PAF-R was expressed in mouse endothelial cells and was functionally active in stimulating p42/p44 MAPK and phosphatidylinositol 3-kinase (PtdIns3′-kinase)/Akt activities. Treatment of cells with PAF induced a rapid, time- and dose-dependent (10−7 to 10−10M) increase in tyrosine phosphorylation of a subset of proteins ranging from 90 kDa to 220 kDa, including the VE-cadherin, the latter effect being prevented by the tyrosine kinase inhibitors, herbimycin A and bis-tyrphostin. Furthermore, we demonstrated that PAF promoted formation of multimeric aggregates of VE-cadherin with PtdIns3′-kinase which was also inhibited by herbimycin and bis-tyrphostin. Finally, we showed by immunostaining of endothelial cells VE-cadherin, that PAF dissociated adherens junctions. The present data provide the first evidence that the treatment of endothelial cells with PAF promoted activation of tyrosine kinases and the VE-cadherin tyrosine phosphorylation and PtdIns3′-kinase association, that ultimately lead to the dissociation of adherens junctions. Physical association between PtdIns3′-kinase, serving as a docking protein, and VE-cadherin may thus provide an efficient mechanism for amplification and perpetuation of PAF-induced cellular activation. PMID:15791001

  10. Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats.

    PubMed

    Sridhar, M G; Vinayagamoorthi, R; Arul Suyambunathan, V; Bobby, Z; Selvaraj, N

    2008-04-01

    The aim of this present study was to investigate the effect of bitter gourd extract on insulin sensitivity and proximal insulin signalling pathways in high-fat-fed rats. High-fat feeding of male Wistar rats for 10 weeks decreased the glucose tolerance and insulin sensitivity compared to chow-fed control rats. Bitter gourd extract supplementation for 2 weeks (9th and 10th) of high-fat feeding improved the glucose tolerance and insulin sensitivity. In addition bitter gourd extract reduced the fasting insulin (43 (se 4.4) v. 23 (se 5.2) microU/ml, P < 0.05), TAG (134 (se 12) v. 96 (se 5.5) mg/dl, P < 0.05), cholesterol (97 (se 6.3) v. 72 (se 5.2) mg/dl, P < 0.05) and epidydimal fat (4.8 (se 0.29) v. 3.6 (se 0.24) g, P < 0.05), which were increased by high-fat diet (HFD). High-fat feeding and bitter gourd supplementation did not have any effect on skeletal muscle insulin receptor, insulin receptor subtrate-1 (IRS-1) and insulin- stimulated insulin receptor tyrosine phosphorylation compared to chow-fed control rats. However high-fat feeding for 10 weeks reduced the insulin-stimulated IRS-1 tyrosine phosphorylation compared to control rats. Bitter gourd supplementation together with HFD for 2 weeks improved the insulin-stimulated IRS-1 tyrosine phosphorylation compared to rats fed with HFD alone. Our results show that bitter gourd extract improves insulin sensitivity, glucose tolerance and insulin signalling in HFD-induced insulin resistance. Identification of potential mechanism(s) by which bitter gourd improves insulin sensitivity and insulin signalling in high-fat-fed rats may open new therapeutic targets for the treatment of obesity/dyslipidemia-induced insulin resistance. PMID:17942003

  11. Tyrosine hydroxylase is activated and phosphorylated at different sites in rat pheochromocytoma PC 12 cells treated with phorbol ester and forskolin

    SciTech Connect

    Tachikawa, E.; Tank, A.W.; Weiner, D.H.; Mosimann, W.F.; Yanagihara, N.; Weiner, N.

    1986-03-01

    The effects of phorbol ester (4..beta..-phorbol, 12..beta..-myristate, 13..cap alpha..-acetate; TPA), an activator of Ca/sup + +//phospholipid-dependent protein kinase (PK-C), and forskolin, which stimulates adenylate cyclase and cyclic AMP-dependent protein kinase (cAMP-PK), on the activation and phosphorylation of tyrosine hydroxylase (TH) in rat pheochromocytoma (PC 12) cells were examined. Incubation of the cells with TPA (0.01-1 ..mu..M) or forskolin (0.01-0.1 ..mu..M) produces increases in activation and phosphorylation of TH in a concentration-dependent manner. The stimulatory effects of TPA are dependent on extracellular Ca/sup + +/ and are inhibited by pretreatment of the cells with trifluoperazine (TFP). The effects of forskolin are independent of Ca/sup + +/ and are not inhibited by TFP. In cells treated with forskolin, the time course of the increase in cAMP correlates with the increases in TH activity and phosphorylation. cAMP levels do not increase in cells treated with TPA. There is an increase in the phosphorylation of only one tryptic phosphopeptide derived from TH in cells treated with either forskolin or TPA. The peptide phosphorylated in TPA-treated cells exhibits different elution characteristics on HPLC from that in forskolin-treated cells. The authors conclude that TH in PC 12 cells is phosphorylated on different sites by cAMP-PK and PK-C. Phosphorylation of either of these sites is associated with enzyme activation.

  12. Inhibitory effect of SPE-39 due to tyrosine phosphorylation and ubiquitination on the function of Vps33B in the EGF-stimulated cells.

    PubMed

    Ishii, Ayumi; Kamimori, Kanae; Hiyoshi, Mineyoshi; Kido, Hiroshi; Ohta, Takeshi; Konishi, Hiroaki

    2012-07-30

    Although SPE-39 is a binding protein to Vps33B that is one of the subunit in the mammalian HOPS complex, the elements of SPE-39 function remain unknown. Here, we show that tyrosine phosphorylation of SPE-39 following EGF stimulation plays a role in the stability of SPE-39 itself. Ubiquitination of the C-terminal region of SPE-39 was also elevated in response to EGF stimulation, and this process was regulated by the phosphorylation of Tyr-11 in SPE-39. However, association of Vps33B with SPE-39 inhibited the elevation of ubiquitination of SPE-39 following EGF stimulation, which might be responsible for the stabilization of SPE-39. Furthermore, an opposing functional relationship between SPE-39 and Vps33B on the downregulation of the EGF receptor was observed in EGF-stimulated COS-7 cells. PMID:22677173

  13. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1.

    PubMed Central

    Mohammadi, M; Honegger, A M; Rotin, D; Fischer, R; Bellot, F; Li, W; Dionne, C A; Jaye, M; Rubinstein, M; Schlessinger, J

    1991-01-01

    Phospholipase C-gamma (PLC-gamma) is a substrate of the fibroblast growth factor receptor (FGFR; encoded by the flg gene) and other receptors with tyrosine kinase activity. It has been demonstrated that the src homology region 2 (SH2 domain) of PLC-gamma and of other signalling molecules such as GTPase-activating protein and phosphatidylinositol 3-kinase-associated p85 direct their binding toward tyrosine-autophosphorylated regions of the epidermal growth factor or platelet-derived growth factor receptor. In this report, we describe the identification of Tyr-766 as an autophosphorylation site of flg-encoded FGFR by direct sequencing of a tyrosine-phosphorylated tryptic peptide isolated from the cytoplasmic domain of FGFR expressed in Escherichia coli. The same phosphopeptide was found in wild-type FGFR phosphorylated either in vitro or in living cells. Like other growth factor receptors, tyrosine-phosphorylated wild-type FGFR or its cytoplasmic domain becomes associated with intact PLC-gamma or with a fusion protein containing the SH2 domain of PLC-gamma. To delineate the site of association, we have examined the capacity of a 28-amino-acid tryptic peptide containing phosphorylated Tyr-766 to bind to various constructs containing SH2 and other domains of PLC-gamma. It is demonstrated that the tyrosine-phosphorylated peptide binds specifically to the SH2 domain but not to the SH3 domain or other regions of PLC-gamma. Hence, Tyr-766 and its flanking sequences represent a major binding site in FGFR for PLC-gamma. Alignment of the amino acid sequences surrounding Tyr-766 with corresponding regions of other FGFRs revealed conserved tyrosine residues in all known members of the FGFR family. We propose that homologous tyrosine-phosphorylated regions in other FGFRs also function as binding sites for PLC-gamma and therefore are involved in coupling to phosphatidylinositol breakdown. Images PMID:1656221

  14. A role for bovine herpesvirus 1 (BHV-1) glycoprotein E (gE) tyrosine phosphorylation in replication of BHV-1 wild-type virus but not BHV-1 gE deletion mutant virus.

    PubMed

    Shaw, A M; Braun, L; Frew, T; Hurley, D J; Rowland, R R; Chase, C C

    2000-03-01

    Bovine herpesvirus 1 (BHV-1), an alphaherpesvirus, is a major pathogen that causes respiratory and reproductive infections. We observed tyrosine phosphorylation of a 95-kDa viral protein and dephosphorylation of 55- and 103-kDa cellular proteins during the course of BHV-1 infection. We demonstrated BHV-1 glycoprotein E (gE) to be the tyrosine phosphorylated viral protein by immunoprecipitation. Inhibition of phosphorylation of BHV-1 gE by tyrosine kinase inhibitors genistein and tyrphostin AG1478 substantially lowered the viral titer in Madin-Darby bovine kidney cells. The decrease in viral titer was directly proportional to the decrease in phosphorylation of the BHV-1 gE. Interestingly, these kinase inhibitors did not inhibit the replication of the BHV-1 gE deletion mutant virion (BHV-1gEDelta3.1). Our findings suggest that the wild-type BHV-1, with a functional gE protein, uses a different pathway of signaling events than the BHV-1 gE deletion mutant in replication. Our results indicate that the tyrosine phosphorylation of the cytoplasmic tail of BHV-1 gE is an important post-translational modification of the functional protein. An application of this study may be the use of tyrosine kinase inhibitors in controlling the BHV-1 infection. PMID:10683338

  15. Tyrosines 1021 and 1009 are phosphorylation sites in the carboxy terminus of the platelet-derived growth factor receptor beta subunit and are required for binding of phospholipase C gamma and a 64-kilodalton protein, respectively.

    PubMed Central

    Valius, M; Bazenet, C; Kazlauskas, A

    1993-01-01

    Binding of platelet-derived growth factor (PDGF) to the PDGF receptor (PDGFR) beta subunit triggers receptor tyrosine phosphorylation and the stable association of a number of signal transduction molecules, including phospholipase C gamma (PLC gamma), the GTPase activating protein of ras (GAP), and phosphatidylinositol-3 kinase (PI3K). Previous reports have identified three PDGFR tyrosine phosphorylation sites in the kinase insert domain that are important for stable association of GAP and PI3K. Two of them, tyrosine (Y) 740, and Y-751 are required for the stable association of PI3K, while Y-771 is required for binding of GAP. Here we present data for two additional tyrosine phosphorylation sites, Y-1009 and Y-1021, that are both in the carboxy-terminal region of the PDGFR. Characterization of PDGFR mutants in which these phosphorylation sites are substituted with phenylalanine (F) indicated that Y-1021 and Y-1009 were required for the stable association of PLC gamma and a 64-kDa protein, respectively. An F-1009/F-1021 double mutant selectively failed to bind both PLC gamma and the 64-kDa protein, whereas all of the carboxy-terminal mutants bound wild-type levels of GAP and PI3K. The carboxy terminus encodes the complete binding site for PLC gamma, since a phosphorylated carboxy-terminal fusion protein selectively bound PLC gamma. To determine the biological consequences of failure to associate with PLC gamma, we measured PDGF-dependent inositol phosphate production and initiation of DNA synthesis. The PDGFR mutants that failed to associate with PLC gamma were not able to mediate the PDGF-dependent production of inositol phosphates. Since tyrosine phosphorylation of PLC gamma enhances its enzymatic activity, we speculated that PDGFR mutants that failed to activate PLC gamma were unable to mediate its tyrosine phosphorylation. Surprisingly, the F-1021 receptor mediated readily detectable levels of PDGF-dependent PLC gamma tyrosine phosphorylation. Thus, the

  16. The kinase c-Src and the phosphatase TC45 coordinately regulate c-Fos tyrosine phosphorylation and c-Fos phospholipid synthesis activation capacity.

    PubMed

    Ferrero, G O; Velazquez, F N; Caputto, B L

    2012-07-12

    Our previous work showed that in T98G cells, a human glioblastoma multiforme-derived cell line, the association of c-Fos to the endoplasmic reticulum (ER) and consequently, the capacity of c-Fos to activate phospholipid synthesis, is regulated by the phosphorylation state of tyrosine (tyr) residues #10 and #30 of c-Fos. The small amount of c-Fos present in quiescent cells is tyr-phosphorylated, is dissociated from the ER membranes and does not activate phospholipid synthesis. However, on induction of the cell to re-enter growth, c-Fos expression is rapidly induced, it is found dephosphorylated, associated to ER membranes and activating phospholipid synthesis (Portal et al., 2007). Herein, using in vivo and in vitro experimental strategies, we show that the kinase c-Src is capable of phosphorylating tyr residues of c-Fos whereas the phosphatase TC45 T-cell protein-tyr phosphatase (TC-PTP) dephosphorylates them, thus enabling c-Fos/ER association and activation of phospholipid synthesis. Results also suggest that the regulation of the phosphorylation/dephosphorylation cycle of c-Fos occurs at the TC-PTP level: induction of cells to re-enter growth promotes the translocation of TC45 from a nuclear to a cytoplasmic location concomitant with its activation. Activated TC45 in its turn promotes dephosphorylation of pre-formed c-Fos, enabling cells to rapidly activate phospholipid synthesis to respond to its growth demands. PMID:22105363

  17. Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125

    PubMed Central

    Hejjaoui, Mirva; Butterfield, Sara; Fauvet, Bruno; Vercruysse, Filip; Cui, Jia; Dikiy, Igor; Prudent, Michel; Olschewski, Diana; Zhang, Yan; Eliezer, David; Lashuel, Hilal A.

    2013-01-01

    Despite increasing evidence that supports the role of different post-translational modifications (PTMs) in modulating α-synuclein (α-syn) aggregation and toxicity, relatively little is known about the functional consequences of each modification and whether or not these modifications are regulated by each other. This lack of knowledge arises primarily from the current lack of tools and methodologies for the site-specific introduction of PTMs in α-syn. More specifically, the kinases that mediate selective and efficient phosphorylation of C-terminal tyrosine residues of α-syn remain to be identified. Unlike phospho-serine and phospho-threonine residues, which in some cases can be mimicked by serine/threonine → glutamate or aspartate substitutions, there are no natural amino acids that can mimic phosphor-tyrosine. To address these challenges, we developed a general and efficient semisynthetic strategy that enables the site-specific introduction of single or multiple PTMs and the preparation of homogeneously C-terminal modified forms of α-syn in milligram quantities. These advances have allowed us to investigate, for the first time, the effects of selective phosphorylation at Y125 on the structure, aggregation, membrane binding and subcellular localization of α-syn. The development of semisynthetic methods for the site-specific introduction of single or PTMs represents an important advance toward determining the roles of such modifications in α-syn structure, aggregation and functions in heath and disease. PMID:22339654

  18. Tyrosine phosphorylation of the BRI1 receptor kinase occurs via a posttranslational modification and is activated by the juxtamembrane domain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In metazoans, receptor kinases control many essential processes related to growth and development and response to the environment. The receptor kinases in plants and animals are structurally similar but evolutionarily distinct from one another, and thus while most animal receptor kinases are tyrosin...

  19. Cables enhances cdk2 tyrosine 15 phosphorylation by Wee1, inhibits cell growth, and is lost in many human colon and squamous cancers.

    PubMed

    Wu, C L; Kirley, S D; Xiao, H; Chuang, Y; Chung, D C; Zukerberg, L R

    2001-10-01

    Cyclin-dependent kinase 2 (cdk2) is a small serine/threonine kinase that regulates cell cycle progression. Cdk2 activity is tightly controlled by several mechanisms, including phosphorylation and dephosphorylation events. Cables is a recently described novel cdk-interacting protein. In proliferating cells, Cables was predominantly localized in the nucleus by cell fractionation and immunostaining. Expression of Cables in HeLa cells inhibited cell growth and colony formation. Cables enhanced cdk2 tyrosine 15 phosphorylation by the Wee1 protein kinase, an inhibitory phosphorylation, which led to decreased cdk2 kinase activity. The gene encoding Cables is located on human chromosome 18q11-12, a site that is frequently lost in squamous, colon, and pancreas cancers. We found that Cables was strongly expressed in normal human epithelial cells including squamous and glandular mucosa. Breast and pancreatic cancers show strong Cables expression; however, loss of Cables expression was found in approximately 50-60% of primary colon and head and neck cancer specimens. Lack of Cables expression was associated with loss of heterozygosity on chromosome 18q11. The data provide evidence for a Cables-mediated interplay between cdk2 and Wee1 that leads to inhibition of cell growth. Conversely, loss of Cables may cause uncontrolled cell growth and enhance tumor formation. PMID:11585773

  20. Dopamine or biopterin deficiency potentiates phosphorylation at (40)Ser and ubiquitination of tyrosine hydroxylase to be degraded by the ubiquitin proteasome system.

    PubMed

    Kawahata, Ichiro; Ohtaku, Shiori; Tomioka, Yoshihisa; Ichinose, Hiroshi; Yamakuni, Tohru

    2015-09-11

    The protein amount of tyrosine hydroxylase (TH), that is the rate-limiting enzyme for the biosynthesis of dopamine (DA), should be tightly regulated, whereas its degradation pathway is largely unknown. In this study, we analyzed how the TH protein is chemically modified and subsequently degraded under deficiencies of DA and tetrahydrobiopterin (BH4), a cofactor for TH, by using pharmacological agents in PC12D cells and cultured mesencephalic neurons. When inhibition of DA- or BH4-synthesizing enzymes greatly reduced the DA contents in PC12D cells, a marked and persistent increase in phosphorylated TH at (40)Ser (p40-TH) was concomitantly observed. This phosphorylation was mediated by D2 dopamine auto-receptor and cAMP-dependent protein kinase (PKA). Our immunoprecipitation experiments showed that the increase in the p40-TH level was accompanied with its poly-ubiquitination. Treatment of PC12D cells with cycloheximide showed that total-TH protein level was reduced by the DA- or BH4-depletion. Notably, this reduction in the total-TH protein level was sensitive not only to a 26S proteasomal inhibitor, MG-132, but also to a PKA inhibitor, H-89. These data demonstrated that DA deficiency should induce compensatory activation of TH via phosphorylation at (40)Ser through D2-autoreceptor and PKA-mediated pathways, which in turn give a rise to its degradation through an ubiquitin-proteasome pathway, resulting in a negative spiral of DA production when DA deficiency persists. PMID:26225746

  1. Simple Method for Determination of the Number of Helicobacter pylori CagA Variable-Region EPIYA Tyrosine Phosphorylation Motifs by PCR

    PubMed Central

    Argent, Richard H.; Zhang, Youli; Atherton, John C.

    2005-01-01

    Helicobacter pylori strains possessing the cag pathogenicity island are associated with the development of gastric cancer. The CagA protein is translocated into epithelial cells and becomes phosphorylated on tyrosine residues within EPIYA motifs, which may be repeated within the variable region of the protein. Strains possessing CagA with greater numbers of these repeats have been more closely associated with gastric carcinogenesis. Phosphorylated CagA leads to epithelial cell elongation, which is dependent on the number of variable-region EPIYA motifs. Thus, determination of the degree of CagA phosphorylation and the number of EPIYA motifs appears to be more important than detection of cagA alone. Determination of the number of EPIYA motifs by nucleotide sequencing, however, is a laborious and expensive process. We describe here a novel and rapid PCR method for determination of the pattern of repeats containing the EPIYA motif. This will aid in the identification of those strains that may be more likely to cause disease. PMID:15695681

  2. Activation of the lutropin/choriogonadotropin receptor (LHR) in MA-10 cells leads to the tyrosine phosphorylation of the focal adhesion kinase (FAK) by a pathway that involves Src family kinases*

    PubMed Central

    Mizutani, Tetsuya; Shiraishi, Koji; Welsh, Toni; Ascoli, Mario

    2006-01-01

    We show that activation of the endogenous or recombinant LHR in mouse Leydig tumor cells (MA-10 cells) leads to the tyrosine phosphorylation of the focal adhesion kinase (FAK) and one of its substrates (paxillin). Using specific antibodies to the five tyrosine residues of FAK that become phosphorylated we show that activation of the LHR increases the phosphorylation of Tyr576 and Tyr577 but it does not affect the phosphorylation of Tyr397, Tyr861 or Tyr925. Because FAK is a prominent substrate for the Src family of tyrosine kinases (SFKs) we tested for their involvement in the LHR-mediated phosphorylation of FAK-Tyr576. Src is not detectable in MA-10 cells, but two other prominent members of this family (Fyn and Yes) are present. The LHR-mediated phosphorylation of FAK-Tyr576 is readily inhibited by PP2 (a pharmacological inhibitor of SFKs) and by dominant-negative mutants of SKFs. Moreover, activation of the LHR in MA-10 cells results in the stimulation of the activity of Fyn and Yes and overexpression of either of these two tyrosine kinases enhances the LHR-mediate phosphorylation of FAK-Tyr576. Studies involving activation of other G protein-coupled receptors, overexpression of the different Gα subunits, and the use of second messenger analogs suggest that the LHR-induced phosphorylation of FAK-Tyr576 in MA-10 cells is mediated by SFKs, and that this family of kinases is, in turn, independently or cooperatively activated by the LHR-induced stimulation of Gs and Gq/11-mediated pathways. PMID:16293639

  3. Gatekeeper Tyrosine Phosphorylation of SYMRK Is Essential for Synchronizing the Epidermal and Cortical Responses in Root Nodule Symbiosis.

    PubMed

    Saha, Sudip; Paul, Anindita; Herring, Laura; Dutta, Ayan; Bhattacharya, Avisek; Samaddar, Sandip; Goshe, Michael B; DasGupta, Maitrayee

    2016-05-01

    Symbiosis receptor kinase (SYMRK) is indispensable for activation of root nodule symbiosis (RNS) at both epidermal and cortical levels and is functionally conserved in legumes. Previously, we reported SYMRK to be phosphorylated on "gatekeeper" Tyr both in vitro as well as in planta. Since gatekeeper phosphorylation was not necessary for activity, the significance remained elusive. Herein, we show that substituting gatekeeper with nonphosphorylatable residues like Phe or Ala significantly affected autophosphorylation on selected targets on activation segment/αEF and β3-αC loop of SYMRK. In addition, the same gatekeeper mutants failed to restore proper symbiotic features in a symrk null mutant where rhizobial invasion of the epidermis and nodule organogenesis was unaffected but rhizobia remain restricted to the epidermis in infection threads migrating parallel to the longitudinal axis of the root, resulting in extensive infection patches at the nodule apex. Thus, gatekeeper phosphorylation is critical for synchronizing epidermal/cortical responses in RNS. PMID:26960732

  4. Phosphorylation of Tyrosine 1070 at the GluN2B Subunit Is Regulated by Synaptic Activity and Critical for Surface Expression of N-Methyl-D-aspartate (NMDA) Receptors.

    PubMed

    Lu, Wen; Fang, Weiqing; Li, Jian; Zhang, Bin; Yang, Qian; Yan, Xunyi; Peng, Lin; Ai, Heng; Wang, Jie-jie; Liu, Xiao; Luo, Jianhong; Yang, Wei

    2015-09-18

    The number and subunit composition of synaptic N-methyl-d-aspartate receptors (NMDARs) play critical roles in synaptic plasticity, learning, and memory and are implicated in neurological disorders. Tyrosine phosphorylation provides a powerful means of regulating NMDAR function, but the underling mechanism remains elusive. In this study we identified a tyrosine site on the GluN2B subunit, Tyr-1070, which was phosphorylated by a proto-oncogene tyrosine-protein (Fyn) kinase and critical for the surface expression of GluN2B-containing NMDARs. The phosphorylation of GluN2B at Tyr-1070 was required for binding of Fyn kinase to GluN2B, which up-regulated the phosphorylation of GluN2B at Tyr-1472. Moreover, our results revealed that the phosphorylation change of GluN2B at Tyr-1070 accompanied the Tyr-1472 phosphorylation and Fyn associated with GluN2B in synaptic plasticity induced by both chemical and contextual fear learning. Taken together, our findings provide a new mechanism for regulating the surface expression of NMDARs with implications for synaptic plasticity. PMID:26229100

  5. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions.

    PubMed

    Zhang, Xue-Song; Tegtmeyer, Nicole; Traube, Leah; Jindal, Shawn; Perez-Perez, Guillermo; Sticht, Heinrich; Backert, Steffen; Blaser, Martin J

    2015-02-01

    Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT) in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase) was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk. PMID:25646814

  6. Dynamic quantification of intracellular calcium and protein tyrosine phosphorylation in cryopreserved boar spermatozoa during short-time incubation with oviductal fluid.

    PubMed

    Kumaresan, A; González, R; Johannisson, A; Berqvist, A-S

    2014-11-01

    Freshly ejaculated boar spermatozoa require several hours of exposure to capacitating conditions to undergo capacitation. We hypothesized that cryopreserved boar spermatozoa might elicit a capacitation response after a relatively shorter time of exposure to capacitating conditions. Washed, frozen-thawed boar spermatozoa were incubated separately with pre-ovulatory isthmic oviductal fluid (EODF), post-ovulatory ODF (MODF), capacitation medium (CM), and noncapacitating medium (NCM) for 60 minutes. Aliquots of spermatozoa were taken at 0, 5, 15, 30, and 60 minutes during incubation and sperm kinematics, intracellular calcium [Ca2(+)]i content, and protein tyrosine phosphorylation (PTP) were studied. The proportion of motile spermatozoa increased significantly after 5 minutes of incubation with EODF. A similar increase was not observed in the other groups. During the initial 5 minutes of incubation, the proportion of spermatozoa with high [Ca(2+)]i decreased significantly in all four groups. The proportion of tyrosine phosphorylated spermatozoa increased from 6.49 ± 1.93% to 15.42 ± 3.58% and 18.41 ± 1.57% in EODF and MODF groups, respectively, at 5 minutes of incubation. Neither CM nor NCM elicited any immediate effect on PTP in spermatozoa. There was a positive and significant correlation between [Ca(2+)]i and sperm motility (P = 0.009). It may be concluded that frozen-thawed boar spermatozoa undergo capacitation-associated changes after a relatively short exposure to EODF, and there are some subpopulations of spermatozoa that undergo PTP despite possessing low [Ca(2+)]i. PMID:25175760

  7. Splice Variants of the Dual Specificity Tyrosine Phosphorylation-regulated Kinase 4 (DYRK4) Differ in Their Subcellular Localization and Catalytic Activity*

    PubMed Central

    Papadopoulos, Chrisovalantis; Arato, Krisztina; Lilienthal, Eva; Zerweck, Johannes; Schutkowski, Mike; Chatain, Nicolas; Müller-Newen, Gerhard; Becker, Walter; de la Luna, Susana

    2011-01-01

    Dual specificity tyrosine phosphorylation-regulated kinases, DYRKs, are a family of conserved protein kinases that play key roles in the regulation of cell differentiation, proliferation, and survival. Of the five mammalian DYRKs, DYRK4 is the least studied family member. Here, we show that several splice variants of DYRK4 are expressed in tissue-specific patterns and that these variants have distinct functional capacities. One of these variants contains a nuclear localization signal in its extended N terminus that mediates its interaction with importin α3 and α5 and that is capable of targeting a heterologous protein to the nucleus. Consequently, the nucleocytoplasmic mobility of this variant differs from that of a shorter isoform in live cell imaging experiments. Other splicing events affect the catalytic domain, including a three-amino acid deletion within subdomain XI that markedly reduces the enzymatic activity of DYRK4. We also show that autophosphorylation of a tyrosine residue within the activation loop is necessary for full DYRK4 kinase activity, a defining feature of the DYRK family. Finally, by comparing the phosphorylation of an array of 720 peptides, we show that DYRK1A, DYRK2, and DYRK4 differ in their target recognition sequence and that preference for an arginine residue at position P −3 is a feature of DYRK1A but not of DYRK2 and DYRK4. Therefore, we highlight the use of subcellular localization as an important regulatory mechanism for DYRK proteins, and we propose that substrate specificity could be a source of functional diversity among DYRKs. PMID:21127067

  8. The Tyrosine Phosphatase SHP2 Associates with CUB Domain-Containing Protein-1 (CDCP1), Regulating Its Expression at the Cell Surface in a Phosphorylation-Dependent Manner

    PubMed Central

    Gandji, Leslie Yewakon; Proust, Richard; Larue, Lionel; Gesbert, Franck

    2015-01-01

    CUB domain-containing protein-1 (CDCP1) is a transmembrane glycoprotein that is phosphorylated by SRC family kinases (SFK) before recruiting and activating PKCδ. CDCP1 is overproduced in many cancers. It promotes metastasis and resistance to anoïkis. The robust production of CDCP1 would be associated with stemness and has been proposed as a novel prognosis marker. The natural transmembrane location of CDCP1 makes it an ideal therapeutic target and treatments based on the use of appropriate antibodies are currently being evaluated. However, we still know very little about the molecular fate of CDCP1 and its downstream signaling events. Improvements in our understanding of the molecular events occurring downstream of CDCP1 are required to make use of changes of CDCP1 production or functions for therapeutic purposes. By the mean of co-immunoprecipitation and affinity precipitation we show here, for the first time, that CDCP1 interacts directly, with the cytosolic tyrosine phosphatase SHP2. Point mutants of CDCP1 show that residues Y734 and Y743 are responsible for its interaction with SHP2. It may therefore compete with SFK. We also demonstrate that a shRNA-mediated down regulation of SHP2 is associated with a stronger CDCP1 phosphorylation and an impairment of antibody-mediated CDCP1 internalization. PMID:25876044

  9. The c-Cbl Ubiquitin Ligase Regulates Nuclear β-Catenin and Angiogenesis by Its Tyrosine Phosphorylation Mediated through the Wnt Signaling Pathway*

    PubMed Central

    Shivanna, Sowmya; Harrold, Itrat; Shashar, Moshe; Meyer, Rosanna; Kiang, Chrystelle; Francis, Jean; Zhao, Qing; Feng, Hui; Edelman, Elazer R.; Rahimi, Nader; Chitalia, Vipul C.

    2015-01-01

    Wnt signaling plays important roles in both the tumor-induced angiogenesis and tumorigenesis through the transcriptionally active nuclear β-catenin. Recently, c-Cbl was identified as a unique E3 ubiquitin ligase targeting the active nuclear β-catenin. However, little is known about the molecular mechanisms by which c-Cbl regulates ubiquitination and degradation of active β-catenin. Here, we demonstrate that Wnt activation promotes the phosphorylation of c-Cbl at tyrosine 731(Tyr-731), which increases c-Cbl dimerization and binding to β-catenin. Tyr-731 phosphorylation and dimerization mediate c-Cbl nuclear translocation and lead to the degradation of nuclearly active β-catenin in the Wnt-on phase. c-Cbl activation also inhibits expression of the pro-angiogenic Wnt targets, IL-8 and VEGF. Phospho-Tyr-731-inactive mutant c-Cbl (Y731F) enhances and phosphomimetic mutant c-Cbl (Y731E) suppresses angiogenesis in zebrafish. Taken together, we have identified a novel mechanism for the regulation of active nuclear β-catenin by c-Cbl and its critical role in angiogenesis. This mechanism can be further explored to modulate both the pathological angiogenesis and the tumorigenesis. PMID:25784557

  10. Brk/Protein tyrosine kinase 6 phosphorylates p27KIP1, regulating the activity of cyclin D-cyclin-dependent kinase 4.

    PubMed

    Patel, Priyank; Asbach, Benedikt; Shteyn, Elina; Gomez, Cindy; Coltoff, Alexander; Bhuyan, Sadia; Tyner, Angela L; Wagner, Ralf; Blain, Stacy W

    2015-05-01

    Cyclin D and cyclin-dependent kinase 4 (cdk4) are overexpressed in a variety of tumors, but their levels are not accurate indicators of oncogenic activity because an accessory factor such as p27(Kip1) is required to assemble this unstable dimer. Additionally, tyrosine (Y) phosphorylation of p27 (pY88) is required to activate cdk4, acting as an "on/off switch." We identified two SH3 recruitment domains within p27 that modulate pY88, thereby modulating cdk4 activity. Via an SH3-PXXP interaction screen, we identified Brk (breast tumor-related kinase) as a high-affinity p27 kinase. Modulation of Brk in breast cancer cells modulates pY88 and increases resistance to the cdk4 inhibitor PD 0332991. An alternatively spliced form of Brk (Alt Brk) which contains its SH3 domain blocks pY88 and acts as an endogenous cdk4 inhibitor, identifying a potentially targetable regulatory region within p27. Brk is overexpressed in 60% of breast carcinomas, suggesting that this facilitates cell cycle progression by modulating cdk4 through p27 Y phosphorylation. p27 has been considered a tumor suppressor, but our data strengthen the idea that it should also be considered an oncoprotein, responsible for cyclin D-cdk4 activity. PMID:25733683

  11. Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function betwenn LRP and the PDGF.

    PubMed

    Loukinova, Elena; Ranganathan, Sripriya; Kuznetsov, Sergey; Gorlatova, Natalia; Migliorini, Mary M; Loukinov, Dmitri; Ulery, Paula G; Mikhailenko, Irina; Lawrence, Daniel A; Strickland, Dudley K

    2002-05-01

    The low density lipoprotein receptor-related protein (LRP) functions in the catabolism of numerous ligands including proteinases, proteinase inhibitor complexes, and lipoproteins. In the current study we provide evidence indicating an expanded role for LRP in modulating cellular signaling events. Our results show that platelet-derived growth factor (PDGF) BB induces a transient tyrosine phosphorylation of the LRP cytoplasmic domain in a process dependent on PDGF receptor activation and c-Src family kinase activity. Other growth factors, including basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor-1, were unable to mediate tyrosine phosphorylation of LRP. The basis for this selectivity may result from the ability of LRP to bind PDGFBB, because surface plasmon resonance experiments demonstrated that only PDGF, and not basic fibroblast growth factor, epidermal growth factor, or insulin-like growth factor-1, bound to purified LRP immobilized on a sensor chip. The use of LRP mini-receptor mutants as well as in vitro phosphorylation studies demonstrated that the tyrosine located within the second NPXY motif found in the LRP cytoplasmic domain is the primary site of tyrosine phosphorylation by Src and Src family kinases. Co-immunoprecipitation experiments revealed that PDGF-mediated tyrosine phosphorylation of LRPs cytoplasmic domain results in increased association of the adaptor protein Shc with LRP and that Shc recognizes the second NPXY motif within LRPs cytoplasmic domain. In the accompanying paper, Boucher et al. (Boucher, P., Liu, P. V., Gotthardt, M., Hiesberger, T., Anderson, R. G. W., and Herz, J. (2002) J. Biol. Chem. 275, 15507-15513) reveal that LRP is found in caveolae along with the PDGF receptor. Together, these studies suggest that LRP functions as a co-receptor that modulates signal transduction pathways initiated by the PDGF receptor. PMID:11854294

  12. FES kinase participates in KIT-ligand induced chemotaxis

    SciTech Connect

    Voisset, Edwige; Lopez, Sophie; Chaix, Amandine; Vita, Marina; George, Coralie; Dubreuil, Patrice; De Sepulveda, Paulo

    2010-02-26

    FES is a cytoplasmic tyrosine kinase activated by several membrane receptors, originally identified as a viral oncogene product. We have recently identified FES as a crucial effector of oncogenic KIT mutant receptor. However, FES implication in wild-type KIT receptor function was not addressed. We report here that FES interacts with KIT and is phosphorylated following activation by its ligand SCF. Unlike in the context of oncogenic KIT mutant, FES is not involved in wild-type KIT proliferation signal, or in cell adhesion. Instead, FES is required for SCF-induced chemotaxis. In conclusion, FES kinase is a mediator of wild-type KIT signalling implicated in cell migration.

  13. Cytoskeletal modulation and tyrosine phosphorylation of tight junction proteins are associated with mainstream cigarette smoke-induced permeability of airway epithelium.

    PubMed

    Olivera, Dorian; Knall, Cindy; Boggs, Susan; Seagrave, JeanClare

    2010-03-01

    Cigarette smoke increases the permeability of the lung epithelium. Consequences of increased permeability include increased access of toxins and pathogens from the air spaces to the interstitium and even the blood stream, and leakage of fluids into the air spaces. The mechanisms for permeability alterations have not been elucidated for airway epithelia. By analogy with other types of epithelia, we hypothesized that changes in the phosphorylation status and function of tight junction (TJ) or cytoskeletal proteins might mediate the smoke-induced permeability changes. We investigated the effects of exposure to mainstream cigarette smoke (MS) on cultures of Calu-3 cells, an airway epithelial cell line. Specifically, MS exposure caused increases in phosphorylation of the myosin-binding subunit (MBS) of myosin phosphatase and myosin light chain (MLC), proteins involved in the regulation of actin polymerization. These results implicate activation of Rho kinase (ROCK), consistent with previously reported data indicating that inhibition of ROCK activation suppressed MS-induced increases in permeability. MS exposure also increased polymerized (filamentous) actin (f-actin) content and caused redistribution of the TJ proteins from the normal apical circumferential band to a more basal location. The translocation of the TJ proteins was spatially associated with local increases in both f-actin and macromolecular permeability. Finally, MS exposure increased tyrosine phosphorylation of occludin but not ZO-1 and decreased association between the two TJ proteins. These results indicate that MS exposure causes alterations in cytoskeletal and TJ structure and function, resulting in increased macromolecular permeability that may contribute to the adverse health effects of MS. PMID:19376691

  14. Tyrosine phosphorylation-dependent activation of phosphatidylinositide 3-kinase occurs upstream of Ca2+-signalling induced by Fcgamma receptor cross-linking in human neutrophils.

    PubMed Central

    Vossebeld, P J; Homburg, C H; Schweizer, R C; Ibarrola, I; Kessler, J; Koenderman, L; Roos, D; Verhoeven, A J

    1997-01-01

    The effect of wortmannin on IgG-receptor (FcgammaR)-mediated stimulation of human neutrophils was investigated. The Ca2+ influx induced by clustering of both Fcgamma receptors was inhibited by wortmannin, as was the release of Ca2+ from intracellular stores. Wortmannin also inhibited, with the same efficacy, the accumulation of Ins(1,4,5)P3 observed after FcgammaR stimulation, but did not affect the increase in Ins(1,4,5)P3 induced by the chemotactic peptide, formyl-methionine-leucine-phenylalanine. Because wortmannin is, in the concentrations used here, an inhibitor of PtdIns 3-kinase, these results suggested a role for PtdIns 3-kinase upstream of Ca2+ signalling, induced by FcgammaR cross-linking. Support for this notion was obtained by investigating the effect of another inhibitor of PtdIns 3-kinase, LY 294002, and by studying the kinetics of PtdIns 3-kinase activation. We found translocation of PtdIns 3-kinase to the plasma membrane and increased PtdIns 3-kinase activity in the membrane as soon as 5 s after FcgammaR cross-linking, even before the onset of the Ca2+ response. Moreover, the translocation of PtdIns 3-kinase to the plasma membrane was inhibited by co-cross-linking of either FcgammaRIIa and FcgammaRIIIb with the tyrosine phosphatase, CD45, indicating a requirement for protein tyrosine phosphorylation in the recruitment of PtdIns 3-kinase to the plasma membrane. Taken together, our results suggest a role for PtdIns 3-kinase in early signal transduction events after FcgammaR cross-linking in human neutrophils. PMID:9173906

  15. The HPV16 E6 Oncoprotein Causes Prolonged Receptor Protein Tyrosine Kinase Signaling and Enhances Internalization of Phosphorylated Receptor Species

    PubMed Central

    Spangle, Jennifer M.; Munger, Karl

    2013-01-01

    The high-risk human papillomavirus (HPV) E6 proteins are consistently expressed in HPV-associated lesions and cancers. HPV16 E6 sustains the activity of the mTORC1 and mTORC2 signaling cascades under conditions of growth factor deprivation. Here we report that HPV16 E6 activated mTORC1 by enhanced signaling through receptor protein tyrosine kinases, including epidermal growth factor receptor and insulin receptor and insulin-like growth factor receptors. This is evidenced by sustained signaling through these receptors for several hours after growth factor withdrawal. HPV16 E6 increased the internalization of activated receptor species, and the signaling adaptor protein GRB2 was shown to be critical for HPV16 E6 mediated enhanced EGFR internalization and mTORC1 activation. As a consequence of receptor protein kinase mediated mTORC1 activation, HPV16 E6 expression increased cellular migration of primary human epithelial cells. This study identifies a previously unappreciated mechanism by which HPV E6 proteins perturb host-signaling pathways presumably to sustain protein synthesis during the viral life cycle that may also contribute to cellular transforming activities of high-risk HPV E6 proteins. PMID:23516367

  16. HIV-1 downregulates the expression and phosphorylation of receptor tyrosine kinase by targeting the NF-κB pathway

    PubMed Central

    Feng, Tingting; Gan, Jianhe; Qin, Ailan; Huang, Xiaoping; Wu, Nanping; Hu, Hua; Yao, Hangping

    2016-01-01

    Macrophages are major targets of human immunodeficiency virus (HIV) and can act as long-term reservoirs of the virus. Chronic HIV-1 infection is associated with dysregulated inflammation. Recepteur d'origine nantais (RON) is expressed in tissue resident macrophages and functions to maintain inflammatory homeostasis. The present study aimed to compare the expression of RON on HIV-positive and -negative participants, and to investigate the mechanism by which HIV-1 influences the expression and function of RON in the JLTRG T cell line. The levels of RON and the RON ligand, macrophage-stimulating protein (MSP), in the peripheral blood of HIV-1-positive patients that were receiving (n=22) or not receiving highly active anti-retroviral therapy (HAART) (n=82) and 37 healthy control participants were determined by enzyme-linked immunosorbent assay. Expression of RON and MSP in the JLTRG T cell line was assessed by western blotting and the subcellular location was analyzed by fluorescence microscopy. JLTRG cells were co-cultured with a cell line that stably expresses HIV, H9/HTLV-IIIB, and alterations in the levels of RON and nuclear factor-κB (NF-κB) in JLTRG cells were assessed by western blotting. The expression of RON and MSP were significantly different in the serum of HIV-1- positive patients that were receiving HAART compared with those not receiving HAART (P<0.05) and healthy control patients (P<0.01). RON was detected in JLTRG cells, and was shown to be downregulated by HIV-1 infection. HIV-1 infection of JLTRG cells also reduced NF-κB phosphorylation. Thus, HIV-1 was shown to downregulate the expression and phosphorylation of RON by targeting the NF-κB pathway. PMID:27432185

  17. Protein tyrosine phosphatase SHP-1 sensitizes EGFR/HER-2 positive breast cancer cells to trastuzumab through modulating phosphorylation of EGFR and HER-2

    PubMed Central

    Wu, Yifen; Li, Rong; Zhang, Junyi; Wang, Gang; Liu, Bin; Huang, Xiaofang; Zhang, Tao; Luo, Rongcheng

    2015-01-01

    Background Trastuzumab resistance in HER-2 positive breast cancer cells is closely related to overexpression of both epidermal growth factor receptor (EGFR) and human epidermal receptor (HER-2). SHP-1 has been demonstrated to downregulate tyrosine kinase activity including EGFR via its phosphatase function, but its effect on HER-2 activity is still unknown. Here, we examined the hypothesis that SHP-1 enhances the anticancer efficacy of trastuzumab in EGFR/HER-2 positive breast cancer cells through combining dual inhibition of EGFR and HER-2. Methods Trastuzumab-resistant breast cancer SKBr-3 cells were generated by long-term in vitro culture of SKBr-3cells in the presence of trastuzumab. The SHP-1 was ectopically expressed by stable transfection. The activity and expression of EGFR, HER-2, and downstream signaling pathways were tested by Western blot. Cell viability was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was examined by flow cytometry. The binding between SHP-1 and EGFR/HER-2 was evaluated by immunoprecipitation assay and bimolecular fluorescence complementation. The effects of SHP-1 on tumorigenicity and trastuzumab sensitivity were confirmed via in vivo xenograft model. Results Trastuzumab-resistant SKBr-3 cells showed aberrant co-expression of EGFR and HER-2. Introduction of wild-type SHP-1 inhibited cell proliferation, clone formation, and promoted the apoptosis induced by trastuzumab. Meanwhile, SHP-1 overexpression reduced phosphorylation levels of EGFR and HER-2 both in parental and trastuzumab-resistant SKBr-3 cells. In vivo study showed an increased antitumor effect of trastuzumab in SHP-1 overexpressed xenografts. At last, we discovered that SHP-1 can make complexes with both EGFR and HER-2, and both phospho-EGFR and phosphor-HER-2 levels in wild-type SHP-1 immunoprecipitates were less than those in phosphatase-inactive SHP-1 (C453S) immunoprecipitates, indicating that EGFR and HER-2 are

  18. Regulation of lysophosphatidic acid-stimulated tyrosine phosphorylation of mitogen-activated protein kinase by protein kinase C- and pertussis toxin-dependent pathways in the endothelial cell line EAhy 926.

    PubMed Central

    McLees, A; Graham, A; Malarkey, K; Gould, G W; Plevin, R

    1995-01-01

    In the endothelial cell line EAhy 926, 1-oleoyl-lysophosphatidic acid (LPA) stimulated the tyrosine phosphorylation of the pp42 isoform of mitogen-activated protein (MAP) kinase. Maximum phosphorylation was observed within 5 min of LPA addition, but the response was sustained for up to 120 min. Re-addition of LPA after 60 min stimulated a further sustained increase in the tyrosine phosphorylation of MAP kinase. In cells pretreated with phorbol 12-myristate 13-acetate (PMA; 24 h) or preincubated with the protein kinase C inhibitor Ro-318220, LPA-induced tyrosine phosphorylation of pp42 MAP kinase was substantially reduced at 2 min but potentiated at 60 min. Ro-318220 in combination with either PMA or pertussis toxin pretreatment abolished the LPA response at all time points, suggesting an involvement of protein kinase C in the pertussis toxin-sensitive part of the pathway. Agents which raised intracellular cyclic AMP levels did not affect the initial phase of LPA-stimulated MAP kinase activation, but abolished the late phase. However, this effect was prevented by Ro-318220, implicating a greater role for protein kinase C than protein kinase A in the regulation of sustained MAP kinase responses. LPA stimulated an increase in the tyrosine phosphorylation of focal adhesion kinase pp125 (pp125FAK) in EAhy 926 cells which was both protein kinase C- and pertussis toxin-independent. These results are discussed in terms of the pathways regulating both MAP kinase and pp125FAK in response to LPA in the EAhy 926 endothelial cells line. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7741705

  19. Regulation of lysophosphatidic acid-stimulated tyrosine phosphorylation of mitogen-activated protein kinase by protein kinase C- and pertussis toxin-dependent pathways in the endothelial cell line EAhy 926.

    PubMed

    McLees, A; Graham, A; Malarkey, K; Gould, G W; Plevin, R

    1995-05-01

    In the endothelial cell line EAhy 926, 1-oleoyl-lysophosphatidic acid (LPA) stimulated the tyrosine phosphorylation of the pp42 isoform of mitogen-activated protein (MAP) kinase. Maximum phosphorylation was observed within 5 min of LPA addition, but the response was sustained for up to 120 min. Re-addition of LPA after 60 min stimulated a further sustained increase in the tyrosine phosphorylation of MAP kinase. In cells pretreated with phorbol 12-myristate 13-acetate (PMA; 24 h) or preincubated with the protein kinase C inhibitor Ro-318220, LPA-induced tyrosine phosphorylation of pp42 MAP kinase was substantially reduced at 2 min but potentiated at 60 min. Ro-318220 in combination with either PMA or pertussis toxin pretreatment abolished the LPA response at all time points, suggesting an involvement of protein kinase C in the pertussis toxin-sensitive part of the pathway. Agents which raised intracellular cyclic AMP levels did not affect the initial phase of LPA-stimulated MAP kinase activation, but abolished the late phase. However, this effect was prevented by Ro-318220, implicating a greater role for protein kinase C than protein kinase A in the regulation of sustained MAP kinase responses. LPA stimulated an increase in the tyrosine phosphorylation of focal adhesion kinase pp125 (pp125FAK) in EAhy 926 cells which was both protein kinase C- and pertussis toxin-independent. These results are discussed in terms of the pathways regulating both MAP kinase and pp125FAK in response to LPA in the EAhy 926 endothelial cells line. PMID:7741705

  20. Phosphorylated Epidermal Growth Factor Receptor on Tumor-Associated Endothelial Cells Is a Primary Target for Therapy with Tyrosine Kinase Inhibitors1

    PubMed Central

    Kuwai, Toshio; Nakamura, Toru; Sasaki, Takamitsu; Kim, Sun-Jin; Fan, Dominic; Villares, Gabriel J; Zigler, Maya; Wang, Hua; Bar-Eli, Menashe; Kerbel, Robert S; Fidler, Isaiah J

    2008-01-01

    We determined whether phosphorylated epidermal growth factor receptor (EGFR) expressed on tumor-associated endothelial cells is a primary target for therapy with EGFR tyrosine kinase inhibitors (TKIs). Human colon cancer cells SW620CE2 (parental) that do not express EGFR or human epidermal growth factor receptor 2 (HER2) but express transforming growth factor α (TGF-α) were transduced with a lentivirus carrying nontargeting small hairpin RNA (shRNA) or TGF-α shRNA. The cell lines were implanted into the cecum of nude mice. Two weeks later, treatment began with saline, 4-[R]-phenethylamino-6-[hydroxyl] phenyl-7H-pyrrolo [2,3-d]-pyrimidine (PKI166), or irinotecan. Endothelial cells in parental and nontargeting shRNA tumors expressed phosphorylated EGFR. Therapy with PKI166 alone or with irinotecan produced apoptosis of these endothelial cells and necrosis of the EGFR-negative tumors. Endothelial cells in tumors that did not express TGF-α did not express EGFR, and these tumors were resistant to treatment with PKI166. The response of neoplasms to EGFR antagonists has been correlated with EGFR mutations, HER2 expression, Akt activation, and EGFR gene copy number. Our present data using colon cancer cells that do not express EGFR or HER2 suggest that the expression of TGF-α by tumor cells leading to the activation of EGFR in tumor-associated endothelial cells is a major determinant for the susceptibility of neoplasms to therapy by specific EGFR-TKI. PMID:18472966

  1. Phosphorylated epidermal growth factor receptor on tumor-associated endothelial cells is a primary target for therapy with tyrosine kinase inhibitors.

    PubMed

    Kuwai, Toshio; Nakamura, Toru; Sasaki, Takamitsu; Kim, Sun-Jin; Fan, Dominic; Villares, Gabriel J; Zigler, Maya; Wang, Hua; Bar-Eli, Menashe; Kerbel, Robert S; Fidler, Isaiah J

    2008-05-01

    We determined whether phosphorylated epidermal growth factor receptor (EGFR) expressed on tumor-associated endothelial cells is a primary target for therapy with EGFR tyrosine kinase inhibitors (TKIs). Human colon cancer cells SW620CE2 (parental) that do not express EGFR or human epidermal growth factor receptor 2 (HER2) but express transforming growth factor alpha (TGF-alpha) were transduced with a lentivirus carrying nontargeting small hairpin RNA (shRNA) or TGF-alpha shRNA. The cell lines were implanted into the cecum of nude mice. Two weeks later, treatment began with saline, 4-[R]-phenethylamino-6-[hydroxyl] phenyl-7H-pyrrolo [2,3-D]-pyrimidine (PKI166), or irinotecan. Endothelial cells in parental and nontargeting shRNA tumors expressed phosphorylated EGFR. Therapy with PKI166 alone or with irinotecan produced apoptosis of these endothelial cells and necrosis of the EGFR-negative tumors. Endothelial cells in tumors that did not express TGF-alpha did not express EGFR, and these tumors were resistant to treatment with PKI166. The response of neoplasms to EGFR antagonists has been correlated with EGFR mutations, HER2 expression, Akt activation, and EGFR gene copy number. Our present data using colon cancer cells that do not express EGFR or HER2 suggest that the expression of TGF-alpha by tumor cells leading to the activation of EGFR in tumor-associated endothelial cells is a major determinant for the susceptibility of neoplasms to therapy by specific EGFR-TKI. PMID:18472966

  2. Macrophage Proliferation Is Regulated through CSF-1 Receptor Tyrosines 544, 559, and 807*

    PubMed Central

    Yu, Wenfeng; Chen, Jian; Xiong, Ying; Pixley, Fiona J.; Yeung, Yee-Guide; Stanley, E. Richard

    2012-01-01

    Colony-stimulating factor-1 (CSF-1)-stimulated CSF-1 receptor (CSF-1R) tyrosine phosphorylation initiates survival, proliferation, and differentiation signaling pathways in macrophages. Either activation loop Y807F or juxtamembrane domain (JMD) Y559F mutations severely compromise CSF-1-regulated proliferation and differentiation. YEF, a CSF-1R in which all eight tyrosines phosphorylated in the activated receptor were mutated to phenylalanine, lacks in vitro kinase activity and in vivo CSF-1-regulated tyrosine phosphorylation. The addition of Tyr-807 alone to the YEF backbone (Y807AB) led to CSF-1-independent but receptor kinase-dependent proliferation, without detectable activation loop Tyr-807 phosphorylation. The addition of Tyr-559 alone (Y559AB) supported a low level of CSF-1-independent proliferation that was slightly enhanced by CSF-1, indicating that Tyr-559 has a positive Tyr-807-independent effect. Consistent with the postulated autoinhibitory role of the JMD Tyr-559 and its relief by ligand-induced Tyr-559 phosphorylation, the addition of Tyr-559 to the Y807AB background suppressed proliferation in the absence of CSF-1, but restored most of the CSF-1-stimulated proliferation. Full restoration of kinase activation and proliferation required the additional add back of JMD Tyr-544. Inhibitor experiments indicate that the constitutive proliferation of Y807AB macrophages is mediated by the phosphatidylinositol 3-kinase (PI3K) and ERK1/2 pathways, whereas proliferation of WT and Y559,807AB macrophages is, in addition, contributed to by Src family kinase (SFK)-dependent pathways. Thus Tyr-807 confers sufficient kinase activity for strong CSF-1-independent proliferation, whereas Tyr-559 maintains the receptor in an inactive state. Tyr-559 phosphorylation releases this restraint and may also contribute to the CSF-1-regulated proliferative response by activating Src family kinase. PMID:22375015

  3. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells

    SciTech Connect

    Ling, Yun; Yang, Yong . E-mail: anticancer_drug@yahoo.com.cn; Lu, Na; You, Qi-dong; Wang, Sen; Gao, Ying; Chen, Yan; Guo, Qing-Long . E-mail: valianty@hotmail.com

    2007-09-14

    Endostar, a novel recombinant human endostatin expressed and purified in Escherichia coli with an additional nine-amino acid sequence and forming another his-tag structure, was approved by the SFDA in 2005 for the treatment of non-small-cell lung cancer. But its mechanism of action has not been illustrated before. In this study, we examined the antiangiogenic activities of endostar in vitro and in vivo. The results showed that endostar suppressed the VEGF-stimulated proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Endostar blocked microvessel sprouting from rat aortic rings in vitro. Moreover, it could inhibit the formation of new capillaries from pre-existing vessels in the chicken chorioallantoic membrane (CAM) assay and affect the growth of vessels in tumor. We further found the antiangiogenic effects of endostar were correlated with the VEGF-triggered signaling. Endostar suppressed the VEGF-induced tyrosine phosphorylation of KDR/Flk-1(VEGFR-2) as well as the overall VEGFR-2 expression and the activation of ERK, p38 MAPK, and AKT in HUVECs. Collectively, these data indicated the relationship between endostar and VEGF signal pathways and provided a molecular basis for the antiangiogenic effects of endostar.

  4. Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency.

    PubMed

    Kajikawa, Masataka; Sawaragi, Yuri; Shinkawa, Haruka; Yamano, Takashi; Ando, Akira; Kato, Misako; Hirono, Masafumi; Sato, Naoki; Fukuzawa, Hideya

    2015-06-01

    Although microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities. A TAR1-defective mutant, tar1-1, accumulated TAG to levels 0.5- and 0.1-fold of those of a wild-type strain in sulfur (S)- and nitrogen (N)-deficient conditions, respectively. In N-deficient conditions, tar1-1 showed more pronounced arrest of cell division than the wild type, had increased cell size and cell dry weight, and maintained chlorophyll and photosynthetic activity, which were not observed in S-deficient conditions. In N-deficient conditions, global changes in expression levels of N deficiency-responsive genes in N assimilation and tetrapyrrole metabolism were noted between tar1-1 and wild-type cells. These results indicated that TAR1 is a regulator of TAG accumulation in S- and N-deficient conditions, and it functions in cell growth and repression of photosynthesis in conditions of N deficiency. PMID:25922058

  5. Algal Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase, Triacylglycerol Accumulation Regulator1, Regulates Accumulation of Triacylglycerol in Nitrogen or Sulfur Deficiency1[OPEN

    PubMed Central

    Kajikawa, Masataka; Sawaragi, Yuri; Shinkawa, Haruka; Yamano, Takashi; Ando, Akira; Kato, Misako; Hirono, Masafumi; Sato, Naoki

    2015-01-01

    Although microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities. A TAR1-defective mutant, tar1-1, accumulated TAG to levels 0.5- and 0.1-fold of those of a wild-type strain in sulfur (S)- and nitrogen (N)-deficient conditions, respectively. In N-deficient conditions, tar1-1 showed more pronounced arrest of cell division than the wild type, had increased cell size and cell dry weight, and maintained chlorophyll and photosynthetic activity, which were not observed in S-deficient conditions. In N-deficient conditions, global changes in expression levels of N deficiency-responsive genes in N assimilation and tetrapyrrole metabolism were noted between tar1-1 and wild-type cells. These results indicated that TAR1 is a regulator of TAG accumulation in S- and N-deficient conditions, and it functions in cell growth and repression of photosynthesis in conditions of N deficiency. PMID:25922058

  6. Five-year monitoring of considerable changes in tyrosine phosphorylation motifs of the Helicobacter pylori cagA gene in Iran.

    PubMed

    Kargar, Mohammad; Ghorbani-Dalini, Sadegh; Doosti, Abbas; Najafi, Akram

    2014-08-01

    CagA is a major virulence factor of Helicobacter pylori involved in host cell modulation. The C-terminal part of CagA containing the EPIYA motifs is highly variable and is important for the biological activity of the protein. The aim of this study was consideration of the changes in cagA tyrosine phosphorylation motifs (TPMs) of H. pylori. A set of 302 H. pylori DNA samples from the Iranian population from 2006 to 2011 was selected for the proposed study. The cagA gene and its TPMs were assessed by using polymerase chain reaction (PCR) and specific primers. The prevalence of the cagA gene in our study ranged from 91.43% to 97.06% (with an average of 95.03%). Out of the cagA-positive samples, the prevalence of TPMs A and B increased from 12.5% and 23.44% to 71.2% and 63.63%, respectively. Also, the prevalence of samples infected with Western and East Asian types of H. pylori ranged from 64.06% to 5.73% for the Western type and 17.19% to 51.59% for the East Asian type. Overall, our results showed a high prevalence of the cagA gene. Also, it seems that cagA TPMs of H. pylori is undergoing a change from the Western type to the East Asian type in Iran. PMID:24771298

  7. Application of PCR amplicon sequencing using a single primer pair in PCR amplification to assess variations in Helicobacter pylori CagA EPIYA tyrosine phosphorylation motifs

    PubMed Central

    2010-01-01

    Background The presence of various EPIYA tyrosine phosphorylation motifs in the CagA protein of Helicobacter pylori has been suggested to contribute to pathogenesis in adults. In this study, a unique PCR assay and sequencing strategy was developed to establish the number and variation of cagA EPIYA motifs. Findings MDA-DNA derived from gastric biopsy specimens from eleven subjects with gastritis was used with M13- and T7-sequence-tagged primers for amplification of the cagA EPIYA motif region. Automated capillary electrophoresis using a high resolution kit and amplicon sequencing confirmed variations in the cagA EPIYA motif region. In nine cases, sequencing revealed the presence of AB, ABC, or ABCC (Western type) cagA EPIYA motif, respectively. In two cases, double cagA EPIYA motifs were detected (ABC/ABCC or ABC/AB), indicating the presence of two H. pylori strains in the same biopsy. Conclusion Automated capillary electrophoresis and Amplicon sequencing using a single, M13- and T7-sequence-tagged primer pair in PCR amplification enabled a rapid molecular typing of cagA EPIYA motifs. Moreover, the techniques described allowed for a rapid detection of mixed H. pylori strains present in the same biopsy specimen. PMID:20181142

  8. Endonuclease-mediated mRNA Decay Requires Tyrosine Phosphorylation of Polysomal Ribonuclease 1 (PMR1) for the Targeting and Degradation of Polyribosome-bound Substrate mRNA*

    PubMed Central

    Yang, Feng; Peng, Yong; Schoenberg, Daniel R.

    2006-01-01

    PMR1 is an endonuclease that is activated by estrogen to degrade Xenopus albumin mRNA. A previous report showed that the functional unit of endonuclease-mediated mRNA decay is a ~680-kDa polysome-bound complex that contains both PMR1 and substrate mRNA. PMR1 contains two domains involved in endonuclease targeting to polysomes, an N-terminal domain that lies between residues 200 and 250, and a C-terminal domain that lies within the last 100 residues. Loss of either domain inactivated PMR1 targeting to polysomes and stabilized albumin mRNA. The current study identified a phosphorylated tyrosine residue within the C-terminal polysome-targeting domain and showed that this modification is required for PMR1-mediated mRNA decay. Changing this tyrosine to phenylalanine inactivated the targeting of PMR1 to polysomes, blocked binding of PMR1 to the functional complex containing its substrate mRNA, prevented the targeting of a green fluorescent protein fusion protein to this complex, and stabilized albumin mRNA to degradation by PMR1 in vivo. A general tyrosine kinase inhibitor inhibited the phosphorylation of PMR1, which in turn inhibited PMR1-catalyzed degradation of albumin mRNA. These results indicate that one or more tyrosine kinases functions as a regulator of endonuclease-mediated mRNA decay. PMID:15375158

  9. A novel DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) inhibitor for the treatment of Alzheimer's disease: effect on Tau and amyloid pathologies in vitro.

    PubMed

    Coutadeur, Séverine; Benyamine, Hélène; Delalonde, Laurence; de Oliveira, Catherine; Leblond, Bertrand; Foucourt, Alicia; Besson, Thierry; Casagrande, Anne-Sophie; Taverne, Thierry; Girard, Angélique; Pando, Matthew P; Désiré, Laurent

    2015-05-01

    The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary tangles in sporadic AD and phosphorylates key AD players (Tau, amyloid precursor, protein, etc). Thus, DYRK1A may be an important therapeutic target to modify the course of Tau and amyloid beta (Aβ) pathologies. Here, we describe EHT 5372 (methyl 9-(2,4-dichlorophenylamino) thiazolo[5,4-f]quinazoline-2-carbimidate), a novel, highly potent (IC50 = 0.22 nM) DYRK1A inhibitor with a high degree of selectivity over 339 kinases. Models in which inhibition of DYRK1A by siRNA reduced and DYRK1A over-expression induced Tau phosphorylation or Aβ production were used. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation at multiple AD-relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both Aβ-induced Tau phosphorylation and DYRK1A-stimulated Aβ production. DYRK1A is thus as a key element of Aβ-mediated Tau hyperphosphorylation, which links Tau and amyloid pathologies. EHT 5372 and other compounds in its class warrant in vivo investigation as a novel, high-potential therapy for AD and other Tau opathies. Inhibition of the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is a new high-potential therapeutic approach for Alzheimer disease. Here we describe EHT 5372, a novel potent and selective DYRK1A inhibitor. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation, Aβ production and Aβ effects on phospho-Tau, including Tau aggregation. PMID:25556849

  10. Synthesis, Protein Levels, Activity and Phosphorylation State of Tyrosine Hydroxylase in Mesoaccumbens and Nigrostriatal Dopamine Pathways of Chronically Food-restricted Rats

    PubMed Central

    Pan, Yan; Berman, Yemiliya; Haberny, Sandra; Meller, Emanuel; Carr, Kenneth D.

    2006-01-01

    Chronic food restriction (FR) enhances the rewarding and motor-activating effects of abused drugs, and is accompanied by changes in dopamine (DA) dynamics and increased D-1 DA receptor-mediated cell signaling and transcriptional responses in nucleus accumbens (NAc). However, little is known about effects of FR on DA synthetic activity in the mesoaccumbens and nigrostriatal pathways. In Experiment 1 of the present study, tyrosine hydroxylase (TH) gene expression was measured in ventral tegmental area and substantia nigra, using real time RT-PCR and in situ hybridization; no differences were observed between FR and ad libitum fed (AL) rats. In Experiment 2, TH protein levels, determined by Western blot, were found to be elevated in NAc and caudate-putamen (CPu) of FR relative to AL rats. In the absence of increased transcription, this may reflect a slowing of TH degradation. In Experiments 3 and 4, DA synthetic activity was assessed by Western blot measurement of TH phosphorylation at Ser-40, and HPLC measurement of in vivo tyrosine hydroxylation rate, as reflected by DOPA accumulation following administration of a decarboxylase inhibitor (NSD-1015; 100 mg/kg, i.p.). Basal phospho-Ser(40)-TH levels did not differ between groups but DOPA accumulation was decreased by FR. Decreased DOPA synthesis, despite increased levels of TH protein, may reflect the inhibitory effect of increased DA binding to TH protein or decreased concentrations of cofactor tetrahydrobiopterin. Finally, in response to d-amphetamine (0.5 and 5.0 mg/kg, i.p.), phospho-Ser(40)-TH was selectively decreased in NAc of FR rats. This suggests increased feedback inhibition of DA synthesis - a possible consequence of postsynaptic receptor hypersensitivity, or increased extracellular DA concentration. These results indicate that FR increases TH protein levels, but may decrease the capacity for DA synthesis by decreasing TH activity. According to this scheme, the previously observed upregulation of striatal

  11. Endothelial CD47 promotes Vascular Endothelial-cadherin tyrosine phosphorylation and participates in T-cell recruitment at sites of inflammation in vivo

    PubMed Central

    Azcutia, Veronica; Stefanidakis, Michael; Tsuboi, Naotake; Mayadas, Tanya; Croce, Kevin J.; Fukuda, Daiju; Aikawa, Masanori; Newton, Gail; Luscinskas, Francis W.

    2012-01-01

    At sites of inflammation, endothelial adhesion molecules bind leukocytes and transmit signals required for transendothelial migration (TEM). We previously reported that adhesive interactions between endothelial cell CD47 and leukocyte Signal Regulatory Proteinγ (SIRPγ) regulate human T-cell TEM. The role of endothelial CD47 in T-cell TEM in vivo, however, has not been explored. Here, CD47−/− mice showed reduced recruitment of blood T-cells as well as neutrophils and monocytes in a dermal air pouch model of TNF-α induced inflammation. Reconstitution of CD47−/− mice with wild type bone marrow (BM) cells did not restore leukocyte recruitment to the air pouch, indicating a role for endothelial CD47. The defect in leukocyte TEM in the CD47−/− endothelium was corroborated by intravital microscopy of inflamed cremaster muscle microcirculation in BM chimera mice. In an in vitro human system, CD47 on both HUVEC and T-cells were required for TEM. Although previous studies showed CD47-dependent signaling required Gαi coupled pathways, this was not the case for endothelial CD47 because pertussis toxin (PTX), which inactivates Gαi, had no inhibitory effect, whereas Gαi was required by the T-cell for TEM. We next investigated the endothelial CD47-dependent signaling events that accompany leukocyte TEM. Antibody-induced crosslinking of CD47 revealed robust actin cytoskeleton reorganization and Src and Pyk-2 kinase dependent tyrosine phosphorylation of the VE-cadherin cytoplasmic tail. This signaling was PTX insensitive suggesting that endothelial CD47 signaling is independent of Gαi. These findings suggest that engagement of endothelial CD47 by its ligands triggers “outside-in” signals in endothelium that facilitate leukocyte TEM. PMID:22815286

  12. Colony-stimulating factor 1-mediated regulation of a chimeric c-fms/v-fms receptor containing the v-fms-encoded tyrosine kinase domain

    SciTech Connect

    Roussel, M.F.; Downing, J.R.; Ashmun, R.A.; Rettenmier, C.W.; Sherr, C.J. )

    1988-08-01

    A chimeric gene specifying the 308 N-terminal amino acids of the extracellular ligand binding domain of the human c-fms protooncogene joined to the remainder of the feline v-fms oncogene product encodes a functional colony-stimulating factor 1 (CSF-1) receptor. When expressed in mouse NIH 3T3 fibroblasts, the chimeric gene product was rapidly transported to the cell surface, was autophosphorylated on tyrosine only in response to human recombinant CSF-1, underwent ligand-induced but not phorbol ester-induced down-modulation, and stimulated CSF-1-dependent cell proliferation. By contrast, the C-terminally truncated glycoprotein encoded by the v-fms oncogene is partially inhibited in its transport to the plasma membrane, is constitutively phosphorylated on tyrosine, and is relatively refractory to both ligand-induced and phorbol ester-induced down-modulation. Although the v-fms oncogene can transform cells in the absence of CSF-1, its tyrosine kinase activity and turnover can be appropriately regulated by the human c-fms-encoded ligand binding domain. The results confirm that C-terminal truncation of the c-fms gene is insufficient to activate its transforming potential and suggest that an additional mutation in its distal extracellular domain is required for oncogenic activation.

  13. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR.

    PubMed

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation. PMID:26584640

  14. Tyrosine Phosphorylation in Brassinosteroid Signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassinosteroids (BRs) regulate plant growth and development through a complex signal transduction pathway involving BRASSINOSTEROID INSENSITIVE 1 (BRI1), which is the BR receptor, and its co-receptor BRI1-ASSOCIATED KINASE 1 (BAK1). Both proteins are classified as Ser/Thr protein kinases. Recently,...

  15. Phospholipase D1 is threonine-phosphorylated in human-airway epithelial cells stimulated by sphingosine-1-phosphate by a mechanism involving Src tyrosine kinase and protein kinase Cdelta.

    PubMed Central

    Ghelli, Anna; Porcelli, Anna M; Facchini, Annalisa; Hrelia, Silvana; Flamigni, Flavio; Rugolo, Michela

    2002-01-01

    The regulatory role of protein kinase C (PKC) delta isoform in the stimulation of phospholipase D (PLD) by sphingosine-1-phosphate (SPP) in a human-airway epithelial cell line (CFNPE9o(-)) was revealed by using antisense oligodeoxynucleotide to PKCdelta, in combination with the specific inhibitor rottlerin. Cell treatment with antisense oligodeoxynucleotide, but not with sense oligodeoxynucleotide, completely eliminated PKCdelta expression and resulted in the strong inhibition of SPP-stimulated phosphatidic acid formation. Indeed, among the PKCalpha, beta, delta, epsilon and zeta isoforms expressed in these cells, only PKCdelta was activated on cell stimulation with SPP, as indicated by translocation into the membrane fraction. Furthermore, pertussis toxin and genistein eliminated both PKCdelta translocation and PLD activation. In particular, a significant reduction in phosphatidylbutanol formation by SPP was observed in the presence of 4-amino-5-(4-methylphenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine (PP1), an inhibitor of Src tyrosine kinase. Furthermore, the activity of Src kinase was slightly increased by SPP and inhibited by PP1. However, the level of PKCdelta tyrosine phosphorylation was not increased in SPP-stimulated cells, suggesting that Src did not directly phosphorylate PKCdelta. Finally, the level of serine phosphorylation of PLD1 and PLD2 isoforms was not changed, whereas the PLD1 isoform alone was threonine-phosphorylated in SPP-treated cells. PLD1 threonine phosphorylation was strongly inhibited by rottlerin, by anti-PKCdelta oligodeoxynucleotide and by PP1. In conclusion, in CFNPE9o(-) cells, SPP interacts with a membrane receptor linked to a G(i) type of G-protein, leading to activation of PLD, probably the PLD1 isoform, by a signalling pathway involving Src and PKCdelta. PMID:12014986

  16. Negative regulation of HER2 signaling by the PEST-type protein-tyrosine phosphatase BDP1.

    PubMed

    Gensler, Miriam; Buschbeck, Marcus; Ullrich, Axel

    2004-03-26

    Signaling by receptor tyrosine kinases (RTK) mediates a variety of complex cellular functions and in case of deregulation can contribute to pathophysiological processes. A tight and finely tuned control of RTK activity is therefore critical for the cell. We investigated the role of the PEST-type protein-tyrosine phosphatase BDP1 in the regulation of HER2, a member of the epidermal growth factor receptor (EGFR) family of RTKs. Here we demonstrate that HER2 signaling is highly sensitive to BDP1 activity. Overexpression of BDP1 inhibited ligand-induced activation of HER2 but not that of the closely related EGFR. On the other hand, suppression of endogenous BDP1 expression increased the phosphorylation state of HER2. In addition, BDP1 was able to interfere with downstream signaling events by inhibiting the phosphorylation of the adaptor protein Gab1 and reducing mitogen-activated protein kinase activation. Supported by the finding that BDP1 is coexpressed with HER2 in breast cancer cells, we suggest that BDP1 is an important regulator of HER2 activity and thus the first protein-tyrosine phosphatase shown to be involved in HER2 signal attenuation. PMID:14660651

  17. MAP-kinase activity necessary for TGFbeta1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397.

    PubMed

    Hayashida, Tomoko; Wu, Ming-Hua; Pierce, Amy; Poncelet, Anne-Christine; Varga, John; Schnaper, H William

    2007-12-01

    The signals mediating transforming growth factor beta (TGFbeta)-stimulated kidney fibrogenesis are poorly understood. We previously reported TGFbeta-stimulated, Smad-mediated collagen production by human kidney mesangial cells, and that ERK MAP kinase activity optimizes collagen expression and enhances phosphorylation of the Smad3 linker region. Furthermore, we showed that disrupting cytoskeletal integrity decreases type I collagen production. Focal adhesion kinase (FAK, PTK2) activity could integrate these findings. Adhesion-dependent FAK Y397 phosphorylation was detected basally, whereas FAK Y925 phosphorylation was TGFbeta1-dependent. By immunocytochemistry, TGFbeta1 stimulated the merging of phosphorylated FAK with the ends of thickening stress fibers. Cells cultured on poly-L-lysine (pLL) to promote integrin-independent attachment spread less than those on control substrate and failed to demonstrate focal adhesion (FA) engagement with F-actin. FAK Y397 phosphorylation and ERK activity were also decreased under these conditions. In cells with decreased FAK Y397 phosphorylation from either plating on pLL or overexpressing a FAK Y397F point mutant, serine phosphorylation of the Smad linker region, but not of the C-terminus, was reduced. Y397F and Y925F FAK point mutants inhibited TGFbeta-induced Elk-Gal activity, but only the Y397F mutant inhibited TGFbeta-stimulated collagen-promoter activity. The inhibition by the Y397F mutant or by culture on pLL was prevented by co-transfection of constitutively active ERK MAP kinase kinase (MEK), suggesting that FAK Y397 phosphorylation promotes collagen expression via ERK MAP kinase activity. Finally, Y397 FAK phosphorylation, and both C-terminal and linker-region Smad3 phosphorylation were detected in murine TGFbeta-dependent kidney fibrosis. Together, these data demonstrate adhesion-dependent FAK phosphorylation promoting TGFbeta-induced responses to regulate collagen production. PMID:18032789

  18. Silibinin suppresses EGFR ligand-induced CD44 expression through inhibition of EGFR activity in breast cancer cells.

    PubMed

    Kim, Sangmin; Han, Jeonghun; Kim, Jee Soo; Kim, Jung-Han; Choe, Jun-Ho; Yang, Jung-Hyun; Nam, Seok Jin; Lee, Jeong Eon

    2011-11-01

    CD44, the transmembrane receptor for hyaluronan, is implicated in tumor cell invasion and metastasis. The expression of CD44 and its variants is associated with poor prognosis in breast cancer. Here, we investigated the effect of silibinin (a polyphenolic flavonolignan of the herbal plant of Silybum marianum, milk thistle) on the epidermal growth factor (EGF) ligand-induced CD44 expression in human breast cancer cells. The levels of CD44 mRNA and protein expression were greatly increased by EGF and by TGF-α in SKBR3 and BT474 breast cancer cells. In contrast, EGFR ligand-induced CD44 expression was reduced by EGFR inhibitors, AG1478 and lapatinib, respectively. Interestingly, we observed that EGFR ligand-induced CD44 and matrix metalloproteinase-9 (MMP-9) expression was reduced by silibinin treatment in a dose-dependent manner. In addition, silibinin suppressed the EGF-induced phosphorylation of EGFR and extracellular signal-regulated kinase1/2 (ERK1/2), a downstream signaling molecule of EGFR. Therefore, we suggest that silibinin prevents the EGFR signaling pathway and may be used as an effective drug for the inhibition of metastasis of human breast cancer. PMID:22110198

  19. Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis.

    PubMed

    Guillermet, Julie; Saint-Laurent, Nathalie; Rochaix, Philippe; Cuvillier, Olivier; Levade, Thierry; Schally, Andrew V; Pradayrol, Lucien; Buscail, Louis; Susini, Christiane; Bousquet, Corinne

    2003-01-01

    Somatostatin receptor subtype 2 (sst2) gene expression is lost in 90% of human pancreatic adenocarcinomas. We previously demonstrated that stable sst2 transfection of human pancreatic BxPC-3 cells, which do not endogenously express sst2, inhibits cell proliferation, tumorigenicity, and metastasis. These sst2 effects occur as a consequence of an autocrine sst2-dependent loop, whereby sst2 induces expression of its own ligand, somatostatin. Here we investigated whether sst2 induces apoptosis in sst2-transfected BxPC-3 cells. Expression of sst2 induced a 4.4- +/- 0.05-fold stimulation of apoptosis in BxPC-3 through the activation of tyrosine phosphatase SHP-1. sst2 also sensitized these cells to apoptosis induced by tumor necrosis factor alpha (TNFalpha), enhancing it 4.1- +/- 1.5-fold. Apoptosis in BxPC-3 cells mediated by TNF-related apoptosis-inducing ligand (TRAIL) and CD95L was likewise increased 2.3- +/- 0.5-fold and 7.4- +/- 2.5-fold, respectively. sst2-dependent activation and cell sensitization to death ligand-induced apoptosis involved activation of the executioner caspases, key factors in both death ligand- or mitochondria-mediated apoptosis. sst2 affected both pathways: first, by up-regulating expression of TRAIL and TNFalpha receptors, DR4 and TNFRI, respectively, and sensitizing the cells to death ligand-induced initiator capase-8 activation, and, second, by down-regulating expression of the antiapoptotic mitochondrial Bcl-2 protein. These results are of interest for the clinical management of chemoresistant pancreatic adenocarcinoma by using a combined gene therapy based on the cotransfer of genes for both the sst2 and a nontoxic death ligand. PMID:12490654

  20. Phosphorylation of a Tyrosine Residue on Zap70 by Lck and Its Subsequent Binding via an SH2 Domain May Be a Key Gatekeeper of T Cell Receptor Signaling In Vivo.

    PubMed

    Thill, Peter A; Weiss, Arthur; Chakraborty, Arup K

    2016-09-15

    The initiation of signaling in T lymphocytes in response to the binding of the T cell receptor (TCR) to cognate ligands is a key step in the emergence of adaptive immune responses. Conventional models posit that TCR signaling is initiated by the phosphorylation of receptor-associated immune receptor activation motifs (ITAMs). The cytoplasmic tyrosine kinase Zap70 binds to phosphorylated ITAMs, is subsequently activated, and then propagates downstream signaling. While evidence for such models is provided by experiments with cell lines, in vivo, Zap70 is bound to phosphorylated ITAMs in resting T cells. However, Zap70 is activated only upon TCR binding to cognate ligand. We report the results of computational studies of a new model for the initiation of TCR signaling that incorporates these in vivo observations. Importantly, the new model is shown to allow better and faster TCR discrimination between self-ligands and foreign ligands. The new model is consistent with many past experimental observations, and experiments that could further test the model are proposed. PMID:27354065

  1. Ectopic expression of H2AX protein promotes TrkA-induced cell death via modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage

    SciTech Connect

    Jung, Eun Joo; Kim, Deok Ryong

    2011-01-21

    Research highlights: {yields} We established TrkA-inducible U2OS cells stably expressing GFP-H2AX proteins. {yields} GFP-H2AX was colocalized with TrkA in the cytoplasm. {yields} {gamma}H2AX production was significantly increased upon activation of TrkA and suppressed by TrkA inhibitor or JNK inhibitor. {yields} Ectopic expression of H2AX promoted TrkA-mediated cell death through the modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage. -- Abstract: We previously reported that TrkA overexpression causes accumulation of {gamma}H2AX proteins in the cytoplasm, subsequently leading to massive cell death in U2OS cells. To further investigate how cytoplasmic H2AX is associated with TrkA-induced cell death, we established TrkA-inducible cells stably expressing GFP-tagged H2AX. We found that TrkA co-localizes with ectopically expressed GFP-H2AX proteins in the cytoplasm, especially at the juxta-nuclear membranes, which supports our previous results about a functional connection between TrkA and {gamma}H2AX in TrkA-induced cell death. {gamma}H2AX production from GFP-H2AX proteins was significantly increased when TrkA was overexpressed. Moreover, ectopic expression of H2AX activated TrkA-mediated signal pathways via up-regulation of TrkA tyrosine-490 phosphorylation. In addition, suppression of TrkA tyrosine-490 phosphorylation under a certain condition was removed by ectopic expression of H2AX, indicating a functional role of H2AX in the maintenance of TrkA activity. Indeed, TrkA-induced cell death was highly elevated by ectopic H2AX expression, and it was further accelerated by DNA damage via JNK activation. These all results suggest that cytoplasmic H2AX could play an important role in TrkA-mediated cell death by modulating TrkA upon DNA damage.

  2. The EGFR Family: Not So Prototypical Receptor Tyrosine Kinases

    PubMed Central

    Lemmon, Mark A.; Schlessinger, Joseph; Ferguson, Kathryn M.

    2014-01-01

    The epidermal growth factor receptor (EGFR) was among the first receptor tyrosine kinases (RTKs) for which ligand binding was studied and for which the importance of ligand-induced dimerization was established. As a result, EGFR and its relatives have frequently been termed “prototypical” RTKs. Many years of mechanistic studies, however, have revealed that—far from being prototypical—the EGFR family is quite unique. As we discuss in this review, the EGFR family uses a distinctive “receptor-mediated” dimerization mechanism, with ligand binding inducing a dramatic conformational change that exposes a dimerization arm. Intracellular kinase domain regulation in this family is also unique, being driven by allosteric changes induced by asymmetric dimer formation rather than the more typical activation-loop phosphorylation. EGFR family members also distinguish themselves from other RTKs in having an intracellular juxtamembrane (JM) domain that activates (rather than autoinhibits) the receptor and a very large carboxy-terminal tail that contains autophosphorylation sites and serves an autoregulatory function. We discuss recent advances in mechanistic aspects of all of these components of EGFR family members, attempting to integrate them into a view of how RTKs in this important class are regulated at the cell surface. PMID:24691965

  3. Reduction of α1GABAA receptor mediated by tyrosine kinase C (PKC) phosphorylation in a mouse model of fragile X syndrome

    PubMed Central

    Zhao, Weidong; Wang, Jiaqin; Song, Shunyi; Li, Fang; Yuan, Fangfang

    2015-01-01

    Fragile X syndrome (FXS) caused by lack of fragile X mental retardation protein (Fmr1) is the most common cause of inherited intellectual disability and characterized by many cognitive disturbances like attention deficit, autistic behavior, and audiogenic seizure and have region-specific altered expression of some gamma-aminobutyric acid (GABAA) receptor subunits. Quantitative real-time polymerase chain reaction and western blot experiments were performed in the cultured cortical neurons and forebrain obtained from wild-type (WT) and Fmr1 KO mice demonstrate the reduction in the expression of α1 gamma-aminobutyric acid (α1GABAA) receptor, phospho-α1GABAA receptor, PKC and phosphor-PKC in Fmr1 KO mice comparing with WT mice, both in vivo and in vitro. Furthermore, we found that the phosphorylation of the α1GABAA receptor was mediated by PKC. Our results elucidate that the lower phosphorylation of the α1GABAA receptor mediated by PKC neutralizes the seizure-promoting effects in Fmr1 KO mice and point to the potential therapeutic targets of α1GABAA agonists for the treatment of fragile X syndrome. PMID:26550246

  4. Production of recombinant insulin-like androgenic gland hormones from three decapod species: In vitro testicular phosphorylation and activation of a newly identified tyrosine kinase receptor from the Eastern spiny lobster, Sagmariasus verreauxi.

    PubMed

    Aizen, Joseph; Chandler, Jennifer C; Fitzgibbon, Quinn P; Sagi, Amir; Battaglene, Stephen C; Elizur, Abigail; Ventura, Tomer

    2016-04-01

    In crustaceans the insulin-like androgenic gland hormone (IAG) is responsible for male sexual differentiation. To date, the biochemical pathways through which IAG exerts its effects are poorly understood and could be elucidated through the production of a functional recombinant IAG (rIAG). We have successfully expressed glycosylated, biologically active IAG using the Pichia pastoris yeast expression system. We co-expressed recombinant single-chain precursor molecules consisting of the B and A chains (the mature hormone) tethered by a flexible linker, producing rIAGs of the following commercially important species: Eastern spiny lobster Sagmariasus verreauxi (Sv), redclaw crayfish Cherax quadricarinatus (Cq) and giant freshwater prawn Macrobrachium rosenbergii (Mr). We then tested the biological activity of each, through the ability to increase phosphorylation in the testis; both Sv and Cq rIAGs significantly elevated phosphorylation specific to their species, and in a dose-dependent manner. Mr rIAG was tested on Macrobrachium australiense (Ma), eliciting a similar response. Moreover, using bioinformatics analyses of the de novo assembled spiny lobster transcriptome, we identified a spiny lobster tyrosine kinase insulin receptor (Sv-TKIR). We validated this discovery with a receptor activation assay in COS-7 cells expressing Sv-TKIR, using a reporter SRE-LUC system designed for RTKs, with each of the rIAG proteins acting as the activation ligand. Using recombinant proteins, we aim to develop specific tools to control sexual development through the administration of IAG within the critical sexual differentiation time window. The biologically active rIAGs generated might facilitate commercially feasible solutions for the long sought techniques for sex-change induction and monosex population culture in crustaceans and shed new light on the physiological mode of action of IAG in crustaceans. PMID:26883686

  5. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules

    PubMed Central

    Skelton, Lara A.

    2013-01-01

    The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3−, the major plasma buffer, into the blood. The PT adapts its rate of HCO3− reabsorption (JHCO3−) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3− in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3− concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3− concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3− concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade. PMID:24133121

  6. Role of dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B) in S-phase entry of HPV E7 expressing cells from quiescence

    PubMed Central

    Zhou, Na; Yuan, Shoudao; Wang, Rongchun; Zhang, Weifang; Chen, Jason J.

    2015-01-01

    The high-risk human papillomavirus (HPV) is the causative agent for cervical cancer. The HPV E7 oncogene promotes S-phase entry from quiescent state in the presence of elevated cell cycle inhibitor p27Kip1, a function that may contribute to carcinogenesis. However, the mechanism by which HPV E7 induces quiescent cells to entry into S-phase is not fully understood. Interestingly, we found that Dyrk1B, a dual-specificity kinase and negative regulator of cell proliferation in quiescent cells, was upregulated in E7 expressing cells. Surprisingly and in contrast to what was previously reported, Dyrk1B played a positive role in S-phase entry of quiescent HPV E7 expressing cells. Mechanistically, Dyrk1B contributed to p27 phosphorylation (at serine 10 and threonine 198), which was important for the proliferation of HPV E7 expressing cells. Moreover, Dyrk1B up-regulated HPV E7. Taken together, our studies uncovered a novel function of Dyrk1B in high-risk HPV E7-mediated cell proliferation. Dyrk1B may serve as a target for therapy in HPV-associated cancers. PMID:26307683

  7. In vitro activation of a transcription factor by gamma interferon requires a membrane-associated tyrosine kinase and is mimicked by vanadate.

    PubMed Central

    Igarashi, K; David, M; Larner, A C; Finbloom, D S

    1993-01-01

    Gamma interferon (IFN-gamma) activates the formation of a DNA-binding protein complex (FcRF gamma) that recognizes the gamma response region (GRR) of the promoter for the human high-affinity Fc gamma receptor. In a membrane-enriched fraction prepared from human peripheral blood monocytes, IFN-gamma activation of FcRF gamma occurred within 1 min and was ATP dependent. Activation of FcRF gamma required a tyrosine kinase activity, and recognition of the GRR sequence by FcRF gamma could be abrogated by treatment with a tyrosine-specific protein phosphatase. Treatment of cells with vanadate alone resulted in the formation of FcRF gamma without the need for IFN-gamma. UV cross-linking and antibody competition experiments demonstrated that the FcRF gamma complex was composed of at least two components: the 91-kDa protein of the IFN-alpha-induced transcription complex ISGF3 and a 43-kDa component that bound directly to the GRR. Therefore, specificity for IFN-induced transcriptional activation of early response genes requires at least two events: (i) ligand-induced activation of membrane-associated protein by tyrosine phosphorylation and (ii) formation of a complex composed of an activated membrane protein(s) and a sequence-specific DNA-binding component. Images PMID:8321205

  8. Hologram QSAR Models of a Series of 6-Arylquinazolin-4-Amine Inhibitors of a New Alzheimer’s Disease Target: Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase-1A Enzyme

    PubMed Central

    Leal, Felipe Dias; da Silva Lima, Camilo Henrique; de Alencastro, Ricardo Bicca; Castro, Helena Carla; Rodrigues, Carlos Rangel; Albuquerque, Magaly Girão

    2015-01-01

    Dual specificity tyrosine-phosphorylation-regulated kinase-1A (DYRK1A) is an enzyme directly involved in Alzheimer’s disease, since its increased expression leads to β-amyloidosis, Tau protein aggregation, and subsequent formation of neurofibrillary tangles. Hologram quantitative structure-activity relationship (HQSAR, 2D fragment-based) models were developed for a series of 6-arylquinazolin-4-amine inhibitors (36 training, 10 test) of DYRK1A. The best HQSAR model (q2 = 0.757; SEcv = 0.493; R2 = 0.937; SE = 0.251; R2pred = 0.659) presents high goodness-of-fit (R2 > 0.9), as well as high internal (q2 > 0.7) and external (R2pred > 0.5) predictive power. The fragments that increase and decrease the biological activity values were addressed using the colored atomic contribution maps provided by the method. The HQSAR contribution map of the best model is an important tool to understand the activity profiles of new derivatives and may provide information for further design of novel DYRK1A inhibitors. PMID:25756379

  9. Including Ligand Induced Protein Flexibility into Protein Tunnel Prediction

    PubMed Central

    Kingsley, Laura J.; Lill, Markus A.

    2014-01-01

    In proteins with buried active sites, understanding how ligands migrate through the tunnels that connect the exterior of the protein to the active site can shed light on substrate specificity and enzyme function. A growing body of evidence highlights the importance of protein flexibility in the binding site upon ligand binding; however, the influence of protein flexibility throughout the body of the protein during ligand entry and egress is much less characterized. We have developed a novel tunnel prediction and evaluation method named IterTunnel, which includes the influence of ligand-induced protein flexibility, guarantees ligand egress, and provides detailed free energy information as the ligand proceeds along the egress route. IterTunnel combines geometric tunnel prediction with steered MD in an iterative process to identify tunnels that open as a result of ligand migration and calculates the potential of mean force (PMF) of ligand egress through a given tunnel. Applying this new method to cytochrome P450 2B6 (CYP2B6), we demonstrate the influence of protein flexibility on the shape and accessibility of tunnels. More importantly, we demonstrate that the ligand itself, while traversing through a tunnel, can reshape tunnels due to its interaction with the protein. This process results in the exposure of new tunnels and the closure of pre-existing tunnels as the ligand migrates from the active site. PMID:25043499

  10. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  11. The Chlamydia trachomatis Type III Secretion Chaperone Slc1 Engages Multiple Early Effectors, Including TepP, a Tyrosine-phosphorylated Protein Required for the Recruitment of CrkI-II to Nascent Inclusions and Innate Immune Signaling

    PubMed Central

    Chen, Yi-Shan; Bastidas, Robert J.; Saka, Hector A.; Carpenter, Victoria K.; Richards, Kristian L.; Plano, Gregory V.; Valdivia, Raphael H.

    2014-01-01

    Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted infections, employs a type III secretion (T3S) system to deliver effector proteins into host epithelial cells to establish a replicative vacuole. Aside from the phosphoprotein TARP, a Chlamydia effector that promotes actin re-arrangements, very few factors mediating bacterial entry and early inclusion establishment have been characterized. Like many T3S effectors, TARP requires a chaperone (Slc1) for efficient translocation into host cells. In this study, we defined proteins that associate with Slc1 in invasive C. trachomatis elementary bodies (EB) by immunoprecipitation coupled with mass spectrometry. We identified Ct875, a new Slc1 client protein and T3S effector, which we renamed TepP (Translocated early phosphoprotein). We provide evidence that T3S effectors form large molecular weight complexes with Scl1 in vitro and that Slc1 enhances their T3S-dependent secretion in a heterologous Yersinia T3S system. We demonstrate that TepP is translocated early during bacterial entry into epithelial cells and is phosphorylated at tyrosine residues by host kinases. However, TepP phosphorylation occurs later than TARP, which together with the finding that Slc1 preferentially engages TARP in EBs leads us to postulate that these effectors are translocated into the host cell at different stages during C. trachomatis invasion. TepP co-immunoprecipitated with the scaffolding proteins CrkI-II during infection and Crk was recruited to EBs at entry sites where it remained associated with nascent inclusions. Importantly, C. trachomatis mutants lacking TepP failed to recruit CrkI-II to inclusions, providing genetic confirmation of a direct role for this effector in the recruitment of a host factor. Finally, endocervical epithelial cells infected with a tepP mutant showed altered expression of a subset of genes associated with innate immune responses. We propose a model wherein TepP acts downstream of TARP

  12. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    SciTech Connect

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  13. Potential sites of CFTR activation by tyrosine kinases.

    PubMed

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R; Hanrahan, John W

    2016-05-01

    The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  14. Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation.

    PubMed

    Ma, Haisha; Wardega, Piotr; Mazaud, David; Klosowska-Wardega, Agnieszka; Jurek, Aleksandra; Engström, Ulla; Lennartsson, Johan; Heldin, Carl-Henrik

    2015-11-01

    Histidine domain-containing protein tyrosine phosphatase (HD-PTP) is a putative phosphatase that has been shown to affect the signaling and downregulation of certain receptor tyrosine kinases. To investigate if HD-PTP affects platelet-derived growth factor receptor β (PDGFRβ) signaling, we employed the overexpression of HA-tagged HD-PTP, as well as siRNA-mediated and lentivirus shRNA-mediated silencing of HD-PTP in NIH3T3 cells. We found that HD-PTP was recruited to the PDGFRβ in a ligand-dependent manner. Depletion of HD-PTP resulted in an inability of PDGF-BB to promote tyrosine phosphorylation of the ubiquitin ligases c-Cbl and Cbl-b, with a concomitant missorting and reduction of the degradation of activated PDGFRβ. In contrast, ligand-induced internalization of PDGFRβ was unaffected by HD-PTP silencing. Furthermore, the levels of STAM and Hrs of the ESCRT0 machinery were decreased, and immunofluorescence staining showed that in HD-PTP-depleted cells, PDGFRβ accumulated in large aberrant intracellular structures. After the reduction of HD-PTP expression, an NIH3T3-derived cell line that has autocrine PDGF-BB signaling (sis-3T3) showed increased ability of anchorage-independent growth. However, exogenously added PDGF-BB promoted efficient additional colony formation in control cells, but was not able to do so in HD-PTP-depleted cells. Furthermore, cells depleted of HD-PTP migrated faster than control cells. In summary, HD-PTP affects the intracellular sorting of activated PDGFRβ and the migration, proliferation and tumorigenicity of cells stimulated by PDGF. PMID:26232618

  15. Ligand-induced ErbB receptor dimerization

    PubMed Central

    Lemmon, Mark A.

    2009-01-01

    Structural studies have provided important new insights into how ligand binding promotes homodimerization and activation of the EGF receptor and the other members of the ErbB family or receptor tyrosine kinases. These structures have also suggested possible explanations for the unique properties of ErbB2, which has no known ligand and can cause cell transformation (and tumorigenesis) by simple overexpression. In parallel with these advances, studies of the EGF receptor at the cell surface increasingly argue that the structural studies are missing key mechanistic components. This is particularly evident in the structural prediction that EGF binding linked to receptor dimerization should be positively cooperative, whereas cell-surface EGF-binding studies suggest negative cooperativity. In this review, I summarize studies of ErbB receptor extracellular regions in solution and of intact receptors at the cell surface, and attempt to reconcile the differences suggested by the two approaches. By combining results obtained with receptor ‘parts’, it is qualitatively possible to explain some models for the properties of the whole receptor. These considerations underline the need to consider the intact ErbB receptors as intact allosterically regulated enzymes, and to combine cellular and structural studies into a complete picture. PMID:19038249

  16. Role of Protein Tyrosine Phosphatases in Plants

    PubMed Central

    Shankar, Alka; Agrawal, Nisha; Sharma, Manisha; Pandey, Amita; Pandey, Girdhar K.

    2015-01-01

    Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development. PMID:26962298

  17. Sensitivity to Flg22 Is Modulated by Ligand-Induced Degradation and de Novo Synthesis of the Endogenous Flagellin-Receptor FLAGELLIN-SENSING2[W][OPEN

    PubMed Central

    Smith, John M.; Salamango, Daniel J.; Leslie, Michelle E.; Collins, Carina A.; Heese, Antje

    2014-01-01

    FLAGELLIN-SENSING2 (FLS2) is the plant cell surface receptor that perceives bacterial flagellin or flg22 peptide, initiates flg22-signaling responses, and contributes to bacterial growth restriction. Flg22 elicitation also leads to ligand-induced endocytosis and degradation of FLS2 within 1 h. Why plant cells remove this receptor precisely at the time during which its function is required remains mainly unknown. Here, we assessed in planta flg22-signaling competency in the context of ligand-induced degradation of endogenous FLS2 and chemical interference known to impede flg22-dependent internalization of FLS2 into endocytic vesicles. Within 1 h after an initial flg22 treatment, Arabidopsis (Arabidopsis thaliana) leaf tissue was unable to reelicit flg22 signaling in a ligand-, time-, and dose-dependent manner. These results indicate that flg22-induced degradation of endogenous FLS2 may serve to desensitize cells to the same stimulus (homologous desensitization), likely to prevent continuous signal output upon repetitive flg22 stimulation. In addition to impeding ligand-induced FLS2 degradation, pretreatment with the vesicular trafficking inhibitors Wortmannin or Tyrphostin A23 impaired flg22-elicited reactive oxygen species production that was partially independent of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1. Interestingly, these inhibitors did not affect flg22-induced mitogen-activated protein kinase phosphorylation, indicating the ability to utilize vesicular trafficking inhibitors to target different flg22-signaling responses. For Tyrphostin A23, reduced flg22-induced reactive oxygen species could be separated from the defect in FLS2 degradation. At later times (>2 h) after the initial flg22 elicitation, recovery of FLS2 protein levels positively correlated with resensitization to flg22, indicating that flg22-induced new synthesis of FLS2 may prepare cells for a new round of monitoring the environment for flg22. PMID:24220680

  18. Discovering the first tyrosine kinase

    PubMed Central

    Hunter, Tony

    2015-01-01

    In the middle of the 20th century, animal tumor viruses were heralded as possible models for understanding human cancer. By the mid-1970s, the molecular basis by which tumor viruses transform cells into a malignant state was beginning to emerge as the first viral genomic sequences were reported and the proteins encoded by their transforming genes were identified and characterized. This was a time of great excitement and rapid progress. In 1978, prompted by the discovery from Ray Erikson’s group that the Rous sarcoma virus (RSV) v-Src–transforming protein had an associated protein kinase activity specific for threonine, my group at the Salk Institute set out to determine whether the polyomavirus middle T-transforming protein had a similar kinase activity. Here, I describe the experiments that led to the identification of a kinase activity associated with middle T antigen and our serendipitous discovery that this activity was specific for tyrosine in vitro, and how this in turn led to the fortuitous observation that the v-Src–associated kinase activity was also specific for tyrosine. Our finding that v-Src increased the level of phosphotyrosine in cellular proteins in RSV-transformed cells confirmed that v-Src is a tyrosine kinase and transforms cells by phosphorylating proteins on tyrosine. My colleague Bart Sefton and I reported these findings in the March issue of PNAS in 1980. Remarkably, all of the experiments in this paper were accomplished in less than one month. PMID:26130799

  19. Phosphorylation site prediction in plants.

    PubMed

    Yao, Qiuming; Schulze, Waltraud X; Xu, Dong

    2015-01-01

    Protein phosphorylation events on serine, threonine, and tyrosine residues are the most pervasive protein covalent bond modifications in plant signaling. Both low and high throughput studies reveal the importance of phosphorylation in plant molecular biology. Although becoming more and more common, the proteome-wide screening on phosphorylation by experiments remains time consuming and costly. Therefore, in silico prediction methods are proposed as a complementary analysis tool to enhance the phosphorylation site identification, develop biological hypothesis, or help experimental design. These methods build statistical models based on the experimental data, and they do not have some of the technical-specific bias, which may have advantage in proteome-wide analysis. More importantly computational methods are very fast and cheap to run, which makes large-scale phosphorylation identifications very practical for any types of biological study. Thus, the phosphorylation prediction tools become more and more popular. In this chapter, we will focus on plant specific phosphorylation site prediction tools, with essential illustration of technical details and application guidelines. We will use Musite, PhosPhAt and PlantPhos as the representative tools. We will present the results on the prediction of the Arabidopsis protein phosphorylation events to give users a general idea of the performance range of the three tools, together with their strengths and limitations. We believe these prediction tools will contribute more and more to the plant phosphorylation research community. PMID:25930706

  20. pH regulation of an egg cortex tyrosine kinase.

    PubMed

    Jiang, W P; Veno, P A; Wood, R W; Peaucellier, G; Kinsey, W H

    1991-07-01

    Fertilization of the echinoderm egg is known to result in the phosphorylation, on tyrosine, of a high-molecular-weight cortical protein (HMWCP) localized in the egg cortex. Studies using various parthenogenic agents indicate that this phosphorylation event occurs in response to the alkaline shift in cytoplasmic pHi which normally occurs 1 to 2 min after fertilization. In the present study, the purified egg cell surface complex was used as in vitro system to determine whether a small alkaline shift in pH, such as occurs upon fertilization, could stimulate the activity of the egg cortex-associated tyrosine kinase toward endogenous protein substrates. The results demonstrated that the cell surface complex is highly enriched in a tyrosine kinase activity which accounts for the majority of the protein kinase activity in this preparation. The activity of this tyrosine kinase toward the HMWCP and other cortical proteins was highly dependent on pH over the range pH 6.8 to 7.3. This indicates that the fertilization-associated change in cytoplasmic pH would be sufficient to trigger increased tyrosine phosphorylation of the high-molecular-weight cortical protein in vivo. The regulation of tyrosine phosphorylation by small changes in pH represents a novel control mechanism in which a tyrosine protein kinase may act as a pH-sensitive transducer. PMID:2060713

  1. Oxidation of Tyrosine-Phosphopeptides by Titanium Dioxide Photocatalysis.

    PubMed

    Ruokolainen, Miina; Ollikainen, Elisa; Sikanen, Tiina; Kotiaho, Tapio; Kostiainen, Risto

    2016-06-22

    Protein phosphorylation has a key role in cell regulation. Oxidation of proteins, in turn, is related to many diseases and to aging, but the effects of phosphorylation on the oxidation of proteins and peptides have been rarely studied. The aim of this study was to examine the mechanistic effect of phosphorylation on peptide oxidation induced by titanium dioxide photocatalysis. The effect of phosphorylation was compared between nonphosphorylated and tyrosine phosphorylated peptides using electrospray tandem mass spectrometry. We observed that tyrosine was the most preferentially oxidized amino acid, but the oxidation reaction was significantly inhibited by its phosphorylation. The study also shows that titanium dioxide photocatalysis provides a fast and easy method to study oxidation reactions of biomolecules, such as peptides. PMID:27268440

  2. Ligand-induced conformational changes in a thermophilic ribose-binding protein

    SciTech Connect

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.

    2009-05-21

    Members of the periplasmic binding protein (PBP) superfamily are involved in transport and signaling processes in both prokaryotes and eukaryotes. Biological responses are typically mediated by ligand-induced conformational changes in which the binding event is coupled to a hinge-bending motion that brings together two domains in a closed form. In all PBP-mediated biological processes, downstream partners recognize the closed form of the protein. This motion has also been exploited in protein engineering experiments to construct biosensors that transduce ligand binding to a variety of physical signals. Understanding the mechanistic details of PBP conformational changes, both global (hinge bending, twisting, shear movements) and local (rotamer changes, backbone motion), therefore is not only important for understanding their biological function but also for protein engineering experiments. Here we present biochemical characterization and crystal structure determination of the periplasmic ribose-binding protein (RBP) from the hyperthermophile Thermotoga maritima in its ribose-bound and unliganded state. The T. maritima RBP (tmRBP) has 39% sequence identity and is considerably more resistant to thermal denaturation (appTm value is 108 C) than the mesophilic Escherichia coli homolog (ecRBP) (appTm value is 56 C). Polar ligand interactions and ligand-induced global conformational changes are conserved among ecRBP and tmRBP; however local structural rearrangements involving side-chain motions in the ligand-binding site are not conserved. Although the large-scale ligand-induced changes are mediated through similar regions, and are produced by similar backbone movements in tmRBP and ecRBP, the small-scale ligand-induced structural rearrangements differentiate the mesophile and thermophile. This suggests there are mechanistic differences in the manner by which these two proteins bind their ligands and are an example of how two structurally similar proteins utilize different

  3. Histone phosphorylation

    PubMed Central

    Rossetto, Dorine; Avvakumov, Nikita; Côté, Jacques

    2012-01-01

    Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes. PMID:22948226

  4. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT α BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  5. Isolation of regulatory-competent, phosphorylated cytochrome C oxidase.

    PubMed

    Lee, Icksoo; Salomon, Arthur R; Yu, Kebing; Samavati, Lobelia; Pecina, Petr; Pecinova, Alena; Hüttemann, Maik

    2009-01-01

    The role of posttranslational modifications, specifically reversible phosphorylation as a regulatory mechanism operating in the mitochondria, is a novel research direction. The mitochondrial oxidative phosphorylation system is a particularly interesting unit because it is responsible for the production of the vast majority of cellular energy in addition to free radicals, two factors that are aberrant in numerous human diseases and that may be influenced by reversible phosphorylation of the oxidative phosphorylation complexes. We here describe a detailed protocol for the isolation of mammalian liver and heart mitochondria and subsequently cytochrome c oxidase (CcO) under conditions maintaining the physiological phosphorylation state. The protocol employs the use of activated vanadate, an unspecific tyrosine phosphatase inhibitor, fluoride, an unspecific serine/threonine phosphatase inhibitor, and EGTA, a calcium chelator to prevent the activation of calcium-dependent protein phosphatases. CcO purified without manipulation of signaling pathways shows strong tyrosine phosphorylation on subunits II and IV, whereas tyrosine phosphorylation of subunit I can be induced by the cAMP- and TNFalpha-dependent pathways in liver. Using our protocol on cow liver tissue we further show the identification of a new phosphorylation site on CcO subunit IV tyrosine 11 of the mature protein (corresponding to tyrosine 33 of the precursor peptide) via immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS). This phosphorylation site is located close to the ATP and ADP binding site, which adjusts CcO activity to cellular energy demand, and we propose that phosphorylation of tyrosine 11 enables allosteric regulation. PMID:19426869

  6. Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations.

    PubMed

    Koldsø, Heidi; Autzen, Henriette Elisabeth; Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432

  7. Ligand Induced Conformational Changes of the Human Serotonin Transporter Revealed by Molecular Dynamics Simulations

    PubMed Central

    Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432

  8. A tyrosine-based motif and a casein kinase II phosphorylation site regulate the intracellular trafficking of the varicella-zoster virus glycoprotein I, a protein localized in the trans-Golgi network.

    PubMed Central

    Alconada, A; Bauer, U; Hoflack, B

    1996-01-01

    We have studied the intracellular trafficking of the envelope glycoprotein I (gpI) of the varicella-zoster virus, a human herpes virus whose assembly is believed to occur in the trans-Golgi network (TGN) and/or in endocytic compartments. When expressed in HeLa cells in the absence of additional virally encoded factors, this type-I membrane protein localizes to the TGN and cycles between this compartment and the cell surface. The expression of gpI promotes the recruitment of the AP-1 Golgi-specific assembly proteins onto TGN membranes, strongly suggesting that gpI, like the mannose 6-phosphate receptors, can leave the TGN in clathrin-coated vesicles for subsequent transport to endosomes. Its return from the cell surface to the TGN also occurs through endosomes. The transfer of the gpI cytoplasmic domain onto a reporter molecule shows that this domain is sufficient to confer TGN localization. Mutational analysis of this domain indicates that proper subcellular localization and cycling of gpI depend on two different determinants, a tyrosine-containing tetrapeptide related to endocytosis sorting signals and a cluster of acidic amino acids containing casein kinase II phosphorylatable residues. Thus, the VZV gpI and the mannose 6-phosphate receptors, albeit localized in different intracellular compartments at steady-state, follow similar trafficking pathways and share similar sorting mechanisms. Images PMID:8947032

  9. The consequences of selective inhibition of signal transducer and activator of transcription 3 (STAT3) tyrosine705 phosphorylation by phosphopeptide mimetic prodrugs targeting the Src homology 2 (SH2) domain.

    PubMed

    McMurray, John S; Mandal, Pijus K; Liao, Warren S; Klostergaard, Jim; Robertson, Fredika M

    2012-10-01

    Herein we review our progress on the development of phosphopeptide-based prodrugs targeting the SH2 domain of STAT3 to prevent recruitment to cytokine and growth factor receptors, activation, nuclear translocation and transcription of genes involved in cancer. We developed high affinity phosphopeptides (K I = 46-200 nM). Corresponding prodrugs inhibited constitutive and IL-6 induced Tyr705 phosphorylation at 0.5-1 μM in a variety of human cancer cell lines. They were not cytotoxic at 5 μM in vitro but they inhibited tumor growth in a human xenograft breast cancer model in mice, accompanied by reduced VEGF expression and angiogenesis. PMID:24058783

  10. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness.

    PubMed

    Ha, Jacqueline R; Siegel, Peter M; Ursini-Siegel, Josie

    2016-09-01

    Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc. PMID:27392311

  11. The thrombin receptor extracellular domain contains sites crucial for peptide ligand-induced activation.

    PubMed Central

    Bahou, W F; Coller, B S; Potter, C L; Norton, K J; Kutok, J L; Goligorsky, M S

    1993-01-01

    A thrombin receptor (TR) demonstrating a unique activation mechanism has recently been isolated from a megakaryocytic (Dami) cell line. To further study determinants of peptide ligand-mediated activation phenomenon, we have isolated, cloned, and stably expressed the identical receptor from a human umbilical vein endothelial cell (HUVEC) library. Chinese hamster ovary (CHO) cells expressing a functional TR (CHO-TR), platelets, and HUVECs were then used to specifically characterize alpha-thrombin- and peptide ligand-induced activation responses using two different antibodies: anti-TR34-52 directed against a 20-amino acid peptide spanning the thrombin cleavage site, and anti-TR1-160 generated against the NH2-terminal 160 amino acids of the TR expressed as a chimeric protein in Escherichia coli. Activation-dependent responses to both alpha-thrombin (10 nM) and peptide ligand (20 microM) were studied using fura 2-loaded cells and microspectrofluorimetry. Whereas preincubation of CHO-TR with anti-TR34-52 abolished only alpha-thrombin-induced [Ca2+]i transients, preincubation with anti-TR1-160 abrogated both alpha-thrombin- and peptide ligand-induced responses. This latter inhibitory effect was dose dependent and similar for both agonists, with an EC50 of approximately 90 micrograms/ml. Anti-TR1-160 similarly abolished peptide ligand-induced [Ca2+]i transients in platelets and HUVECs, whereas qualitatively different responses characterized by delayed but sustained elevations in [Ca2+]i transients were evident using alpha-thrombin. Platelet aggregation to low concentrations of both ligands was nearly abolished by anti-TR1-160, although some shape change remained; anti-TR34-52 only inhibited alpha-thrombin-induced aggregation. These data establish that a critical recognition sequence for peptide ligand-mediated receptor activation is contained on the NH2-terminal portion of the receptor, upstream from the first transmembrane domain. Furthermore, alpha

  12. Microtubule-associated protein 1B interaction with tubulin tyrosine ligase contributes to the control of microtubule tyrosination.

    PubMed

    Utreras, Elías; Jiménez-Mateos, Eva Maria; Contreras-Vallejos, Erick; Tortosa, Elena; Pérez, Mar; Rojas, Sebastián; Saragoni, Lorena; Maccioni, Ricardo B; Avila, Jesús; González-Billault, Christian

    2008-01-01

    Microtubule-associated protein 1B (MAP1B) is the first microtubule-associated protein to be expressed during nervous system development. MAP1B belongs to a large family of proteins that contribute to the stabilization and/or enhancement of microtubule polymerization. These functions are related to the control of the dynamic properties of microtubules. The C-terminal domain of the neuronal alpha-tubulin isotype is characterized by the presence of an acidic polypeptide, with the last amino acid being tyrosine. This tyrosine residue may be enzymatically removed from the protein by an unknown carboxypeptidase activity. Subsequently, the tyrosine residue is again incorporated into this tubulin by another enzyme, tubulin tyrosine ligase, to yield tyrosinated tubulin. Because neurons lacking MAP1B have a reduced proportion of tyrosinated microtubules, we analyzed the possible interaction between MAP1B and tubulin tyrosine ligase. Our results show that these proteins indeed interact and that the interaction is not affected by MAP1B phosphorylation. Additionally, neurons lacking MAP1B, when exposed to drugs that reversibly depolymerize microtubules, do not fully recover tyrosinated microtubules upon drug removal. These results suggest that MAP1B regulates tyrosination of alpha-tubulin in neuronal microtubules. This regulation may be important for general processes involved in nervous system development such as axonal guidance and neuronal migration. PMID:18075266

  13. Epidermal Growth Factor Receptor Dimerization and Activation Require Ligand-Induced Conformational Changes in the Dimer Interface

    PubMed Central

    Dawson, Jessica P.; Berger, Mitchell B.; Lin, Chun-Chi; Schlessinger, Joseph; Lemmon, Mark A.; Ferguson, Kathryn M.

    2005-01-01

    Structural studies have shown that ligand-induced epidermal growth factor receptor (EGFR) dimerization involves major domain rearrangements that expose a critical dimerization arm. However, simply exposing this arm is not sufficient for receptor dimerization, suggesting that additional ligand-induced dimer contacts are required. To map these contributions to the dimer interface, we individually mutated each contact suggested by crystallographic studies and analyzed the effects on receptor dimerization, activation, and ligand binding. We find that domain II contributes >90% of the driving energy for dimerization of the extracellular region, with domain IV adding little. Within domain II, the dimerization arm forms much of the dimer interface, as expected. However, a loop from the sixth disulfide-bonded module (immediately C-terminal to the dimerization arm) also makes a critical contribution. Specific ligand-induced conformational changes in domain II are required for this loop to contribute to receptor dimerization, and we identify a set of ligand-induced intramolecular interactions that appear to be important in driving these changes, effectively “buttressing” the dimer interface. Our data also suggest that similar conformational changes may determine the specificity of ErbB receptor homo- versus heterodimerization. PMID:16107719

  14. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors

    PubMed Central

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

    2014-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

  15. Analysis of receptor tyrosine kinase internalization using flow cytometry.

    PubMed

    Li, Ning; Hill, Kristen S; Elferink, Lisa A

    2008-01-01

    The internalization of activated receptor tyrosine kinases (RTKs) by endocytosis and their subsequent down regulation in lysosomes plays a critical role in regulating the duration and intensity of downstream signaling events. Uncoupling of the RTK cMet from ligand-induced degradation was recently shown to correlate with sustained receptor signaling and increased cell tumorigenicity, suggesting that the corruption of these endocytic mechanisms could contribute to increased cMet signaling in metastatic cancers. To understand how cMet signaling for normal cell growth is controlled by endocytosis and how these mechanisms are dysregulated in metastatic cancers, we developed flow cytometry-based assays to examine cMet internalization. PMID:19066037

  16. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  17. Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro)

    PubMed Central

    Tomar, Sakshi; Johnston, Melanie L.; St. John, Sarah E.; Osswald, Heather L.; Nyalapatla, Prasanth R.; Paul, Lake N.; Ghosh, Arun K.; Denison, Mark R.; Mesecar, Andrew D.

    2015-01-01

    All coronaviruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) from the β-CoV subgroup, require the proteolytic activity of the nsp5 protease (also known as 3C-like protease, 3CLpro) during virus replication, making it a high value target for the development of anti-coronavirus therapeutics. Kinetic studies indicate that in contrast to 3CLpro from other β-CoV 2c members, including HKU4 and HKU5, MERS-CoV 3CLpro is less efficient at processing a peptide substrate due to MERS-CoV 3CLpro being a weakly associated dimer. Conversely, HKU4, HKU5, and SARS-CoV 3CLpro enzymes are tightly associated dimers. Analytical ultracentrifugation studies support that MERS-CoV 3CLpro is a weakly associated dimer (Kd ∼52 μm) with a slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CLpro were synthesized and utilized in analytical ultracentrifugation experiments and demonstrate that MERS-CoV 3CLpro undergoes significant ligand-induced dimerization. Kinetic studies also revealed that designed reversible inhibitors act as activators at a low compound concentration as a result of induced dimerization. Primary sequence comparisons and x-ray structural analyses of two MERS-CoV 3CLpro and inhibitor complexes, determined to 1.6 Å, reveal remarkable structural similarity of the dimer interface with 3CLpro from HKU4-CoV and HKU5-CoV. Despite this structural similarity, substantial differences in the dimerization ability suggest that long range interactions by the nonconserved amino acids distant from the dimer interface may control MERS-CoV 3CLpro dimerization. Activation of MERS-CoV 3CLpro through ligand-induced dimerization appears to be unique within the genogroup 2c and may potentially increase the complexity in the development of MERS-CoV 3CLpro inhibitors as antiviral agents. PMID:26055715

  18. Identification of the flavoprotein of succinate dehydrogenase and aconitase as in vitro mitochondrial substrates of Fgr tyrosine kinase.

    PubMed

    Salvi, Mauro; Morrice, Nick A; Brunati, Anna Maria; Toninello, Antonio

    2007-12-11

    Overlooked until recently, mitochondrial protein phosphorylation is now emerging as a key post-translational mechanism in the regulation of mitochondrial functions. In particular, tyrosine phosphorylation represents a promising field to discover new mechanisms of bioenergetic regulation. Tyrosine kinases belonging to the Src kinase family have been observed in mitochondrial compartments, however their substrates are almost unknown. Here, we provide evidence that the flavoprotein of succinate dehydrogenase and aconitase are "in vitro" substrates of Fgr tyrosine kinase. Fgr phosphorylates flavoprotein of succinate dehydrogenase at Y535 and Y596 and aconitase at Y71, Y544 and Y665. The significance of these findings is discussed. PMID:17997986

  19. eps15, a novel tyrosine kinase substrate, exhibits transforming activity.

    PubMed Central

    Fazioli, F; Minichiello, L; Matoskova, B; Wong, W T; Di Fiore, P P

    1993-01-01

    An expression cloning method which allows direct isolation of cDNAs encoding substrates for tyrosine kinases was applied to the study of the epidermal growth factor (EGF) receptor (EGFR) signaling pathway. A previously undescribed cDNA was isolated and designated eps15. The structural features of the predicted eps15 gene product allow its subdivision into three domains. Domain I contains signatures of a regulatory domain, including a candidate tyrosine phosphorylation site and EF-hand-type calcium-binding domains. Domain II presents the characteristic heptad repeats of coiled-coil rod-like proteins, and domain III displays a repeated aspartic acid-proline-phenylalanine motif similar to a consensus sequence of several methylases. Antibodies specific for the eps15 gene product recognize two proteins: a major species of 142 kDa and a minor component of 155 kDa, both of which are phosphorylated on tyrosine following EGFR activation by EGF in vivo. EGFR is also able to directly phosphorylate the eps15 product in vitro. In addition, phosphorylation of the eps15 gene product in vivo is relatively receptor specific, since the erbB-2 kinase phosphorylates it very inefficiently. Finally, overexpression of eps15 is sufficient to transform NIH 3T3 cells, thus suggesting that the eps15 gene product is involved in the regulation of mitogenic signals. Images PMID:7689153

  20. Roles of subunit phosphorylation in regulating glutamate receptor function

    PubMed Central

    Wang, John Q.; Guo, Ming-Lei; Jin, Dao-Zhong; Xue, Bing; Fibuch, Eugene E.; Mao, Li-Min

    2014-01-01

    Protein phosphorylation is an important mechanism for regulating ionotropic glutamate receptors (iGluRs). Early studies have established that major iGluR subtypes, including α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and N-methyl-D-aspartate (NMDA) receptors, are subject to phosphorylation. Multiple serine, threonine, and tyrosine residues predominantly within the C-terminal regions of AMPA receptor and NMDA receptor subunits have been identified as sensitive phosphorylation sites. These distinct sites undergo either constitutive phosphorylation or activity-dependent phosphorylation induced by changing cellular and synaptic inputs as reversible events. An increasing number of synapse-enriched protein kinases have been found to phosphorylate iGluR. The common kinases include protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src/Fyn non-receptor tyrosine kinases, and cyclin dependent kinase-5. Regulated phosphorylation plays a well-documented role in modulating the biochemical, biophysical, and functional properties of the receptor. In the future, identifying the precise mechanisms how phosphorylation regulates iGluR activities and finding the link between iGluR phosphorylation and the pathogenesis of various brain diseases, including psychiatric and neurodegenerative diseases, chronic pain, stroke, Alzheimer’s disease and substance addiction, will be hot topics and could contribute to the development of novel pharmacotherapies, by targeting the defined phosphorylation process, for suppressing iGluR-related disorders. PMID:24291102

  1. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site

    PubMed Central

    Rumpf, Tobias; Schiedel, Matthias; Karaman, Berin; Roessler, Claudia; North, Brian J.; Lehotzky, Attila; Oláh, Judit; Ladwein, Kathrin I.; Schmidtkunz, Karin; Gajer, Markus; Pannek, Martin; Steegborn, Clemens; Sinclair, David A.; Gerhardt, Stefan; Ovádi, Judit; Schutkowski, Mike; Sippl, Wolfgang; Einsle, Oliver; Jung, Manfred

    2015-01-01

    Sirtuins are a highly conserved class of NAD+-dependent lysine deacylases. The human isotype Sirt2 has been implicated in the pathogenesis of cancer, inflammation and neurodegeneration, which makes the modulation of Sirt2 activity a promising strategy for pharmaceutical intervention. A rational basis for the development of optimized Sirt2 inhibitors is lacking so far. Here we present high-resolution structures of human Sirt2 in complex with highly selective drug-like inhibitors that show a unique inhibitory mechanism. Potency and the unprecedented Sirt2 selectivity are based on a ligand-induced structural rearrangement of the active site unveiling a yet-unexploited binding pocket. Application of the most potent Sirtuin-rearranging ligand, termed SirReal2, leads to tubulin hyperacetylation in HeLa cells and induces destabilization of the checkpoint protein BubR1, consistent with Sirt2 inhibition in vivo. Our structural insights into this unique mechanism of selective sirtuin inhibition provide the basis for further inhibitor development and selective tools for sirtuin biology. PMID:25672491

  2. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level.

    PubMed

    Tabor, Alina; Weisenburger, Siegfried; Banerjee, Ashutosh; Purkayastha, Nirupam; Kaindl, Jonas M; Hübner, Harald; Wei, Luxi; Grömer, Teja W; Kornhuber, Johannes; Tschammer, Nuska; Birdsall, Nigel J M; Mashanov, Gregory I; Sandoghdar, Vahid; Gmeiner, Peter

    2016-01-01

    G protein-coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass. PMID:27615810

  3. Diversity of actions of GnRHs mediated by ligand-induced selective signaling

    PubMed Central

    Millar, Robert P.; Pawson, Adam J.; Morgan, Kevin; Rissman, Emilie F.; Lu, Zhi-Liang

    2009-01-01

    Geoffrey Wingfield Harris’ demonstration of hypothalamic hormones regulating pituitary function led to their structural identification and therapeutic utilization in a wide spectrum of diseases. Amongst these, Gonadotropin Releasing Hormone (GnRH) and its analogs are widely employed in modulating gonadotropin and sex steroid secretion to treat infertility, precocious puberty and many hormone-dependent diseases including endometriosis, uterine fibroids and prostatic cancer. While these effects are all mediated via modulation of the pituitary gonadotrope GnRH receptor and the Gq signaling pathway, it has become increasingly apparent that GnRH regulates many extrapituitary cells in the nervous system and periphery. This review focuses on two such examples, namely GnRH analog effects on reproductive behaviors and GnRH analog effects on the inhibition of cancer cell growth. For both effects the relative activities of a range of GnRH analogs is distinctly different from their effects on the pituitary gonadotrope and different signaling pathways are utilized. As there is only a single functional GnRH receptor type in man we have proposed that the GnRH receptor can assume different conformations which have different selectivity for GnRH analogs and intracellular signaling proteins complexes. This ligand-induced selective-signaling recruits certain pathways while by-passing others and has implications in developing more selective GnRH analogs for highly specific therapeutic intervention. PMID:17976709

  4. Ligand-Induced Dynamics of Neurotrophin Receptors Investigated by Single-Molecule Imaging Approaches

    PubMed Central

    Marchetti, Laura; Luin, Stefano; Bonsignore, Fulvio; de Nadai, Teresa; Beltram, Fabio; Cattaneo, Antonino

    2015-01-01

    Neurotrophins are secreted proteins that regulate neuronal development and survival, as well as maintenance and plasticity of the adult nervous system. The biological activity of neurotrophins stems from their binding to two membrane receptor types, the tropomyosin receptor kinase and the p75 neurotrophin receptors (NRs). The intracellular signalling cascades thereby activated have been extensively investigated. Nevertheless, a comprehensive description of the ligand-induced nanoscale details of NRs dynamics and interactions spanning from the initial lateral movements triggered at the plasma membrane to the internalization and transport processes is still missing. Recent advances in high spatio-temporal resolution imaging techniques have yielded new insight on the dynamics of NRs upon ligand binding. Here we discuss requirements, potential and practical implementation of these novel approaches for the study of neurotrophin trafficking and signalling, in the framework of current knowledge available also for other ligand-receptor systems. We shall especially highlight the correlation between the receptor dynamics activated by different neurotrophins and the respective signalling outcome, as recently revealed by single-molecule tracking of NRs in living neuronal cells. PMID:25603178

  5. Microscopic study of a ligand induced electroless plating process onto polymers.

    PubMed

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Polesel-Maris, Jérôme; Palacin, Serge

    2010-11-01

    The ligand induced electroless plating (LIEP) process was recently developed and thoroughly demonstrated with one of the most used polymers for plating processes: acrylonitrile-butadiene-styrene (ABS). This generic process is based, thanks to the use of diazonium salts as precursors, on the covalent grafting of a thin layer of poly(acrylic acid) (PAA) acting as ligand for metallic salts onto pristine polymer surfaces. This strategy takes advantage of the PAA ion exchange properties. Indeed, carboxylate groups contained in PAA allow one to complex copper ions which are eventually reduced and used as catalysts of the metallic deposition. Essentially based on ABS, ABS-PC (ABS-polycarbonate) and PA (polyamide) substrates, the present paper focuses on the role of the polymer substrate and the relationships between the macroscopic properties and microscopic characterizations such as infrared (IR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The adhesion strength of the metallic layer deposited via that LIEP process with the bulk polymer substrates was successfully compared with the adhesion of similar copper films deposited by the usual process based on chromic acid etching and palladium-based seed layer, by measuring the T-peel adhesion strength, and by carrying out the common industrial scotch tape test. Lastly, the electrical properties of the deposited layer were studied thanks to a four-point probe and scanning tunneling microscopy (STM) measurements. PMID:21053943

  6. Src kinase regulation by phosphorylation and dephosphorylation

    SciTech Connect

    Roskoski, Robert . E-mail: biocrr@lsuhsc.edu

    2005-05-27

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.

  7. Extracellular Ser/Thr/Tyr phosphorylated proteins of Pseudomonas aeruginosa PA14 strain.

    PubMed

    Ouidir, Tassadit; Jarnier, Frédérique; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2014-09-01

    Protein phosphorylation on serine, threonine, and tyrosine is known to be involved in a wide variety of cellular processes, signal transduction, and bacterial virulence. We characterized, for the first time, the extracellular phosphoproteins of the Pseudomonas aeruginosa PA14 strain. We identified 28 phosphoproteins (59 phosphosites) including enzymes, with various phosphorylation sites, known as potent secreted virulence factors in P. aeruginosa. The high phosphorylation level of these virulence factors might reflect a relationship between Ser/Thr/Tyr phosphorylation and virulence. PMID:24965220

  8. The role of non-receptor protein tyrosine kinases in the excitotoxicity induced by the overactivation of NMDA receptors.

    PubMed

    Sun, Yongjun; Chen, You; Zhan, Liying; Zhang, Linan; Hu, Jie; Gao, Zibin

    2016-04-01

    Protein tyrosine phosphorylation is one of the primary modes of regulation of N-methyl-d-aspartate (NMDA) receptors. The non-receptor tyrosine kinases are one of the two types of protein tyrosine kinases that are involved in this process. The overactivation of NMDA receptors is a primary reason for neuron death following cerebral ischemia. Many studies have illustrated the important role of non-receptor tyrosine kinases in ischemia insults. This review introduces the roles of Src, Fyn, focal adhesion kinase, and proline-rich tyrosine kinase 2 in the excitotoxicity induced by the overactivation of NMDA receptors following cerebral ischemia. PMID:26540220

  9. Asymmetric Tyrosine Kinase Arrangements in Activation or Autophosphorylation of Receptor Tyrosine Kinases

    SciTech Connect

    J Bae; J Schlessinger

    2011-12-31

    Receptor tyrosine kinases (RTKs) play important roles in the control of many cellular processes including cell proliferation, cell adhesion, angiogenesis, and apoptosis. Ligand-induced dimerization of RTKs leads to autophosphorylation and activation of RTKs. Structural studies have shown that while isolated ectodomains of several RTKs form symmetric dimers the isolated cytoplasmic kinase domains of epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) form asymmetric dimers during their activation. Binding of one kinase molecule of EGFR to a second kinase molecule asymmetrically leads to stimulation of kinase activity and enhanced autophosphorylation. Furthermore, the structures of the kinase domain of FGFR1 and FGFR2 reveal the formation of asymmetric interfaces in the processes of autophosphorylation at their specific phosphotyrosine (pY) sites. Disruption of asymmetric dimer interface of EGFR leads to reduction in enzymatic activity and drastic reduction of autophosphorylation of FGFRs in ligandstimulated live cells. These studies demonstrate that asymmetric dimer formation is as a common phenomenon critical for activation and autophosphorylation of RTKs.

  10. Distinct tyrosine autophosphorylation sites negatively and positively modulate neu-mediated transformation.

    PubMed Central

    Dankort, D L; Wang, Z; Blackmore, V; Moran, M F; Muller, W J

    1997-01-01

    A number of cytoplasmic signaling molecules are thought to mediate mitogenic signaling from the activated Neu receptor tyrosine kinase through binding specific phosphotyrosine residues located within the intracellular portion of Neu/c-ErbB-2. An activated neu oncogene containing tyrosine-to-phenylalanine substitutions at each of the known autophosphorylation sites was generated and assessed for its specific transforming potential in Rat1 and NIH 3T3 fibroblasts. Mutation of these sites resulted in a dramatic impairment of the transforming potential of neu. To assess the role of these tyrosine phosphorylation sites in cellular transformation, the transforming potential of a series of mutants in which individual tyrosine residues were restored to this transformation-debilitated neu mutant was evaluated. Reversion of any one of four mutated sites to tyrosine residues restored wild-type transforming activity. While each of these transforming mutants displayed Ras-dependent signaling, the transforming activity of two of these mutants was correlated with their ability to bind either the GRB2 or SHC adapter molecules that couple receptor tyrosine kinases to the Ras signaling pathway. By contrast, restoration of a tyrosine residue located at position 1028 completely suppressed the basal transforming activity of this mutated neu molecule or other transforming neu molecules which possessed single tyrosine residues. These data argue that the transforming potential of activated neu is mediated both by positive and negative regulatory tyrosine phosphorylation sites. PMID:9271418

  11. Nucleation of an Allosteric Response via Ligand-induced Loop Folding

    PubMed Central

    Naganathan, Saranga; Beckett, Dorothy

    2009-01-01

    The Escherichia coli biotin repressor, BirA, is an allosteric transcription regulatory protein to which binding of the small ligand corepressor, biotinyl-5’-AMP, promotes homodimerization and subsequent DNA binding. Structural data indicate that the apo- or unliganded repressor is characterized by four partially disordered loops that are ordered in the ligand-bound dimer. While three of these loops participate directly in the dimerization, the fourth, consisting of residues 212-234 is distal to the interface. This loop, which is ordered around the adenine ring of the adenylate in the BirA adenylate structure, is referred to as the adenylate binding loop or ABL. Although residues in the loop do not directly interact with the ligand, a hydrophobic cluster consisting of a tryptophan and two valine side chains assembles over the adenine base. Results of previous measurements suggest that folding of the ABL is integral to the allosteric response. This idea and the role of the hydrophobic cluster in the process were investigated by systematic replacement of each side chain in the cluster with alanine and analysis of the variant proteins for small ligand binding and dimerization. Isothermal titration calorimetry measurements indicate defects in adenylate binding for all ABL variants. Additionally, sedimentation equilibrium measurements reveal that coupling between adenylate binding and dimerization is compromised in each mutant. Partial proteolysis measurements indicate that the mutants are defective in ligand-linked folding of the ABL. These results indicate that the hydrophobic cluster is critical to the ligand-induced disorder-to-order transition in the ABL and that this transition is integral to the allosteric response in the biotin repressor. PMID:17765263

  12. Direct Binding of GTP Cyclohydrolase and Tyrosine Hydroxylase

    PubMed Central

    Bowling, Kevin M.; Huang, Zhinong; Xu, Dong; Ferdousy, Faiza; Funderburk, Christopher D.; Karnik, Nirmala; Neckameyer, Wendi; O'Donnell, Janis M.

    2008-01-01

    The signaling functions of dopamine require a finely tuned regulatory network for rapid induction and suppression of output. A key target of regulation is the enzyme tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, which is activated by phosphorylation and modulated by the availability of its cofactor, tetrahydrobiopterin. The first enzyme in the cofactor synthesis pathway, GTP cyclohydrolase I, is activated by phosphorylation and inhibited by tetrahydrobiopterin. We previously reported that deficits in GTP cyclohydrolase activity in Drosophila heterozygous for mutant alleles of the gene encoding this enzyme led to tightly corresponding diminution of in vivo tyrosine hydroxylase activity that could not be rescued by exogenous cofactor. We also found that the two enzymes could be coimmunoprecipitated from tissue extracts and proposed functional interactions between the enzymes that extended beyond provision of cofactor by one pathway for another. Here, we confirm the physical association of these enzymes, identifying interacting regions in both, and we demonstrate that their association can be regulated by phosphorylation. The functional consequences of the interaction include an increase in GTP cyclohydrolase activity, with concomitant protection from end-product feedback inhibition. In vivo, this effect would in turn provide sufficient cofactor when demand for catecholamine synthesis is greatest. The activity of tyrosine hydroxylase is also increased by this interaction, in excess of the stimulation resulting from phosphorylation alone. Vmax is elevated, with no change in Km. These results demonstrate that these enzymes engage in mutual positive regulation. PMID:18801743

  13. Functional importance of EAK1 tyrosine phosphorylation in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant receptor kinase BRASSINOSTEROID ASSOCIATED KINASE 1 (BAK1) is known as a partner of several ligand-binding leucine-rich repeat receptor kinases, including BRASSINOSTEROID INSENSITIVE 1 (BRI1) and the flagellin receptor FLS2. Autophosphorylation of receptor kinases is recognized to be an i...

  14. Modulation of p36 phosphorylation in human cells: studies using anti-p36 monoclonal antibodies.

    PubMed Central

    Isacke, C M; Trowbridge, I S; Hunter, T

    1986-01-01

    We have characterized two monoclonal antibodies which recognize human p36. These have been used to examine the sites and extent of serine and tyrosine phosphorylation of p36 in human cells treated with epidermal growth factor and platelet-derived growth factor and in human cells transformed with viruses whose oncogenes encode protein-tyrosine kinases. Images PMID:2946941

  15. The importance of intrinsic disorder for protein phosphorylation.

    PubMed

    Iakoucheva, Lilia M; Radivojac, Predrag; Brown, Celeste J; O'Connor, Timothy R; Sikes, Jason G; Obradovic, Zoran; Dunker, A Keith

    2004-01-01

    Reversible protein phosphorylation provides a major regulatory mechanism in eukaryotic cells. Due to the high variability of amino acid residues flanking a relatively limited number of experimentally identified phosphorylation sites, reliable prediction of such sites still remains an important issue. Here we report the development of a new web-based tool for the prediction of protein phosphorylation sites, DISPHOS (DISorder-enhanced PHOSphorylation predictor, http://www.ist.temple. edu/DISPHOS). We observed that amino acid compositions, sequence complexity, hydrophobicity, charge and other sequence attributes of regions adjacent to phosphorylation sites are very similar to those of intrinsically disordered protein regions. Thus, DISPHOS uses position-specific amino acid frequencies and disorder information to improve the discrimination between phosphorylation and non-phosphorylation sites. Based on the estimates of phosphorylation rates in various protein categories, the outputs of DISPHOS are adjusted in order to reduce the total number of misclassified residues. When tested on an equal number of phosphorylated and non-phosphorylated residues, the accuracy of DISPHOS reaches 76% for serine, 81% for threonine and 83% for tyrosine. The significant enrichment in disorder-promoting residues surrounding phosphorylation sites together with the results obtained by applying DISPHOS to various protein functional classes and proteomes, provide strong support for the hypothesis that protein phosphorylation predominantly occurs within intrinsically disordered protein regions. PMID:14960716

  16. The Extended Family of Protein Tyrosine Phosphatases.

    PubMed

    Alonso, Andrés; Nunes-Xavier, Caroline E; Bayón, Yolanda; Pulido, Rafael

    2016-01-01

    In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented. PMID:27514797

  17. Structural insights into ligand-induced activation of the insulin receptor

    SciTech Connect

    Ward, C.; Lawrence, M.; Streltsov, V.; Garrett, T.; McKern, N.; Lou, M.-Z.; Lovrecz, G.; Adams, T.

    2008-04-29

    The current model for insulin binding to the insulin receptor proposes that there are two binding sites, referred to as sites 1 and 2, on each monomer in the receptor homodimer and two binding surfaces on insulin, one involving residues predominantly from the dimerization face of insulin (the classical binding surface) and the other residues from the hexamerization face. High-affinity binding involves one insulin molecule using its two surfaces to make bridging contacts with site 1 from one receptor monomer and site 2 from the other. Whilst the receptor dimer has two identical site 1-site 2 pairs, insulin molecules cannot bridge both pairs simultaneously. Our structures of the insulin receptor (IR) ectodomain dimer and the L1-CR-L2 fragments of IR and insulin-like growth factor receptor (IGF-1R) explain many of the features of ligand-receptor binding and allow the two binding sites on the receptor to be described. The IR dimer has an unexpected folded-over conformation which places the C-terminal surface of the first fibronectin-III domain in close juxtaposition to the known L1 domain ligand-binding surface suggesting that the C-terminal surface of FnIII-1 is the second binding site involved in high-affinity binding. This is very different from previous models based on three-dimensional reconstruction from scanning transmission electron micrographs. Our single-molecule images indicate that IGF-1R has a morphology similar to that of IR. In addition, the structures of the first three domains (L1-CR-L2) of the IR and IGF-1R show that there are major differences in the two regions governing ligand specificity. The implications of these findings for ligand-induced receptor activation will be discussed. This review summarizes the key findings regarding the discovery and characterization of the insulin receptor, the identification and arrangement of its structural domains in the sequence and the key features associated with ligand binding. The remainder of the review

  18. Metaphase protein phosphorylation in Xenopus laevis eggs.

    PubMed Central

    Lohka, M J; Kyes, J L; Maller, J L

    1987-01-01

    Cytoplasmic extracts of metaphase (M-phase)-arrested Xenopus laevis eggs support nuclear envelope breakdown and chromosome condensation in vitro. Induction of nuclear breakdown is inhibited by AMPP(NH)P, a nonhydrolyzable ATP analog, but not by ATP or gamma-S-ATP, a hydrolyzable ATP analog, suggesting that protein phosphorylation may be required for M-phase nuclear events in vitro. By addition of [gamma-32P]ATP, we have identified in cytoplasmic extracts and in intact eggs at least six phosphoproteins that are present during M-phase but absent in G1/S-phase. These phosphoproteins also appear in response to partially purified preparations of maturation-promoting factor. A subset of these proteins are thiophosphorylated by gamma-S-ATP under conditions that promote nuclear envelope breakdown and chromosome condensation. Each of these proteins is phosphorylated on serine and threonine, and one, a 42-kilodalton protein, is also phosphorylated on tyrosine both in extracts and in intact eggs. These results indicate that activation of protein kinases accounts for at least part of the increased phosphorylation in M-phase and that both protein-serine-threonine kinases and protein-tyrosine kinases may play a role in controlling M-phase nuclear behavior. Images PMID:3821728

  19. Rhizobiales-like Phosphatase 2 from Arabidopsis thaliana Is a Novel Phospho-tyrosine-specific Phospho-protein Phosphatase (PPP) Family Protein Phosphatase.

    PubMed

    Uhrig, R Glen; Labandera, Anne-Marie; Muhammad, Jamshed; Samuel, Marcus; Moorhead, Greg B

    2016-03-11

    Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants. PMID:26742850

  20. Residues within a lipid-associated segment of the PECAM-1 cytoplasmic domain are susceptible to inducible, sequential phosphorylation.

    PubMed

    Paddock, Cathy; Lytle, Betsy L; Peterson, Francis C; Holyst, Trudy; Newman, Peter J; Volkman, Brian F; Newman, Debra K

    2011-06-01

    Immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors inhibit cellular responsiveness to immunoreceptor tyrosine-based activation motif (ITAM)-linked receptors. Although tyrosine phosphorylation is central to the initiation of both inhibitory ITIM and stimulatory ITAM signaling, the events that regulate receptor phosphorylation are incompletely understood. Previous studies have shown that ITAM tyrosines engage in structure-inducing interactions with the plasma membrane that must be relieved for phosphorylation to occur. Whether ITIM phosphorylation is similarly regulated and the mechanisms responsible for release from plasma membrane interactions to enable phosphorylation, however, have not been defined. PECAM-1 is a dual ITIM-containing receptor that inhibits ITAM-dependent responses in hematopoietic cells. We found that the PECAM-1 cytoplasmic domain is unstructured in an aqueous environment but adopts an α-helical conformation within a localized region on interaction with lipid vesicles that mimic the plasma membrane. The lipid-interacting segment contains the C-terminal ITIM tyrosine and a serine residue that undergo activation-dependent phosphorylation. The N-terminal ITIM is excluded from the lipid-interacting segment, and its phosphorylation is secondary to phosphorylation of the membrane-interacting C-terminal ITIM. On the basis of these findings, we propose a novel model for regulation of inhibitory signaling by ITIM-containing receptors that relies on reversible plasma membrane interactions and sequential ITIM phosphorylation. PMID:21464369

  1. Protein phosphorylation during Plasmodium berghei gametogenesis.

    PubMed

    Alonso-Morales, Alberto; González-López, Lorena; Cázares-Raga, Febe Elena; Cortés-Martínez, Leticia; Torres-Monzón, Jorge Aurelio; Gallegos-Pérez, José Luis; Rodríguez, Mario Henry; James, Anthony A; Hernández-Hernández, Fidel de la Cruz

    2015-09-01

    Plasmodium gametogenesis within the mosquito midgut is a complex differentiation process involving signaling mediated by phosphorylation, which modulate metabolic routes and protein synthesis required to complete this development. However, the mechanisms leading to gametogenesis activation are poorly understood. We analyzed protein phosphorylation during Plasmodium berghei gametogenesis in vitro in serum-free medium using bidimensional electrophoresis (2-DE) combined with immunoblotting (IB) and antibodies specific to phosphorylated serine, threonine and tyrosine. Approximately 75 protein exhibited phosphorylation changes, of which 23 were identified by mass spectrometry. These included components of the cytoskeleton, heat shock proteins, and proteins involved in DNA synthesis and signaling pathways among others. Novel phosphorylation events support a role for these proteins during gametogenesis. The phosphorylation sites of six of the identified proteins, HSP70, WD40 repeat protein msi1, enolase, actin-1 and two isoforms of large subunit of ribonucleoside reductase were investigated using TiO2 phosphopeptides enrichment and tandem mass spectrometry. In addition, transient exposure to hydroxyurea, an inhibitor of ribonucleoside reductase, impaired male gametocytes exflagellation in a dose-dependent manner, and provides a resource for functional studies. PMID:26008612

  2. A Myxococcus xanthus Bacterial Tyrosine Kinase, BtkA, Is Required for the Formation of Mature Spores▿

    PubMed Central

    Kimura, Yoshio; Yamashita, Shinji; Mori, Yumi; Kitajima, Yuki; Takegawa, Kaoru

    2011-01-01

    A Myxococcus xanthus cytoplasmic bacterial tyrosine kinase, BtkA, showed phosphorylation activity in the presence of Exo. Phosphorylated BtkA was expressed late after starvation induction and early after glycerol induction. The btkA mutant was unable to complete maturation to heat- and sonication-resistant spores under both starvation- and glycerol-induced developmental conditions. PMID:21840977

  3. Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity.

    PubMed

    Beuvink, I; Hess, D; Flotow, H; Hofsteenge, J; Groner, B; Hynes, N E

    2000-04-01

    The activity of transcription factors of the Stat family is controlled by phosphorylation of a conserved, carboxyl-terminal tyrosine residue. Tyrosine phosphorylation is essential for Stat dimerization, nuclear translocation, DNA binding, and transcriptional activation. Phosphorylation of Stats on specific serine residues has also been described. We have previously shown that in HC11 mammary epithelial cells Stat5a is phosphorylated on Tyr(694) in a prolactin-sensitive manner, whereas serine phosphorylation is constitutive (Wartmann, M., Cella, N., Hofer, P., Groner, B., Xiuwen, L., Hennighausen, L., and Hynes, N. E. (1996) J. Biol. Chem. 271, 31863-31868). By using mass spectrometry and site-directed mutagenesis, we have now identified Ser(779), located in a unique Stat5a SP motif, as the site of serine phosphorylation. By using phospho-Ser(779)-specific antiserum, we have determined that Ser(779) is constitutively phosphorylated in mammary glands taken from different developmental stages. Stat5a isolated from spleen, heart, brain, and lung was also found to be phosphorylated on Ser(779). Ser(725) in Stat5a has also been identified as a phosphorylation site (Yamashita, H., Xu, J., Erwin, R. A., Farrar, W. L., Kirken, R. A., and Rui, H. (1998) J. Biol. Chem. 273, 30218-30224). Here we show that mutagenesis of Ser(725), Ser(779), or a combination of Ser(725/779) to an Ala had no effect on prolactin-induced transcriptional activation of a beta-casein reporter construct. However, following prolactin induction the Ser(725) mutant displayed sustained DNA binding activity compared with that of wild type Stat5a. The results suggest that Ser(725) phosphorylation has an impact on signal duration. PMID:10744710

  4. Human biliverdin reductase: a member of the insulin receptor substrate family with serine/threonine/tyrosine kinase activity.

    PubMed

    Lerner-Marmarosh, Nicole; Shen, Jenny; Torno, Michael D; Kravets, Anatoliy; Hu, Zhenbo; Maines, Mahin D

    2005-05-17

    We describe here the tyrosine kinase activity of human biliverdin reductase (BVR) and its potential role in the insulin-signaling pathway. BVR is both a substrate for insulin receptor (IR) tyrosine kinase (IRK) activity and a kinase for serine phosphorylation of IR substrate 1 (IRS-1). Our previous studies have revealed serine/threonine kinase activity of BVR. Y198, in the YMKM motif found in the C-terminal domain of BVR, is shown to be a substrate for insulin-activated IRK. This motif in IRS proteins provides a docking site for proteins that contain a Src homology 2 domain. Additionally, Y228 in the YLSF sequence and Y291 are IRK substrates; the former sequence provides optimum recognition motif in the tyrosine phosphatase, SHP-1, and for SHC (Src homology 2 domain containing transfroming protein 1). BVR autophosphorylates N-terminal tyrosines Y72 and Y83. Serine residues in IRS-1 are targets for BVR phosphorylation, and point mutation of serine residues in the kinase domain of the reductase inhibits phosphotransferase activity. Because tyrosine phosphorylation of IRS-1 activates the insulin signaling pathway and serine phosphorylation of IRS-1 blocks insulin action, our findings that insulin increases BVR tyrosine phosphorylation and that there is an increase in glucose uptake in response to insulin when expression of BVR is "knocked down" by small interfering RNA suggest a potential role for BVR in the insulin signaling pathway. PMID:15870194

  5. Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach

    PubMed Central

    Lang, Kathrin; Rieder, Renate; Micura, Ronald

    2007-01-01

    Riboswitches are genetic control elements within non-coding regions of mRNA. They consist of a metabolite-sensitive aptamer and an adjoining expression platform. Here, we describe ligand-induced folding of a thiamine pyrophosphate (TPP) responsive riboswitch from Escherichia coli thiM mRNA, using chemically labeled variants. Referring to a recent structure determination of the TPP/aptamer complex, each variant was synthesized with a single 2-aminopurine (AP) nucleobase replacement that was selected to monitor formation of tertiary interactions of a particular region during ligand binding in real time by fluorescence experiments. We have determined the rate constants for conformational adjustment of the individual AP sensors. From the 7-fold differentiation of these constants, it can be deduced that tertiary contacts between the two parallel helical domains (P2/J3-2/P3/L3 and P4/P5/L5) that grip the ligand's ends in two separate pockets, form significantly faster than the function-critical three-way junction with stem P1 fully developed. Based on these data, we characterize the process of ligand binding by an induced fit of the RNA and propose a folding model of the TPP riboswitch aptamer. For the full-length riboswitch domain and for shorter constructs that represent transcriptional intermediates, we have additionally evaluated ligand-induced folding via AP-modified variants and provide insights into the sequential folding pathway that involves a finely balanced equilibrium of secondary structures. PMID:17693433

  6. Effect of inhibition of tyrosine phosphatases on voltage-operated calcium channel currents in rabbit isolated ear artery cells

    PubMed Central

    Wijetunge, S; Lymn, J S; Hughes, A D

    1998-01-01

    The effect of increasing cellular tyrosine phosphorylation by inhibiting endogenous tyrosine phosphatases was examined on voltage-operated calcium channel currents in vascular smooth muscle cells.In single ear artery smooth muscle cells of the rabbit, studied by the whole cell voltage clamp technique, intracellular application of the tyrosine phosphatase inhibitors, sodium orthovanadate (100 μM) and peroxyvanadate (100 μM orthovanadate+1 mM H2O2) increased voltage-operated calcium channel currents by 56% and 83%, respectively.Bath application of two other membrane permeant tyrosine phosphatase inhibitors, phenylarsine oxide (100 μM) and dephostatin (50 μM) also increased voltage-operated calcium channel currents by 48% and 52%, respectively.The selective tyrosine kinase inhibitor, tyrphostin-23 (100 μM) reduced calcium channel currents by 41%. Pre-incubation with tyrphostin-23 abolished the effects of peroxyvanadate, phenylarsine oxide and dephostatin on calcium channels.Western blot analysis of rabbit ear artery cell lysates showed increased tyrosine phosphorylation of several endogenous proteins following treatment with peroxyvanadate.These results indicate that a number of structurally dissimilar inhibitors of tyrosine phosphatases increase voltage-operated calcium channel currents in arterial smooth muscle cells presumably due to increased tyrosine phosphorylation. PMID:9641547

  7. Intracellular Ca2+ stores modulate SOCCs and NMDA receptors via tyrosine kinases in rat hippocampal neurons.

    PubMed

    Koss, David J; Riedel, Gernot; Platt, Bettina

    2009-07-01

    The regulation of intracellular Ca(2+) signalling by phosphorylation processes remains poorly defined, particularly with regards to tyrosine phosphorylation. Evidence from non-excitable cells implicates tyrosine phosphorylation in the activation of so-called store-operated Ca(2+) channels (SOCCs), but their involvement in neuronal Ca(2+) signalling is still elusive. In the present study, we determined the role of protein tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs) in the coupling between intracellular Ca(2+) stores and SOCCs in neonatal rat hippocampal neurons by Fura-2 Ca(2+) imaging. An early Ca(2+) response from intracellular stores was triggered with thapsigargin, and followed by a secondary plasma membrane Ca(2+) response. This phase was blocked by the non-specific Ca(2+) channel blocker NiCl and the SOCC blocker, 2-aminoethoxydiphenyl borate (2-APB). Interestingly, two structurally distinct PTK inhibitors, genistein and AG126, also inhibited this secondary response. Application of the PTP inhibitor sodium orthovanadate (OV) also activated a sustained and tyrosine kinase dependent Ca(2+) response, blocked by NiCl and 2-APB. In addition, OV resulted in a Ca(2+) store dependent enhancement of NMDA responses, corresponding to, and occluding the signalling pathway for group I metabotropic glutamate receptors (mGluRs). This study provides first evidence for tyrosine based phospho-regulation of SOCCs and NMDA signalling in neurons. PMID:19423160

  8. Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide).

    PubMed Central

    Pumiglia, K M; Lau, L F; Huang, C K; Burroughs, S; Feinstein, M B

    1992-01-01

    The protein tyrosine phosphatase (PTPase) inhibitor pervanadate (vanadyl hydroperoxide) stimulated protein tyrosine phosphorylation 29-fold more than did thrombin in intact and saponin-permeabilized platelets. Increased tyrosine phosphorylation preceded, or was coincident with, a fall in PtdIns(4,5)P2 levels, production of PtdIns(3,4)P2 and phosphatidic acid, mobilization of intracellular Ca2+, stimulation of protein kinase C-dependent protein phosphorylation, secretion of dense and alpha-granules, increased actin polymerization, shape change and aggregation which required fibrinogen and was mediated by increased surface expression of GPIIb-IIIa. The tyrosine kinase inhibitor RG 50864 totally prevented induction of tyrosine phosphorylation by pervanadate, as well as all other responses measured; in contrast, the inactive structural analogue, tyrphostin #1, had no effect. Dense-granule secretion induced by pervanadate required protein kinase C activity; however, aggregation and alpha-granule secretion were independent of protein kinase C. In saponin-permeabilized platelets pervanadate and thrombin stimulated phospholipase C activity by GTP-independent and GTP-dependent mechanisms respectively. We conclude that PTPases are important regulators of signal transduction in platelets. Images Fig. 1. Fig. 2. PMID:1530576

  9. H-Ras Modulates N-Methyl-d-aspartate Receptor Function via Inhibition of Src Tyrosine Kinase Activity*

    PubMed Central

    Thornton, Claire; Yaka, Rami; Dinh, Son; Ron, Dorit

    2005-01-01

    Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hip-pocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction. PMID:12695509

  10. Tandem phosphorylation within an intrinsically disordered region regulates ACTN4 function

    PubMed Central

    Travers, Timothy; Shao, Hanshuang; Joughin, Brian A.; Lauffenburger, Douglas A.; Wells, Alan; Camacho, Carlos J.

    2015-01-01

    Phosphorylated residues occur preferentially in the intrinsically disordered regions of eukaryotic proteins. In the disordered N-terminal region of human α-actinin-4 (ACTN4), Tyr4 and Tyr31 are phosphorylated in cells stimulated with epidermal growth factor (EGF), and a mutant with phosphorylation-mimicking mutations of both tyrosines exhibits reduced interaction with actin in vitro. Cleavage of ACTN4 by m-calpain, a protease that in motile cells is predominantly activated at the rear, removes the Tyr4 site. Here, we found that introducing a phosphomimetic mutation at only Tyr31 was sufficient to inhibit the interaction with actin in vitro. However, molecular dynamics simulations predicted that Tyr31 is mostly buried and that phosphorylation of Tyr4 would increase the solvent exposure and thus kinase accessibility of Tyr31. In fibroblast cells, EGF stimulation increased tyrosine phosphorylation of a mutant form of ACTN4 with a phosphorylation-mimicking residue at Tyr4, whereas a truncation mutant representing the product of m-calpain cleavage exhibited EGF-stimulated tyrosine phosphorylation at the background amount similar to that observed for a double phosphomimetic mutant of Tyr4 and Tyr31. We also found that inhibition of the receptor tyrosine kinases of the TAM family, such as AXL, blocked EGF-stimulated tyrosine phosphorylation of ACTN4. Mathematical modeling predicted that the kinetics of phosphorylation at Tyr31 can be dictated by the kinase affinity for Tyr4. This study suggests that tandem-site phosphorylation within intrinsically disordered regions provides a mechanism for a site to function as a switch to reveal a nearby function-regulating site. PMID:26012634

  11. Cross talk of tyrosine kinases with the DNA damage signaling pathways

    PubMed Central

    Mahajan, Kiran; Mahajan, Nupam P.

    2015-01-01

    Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies. PMID:26546517

  12. Cross talk of tyrosine kinases with the DNA damage signaling pathways.

    PubMed

    Mahajan, Kiran; Mahajan, Nupam P

    2015-12-15

    Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies. PMID:26546517

  13. Phosphotyrosine enrichment identifies focal adhesion kinase and other tyrosine kinases for targeting in canine hemangiosarcoma.

    PubMed

    Marley, K; Maier, C S; Helfand, S C

    2012-09-01

    Canine hemangiosarcoma (HSA) is an endothelial cell malignancy driven, in part, by activating mutations in receptor and non-receptor tyrosine kinases. Proteomics, Western blots and a tyrosine kinase inhibitor were used to elucidate activating mechanisms in HSA cell lines. Phosphotyrosine peptides from focal adhesion kinase (FAK) STAT3, Lyn, Fyn and other signal transduction kinases were identified by mass spectrometry. FAK was constitutively activated at tyrosine 397, the autophosphorylation site, and this was reversible with high concentrations of a FAK inhibitor. FAK inhibitor-14 suppressed migration and phosphorylation of FAK tyrosine 397 and tyrosines 576/577 and was cytotoxic to HSA cells suggesting FAK signalling may be an important contributor to canine HSA survival. PMID:22487216

  14. Systolic dysfunction in cardiac-specific ligand-inducible MerCreMer transgenic mice

    PubMed Central

    Hall, Michael E.; Smith, Grant; Hall, John E.

    2011-01-01

    The Cre-loxP system is a useful tool to study the physiological effects of gene knockout in the heart. One limitation with using this system in the heart is the toxic effect of chronic expression of the Cre recombinase. To circumvent this limitation, a widely used inducible cardiac-specific model, Myh6-MerCreMer (Cre), using tamoxifen (TAM) to activate Cre has been developed. The current study examined cardiac function in Cre-positive C57B/J6 mice exposed to one, three, or five daily doses of a 40 mg/kg TAM to induce Cre activity specifically in the heart. Echocardiography demonstrated no statistically significant differences in systolic function (SF) at baseline as assessed by fractional shortening. In mice exposed to five injections, a significant fall in all determinants of SF was observed 6 days after TAM was initiated. However, SF returned to baseline levels 10 days after TAM initiation although the hearts exhibited significant hypertrophy. Heart weight-to-tibia length ratios were 73 ± 3, 78.5 ± 6, and 87.6 ± 9 mg/cm for one, three, and five TAM injections, respectively. TAM had no effect on cardiac function or hypertrophy in Cre-negative mice. Cre-positive mice receiving five TAM injections had significant reductions in cardiac mitochondrial ATP and significant reductions in the expression of proteins important for the regulation of cardiac oxidative phosphorylation including peroxisome proliferator-activated receptor-γ coactivator-1α and pyruvate dehydrogenase kinase-4. Thus inducible cardiac-specific activation of Cre recombinase caused a transient decline in SF that was dependent on the number of TAM doses and associated with significant hypertrophy and alterations in mitochondrial ATP and important proteins involved in the regulation of cardiac oxidative phosphorylation. PMID:21536850

  15. A novel nonreceptor tyrosine kinase, Srm: cloning and targeted disruption.

    PubMed Central

    Kohmura, N; Yagi, T; Tomooka, Y; Oyanagi, M; Kominami, R; Takeda, N; Chiba, J; Ikawa, Y; Aizawa, S

    1994-01-01

    We have isolated a novel nonreceptor tyrosine kinase, Srm, that maps to the distal end of chromosome 2. It has SH2, SH2', and SH3 domains and a tyrosine residue for autophosphorylation in the kinase domain but lacks an N-terminal glycine for myristylation and a C-terminal tyrosine which, when phosphorylated, suppresses kinase activity. These are structural features of the recently identified Tec family of nonreceptor tyrosine kinases. The Srm N-terminal unique domain, however, lacks the structural characteristics of the Tec family kinases, and the sequence similarity is highest to Src in the SH region. The expression of two transcripts is rather ubiquitous and changes according to tissue and developmental stage. Mutant mice were generated by gene targeting in embryonic stem cells but displayed no apparent phenotype as in mutant mice expressing Src family kinases. These results suggest that Srm constitutes a new family of nonreceptor tyrosine kinases that may be redundant in function. Images PMID:7935409

  16. Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells.

    PubMed Central

    Romer, L H; McLean, N; Turner, C E; Burridge, K

    1994-01-01

    Tyrosine phosphorylation of cytoskeletal proteins occurs during integrin-mediated cell adhesion to extracellular matrix proteins. We have investigated the role of tyrosine phosphorylation in the migration and initial spreading of human umbilical vein endothelial cells (HUVEC). Elevated phosphotyrosine concentrations were noted in the focal adhesions of HUVEC migrating into wounds. Anti-phosphotyrosine Western blots of extracts of wounded HUVEC monolayers demonstrated increased phosphorylation at 120-130 kDa when compared with extracts of intact monolayers. The pp125FAK immunoprecipitated from wounded monolayers exhibited increased kinase activity as compared to pp125FAK from intact monolayers. The time to wound closure in HUVEC monolayers was doubled by tyrphostin AG 213 treatment. The same concentration of AG 213 interfered with HUVEC focal adhesion and stress fiber formation. AG 213 inhibited adhesion-associated tyrosine phosphorylation of pp125FAK in HUVEC. Tyrphostins AG 213 and AG 808 inhibited pp125FAK activity in in vitro kinase assays. pp125FAK immunoprecipitates from HUVEC treated with both of these inhibitors also had kinase activity in vitro that was below levels seen in untreated HUVEC. These findings suggest that tyrosine phosphorylation of cytoskeletal proteins may be important in HUVEC spreading and migration and that pp125FAK may mediate phosphotyrosine formation during these processes. Images PMID:8049526

  17. Quantitative Phosphoproteomics Analysis Reveals a Key Role of Insulin Growth Factor 1 Receptor (IGF1R) Tyrosine Kinase in Human Sperm Capacitation*

    PubMed Central

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-01-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men. PMID:25693802

  18. Bruton tyrosine kinase (Btk) suppresses osteoblastic differentiation.

    PubMed

    Kaneshiro, Shoichi; Ebina, Kosuke; Shi, Kenrin; Yoshida, Kiyoshi; Otsuki, Dai; Yoshikawa, Hideki; Higuchi, Chikahisa

    2015-09-01

    The Tec family of nonreceptor tyrosine kinases has been shown to play a key role in inflammation and bone destruction. Bruton tyrosine kinase (Btk) has been the most widely studied because of its critical role in B cells. Furthermore, recent evidence has demonstrated that blocking Btk signaling is effective in ameliorating lymphoma progression and experimental arthritis. The role of Btk in osteoblastic differentiation has not been well elucidated. In this study, we demonstrated the role of Btk in osteoblastic differentiation and investigated the effects of a Btk inhibitor on osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells, primary calvarial osteoblasts, and bone marrow stromal ST2 cells. Btk expression was detected in all three cell lines. Btk inhibition stimulated mRNA expression of osteoblastic markers (alkaline phosphatase, osteocalcin, and osterix) and promoted mineralization of the extracellular matrix. In addition, Btk knockdown caused increased mRNA expression of osteoblastic markers. Furthermore, Btk inhibition suppressed the phosphorylation of mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NFκB), and protein kinase Cα (PKCα). Our results indicate that Btk may regulate osteoblastic differentiation through the MAPK, NFκB, and PKCα signaling pathways. PMID:25230818

  19. Characterization of Phospho-(Tyrosine)-Mimetic Calmodulin Mutants

    PubMed Central

    Stateva, Silviya R.; Salas, Valentina; Benaim, Gustavo; Menéndez, Margarita; Solís, Dolores; Villalobo, Antonio

    2015-01-01

    Calmodulin (CaM) phosphorylated at different serine/threonine and tyrosine residues is known to exert differential regulatory effects on a variety of CaM-binding enzymes as compared to non-phosphorylated CaM. In this report we describe the preparation and characterization of a series of phospho-(Y)-mimetic CaM mutants in which either one or the two tyrosine residues present in CaM (Y99 and Y138) were substituted to aspartic acid or glutamic acid. It was expected that the negative charge of the respective carboxyl group of these amino acids mimics the negative charge of phosphate and reproduce the effects that distinct phospho-(Y)-CaM species may have on target proteins. We describe some physicochemical properties of these CaM mutants as compared to wild type CaM, after their expression in Escherichia coli and purification to homogeneity, including: i) changes in their electrophoretic mobility in the absence and presence of Ca2+; ii) ultraviolet (UV) light absorption spectra, far- and near-UV circular dichroism data; iii) thermal stability in the absence and presence of Ca2+; and iv) Tb3+-emitted fluorescence upon tyrosine excitation. We also describe some biochemical properties of these CaM mutants, such as their differential phosphorylation by the tyrosine kinase c-Src, and their action as compared to wild type CaM, on the activity of two CaM-dependent enzymes: cyclic nucleotide phosphodiesterase 1 (PDE1) and endothelial nitric oxide synthase (eNOS) assayed in vitro. PMID:25830911

  20. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  1. FSCB phosphorylation regulates mouse spermatozoa capacitation through suppressing SUMOylation of ROPN1/ROPN1L

    PubMed Central

    Zhang, Xinqi; Chen, Mingrui; Yu, Renyi; Liu, Benli; Tian, Zhiqiang; Liu, Shunli

    2016-01-01

    Fibrous sheath CABYR binding protein (FSCB) is regulated by protein kinase A (PKA)-mediated tyrosine phosphorylation in the spermatozoa capacitation. Recently, we showed that FSCB phosphorylation activated spermatozoa motility. Nevertheless, the underlying mechanisms have not been completely elucidated. Here, we showed that FSCB phosphorylation inhibited SUMOylation of two crucial proteins ROPN1/ROPN1L that are associated with PKA/A kinase activity and spermatozoa motility. Suppression of SUMOylation of ROPN1/ROPN1L mimicked the effects of FSCB phosphorylation on spermatozoa motility. Immunoprecipitation assay showed that phosphorylated FSCB had a significantly higher affinity to ROPN1/ROPN1L than non-phosphorylated FSCB. Together, our data suggest that FSCB phosphorylation may regulate mouse spermatozoa capacitation through suppressing SUMOylation of ROPN1/ROPN1L, which sheds new light on creating a therapeutic strategy targeting FSCB phosphorylation in the study of infertility.

  2. Prioritizing functional phosphorylation sites based on multiple feature integration

    PubMed Central

    Xiao, Qingyu; Miao, Benpeng; Bi, Jie; Wang, Zhen; Li, Yixue

    2016-01-01

    Protein phosphorylation is an important type of post-translational modification that is involved in a variety of biological activities. Most phosphorylation events occur on serine, threonine and tyrosine residues in eukaryotes. In recent years, many phosphorylation sites have been identified as a result of advances in mass-spectrometric techniques. However, a large percentage of phosphorylation sites may be non-functional. Systematically prioritizing functional sites from a large number of phosphorylation sites will be increasingly important for the study of their biological roles. This study focused on exploring the intrinsic features of functional phosphorylation sites to predict whether a phosphosite is likely to be functional. We found significant differences in the distribution of evolutionary conservation, kinase association, disorder score, and secondary structure between known functional and background phosphorylation datasets. We built four different types of classifiers based on the most representative features and found that their performances were similar. We also prioritized 213,837 human phosphorylation sites from a variety of phosphorylation databases, which will be helpful for subsequent functional studies. All predicted results are available for query and download on our website (Predict Functional Phosphosites, PFP, http://pfp.biosino.org/). PMID:27090940

  3. Constitutive and ligand-induced EGFR signaling triggers distinct and mutually exclusive downstream signaling networks

    PubMed Central

    Chakraborty, Sharmistha; Li, Li; Puliyappadamba, VineshkumarThidil; Guo, Gao; Hatanpaa, Kimmo J.; Mickey, Bruce; Souza, Rhonda F.; Vo, Peggy; Herz, Joachim; Chen, Mei-Ru; Boothman, David A.; Pandita, Tej K.; Wang, David H.; Sen, Ganes C.; Habib, Amyn A.

    2014-01-01

    EGFR overexpression plays an important oncogenic role in cancer. Regular EGFR protein levels are increased in cancer cells and the receptor then becomes constitutively active. However, downstream signals generated by constitutively activated EGFR are unknown. Here we report that the overexpressed EGFR oscillates between two distinct and mutually exclusive modes of signaling. Constitutive or non-canonical EGFR signaling activates the transcription factor IRF3 leading to expression of IFI27, IFIT1, and TRAIL. Ligand-mediated activation of EGFR switches off IRF3 dependent transcription, activates canonical ERK and Akt signals, and confers sensitivity to chemotherapy and virus-induced cell death. Mechanistically, the distinct downstream signals result from a switch of EGFR associated proteins. EGFR constitutively complexes with IRF3 and TBK1 leading to TBK1 and IRF3 phosphorylation. Addition of EGF dissociates TBK1, IRF3, and EGFR leading to a loss of IRF3 activity, Shc-EGFR association and ERK activation. Finally, we provide evidence for non-canonical EGFR signaling in glioblastoma. PMID:25503978

  4. Global Analysis of Human Nonreceptor Tyrosine Kinase Specificity Using High-Density Peptide Microarrays

    PubMed Central

    2015-01-01

    Protein kinases phosphorylate substrates in the context of specific phosphorylation site sequence motifs. The knowledge of the specific sequences that are recognized by kinases is useful for mapping sites of phosphorylation in protein substrates and facilitates the generation of model substrates to monitor kinase activity. Here, we have adapted a positional scanning peptide library method to a microarray format that is suitable for the rapid determination of phosphorylation site motifs for tyrosine kinases. Peptide mixtures were immobilized on glass slides through a layer of a tyrosine-free Y33F mutant avidin to facilitate the analysis of phosphorylation by radiolabel assay. A microarray analysis provided qualitatively similar results in comparison with the solution phase peptide library “macroarray” method. However, much smaller quantities of kinases were required to phosphorylate peptides on the microarrays, which thus enabled a proteome scale analysis of kinase specificity. We illustrated this capability by microarray profiling more than 80% of the human nonreceptor tyrosine kinases (NRTKs). Microarray results were used to generate a universal NRTK substrate set of 11 consensus peptides for in vitro kinase assays. Several substrates were highly specific for their cognate kinases, which should facilitate their incorporation into kinase-selective biosensors. PMID:25164267

  5. Bak apoptotic function is not directly regulated by phosphorylation.

    PubMed

    Tran, V H; Bartolo, R; Westphal, D; Alsop, A; Dewson, G; Kluck, R M

    2013-01-01

    During apoptosis, Bak and Bax permeabilize the mitochondrial outer membrane by undergoing major conformational change and oligomerization. This activation process in Bak is reported to require dephosphorylation of tyrosine-108 close to an activation trigger site. To investigate how dephosphorylation of Bak contributes to its activation and conformational change, one-dimensional isoelectric focusing (1D-IEF) and mutagenesis was used to monitor Bak phosphorylation. On 1D-IEF, Bak extracted from a range of cell types migrated as a single band near the predicted isoelectric point of 5.6 both before and after phosphatase treatment, indicating that Bak is not significantly phosphorylated at any residue. In contrast, three engineered 'phosphotagged' Bak variants showed a second band at lower pI, indicating phosphorylation. Apoptosis induced by several stimuli failed to alter Bak pI, indicating little change in phosphorylation status. In addition, alanine substitution of tyrosine-108 and other putative phosphorylation sites failed to enhance Bak activation or pro-apoptotic function. In summary, Bak is not significantly phosphorylated at any residue, and Bak activation during apoptosis does not require dephosphorylation. PMID:23303126

  6. Delineation of a T-cell activation motif required for binding of protein tyrosine kinases containing tandem SH2 domains.

    PubMed Central

    Koyasu, S; Tse, A G; Moingeon, P; Hussey, R E; Mildonian, A; Hannisian, J; Clayton, L K; Reinherz, E L

    1994-01-01

    To define the T-cell receptor signal transduction motif, we have transfected human and murine T-cell lines with a chimeric receptor consisting of the extracellular and transmembrane domains of human CD8 alpha and the membrane-proximal portion of CD3 zeta containing at its C terminus either an 18-amino acid segment (NQLYNELNLGRREEYDVL) or alanine-scanning point mutant derivatives. Crosslinking of the extracellular domain of the chimera is sufficient to initiate Ca2+ flux, interleukin 2 production, and tyrosine phosphorylation of cellular proteins including the chimera. Subsequently, the chimera becomes associated with several tyrosine-phosphorylated proteins, among them the 70-kDa protein tyrosine kinase ZAP70. Mutational data identify the T-cell activation motif as Y(X)2L(X)7Y(X)2L and show that each of the four designated residues is necessary for the above activation events. Recombinant protein containing the two tandem SH2 domains derived from ZAP70 binds to a synthetic peptide corresponding to the above 18-amino acid motif but only when both tyrosines are phosphorylated; in contrast, little or no binding is observed to monophosphorylated or nonphosphorylated analogues. These results imply that after receptor crosslinking in T cells, and by inference also in B cells and mast cells, the motif is phosphorylated on both tyrosine residues, thereafter serving as a docking site for protein tyrosine kinases containing tandem SH2 domains. Images PMID:7517560

  7. Regulation of Connexin43 Function and Expression by Tyrosine Kinase 2.

    PubMed

    Li, Hanjun; Spagnol, Gaelle; Zheng, Li; Stauch, Kelly L; Sorgen, Paul L

    2016-07-22

    Connexin43 (Cx43) assembly and degradation, the regulation of electrical and metabolic coupling, as well as modulating the interaction with other proteins, involve phosphorylation. Here, we identified and characterized the biological significance of a novel tyrosine kinase that phosphorylates Cx43, tyrosine kinase 2 (Tyk2). Activation of Tyk2 led to a decrease in Cx43 gap junction communication by increasing the turnover rate of Cx43 from the plasma membrane. Tyk2 directly phosphorylated Cx43 residues Tyr-247 and Tyr-265, leading to indirect phosphorylation on residues Ser-279/Ser-282 (MAPK) and Ser-368 (PKC). Although this phosphorylation pattern is similar to what has been observed following Src activation, the response caused by Tyk2 occurred when Src was inactive in NRK cells. Knockdown of Tyk2 at the permissive temperature (active v-Src) in LA-25 cells decreased Cx43 phosphorylation, indicating that although activation of Tyk2 and v-Src leads to phosphorylation of the same Cx43CT residues, they are not identical in level at each site. Additionally, angiotensin II activation of Tyk2 increased the intracellular protein level of Cx43 via STAT3. These findings indicate that, like Src, Tyk2 can also inhibit gap junction communication by phosphorylating Cx43. PMID:27235399

  8. Recombinant TCR ligand induces early TCR signaling and a unique pattern of downstream activation.

    PubMed

    Wang, Chunhe; Mooney, Jeffery L; Meza-Romero, Roberto; Chou, Yuan K; Huan, Jianya; Vandenbark, Arthur A; Offner, Halina; Burrows, Gregory G

    2003-08-15

    Recombinant TCR ligands (RTLs) consisting of covalently linked alpha(1) and beta(1) domains of MHC class II molecules tethered to specific antigenic peptides represent minimal TCR ligands. In a previous study we reported that the rat RTL201 construct, containing RT1.B MHC class II domains covalently coupled to the encephalitogenic guinea pig myelin basic protein (Gp-MBP(72-89)) peptide, could prevent and treat actively and passively induced experimental autoimmune encephalomyelitis in vivo by selectively inhibiting Gp-MBP(72-89) peptide-specific CD4(+) T cells. To evaluate the inhibitory signaling pathway, we tested the effects of immobilized RTL201 on T cell activation of the Gp-MBP(72-89)-specific A1 T cell hybridoma. Activation was exquisitely Ag-specific and could not be induced by RTL200 containing the rat MBP(72-89) peptide that differed by a threonine for serine substitution at position 80. Partial activation by RTL201 included a CD3zeta p23/p21 ratio shift, ZAP-70 phosphorylation, calcium mobilization, NFAT activation, and transient IL-2 production. In comparison, anti-CD3epsilon treatment produced stronger activation of these cellular events with additional activation of NF-kappaB and extracellular signal-regulated kinases as well as long term increased IL-2 production. These results demonstrate that RTLs can bind directly to the TCR and modify T cell behavior through a partial activation mechanism, triggering specific downstream signaling events that deplete intracellular calcium stores without fully activating T cells. The resulting Ag-specific activation of the transcription factor NFAT uncoupled from the activation of NF-kappaB or extracellular signal-regulated kinases constitutes a unique downstream activation pattern that accounts for the inhibitory effects of RTL on encephalitogenic CD4(+) T cells. PMID:12902496

  9. Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells.

    PubMed

    Chen, Changyi; Chai, Hong; Wang, Xinwen; Jiang, Jun; Jamaluddin, Md Saha; Liao, Dan; Zhang, Yuqing; Wang, Hao; Bharadwaj, Uddalak; Zhang, Sheng; Li, Min; Lin, Peter; Yao, Qizhi

    2008-10-15

    The purpose of this study was to determine the effects and mechanisms of sCD40L on endothelial dysfunction in both human coronary artery endothelial cells (HCAECs) and porcine coronary artery rings. HCAECs treated with sCD40L showed significant reductions of endothelial nitric oxide synthase (eNOS) mRNA and protein levels, eNOS mRNA stability, eNOS enzyme activity, and cellular NO levels, whereas superoxide anion (O(2)(-)) production was significantly increased. sCD40L enhanced eNOS mRNA 3'UTR binding to cytoplasmic molecules and induced a unique expression pattern of 95 microRNAs. sCD40L significantly decreased mitochondrial membrane potential, and catalase and SOD activities, whereas it increased NADPH oxidase (NOX) activity. sCD40L increased phosphorylation of MAPKs p38 and ERK1/2 as well as IkappaBalpha and enhanced NF-kappaB nuclear translocation. In porcine coronary arteries, sCD40L significantly decreased endothelium-dependent vasorelaxation and eNOS mRNA levels, whereas it increased O(2)(-) levels. Antioxidant seleno-l-methionine; chemical inhibitors of p38, ERK1/2, and mitochondrial complex II; as well as dominant negative mutant forms of IkappaBalpha and NOX4 effectively blocked sCD40L-induced eNOS down-regulation in HCAECs. Thus, sCD40L reduces eNOS levels, whereas it increases oxidative stress through the unique molecular mechanisms involving eNOS mRNA stability, 3'UTR-binding molecules, microRNAs, mitochondrial function, ROS-related enzymes, p38, ERK1/2, and NF-kappaB signal pathways in endothelial cells. PMID:18658029

  10. Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers

    PubMed Central

    Maruyama, Ichiro N.

    2014-01-01

    Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights. PMID:24758840

  11. Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression.

    PubMed

    Cursi, Silvia; Rufini, Alessandra; Stagni, Venturina; Condò, Ivano; Matafora, Vittoria; Bachi, Angela; Bonifazi, Antonio Paniccià; Coppola, Luigi; Superti-Furga, Giulio; Testi, Roberto; Barilà, Daniela

    2006-05-01

    We identified Caspase-8 as a new substrate for Src kinase. Phosphorylation occurs on Tyr380, situated in the linker region between the large and the small subunits of human Procaspase-8, and results in downregulation of Caspase-8 proapoptotic function. Src activation triggers Caspase-8 phosphorylation on Tyr380 and impairs Fas-induced apoptosis. Accordingly, Src failed to protect Caspase-8-defective human cells in which a Caspase-8-Y380F mutant is expressed from Fas-induced cell death. Remarkably, Src activation upon EGF-receptor stimulation triggers endogenous Caspase-8 phosphorylation and prevents Fas-induced apoptosis. Tyr380 is phosphorylated also in human colon cancers where Src is aberrantly activated. These data provide the first evidence for a direct role of tyrosine phosphorylation in the control of caspases and reveal a new mechanism through which tyrosine kinases inhibit apoptosis and participate in tumor progression. PMID:16619028

  12. ROS-dependent phosphorylation of Bax by wortmannin sensitizes melanoma cells for TRAIL-induced apoptosis

    PubMed Central

    Quast, S-A; Berger, A; Eberle, J

    2013-01-01

    The pathways of reactive oxygen species (ROS)-mediated apoptosis induction, of Bax activation and the sensitization of tumor cells for TRAIL (TNF-related apoptosis-inducing ligand)-induced apoptosis are still largely elusive. Here, sensitization of melanoma cells for TRAIL by the PI3-kinase inhibitor wortmannin correlated to the activation of mitochondrial apoptosis pathways. Apoptosis was dependent on Bax and abrogated by Bcl-2 overexpression. The synergistic enhancement was explained by Bax activation through wortmannin, which tightly correlated to the characteristic Bax phosphorylation patterns. Thus, wortmannin resulted in early reduction of the Bax-inactivating phosphorylation at serine-184, whereas the Bax-activating phosphorylation at threonine-167 was enhanced. Proving the responsibility of the pathway, comparable effects were obtained with an Akt inhibitor (MK-2206); while suppressed phosphorylation of serine-184 may be attributed to reduced Akt activity itself, the causes of enhanced threonine-167 phosphorylation were addressed here. Characteristically, production of ROS was seen early in response to wortmannin and MK-2206. Providing the link between ROS and Bax, we show that abrogated ROS production by α-tocopherol or by NADPH oxidase 4 (NOX4) siRNA suppressed apoptosis and Bax activation. This correlated with reduced Bax phosphorylation at threonine-167. The data unraveled a mechanism by which NOX4-dependent ROS production controls apoptosis via Bax phosphorylation. The pathway may be considered for proapoptotic, anticancer strategies. PMID:24113173

  13. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase.

    PubMed

    Linford, Alicia S; Jiang, Nona M; Edwards, Thomas E; Sherman, Nicholas E; Van Voorhis, Wesley C; Stewart, Lance J; Myler, Peter J; Staker, Bart L; Petri, William A

    2014-01-01

    Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis. PMID:24548880

  14. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase

    PubMed Central

    Linford, Alicia S.; Jiang, Nona M.; Edwards, Thomas E.; Sherman, Nicholas E.; Van Voorhis, Wesley C.; Stewart, Lance J.; Myler, Peter J.; Staker, Bart L.; Petri, William A.

    2014-01-01

    Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis. PMID:24548880

  15. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    PubMed

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  16. Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation.

    PubMed

    Xu, Fei; Plummer, Mark R; Len, Guo-Wei; Nakazawa, Takanobu; Yamamoto, Tadashi; Black, Ira B; Wu, Kuo

    2006-11-22

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of hippocampal synaptic plasticity. Previously, we found that one of the targets of BDNF modulation is NR2B-containing NMDA receptors. Furthermore, exposure to the trophin rapidly increases NMDA receptor activity and enhances tyrosine phosphorylation of NR2B in cortical and hippocampal postsynaptic densities (PSDs), potentially linking receptor phosphorylation to synaptic plasticity. To define the specific NR2B residue(s) regulated by BDNF, we focused on tyrosine 1472, phosphorylation of which increases after LTP. BDNF rapidly increased phosphorylation in cortical PSDs. The tyrosine kinase Fyn is critical since BDNF-dependent phosphorylation was abolished in Fyn knockout mice. Single-channel patch clamp recordings showed that Fyn is required for the increase in NMDA receptor activity elicited by BDNF. Collectively, our results suggest that BDNF enhances phosphorylation of NR2B tyrosine 1472 through activation of Fyn, leading to alteration of NMDA receptor activity and increased synaptic transmission. PMID:17045972

  17. An Estrogen Receptor-α Knock-In Mutation Provides Evidence of Ligand-Independent Signaling and Allows Modulation of Ligand-Induced Pathways in Vivo

    PubMed Central

    Sinkevicius, Kerstin W.; Burdette, Joanna E.; Woloszyn, Karolina; Hewitt, Sylvia C.; Hamilton, Katherine; Sugg, Sonia L.; Temple, Karla A.; Wondisford, Fredric E.; Korach, Kenneth S.; Woodruff, Teresa K.; Greene, Geoffrey L.

    2008-01-01

    Estrogen-nonresponsive estrogen receptor-α (ERα) knock-in (ENERKI) mice were generated to distinguish between ligand-induced and ligand-independent ER-α actions in vivo. These mice have a mutation [glycine 525 to leucine (G525L)] in the ligand-binding domain of ERα, which significantly reduces ERα interaction with and response to endogenous estrogens, whereas not affecting growth factor activation of ligand-independent pathways. ENERKI mice had hypoplastic uterine tissues and rudimentary mammary gland ductal trees. Females were infertile due to anovulation, and their ovaries contained hemorrhagic cystic follicles because of chronically elevated levels of LH. The ENERKI phenotype confirmed that ligand-induced activation of ERα is crucial in the female reproductive tract and mammary gland development. Growth factor treatments induced uterine epithelial proliferation in ovariectomized ENERKI females, directly demonstrating that ERα ligand-independent pathways were active. In addition, the synthetic ERα selective agonist propyl pyrazole triol (PPT) and ER agonist diethylstilbestrol (DES) were still able to activate ligand-induced G525L ERα pathways in vitro. PPT treatments initiated at puberty stimulated ENERKI uterine development, whereas neonatal treatments were needed to restore mammary gland ductal elongation, indicating that neonatal ligand-induced ERα activation may prime mammary ducts to become more responsive to estrogens in adult tissues. This is a useful model for in vivo evaluation of ligand-induced ERα pathways and temporal patterns of response. DES did not stimulate an ENERKI uterotrophic response. Because ERβ may modulate ERα activation and have an antiproliferative function in the uterus, we hypothesize that ENERKI animals were particularly sensitive to DES-induced inhibition of ERα due to up-regulated uterine ERβ levels. PMID:18339713

  18. Identification of extracellularly phosphorylated membrane proteins.

    PubMed

    Burghoff, Sandra; Willberg, Wibke; Schrader, Jürgen

    2015-10-01

    Ecto-protein kinases phosphorylate extracellular membrane proteins and exhibit similarities to casein kinases and protein kinases A and C. However, the identification of their protein substrates still remains a challenge because a clear separation from intracellular phosphoproteins is difficult. Here, we describe a straightforward method for the identification of extracellularly phosphorylated membrane proteins in human umbilical vein endothelial cells (HUVECs) and K562 cells which used the protease bromelain to selectively remove ectoproteins from intact cells and combined this with the subsequent analysis using IMAC and LC-MS/MS. A "false-positive" strategy in which cells without protease treatment served as controls was applied. Using this approach we identified novel phosphorylation sites on five ectophosphoproteins (NOTCH1, otopetrin 1, regulator of G-protein signalling 13 (RGS13), protein tyrosine phosphatase receptor type D isoform 3 (PTPRD), usherin isoform B (USH2A)). Use of bromelain appears to be a reliable technique for the further identification of phosphorylated surface-exposed peptides when extracellular adenosine-5'-triphosphate is elevated during purinergic signalling. PMID:26152529

  19. Purification of a specific reversible tyrosine-O-phosphate phosphatase.

    PubMed Central

    Fukami, Y; Lipmann, F

    1982-01-01

    A phosphatase specific for tyrosine-O-phosphate (Tyr-P) was separated from several nonspecific phosphatases present in the third instar larvae of Drosophila melanogaster. The enzyme hydrolyzed L-Tyr-P, with an apparent Km of 0.14 mM, but not D-Tyr-P after being freed from hydrolytic activity toward p-nitrophenyl phosphate, the common phosphatase substrate. Such purified preparations also catalyzed a reversible phosphate transfer reaction from unlabeled Tyr-P to [3H]tyrosine. The transfer activity was L4-14% of the hydrolytic activity, depending on the initial concentration of tyrosine (0.25-4.0 mM). The two activities coincided throughout purification. However, they differed in pH optimum, that of hydrolysis being 6.5-7 and that of phosphate transfer being 7.7.5. The two activities were also differentially inhibited by 1-p-bromotetramisole oxalate in the presence of EDTA and by Mn2+. Addition of Mg2+ did not affect either hydrolysis or phosphate transfer, but 5 mM Zn2+ was 65% inhibitory to both. Sodium fluoride strongly inhibited both reactions, and this inhibition was reversed by EDTA, while EDTA itself had no effect. Pi had no effect and no detectable incorporation of 32Pi into Tyr-P was observed, indicating that the phosphate transfer reaction is not a simple reversal of hydrolysis. No ATP-linked phosphorylation of tyrosine was found. PMID:6181504

  20. Co-expression of protein tyrosine kinases EGFR-2 and PDGFRβ with protein tyrosine phosphatase 1B in Pichia pastoris.

    PubMed

    Tu, Pham Ngoc; Wang, Yamin; Cai, Menghao; Zhou, Xiangshan; Zhang, Yuanxing

    2014-02-28

    The regulation of protein tyrosine phosphorylation is mediated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) and is essential for cellular homeostasis. Coexpression of PTKs with PTPs in Pichia pastoris was used to facilitate the expression of active PTKs by neutralizing their apparent toxicity to cells. In this study, the gene encoding phosphatase PTP1B with or without a blue fluorescent protein or peroxisomal targeting signal 1 was cloned into the expression vector pAG32 to produce four vectors. These vectors were subsequently transformed into P. pastoris GS115. The tyrosine kinases EGFR-2 and PDGFRβ were expressed from vector pPIC3.5K and were fused with a His-tag and green fluorescent protein at the N-terminus. The two plasmids were transformed into P. pastoris with or without PTP1B, resulting in 10 strains. The EGFR-2 and PDGFRβ fusion proteins were purified by Ni(2+) affinity chromatography. In the recombinant P. pastoris, the PTKs co-expressed with PTP1B exhibited higher kinase catalytic activity than did those expressing the PTKs alone. The highest activities were achieved by targeting the PTKs and PTP1B into peroxisomes. Therefore, the EGFR-2 and PDGFRβ fusion proteins expressed in P. pastoris may be attractive drug screening targets for anticancer therapeutics. PMID:24248091

  1. DNA sequence, structure, and tyrosine kinase activity of the Drosophila melanogaster abelson proto-oncogene homolog

    SciTech Connect

    Henkemeyer, M.J.; Bennett, R.L.; Gertler, F.B.; Hoffmann, F.M.

    1988-02-01

    The authors report their molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type 1b 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.

  2. Mycobacterium avium subsp. paratuberculosis PtpA Is an Endogenous Tyrosine Phosphatase Secreted during Infection▿

    PubMed Central

    Bach, Horacio; Sun, Jim; Hmama, Zakaria; Av-Gay, Yossef

    2006-01-01

    Adaptive gene expression in prokaryotes is mediated by protein kinases and phosphatases. These regulatory proteins mediate phosphorylation of histidine or aspartate in two-component systems and serine/threonine or tyrosine in eukaryotic and eukaryote-like protein kinase systems. The genome sequence of Mycobacterium avium subsp. paratuberculosis, the causative agent of Johne's disease, does not possess a defined tyrosine kinase. Nevertheless, it encodes for protein tyrosine phosphatases. Here, we report that Map1985, is a functional low-molecular tyrosine phosphatase that is secreted intracellularly upon macrophage infection. This finding suggests that Map1985 might contribute to the pathogenesis of Mycobacterium avium subsp. paratuberculosis by dephosphorylating essential macrophage signaling and/or adaptor molecules. PMID:16982836

  3. A chimeric tyrosine/tryptophan hydroxylase. The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity.

    PubMed

    Mockus, S M; Kumer, S C; Vrana, K E

    1997-08-01

    The neurotransmitter biosynthetic enzymes, tyrosine hydroxylase (TH), and tryptophan hydroxylase (TPH) are each composed of an amino-terminal regulatory domain and a carboxyl-terminal catalytic domain. A chimeric hydroxylase was generated by coupling the regulatory domain of TH (TH-R) to the catalytic domain of TPH (TPH-C) and expressing the recombinant enzyme in bacteria. The chimeric junction was created at proline 165 in TH and proline 106 in TPH because this residue is within a conserved five amino-acid span (ValProTrpPhePro) that defines the beginning of the highly homologous catalytic domains of TH and TPH. Radioenzymatic activity assays demonstrated that the TH-R/TPH-C chimera hydroxylates tryptophan, but not tyrosine. Therefore, the regulatory domain does not confer substrate specificity. Although the TH-R/TPH-C enzyme did serve as a substrate for protein kinase (PKA), activation was not observed following phosphorylation. Phosphorylation studies in combination with kinetic data provided evidence that TH-R does not exert a dominant influence on TPH-C. Stability assays revealed that, whereas TH exhibited a t1/2 of 84 min at 37 degrees C, TPH was much less stable (t1/2 = 28.3 min). The stability profile of TH-R/TPH-C, however, was superimposable on that of TH. Removal of the regulatory domain (a deletion of 165 amino acids from the N-terminus) of TH rendered the catalytic domain highly unstable, as demonstrated by a t1/2 of 14 min. The authors conclude that the regulatory domain of TH functions as a stabilizer of enzyme activity. As a corollary, the well-characterized instability of TPH may be attributed to the inability of its regulatory domain to stabilize the catalytic domain. PMID:9356925

  4. Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1

    NASA Astrophysics Data System (ADS)

    Kowal, Julia; Chami, Mohamed; Baumgartner, Paul; Arheit, Marcel; Chiu, Po-Lin; Rangl, Martina; Scheuring, Simon; Schröder, Gunnar F.; Nimigean, Crina M.; Stahlberg, Henning

    2014-01-01

    Cyclic nucleotide-modulated ion channels are important for signal transduction and pacemaking in eukaryotes. The molecular determinants of ligand gating in these channels are still unknown, mainly because of a lack of direct structural information. Here we report ligand-induced conformational changes in full-length MloK1, a cyclic nucleotide-modulated potassium channel from the bacterium Mesorhizobium loti, analysed by electron crystallography and atomic force microscopy. Upon cAMP binding, the cyclic nucleotide-binding domains move vertically towards the membrane, and directly contact the S1-S4 voltage sensor domains. This is accompanied by a significant shift and tilt of the voltage sensor domain helices. In both states, the inner pore-lining helices are in an ‘open’ conformation. We propose a mechanism in which ligand binding can favour pore opening via a direct interaction between the cyclic nucleotide-binding domains and voltage sensors. This offers a simple mechanistic hypothesis for the coupling between ligand gating and voltage sensing in eukaryotic HCN channels.

  5. pH dependence of ligand-induced human epidermal growth factor receptor activation investigated by molecular dynamics simulations.

    PubMed

    Dong, Jun; Zhang, Yonghui; Zhang, Zhiyong

    2016-06-01

    The activation of human epidermal growth factor receptor (hEGFR) involves a large conformational change in its soluble extracellular domains (sECD, residues 1-620), from a tethered to an extended conformation upon binding of ligands, such as EGF. It has been reported that this dynamic process is pH-dependent, that is, hEGFR can be activated by EGF at high pH to form an extended dimer but remains as an inactive monomer at low pH. In this paper, we perform all-atom molecular dynamics (MD) simulations starting from the tethered conformation of sECD:EGF complex, at pH 5.0 and 8.5, respectively. Simulation results indicate that sECD:EGF shows different dynamic properties between the two pHs, and the complex may have a higher tendency of activation at pH 8.5. Twenty residues, including 13 histidines, in sECD:EGF have different protonation states between the two pHs (calculated by the H++ server). The charge distribution at pH 8.5 is more favorable for forming an extended conformation toward the active state of sECD than that at pH 5.0. Our study may shed light on the mechanism of pH dependence of hEGFR activation. Graphical abstract pH dependence of ligand-induced human epidermal growth factor receptor activation. PMID:27179806

  6. Regulatory Interactions between a Bacterial Tyrosine Kinase and Its Cognate Phosphatase*

    PubMed Central

    Temel, Deniz B.; Dutta, Kaushik; Alphonse, Sébastien; Nourikyan, Julien; Grangeasse, Christophe; Ghose, Ranajeet

    2013-01-01

    The cyclic process of autophosphorylation of the C-terminal tyrosine cluster (YC) of a bacterial tyrosine kinase and its subsequent dephosphorylation following interactions with a counteracting tyrosine phosphatase regulates diverse physiological processes, including the biosynthesis and export of polysaccharides responsible for the formation of biofilms or virulence-determining capsules. We provide here the first detailed insight into this hitherto uncharacterized regulatory interaction at residue-specific resolution using Escherichia coli Wzc, a canonical bacterial tyrosine kinase, and its opposing tyrosine phosphatase, Wzb. The phosphatase Wzb utilizes a surface distal to the catalytic elements of the kinase, Wzc, to dock onto its catalytic domain (WzcCD). WzcCD binds in a largely YC-independent fashion near the Wzb catalytic site, inducing allosteric changes therein. YC dephosphorylation is proximity-mediated and reliant on the elevated concentration of phosphorylated YC near the Wzb active site resulting from WzcCD docking. Wzb principally recognizes the phosphate of its phosphotyrosine substrate and further stabilizes the tyrosine moiety through ring stacking interactions with a conserved active site tyrosine. PMID:23543749

  7. Phosphorylation and RLK signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant genomes encode hundreds of receptor-like kinases (RLKs) with an organization of functional domains similar to that of animal receptor kinases. Ligand-dependent phosphorylation has now been demonstrated for several plant RLKs and identification of specific phosphorylation sites followed by thei...

  8. The Fer tyrosine kinase regulates interactions of Rho GDP-Dissociation Inhibitor α with the small GTPase Rac

    PubMed Central

    2010-01-01

    Background RhoGDI proteins are important regulators of the small GTPase Rac, because they shuttle Rac from the cytoplasm to membranes and also protect Rac from activation, deactivation and degradation. How the binding and release of Rac from RhoGDI is regulated is not precisely understood. Results We report that the non-receptor tyrosine kinase Fer is able to phosphorylate RhoGDIα and form a direct protein complex with it. This interaction is mediated by the C-terminal end of RhoGDIα. Activation of Fer by reactive oxygen species caused increased phosphorylation of RhoGDIα and pervanadate treatment further augmented this. Tyrosine phosphorylation of RhoGDIα by Fer prevented subsequent binding of Rac to RhoGDIα, but once a RhoGDIα-Rac complex was formed, the Fer kinase was not able to cause Rac release through tyrosine phosphorylation of preformed RhoGDIα-Rac complexes. Conclusions These results identify tyrosine phosphorylation of RhoGDIα by Fer as a mechanism to regulate binding of RhoGDIα to Rac. PMID:21122136

  9. Ligand-independent tyrosine kinase signalling in RTH 149 trout hepatoma cells: comparison among heavy metals and pro-oxidants.

    PubMed

    Burlando, Bruno; Magnelli, Valeria; Panfoli, Isabella; Berti, Elena; Viarengo, Aldo

    2003-01-01

    Tyrosine phosphorylation depends on the activity of receptor and non-receptor tyrosine kinases and promote cell growth, differentiation and apoptosis. Different stressors are known to stimulate tyrosine kinase activities and this could explain a wide spectrum of effects that these agents produce on different organisms. We studied the effects of heavy metals and pro-oxidants on tyrosine kinase signalling in trout hepatoma cells (RTH 149) by Western immunoblotting. Use of antiphosphotyrosine showed that Hg(2+) and Cu(2+)in the microM range, and H(2)O(2) in the mM range, induced tyrosine phosphorylation. The effect of Cu(2+)was prevented by pre-incubation with genistein, while those of Hg(2+)and H(2)O(2) were only decreased, probably due to tyrosine kinase stimulation coupled to phosphatase inhibition. Phosphospecific antibodies against the three types of MAPKs showed that ERK is activated by heavy metals only, while p38 and SAPK/JNK are activated by H(2)O(2), Hg(2+), and Cu(2+) plus low H(2)O(2). Cell pre-incubation with p38 inhibitors indicated that ERK activation by H(2)O(2) is prevented by concomitant activation of p38. Phosphospecific STAT antibodies revealed activation by H(2)O(2) only. In conclusion, fish cell exposure to heavy metals and pro-oxidants produce specific tyrosine kinase responses, involving cross talk and redox modulatory effects. PMID:12876385

  10. Knockdown of GnT-Va expression inhibits ligand-induced downregulation of the epidermal growth factor receptor and intracellular signaling by inhibiting receptor endocytosis

    PubMed Central

    Guo, Hua-Bei; Johnson, Heather; Randolph, Matthew; Lee, Intaek; Pierce, Michael

    2009-01-01

    Changes in the expression of N-glycan branching glycosyltransferases can alter cell surface receptor functions, involving their levels of cell surface retention, rates of internalization into the endosomal compartment, and subsequent intracellular signaling. To study in detail the regulation of signaling of the EGF receptor (EGFR) by GlcNAcβ(1,6)Man branching, we utilized specific siRNA to selectively knockdown GnT-Va expression in the highly invasive human breast carcinoma line MDA-MB231, which resulted in the attenuation of its invasiveness-related phenotypes. Compared to control cells, ligand-induced downregulation of EGFR was significantly inhibited in GnT-Va-suppressed cells. This effect could be reversed by re-expression of GnT-Va, indicating that changes in ligand-induced receptor downregulation were dependent on GnT-Va activity. Knockdown of GnT-Va had no significant effect on c-Cbl mediated receptor ubiquitination and degradation, but did cause the inhibition of receptor internalization, showing that altered signaling and delayed ligand-induced downregulation of EGFR expression resulted from decreased EGFR endocytosis. Similar results were obtained with HT1080 fibrosarcoma cells treated with GnT-Va siRNA. Inhibited receptor internalization caused by the expression of GnT-Va siRNA appeared to be independent of galectin binding since decreased EGFR internalization in the knockdown cells was not affected by the treatment of the cells with lactose, a galectin inhibitor. Our results show that decreased GnT-Va activity due to siRNA expression in human carcinoma cells inhibits ligand-induced EGFR internalization, consequently resulting in delayed downstream signal transduction and inhibition of the EGF-induced, invasiveness-related phenotypes. PMID:19225046

  11. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    SciTech Connect

    Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1986-05-01

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn/sup 2 +/ and (..gamma..-/sup 32/P)ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes.

  12. Identification of the sites for CaMK-II-dependent phosphorylation of GABA(A) receptors.

    PubMed

    Houston, Catriona M; Lee, Henry H C; Hosie, Alastair M; Moss, Stephen J; Smart, Trevor G

    2007-06-15

    Phosphorylation can affect both the function and trafficking of GABA(A) receptors with significant consequences for neuronal excitability. Serine/threonine kinases can phosphorylate the intracellular loops between M3-4 of GABA(A) receptor beta and gamma subunits thereby modulating receptor function in heterologous expression systems and in neurons (1, 2). Specifically, CaMK-II has been demonstrated to phosphorylate the M3-4 loop of GABA(A) receptor subunits expressed as GST fusion proteins (3, 4). It also increases the amplitude of GABA(A) receptor-mediated currents in a number of neuronal cell types (5-7). To identify which substrate sites CaMK-II might phosphorylate and the consequent functional effects, we expressed recombinant GABA(A) receptors in NG108-15 cells, which have previously been shown to support CaMK-II modulation of GABA(A) receptors containing the beta3 subunit (8). We now demonstrate that CaMK-II mediates its effects on alpha1beta3 receptors via phosphorylation of Ser(383) within the M3-4 domain of the beta subunit. Ablation of beta3 subunit phosphorylation sites for CaMK-II revealed that for alphabetagamma receptors, CaMK-II has a residual effect on GABA currents that is not mediated by previously identified sites of CaMK-II phosphorylation. This residual effect is abolished by mutation of tyrosine phosphorylation sites, Tyr(365) and Tyr(367), on the gamma2S subunit, and by the tyrosine kinase inhibitor genistein. These results suggested that CaMK-II is capable of directly phosphorylating GABA(A) receptors and activating endogenous tyrosine kinases to phosphorylate the gamma2 subunit in NG108-15 cells. These findings were confirmed in a neuronal environment by expressing recombinant GABA(A) receptors in cerebellar granule neurons. PMID:17442679

  13. Phosphorylation of proteins in Clostridium thermohydrosulfuricum

    SciTech Connect

    Londesborough, J.

    1986-02-01

    Cell extracts of the thermophile Clostridium thermohydrosulfuricum catalyzed the phosphorylation by (..gamma..-/sup 32/P)ATP of several endogenous proteins with M/sub r/s between 13,000 and 100,000. Serine and tyrosine were the main acceptors. Distinct substrate proteins were found in the soluble (e.g., proteins p66, p63, and p53 of M/sub r/s 66,000, 63,000, and 53,000, respectively) and particulate (p76 and p30) fractions, both of which contained protein kinase and phosphatase activity. The soluble fraction suppressed the phosphorylation of particulate proteins and contained a protein kinase inhibitor. Phosphorylation of p53 was promoted by 10..mu..M fructose 1,6-bisphosphate or glucose 1,6-bisphosphate and suppressed by hexose monophosphates, whereas p30 and p13 were suppressed by 5 ..mu..M brain (but not spinach) calmodulin. Polyamines, including the odd polyamines characteristic of thermophiles, modulated the labeling of most of the phosphoproteins. Apart from p66, all the proteins labeled in vitro were also rapidly labeled in intact cells by /sub 32/P/sub i/. Several proteins strongly labeled in vivo were labeled slowly or not at all in vitro.

  14. Tyrosine - Effects on catecholamine release

    NASA Technical Reports Server (NTRS)

    Acworth, Ian N.; During, Matthew J.; Wurtman, Richard J.

    1988-01-01

    Tyrosine administration elevates striatal levels of dopamine metabolites in animals given treatments that accelerate nigrostriatal firing, but not in untreated rats. We examined the possibility that the amino acid might actually enhance dopamine release in untreated animals, but that the technique of measuring striatal dopamine metabolism was too insensitive to demonstrate such an effect. Dopamine release was assessed directly, using brain microdialysis of striatal extracellular fluid. Tyrosine administration (50-200 mg/kg IP) did indeed cause a dose related increase in extracellular fluid dopamine levels with minor elevations in levels of DOPAC and HVA, its major metabolites, which were not dose-related. The rise in dopamine was short-lived, suggesting that receptor-mediated feedback mechanisms responded to the increased dopamine release by diminishing neuronal firing or sensitivity to tyrosine. These observations indicate that measurement of changes in striatal DOPAC and HVA, if negative, need not rule out increases in nigrostriatal dopamine release.

  15. Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography.

    PubMed

    Nichols, Derek A; Hargis, Jacqueline C; Sanishvili, Ruslan; Jaishankar, Priyadarshini; Defrees, Kyle; Smith, Emmanuel W; Wang, Kenneth K; Prati, Fabio; Renslo, Adam R; Woodcock, H Lee; Chen, Yu

    2015-07-01

    Ligand binding can change the pKa of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M β-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 Å, precovalent complex with nonelectrophilic ligand at 0.89 Å, and acylation transition state (TS) analogue at 0.84 Å. Binding of the noncovalent ligand induces a proton transfer from the catalytic Ser70 to the negatively charged Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73, with a length of 2.53 Å and the shared hydrogen equidistant from the heteroatoms. QM/MM reaction path calculations determined the proton transfer barrier to be 1.53 kcal/mol. The LBHB is absent in the other two structures although Glu166 remains neutral in the covalent complex. Our data represents the first X-ray crystallographic example of a hydrogen engaged in an enzymatic LBHB, and demonstrates that desolvation of the active site by ligand binding can provide a protein microenvironment conducive to LBHB formation. It also suggests that LBHBs may contribute to stabilization of the TS in general acid/base catalysis together with other preorganized features of enzyme active sites. These structures reconcile previous experimental results suggesting alternatively Glu166 or Lys73 as the general base for acylation, and underline the importance of considering residue protonation state change when modeling protein-ligand interactions. Additionally, the observation of another LBHB (2.47 Å) between two conserved residues, Asp233 and Asp246, suggests that LBHBs may potentially play a special structural role in proteins. PMID:26057252

  16. Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases

    SciTech Connect

    Rao, K.V.; Peralta, W.D.; Greene, G.L.; Fox, C.F.

    1987-08-14

    Progesterone receptors were immunoprecipitated with monoclonal antibodies KD68 from lysates of human breast carcinoma T47D cells labelled to steady state specific activity with /sup 32/Pi. The 120 kDa /sup 32/P-labelled progesterone receptor band was resolved by polyacrylamide gel electrophoresis and identified by autoradiography. Phosphoamino acid analysis revealed serine phosphorylation, but no threonine or tyrosine phosphorylation. Treatment of the /sup 32/Pi-labelled cells with EGF, TPA or dibutyryl cAMP had no significant quantitative effect on progesterone receptor phosphorylation, though the EGF receptor and the cAMP-dependent protein kinases have been reported to catalyze phosphorylation of purified avian progesterone receptor preparations in cell free systems. Progesterone receptor phosphorylation on serine residues was increased by 2-fold in cells treated with 10 nM progesterone; EGF had no effect on progesterone-mediated progesterone receptor phosphorylation.

  17. A Molecular Brake in the Kinase Hinge Region Regulates the Activity of Receptor Tyrosine Kinases

    SciTech Connect

    Chen,H.; Ma, J.; Li, W.; Eliseenkova, A.; Xu, C.; Neubert, T.; Miller, W.; Mohammadi, M.

    2007-01-01

    Activating mutations in the tyrosine kinase domain of receptor tyrosine kinases (RTKs) cause cancer and skeletal disorders. Comparison of the crystal structures of unphosphorylated and phosphorylated wild-type FGFR2 kinase domains with those of seven unphosphorylated pathogenic mutants reveals an autoinhibitory 'molecular brake' mediated by a triad of residues in the kinase hinge region of all FGFRs. Structural analysis shows that many other RTKs, including PDGFRs, VEGFRs, KIT, CSF1R, FLT3, TEK, and TIE, are also subject to regulation by this brake. Pathogenic mutations activate FGFRs and other RTKs by disengaging the brake either directly or indirectly.

  18. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    PubMed

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  19. Involvement of the Tyrosine Kinase Fer in Cell Adhesion

    PubMed Central

    Rosato, Roberto; Veltmaat, Jacqueline M.; Groffen, John; Heisterkamp, Nora

    1998-01-01

    The Fer protein belongs to the fes/fps family of nontransmembrane receptor tyrosine kinases. Lack of success in attempts to establish a permanent cell line overexpressing it at significant levels suggested a strong negative selection against too much Fer protein and pointed to a critical cellular function for Fer. Using a tetracycline-regulatable expression system, overexpression of Fer in embryonic fibroblasts was shown to evoke a massive rounding up, and the subsequent detachment of the cells from the substratum, which eventually led to cell death. Induction of Fer expression coincided with increased complex formation between Fer and the cadherin/src-associated substrate p120cas and elevated tyrosine phosphorylation of p120cas. β-Catenin also exhibited clearly increased phosphotyrosine levels, and Fer and β-catenin were found to be in complex. Significantly, although the levels of α-catenin, β-catenin, and E-cadherin were unaffected by Fer overexpression, decreased amounts of α-catenin and β-catenin were coimmunoprecipitated with E-cadherin, demonstrating a dissolution of adherens junction complexes. A concomitant decrease in levels of phosphotyrosine in the focal adhesion-associated protein p130 was also observed. Together, these results provide a mechanism for explaining the phenotype of cells overexpressing Fer and indicate that the Fer tyrosine kinase has a function in the regulation of cell-cell adhesion. PMID:9742093

  20. Protein tyrosine kinase regulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking induced by acute hypoxia in cultured brainstem neurons.

    PubMed

    Wang, H; Yu, L C; Li, Y C

    2016-01-01

    This study was performed to investigate the modulation effect of protein tyrosine kinase on postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking induced by acute hypoxia in cultured brainstem neurons. The cultured neurons were exposed to 1% O2 and the expression of AMPA receptor subunit GluR2 on the cell surface was significantly increased, while total GluR2 was not markedly changed. Furthermore, the hypoxia-induced increase in GluR2 expression on the cell surface was partially blocked by the protein tyrosine kinase membrane-permeable inhibitor genistein. In contrast, both the protein tyrosine kinase agonist nerve growth factor and protein tyrosine phosphatase inhibitor vanadate promoted the hypoxia-induced increase of GluR2 expression on cell surface. Moreover, GluR2 could be phosphorylated by tyrosine under normoxia and hypoxia conditions in vitro on brainstem neurons, and tyrosine phosphorylation of GluR2 was significantly stronger under hypoxia conditions. Our results indicate that acute hypoxia induces the AMPA receptor subunit GluR2 to rapidly migrate to the cell membrane to modify the strength of the synapse. This study indicates that tyrosine phosphorylation of the receptor is an important pathway regulating the rapid migration of GluR2 in the postsynaptic domain induced by hypoxia. PMID:27525851

  1. Predicting and analyzing protein phosphorylation sites in plants using musite.

    PubMed

    Yao, Qiuming; Gao, Jianjiong; Bollinger, Curtis; Thelen, Jay J; Xu, Dong

    2012-01-01

    Although protein phosphorylation sites can be reliably identified with high-resolution mass spectrometry, the experimental approach is time-consuming and resource-dependent. Furthermore, it is unlikely that an experimental approach could catalog an entire phosphoproteome. Computational prediction of phosphorylation sites provides an efficient and flexible way to reveal potential phosphorylation sites and provide hypotheses in experimental design. Musite is a tool that we previously developed to predict phosphorylation sites based solely on protein sequence. However, it was not comprehensively applied to plants. In this study, the phosphorylation data from Arabidopsis thaliana, B. napus, G. max, M. truncatula, O. sativa, and Z. mays were collected for cross-species testing and the overall plant-specific prediction as well. The results show that the model for A. thaliana can be extended to other organisms, and the overall plant model from Musite outperforms the current plant-specific prediction tools, Plantphos, and PhosphAt, in prediction accuracy. Furthermore, a comparative study of predicted phosphorylation sites across orthologs among different plants was conducted to reveal potential evolutionary features. A bipolar distribution of isolated, non-conserved phosphorylation sites, and highly conserved ones in terms of the amino acid type was observed. It also shows that predicted phosphorylation sites conserved within orthologs do not necessarily share more sequence similarity in the flanking regions than the background, but they often inherit protein disorder, a property that does not necessitate high sequence conservation. Our analysis also suggests that the phosphorylation frequencies among serine, threonine, and tyrosine correlate with their relative proportion in disordered regions. Musite can be used as a web server (http://musite.net) or downloaded as an open-source standalone tool (http://musite.sourceforge.net/). PMID:22934099

  2. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  3. Cholinergic regulation of protein phosphorylation in bovine adrenal chromaffin cells

    SciTech Connect

    Haycock, J.W.; Browning, M.D.; Greengard, P.

    1988-03-01

    Chromaffin cells were isolated from bovine adrenal medullae and maintained in primary culture. After prelabeling with /sup 32/PO/sub 4/, exposure of the chromaffin cells to acetylcholine increased the phosphorylation of a M/sub r/ approx. = 100,000 protein and a M/sub r/ approx. = 60,000 protein (tyrosine hydroxylase), visualized after separation of total cellular proteins in NaDodSO/sub 4//polyacrylamide gels. Immunoprecipitation with antibodies to three known phosphoproteins (100-kDa, 87-kDa, and protein III) revealed an acetylcholine-dependent phosphorylation of these proteins. These three proteins were also shown to be present in bovine adrenal chromaffin cells by immunolabeling techniques. 100-kDa is a M/sub r/ approx. = 100,000 protein selectively phosphorylated by calcium/calmodulin-dependent protein kinase III, 87-kDa is a M/sub r/ approx. = 87,000 protein selectively phosphorylated by protein kinase C, and protein III is a phosphoprotein doublet of M/sub r/ approx. = 74,000 (IIIa) and M/sub r/ approx. = 55,000 (IIIb) phosphorylated by cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I. The data demonstrate that cholinergic activation of chromaffin cells increases the phosphorylation of several proteins and that several protein kinase systems may be involved in these effects.

  4. Protein Phosphorylation during Coconut Zygotic Embryo Development1

    PubMed Central

    Islas-Flores, Ignacio; Oropeza, Carlos; Hernández-Sotomayor, S.M. Teresa

    1998-01-01

    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [γ-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species. PMID:9733545

  5. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate.

    PubMed

    Cao, Hongnan; Tan, Kemin; Wang, Fengbin; Bigelow, Lance; Yennamalli, Ragothaman M; Jedrzejczak, Robert; Babnigg, Gyorgy; Bingman, Craig A; Joachimiak, Andrzej; Kharel, Madan K; Singh, Shanteri; Thorson, Jon S; Phillips, George N

    2016-05-01

    CalE6 from Micromonospora echinospora is a (pyridoxal 5' phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation. PMID:27191010

  6. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate

    PubMed Central

    Cao, Hongnan; Tan, Kemin; Wang, Fengbin; Bigelow, Lance; Yennamalli, Ragothaman M.; Jedrzejczak, Robert; Babnigg, Gyorgy; Bingman, Craig A.; Joachimiak, Andrzej; Kharel, Madan K.; Singh, Shanteri; Thorson, Jon S.; Phillips, George N.

    2016-01-01

    CalE6 from Micromonospora echinospora is a (pyridoxal 5′ phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation. PMID:27191010

  7. Structure and Configuration of Phosphoeleganin, a Protein Tyrosine Phosphatase 1B Inhibitor from the Mediterranean Ascidian Sidnyum elegans.

    PubMed

    Imperatore, Concetta; Luciano, Paolo; Aiello, Anna; Vitalone, Rocco; Irace, Carlo; Santamaria, Rita; Li, Jia; Guo, Yue-W; Menna, Marialuisa

    2016-04-22

    A new phosphorylated polyketide, phosphoeleganin (1), has been isolated from the Mediterranean ascidian Sidnyum elegans. Its structure and configuration have been determined by extensive use of 2D NMR and microscale chemical degradation and/or derivatization. Phosphoeleganin (1) inhibited the protein tyrosine phosphatase 1B (PTP1B) activity. PMID:27064611

  8. Distinct Pathways Regulate Syk Protein Activation Downstream of Immune Tyrosine Activation Motif (ITAM) and hemITAM Receptors in Platelets*

    PubMed Central

    Manne, Bhanu Kanth; Badolia, Rachit; Dangelmaier, Carol; Eble, Johannes A.; Ellmeier, Wilfried; Kahn, Mark; Kunapuli, Satya P.

    2015-01-01

    Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor. PMID:25767114

  9. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression.

    PubMed

    Le, Hai Van; Kim, Jae Young

    2016-01-01

    Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C-C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10. PMID:27258267

  10. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression

    PubMed Central

    Le, Hai Van; Kim, Jae Young

    2016-01-01

    Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C–C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10. PMID:27258267

  11. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    SciTech Connect

    Kim, Soyeon; Lee, Jae-Jung; Heo, Dae Seog

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR{gamma} ligands

  12. Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium.

    PubMed

    Murata, Yoji; Kotani, Takenori; Supriatna, Yana; Kitamura, Yasuaki; Imada, Shinya; Kawahara, Kohichi; Nishio, Miki; Daniwijaya, Edwin Widyanto; Sadakata, Hisanobu; Kusakari, Shinya; Mori, Munemasa; Kanazawa, Yoshitake; Saito, Yasuyuki; Okawa, Katsuya; Takeda-Morishita, Mariko; Okazawa, Hideki; Ohnishi, Hiroshi; Azuma, Takeshi; Suzuki, Akira; Matozaki, Takashi

    2015-08-01

    Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity. PMID:26195794

  13. Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium

    PubMed Central

    Murata, Yoji; Kotani, Takenori; Supriatna, Yana; Kitamura, Yasuaki; Imada, Shinya; Kawahara, Kohichi; Nishio, Miki; Daniwijaya, Edwin Widyanto; Sadakata, Hisanobu; Kusakari, Shinya; Mori, Munemasa; Kanazawa, Yoshitake; Saito, Yasuyuki; Okawa, Katsuya; Takeda-Morishita, Mariko; Okazawa, Hideki; Ohnishi, Hiroshi; Azuma, Takeshi; Suzuki, Akira; Matozaki, Takashi

    2015-01-01

    Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer–associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10–deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1–deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity. PMID:26195794

  14. Comparative Analysis of Mutant Tyrosine Kinase Chemical Rescue†

    PubMed Central

    Muratore, Kathryn E.; Seeliger, Markus A.; Wang, Zhihong; Fomina, Dina; Neiswinger, Johnathan; Havranek, James J.; Baker, David; Kuriyan, John; Cole, Philip A.

    2009-01-01

    Protein tyrosine kinases are critical cell signaling enzymes. These enzymes have a highly conserved Arg residue in their catalytic loop which is present two residues or four residues downstream from an absolutely conserved Asp catalytic base. Prior studies on protein tyrosine kinases Csk and Src revealed the potential for chemical rescue of catalytically-deficient mutant kinases (Arg to Ala mutations) by small diamino compounds, particularly imidazole, however the potency and efficiency of rescue was greater for Src. This current study further examines the structural and kinetic basis of rescue for mutant Src as compared to mutant Abl tyrosine kinase. An X-ray crystal structure of R388A Src revealed the surprising finding that a histidine residue of the N-terminus of a symmetry-related kinase inserts into the active site of the adjacent Src and mimics the hydrogen bonding pattern seen in wild-type protein tyrosine kinases. Abl R367A shows potent and efficient rescue more comparable to Src, even though its catalytic loop is more like that of Csk. Various enzyme redesigns of the active sites indicate that the degree and specificity of rescue is somewhat flexible, but the overall properties of the enzymes and rescue agents play an overarching role. The newly discovered rescue agent 2-aminoimidazole is about as efficient as imidazole in rescuing R/A Src and Abl. Rate vs. pH studies with these imidazole analogs suggest that the protonated imidazolium is the preferred form for chemical rescue, consistent with structural models. The efficient rescue seen with mutant Abl points to the potential of this approach to be used effectively to analyze Abl phosphorylation pathways in cells. PMID:19260709

  15. Antigen receptor signaling: integration of protein tyrosine kinase functions.

    PubMed

    Tamir, I; Cambier, J C

    1998-09-17

    Antigen receptors on T and B cells function to transduce signals leading to a variety of biologic responses minimally including antigen receptor editing, apoptotic death, developmental progression, cell activation, proliferation and survival. The response to antigen depends upon antigen affinity and valence, involvement of coreceptors in signaling and differentiative stage of the responding cell. The requirement that these receptors integrate signals that drive an array of responses may explain their evolved structural complexity. Antigen receptors are composed of multiple subunits compartmentalized to provide antigen recognition and signal transduction function. In lieu of on-board enzymatic activity these receptors rely on associated Protein Tyrosine Kinases (PTKs) for their signaling function. By aggregating the receptors, and hence their appended PTKs, antigens induce PTK transphosphorylation, activating them to phosphorylate the receptor within conserved motifs termed Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) found in transducer subunits. The tyrosyl phosphorylated ITAMs then interact with Src Homology 2 (SH2) domains within the PTKs leading to their further activation. As receptor phosphorylation is amplified, other effectors, such as Shc, dock by virtue of SH2 binding, and serve, in-turn, as substrates for these PTKs. This sequence of events not only provides a signal amplification mechanism by combining multiple consecutive steps with positive feedback, but also allows for signal diversification by differential recruitment of effectors that provide access to distinct parallel downstream signaling pathways. The subject of antigen receptor signaling has been recently reviewed in depth (DeFranco, 1997; Kurosaki, 1997). Here we discuss the biochemical basis of antigen receptor signal transduction, using the B cell receptor (BCR) as a paradigm, with specific emphasis on the involved PTKs. We review several specific mechanisms by which responses

  16. Phosphorylation and localization of protein-zero related (PZR) in cultured endothelial cells.

    PubMed

    Kusano, Ken-ichi; Thomas, Tamlyn N; Fujiwara, Keigi

    2008-01-01

    Protein-zero related (PZR) is an immunoglobulin V (IgV)-type immunoreceptor with two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PZR interacts with Src homology 2 domain-containing tyrosine phosphatase (SHP-2) via its tyrosine-phosphorylated ITIMs, for which c-Src is a putative kinase. Towards elucidating PZR function in endothelial cells (ECs), the authors cloned PZR from bovine aortic endothelial cells (BAECs) and characterized it. Mature bovine PZR had 94.8% and 92.7% sequence identity with canine and human proteins, respectively, and the two ITIM sequences were conserved among higher vertebrates. PZR was expressed in many cell types and was localized to cell contacts and intracellular granules in BAECs and mesothelioma (REN) cells. Coimmunoprecipitation revealed that PZR, Grb-2-associated binder-1 (Gab1), and platelet endothelial cell adhesion molecule-1 (PECAM-1) were three major SHP-2-binding proteins in BAECs. H(2)O(2) enhanced PZR tyrosine phosphorylation and PZR/SHP-2 interaction in ECs in a dose-and time-dependent manner. To see if tyrosine kinases other than Src are also capable of phosphorylating PZR, the authors cotransfected HEK293 cells with PZR and one of several tyrosine kinases and found that c-Src, c-Fyn, c-Lyn, Csk, and c-Abl, but not c-Fes, phosphorylated PZR and increased PZR/SHP-2 interaction. These results suggest that PZR is a cell adhesion protein that may be involved in SHP-2-dependent signaling at interendothelial cell contacts. PMID:18568953

  17. Structural basis of tubulin tyrosination by tubulin tyrosine ligase.

    PubMed

    Prota, Andrea E; Magiera, Maria M; Kuijpers, Marijn; Bargsten, Katja; Frey, Daniel; Wieser, Mara; Jaussi, Rolf; Hoogenraad, Casper C; Kammerer, Richard A; Janke, Carsten; Steinmetz, Michel O

    2013-02-01

    Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL-tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton. PMID:23358242

  18. Structural basis of tubulin tyrosination by tubulin tyrosine ligase

    PubMed Central

    Prota, Andrea E.; Magiera, Maria M.; Kuijpers, Marijn; Bargsten, Katja; Frey, Daniel; Wieser, Mara; Jaussi, Rolf; Hoogenraad, Casper C.; Kammerer, Richard A.; Janke, Carsten

    2013-01-01

    Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL–tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton. PMID:23358242

  19. Phospholipid transfer protein (PLTP) reduces phosphorylation of tau in human neuronal cells (HCN2)

    PubMed Central

    Dong, Weijiang; Albers, John J.; Vuletic, Simona

    2009-01-01

    Tau function is regulated by phosphorylation, and abnormal tau phosphorylation in neurons is one of the key processes associated with development of Alzheimer’s disease and other tauopathies. In this study we provide evidence that phospholipid transfer protein (PLTP), one of the main lipid transfer proteins in the brain, significantly reduces levels of phosphorylated tau, and increases levels of the inactive form of glycogen synthase kinase-3β (GSK3β) in HCN2 cells. Furthermore, inhibition of the phosphatidylinositol-3 kinase (PI3K) reversed the PLTP-induced increase in levels of GSK3β phosphorylated at serine 9 (pGSK3βSer9) and partially reversed the PLTP-induced reduction in tau phosphorylation. We provide evidence that the PLTP-induced changes are not due to activation of Disabled-1 (Dab1), since PLTP reduced levels of total and phosphorylated Dab1 in HCN2 cells. We have also shown that inhibition of tyrosine kinase activity of insulin receptor (IR) and/or insulin-like growth factor 1 (IGF1) receptor (IGFR) reverses PLTP-induced increase in levels of phosphorylated Akt (pAktThr308 and pAktSer473), suggesting that PLTP-mediated activation of the PI3K/Akt pathway is dependent on IR/IGFR receptor tyrosine kinase activity. Our study suggests that PLTP may be an important modulator of signal transduction pathways in human neurons. PMID:19472218

  20. The role of tyrosine kinases in systemic lupus erythematosus and their potential as therapeutic targets

    PubMed Central

    Shao, Wen-Hai; Cohen, Philip L

    2014-01-01

    The autoimmune disease systemic lupus erythematosus is characterized by loss of tolerance to nuclear antigens. Breakdown of tolerance is associated with alterations in T-cell and B-cell receptor signal transduction, including increased protein phosphorylation that may underlie pathogenesis and explain the characteristic hyperactivity of T and B cells and other immune cells in active disease. Tyrosine kinases play a central role in signaling processes in cells known to be important in the pathogenesis of autoimmune diseases. Considerable progress has been made in understanding the function of tyrosine kinases in immune cell signaling pathways. In this review, we will summarize the function of tyrosine kinases and their novel inhibitors from studies made in animal lupus models and systemic lupus erythematosus patients. PMID:24678775

  1. Analysis of acetylcholine receptor phosphorylation sites using antibodies to synthetic peptides and monoclonal antibodies.

    PubMed Central

    Safran, A; Neumann, D; Fuchs, S

    1986-01-01

    Three peptides corresponding to residues 354-367, 364-374, 373-387 of the acetylcholine receptor (AChR) delta subunit were synthesized. These peptides represent the proposed phosphorylation sites of the cAMP-dependent protein kinase, the tyrosine-specific protein kinase and the calcium/phospholipid-dependent protein kinase respectively. Using these peptides as substrates for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase it was shown that only peptides 354-367 was phosphorylated whereas the other two were not. These results verify the location of the cAMP-dependent protein kinase phosphorylation site within the AChR delta subunit. Antibodies elicited against these peptides reacted with the delta subunit. The antipeptide antibodies and two monoclonal antibodies (7F2, 5.46) specific for the delta subunit were tested for their binding to non-phosphorylated receptor and to receptor phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. Antibodies to peptide 354-367 were found to react preferentially with non-phosphorylated receptor whereas the two other anti-peptide antibodies bound equally to phosphorylated and non-phosphorylated receptors. Monoclonal antibody 7F2 reacted preferentially with the phosphorylated form of the receptor whereas monoclonal antibody 5.46 did not distinguish between the two forms. Images Fig. 2. Fig. 4. Fig. 5. PMID:3816758

  2. Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation.

    PubMed

    Ben-Mahdi, Meriem H; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne; O'Dowd, Yvonne; El-Benna, Jamel; Pasquier, Catherine

    2016-01-01

    In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects. PMID:27528888

  3. Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation

    PubMed Central

    Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne; Pasquier, Catherine

    2016-01-01

    In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects. PMID:27528888

  4. Molecular cloning of a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase

    PubMed Central

    Ohya, Ken-ichi; Kajigaya, Sachiko; Kitanaka, Akira; Yoshida, Koji; Miyazato, Akira; Yamashita, Yoshihiro; Yamanaka, Takeo; Ikeda, Uichi; Shimada, Kazuyuki; Ozawa, Keiya; Mano, Hiroyuki

    1999-01-01

    Tec, Btk, Itk, Bmx, and Txk constitute the Tec family of protein tyrosine kinases (PTKs), a family with the distinct feature of containing a pleckstrin homology (PH) domain. Tec acts in signaling pathways triggered by the B cell antigen receptor (BCR), cytokine receptors, integrins, and receptor-type PTKs. Although upstream regulators of Tec family kinases are relatively well characterized, little is known of the downstream effectors of these enzymes. The yeast two-hybrid system has identified several proteins that interact with the kinase domain of Tec, one of which is now revealed to be a previously unknown docking protein termed BRDG1 (BCR downstream signaling 1). BRDG1 contains a proline-rich motif, a PH domain, and multiple tyrosine residues that are potential target sites for Src homology 2 domains. In 293 cells expressing recombinant BRDG1 and various PTKs, Tec and Pyk2, but not Btk, Bmx, Lyn, Syk, or c-Abl, induced marked phosphorylation of BRDG1 on tyrosine residues. BRDG1 was also phosphorylated by Tec directly in vitro. Efficient phosphorylation of BRDG1 by Tec required the PH and SH2 domains as well as the kinase domain of the latter. Furthermore, BRDG1 was shown to participate in a positive feedback loop by increasing the activity of Tec. BRDG1 transcripts are abundant in the human B cell line Ramos, and the endogenous protein underwent tyrosine phosphorylation in response to BCR stimulation. BRDG1 thus appears to function as a docking protein acting downstream of Tec in BCR signaling. PMID:10518561

  5. XAFS of human tyrosine hydroxylase

    NASA Astrophysics Data System (ADS)

    Meyer, W.; Haavik, J.; Winkler, H.; Trautwein, A. X.; Nolting, H.-F.

    1995-02-01

    Tyrosine hydroxylase (TH) catalyses the rate-limiting step (hydroxylation of tyrosine to form dihydroxyphenylalanine) in the biosynthetic pathway leading to the catecholamines dopamine, noradrenaline and adrenaline. The human enzyme (hTH) is present in four isoforms, generated by splicing of pre-mRNA. The purified apoenzyme (metal free) binds stoichiometric amounts of iron. The incorporation of Fe(II) results in a rapid and up to 40-fold increase of activity [1]. Besides the coordination of the metal centers in native enzyme we studied the purported inhibition of TH by its immediate products. So we analysed Fe-hTH isoform 1 native as well as oxidized with dopamine and Co-hTH isoform 2.

  6. The Streptococcus pyogenes orphan protein tyrosine phosphatase, SP-PTP, possesses dual specificity and essential virulence regulatory functions.

    PubMed

    Kant, Sashi; Agarwal, Shivani; Pancholi, Preeti; Pancholi, Vijay

    2015-08-01

    Group A Streptococcus (GAS) is a human pathogen that causes high morbidity and mortality. GAS lacks a gene encoding tyrosine kinase but contains one encoding tyrosine phosphatase (SP-PTP). Thus, GAS is thought to lack tyrosine phosphorylation, and the physiological significance of SP-PTP is, therefore, questionable. Here, we demonstrate that SP-PTP possesses dual phosphatase specificity for Tyr- and Ser/Thr-phosphorylated GAS proteins, such as Ser/Thr kinase (SP-STK) and the SP-STK-phosphorylated CovR and WalR proteins. Phenotypic analysis of GAS mutants lacking SP-PTP revealed that the phosphatase activity per se positively regulates growth, cell division and the ability to adhere to and invade host cells. Furthermore, A549 human lung cells infected with GAS mutants lacking SP-PTP displayed increased Ser-/Thr-/Tyr-phosphorylation. SP-PTP also differentially regulates the expression of ∼50% of the total GAS genes, including several virulence genes potentially through the two-component regulators, CovR, WalR and PTS/HPr regulation of Mga. Although these mutants exhibit attenuated virulence, a GAS mutant overexpressing SP-PTP is hypervirulent. Our study provides the first definitive evidence for the presence and importance of Tyr-phosphorylation in GAS and the relevance of SP-PTP as an important therapeutic target. PMID:25939957

  7. ACK1/TNK2 Tyrosine Kinase: Molecular Signaling and Evolving Role in Cancers

    PubMed Central

    Mahajan, Kiran; Mahajan, Nupam P.

    2014-01-01

    Deregulated tyrosine kinase signaling alters cellular homeostasis to drive cancer progression. The emergence of a non-receptor tyrosine kinase, ACK1 as an oncogenic kinase, has uncovered novel mechanisms by which tyrosine kinase signaling promotes cancer progression. While early studies focused on ACK1 (also known as activated Cdc42-associated kinase 1 or TNK2) as a cytosolic effecter of activated transmembrane receptor tyrosine kinases (RTKs), wherein it shuttles between the cytosol and the nucleus to rapidly transduce extracellular signals from the RTKs to the intracellular effectors, recent data unfold a new aspect of its functionality as an epigenetic regulator. ACK1 interacts with the Estrogen Receptor (ER)/histone demethylase KDM3A (JHDM2a) complex, modifies KDM3A by tyrosine phosphorylation to regulate transcriptional outcome at HOXA1 locus to promote the growth of tamoxifen-resistant breast cancer. It is also well established that ACK1 regulates the activity of Androgen Receptor (AR) by tyrosine phosphorylation to fuel the growth of hormone-refractory prostate cancers. Further, recent explosion in genomic sequencing has revealed recurrent ACK1 gene amplification and somatic mutations in a variety of human malignancies, providing a molecular basis for its role in neoplastic transformation. In this review, we will discuss the various facets of ACK1 signaling, including its newly uncovered epigenetic regulator function, which enables cells to bypass the blockade to major survival pathways to promote resistance to standard cancer treatments. Not surprisingly, cancer cells appear to acquire an `addiction’ to ACK1 mediated survival, particularly under stress conditions, such as growth factor deprivation or genotoxic insults or hormone deprivation. With the accelerated development of potent and selective ACK1 inhibitors, targeted treatment for cancers harboring aberrant ACK1 activity may soon become a clinical reality. PMID:25347744

  8. Activating Mutations in PIK3CA Lead to Widespread Modulation of the Tyrosine Phosphoproteome

    PubMed Central

    Blair, Brian G.; Pinto, Sneha M.; Nirujogi, Raja S.; Jelinek, Christine A.; Malhotra, Radhika; Kim, Min-Sik; Park, Ben Ho; Pandey, Akhilesh

    2015-01-01

    The human oncogene PIK3CA is frequently mutated in human cancers. Two hotspot mutations in PIK3CA, E545K and H1047R, have been shown to regulate widespread signaling events downstream of AKT, leading to increased cell proliferation, growth, survival, and motility. We used quantitative mass spectrometry to profile the global phosphotyrosine proteome of isogenic knock-in cell lines containing these activating mutations, where we identified 824 unique phosphopeptides. Although it is well understood that these mutations result in hyperactivation of the serine/threonine kinase AKT, we found a surprisingly widespread modulation of tyrosine phosphorylation levels of proteins in the mutant cells. In the tyrosine kinome alone, 29 tyrosine kinases were altered in their phosphorylation status. Many of the regulated phosphosites that we identified were located in the kinase domain or the canonical activation sites, indicating that these kinases and their downstream signaling pathways were activated. Our study demonstrates that there is frequent and unexpected cross-talk that occurs between tyrosine signaling pathways and serine/threonine signaling pathways activated by the canonical PI3K-AKT axis. PMID:26267517

  9. Angiopoietin-1 Regulates Brain Endothelial Permeability through PTPN-2 Mediated Tyrosine Dephosphorylation of Occludin

    PubMed Central

    Siddiqui, M. Rizwan; Mayanil, Chandra S.; Kim, Kwang Sik; Tomita, Tadanori

    2015-01-01

    Objective Blood brain barrier (BBB) breakdown and increased endothelial permeability is a hallmark of neuro-vascular inflammation. Angiopoietin-1 (Ang-1), a Tie-2 receptor agonist ligand, is known to modulate barrier function of endothelial cells; however the molecular mechanisms related to Ang-1 mediated repair of Tight Junctions (TJs) in brain endothelium still remain elusive. In this study, we investigated a novel role of non-receptor protein tyrosine phosphatase N-2 (PTPN-2) in Ang-1 mediated stabilization of tight junction proteins. Method and Result To study the barrier protective mechanism of Ang-1, we challenged human brain microvascular endothelial cells in-vitro, with a potent inflammatory mediator thrombin. By using confocal microscopy and transwell permeability assay, we show that pretreatment of brain endothelial cells with Ang-1 diminish thrombin mediated disruption of TJs and increase in endothelial permeability. We also found that Ang-1 inhibits thrombin induced tyrosine phosphorylation of Occludin and promote Occludin interaction with Zona Occludens-1 (ZO-1) to stabilize TJs. Interestingly, our study revealed that depletion of PTPN-2 by siRNAs abolishes Ang-1 ability to promote tyrosine dephosphorylation of Occludin, resulting Occludin disassociation from ZO-1 and endothelial hyperpermeability. Summary Collectively, our findings suggest that in brain endothelial cells blocking PTPN-2 mediated tyrosine phosphorylation of Occludin is a novel mechanism to maintain BBB function, and may offer a key therapeutic strategy for neuro-inflammatory disorders associated with BBB disruption. PMID:26090670

  10. An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag.

    PubMed

    Garcia, Francisco J; Carroll, Kate S

    2016-05-24

    Protein tyrosine phosphatases are crucial regulators of signal transduction and function as antagonists towards protein tyrosine kinases to control reversible tyrosine phosphorylation, thereby regulating fundamental physiological processes. Growing evidence has supported the notion that reversible oxidative inactivation of the catalytic cysteine residue in protein tyrosine phosphatases serves as an oxidative post-translational modification that regulates its activity to influence downstream signaling by promoting phosphorylation and induction of the signaling cascade. The oxidation of cysteine to the sulfenic acid is often transient and difficult to detect, thus making it problematic in understanding the role that this oxidative post-translational modification plays in redox-biology and pathogenesis. Several methods to detect cysteine oxidation in biological systems have been developed, though targeted approaches to directly detect oxidized phosphatases are still lacking. Herein we describe the development of a novel immunochemical approach to directly profile oxidized phosphatases. This immunochemical approach consists of an antibody designed to recognize the conserved sequence of the PTP active site (VHCDMDSAG) harboring the catalytic cysteine modified with dimedone (CDMD), a nucleophile that chemoselectively reacts with cysteine sulfenic acids to form a stable thioether adduct. Additionally, we provide biochemical and mass spectrometry workflows to be used in conjugation with this newly developed immunochemical approach to assist in the identification and quantification of basal and oxidized phosphatases. PMID:26757830

  11. Tyrosine Recombinase Retrotransposons and Transposons.

    PubMed

    Poulter, Russell T M; Butler, Margi I

    2015-04-01

    Retrotransposons carrying tyrosine recombinases (YR) are widespread in eukaryotes. The first described tyrosine recombinase mobile element, DIRS1, is a retroelement from the slime mold Dictyostelium discoideum. The YR elements are bordered by terminal repeats related to their replication via free circular dsDNA intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. Recently a large number of YR retrotransposons have been described, including elements from fungi (mucorales and basidiomycetes), plants (green algae) and a wide range of animals including nematodes, insects, sea urchins, fish, amphibia and reptiles. YR retrotransposons can be divided into three major groups: the DIRS elements, PAT-like and the Ngaro elements. The three groups form distinct clades on phylogenetic trees based on alignments of reverse transcriptase/ribonuclease H (RT/RH) and YR sequences, and also having some structural distinctions. A group of eukaryote DNA transposons, cryptons, also carry tyrosine recombinases. These DNA transposons do not encode a reverse transcriptase. They have been detected in several pathogenic fungi and oomycetes. Sequence comparisons suggest that the crypton YRs are related to those of the YR retrotransposons. We suggest that the YR retrotransposons arose from the combination of a crypton-like YR DNA transposon and the RT/RH encoding sequence of a retrotransposon. This acquisition must have occurred at a very early point in the evolution of eukaryotes. PMID:26104693

  12. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase

    SciTech Connect

    O'Bryan, J.P.; Frye, R.A.; Cogswell, P.C.; Neubauer, A.; Kitch, B.; Prokop, C.; Earp, H.S.; Liu, E.T. ); Espinosa, R. III; Le Beau, M.M. )

    1991-10-01

    Using a sensitive transfection-tumorigenicity assay, the authors have isolated a novel transforming gene from the DNA of two patients with chronic myelogenous leukemia. Sequence analysis indicates that the product of this gene, axl, is a receptor tyrosine kinase. Overexpression of axl cDNA in NIH 3T3 cells induces neoplastic transformation with the concomitant appearance of a 140-kDa axl tyrosine-phosphorylated protein. Expression of axl cDNA in the baculovirus system results in the expression of the appropriate recombinant protein that is recognized by antophosphotyrosine antibodies, confirming that the axl protein is a tyrosine kinase. The juxtaposition of fibronectin type II and immunoglobulinlike repeats in the extracellular domain, as well as distinct amino acid sequences in the kinase domain, indicate that the axl protein represents a novel subclass of receptor tyrosine kinases.

  13. In vitro phosphorylation does not influence the aggregation kinetics of WT α-synuclein in contrast to its phosphorylation mutants.

    PubMed

    Schreurs, Sarah; Gerard, Melanie; Derua, Rita; Waelkens, Etienne; Taymans, Jean-Marc; Baekelandt, Veerle; Engelborghs, Yves

    2014-01-01

    The aggregation of alpha-synuclein (α-SYN) into fibrils is characteristic for several neurodegenerative diseases, including Parkinson's disease (PD). Ninety percent of α-SYN deposited in Lewy Bodies, a pathological hallmark of PD, is phosphorylated on serine129. α-SYN can also be phosphorylated on tyrosine125, which is believed to regulate the membrane binding capacity and thus possibly its normal function. A better understanding of the effect of phosphorylation on the aggregation of α-SYN might shed light on its role in the pathogenesis of PD. In this study we compare the aggregation properties of WT α-SYN with the phospho-dead and phospho-mimic mutants S129A, S129D, Y125F and Y125E and in vitro phosphorylated α-SYN using turbidity, thioflavin T and circular dichroism measurements as well as transmission electron microscopy. We show that the mutants S129A and S129D behave similarly compared to wild type (WT) α-SYN, while the mutants Y125F and Y125E fibrillate significantly slower, although all mutants form fibrillar structures similar to the WT protein. In contrast, in vitro phosphorylation of α-SYN on either S129 or Y125 does not significantly affect the fibrillization kinetics. Moreover, FK506 binding proteins (FKBPs), enzymes with peptidyl-prolyl cis-trans isomerase activity, still accelerate the aggregation of phosphorylated α-SYN in vitro, as was shown previously for WT α-SYN. In conclusion, our results illustrate that phosphorylation mutants can display different aggregation properties compared to the more biologically relevant phosphorylated form of α-SYN. PMID:24434619

  14. Grb2, a Double-Edged Sword of Receptor Tyrosine Kinase Signaling

    PubMed Central

    Belov, Artur A.; Mohammadi, Moosa

    2013-01-01

    Receptor tyrosine kinases (RTKs) exhibit basal tyrosine phosphorylation and activity in the absence of ligand stimulation, which has been attributed to the “leaky” nature of tyrosine kinase autoinhibition and stochastic collisions of receptors in the membrane bilayer. This basal phosphorylation does not produce a signal of sufficient amplitude and intensity to manifest in a biological response and hence is considered to be a passive, futile process that does not have any biological function. This paradigm has now been challenged by a study showing that the basal phosphorylation of RTKs is a physiologically relevant process that is actively inhibited by the intracellular adaptor protein growth factor receptor-bound 2 (Grb2) and serves to “prime” receptors for a rapid response to ligand stimulation. Grb2 is conventionally known for playing positive roles in RTK signaling. The discovery of a negative regulatory role for Grb2 reveals that this adaptor acts as a double-edged sword in the regulation of RTK signaling. PMID:23131845

  15. Struvite and prebiotic phosphorylation.

    NASA Technical Reports Server (NTRS)

    Handschuh, G. J.; Orgel, L. E.

    1973-01-01

    Struvite rather than apatite or amorphous calcium phosphate is precipitated when phosphate is added to seawater containing more than 0.01M NH4+ ions. Struvite may have precipitated from evaporating seawater on the primitive earth, and may have been important for prebiotic phosphorylation.

  16. Dopamine D2 receptors are involved in the regulation of Fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo.

    PubMed

    Mao, Li-Min; Wang, John Q

    2016-04-01

    Fyn, a major Src family kinase (SFK) member that is densely expressed in striatal neurons, is actively involved in the regulation of cellular and synaptic activities in local neurons. This SFK member is likely regulated by dopamine signaling through a receptor mechanism involving dopamine D2 receptors (D2Rs). This study characterizes the D2R-dependent regulation of Fyn in the rat striatum in vivo. Moreover, we explore whether D2Rs regulate metabotropic glutamate receptor 5 (mGluR5) in its tyrosine phosphorylation and whether the D2R-SFK pathway modulates trafficking of mGluR5. We found that blockade of D2Rs by systemic administration of a D2R antagonist, eticlopride, substantially increased SFK phosphorylation in the striatum. This increase was a transient and reversible event. The eticlopride-induced SFK phosphorylation occurred predominantly in immunopurified Fyn but not in another SFK member, Src. Eticlopride also elevated tyrosine phosphorylation of mGluR5. In parallel, eticlopride enhanced synaptic delivery of active Fyn and mGluR5. Pretreatment with an SFK inhibitor blocked the eticlopride-induced tyrosine phosphorylation and synaptic trafficking of mGluR5. These results indicate that D2Rs inhibit SFK (mainly Fyn) phosphorylation in the striatum. D2Rs also inhibit tyrosine phosphorylation and synaptic recruitment of mGluR5 through a signaling mechanism likely involving Fyn. PMID:26777117

  17. Determining in vivo Phosphorylation Sites using Mass Spectrometry

    PubMed Central

    Breitkopf, Susanne B.; Asara, John M.

    2012-01-01

    Phosphorylation is the most studied protein post-translational modification (PTM) in biological systems since it controls cell growth, proliferation, survival, etc. High resolution/high mass accuracy mass spectrometers are used to identify protein phosphorylation sites due to their speed, sensitivity, selectivity and throughput. The protocol described here focuses on two common strategies: 1) Identifying phosphorylation sites from individual proteins and small protein complexes, and 2) Identifying global phosphorylation sites from whole cell and tissue extracts. For the first, endogenous or epitope tagged proteins are typically immunopurified (IP) from cell lysates, purified via gel electrophoresis or precipitation and enzymatically digested into peptides. Samples can be optionally enriched for phosphopeptides using immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) and then analyzed by microcapillary liquid chromatography/tandem mass spectrometry (LC-MS/MS). Global phosphorylation site analyses that capture pSer/pThr/pTyr sites from biological sources sites are more resource and time-consuming and involve digesting the whole cell lysate, followed by peptide fractionation by strong cation exchange chromatography (SCX), phosphopeptide enrichment by IMAC or TiO2 and LC-MS/MS. Alternatively, one can fractionate the protein lysate by SDS-PAGE, followed by digestion, phosphopeptide enrichment and LC-MS/MS. One can also IP only phospho-tyrosine peptides using a pTyr antibody followed by LC-MS/MS. PMID:22470061

  18. Site-specific Proteasome Phosphorylation Controls Cell Proliferation and Tumorigenesis

    PubMed Central

    Guo, Xing; Wang, Xiaorong; Wang, Zhiping; Banerjee, Sourav; Yang, Jing; Huang, Lan; Dixon, Jack E.

    2015-01-01

    Despite the fundamental importance of proteasomal degradation in cells, little is known about whether and how the 26S proteasome itself is regulated in coordination with various physiological processes. Here we show that the proteasome is dynamically phosphorylated during cell cycle at Thr25 of the 19S subunit Rpt3. CRISPR/Cas9-mediated genome editing, RNA interference and biochemical studies demonstrate that blocking Rpt3-Thr25 phosphorylation markedly impairs proteasome activity and impedes cell proliferation. Through a kinome-wide screen, we have identified dual-specificity tyrosine-regulated kinase 2 (DYRK2) as the primary kinase that phosphorylates Rpt3-Thr25, leading to enhanced substrate translocation and degradation. Importantly, loss of the single phosphorylation of Rpt3-Thr25 or knockout of DYRK2 significantly inhibits tumor formation by proteasome-addicted human breast cancer cells in mice. These findings define an important mechanism for proteasome regulation and demonstrate the biological significance of proteasome phosphorylation in regulating cell proliferation and tumorigenesis. PMID:26655835

  19. Identification of novel inhibitors of BCR-ABL tyrosine kinase via virtual screening.

    PubMed

    Peng, Hui; Huang, Niu; Qi, Jing; Xie, Ping; Xu, Chen; Wang, Jianxiang; Yang, Chunzheng

    2003-11-01

    Inhibition of BCR-ABL tyrosine kinase activity has shown to be essential for the treatment of chronic myelogenous leukemia (CML). However, drug resistance has quickly arisen in recent clinical trials for STI571 (Gleevec), which is the first approved drug of CML by inhibiting ABL tyrosine kinase. It is desirable to develop new types of ABL tyrosine kinase inhibitors that may overcome this drug resistance problem. Here we present the discovery of novel inhibitors targeted at the catalytic domain of ABL tyrosine kinase by using three-dimensional database searching techniques. From a database containing 200,000 commercially available compounds, the top 1000 compounds with the best DOCK energy score were selected and subjected to structural diversity and drug likeness analysis, 15 compounds were submitted for biological assay. Eight out of the 15 showed inhibitory activity against K562 cells with IC(50) value ranging from 10 to 200 microM. Two promising compounds showed inhibition in further ABL tyrosine phosphorylation assay. It is anticipated that those two compounds can serve as lead compounds for further drug design and optimization. PMID:14552760

  20. Zur Biosynthese von Phenylalanin und Tyrosin

    NASA Astrophysics Data System (ADS)

    Lingens, F.; Keller, E.

    1983-03-01

    With the discovery of arogenic acid two new pathways for the biosynthesis of phenylalanine and tyrosine have been revealed. The occurrence of two, three, or four pathways for the biosynthesis of phenylalanine and tyrosine in microorganisms and plants may be a useful tool for taxonomic classifications. Investigations on enterobacteriaceae, pseudomonads, flavobacteria, streptomycetes, archaebacteria, and on Sphaerotilus, Trichococcus and Leptothrix species from bulking sludge are described. The possible role of arogenate in the evolution of the pathways for tyrosine and phenylalanine biosynthesis is discussed.

  1. The sustained phase of tyrosine hydroxylase activation in vivo.

    PubMed

    Ong, Lin Kooi; Sominsky, Luba; Dickson, Phillip W; Hodgson, Deborah M; Dunkley, Peter R

    2012-09-01

    Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthetic pathway for catecholamine synthesis. Stress triggers an increase in TH activity, resulting in increased release of catecholamines from both neurons and the adrenal medulla. In response to stress three phases of TH activation have been identified (acute, sustained and chronic) and each phase has a unique mechanism. The acute and chronic phases have been studied in vivo in a number of animal models, but to date the sustained phase has only been characterised in vitro. We aimed to investigate the effects of dual exposure to lipopolysaccharide (LPS) in neonatal rats on TH protein, TH phosphorylation at serine residues 19, 31 and 40 and TH activity in the adrenal gland over the sustained phase. Wistar rats were administered LPS (0.05 mg/kg, intraperitoneal injection) or an equivolume of non-pyrogenic saline on days 3 and 5 postpartum. Adrenal glands were collected at 4, 24 and 48 h after the drug exposure on day 5. Neonatal LPS treatment resulted in increases in TH phosphorylation of Ser40 at 4 and 24 h, TH phosphorylation of Ser31 at 24 h, TH activity at 4 and 24 h and TH protein at 48 h. We therefore have provided evidence for the first time that TH phosphorylation at Ser31 and Ser40 occurs for up to 24 h in vivo and leads to TH activation independent of TH protein synthesis, suggesting that the sustained phase of TH activation occurs in vivo. PMID:22684282

  2. H-2Dd engagement of Ly49A leads directly to Ly49A phosphorylation and recruitment of SHP1

    PubMed Central

    Daws, M R; Eriksson, M; Öberg, L; Ullén, A; Sentman, C L

    1999-01-01

    We have used a number of in vitro and in vivo techniques to identify the molecules that can bind to the cytoplasmic tail of the Ly49A receptor. Affinity chromatography using peptides corresponding to the N-terminal 18 amino acids of Ly49A allowed the recovery of a number of proteins that bound preferentially to the tyrosine-phosphorylated peptide, including SH2-containing phosphatase-1 (SHP1) and the SH2-containing inositol 5′ phosphatase (SHIP). In another approach, using the entire cytoplasmic domain of the Ly49A receptor, we found that SHP2 also interacted with the tyrosine-phosphorylated form of the Ly49A cytoplasmic tail. Using BIACORE®2000 analysis, we determined that both SHP1 and SHP2 bound to the tyrosine-phosphorylated cytoplasmic tail of Ly49A with affinities in the nanomolar range, whilst SHIP showed no binding. Mutation of tyrosine-36 to phenylalanine did not significantly affect the affinities of these proteins for the tyrosine-phosphorylated cytoplasmic tail of Ly49A. In addition, using a whole-cell system with T-cell lymphoma cell lines that expressed the Ly49A receptor or its H-2Dd ligand, we determined that engagement of Ly49A by its major histocompatibility complex (MHC) lig