Science.gov

Sample records for ligase gp78 increases

  1. Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of {alpha}-1-antitrypsin

    SciTech Connect

    Shen Yuxian; Ballar, Petek; Fang, Shengyun . E-mail: fangs@umbi.umd.edu

    2006-11-03

    Deficiency of circulating {alpha}-1-antitrypsin (AAT) is the most widely recognized abnormality of a proteinase inhibitor that causes lung disease. AAT-deficiency is caused by mutations of the AAT gene that lead to AAT protein retention in the endoplasmic reticulum (ER). Moreover, the mutant AAT accumulated in the ER predisposes the homozygote to severe liver injuries, such as neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. Despite the fact that mutant AAT protein is subject to ER-associated degradation (ERAD), yeast genetic studies have determined that the ubiquitination machinery, Hrd1/Der3p-cue1p-Ubc7/6p, which plays a prominent role in ERAD, is not involved in degradation of mutant AAT. Here we report that gp78, a ubiquitin ligase (E3) pairing with mammalian Ubc7 for ERAD, ubiquitinates and facilitates degradation of ATZ, the classic deficiency variant of AAT having a Z mutation (Glu 342 Lys). Unexpectedly, gp78 over-expression also significantly increases ATZ solubility. p97/VCP, an AAA ATPase essential for retrotranslocation of misfolded proteins from the ER during ERAD, is involved in gp78-mediated degradation of ATZ. Surprisingly, unlike other ERAD substrates that cause ER stress leading to apoptosis when accumulated in the ER, ATZ, in fact, increases cell proliferation when over-expressed in cells. This effect can be partially inhibited by gp78 over-expression. These data indicate that gp78 assumes multiple unique quality control roles over ATZ, including the facilitation of degradation and inhibition of aggregation of ATZ.

  2. The Gp78 ubiquitin ligase: probing endoplasmic reticulum complexity.

    PubMed

    St Pierre, Pascal; Nabi, Ivan R

    2012-02-01

    The endoplasmic reticulum (ER) has been classically divided, based on electron microscopy analysis, into parallel ribosome-studded rough ER sheets and a tubular smooth ER network. Recent studies have identified molecular constituents of the ER, the reticulons and DP1, that drive ER tubule formation and whose expression determines expression of ER sheets and tubules and thereby rough and smooth ER. However, segregation of the ER into only two domains remains simplistic and multiple functionally distinct ER domains necessarily exist. In this review, we will discuss the sub-organization of the ER in different domains focusing on the localization and role of the gp78 ubiquitin ligase in the mitochondria-associated smooth ER and on the evidence for a quality control ERAD domain. PMID:22045301

  3. Raft endocytosis of AMF regulates mitochondrial dynamics through Rac1 signaling and the Gp78 ubiquitin ligase.

    PubMed

    Shankar, Jay; Kojic, Liliana D; St-Pierre, Pascal; Wang, Peter T C; Fu, Min; Joshi, Bharat; Nabi, Ivan R

    2013-08-01

    Gp78 is a cell surface receptor that also functions as an E3 ubiquitin ligase in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. The Gp78 ligand, the glycolytic enzyme phosphoglucose isomerase (PGI; also called autocrine motility factor, AMF), functions as a cytokine upon secretion by tumor cells. AMF is internalized through a PI3K- and dynamin-dependent raft endocytic pathway to the smooth ER; however, the relationship between AMF and Gp78 ubiquitin ligase activity remains unclear. AMF uptake to the smooth ER is inhibited by the dynamin inhibitor, dynasore, is reduced in Gp78 knockdown cells and induces the dynamin-dependent downregulation of its cell surface receptor. AMF uptake is Rac1-dependent and is inhibited by expression of dominant-negative Rac1 and the Rac1 inhibitor NSC23766, and is therefore distinct from Cdc42- and RhoA-dependent raft endocytic pathways. AMF stimulates Rac1 activation, but this is reduced by dynasore treatment and is absent in Gp78-knockdown cells; therefore, AMF activities require Gp78-mediated endocytosis. AMF also prevents Gp78-induced degradation of the mitochondrial fusion proteins, mitofusin 1 and 2 in a dynamin-, Rac1- and phosphoinositide 3-kinase (PI3K)-dependent manner. Gp78 induces mitochondrial clustering and fission in a manner dependent on GP78 ubiquitin ligase activity, and this is also reversed by uptake of AMF. The raft-dependent endocytosis of AMF, therefore, promotes Rac1-PI3K signaling that feeds back to promote AMF endocytosis and also inhibits the ability of Gp78 to target the mitofusins for degradation, thereby preventing Gp78-dependent mitochondrial fission. Through regulation of an ER-localized ubiquitin ligase, the raft-dependent endocytosis of AMF represents an extracellular regulator of mitochondrial fusion and dynamics. PMID:23690547

  4. Ubiquitin ligase gp78 targets unglycosylated prion protein PrP for ubiquitylation and degradation.

    PubMed

    Shao, Jia; Choe, Vitnary; Cheng, Haili; Tsai, Yien Che; Weissman, Allan M; Luo, Shiwen; Rao, Hai

    2014-01-01

    Prion protein PrP is a central player in several devastating neurodegenerative disorders, including mad cow disease and Creutzfeltd-Jacob disease. Conformational alteration of PrP into an aggregation-prone infectious form PrPSc can trigger pathogenic events. How levels of PrP are regulated is poorly understood. Human PrP is known to be degraded by the proteasome, but the specific proteolytic pathway responsible for PrP destruction remains elusive. Here, we demonstrate that the ubiquitin ligase gp78, known for its role in protein quality control, is critical for unglycosylated PrP ubiquitylation and degradation. Furthermore, C-terminal sequences of PrP protein are crucial for its ubiquitylation and degradation. Our study reveals the first ubiquitin ligase specifically involved in prion protein PrP degradation and PrP sequences crucial for its turnover. Our data may lead to a new avenue to control PrP level and pathogenesis. PMID:24714645

  5. Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes.

    PubMed

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J; Liu, Yi; Burlingame, A L; Correia, Maria Almira

    2015-02-01

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  6. gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum

    PubMed Central

    Zhang, Ting; Xu, Yue; Liu, Yanfen; Ye, Yihong

    2015-01-01

    Eukaryotic cells eliminate misfolded proteins from the endoplasmic reticulum (ER) via a conserved process termed ER-associated degradation (ERAD). Central regulators of the ERAD system are membrane-bound ubiquitin ligases, which are thought to channel misfolded proteins through the ER membrane during retrotranslocation. Hrd1 and gp78 are mammalian ubiquitin ligases homologous to Hrd1p, an ubiquitin ligase essential for ERAD in Saccharomyces cerevisiae. However, the functional relevance of these proteins to Hrd1p is unclear. In this paper, we characterize the gp78-containing ubiquitin ligase complex and define its functional interplay with Hrd1 using biochemical and recently developed CRISPR-based genetic tools. Our data show that transient inactivation of the gp78 complex by short hairpin RNA–mediated gene silencing causes significant stabilization of both luminal and membrane ERAD substrates, but unlike Hrd1, which plays an essential role in retrotranslocation and ubiquitination of these ERAD substrates, knockdown of gp78 does not affect either of these processes. Instead, gp78 appears to act downstream of Hrd1 to promote ERAD via cooperation with the BAG6 chaperone complex. We conclude that the Hrd1 complex forms an essential retrotranslocation module that is evolutionarily conserved, but the mammalian ERAD system uses additional ubiquitin ligases to assist Hrd1 during retrotranslocation. PMID:26424800

  7. Allosteric Activation of E2-RING Finger-Mediated Ubiquitylation by a Structurally Defined Specific E2-Binding Region of gp78

    SciTech Connect

    Das, Ranabir; Mariano, Jennifer; Tsai, Yien Che; Kalathur, Ravi C.; Kostova, Zlatka; Li, Jess; Tarasov, Sergey G.; McFeeters, Robert L.; Altieri, Amanda S.; Ji, Xinhua; Byrd, R. Andrew; Weissman, Allan M.

    2010-11-12

    The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.

  8. Lunapark Is a Component of a Ubiquitin Ligase Complex Localized to the Endoplasmic Reticulum Three-way Junctions.

    PubMed

    Zhao, Yupeng; Zhang, Ting; Huo, Huanhuan; Ye, Yihong; Liu, Yanfen

    2016-08-26

    The endoplasmic reticulum (ER) network comprises sheets and tubules that are connected by dynamic three-way junctions. Lunapark (Lnp) localizes to and stabilizes ER three-way junctions by antagonizing the small GTPase Atlastin, but how Lnp shapes the ER network is unclear. Here, we used an affinity purification approach and mass spectrometry to identify Lnp as an interacting partner of the ER protein quality control ubiquitin ligase gp78. Accordingly, Lnp purified from mammalian cells has a ubiquitin ligase activity in vitro Intriguingly, biochemical analyses show that this activity can be attributed not only to associated ubiquitin ligase, but also to an intrinsic ubiquitin ligase activity borne by Lnp itself. This activity is contained in the N-terminal 45 amino acids of Lnp although this segment does not share homology to any known ubiquitin ligase motifs. Despite its interaction with gp78, Lnp does not seem to have a broad function in degradation of misfolded ER proteins. On the other hand, the N-terminal ubiquitin ligase-bearing motif is required for the ER three-way junction localization of Lnp. Our study identifies a new type of ubiquitin ligase and reveals a potential link between ubiquitin and ER morphology regulation. PMID:27387505

  9. Glutamate Cysteine Ligase Modifier Subunit (Gclm) Null Mice Have Increased Ovarian Oxidative Stress and Accelerated Age-Related Ovarian Failure.

    PubMed

    Lim, Jinhwan; Nakamura, Brooke N; Mohar, Isaac; Kavanagh, Terrance J; Luderer, Ulrike

    2015-09-01

    Glutathione (GSH) is the one of the most abundant intracellular antioxidants. Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH. Our prior work showed that GSH plays antiapoptotic roles in ovarian follicles. We hypothesized that Gclm(-/-) mice have accelerated ovarian aging due to ovarian oxidative stress. We found significantly decreased ovarian GSH concentrations and oxidized GSH/oxidized glutathione redox potential in Gclm(-/-) vs Gclm(+/+) ovaries. Prepubertal Gclm(-/-) and Gclm(+/+) mice had similar numbers of ovarian follicles, and as expected, the total number of ovarian follicles declined with age in both genotypes. However, the rate of decline in follicles was significantly more rapid in Gclm(-/-) mice, and this was driven by accelerated declines in primordial follicles, which constitute the ovarian reserve. We found significantly increased 4-hydroxynonenal immunostaining (oxidative lipid damage marker) and significantly increased nitrotyrosine immunostaining (oxidative protein damage marker) in prepubertal and adult Gclm(-/-) ovaries compared with controls. The percentage of small ovarian follicles with increased granulosa cell proliferation was significantly higher in prepubertal and 2-month-old Gclm(-/-) vs Gclm(+/+) ovaries, indicating accelerated recruitment of primordial follicles into the growing pool. The percentages of growing follicles with apoptotic granulosa cells were increased in young adult ovaries. Our results demonstrate increased ovarian oxidative stress and oxidative damage in young Gclm(-/-) mice, associated with an accelerated decline in ovarian follicles that appears to be mediated by increased recruitment of follicles into the growing pool, followed by apoptosis at later stages of follicular development. PMID:26083875

  10. Ubiquitin ligase UBE3C promotes melanoma progression by increasing epithelial-mesenchymal transition in melanoma cells

    PubMed Central

    Tang, Li; Yi, Xue-Mei; Chen, Jia; Chen, Fu-Juan; Lou, Wei; Gao, Yun-Lu; Zhou, Jing; Su, Li-Na; Xu, Xin; Lu, Jia-Qing; Ma, Jun; Yu, Ning; Ding, Yang-Feng

    2016-01-01

    Melanoma is the most aggressive type of skin cancer, exhibiting extensive local invasion and early distant metastasis. Aberrant expression of ubiquitin-protein ligase E3C (UBE3C) plays a key role in tumor development and progression. In the present study, we analyzed UBE3C expression in samples of cancerous and normal skin tissue. Levels of UBE3C expression were much higher in primary and metastatic melanoma tissues than in normal skin, cutaneous squamous cell carcinoma or basal cell carcinoma. Melanoma cells overexpressing UBE3C frequently exhibited a mesenchymal phenotype, including reduced expression of the epithelial marker E-cadherin and expression of the mesenchymal marker vimentin. Knockdown of UBE3C expression in melanoma cells significantly suppressed melanoma growth and progression. Furthermore, silencing UBE3C led to increased E-cadherin expression and decreased vimentin and Snail1 expression. Thus UBE3C promotes melanoma progression, possibly by inducing epithelial-mesenchymal transition in melanoma cells. Inhibiting UBE3C activity may suppress melanoma invasion and metastasis and may represent a targeted therapeutic approach. PMID:26894856

  11. TSGΔ154-1054 splice variant increases TSG101 oncogenicity by inhibiting its E3-ligase-mediated proteasomal degradation

    PubMed Central

    Weng, Pei-Lun; Yeh, Te-Huei

    2016-01-01

    Tumor susceptibility gene 101 (TSG101) elicits an array of cellular functions, including promoting cytokinesis, cell cycle progression and proliferation, as well as facilitating endosomal trafficking and viral budding. TSG101 protein is highly and aberrantly expressed in various human cancers. Specifically, a TSG101 splicing variant missing nucleotides 154 to 1054 (TSGΔ154-1054), which is linked to progressive tumor-stage and metastasis, has puzzled investigators for more than a decade. TSG101-associated E3 ligase (Tal)- and MDM2-mediated proteasomal degradation are the two major routes for posttranslational regulation of the total amount of TSG101. We reveal that overabundance of TSG101 results from TSGΔ154-1054 stabilizing the TSG101 protein by competitively binding to Tal, but not MDM2, thereby perturbing the Tal interaction with TSG101 and impeding subsequent polyubiquitination and proteasomal degradation of TSG101. TSGΔ154-1054 therefore specifically enhances TSG101-stimulated cell proliferation, clonogenicity, and tumor growth in nude mice. This finding shows the functional significance of TSGΔ154-1054 in preventing the ubiquitin-proteasome proteolysis of TSG101, which increases tumor malignancy and hints at its potential as a therapeutic target in cancer treatment. PMID:26811492

  12. Deletion of the DNA Ligase IV Gene in Candida glabrata Significantly Increases Gene-Targeting Efficiency

    PubMed Central

    Cen, Yuke; Fiori, Alessandro

    2015-01-01

    Candida glabrata is reported as the second most prevalent human opportunistic fungal pathogen in the United States. Over the last decades, its incidence increased, whereas that of Candida albicans decreased slightly. One of the main reasons for this shift is attributed to the inherent tolerance of C. glabrata toward the commonly used azole antifungal drugs. Despite a close phylogenetic distance to Saccharomyces cerevisiae, homologous recombination works with poor efficiency in C. glabrata compared to baker's yeast, in fact limiting targeted genetic alterations of the pathogen's genome. It has been shown that nonhomologous DNA end joining is dominant over specific gene targeting in C. glabrata. To improve the homologous recombination efficiency, we have generated a strain in which the LIG4 gene has been deleted, which resulted in a significant increase in correct gene targeting. The very specific function of Lig4 in mediating nonhomologous end joining is the reason for the absence of clear side effects, some of which affect the ku80 mutant, another mutant with reduced nonhomologous end joining. We also generated a LIG4 reintegration cassette. Our results show that the lig4 mutant strain may be a valuable tool for the C. glabrata research community. PMID:26048009

  13. The Expression of the Ubiquitin Ligase SIAH2 (Seven In Absentia Homolog 2) Is Increased in Human Lung Cancer

    PubMed Central

    Moreno, Paula; Lara-Chica, Maribel; Soler-Torronteras, Rafael; Caro, Teresa; Medina, Manuel; Álvarez, Antonio; Salvatierra, Ángel; Muñoz, Eduardo; Calzado, Marco A.

    2015-01-01

    Objectives Lung cancer is the leading cause of cancer-related deaths worldwide. Overall 5-year survival has shown little improvement over the last decades. Seven in absentia homolog (SIAH) proteins are E3 ubiquitin ligases that mediate proteasomal protein degradation by poly-ubiquitination. Even though SIAH proteins play a key role in several biological processes, their role in human cancer remains controversial. The aim of the study was to document SIAH2 expression pattern at different levels (mRNA, protein level and immunohistochemistry) in human non-small cell lung cancer (NSCLC) samples compared to surrounding healthy tissue from the same patient, and to analyse the association with clinicopathological features. Materials and Methods One hundred and fifty-two samples from a patient cohort treated surgically for primary lung cancer were obtained for the study. Genic and protein expression levels of SIAH2 were analysed and compared with clinic-pathologic variables. Results The present study is the first to analyze the SIAH2 expression pattern at different levels (RNA, protein expression and immunohistochemistry) in non-small cell lung cancer (NSCLC). We found that SIAH2 protein expression is significantly enhanced in human lung adenocarcinoma (ADC) and squamous cell lung cancer (SCC). Paradoxically, non-significant changes at RNA level were found, suggesting a post-traductional regulatory mechanism. More importantly, an increased correlation between SIAH2 expression and tumor grade was detected, suggesting that this protein could be used as a prognostic biomarker to predict lung cancer progression. Likewise, SIAH2 protein expression showed a strong positive correlation with fluorodeoxyglucose (2-deoxy-2(18F)fluoro-D-glucose) uptake in primary NSCLC, which may assist clinicians in stratifying patients at increased overall risk of poor survival. Additionally, we described an inverse correlation between the expression of SIAH2 and the levels of one of its substrates

  14. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress.

    PubMed

    Kim, Soo Jin; Kim, Woo Taek

    2013-08-19

    AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses. PMID:23831064

  15. Reduced association of anti-apoptotic protein Mcl-1 with E3 ligase Mule increases the stability of Mcl-1 in breast cancer cells

    PubMed Central

    Pervin, S; Tran, A; Tran, L; Urman, R; Braga, M; Chaudhuri, G; Singh, R

    2011-01-01

    Background: Mechanisms that increase resistance to apoptosis help promote cellular transformation. Cancer cells have deregulated apoptotic pathways, where increased expression and stability of anti-apoptotic proteins Mcl-1 and Bcl-2 increases resistance to apoptosis. Pathways that increase the stability of proteins in cancer cells remain poorly understood. Methods: Using human mammary epithelial and established breast cancer cell lines, we assessed the mechanisms that increase the stability of anti-apoptotic proteins in breast cancer cells by caspase assay, western blot, small-inhibitory RNA treatment and immunoprecipitation. Results: While breast cancer cells were resistant to de novo inhibition of protein synthesis, a rapid proteosome-mediated degradation of Mcl-1 and Bcl-2 induced apoptosis in mammary epithelial cells. Although Mule, an E3 ligase that targets Mcl-1 for degradation was expressed in mammary epithelial and breast cancer cell lines, rapid increase of polyubiquitinated Mcl-1 and Bcl-2 was detected only in mammary epithelial cells. Only transient formation of the Mule–Mcl-1 complex was detected in breast cancer cells. Downregulation of pERK1/2 in breast cancer cells reduced Mcl-1 levels and increased Mcl-1/Mule complex. Conclusion: Our findings suggest that reduced Mule/Mcl-1 complex has a significant role in increasing the stability of Mcl-1 in breast cancer cells and increased resistance to apoptosis. PMID:21730980

  16. SCF ubiquitin ligase targeted therapies

    PubMed Central

    Skaar, Jeffrey R.; Pagan, Julia K.; Pagano, Michele

    2015-01-01

    Summary The recent clinical successes of inhibitors of the proteasome for the treatment of cancer have highlighted the therapeutic potential of this protein degradation system. Proteasome inhibitors prevent the degradation of numerous proteins, so increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a large number of processes at the cellular and organismal levels, and their misregulation is implicated in many pathologies. SCF ligases are characterized by a high specificity for their substrates, so they represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This review will explore and discuss potential strategies to target SCF-mediated biology to treat human diseases. PMID:25394868

  17. Distinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria.

    PubMed

    Wang, Peter T C; Garcin, Pierre O; Fu, Min; Masoudi, Matthew; St-Pierre, Pascal; Panté, Nelly; Nabi, Ivan R

    2015-08-01

    Gp78 (also known as AMFR), an endoplasmic-reticulum (ER)-associated protein degradation (ERAD) E3 ubiquitin ligase, localizes to mitochondria-associated ER and targets the mitofusin (Mfn1 and Mfn2) mitochondrial fusion proteins for degradation. Gp78 is also the cell surface receptor for autocrine motility factor (AMF), which prevents Gp78-dependent mitofusin degradation. Gp78 ubiquitin ligase activity promotes ER-mitochondria association and ER-mitochondria Ca(2+) coupling, processes that are reversed by AMF. Electron microscopy of HT-1080 fibrosarcoma cancer cells identified both smooth ER (SER; ∼8 nm) and wider (∼50-60 nm) rough ER (RER)-mitochondria contacts. Both short hairpin RNA (shRNA)-mediated knockdown of Gp78 (shGp78) and AMF treatment selectively reduced the extent of RER-mitochondria contacts without impacting on SER--mitochondria contacts. Concomitant small interfering RNA (siRNA)-mediated knockdown of Mfn1 increased SER-mitochondria contacts in both control and shGp78 cells, whereas knockdown of Mfn2 increased RER-mitochondria contacts selectively in shGp78 HT-1080 cells. The mitofusins therefore inhibit ER-mitochondria interaction. Regulation of close SER-mitochondria contacts by Mfn1 and of RER-mitochondria contacts by AMF-sensitive Gp78-mediated degradation of Mfn2 define new mechanisms that regulate ER-mitochondria interactions. PMID:26065430

  18. SUMO-targeted ubiquitin ligases.

    PubMed

    Sriramachandran, Annie M; Dohmen, R Jürgen

    2014-01-01

    Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf. PMID:24018209

  19. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV.

    PubMed

    Greco, George E; Matsumoto, Yoshihiro; Brooks, Rhys C; Lu, Zhengfei; Lieber, Michael R; Tomkinson, Alan E

    2016-07-01

    DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV. PMID:27235626

  20. A design principle underlying the paradoxical roles of E3 ubiquitin ligases

    NASA Astrophysics Data System (ADS)

    Lee, Daewon; Kim, Minjin; Cho, Kwang-Hyun

    2014-07-01

    E3 ubiquitin ligases are important cellular components that determine the specificity of proteolysis in the ubiquitin-proteasome system. However, an increasing number of studies have indicated that E3 ubiquitin ligases also participate in transcription. Intrigued by the apparently paradoxical functions of E3 ubiquitin ligases in both proteolysis and transcriptional activation, we investigated the underlying design principles using mathematical modeling. We found that the antagonistic functions integrated in E3 ubiquitin ligases can prevent any undesirable sustained activation of downstream genes when E3 ubiquitin ligases are destabilized by unexpected perturbations. Interestingly, this design principle of the system is similar to the operational principle of a safety interlock device in engineering systems, which prevents a system from abnormal operation unless stability is guaranteed.

  1. Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching between Two DNA-Bound States

    SciTech Connect

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A.; Tomkinson, Alan E.; Ellenberger, Tom

    2010-09-13

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a 'jackknife model' in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  2. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.

    PubMed

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A; Tomkinson, Alan E; Ellenberger, Tom

    2010-07-27

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers. PMID:20518483

  3. The poxvirus encoded ubiquitin ligase, p28, is regulated by proteasomal degradation and autoubiquitination.

    PubMed

    Mottet, Kelly; Bareiss, Bettina; Milne, Craig D; Barry, Michele

    2014-11-01

    Virus manipulation of the ubiquitin-proteasome system has become increasingly apparent. Ubiquitin is a 76 amino acid protein that is post-translationally conjugated to target proteins, while poly-ubiquitination subsequently leads to degradation via the 26S proteasome. Target specificity is determined by a large family of ubiquitin ligases. Poxviruses encode p28, a highly conserved ubiquitin ligase expressed in a wide range of poxviruses (J. Virol. 79:597). Here we investigate the relationship between p28 and ubiquitination. Confocal microscopy indicated that orthologs of p28 co-localized with ubiquitin at the virus factory. Flow cytometry assays further demonstrated that p28 was regulated by proteasomal degradation. Moreover, when the ubiquitin ligase activity of p28 was disrupted by mutating the RING domain conjugated ubiquitin still localized to the viral factories, indicating that an unknown ubiquitin ligase(s) was responsible for regulating p28. Our observations indicate that p28 is a ubiquitin ligase that is regulated by ubiquitination and proteasomal degradation. PMID:25240226

  4. Circulating E3 ligases are novel and sensitive biomarkers for diagnosis of acute myocardial infarction

    PubMed Central

    Han, Qiu-Yue; Wang, Hong-Xia; Liu, Xiao-Hong; Guo, Cai-Xia; Hua, Qi; Yu, Xiao-Hong; Li, Nan; Yang, Yan-Zong; Du, Jie

    2015-01-01

    Ubiquitin ligase (E3) is a decisive element of the ubiquitin-proteasome system (UPS), which is the main pathway for intracellular protein turnover. Recently, circulating E3 ligases have been increasingly considered as cancer biomarkers. In the present study, we aimed to determine if cardiac-specific E3 ligases in circulation can serve as novel predictors for early diagnosis of acute myocardial infarction (AMI). By screening and verifying their tissue expression patterns with microarray and real-time PCR analysis, six of 261 E3 ligases, including cardiac-specific Rnf207 and cardiac- and muscle-enriched Fbxo32/atrogin-1, Trim54/MuRF3, Trim63/MuRF1, Kbtbd10/KLHL41, Asb11 and Asb2 in mouse heart, were selected for the present study. In the AMI rats, the levels of five E3 ligases including Rnf207, Fbxo32, Trim54, Trim63 and Kbtbd10 in the plasma were significantly increased compared with control animals. Especially, the plasma levels of Rnf207 was markedly increased at 1 h, peaked at 3 h and decreased at 6–24 h after ligation. Further evaluation of E3 ligases in AMI patients confirmed that plasma Rnf207 level increased significantly compared with that in healthy people and patients without AMI, and showed a similar time course to that in AMI rats. Simultaneously, plasma level of cardiac troponin I (cTnI) was measured by ELISA assays. Finally, receiver operating characteristic (ROC) curve analysis indicated that Rnf207 showed a similar sensitivity and specificity to the classic biomarker troponin I for diagnosis of AMI. Increased cardiac-specific E3 ligase Rnf207 in plasma may be a novel and sensitive biomarkers for AMI in humans. PMID:25599194

  5. Leucine: tRNA Ligase from Cultured Cells of Nicotiana tabacum var. Xanthi

    PubMed Central

    Gore, Nigel R.; Wray, John L.

    1978-01-01

    Leucine:tRNA ligase was assayed in extracts from cultured tobacco (Nicotiana tabacum) XD cells by measuring the initial rate of aminoacylation of transfer RNA with l-[4,5-3H]leucine. Transfer RNA was purified from tobacco XD cells after the method of Vanderhoef et al. (Phytochemistry 9: 2291-2304). The buoyant density of leucine:tRNA ligase from cells grown for 100 generations in 2.5 mm [15N]nitrate and 30% deuterium oxide was 1.3397. After transfer of cells into light medium (2.5 mm [14N]nitrate and 100% H2O) the ligase activity increased and the buoyant density decreased with time to 1.3174 at 72 hours after transfer. It was concluded that leucine:tRNA ligase molecules were synthesized de novo from light amino acids during the period of activity increase. The width at half-peak height of the enzyme distribution profiles following isopycnic equilibrium centrifugation in caesium chloride remained constant at all times after transfer into light medium providing evidence for the loss of preexisting functional ligase molecules. It was concluded that during the period of activity increase the cellular level of enzyme activity was determined by a balance between de novo synthesis and the loss of functional enzyme molecules due to either inactivation or degradation. PMID:16660229

  6. Engineered DNA ligases with improved activities in vitro.

    PubMed

    Wilson, Robert H; Morton, Susan K; Deiderick, Heather; Gerth, Monica L; Paul, Hayden A; Gerber, Ilana; Patel, Ankita; Ellington, Andrew D; Hunicke-Smith, Scott P; Patrick, Wayne M

    2013-07-01

    The DNA ligase from bacteriophage T4 is one of the most widely used enzymes in molecular biology. It has evolved to seal single-stranded nicks in double-stranded DNA, but not to join double-stranded fragments with cohesive or blunt ends. Its poor activity in vitro, particularly with blunt-ended substrates, can lead to failed or sub-optimal experimental outcomes. We have fused T4 DNA ligase to seven different DNA-binding proteins, including eukaryotic transcription factors, bacterial DNA repair proteins and archaeal DNA-binding domains. Representatives from each of these classes improved the activity of T4 DNA ligase, by up to 7-fold, in agarose gel-based screens for cohesive- and blunt-ended fragment joining. Overall, the most active variants were p50-ligase (i.e. NF-κB p50 fused to T4 DNA ligase) and ligase-cTF (T4 DNA ligase fused to an artificial, chimeric transcription factor). Ligase-cTF out-performed T4 DNA ligase by ∼160% in blunt end 'vector + insert' cloning assays, and p50-ligase showed an improvement of a similar magnitude when it was used to construct a library for Illumina sequencing. The activity of the Escherichia coli DNA ligase was also enhanced by fusion to p50. Together, these results suggest that our protein design strategy is a generalizable one for engineering improved DNA ligases. PMID:23754529

  7. Identification of Candidate Substrates for the Golgi Tul1 E3 Ligase Using Quantitative diGly Proteomics in Yeast*

    PubMed Central

    Tong, Zongtian; Kim, Min-Sik; Pandey, Akhilesh; Espenshade, Peter J.

    2014-01-01

    Maintenance of protein homeostasis is essential for cellular survival. Central to this regulation are mechanisms of protein quality control in which misfolded proteins are recognized and degraded by the ubiquitin-proteasome system. One well-studied protein quality control pathway requires endoplasmic reticulum (ER)-resident, multi-subunit E3 ubiquitin ligases that function in ER-associated degradation. Using fission yeast, our lab identified the Golgi Dsc E3 ligase as required for proteolytic activation of fungal sterol regulatory element-binding protein transcription factors. The Dsc E3 ligase contains five integral membrane subunits and structurally resembles ER-associated degradation E3 ligases. Saccharomyces cerevisiae codes for homologs of Dsc E3 ligase subunits, including the Dsc1 E3 ligase homolog Tul1 that functions in Golgi protein quality control. Interestingly, S. cerevisiae lacks sterol regulatory element-binding protein homologs, indicating that novel Tul1 E3 ligase substrates exist. Here, we show that the S. cerevisiae Tul1 E3 ligase consists of Tul1, Dsc2, Dsc3, and Ubx3 and define Tul1 complex architecture. Tul1 E3 ligase function required each subunit as judged by vacuolar sorting of the artificial substrate Pep12D. Genetic studies demonstrated that Tul1 E3 ligase was required in cells lacking the multivesicular body pathway and under conditions of ubiquitin depletion. To identify candidate substrates, we performed quantitative diGly proteomics using stable isotope labeling by amino acids in cell culture to survey ubiquitylation in wild-type and tul1Δ cells. We identified 3116 non-redundant ubiquitylation sites, including 10 sites in candidate substrates. Quantitative proteomics found 4.5% of quantified proteins (53/1172) to be differentially expressed in tul1Δ cells. Correcting the diGly dataset for these differences increased the number of Tul1-dependent ubiquitylation sites. Together, our data demonstrate that the Tul1 E3 ligase functions in

  8. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage.

    PubMed

    Takagi, Yuichiro; Masuda, Claudio A; Chang, Wei-Hau; Komori, Hirofumi; Wang, Dong; Hunter, Tony; Joazeiro, Claudio A P; Kornberg, Roger D

    2005-04-15

    Core transcription factor (TF) IIH purified from yeast possesses an E3 ubiquitin (Ub) ligase activity, which resides, at least in part, in a RING finger (RNF) domain of the Ssl1 subunit. Yeast strains mutated in the Ssl1 RNF domain are sensitive to ultraviolet (UV) light and to methyl methanesulfonate (MMS). This increased sensitivity to DNA-damaging agents does not reflect a deficiency in nucleotide excision repair. Rather, it correlates with reduced transcriptional induction of genes involved in DNA repair, suggesting that the E3 Ub ligase activity of TFIIH mediates the transcriptional response to DNA damage. PMID:15837426

  9. Protein neddylation: beyond cullin-RING ligases.

    PubMed

    Enchev, Radoslav I; Schulman, Brenda A; Peter, Matthias

    2015-01-01

    NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is a ubiquitin-like protein that activates the largest ubiquitin E3 ligase family, the cullin-RING ligases. Many non-cullin neddylation targets have been proposed in recent years. However, overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery, which makes validating potential NEDD8 targets challenging. Here, we re-evaluate studies of non-cullin targets of NEDD8 in light of the current understanding of the neddylation pathway, and suggest criteria for identifying genuine neddylation substrates under homeostatic conditions. We describe the biological processes that might be regulated by non-cullin neddylation, and the utility of neddylation inhibitors for research and as potential therapies. Understanding the biological significance of non-cullin neddylation is an exciting research prospect primed to reveal fundamental insights. PMID:25531226

  10. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  11. Nucleostemin stabilizes ARF by inhibiting the ubiquitin ligase ULF.

    PubMed

    Lo, D; Zhang, Y; Dai, M-S; Sun, X-X; Zeng, S X; Lu, H

    2015-03-26

    Upregulated expression of nucleolar GTPase nucleostemin (NS) has been associated with increased cellular proliferation potential and tumor malignancy during cancer development. Recent reports attribute the growth regulatory effects of NS protein to its role in facilitating ribosome production. However, the oncogenic potential of NS remains unclear, as imbalanced levels of NS have been reported to exert growth inhibitory effect by modulating p53 tumor-suppressor activity. It also remains in questions if aberrant NS levels might have a p53-independent role in regulation of cell proliferation and growth. In this study, we performed affinity purification and mass spectrometry analysis to explore protein-protein interactions influencing NS growth regulatory properties independently of p53 tumor suppressor. We identified the alternative reading frame (ARF) protein as a key protein associating with NS and further verified the interaction through in vitro and in vivo assays. We demonstrated that NS is able to regulate cell cycle progression by regulating the stability of the ARF tumor suppressor. Furthermore, overexpression of NS suppressed ARF polyubiquitination by its E3 ligase Ubiquitin Ligase for ARF and elongated its half-life, whereas knockdown of NS led to the decrease of ARF levels. Also, we found that NS can enhance NPM stabilization of ARF. Thus, we propose that in the absence of p53, ARF can be stabilized by NS and nucleophosmin to serve as an alternative tumor-suppressor surveillance, preventing potential cellular transformation resulting from the growth-inducing effects of NS overexpression. PMID:24769896

  12. DNA Ligase IV regulates XRCC4 nuclear localization

    PubMed Central

    Francis, Dailia B.; Kozlov, Mikhail; Chavez, Jose; Chu, Jennifer; Malu, Shruti; Hanna, Mary; Cortes, Patricia

    2014-01-01

    DNA Ligase IV, along with its interacting partner XRCC4, are essential for repairing DNA double strand breaks by non-homologous end joining (NHEJ). Together, they complete the final ligation step resolving the DNA break. Ligase IV is regulated by XRCC4 and XLF. However, the mechanism(s) by which Ligase IV control the NHEJ reaction and other NHEJ factor(s) remains poorly characterized. Here, we show that a C-terminal region of Ligase IV (aa 620 to 800), which encompasses a NLS, the BRCT I, and the XRCC4 interacting region (XIR), is essential for nuclear localization of its co-factor XRCC4. In Ligase IV deficient cells, XRCC4 showed deregulated localization remaining in the cytosol even after induction of DNA double strand breaks. DNA Ligase IV was also required for efficient localization of XLF into the nucleus. Additionally, human fibroblasts that harbor hypomorphic mutations within the Ligase IV gene displayed decreased levels of XRCC4 protein, implicating that DNA Ligase IV is also regulating XRCC4 stability. Our results provide evidence for a role of DNA Ligase IV in controlling the cellular localization and protein levels of XRCC4. PMID:24984242

  13. Structural alterations of DNA ligase I in Bloom syndrome.

    PubMed Central

    Willis, A E; Weksberg, R; Tomlinson, S; Lindahl, T

    1987-01-01

    Cell lines derived from seven patients with Bloom syndrome all contain a DNA ligase I with unusual properties. Six lines were shown to have a reduced level of this enzyme activity and the residual enzyme was anomalously heat-labile. The seventh line contained a dimeric rather than monomeric form of ligase I. Several cell lines representative of other inherited human syndromes have apparently normal DNA ligases. The data indicate that Bloom syndrome is due to a defect in the structure of DNA ligase I caused by a "leaky" point mutation occurring at one of at least two alternative sites. PMID:3479778

  14. Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology

    PubMed Central

    Chambers, Cecilia R.; Patrick, Wayne M.

    2015-01-01

    With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area. PMID:26494982

  15. DNA ligase I mediates essential functions in mammalian cells.

    PubMed Central

    Petrini, J H; Xiao, Y; Weaver, D T

    1995-01-01

    DNA replication, repair, and recombination are essential processes in mammalian cells. Hence, the application of gene targeting to the study of these DNA metabolic pathways requires the creation of nonnull mutations. We have developed a method for introducing partially defective mutants in murine embryonic stem cells that circumvents the problem of cellular lethality of targeted mutations at essential loci. Using this approach, we have determined that mammalian DNA ligase I is essential for cell viability. Thus, DNA ligases II and III are not redundant with DNA ligase I for the function(s) associated with cell proliferation. Partial complementation of the lethal DNA ligase I null mutation allowed the creation of deficient embryonic stem cell lines. We found that a wild-type DNA ligase I cDNA, as well as a variant DNA ligase I cDNA, was able to rescue the lethality of the homozygous null mutation, whereas an N-terminal deletion mutant consisting of the minimal DNA ligase I catalytic domain was not. This observation demonstrates that sequences outside the DNA ligase I catalytic domain are essential for DNA ligase I function in vivo. PMID:7623824

  16. Ubiquitin E3 ligase FIEL1 regulates fibrotic lung injury through SUMO-E3 ligase PIAS4.

    PubMed

    Lear, Travis; McKelvey, Alison C; Rajbhandari, Shristi; Dunn, Sarah R; Coon, Tiffany A; Connelly, William; Zhao, Joe Y; Kass, Daniel J; Zhang, Yingze; Liu, Yuan; Chen, Bill B

    2016-05-30

    The E3 small ubiquitin-like modifier (SUMO) protein ligase protein inhibitor of activated STAT 4 (PIAS4) is a pivotal protein in regulating the TGFβ pathway. In this study, we discovered a new protein isoform encoded by KIAA0317, termed fibrosis-inducing E3 ligase 1 (FIEL1), which potently stimulates the TGFβ signaling pathway through the site-specific ubiquitination of PIAS4. FIEL1 targets PIAS4 using a double locking mechanism that is facilitated by the kinases PKCζ and GSK3β. Specifically, PKCζ phosphorylation of PIAS4 and GSK3β phosphorylation of FIEL1 are both essential for the degradation of PIAS4. FIEL1 protein is highly expressed in lung tissues from patients with idiopathic pulmonary fibrosis (IPF), whereas PIAS4 protein levels are significantly reduced. FIEL1 overexpression significantly increases fibrosis in a bleomycin murine model, whereas FIEL1 knockdown attenuates fibrotic conditions. Further, we developed a first-in-class small molecule inhibitor toward FIEL1 that is highly effective in ameliorating fibrosis in mice. This study provides a basis for IPF therapeutic intervention by modulating PIAS4 protein abundance. PMID:27162139

  17. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases

    PubMed Central

    Riley, B.E.; Lougheed, J.C.; Callaway, K.; Velasquez, M.; Brecht, E.; Nguyen, L.; Shaler, T.; Walker, D.; Yang, Y.; Regnstrom, K.; Diep, L.; Zhang, Z.; Chiou, S.; Bova, M.; Artis, D.R.; Yao, N.; Baker, J.; Yednock, T.; Johnston, J.A.

    2013-01-01

    Parkin is a RING-between-RING E3 ligase that functions in the covalent attachment of ubiquitin to specific substrates, and mutations in Parkin are linked to Parkinson’s disease, cancer and mycobacterial infection. The RING-between-RING family of E3 ligases are suggested to function with a canonical RING domain and a catalytic cysteine residue usually restricted to HECT E3 ligases, thus termed ‘RING/HECT hybrid’ enzymes. Here we present the 1.58 Å structure of Parkin-R0RBR, revealing the fold architecture for the four RING domains, and several unpredicted interfaces. Examination of the Parkin active site suggests a catalytic network consisting of C431 and H433. In cells, mutation of C431 eliminates Parkin-catalysed degradation of mitochondria, and capture of an ubiquitin oxyester confirms C431 as Parkin’s cellular active site. Our data confirm that Parkin is a RING/HECT hybrid, and provide the first crystal structure of an RING-between-RING E3 ligase at atomic resolution, providing insight into this disease-related protein. PMID:23770887

  18. The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control

    PubMed Central

    Collart, Martine A.

    2013-01-01

    The Not4 RING E3 ligase is a subunit of the evolutionarily conserved Ccr4-Not complex. Originally identified in yeast by mutations that increase transcription, it was subsequently defined as an ubiquitin ligase. Substrates for this ligase were characterized in yeast and in metazoans. Interestingly, some substrates for this ligase are targeted for polyubiquitination and degradation, while others instead are stable monoubiquitinated proteins. The former are mostly involved in transcription, while the latter are a ribosomal protein and a ribosome-associated chaperone. Consistently, Not4 and all other subunits of the Ccr4-Not complex are present in translating ribosomes. An important function for Not4 in cotranslational quality control has emerged. In the absence of Not4, the total level of polysomes is reduced. In addition, translationally arrested polypeptides, aggregated proteins, and polyubiquitinated proteins accumulate. Its role in quality control is likely to be related on one hand to its importance for the functional assembly of the proteasome and on the other hand to its association with the RNA degradation machines. Not4 is in an ideal position to signal to degradation mRNAs whose translation has been aborted, and this defines Not4 as a key player in the quality control of newly synthesized proteins. PMID:27335678

  19. Chromosome demise in the wake of ligase-deficient replication

    PubMed Central

    Kouzminova, Elena A.; Kuzminov, Andrei

    2012-01-01

    Summary Bacterial DNA ligases, NAD+-dependent enzymes, are distinct from eukaryotic ATP-dependent ligases, representing promising targets for broad-spectrum antimicrobials. Yet, the chromosomal consequences of ligase-deficient DNA replication, during which Okazaki fragments accumulate, are still unclear. Using ligA251(Ts), the strongest ligase mutant of Escherichia coli, we studied ligase-deficient DNA replication by genetic and physical approaches. Here we show that replication without ligase kills after a short resistance period. We found that double-strand break repair via RecA, RecBCD, RuvABC and RecG explains the transient resistance, whereas irreparable chromosomal fragmentation explains subsequent cell death. Remarkably, death is mostly prevented by elimination of linear DNA degradation activity of ExoV, suggesting that non-allelic double-strand breaks behind replication forks precipitate DNA degradation that enlarge them into allelic double-strand gaps. Marker frequency profiling of synchronized replication reveals stalling of ligase-deficient forks with subsequent degradation of the DNA synthesized without ligase. The mechanism that converts unsealed nicks behind replication forks first into repairable double-strand breaks and then into irreparable double-strand gaps may be behind lethality of any DNA damaging treatment. PMID:22582878

  20. KF-1 Ubiquitin Ligase: An Anxiety Suppressor

    PubMed Central

    Hashimoto-Gotoh, Tamotsu; Iwabe, Naoyuki; Tsujimura, Atsushi; Takao, Keizo; Miyakawa, Tsuyoshi

    2009-01-01

    Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located on the endoplasmic reticulum (ER), may prevent excessive anxiety; kf-1−/− mice exhibit selectively elevated anxiety-like behavior against light or heights. It is surmised that KF-1 degrades some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinson's disease (PD). Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1−/− mice may be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds. PMID:19753093

  1. Evolution of Plant HECT Ubiquitin Ligases

    PubMed Central

    Marín, Ignacio

    2013-01-01

    HECT ubiquitin ligases are key components of the ubiquitin-proteasome system, which is present in all eukaryotes. In this study, the patterns of emergence of HECT genes in plants are described. Phylogenetic and structural data indicate that viridiplantae have six main HECT subfamilies, which arose before the split that separated green algae from the rest of plants. It is estimated that the common ancestor of all plants contained seven HECT genes. Contrary to what happened in animals, the number of HECT genes has been kept quite constant in all lineages, both in chlorophyta and streptophyta, although evolutionary recent duplications are found in some species. Several of the genes found in plants may have originated very early in eukaryotic evolution, given that they have clear similarities, both in sequence and structure, to animal genes. Finally, in Arabidopsis thaliana, we found significant correlations in the expression patterns of HECT genes and some ancient, broadly expressed genes that belong to a different ubiquitin ligase family, called RBR. These results are discussed in the context of the evolution of the gene families required for ubiquitination in plants. PMID:23869223

  2. Modulation of myocardin function by the ubiquitin E3 ligase UBR5.

    PubMed

    Hu, Guoqing; Wang, Xiaobo; Saunders, Darren N; Henderson, Michelle; Russell, Amanda J; Herring, B Paul; Zhou, Jiliang

    2010-04-16

    Fully differentiated mature smooth muscle cells (SMCs) are characterized by the presence of a unique repertoire of smooth muscle-specific proteins. Although previous studies have shown myocardin to be a critical transcription factor for stimulating expression of smooth muscle-specific genes, the mechanisms regulating myocardin activity are still poorly understood. We used a yeast two-hybrid screen with myocardin as bait to search for factors that may regulate the transcriptional activity of the myocardin. From this screen we identified a HECT domain-containing protein UBR5 (ubiquitin protein ligase E3 component n-recognin 5) as a myocardin-binding protein. Previous studies have shown that HECT domain-containing proteins are ubiquitin E3 ligases that play an important role in protein degradation. UBR5 has, however, also been shown to regulate transcription independent of its E3 ligase activity. In the current study we demonstrated that UBR5 localized in the nuclei of SMCs and forms a complex with myocardin in vivo and in vitro. We also show that UBR5 specifically enhanced trans-activation of smooth muscle-specific promoters by the myocardin family of proteins. In addition, UBR5 significantly augmented the ability of myocardin to induce expression of endogenous SMC marker genes independent on its E3 ligase function. Conversely, depletion of endogenous UBR5 by small interfering RNA in fibroblast cells attenuated myocardin-induced smooth muscle-specific gene expression, and UBR5 knockdown in SMCs resulted in down-regulation of smooth muscle-specific genes. Furthermore, we found that UBR5 can attenuate myocardin protein degradation resulting in increased myocardin protein expression without affecting myocardin mRNA expression. The effects of UBR5 on myocardin requires only the HECT and UBR1 domains of UBR5. This study reveals an unexpected role for the ubiquitin E3 ligase UBR5 as an activator of smooth muscle differentiation through its ability to stabilize myocardin

  3. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps).

    PubMed

    Mark, Kevin G; Loveless, Theresa B; Toczyski, David P

    2016-02-01

    Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d. PMID:26766115

  4. 3-Hydroxybenzoate:coenzyme A ligase and 4-coumarate:coenzyme A ligase from cultured cells of Centaurium erythraea.

    PubMed

    Barillas, W; Beerhues, L

    1997-01-01

    3-Hydroxybenzoate:coenzyme A ligase, an enzyme involved in xanthone biosynthesis, was detected in cell-free extracts from cultured cells of Centaurium erythraea Rafn. The enzyme was separated from 4-coumarate:coenzyme A ligase by fractionated ammonium sulphate precipitation and hydrophobic interaction chromatography. The CoA ligases exhibited different substrate specificities. 3-Hydroxybenzoate:coenzyme A ligase activated 3-hydroxybenzoic acid most efficiently and lacked affinity for cinnamic acids. In contrast, 4-coumarate:CoA ligase mainly catalyzed the activation of 4-coumaric acid but did not act on benzoic acids. The two enzymes were similar with respect to their relative molecular weight, their pH and temperature optima, their specific activity and the changes in their activity during cell culture growth. PMID:9177055

  5. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2.

    PubMed

    Roscic, Ana; Möller, Andreas; Calzado, Marco A; Renner, Florian; Wimmer, Verena C; Gresko, Ekaterina; Lüdi, Katharina Schmid; Schmitz, M Lienhard

    2006-10-01

    Sumoylation serves to control key cellular functions, but the regulation of SUMO E3 ligase activity is largely unknown. Here we show that the polycomb group protein Pc2 binds to and colocalizes with homeodomain interacting protein kinase 2 (HIPK2) and serves as a SUMO E3 ligase for this kinase. DNA damage-induced HIPK2 directly phosphorylates Pc2 at multiple sites, which in turn controls Pc2 sumoylation and intranuclear localization. Inducible phosphorylation of Pc2 at threonine 495 is required for its ability to increase HIPK2 sumoylation in response to DNA damage, thereby establishing an autoregulatory feedback loop between a SUMO substrate and its cognate E3 ligase. Sumoylation enhances the ability of HIPK2 to mediate transcriptional repression, thus providing a mechanistic link for DNA damage-induced transcriptional silencing. PMID:17018294

  6. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.

    PubMed

    Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F

    2012-03-01

    Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain. PMID:22159614

  7. Heterologous expression of rice SUMO E3 ligase (OsSIZ1) enhances drought and heat tolerance in transgenic cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis gene AtSIZ1 encodes a SUMO E3 ligase that plays important roles in plant response to abiotic stresses such as drought, heat, cold, salt, and nutrient starvation. Loss of function in AtSIZ1 leads to increased sensitivity to drought, heat, and salt stresses, whereas overexpression of t...

  8. Functional identification of MdSIZ1 as a SUMO E3 ligase in apple.

    PubMed

    Zhang, Rui-Fen; Guo, Ying; Li, Yuan-Yuan; Zhou, Li-Jie; Hao, Yu-Jin; You, Chun-Xiang

    2016-07-01

    SUMOylation, the conjugation of target proteins with SUMO (small ubiquitin-related modifier), is a type of post-translational modification in eukaryotes and involves the sequential action of activation (E1), conjugation (E2) and ligation (E3) enzymes. In Arabidopsis, the AtSIZ1 protein is a SUMO E3 ligase that promotes the conjugation of SUMO proteins to target substrates. Here, we isolated and identified a SUMO E3 ligase, MdSIZ1, in apple, which was similar to AtSIZ1. SUMOylation analysis showed that MdSIZ1 had SUMO E3 ligase activity in vitro and in vivo. SUMO conjugation was increased by high temperatures, low temperatures, and abscisic acid (ABA). The ectopic expression of MdSIZ1 in Arabidopsis siz1-2 mutant plants partially complemented the morphological mutant phenotype and enhanced the levels of SUMO conjugation. Taken together, these results suggest that MdSIZ1-mediated SUMO conjugation of target proteins is an important process that regulates the adaptation of apple plants to various environmental stresses. PMID:27152458

  9. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    PubMed Central

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  10. Arabidopsis HIGH PLOIDY2 Sumoylates and Stabilizes Flowering Locus C through Its E3 Ligase Activity

    PubMed Central

    Kwak, Jun S.; Son, Ga H.; Kim, Sung-Il; Song, Jong T.; Seo, Hak S.

    2016-01-01

    Flowering Locus C (FLC), a floral repressor, plays an important role in flowering. The mechanisms regulating FLC gene expression and protein function have been studied extensively; however, post-translational regulation of FLC remains unclear. Here, we identified Arabidopsis HIGH PLOIDY2 (HPY2) as an E3 SUMO ligase for FLC. In vitro and vivo pull-down assays showed that FLC physically interacts with HPY2. In vitro assays showed that the stimulation of FLC sumoylation by HPY2 was dependent on SUMO-activating enzyme E1 and -conjugating enzyme E2, indicating that HPY2 was an E3 SUMO ligase for FLC. In transgenic plants, inducible HPY2 overexpression increased the concentration of FLC, indicating that HPY2 stabilized FLC through direct sumoylation. Flowering time in hpy2-2 mutants was shorter than in wild-type plants under long- and short-day conditions, with a greater effect under short-day conditions, and FLC was downregulated in hpy2-2 mutants. These data indicate that HPY2 regulates FLC function and stability at both the transcriptional and post-translational levels through its E3 SUMO ligase activity. PMID:27148346

  11. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions). PMID:25728944

  12. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53

    SciTech Connect

    Sheren, Jamie E.; Kassenbrock, C. Kenneth

    2013-11-01

    Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequence (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.

  13. Polynucleotide 3'-terminal phosphate modifications by RNA and DNA ligases.

    PubMed

    Zhelkovsky, Alexander M; McReynolds, Larry A

    2014-11-28

    RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5'-phosphate and 3'-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3'-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3'p substrate to generate an RNA 2',3'-cyclic phosphate or convert DNA3'p to ssDNA(3')pp(5')A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3'p. These modifications of RNA and DNA 3'-phosphates are similar to the activities of RtcA, an RNA 3'-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3'p or DNA 3'p to generate the adenylated intermediate. For RNA (3')pp(5')A, the third step involves attack of the adjacent 2' hydroxyl to generate the RNA 2',3'-cyclic phosphate. These steps are analogous to those in classical 5' phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3'p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3'-phosphorylated nicks in double-stranded DNA to produce a 3'-adenylated product. These 3'-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5'Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3'-terminal phosphates. PMID:25324547

  14. Mapping L1 Ligase ribozyme conformational switch

    PubMed Central

    Giambaşu, George M.; Lee, Tai-Sung; Scott, William G.; York, Darrin M.

    2012-01-01

    L1 Ligase (L1L)molecular switch is an in vitro optimized synthetic allosteric ribozyme that catalyzes the regioselective formation of a 5’-to-3’ phosphodiester bond, a reaction for which there is no known naturally occurring RNA catalyst. L1L serves as a proof of principle that RNA can catalyze a critical reaction for prebiotic RNA self-replication according to the RNA World hypothesis. L1L crystal structure captures two distinct conformations that differ by a re-orientation of one of the stems by around 80 Å and are presumed to correspond to the active and inactive state, respectively. It is of great interest to understand the nature of these two states in solution, and the pathway for their interconversion. In this study, we use explicit solvent molecular simulation together with a novel enhanced sampling method that utilizes concepts from network theory to map out the conformational transition between active and inactive states of L1L. We find that the overall switching mechanism can be described as a 3-state/2-step process. The first step involves a large-amplitude swing that re-orients stem C. The second step involves the allosteric activation of the catalytic site through distant contacts with stem C. Using a conformational space network representation of the L1L switch transition, it is shown that the connection between the three states follows different topographical patterns: the stem C swing step passes through a narrow region of the conformational space network, whereas the allosteric activation step covers a much wider region and a more diverse set of pathways through the network. PMID:22771572

  15. Identification of candidate mitochondrial RNA editing ligases from Trypanosoma brucei.

    PubMed Central

    McManus, M T; Shimamura, M; Grams, J; Hajduk, S L

    2001-01-01

    Most mitochondrial genes of Trypanosoma brucei do not contain the necessary information to make translatable mRNAs. These transcripts must undergo RNA editing, a posttranscriptional process by which uridine residues are added and deleted from mitochondrial mRNAs. RNA editing is believed to be catalyzed by a ribonucleoprotein complex containing endonucleolytic, terminal uridylyl transferase (TUTase), 3' uridine-specific exonucleolytic (U-exo), and ligase activities. None of the catalytic enzymes for RNA editing have been identified. Here we describe the identification of two candidate RNA ligases (48 and 52 kDa) that are core catalytic components of the T. brucei ribonucleoprotein editing complex. Both enzymes share homology to the covalent nucleotidyl transferase superfamily and contain five key signature motifs, including the active site KXXG. In this report, we present data on the proposed 48 kDa RNA editing ligase. We have prepared polyclonal antibodies against recombinant 48 kDa ligase that specifically recognize the trypanosome enzyme. When expressed in trypanosomes as an epitope-tagged fusion protein, the recombinant ligase localizes to the mitochondrion, associates with RNA editing complexes, and adenylates with ATP. These findings provide strong support for the enzymatic cascade model for kinetoplastid RNA editing. PMID:11233974

  16. A Generic Platform for Cellular Screening Against Ubiquitin Ligases

    PubMed Central

    Maculins, Timurs; Carter, Nikki; Dorval, Thierry; Hudson, Kevin; Nissink, J. Willem M.; Hay, Ronald T.; Alwan, Husam

    2016-01-01

    Ubiquitin signalling regulates most aspects of cellular life, thus deregulation of ubiquitylation has been linked with a number of diseases. E3 ubiquitin ligases provide substrate selectivity in ubiquitylation cascades and are therefore considered to be attractive targets for developing therapeutic molecules. In contrast to established drug target classes, such as protein kinases, GPCRs, hormone receptors and ion channels, ubiquitin drug discovery is in its early stages. This is, in part, due to the complexity of the ubiquitylation pathways and the lack of robust quantitative technologies that allow high-throughput screening of inhibitors. Here we report the development of a Ubiquitin Ligase Profiling system, which is a novel and generic cellular technology designed to facilitate identification of selective inhibitors against RING type E3 ubiquitin ligases. Utilization of this system requires a single co-transfection of cells with assay vectors, thereby enabling readout of E3 ubiquitin ligase catalytic activity within the cellular environment. Therefore, our robust high-throughput screening platform offers novel opportunities for the development of inhibitors against this difficult-to-target E3 ligase enzyme class. PMID:26743172

  17. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    NASA Technical Reports Server (NTRS)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  18. Bacteria-host relationship: ubiquitin ligases as weapons of invasion

    PubMed Central

    Maculins, Timurs; Fiskin, Evgenij; Bhogaraju, Sagar; Dikic, Ivan

    2016-01-01

    Eukaryotic cells utilize the ubiquitin (Ub) system for maintaining a balanced functioning of cellular pathways. Although the Ub system is exclusive to eukaryotes, prokaryotic bacteria have developed an armory of Ub ligase enzymes that are capable of employing the Ub systems of various hosts, ranging from plant to animal cells. These enzymes have been acquired through the evolution and can be classified into three main classes, RING (really interesting new gene), HECT (homologous to the E6-AP carboxyl terminus) and NEL (novel E3 ligases). In this review we describe the roles played by different classes of bacterial Ub ligases in infection and pathogenicity. We also provide an overview of the different mechanisms by which bacteria mimic specific components of the host Ub system and outline the gaps in our current understanding of their functions. Additionally, we discuss approaches and experimental tools for validating this class of enzymes as potential novel antibacterial therapy targets. PMID:26964724

  19. E3 ubiquitin ligases as novel targets for inflammatory diseases.

    PubMed

    Goru, Santosh Kumar; Pandey, Anuradha; Gaikwad, Anil Bhanudas

    2016-04-01

    Ubiquitination is one of the post translational modifications which decide the fate of various proteins in the cells, by either directing them towards proteasomal degradation or participation in several cell signalling pathways. Recently, the role of ubiquitination has been unravelled in pathogenesis and progression of various diseases, where inflammation is critical, like obesity, insulin resistance, atherosclerosis, angiotensin-II induced cardiac inflammation and asthma. E3 ligases are known to be instrumental in regulation of the inflammatory cascade. This review focuses on the role of different E3 ligases in the development of inflammatory diseases and thus may help us to target these E3 ligases in future drug discovery to prevent inflammation. PMID:26875639

  20. Functional domains of an ATP-dependent DNA ligase.

    PubMed

    Doherty, A J; Wigley, D B

    1999-01-01

    The crystal structure of an ATP-dependent DNA ligase from bacteriophage T7 revealed that the protein comprised two structural domains. In order to investigate the biochemical activities of these domains, we have overexpressed them separately and purified them to homogeneity. The larger N-terminal domain retains adenylation and ligase activities, though both at a reduced level. The adenylation activity of the large domain is stimulated by the presence of the smaller domain, suggesting that a conformational change is required for adenylation in the full length protein. The DNA binding properties of the two fragments have also been studied. The larger domain is able to band shift both single and double-stranded DNA, while the smaller fragment is only able to bind to double-stranded DNA. These data suggest that the specificity of DNA ligases for nick sites in DNA is produced by a combination of these different DNA binding activities in the intact enzyme. PMID:9878388

  1. Bacteria-host relationship: ubiquitin ligases as weapons of invasion.

    PubMed

    Maculins, Timurs; Fiskin, Evgenij; Bhogaraju, Sagar; Dikic, Ivan

    2016-04-01

    Eukaryotic cells utilize the ubiquitin (Ub) system for maintaining a balanced functioning of cellular pathways. Although the Ub system is exclusive to eukaryotes, prokaryotic bacteria have developed an armory of Ub ligase enzymes that are capable of employing the Ub systems of various hosts, ranging from plant to animal cells. These enzymes have been acquired through the evolution and can be classified into three main classes, RING (really interesting new gene), HECT (homologous to the E6-AP carboxyl terminus) and NEL (novel E3 ligases). In this review we describe the roles played by different classes of bacterial Ub ligases in infection and pathogenicity. We also provide an overview of the different mechanisms by which bacteria mimic specific components of the host Ub system and outline the gaps in our current understanding of their functions. Additionally, we discuss approaches and experimental tools for validating this class of enzymes as potential novel antibacterial therapy targets. PMID:26964724

  2. Molecular characterisation of a DNA ligase gene of the extremely thermophilic archaeon Desulfurolobus ambivalens shows close phylogenetic relationship to eukaryotic ligases.

    PubMed Central

    Kletzin, A

    1992-01-01

    A 3382 bp fragment containing a gene for a DNA ligase from the extremely thermophilic, acidophilic, and facultatively anaerobic archaeon (archaebacterium) Desulfurolobus ambivalens was cloned and sequenced. The deduced amino acid sequence (600 amino acids, 67619 molecular weight) showed 30-34% sequence identity with the ATP-dependent eucaryal (eukaryotic) DNA ligases of Schizosaccharomyces pombe, Saccharomyces cerevisiae, the human DNA ligase I, and with the Vaccinia DNA ligase. Distant similarity to the DNA ligases from the bacteriophages T3, T4, T6, T7 and the African swine fever virus was found, whereas no similarities were detectable to the NAD-dependent DNA ligases from the bacteria (eubacteria) Escherichia coli and Thermus thermophilus, to the ATP-dependent RNA-ligase of bacteriophage T4, and to the tRNA-Ligase from S.cerevisiae. A detailed comparison of the phylogenetic relationship of the amino acid sequences of all known DNA and RNA ligases is presented including a complete alignment of the ATP-dependent DNA ligases. The in vivo-transcription initiation and termination sites of the D.ambivalens gene were mapped. The calculated transcript length was 1904-1911 nt. Images PMID:1437556

  3. The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism

    PubMed Central

    Feng, Youjun; Chin, Chui-Yoke; Chakravartty, Vandana; Gao, Rongsui; Crispell, Emily K.

    2015-01-01

    ABSTRACT The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. PMID:26060274

  4. DNA Ligase IV and Artemis Act Cooperatively to Suppress Homologous Recombination in Human Cells: Implications for DNA Double-Strand Break Repair

    PubMed Central

    Kurosawa, Aya; Saito, Shinta; So, Sairei; Hashimoto, Mitsumasa; Iwabuchi, Kuniyoshi; Watabe, Haruka; Adachi, Noritaka

    2013-01-01

    Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR. PMID:23967291

  5. Ancient origin of animal U-box ubiquitin ligases

    PubMed Central

    2010-01-01

    Background The patterns of emergence and diversification of the families of ubiquitin ligases provide insights about the evolution of the eukaryotic ubiquitination system. U-box ubiquitin ligases (UULs) are proteins characterized by containing a peculiar protein domain known as U box. In this study, the origin of the animal UUL genes is described. Results Phylogenetic and structural data indicate that six of the seven main UUL-encoding genes found in humans (UBE4A, UBE4B, UIP5, PRP19, CHIP and CYC4) were already present in the ancestor of all current metazoans and the seventh (WDSUB1) is found in placozoans, cnidarians and bilaterians. The fact that only 4 - 5 genes orthologous to the human ones are present in the choanoflagellate Monosiga brevicollis suggests that several animal-specific cooptions of the U box to generate new genes occurred. Significantly, Monosiga contains five additional UUL genes that are not present in animals. One of them is also present in distantly-related protozoans. Along animal evolution, losses of UUL-encoding genes are rare, except in nematodes, which lack three of them. These general patterns are highly congruent with those found for other two families (RBR, HECT) of ubiquitin ligases. Conclusions Finding that the patterns of emergence, diversification and loss of three unrelated families of ubiquitin ligases (RBR, HECT and U-box) are parallel indicates that there are underlying, linage-specific evolutionary forces shaping the complexity of the animal ubiquitin system. PMID:20979629

  6. Nedd8 targets ubiquitin ligase Smurf2 for neddylation and promote its degradation.

    PubMed

    Shu, Jingyi; Liu, Chao; Wei, Rongfei; Xie, Ping; He, Shan; Zhang, Lingqiang

    2016-05-20

    E3 ubiquitin ligases are pivotal effectors of the ubiquitin-proteasome system as they determine the substrate specificity and transfer ubiquitin to the substrate. HECT-type ubiquitin ligase Smad ubiquitination regulatory factor 2 (Smurf2) has been demonstrated functions as a tumor suppressor. However, the mechanisms underlying regulation of Smurf2 is still unclear. Here we show that ubiquitin-like protein Nedd8 targets the HECT-type ubiquitin ligase Smurf2 for neddylation, and promotes Smurf2 degradation. Neddylation of Smurf1 activates its ubiquitin ligase activity and Smurf2 exerts Nedd8 ligase activity. This study provided new clues of Smurf2 activation regulation. PMID:27086113

  7. A wild-type DNA ligase I gene is expressed in Bloom's syndrome cells

    SciTech Connect

    Petrini, J.H.J.; Huwiler, K.G.; Weaver, D.T. )

    1991-09-01

    Alteration of DNA ligase I activity is a consistent biochemical feature of Bloom's syndrome (BS) cells. DNA ligase I activity in BS cells either is reduced and abnormally thermolabile or is present in an anomalously dimeric form. To assess the role of DNA ligase function in the etiology of BS, the authors have cloned the DNA ligase I cDNA from normal human cells by a PCR strategy using degenerate oligonucleotide primers based on conserved regions of the Saccharomyces cerevisiae and Schizosaccharomyces pombe DNA ligase genes. Human DNA ligase I cDNAs from normal and BS cells complemented a S. cerevisiae DNA ligase mutation, and protein extracts prepared from S. cerevisiae transformants expressing normal and BS cDNA contained comparable levels of DNA ligase I activity. DNA sequencing and Northern blot analysis of DNA ligase I expression in two BS human fibroblast lines representing each of the two aberrant DNA ligase I molecular phenotypes demonstrated that this gene was unchanged in BS cells. Thus, another factor may be responsible for the observed reduction in DNA ligase I activity associated with this chromosomal breakage syndrome.

  8. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining.

    PubMed

    Lu, Guangqing; Duan, Jinzhi; Shu, Sheng; Wang, Xuxiang; Gao, Linlin; Guo, Jing; Zhang, Yu

    2016-02-01

    In eukaryotes, DNA double-strand breaks (DSBs), one of the most harmful types of DNA damage, are repaired by homologous repair (HR) and nonhomologous end-joining (NHEJ). Surprisingly, in cells deficient for core classic NHEJ factors such as DNA ligase IV (Lig4), substantial end-joining activities have been observed in various situations, suggesting the existence of alternative end-joining (A-EJ) activities. Several putative A-EJ factors have been proposed, although results are mostly controversial. By using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we generated mouse CH12F3 cell lines in which, in addition to Lig4, either Lig1 or nuclear Lig3, representing the cells containing a single DNA ligase (Lig3 or Lig1, respectively) in their nucleus, was completely ablated. Surprisingly, we found that both Lig1- and Lig3-containing complexes could efficiently catalyze A-EJ for class switching recombination (CSR) in the IgH locus and chromosomal deletions between DSBs generated by CRISPR/Cas9 in cis-chromosomes. However, only deletion of nuclear Lig3, but not Lig1, could significantly reduce the interchromosomal translocations in Lig4(-/-) cells, suggesting the unique role of Lig3 in catalyzing chromosome translocation. Additional sequence analysis of chromosome translocation junction microhomology revealed the specificity of different ligase-containing complexes. The data suggested the existence of multiple DNA ligase-containing complexes in A-EJ. PMID:26787905

  9. The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7.

    PubMed

    Tron, Adriana E; Arai, Takehiro; Duda, David M; Kuwabara, Hiroshi; Olszewski, Jennifer L; Fujiwara, Yuko; Bahamon, Brittany N; Signoretti, Sabina; Schulman, Brenda A; DeCaprio, James A

    2012-04-13

    Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. PMID:22405651

  10. The Glomuvenous Malformation Protein Glomulin Binds Rbx1 and Regulates Cullin RING Ligase-Mediated Turnover of Fbw7

    PubMed Central

    Tron, Adriana E.; Arai, Takehiro; Duda, David M.; Kuwabara, Hiroshi; Olszewski, Jennifer L.; Fujiwara, Yuko; Bahamon, Brittany N.; Signoretti, Sabina; Schulman, Brenda A.; DeCaprio, James A.

    2012-01-01

    SUMMARY Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here we show that Glomulin (Glmn), a protein found mutated in the vascular disorder Glomuvenous Malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity indicating that Glmn modulates the E3 activity of CRL1Fbw7. These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. PMID:22405651

  11. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status

    PubMed Central

    Adam, M Gordian; Matt, Sonja; Christian, Sven; Hess-Stumpp, Holger; Haegebarth, Andrea; Hofmann, Thomas G; Algire, Carolyn

    2015-01-01

    Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27Kip1. Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer. PMID:26654769

  12. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1

    PubMed Central

    Rodrigues, Elizabeth M.; Scudder, Samantha L.; Goo, Marisa S.

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. SIGNIFICANCE STATEMENT Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. PMID:26843640

  13. Kinetic framework for ligation by an efficient RNA ligase ribozyme.

    PubMed

    Bergman, N H; Johnston, W K; Bartel, D P

    2000-03-21

    The class I RNA ligase ribozyme, isolated previously from random sequences, performs an efficient RNA ligation reaction. It ligates two substrate RNAs, promoting the attack of the 3'-hydroxyl of one substrate upon the 5'-triphosphate of the other substrate with release of pyrophosphate. This ligation reaction has similarities to the reaction catalyzed by RNA polymerases. Using data from steady-state kinetic measurements and pulse-chase/pH-jump experiments, we have constructed minimal kinetic frameworks for two versions of the class I ligase, named 207t and 210t. For both ligases, as well as for the self-ligating parent ribozyme, the rate constant for the chemical step (k(c)) is log-linear with pH in the range 5.7-8.0. At physiological pH, the k(c) is 100 min(-1), a value similar to those reported for the fastest naturally occurring ribozymes. At higher pH, product release is limiting for both 207t and 210t. The 210t ribozyme, with its faster product release, attains multiple-turnover rates (k(cat) = 360 min(-1), pH 9.0) exceeding those of 207t and other reported ribozyme reactions. The kinetic framework for the 210t ribozyme describes the limits of this catalysis and suggests how key steps can be targeted for improvement using design or combinatorial approaches. PMID:10715133

  14. Cullin E3 Ligases and Their Rewiring by Viral Factors

    PubMed Central

    Mahon, Cathal; Krogan, Nevan J.; Craik, Charles S.; Pick, Elah

    2014-01-01

    The ability of viruses to subvert host pathways is central in disease pathogenesis. Over the past decade, a critical role for the Ubiquitin Proteasome System (UPS) in counteracting host immune factors during viral infection has emerged. This counteraction is commonly achieved by the expression of viral proteins capable of sequestering host ubiquitin E3 ligases and their regulators. In particular, many viruses hijack members of the Cullin-RING E3 Ligase (CRL) family. Viruses interact in many ways with CRLs in order to impact their ligase activity; one key recurring interaction involves re-directing CRL complexes to degrade host targets that are otherwise not degraded within host cells. Removal of host immune factors by this mechanism creates a more amenable cellular environment for viral propagation. To date, a small number of target host factors have been identified, many of which are degraded via a CRL-proteasome pathway. Substantial effort within the field is ongoing to uncover the identities of further host proteins targeted in this fashion and the underlying mechanisms driving their turnover by the UPS. Elucidation of these targets and mechanisms will provide appealing anti-viral therapeutic opportunities. This review is focused on the many methods used by viruses to perturb host CRLs, focusing on substrate sequestration and viral regulation of E3 activity. PMID:25314029

  15. Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate

    PubMed Central

    Bornstein, Gil; Ganoth, Dvora; Hershko, Avram

    2006-01-01

    The activity of cullin-containing ubiquitin protein ligase complexes is stimulated by linkage to cullin of the ubiquitin-like protein Nedd8 (“neddylation”). Neddylation is inhibited by the tight binding of cullins to CAND1 (cullin-associated and neddylation-dissociated 1) protein, and Nedd8 is removed from cullins by specific isopeptidase activity of the COP9/signalosome (CSN) complex. The mechanisms that regulate neddylation and deneddylation of cullins were unknown. We examined this problem for the case of SCFSkp2, a cullin1 (Cul1)-containing ubiquitin ligase complex that contains the S phase-associated protein Skp2 as the substrate-binding F-box protein subunit. SCFSkp2 targets for degradation the cyclin-dependent kinase (cdk) inhibitor p27 in the G1-to-S phase transition, a process that requires its phosphorylation and binding to cdk2-cyclin E. Because levels of Skp2, cyclin E, and the accessory protein Cks1 (cyclin kinase subunit 1) all rise at the end of G1 phase, it seemed possible that the neddylation of Cul1 in SCFSkp2 is regulated by the availability of the F-box protein and/or the substrate. We found that the supplementation of Skp2–Skp1 and substrate (along with further components necessary for substrate presentation to the ubiquitin ligase) to extracts of HeLa cells synergistically increased levels of neddylated Cul1. Skp2–Skp1 abrogates the inhibitory influence of CAND1 on the neddylation of Cul1 by promoting the dissociation of the cullin–CAND1 complex, whereas substrate, together with substrate-presenting components, prevents the action of CSN to deneddylate cullin. We propose a sequence of events in which the increased availability of Skp2 and substrate in the transition of cells to S phase promotes the neddylation and assembly of the SCFSkp2 ubiquitin ligase complex. PMID:16861300

  16. Ubiquitin ligase ITCH recruitment suppresses the aggregation and cellular toxicity of cytoplasmic misfolded proteins

    PubMed Central

    Chhangani, Deepak; Upadhyay, Arun; Amanullah, Ayeman; Joshi, Vibhuti; Mishra, Amit

    2014-01-01

    The protein quality control (QC) system protects cells against cellular toxicity induced by misfolded proteins and maintains overall cellular fitness. Inefficient clearance of or failure to degrade damaged proteins causes several diseases, especially age-linked neurodegenerative disorders. Attenuation of misfolded protein degradation under severe stress conditions leads to the rapid over-accumulation of toxic proteinaceous aggregates in the cytoplasmic compartment. However, the precise cytoplasmic quality control degradation mechanism is unknown. In the present study, we demonstrate that the Nedd4-like E3 ubiquitin ligase ITCH specifically interacts with mutant bona fide misfolded proteins and colocalizes with their perinuclear aggregates. In a cell culture model, we demonstrate ITCH recruitment by cytoplasmic inclusions containing polyglutamine-expanded huntingtin or ataxin-3 proteins. Transient overexpression of ITCH dramatically induced the degradation of thermally denatured misfolded luciferase protein. Partial depletion of ITCH increased the rate of aggregate formation and cell death generated by expanded polyglutamine proteins. Finally, we demonstrate that overexpression of ITCH alleviates the cytotoxic potential of expanded polyglutamine proteins and reduces aggregation. These observations indicate that ITCH is involved in the cytosolic quality control pathway and may help to explain how abnormal proteins are targeted by QC ubiquitin-protein ligases. PMID:24865853

  17. [The applications of thermostable ligase chain reaction in facilitating DNA recombination].

    PubMed

    Xiangda, Zhou; Xiao, Song; Cong, Huai; Haiyan, Sun; Hongyan, Chen; Daru, Lu

    2016-02-01

    The traditional Type Ⅱ restriction enzyme-based method is restricted by the purification steps, and therefore, cannot be applied to specific DNA assembly in chaotic system. To solve this problem, Thermostable Ligase Chain Reaction (TLCR) was introduced in the process of DNA assembly and capture. This technique combines the feature of thermostable DNA ligase and sequence specific oligo ligation template, "Helper", to achieve specific assembly of target fragments and exponential increase of products in multiple thermocyclings. Two plasmid construction experiments were carried out in order to test the feasibility and practical performance of TLCR. One was that, TLCR was used to specifically capture a 1.5 kb fragment into vector from an unpurified chaotic system which contained 7 different sizes of fragments. The results showed that the capturing accuracy was around 80%, which proved the feasibility and accuracy of using TLCR to specific assembly of DNA fragments in a complicated mixed system. In the other experiment, TLCR was used to capture two fragments (total length was 27 kb) from Hind Ⅲ digestion of Lambda genome into vector by order. The results also showed an accuracy of around 80%. As demonstrated in the results, TLCR can simplify the process of DNA recombination experiments and is suitable for the assembly of multiple and large DNA fragments. This technique can provide convenience to biological experiments. PMID:26907780

  18. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    PubMed Central

    Kilroy, Gail; Carter, Lauren E.; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a low or high fat diet for 16 weeks. Indirect calorimetry, body composition, glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution and lipolysis were also analyzed. Results Enlarged adipocytes in obese Siah2KO mice are not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis and crown-like structures are reduced in the Siah2KO adipose tissue and Siah2KO adipocytes are more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increases expression of PPARγ target genes involved in lipid metabolism and decreases expression of proinflammatory adipokines regulated by PPARγ. Conclusions Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. PMID:26380945

  19. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination

    PubMed Central

    Ahmed, M. Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2011-01-01

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmuno-precipitation of endogenous proteins from brain tissue, and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both non-visual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology. PMID:21466165

  20. The relationship between polymorphisms in the glutamate cysteine ligase gene and asthma susceptibility.

    PubMed

    Polonikov, A V; Ivanov, V P; Solodilova, M A; Khoroshaya, I V; Kozhuhov, M A; Panfilov, V I

    2007-11-01

    The present study was designed to investigate an association of common -588C/T and -23G/T polymorphisms within glutamate cysteine ligase modifier subunit gene with susceptibility to bronchial asthma. A total of 435 ethnically Russian subjects were recruited in this study, including 221 patients with asthma and 214 sex and age matched healthy subjects. As previously reported, the -588C/T and -23G/T polymorphisms were completely linked. The -588TT/-23TT genotype was found to be associated with decreased risk of allergic asthma after adjustment for age, gender and smoking status using multivariate logistic regression analysis (OR=0.33 95% CI 0.15-0.70, p=0.036). However, the -588CT/-23GT genotype was associated with increased risk of non-allergic asthma (OR=2.03 95% CI 1.05-3.90, p=0.06). This is a first study reporting the association between genetic variations in the glutamate cysteine ligase gene and susceptibility to bronchial asthma. PMID:17643973

  1. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity.

    PubMed

    Lin, Xiao-Li; Niu, De; Hu, Zi-Liang; Kim, Dae Heon; Jin, Yin Hua; Cai, Bin; Liu, Peng; Miura, Kenji; Yun, Dae-Jin; Kim, Woe-Yeon; Lin, Rongcheng; Jin, Jing Bo

    2016-04-01

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants. PMID:27128446

  2. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    PubMed Central

    Lin, Xiao-Li; Niu, De; Hu, Zi-Liang; Kim, Dae Heon; Jin, Yin Hua; Cai, Bin; Liu, Peng; Miura, Kenji; Yun, Dae-Jin; Kim, Woe-Yeon; Lin, Rongcheng

    2016-01-01

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants. PMID:27128446

  3. [Cloning and tissue expression of 4-coumarate coenzyme A ligase gene in Angelica sinensis].

    PubMed

    Wen, Sui-chao; Wang, Yin-quan; Luo, Jun; Xia, Qi; Fan, Qin; Li, Shu-nan; Wang, Zhen-heng

    2015-12-01

    4-coumarate coenzyme A ligase is a key enzyme of phenylpropanoid metabolic pathway in higher plant and may regulate the biosynthesis of ferulic acid in Angelica sinensis. In this study, the homology-based cloning and rapid amplification of cDNA ends (RACE) technique were used to clone a full length cDNA encoding 4-coumarate coenzyme A ligase gene (4CL), and then qRT-PCR was taken for analyzing 4CL gene expression levels in the root, stem and root tissue at different growth stages of seedlings of A. sinensis. The results showed that a full-length 4CL cDNA (1,815 bp) was obtained (GenBank accession number: KT880508) which shares an open reading frame (ORF) of 1 632 bp, encodes 544 amino acid polypeptides. We found 4CL gene was expressed in all tissues including leaf, stem and root of seedlings of A. sinensis. The expressions in the leave and stem were increased significantly with the growth of seedlings of A. sinensis (P < 0.05), while it in the root showed little change. It indicates a time-space pattern of 4CL gene expression in seedlings of A. sinensis. These findings will be useful for establishing an experiment basis for studying the structure and function of 4CL gene and elucidating mechanism of ferulic acid biosynthesis and space-time regulation in A. sinensis. PMID:27245029

  4. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function.

    PubMed

    Liu, Yaobin; Huang, Xiangao; He, Xian; Zhou, Yanqing; Jiang, Xiaogang; Chen-Kiang, Selina; Jaffrey, Samie R; Xu, Guoqiang

    2015-12-01

    The immunomodulatory drug (IMiD) thalidomide and its structural analogs lenalidomide and pomalidomide are highly effective in treating clinical indications. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4 really interesting new gene (RING) E3 ligase complex. Here, we examine the effect of thalidomide and its analogs on CRBN ubiquitination and its functions in human cell lines. We find that the ubiquitin modification of CRBN includes K48-linked polyubiquitin chains and that thalidomide blocks the formation of CRBN-ubiquitin conjugates. Furthermore, we show that ubiquitinated CRBN is targeted for proteasomal degradation. Treatment of human myeloma cell lines such as MM1.S, OPM2, and U266 with thalidomide (100 μM) and its structural analog lenalidomide (10 μM) results in stabilization of CRBN and elevation of CRBN protein levels. This in turn leads to the reduced level of CRBN target proteins and enhances the sensitivity of human multiple myeloma cells to IMiDs. Our results reveal a novel mechanism by which thalidomide and its analogs modulate the CRBN function in cells. Through inhibition of CRBN ubiquitination, thalidomide and its analogs allow CRBN to accumulate, leading to the increased cullin-4 RING E3 ligase-mediated degradation of target proteins. PMID:26231201

  5. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    SciTech Connect

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-09-20

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ.

  6. Nucleotide sequence, heterologous expression and novel purification of DNA ligase from Bacillus stearothermophilus(1).

    PubMed

    Brannigan, J A; Ashford, S R; Doherty, A J; Timson, D J; Wigley, D B

    1999-07-13

    The gene for DNA ligase (EC 6.5.1.2) from thermophilic bacterium Bacillus stearothermophilus NCA1503 has been cloned and the complete nucleotide sequence determined. The ligase gene encodes a protein 670 amino acids in length. The gene was overexpressed in Escherichia coli and the enzyme has been purified to homogeneity. Preliminary characterisation confirms that it is a thermostable, NAD(+)-dependent DNA ligase. PMID:10407164

  7. The multidrug resistance pump ABCB1 is a substrate for the ubiquitin ligase NEDD4-1

    PubMed Central

    Akkaya, Begum G.; Zolnerciks, Joseph K.; Ritchie, Tasha K.; Bauer, Bjoern; Hartz, Anika M.S.; Sullivan, James A.; Linton, Kenneth J.

    2016-01-01

    The ATP Binding Cassette transporter ABCB1 can export the neurotoxic peptide β-amyloid from endothelial cells that line the blood-brain barrier (BBB). This has the potential to lower cerebral levels of β-amyloid, but ABCB1 expression in the BBB appears to be progressively reduced in patients with Alzheimer's disease. The surface density of many membrane proteins is regulated by ubiquitination catalysed by ubiquitin E3 ligases. In brain capillaries of mice challenged with β-amyloid ex vivo, we show that the level of the ubiquitin ligase Nedd4 increases concomitant with reduction in Abcb1. In vitro we show that human ABCB1 is a substrate for human NEDD4-1 ligase. Recombinant ABCB1 was purified from Sf21 insect cells and incubated with recombinant NEDD4-1 purified from E. coli. The treated ABCB1 had reduced mobility on SDS-PAGE, and mass spectrometry identified eight lysine residues, K271, K272, K575, K685, K877, K885, K887 and K1062 that were ubiquitinated by NEDD4-1. Molecular modelling showed that all of the residues are exposed on the surface of the intracellular domains of ABCB1. K877, K885 and K887 in particular, are located in the intracellular loop of transmembrane helix 10 (TMH10) in close proximity, in the tertiary fold, to a putative NEDD4-1 binding site in the intracellular helix extending from TMH12 (PxY motif, residues 996-998). Transient expression of NEDD4-1 in HEK293 Flp-In cells stably expressing ABCB1 was shown to reduce the surface density of the transporter. Together, the data identify this ubiquitin ligase as a potential target for intervention in the pathophysiology of Alzheimer's disease. PMID:26006083

  8. 4-Coumarate:coenzyme A ligase and isoperoxidase expression in Zinnia mesophyll cells induced to differentiate into tracheary elements

    NASA Technical Reports Server (NTRS)

    Church, D. L.; Galston, A. W.

    1988-01-01

    When cultured in inductive medium containing adequate auxin and cytokinin, isolated mesophyll cells of Zinnia elegans L. cv Envy differentiate into tracheary elements with lignified secondary wall thickenings. Differentiation does not occur when cells are cultured in control medium, which has reduced levels of auxin and/or cytokinin. The activities of two enzymes involved in lignin synthesis, 4-coumarate:coenzyme A ligase and peroxidase, were examined. An induction-specific cationic isoperoxidase, visualized by low pH polyacrylamide gel electrophoresis, is detectable in soluble and wall fractions of cultured Zinnia cells long before tracheary elements visibly differentiate and is thus an early marker of differentiation. Compounds (such as antiauxins, anticytokinins, and tunicamycin) that inhibit or delay differentiation alter the expression of this isoperoxidase. 4-Coumarate:coenzyme A ligase activity increases dramatically only as cells differentiate. Together, these results suggest that the onset of lignification in differentiating Zinnia cells might be controlled by the availability of precursors synthesized by way of 4-coumarate:coenzyme A ligase. These precursors would then be polymerized into lignin in the cell wall by the induction-specific isoperoxidase.

  9. TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification

    PubMed Central

    Neo, Shu Hui; Itahana, Yoko; Alagu, Jennifer; Kitagawa, Mayumi; Guo, Alvin Kunyao; Lee, Sang Hyun; Tang, Kai

    2015-01-01

    The tumor suppressor ARF enhances the SUMOylation of target proteins; however, the physiological function of ARF-mediated SUMOylation has been unclear due to the lack of a known, associated E3 SUMO ligase. Here we uncover TRIM28/KAP1 as a novel ARF-binding protein and SUMO E3 ligase for NPM1/B23. ARF and TRIM28 cooperate to SUMOylate NPM1, a nucleolar protein that regulates centrosome duplication and genomic stability. ARF-mediated SUMOylation of NPM1 was attenuated by TRIM28 depletion and enhanced by TRIM28 overexpression. Coexpression of ARF and TRIM28 promoted NPM1 centrosomal localization by enhancing its SUMOylation and suppressed centrosome amplification; these functions required the E3 ligase activity of TRIM28. Conversely, depletion of ARF or TRIM28 increased centrosome amplification. ARF also counteracted oncogenic Ras-induced centrosome amplification. Centrosome amplification is often induced by oncogenic insults, leading to genomic instability. However, the mechanisms employed by tumor suppressors to protect the genome are poorly understood. Our findings suggest a novel role for ARF in maintaining genome integrity by facilitating TRIM28-mediated SUMOylation of NPM1, thus preventing centrosome amplification. PMID:26055329

  10. RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis.

    PubMed

    Zhang, M; Zhu, X; Zhang, Y; Cai, Y; Chen, J; Sivaprakasam, S; Gurav, A; Pi, W; Makala, L; Wu, J; Pace, B; Tuan-Lo, D; Ganapathy, V; Singh, N; Li, H

    2015-12-01

    The Ufm1 conjugation system is a novel ubiquitin-like modification system, consisting of Ufm1, Uba5 (E1), Ufc1 (E2) and poorly characterized E3 ligase(s). RCAD/Ufl1 (also known as KIAA0776, NLBP and Maxer) was reported to function as a Ufm1 E3 ligase in ufmylation (Ufm1-mediated conjugation) of DDRGK1 and ASC1 proteins. It has also been implicated in estrogen receptor signaling, unfolded protein response (UPR) and neurodegeneration, yet its physiological function remains completely unknown. In this study, we report that RCAD/Ufl1 is essential for embryonic development, hematopoietic stem cell (HSC) survival and erythroid differentiation. Both germ-line and somatic deletion of RCAD/Ufl1 impaired hematopoietic development, resulting in severe anemia, cytopenia and ultimately animal death. Depletion of RCAD/Ufl1 caused elevated endoplasmic reticulum stress and evoked UPR in bone marrow cells. In addition, loss of RCAD/Ufl1 blocked autophagic degradation, increased mitochondrial mass and reactive oxygen species, and led to DNA damage response, p53 activation and enhanced cell death of HSCs. Collectively, our study provides the first genetic evidence for the indispensable role of RCAD/Ufl1 in murine hematopoiesis and development. The finding of RCAD/Ufl1 as a key regulator of cellular stress response sheds a light into the role of a novel protein network including RCAD/Ufl1 and its associated proteins in regulating cellular homeostasis. PMID:25952549

  11. Defining interactions between DNA-PK and ligase IV/XRCC4

    SciTech Connect

    Hsu, Hsin-Ling; Yannone, Steven M.; Chen, David J.

    2001-04-10

    Non-homologous end joining (NHEJ) is a major pathway for the repair of DNA double-strand breaks in mammalian cells. DNA-dependent protein kinase (DNA-PK), ligase IV, and XRCC4 are all critical components of the NHEJ repair pathway. DNA-PK is composed of a heterodimeric DNA-binding component, Ku, and a large catalytic subunit, DNA-PKcs. Ligase IV and XRCC4 associate to form a multimeric complex that is also essential for NHEJ. DNA-PK and ligase IV/XRCC4 interact at DNA termini which results in stimulated ligase activity. Here we define interactions between the components of these two essential complexes, DNA-PK and ligase IV/XRCC4. We find that ligase IV/XRCC4 associates with DNA-PK in a DNA-independent manner. The specific protein-protein interactions that mediate the interaction between these two complexes are further identified. Direct physical interactions between ligase IV and Ku as well as between XRCC4 and DNA-PKcs are shown. No direct interactions are observed between ligase IV and DNA-PKcs or between XRCC4 and Ku. Our data defines the specific protein pairs involved in the association of DNA-PK and ligase IV/XRCC4, and suggests a molecular mechanism for coordinating the assembly of the DNA repair complex at DNA breaks.

  12. Evidence that a single DNA ligase is involved in replication and recombination in yeast.

    PubMed Central

    Fabre, F; Roman, H

    1979-01-01

    The possible existence in yeast of different nuclear DNA ligase enzymes led us to ask whether induced recombination (gene conversion) involves the same ligase as that involved in DNA replication. The conditional cdc9 mutant is known to be defective, under restrictive conditions, in the rejoining of Okazaki fragments. We show here that under the same conditions, x-ray-induced convertants within the cdc9 locus are produced with kinetics indicating that most, if not all, of the conversion events require the participation of the cdc9-controlled ligase. Thus, the same DNA ligase is involved in DNA replication and in induced gene conversion. PMID:388446

  13. h-Goliath, paralog of GRAIL, is a new E3 ligase protein, expressed in human leukocytes.

    PubMed

    Guais, Adeline; Siegrist, Sylvie; Solhonne, Brigitte; Jouault, Hélène; Guellaën, Georges; Bulle, Frédérique

    2006-06-01

    In Drosophila, the RING finger protein d-Goliath was originally identified as a transcription factor involved in the embryo mesoderm formation [Bouchard, M.L., Cote, S., 1993. The Drosophila melanogaster developmental gene g1 encodes a variant zinc-finger-motif protein. Gene 125, 205-209]. In mouse, the m-Goliath mRNA level was shown to be increased in growth factor withdrawal-induced apoptosis of myeloid cells [Baker, S.J., Reddy, E.P., 2000. Cloning of murine G1RP, a novel gene related to Drosophila melanogaster g1. Gene 248, 33-40]. Due to its putative function of transcription factor in apoptosis, we cloned the human cDNA for h-Goliath and characterized the expression of the protein in blood and bone marrow cells. The human protein of 419 aa (44 kDa) contains a protease-associated domain, a transmembrane domain and a RING-H2 motif. This structure classifies h-Goliath as a new member of a human family of ubiquitin ligases with GRAIL (gene related to anergy in lymphocytes) as founder. This E3 ligase controls the development of T cell clonal anergy by ubiquitination [Anandasabapathy, N., Ford, G.S., Bloom, D., Holness, C., Paragas, V., Seroogy, C., Skrenta, H., Hollenhorst, M., Fathman, C.G., Soares, L., 2003. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18, 535-547]. In vitro ubiquitination studies support the E3 ubiquitin ligase activity of h-Goliath. In human, the protein is expressed under 3 isoforms, a major one at 28 kDa and two others at 46 and 55 kDa. These proteins come from a common precursor (44 kDa) as we observed using in vitro transcription-translation. Using immunohistochemistry on blood or bone marrow smears, of healthy or leukemia samples, we found that the protein expression was restricted to the cytoplasm of progenitors and fully differentiated leukocyte populations. We did not observe any modification of h-Goliath expression or localization in leukemia. In these cells

  14. Structure of the adenylation domain of NAD[superscript +]-dependent DNA ligase from Staphylococcus aureus

    SciTech Connect

    Han, Seungil; Chang, Jeanne S.; Griffor, Matt; Pfizer

    2010-09-17

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  15. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans

    PubMed Central

    Wang, Julia; Jennings, Alexandra K.

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease. PMID

  16. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans.

    PubMed

    Wang, Julia; Jennings, Alexandra K; Kowalski, Jennifer R

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease. PMID

  17. From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase

    PubMed Central

    Tanabe, Maiko; Ishino, Yoshizumi; Nishida, Hirokazu

    2015-01-01

    DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures. PMID:26508902

  18. An African swine fever virus gene with homology to DNA ligases.

    PubMed Central

    Hammond, J M; Kerr, S M; Smith, G L; Dixon, L K

    1992-01-01

    Sequence analysis of the SalI g region of the genome of a virulent isolate of ASFV (Malawi Lil 20/1) has revealed an open reading frame with the potential to encode a 48 kilodalton (kD) polypeptide which has significant homology with eukaryotic and prokaryotic DNA ligases. This ASFV encoded gene also contains the putative active site region of DNA ligases including the lysine residue which is necessary for enzyme-adenylate adduct formation, but lacks the C-terminal basic region conserved in other eukaryotic DNA ligases. A novel [32P]-labelled potential DNA ligase-adenylate adduct of M(r) 45 kD was observed upon incubation of ASFV infected cell cytoplasmic extracts with alpha-[32P]-ATP and subsequent analysis of products by SDS/PAGE. These data together suggest that ASFV encodes its own DNA ligase. Images PMID:1614852

  19. The Ubiquitin E3 Ligase NOSIP Modulates Protein Phosphatase 2A Activity in Craniofacial Development

    PubMed Central

    Hoffmeister, Meike; Prelle, Carola; Küchler, Philipp; Kovacevic, Igor; Moser, Markus; Müller-Esterl, Werner; Oess, Stefanie

    2014-01-01

    Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. PMID:25546391

  20. Ubiquitin ligase CHIP suppresses cancer stem cell properties in a population of breast cancer cells.

    PubMed

    Tsuchiya, Mai; Nakajima, Yuka; Hirata, Naoya; Morishita, Tamaki; Kishimoto, Hiroyuki; Kanda, Yasunari; Kimura, Keiji

    2014-10-01

    Cancer stem cells (CSCs) have several distinctive characteristics, including high metastatic potential, tumor-initiating potential, and properties that resemble normal stem cells such as self-renewal, differentiation, and drug efflux. Because of these characteristics, CSC is regarded to be responsible for cancer progression and patient prognosis. In our previous study, we showed that a ubiquitin E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) suppressed breast cancer malignancy. Moreover, a recent clinical study reported that CHIP expression levels were associated with favorable prognostic parameters of patients with breast cancer. Here we show that CHIP suppresses CSC properties in a population of breast cancer cells. CHIP depletion resulted in an increased proportion of CSCs among breast cancers when using several assays to assess CSC properties. From our results, we propose that inhibition of CSC properties may be one of the functions of CHIP as a suppressor of cancer progression. PMID:25234599

  1. The antiobesity factor WDTC1 suppresses adipogenesis via the CRL4WDTC1 E3 ligase.

    PubMed

    Groh, Beezly S; Yan, Feng; Smith, Matthew D; Yu, Yanbao; Chen, Xian; Xiong, Yue

    2016-05-01

    WDTC1/Adp encodes an evolutionarily conserved suppressor of lipid accumulation. While reduced WDTC1 expression is associated with obesity in mice and humans, its cellular function is unknown. Here, we demonstrate that WDTC1 is a component of a DDB1-CUL4-ROC1 (CRL4) E3 ligase. Using 3T3-L1 cell culture model of adipogenesis, we show that disrupting the interaction between WDTC1 and DDB1 leads to a loss of adipogenic suppression by WDTC1, increased triglyceride accumulation and adipogenic gene expression. We show that the CRL4(WDTC) (1) complex promotes histone H2AK119 monoubiquitylation, thus suggesting a role for this complex in transcriptional repression during adipogenesis. Our results identify a biochemical role for WDTC1 and extend the functional range of the CRL4 complex to the suppression of fat accumulation. PMID:27113764

  2. Adenovirus-mediated downregulation of the ubiquitin ligase RNF8 sensitizes bladder cancer to radiotherapy

    PubMed Central

    Yang, Xu-Guang; Xie, Kun; Jing, Yu-Hong; Wang, De-Gui

    2016-01-01

    The ubiquitin ligase RNF8 promotes the DNA damage response (DDR). We observed that the expression of RNF8 was increased in bladder cancer cells and that this change in RNF8 expression could be reversed by adenovirus-mediated shRNA treatment. Moreover, we found that RNF8 knockdown sensitized bladder cancer cells to radiotherapy, as demonstrated by reduced cell survival. Additionally, the absence of RNF8 induced a high rate of apoptosis and impaired double-strand break repair signaling after radiotherapy. Furthermore, experiments on nude mice showed that combining shRNF8 treatment with radiotherapy suppressed implanted bladder tumor growth and enhanced apoptotic cell death in vivo. Altogether, our results indicated that RNF8 might be a novel target for bladder cancer treatment. PMID:26788910

  3. TRIM32 is an E3 ubiquitin ligase for dysbindin.

    PubMed

    Locke, Matthew; Tinsley, Caroline L; Benson, Matthew A; Blake, Derek J

    2009-07-01

    Mutations in the gene encoding tripartite motif protein 32 (TRIM32) cause two seemingly diverse diseases: limb-girdle muscular dystrophy type 2H (LGMD2H) or sarcotubular myopathy (STM) and Bardet-Biedl syndrome type 11(BBS11). Although TRIM32 is involved in protein ubiquitination, its substrates and the molecular consequences of disease-causing mutations are poorly understood. In this paper, we show that TRIM32 is a widely expressed ubiquitin ligase that is localized to the Z-line in skeletal muscle. Using the yeast two-hybrid system, we found that TRIM32 binds and ubiquitinates dysbindin, a protein implicated in the genetic aetiology of schizophrenia, augmenting its degradation. Small-interfering RNA-mediated knock-down of TRIM32 in myoblasts resulted in elevated levels of dysbindin. Importantly, the LGMD2H/STM-associated TRIM32 mutations, D487N and R394H impair ubiquitin ligase activity towards dysbindin and were mislocalized in heterologous cells. These mutants were able to self-associate and also co-immunoprecipitated with wild-type TRIM32 in transfected cells. Furthermore, the D487N mutant could bind to both dysbindin and its E2 enzyme but was defective in monoubiquitination. In contrast, the BBS11 mutant P130S did not show any biochemical differences compared with the wild-type protein. Our data identify TRIM32 as a regulator of dysbindin and demonstrate that the LGMD2H/STM mutations may impair substrate ubiquitination. PMID:19349376

  4. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms.

    PubMed

    Dove, Katja K; Stieglitz, Benjamin; Duncan, Emily D; Rittinger, Katrin; Klevit, Rachel E

    2016-08-01

    RING-in-between-RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub-conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT-type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING-type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub-binding site on HHARI RING2 important for its recruitment to RING1-bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs. PMID:27312108

  5. Mechanism of ubiquitylation by dimeric RING ligase RNF4.

    PubMed

    Plechanovová, Anna; Jaffray, Ellis G; McMahon, Stephen A; Johnson, Kenneth A; Navrátilová, Iva; Naismith, James H; Hay, Ronald T

    2011-09-01

    Mammalian RNF4 is a dimeric RING ubiquitin E3 ligase that ubiquitylates poly-SUMOylated proteins. We found that RNF4 bound ubiquitin-charged UbcH5a tightly but free UbcH5a weakly. To provide insight into the mechanism of RING-mediated ubiquitylation, we docked the UbcH5~ubiquitin thioester onto the RNF4 RING structure. This revealed that with E2 bound to one monomer of RNF4, the thioester-linked ubiquitin could reach across the dimer to engage the other monomer. In this model, the 'Ile44 hydrophobic patch' of ubiquitin is predicted to engage a conserved tyrosine located at the dimer interface of the RING, and mutation of these residues blocked ubiquitylation activity. Thus, dimeric RING ligases are not simply inert scaffolds that bring substrate and E2-loaded ubiquitin into close proximity. Instead, they facilitate ubiquitin transfer by preferentially binding the E2~ubiquitin thioester across the dimer and activating the thioester bond for catalysis. PMID:21857666

  6. Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in eukaryotic histone H3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BirA ligase, a prokaryotic ortholog of human holocarboxylase synthetase (HCS), is known to biotinylate proteins. Here, we tested the hypothesis that BirA ligase may also catalyze biotinylation of eukaryotic histones. If so, this would render recombinant BirA ligase a useful surrogate for HCS in stud...

  7. DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells

    PubMed Central

    Oh, Sehyun; Harvey, Adam; Zimbric, Jacob; Wang, Yongbao; Nguyen, Thanh; Jackson, Pauline J.; Hendrickson, Eric A.

    2014-01-01

    Ku-dependent C-NHEJ (classic non-homologous end joining) is the primary DNA EJing (end joining) repair pathway in mammals. Recently, an additional EJing repair pathway (A-NHEJ; alternative-NHEJ) has been described. Currently, the mechanism of A-NHEJ is obscure although a dependency on LIGIII (DNA ligase III) is often implicated. To test the requirement for LIGIII in A-NHEJ we constructed a LIGIII conditionally-null human cell line using gene targeting. Nuclear EJing activity appeared unaffected by a deficiency in LIGIII as, surprisingly, so were random gene targeting integration events. In contrast, LIGIII was required for mitochondrial function and this defined the gene’s essential activity. Human Ku:LIGIII and Ku:LIGIV (DNA ligase IV) double knockout cell lines, however, demonstrated that LIGIII is required for the enhanced A-NHEJ activity that is observed in Ku-deficient cells. Most unexpectedly, however, the majority of EJing events remained LIGIV-dependent. In conclusion, although human LIGIII has an essential function in mitochondrial maintenance, it is dispensable for most types of nuclear DSB repair, except for the A-NHEJ events that are normally suppressed by Ku. Moreover, we describe that a robust Ku-independent, LIGIV-dependent repair pathway exists in human somatic cells. PMID:24837021

  8. Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation

    PubMed Central

    2011-01-01

    Background Accumulation of aberrant proteins to form Lewy bodies (LBs) is a hallmark of Parkinson's disease (PD). Ubiquitination-mediated degradation of aberrant, misfolded proteins is critical for maintaining normal cell function. Emerging evidence suggests that oxidative/nitrosative stress compromises the precisely-regulated network of ubiquitination in PD, particularly affecting parkin E3 ligase activity, and contributes to the accumulation of toxic proteins and neuronal cell death. Results To gain insight into the mechanism whereby cell stress alters parkin-mediated ubiquitination and LB formation, we investigated the effect of oxidative stress. We found significant increases in oxidation (sulfonation) and subsequent aggregation of parkin in SH-SY5Y cells exposed to the mitochondrial complex I inhibitor 1-methyl-4-phenlypyridinium (MPP+), representing an in vitro cell-based PD model. Exposure of these cells to direct oxidation via pathological doses of H2O2 induced a vicious cycle of increased followed by decreased parkin E3 ligase activity, similar to that previously reported following S-nitrosylation of parkin. Pre-incubation with catalase attenuated H2O2 accumulation, parkin sulfonation, and parkin aggregation. Mass spectrometry (MS) analysis revealed that H2O2 reacted with specific cysteine residues of parkin, resulting in sulfination/sulfonation in regions of the protein similar to those affected by parkin mutations in hereditary forms of PD. Immunohistochemistry or gel electrophoresis revealed an increase in aggregated parkin in rats and primates exposed to mitochondrial complex I inhibitors, as well as in postmortem human brain from patients with PD with LBs. Conclusion These findings show that oxidative stress alters parkin E3 ligase activity, leading to dysfunction of the ubiquitin-proteasome system and potentially contributing to LB formation. PMID:21595948

  9. AUTOUBIQUITINATION OF BCA2 RING E3 LIGASE REGULATES ITS OWN STABILITY AND AFFECTS CELL MIGRATION

    PubMed Central

    Amemiya, Yutaka; Azmi, Peter; Seth, Arun

    2009-01-01

    Accumulating evidence suggests that ubiquitination plays a role in cancer by changing the function of key cellular proteins. Previously, we isolated BCA2 gene from a library enriched for breast tumor mRNAs. The BCA2 protein is a RING type E3 ubiquitin ligase and is overexpressed in human breast tumors. In order to deduce the biochemical and biological function of BCA2, we searched for BCA2 binding partners using human breast and fetal brain cDNA libraries and BacterioMatch two-hybrid system. We identified 62 interacting partners, majority of those were found to encode ubiquitin precursor proteins including ubiquitin C and ubiquitinA-52. Using several deletion and point mutants, we found that the BCA2 zinc finger (BZF) domain at the N-terminus specifically binds ubiquitin and ubiquitinated proteins. The autoubiquitination activity of BCA2, RING-H2 mutant, BZF mutant, and various lysine mutants of BCA2 were investigated. Our results indicate that the BCA2 protein is strongly ubiquitinated and no ubiquitination is detected with the BCA2 RING-H2 mutant, indicating that the RING domain is essential for autoubiquitination. Mutation of the K26 and K32 lysines in the BZF domain also abrogated autoubiquitination activity. Interestingly, mutation of the K232 and K260 lysines in and near the RING domain resulted in an increase in autoubiquitination activity. Additionally, in cellular migration assays, BCA2 mutants showed altered cell motility compared to wild-type BCA2. On the basis of these findings, we propose that BCA2 maybe an important factor regulating breast cancer cell migration/metastasis. We put-forward a novel model for BCA2 E3 ligase mediated cell regulation. PMID:18819927

  10. Enzymatic Analysis of PTEN Ubiquitylation by WWP2 and NEDD4-1 E3 Ligases.

    PubMed

    Chen, Zan; Thomas, Stefani N; Bolduc, David M; Jiang, Xuejun; Zhang, Xiangbin; Wolberger, Cynthia; Cole, Philip A

    2016-07-01

    PTEN is a lipid phosphatase that converts phosphatidylinositol 3,4,5-phosphate (PIP3) to phosphatidylinositol 4,5-phosphate (PIP2) and plays a critical role in the regulation of tumor growth. PTEN is subject to regulation by a variety of post-translational modifications, including phosphorylation on a C-terminal cluster of four Ser/Thr residues (380, 382, 383, and 385) and ubiquitylation by various E3 ligases, including NEDD4-1 and WWP2. It has previously been shown that C-terminal phosphorylation of PTEN can increase its cellular half-life. Using in vitro ubiquitin transfer assays, we show that WWP2 is more active than NEDD4-1 in ubiquitylating unphosphorylated PTEN. The mapping of ubiquitylation sites in PTEN by mass spectrometry showed that both NEDD4-1 and WWP2 can target a broad range of Lys residues in PTEN, although NEDD4-1 versus WWP2 showed a stronger preference for ubiquitylating PTEN's C2 domain. Whereas tetraphosphorylation of PTEN did not significantly affect its ubiquitylation by NEDD4-1, it inhibited PTEN ubiquitylation by WWP2. Single-turnover and pull-down experiments suggested that tetraphosphorylation of PTEN appears to weaken its interaction with WWP2. These studies reveal how the PTEN E3 ligases WWP2 and NEDD4-1 exhibit distinctive properties in Lys selectivity and sensitivity to PTEN phosphorylation. Our findings also provide a molecular mechanism for the connection between PTEN Ser/Thr phosphorylation and PTEN's cellular stability. PMID:27295432

  11. Transcript profiling of jasmonate-elicited Taxus cells reveals a β-phenylalanine-CoA ligase.

    PubMed

    Ramírez-Estrada, Karla; Altabella, Teresa; Onrubia, Miriam; Moyano, Elisabeth; Notredame, Cedric; Osuna, Lidia; Vanden Bossche, Robin; Goossens, Alain; Cusido, Rosa M; Palazon, Javier

    2016-01-01

    Plant cell cultures constitute eco-friendly biotechnological platforms for the production of plant secondary metabolites with pharmacological activities, as well as a suitable system for extending our knowledge of secondary metabolism. Despite the high added value of taxol and the importance of taxanes as anticancer compounds, several aspects of their biosynthesis remain unknown. In this work, a genomewide expression analysis of jasmonate-elicited Taxus baccata cell cultures by complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) indicated a correlation between an extensive elicitor-induced genetic reprogramming and increased taxane production in the targeted cultures. Subsequent in silico analysis allowed us to identify 15 genes with a jasmonate-induced differential expression as putative candidates for genes encoding enzymes involved in five unknown steps of taxane biosynthesis. Among them, the TB768 gene showed a strong homology, including a very similar predicted 3D structure, with other genes previously reported to encode acyl-CoA ligases, thus suggesting a role in the formation of the taxol lateral chain. Functional analysis confirmed that the TB768 gene encodes an acyl-CoA ligase that localizes to the cytoplasm and is able to convert β-phenylalanine, as well as coumaric acid, into their respective derivative CoA esters. β-phenylalanyl-CoA is attached to baccatin III in one of the last steps of the taxol biosynthetic pathway. The identification of this gene will contribute to the establishment of sustainable taxol production systems through metabolic engineering or synthetic biology approaches. PMID:25899320

  12. Human DNA ligase I cDNA: Cloning and functional expression in Saccharomyces cerevisiae

    SciTech Connect

    Barnes, D.E.; Kodama, Kenichi; Tomkinson, A.E.; Lindahl, T.; Lasko, D.D. ); Johnston, L.H. )

    1990-09-01

    Human cDNA clones encoding the major DNA ligase activity in proliferating cells, DNA ligase I, were isolated by two independent methods. In one approach, a human cDNA library was screened by hybridization with oligonucleotides deduced from partial amino acid sequence of purified bovine DNA ligase I. In an alternative approach, a human cDNA library was screened for functional expression of a polypeptide able to complement a cdc9 temperature-sensitive DNA ligase mutant of Saccharomuces cerevisiae. The sequence of an apparently full-length cDNA encodes a 102-kDa protein, indistinguishable in size from authentic human DNA ligase I. The deduced amino acid sequence of the human DNA ligase I cDNA is 40% homologous to the smaller DNA ligases of S. cerevisiae and Schizosaccharomyces pombe, homology being confined to the carboxyl-terminal regions of the respective proteins. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is transcribed from a single-copy gene on chromosome 19.

  13. The Ubiquitin Ligase Hul5 Promotes Proteasomal Processivity▿

    PubMed Central

    Aviram, Sharon; Kornitzer, Daniel

    2010-01-01

    The 26S proteasome is a large cytoplasmic protease that degrades polyubiquitinated proteins to short peptides in a processive manner. The proteasome 19S regulatory subcomplex tethers the target protein via its polyubiquitin adduct and unfolds the target polypeptide, which is then threaded into the proteolytic site-containing 20S subcomplex. Hul5 is a 19S subcomplex-associated ubiquitin ligase that elongates ubiquitin chains on proteasome-bound substrates. We isolated hul5Δ as a mutation with which fusions of an unstable cyclin to stable reporter proteins accumulate as partially processed products. These products appear transiently in the wild type but are strongly stabilized in 19S ATPase mutants and in the hul5Δ mutant, supporting a role for the ATPase subunits in the unfolding of proteasome substrates before insertion into the catalytic cavity and suggesting a role for Hul5 in the processive degradation of proteins that are stalled on the proteasome. PMID:20008553

  14. Regulation of cancer stem cells by RING finger ubiquitin ligases

    PubMed Central

    Sun, Xiao-Hong

    2014-01-01

    Like normal stem cells, cancer stem cells (CSCs) are capable of self-renewal, either by symmetric or asymmetric cell division. They have the exclusive ability to reproduce malignant tumors indefinitely, and to confer resistance in response to radiation or chemotherapy. The ubiquitin modification system plays various roles in physiology and pathology. The key component for the specificity of this system is ubiquitin ligases (E3s). Of these E3s, the majority are RING finger proteins. Many RING finger E3s, such as the Cullin1-Skp1-F-box protein (SCF) E3s, CBL, BRCA1, MDM2 and von Hippel-Lindau tumour suppressor (VHL), are crucial in the regulation of cell-cycle progression and cell differentiation. As a result, many RING finger E3s are implicated in the positive and negative regulation of CSC maintenance. This review summarizes current knowledge in this research field. PMID:27358852

  15. Fbxo45, a Novel Ubiquitin Ligase, Regulates Synaptic Activity*

    PubMed Central

    Tada, Hirobumi; Okano, Hirotaka James; Takagi, Hiroshi; Shibata, Shinsuke; Yao, Ikuko; Matsumoto, Masaki; Saiga, Toru; Nakayama, Keiichi I.; Kashima, Haruo; Takahashi, Takuya; Setou, Mitsutoshi; Okano, Hideyuki

    2010-01-01

    Neurons communicate with each other through synapses. To establish the precise yet flexible connections that make up neural networks in the brain, continuous synaptic modulation is required. The ubiquitin-proteasome system of protein degradation is one of the critical mechanisms that underlie this process, playing crucial roles in the regulation of synaptic structure and function. We identified a novel ubiquitin ligase, Fbxo45, that functions at synapses. Fbxo45 is evolutionarily conserved and selectively expressed in the nervous system. We demonstrated that the knockdown of Fbxo45 in primary cultured hippocampal neurons resulted in a greater frequency of miniature excitatory postsynaptic currents. We also found that Fbxo45 induces the degradation of a synaptic vesicle-priming factor, Munc13-1. We propose that Fbxo45 plays an important role in the regulation of neurotransmission by modulating Munc13-1 at the synapse. PMID:19996097

  16. RBR ubiquitin ligases: Diversification and streamlining in animal lineages.

    PubMed

    Marín, Ignacio

    2009-07-01

    The patterns of emergence and disappearance in animal species of genes encoding RBR ubiquitin ligases are described. RBR genes can be classified into subfamilies (Parkin, Ariadne, Dorfin, ARA54, etc.) according to sequence and structural data. Here, I show that most animal-specific RBR subfamilies emerged early in animal evolution, and that ancient animals, before the cnidarian/bilaterian split, had a set of RBR genes, which was as complex as the one currently found in mammals. However, some lineages (nematodes, dipteran insects) have recently suffered multiple losses, leading to a highly simplified set of RBR genes. Genes of a particular RBR subfamily, characterized by containing a helicase domain and so far found only in plants, are present also in some animal species. The meaning of these patterns of diversification and streamlining are discussed at the light of functional data. Extreme evolutionary conservation may be related to gene products having housekeeping functions. PMID:19526189

  17. PARC and CUL7 form atypical cullin RING ligase complexes.

    PubMed

    Skaar, Jeffrey R; Florens, Laurence; Tsutsumi, Takeya; Arai, Takehiro; Tron, Adriana; Swanson, Selene K; Washburn, Michael P; DeCaprio, James A

    2007-03-01

    CUL7 and the p53-associated, PARkin-like cytoplasmic protein (PARC) were previously reported to form homodimers and heterodimers, the first demonstration of cullin dimerization. Although a CUL7-based SKP1/CUL1/F-box (SCF)-like complex has been observed, little is known about the existence of a PARC-based SCF-like complex and how PARC interacts with CUL7-based complexes. To further characterize PARC-containing complexes, we examined the ability of PARC to form an SCF-like complex. PARC binds RBX1 and is covalently modified by NEDD8, defining PARC as a true cullin. However, PARC fails to bind SKP1 or F-box proteins, including the CUL7-associated FBXW8. To examine the assembly of PARC- and CUL7-containing complexes, tandem affinity purification followed by multidimensional protein identification technology were used. Multidimensional protein identification technology analysis revealed that the CUL7 interaction with FBXW8 was mutually exclusive of CUL7 binding to PARC or p53. Notably, although heterodimers of CUL7 and PARC bind p53, p53 is not required for the dimerization of CUL7 and PARC. The observed physical separation of FBXW8 and PARC is supported functionally by the generation of Parc-/-, Fbxw8-/- mice, which do not show exacerbation of the Fbxw8-/- phenotype. Finally, all of the PARC and CUL7 subcomplexes examined exhibit E3 ubiquitin ligase activity in vitro. Together, these findings indicate that the intricate assembly of PARC- and CUL7-containing complexes is highly regulated, and multiple subcomplexes may exhibit ubiquitin ligase activity. PMID:17332328

  18. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease.

    PubMed

    Lohr, Naomi J; Molleston, Jean P; Strauss, Kevin A; Torres-Martinez, Wilfredo; Sherman, Eric A; Squires, Robert H; Rider, Nicholas L; Chikwava, Kudakwashe R; Cummings, Oscar W; Morton, D Holmes; Puffenberger, Erik G

    2010-03-12

    Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, identification of a mutation resulting in truncation of ITCH. These patients represent the first reported human phenotype associated with ITCH deficiency. These patients not only have multisystem autoimmune disease but also display morphologic and developmental abnormalities. This disorder underscores the importance of ITCH ubiquitin ligase in many cellular processes. PMID:20170897

  19. Human ITCH E3 Ubiquitin Ligase Deficiency Causes Syndromic Multisystem Autoimmune Disease

    PubMed Central

    Lohr, Naomi J.; Molleston, Jean P.; Strauss, Kevin A.; Torres-Martinez, Wilfredo; Sherman, Eric A.; Squires, Robert H.; Rider, Nicholas L.; Chikwava, Kudakwashe R.; Cummings, Oscar W.; Morton, D. Holmes; Puffenberger, Erik G.

    2010-01-01

    Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, identification of a mutation resulting in truncation of ITCH. These patients represent the first reported human phenotype associated with ITCH deficiency. These patients not only have multisystem autoimmune disease but also display morphologic and developmental abnormalities. This disorder underscores the importance of ITCH ubiquitin ligase in many cellular processes. PMID:20170897

  20. Synthesis of bisphosphonate derivatives of ATP by T4 DNA ligase, ubiquitin activating enzyme (E1) and other ligases.

    PubMed

    Günther Sillero, María A; de Diego, Anabel; Pérez-Zúñiga, Francisco J; Sillero, Antonio

    2008-05-15

    T4 DNA ligase and the ubiquitin activating enzyme (E1), catalyze the synthesis of ATP beta,gamma-bisphosphonate derivatives. Concerning T4 DNA ligase: (i) etidronate (pC(OH)(CH(3))p) displaced the AMP moiety of the complex E-AMP in a concentration dependent manner; (ii) the K(m) values and the rate of synthesis k(cat) (s(-1)), determined for the following compounds were, respectively: etidronate, 0.73+/-0.09 mM and (70+/-10)x10(-3) s(-1); clodronate (pCCl(2)p), 0.08+/-0.01 mM and (4.1+/-0.3)x10(-3) s(-1); methylenebisphosphonate (pCH(2)p), 0.024+/-0.001 mM and (0.6+/-0.1)x10(-3) s(-1); tripolyphosphate (P(3)) (in the synthesis of adenosine 5'-tetraphosphate, p(4)A), 1.30+/-0.30 mM and (6.2+/-1.1)x10(-3) s(-1); (iii) in the presence of GTP and ATP, inhibition of the synthesis of Ap(4)G was observed with clodronate but not with pamidronate (pC(OH)(CH(2)-CH(2)-NH(3))p). Concerning the ubiquitin activating enzyme (E1): methylenebisphosphonate was the only bisphosphonate, out of the ones tested, that served as substrate for the synthesis of an ATP derivative (K(m)=0.36+/-0.09 mM and k(cat)=0.15+/-0.02 s(-1)). None of the above bisphosphonates were substrates of the reaction catalyzed by luciferase or by acyl-CoA synthetase. The ability of acetyl-CoA synthetase to use methylenebisphosphonate as substrate depended on the commercial source of the enzyme. In our view this report widens our knowledge of the enzymes able to metabolize bisphosphonates, a therapeutic tool widely used in the treatment of osteoporosis. PMID:18378215

  1. The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle

    PubMed Central

    Tang, Danming; Xiang, Yi; De Renzis, Stefano; Rink, Jochen; Zheng, Gen; Zerial, Marino; Wang, Yanzhuang

    2012-01-01

    Partitioning of the Golgi membrane into daughter cells during mammalian cell division occurs through a unique disassembly and reassembly process that is regulated by ubiquitination. However, the identity of the ubiquitin ligase is unknown. Here we show that the Homologous to the E6-AP Carboxyl Terminus (HECT) domain containing ubiquitin ligase HACE1 is targeted to the Golgi membrane through interactions with Rab proteins. The ubiquitin ligase activity of HACE1 in mitotic Golgi disassembly is required for subsequent postmitotic Golgi membrane fusion. Depletion of HACE1 using small interfering RNAs or expression of an inactive HACE1 mutant protein in cells impaired postmitotic Golgi membrane fusion. The identification of HACE1 as a Golgi-localized ubiquitin ligase provides evidence that ubiquitin has a critical role in Golgi biogenesis during the cell cycle. PMID:21988917

  2. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    DOE PAGESBeta

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; et al

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of themore » intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.« less

  3. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    SciTech Connect

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.

  4. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells

    PubMed Central

    Arakawa, Hiroshi; Bednar, Theresa; Wang, Minli; Paul, Katja; Mladenov, Emil; Bencsik-Theilen, Alena A.; Iliakis, George

    2012-01-01

    In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger DNA ligase III (LigIII) is restricted to higher eukaryotes and has been associated with base excision (BER) and single strand break repair (SSBR). Here, using conditional knockout strategies for LIG3 and concomitant inactivation of the LIG1 and LIG4 genes, we show that in DT40 cells LigIII efficiently supports semi-conservative DNA replication. Our observations demonstrate a high functional versatility for the evolutionary new LigIII in DNA replication and mitochondrial metabolism, and suggest the presence of an alternative pathway for Okazaki fragment ligation. PMID:22127868

  5. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    PubMed Central

    Liu, Daniel S.; Nivón, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-01-01

    Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies. PMID:25313043

  6. Structure of the DNA Ligase-Adenylate Intermediate: Lysine (ε-amino)-Linked Adenosine Monophosphoramidate*

    PubMed Central

    Gumport, Richard I.; Lehman, I. R.

    1971-01-01

    Proteolytic degradation of the Escherichia coli DNA ligase-adenylate intermediate releases adenosine 5′-monophosphate linked to the ε-amino group of lysine by a phosphoamide bond. Measurements of the rate of hydroxylaminolysis of the ligase-adenylate provide further support for a phosphoamide linkage in the native enzyme. Lysine (ε-amino)-linked adenosine monophosphoramidate has also been isolated from the T4 phage-induced ligase-adenylate intermediate. These results indicate that an initial step of the DNA ligase reaction consists of the nucleophilic attack of the ε-amino group of a lysine residue of the enzyme on the adenylyl phosphorus of DPN or ATP that leads to the formation of enzyme-bound lysine (εamino)-linked adenosine monophosphoramidate. PMID:4944632

  7. Structural Basis for Nick Recognition by a Minimal Pluripotent DNA Ligase

    SciTech Connect

    Nair,P.; Nandakumar, J.; Smith, P.; Odell, M.; Lima, C.; Shuman, S.

    2007-01-01

    Chlorella virus DNA ligase, the smallest eukaryotic ligase known, has pluripotent biological activity and an intrinsic nick-sensing function, despite having none of the accessory domains found in cellular ligases. A 2.3-{angstrom} crystal structure of the Chlorella virus ligase-AMP intermediate bound to duplex DNA containing a 3'-OH-5'-PO{sub 4} nick reveals a new mode of DNA envelopment, in which a short surface loop emanating from the OB domain forms a {beta}-hairpin 'latch' that inserts into the DNA major groove flanking the nick. A network of interactions with the 3'-OH and 5'-PO{sub 4} termini in the active site illuminates the DNA adenylylation mechanism and the crucial roles of AMP in nick sensing and catalysis. Addition of a divalent cation triggered nick sealing in crystallo, establishing that the nick complex is a bona fide intermediate in the DNA repair pathway.

  8. Cullin-5, a ubiquitin ligase scaffold protein, is significantly underexpressed in endometrial adenocarcinomas and is a target of miR-182

    PubMed Central

    DEVOR, ERIC J.; SCHICKLING, BRANDON M.; REYES, HENRY D.; WARRIER, AKSHAYA; LINDSAY, BRITTANY; GOODHEART, MICHAEL J.; SANTILLAN, DONNA A.; LESLIE, KIMBERLY K.

    2016-01-01

    Altered expression of cullin-5 (CUL5), a member of the cullin-RING E3 ubiquitin ligase family, has been implicated in a number of types of cancers including breast, cervical and hepatocellular cancers. In the present study, we found that CUL5 expression was significantly decreased in both endometrioid and serous endometrial adenocarcinomas with the more aggressive serous type displaying a higher reduction (−4.3-fold) than the less aggressive endometrioid type (−2.9-fold). Overexpression of CUL5 mRNA and protein in Ishikawa H endometrial cancer cells resulted in decreased cell proliferation and in a reduction in CUL5-RING E3 ligase downstream clients JAK2 and FAS-L. Finally, we demonstrated for the first time that CUL5 is a direct target of miR-182 that we previously showed to be significantly overexpressed in endometrial adenocarcinomas and we provided evidence that increased miR-182 expression is, at least in part, a result of demethylation of its upstream promoter. These data suggest a cascade in which miR-182 expression is epigenetically increased leading to decreased CUL5 expression and increased cellular proliferation. The final step in the cascade may be operating through a decrease in ubiquitination of pro-growth CUL5 ubiquitin ligase clients. This cascade offers a series of potential interventional steps involving epigenetic modification, miRNA and/or gene targeting and ubiquitination. PMID:26847831

  9. Genetic effects of XRCC4 and ligase IV genes on human glioma.

    PubMed

    Jiao, Keping; Qin, Juan; Zhao, Yumei; Zhang, Honglian

    2016-09-28

    Ligase IV and XRCC4 genes, important molecules in the nonhomologous end-joining pathway for repairing DNA double-strand breaks, may play crucial roles in carcinogenesis. To detect their effects on the risk of human glioma, their gene expression differences between 110 human glioma tissues and 50 healthy brain tissues were determined using quantitative real-time PCR. Furthermore, two tagging single nucleotide polymorphisms (SNPs) in ligase IV and four SNPs in XRCC4 genes were genotyped in 317 glioma patients and 352 healthy controls. The association of glioma and ligase IV/XRCC4 was evaluated using methods for SNP, haplotype, and gene-gene interaction analysis. Compared with those in normal brain tissues, the relative gene expression levels of ligase IV and XRCC4 were significantly downregulated in glioma tissue (P=0.0017 and 0.0006, respectively). Single SNP analysis indicated that only rs10131 in ligase IV remained significantly associated with glioma (P=0.0036) after 10 000 permutation tests. Haplotype analysis showed that the haplotype profiles of ligase IV and XRCC4 were significantly different between glioma patients and healthy controls (P=0.004 and 3.13E-6, respectively). Finally, the gene-gene interaction analysis suggested that the three-locus model (rs1805388, rs10131, and rs2075685) was the best model for ligase IV and XRCC4 to have interaction effects on the risk of glioma. In conclusion, both ligase IV and XRCC4 may act in concert to modulate the development of glioma. PMID:27508978

  10. Comprehensive database of human E3 ubiquitin ligases: application to aquaporin-2 regulation.

    PubMed

    Medvar, Barbara; Raghuram, Viswanathan; Pisitkun, Trairak; Sarkar, Abhijit; Knepper, Mark A

    2016-07-01

    Aquaporin-2 (AQP2) is regulated in part via vasopressin-mediated changes in protein half-life that are in turn dependent on AQP2 ubiquitination. Here we addressed the question, "What E3 ubiquitin ligase is most likely to be responsible for AQP2 ubiquitination?" using large-scale data integration based on Bayes' rule. The first step was to bioinformatically identify all E3 ligase genes coded by the human genome. The 377 E3 ubiquitin ligases identified in the human genome, consisting predominant of HECT, RING, and U-box proteins, have been used to create a publically accessible and downloadable online database (https://hpcwebapps.cit.nih.gov/ESBL/Database/E3-ligases/). We also curated a second database of E3 ligase accessory proteins that included BTB domain proteins, cullins, SOCS-box proteins, and F-box proteins. Using Bayes' theorem to integrate information from multiple large-scale proteomic and transcriptomic datasets, we ranked these 377 E3 ligases with respect to their probability of interaction with AQP2. Application of Bayes' rule identified the E3 ligases most likely to interact with AQP2 as (in order of probability): NEDD4 and NEDD4L (tied for first), AMFR, STUB1, ITCH, ZFPL1. Significantly, the two E3 ligases tied for top rank have also been studied extensively in the reductionist literature as regulatory proteins in renal tubule epithelia. The concordance of conclusions from reductionist and systems-level data provides strong motivation for further studies of the roles of NEDD4 and NEDD4L in the regulation of AQP2 protein turnover. PMID:27199454

  11. Fragment-based discovery of 6-azaindazoles as inhibitors of bacterial DNA ligase.

    PubMed

    Howard, Steven; Amin, Nader; Benowitz, Andrew B; Chiarparin, Elisabetta; Cui, Haifeng; Deng, Xiaodong; Heightman, Tom D; Holmes, David J; Hopkins, Anna; Huang, Jianzhong; Jin, Qi; Kreatsoulas, Constantine; Martin, Agnes C L; Massey, Frances; McCloskey, Lynn; Mortenson, Paul N; Pathuri, Puja; Tisi, Dominic; Williams, Pamela A

    2013-12-12

    Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase. PMID:24900632

  12. Fragment-Based Discovery of 6-Azaindazoles As Inhibitors of Bacterial DNA Ligase

    PubMed Central

    2013-01-01

    Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase. PMID:24900632

  13. Structure of the HHARI Catalytic Domain Shows Glimpses of a HECT E3 Ligase

    PubMed Central

    Spratt, Donald E.; Mercier, Pascal; Shaw, Gary S.

    2013-01-01

    The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING), or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a substrate (HECT). The RING-inBetweenRING-RING (RBR) proteins constitute a unique group of E3 ubiquitin ligases that includes the Human Homologue of Drosophila Ariadne (HHARI). These E3 ligases are proposed to use a hybrid RING/HECT mechanism whereby the enzyme uses facets of both the RING and HECT enzymes to transfer ubiquitin to a substrate. We now present the solution structure of the HHARI RING2 domain, the key portion of this E3 ligase required for the RING/HECT hybrid mechanism. The structure shows the domain possesses two Zn2+-binding sites and a single exposed cysteine used for ubiquitin catalysis. A structural comparison of the RING2 domain with the HECT E3 ligase NEDD4 reveals a near mirror image of the cysteine and histidine residues in the catalytic site. Further, a tandem pair of aromatic residues exists near the C-terminus of the HHARI RING2 domain that is conserved in other RBR E3 ligases. One of these aromatic residues is remotely located from the catalytic site that is reminiscent of the location found in HECT E3 enzymes where it is used for ubiquitin catalysis. These observations provide an initial structural rationale for the RING/HECT hybrid mechanism for ubiquitination used by the RBR E3 ligases. PMID:24058416

  14. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3

    PubMed Central

    Chesarino, Nicholas M.; McMichael, Temet M.; Yount, Jacob S.

    2015-01-01

    Interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3 ubiquitination is dependent upon the presence of a PPxY motif within IFITM3 and the WW domain-containing region of NEDD4. In NEDD4 knockout mouse embryonic fibroblasts, we observed defective IFITM3 ubiquitination and accumulation of high levels of basal IFITM3 as compared to wild type cells. Heightened IFITM3 levels significantly protected NEDD4 knockout cells from infection by influenza A and B viruses. Similarly, knockdown of NEDD4 in human lung cells resulted in an increase in steady state IFITM3 and a decrease in influenza virus infection, demonstrating a conservation of this NEDD4-dependent IFITM3 regulatory mechanism in mouse and human cells. Consistent with the known association of NEDD4 with lysosomes, we demonstrate for the first time that steady state turnover of IFITM3 occurs through the lysosomal degradation pathway. Overall, this work identifies the enzyme NEDD4 as a new therapeutic target for the prevention of influenza virus infections, and introduces a new paradigm for up-regulating cellular levels of IFITM3 independently of IFN or infection. PMID:26263374

  15. The E3-Ubiquitin Ligase TRIM50 Interacts with HDAC6 and p62, and Promotes the Sequestration and Clearance of Ubiquitinated Proteins into the Aggresome

    PubMed Central

    Fusco, Carmela; Micale, Lucia; Egorov, Mikhail; Monti, Maria; D’Addetta, Ester Valentina; Augello, Bartolomeo; Cozzolino, Flora; Calcagnì, Alessia; Fontana, Andrea; Polishchuk, Roman S.; Didelot, Gerard; Reymond, Alexandre; Pucci, Piero; Merla, Giuseppe

    2012-01-01

    In this study we report that, in response to proteasome inhibition, the E3-Ubiquitin ligase TRIM50 localizes to and promotes the recruitment and aggregation of polyubiquitinated proteins to the aggresome. Using Hdac6-deficient mouse embryo fibroblasts (MEF) we show that this localization is mediated by the histone deacetylase 6, HDAC6. Whereas Trim50-deficient MEFs allow pinpointing that the TRIM50 ubiquitin-ligase regulates the clearance of polyubiquitinated proteins localized to the aggresome. Finally we demonstrate that TRIM50 colocalizes, interacts with and increases the level of p62, a multifunctional adaptor protein implicated in various cellular processes including the autophagy clearance of polyubiquitinated protein aggregates. We speculate that when the proteasome activity is impaired, TRIM50 fails to drive its substrates to the proteasome-mediated degradation, and promotes their storage in the aggresome for successive clearance. PMID:22792322

  16. Ubiquitin ligase gene neurl3 plays a role in spermatogenesis of half-smooth tongue sole (Cynoglossus semilaevis) by regulating testis protein ubiquitination.

    PubMed

    Xu, Wenteng; Li, Hailong; Dong, Zhongdian; Cui, Zhongkai; Zhang, Ning; Meng, Liang; Zhu, Ying; Liu, Yang; Li, Yangzhen; Guo, Hua; Ma, Jialu; Wei, Zhanfei; Zhang, Nianwei; Yang, Yingming; Chen, Songlin

    2016-10-30

    E3 ubiquitin ligases are a large gene family that plays a diversity of roles in spermatogenesis. In this study, the functional characterization of a neuralized E3 ubiquitin protein ligase 3 (neurl3) revealed its potential participation in spermatogenesis. Firstly, we found that neurl3 exhibited male-biased transcription and that its translation was predominant in testis germ cells. The knockdown of neurl3 by RNA interference caused increased transcription of spermatogenesis-related genes. These results corroborate previous studies indicating a role for neurl3 in spermatogenesis. Moreover, the levels of neurl3 transcription and testis protein ubiquitination were closely correlated. Based on these findings, we speculate that neurl3 modulates testis protein ubiquitination in a dosage-dependent manner and that this influences spermatogenesis. PMID:27480167

  17. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi

    PubMed Central

    Unciuleac, Mihaela-Carmen; Shuman, Stewart

    2015-01-01

    The proteome of the amoebo-flagellate protozoan Naegleria gruberi is rich in candidate RNA repair enzymes, including 15 putative RNA ligases, one of which, NgrRnl, is a eukaryal homolog of Deinococcus radiodurans RNA ligase, DraRnl. Here we report that purified recombinant NgrRnl seals nicked 3′-OH/5′-PO4 duplexes in which the 3′-OH strand is RNA. It does so via the “classic” ligase pathway, entailing reaction with ATP to form a covalent NgrRnl–AMP intermediate, transfer of AMP to the nick 5′-PO4, and attack of the RNA 3′-OH on the adenylylated nick to form a 3′–5′ phosphodiester. Unlike members of the four known families of ATP-dependent RNA ligases, NgrRnl lacks a carboxy-terminal appendage to its nucleotidyltransferase domain. Instead, it contains a defining amino-terminal domain that we show is important for 3′-OH/5′-PO4 nick-sealing and ligase adenylylation, but dispensable for phosphodiester synthesis at a preadenylylated nick. We propose that NgrRnl, DraRnl, and their homologs from diverse bacteria, viruses, and unicellular eukarya comprise a new “Rnl5 family” of nick-sealing ligases with a signature domain organization. PMID:25740837

  18. Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase

    PubMed Central

    Unciuleac, Mihaela-Carmen; Goldgur, Yehuda; Shuman, Stewart

    2015-01-01

    ATP-dependent RNA ligases are agents of RNA repair that join 3′-OH and 5′-PO4 RNA ends. Naegleria gruberi RNA ligase (NgrRnl) exemplifies a family of RNA nick-sealing enzymes found in bacteria, viruses, and eukarya. Crystal structures of NgrRnl at three discrete steps along the reaction pathway—covalent ligase-(lysyl-Nζ)–AMP•Mn2+ intermediate; ligase•ATP•(Mn2+)2 Michaelis complex; and ligase•Mn2+ complex—highlight a two-metal mechanism of nucleotidyl transfer, whereby (i) an enzyme-bound “catalytic” metal coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; and (ii) a second metal coordination complex bridges the β- and γ-phosphates. The NgrRnl N domain is a distinctively embellished oligonucleotide-binding (OB) fold that engages the γ-phosphate and associated metal complex and orients the pyrophosphate leaving group for in-line catalysis with stereochemical inversion at the AMP phosphate. The unique domain architecture of NgrRnl fortifies the theme that RNA ligases have evolved many times, and independently, by fusions of a shared nucleotidyltransferase domain to structurally diverse flanking modules. The mechanistic insights to lysine adenylylation gained from the NgrRnl structures are likely to apply broadly to the covalent nucleotidyltransferase superfamily of RNA ligases, DNA ligases, and RNA capping enzymes. PMID:26512110

  19. Cullin 3 Ubiquitin Ligases in Cancer Biology: Functions and Therapeutic Implications

    PubMed Central

    Chen, Hsin-Yi; Chen, Ruey-Hwa

    2016-01-01

    Cullin-RING ubiquitin ligases are the largest E3 ligase family in eukaryotes and are multiprotein complexes. In these complexes, the Cullin protein serves as a scaffold to connect two functional modules of the ligases, the catalytic subunit and substrate-binding subunit. To date, eight members of the Cullin family proteins have been identified. In the Cul3 ubiquitin ligases, Bric-a-brac/Tramtrack/Broad complex (BTB) domain-containing proteins function as a bridge to connect Cul3 and substrates. While the BTB domain is responsible for Cul3 binding, these proteins usually contain an additional domain for substrate interaction, such as MATH, kelch, Zn finger, and PAM, Highwire, and RPM-1 (PHR domain). With the existence of a large number of BTB proteins in human, the Cul3 ubiquitin ligases ubiquitinate a wide range of substrates involving in diverse cellular functions. In this review, we will discuss recent advances on the functions of Cul3 ubiquitin ligases in cancer development, progression, and therapeutic response and the dysregulation of Cul3-mediated ubiquitination events in human malignancies. In particular, we will focus on three Cul3 substrate adaptors, kelch-like ECH-associated protein (Keap1), kelch-like family member 20 (KLHL20), and speckle type BTB/POZ protein (SPOP), with the intent to highlight novel targets in cancer therapy. PMID:27200299

  20. Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms

    PubMed Central

    Swift, Robert V.; Amaro, Rommie E.

    2009-01-01

    Background Members of the nucleotidyltransferase superfamily known as DNA and RNA ligases carry out the enzymatic process of polynucleotide ligation. These guardians of genomic integrity share a three-step ligation mechanism, as well as common core structural elements. Both DNA and RNA ligases have experienced a surge of recent interest as chemotherapeutic targets for the treatment of a range of diseases, including bacterial infection, cancer, and the diseases caused by the protozoan parasites known as trypanosomes. Objective In this review, we will focus on efforts targeting pathogenic microorganisms; specifically, bacterial NAD+-dependent DNA ligases, which are promising broad-spectrum antibiotic targets, and ATP-dependent RNA editing ligases from Trypanosoma brucei, the species responsible for the devastating neurodegenerative disease, African sleeping sickness. Conclusion High quality crystal structures of both NAD+-dependent DNA ligase and the Trypanosoma brucei RNA editing ligase have facilitated the development of a number of promising leads. For both targets, further progress will require surmounting permeability issues and improving selectivity and affinity. PMID:20354588

  1. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity.

    PubMed Central

    Galperin, M. Y.; Koonin, E. V.

    1997-01-01

    The recently developed PSI-BLAST method for sequence database search and methods for motif analysis were used to define and expand a superfamily of enzymes with an unusual nucleotide-binding fold, referred to as palmate, or ATP-grasp fold. In addition to D-alanine-D-alanine ligase, glutathione synthetase, biotin carboxylase, and carbamoyl phosphate synthetase, enzymes with known three-dimensional structures, the ATP-grasp domain is predicted in the ribosomal protein S6 modification enzyme (RimK), urea amidolyase, tubulin-tyrosine ligase, and three enzymes of purine biosynthesis. All these enzymes possess ATP-dependent carboxylate-amine ligase activity, and their catalytic mechanisms are likely to include acylphosphate intermediates. The ATP-grasp superfamily also includes succinate-CoA ligase (both ADP-forming and GDP-forming variants), malate-CoA ligase, and ATP-citrate lyase, enzymes with a carboxylate-thiol ligase activity, and several uncharacterized proteins. These findings significantly extend the variety of the substrates of ATP-grasp enzymes and the range of biochemical pathways in which they are involved, and demonstrate the complementarity between structural comparison and powerful methods for sequence analysis. PMID:9416615

  2. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F.

    PubMed

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G Eric; Dobner, Thomas; Branton, Philip E; Blanchette, Paola

    2016-01-01

    The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  3. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  4. DNA ligase III is the major high molecular weight DNA joining activity in SV40-transformed human fibroblasts: normal levels of DNA ligase III activity in Bloom syndrome cells.

    PubMed Central

    Tomkinson, A E; Starr, R; Schultz, R A

    1993-01-01

    The phenotypes of cultured cell lines established from individuals with Bloom syndrome (BLM), including an elevated spontaneous frequency of sister chromatid exchanges (SCEs), are consistent with a defect in DNA joining. We have investigated the levels of DNA ligase I and DNA ligase III in an SV40-transformed control and BLM fibroblast cell line, as well as clonal derivatives of the BLM cell line complemented or not for the elevated SCE phenotype. No differences in either DNA ligase I or DNA ligase III were detected in extracts from these cell lines. Furthermore, the data indicate that in dividing cultures of SV40-transformed fibroblasts, DNA ligase III contributes > 85% of high molecular weight DNA joining activity. This observation contrasts with previous studies in which DNA ligase I was reported to be the major DNA joining activity in extracts from proliferating mammalian cells. Images PMID:8265359

  5. IRT1 DEGRADATION FACTOR1, a RING E3 Ubiquitin Ligase, Regulates the Degradation of IRON-REGULATED TRANSPORTER1 in Arabidopsis[C][W][OPEN

    PubMed Central

    Shin, Lung-Jiun; Lo, Jing-Chi; Chen, Guan-Hong; Callis, Judy; Fu, Hongyong; Yeh, Kuo-Chen

    2013-01-01

    Fe is an essential micronutrient for plant growth and development; plants have developed sophisticated strategies to acquire ferric Fe from the soil. Nongraminaceous plants acquire Fe by a reduction-based mechanism, and graminaceous plants use a chelation-based mechanism. In Arabidopsis thaliana, which uses the reduction-based method, IRON-REGULATED TRANSPORTER1 (IRT1) functions as the most important transporter for ferrous Fe uptake. Rapid and constitutive degradation of IRT1 allows plants to quickly respond to changing conditions to maintain Fe homeostasis. IRT1 degradation involves ubiquitination. To identify the specific E3 ubiquitin ligases involved in IRT1 degradation, we screened a set of insertional mutants in RING-type E3 ligases and identified a mutant that showed delayed degradation of IRT1 and loss of IRT1-ubiquitin complexes. The corresponding gene was designated IRT1 DEGRADATION FACTOR1 (IDF1). Evidence of direct interaction between IDF1 and IRT1 in the plasma membrane supported the role of IDF1 in IRT1 degradation. IRT1 accumulation was reduced when coexpressed with IDF1 in yeast or Xenopus laevis oocytes. IDF1 function was RING domain dependent. The idf1 mutants showed increased tolerance to Fe deficiency, resulting from increased IRT1 levels. This evidence indicates that IDF1 directly regulates IRT1 degradation through its RING-type E3 ligase activity. PMID:23995086

  6. Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase*

    PubMed Central

    Andresen, Christina Aaen; Smedegaard, Stine; Sylvestersen, Kathrine Beck; Svensson, Charlotte; Iglesias-Gato, Diego; Cazzamali, Giuseppe; Nielsen, Tine Kragh; Nielsen, Michael Lund; Flores-Morales, Amilcar

    2014-01-01

    The ankyrin and SOCS (suppressor of cytokine signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting 18 members in humans, the identity of the physiological targets of the Asb proteins remains largely unexplored. To increase our understanding of the function of ASB proteins, we conducted a family-wide SILAC (stable isotope labeling by amino acids in cell culture)-based protein/protein interaction analysis. This investigation led to the identification of novel as well as known ASB-associated proteins like Cullin 5 and Elongins B/C. We observed that several proteins can be bound by more than one Asb protein. The additional exploration of this phenomenon demonstrated that ASB-Cullin 5 complexes can oligomerize and provides evidence that Cullin 5 forms heterodimeric complexes with the Cullin 4a-DDB1 complex. We also demonstrated that ASB11 is a novel endoplasmic reticulum-associated ubiquitin ligase with the ability to interact and promote the ubiquitination of Ribophorin 1, an integral protein of the oligosaccharyltransferase (OST) glycosylation complex. Moreover, expression of ASB11 can increase Ribophorin 1 protein turnover in vivo. In summary, we provide a comprehensive protein/protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases. PMID:24337577

  7. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels

    PubMed Central

    Schreiber, Joerg; Végh, Marlene J.; Dawitz, Julia; Kroon, Tim; Loos, Maarten; Labonté, Dorthe; Li, Ka Wan; Van Nierop, Pim; Van Diepen, Michiel T.; De Zeeuw, Chris I.; Kneussel, Matthias; Meredith, Rhiannon M.; Smit, August B.

    2015-01-01

    Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3−/− mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity. PMID:26527743

  8. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  9. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation

    PubMed Central

    Xiong, Hui; Wang, Danling; Chen, Linan; Choo, Yeun Su; Ma, Hong; Tang, Chengyuan; Xia, Kun; Jiang, Wei; Ronai, Ze’ev; Zhuang, Xiaoxi; Zhang, Zhuohua

    2009-01-01

    Mutations in PARKIN, pten-induced putative kinase 1 (PINK1), and DJ-1 are individually linked to autosomal recessive early-onset familial forms of Parkinson disease (PD). Although mutations in these genes lead to the same disease state, the functional relationships between them and how their respective disease-associated mutations cause PD are largely unknown. Here, we show that Parkin, PINK1, and DJ-1 formed a complex (termed PPD complex) to promote ubiquitination and degradation of Parkin substrates, including Parkin itself and Synphilin-1 in neuroblastoma cells and human brain lysates. Genetic ablation of either Pink1 or Dj-1 resulted in reduced ubiquitination of endogenous Parkin as well as decreased degradation and increased accumulation of aberrantly expressed Parkin substrates. Expression of PINK1 enhanced Parkin-mediated degradation of heat shock–induced misfolded protein. In contrast, PD-pathogenic Parkin and PINK1 mutations showed reduced ability to promote degradation of Parkin substrates. This study identified a functional ubiquitin E3 ligase complex consisting of PD-associated Parkin, PINK1, and DJ-1 to promote degradation of un-/misfolded proteins and suggests that their PD-pathogenic mutations impair E3 ligase activity of the complex, which may constitute a mechanism underlying PD pathogenesis. PMID:19229105

  10. Efficient synthesis of stably adenylated DNA and RNA adapters for microRNA capture using T4 RNA ligase 1.

    PubMed

    Song, Yunke; Liu, Kelvin J; Wang, Tza-Huei

    2015-01-01

    MicroRNA profiling methods have become increasingly important due to the rapid rise of microRNA in both basic and translational sciences. A critical step in many microRNA profiling assays is adapter ligation using pre-adenylated adapters. While pre-adenylated adapters can be chemically or enzymatically prepared, enzymatic adenylation is preferred due to its ease and high yield. However, previously reported enzymatic methods either require tedious purification steps or use thermostable ligases that can generate side products during the subsequent ligation step. We have developed a highly efficient, template- and purification-free, adapter adenylation method using T4 RNA ligase 1. This method is capable of adenylating large amounts of adapter at ~100% efficiency and can efficiently adenylate both DNA and RNA bases. We find that the adenylation reaction speed can differ between DNA and RNA and between terminal nucleotides, leading to bias if reactions are not allowed to run to completion. We further find that the addition of high PEG levels can effectively suppress these differences. PMID:26500066

  11. A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes

    PubMed Central

    Loregger, Anke; Cook, Emma Claire Laura; Nelson, Jessica Kristin; Moeton, Martina; Sharpe, Laura Jane; Engberg, Susanna; Karimova, Madina; Lambert, Gilles; Brown, Andrew John

    2015-01-01

    Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake. PMID:26527619

  12. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity.

    PubMed

    Kim, Joo Y; Jang, In-Cheol; Seo, Hak S

    2016-01-01

    Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity. PMID:27536318

  13. A novel high-throughput activity assay for the Trypanosoma brucei editosome enzyme REL1 and other RNA ligases

    PubMed Central

    Zimmermann, Stephan; Hall, Laurence; Riley, Sean; Sørensen, Jesper; Amaro, Rommie E.; Schnaufer, Achim

    2016-01-01

    The protist parasite Trypanosoma brucei causes Human African trypanosomiasis (HAT), which threatens millions of people in sub-Saharan Africa. Without treatment the infection is almost always lethal. Current drugs for HAT are difficult to administer and have severe side effects. Together with increasing drug resistance this results in urgent need for new treatments. T. brucei and other trypanosomatid pathogens require a distinct form of post-transcriptional mRNA modification for mitochondrial gene expression. A multi-protein complex called the editosome cleaves mitochondrial mRNA, inserts or deletes uridine nucleotides at specific positions and re-ligates the mRNA. RNA editing ligase 1 (REL1) is essential for the re-ligation step and has no close homolog in the mammalian host, making it a promising target for drug discovery. However, traditional assays for RELs use radioactive substrates coupled with gel analysis and are not suitable for high-throughput screening of compound libraries. Here we describe a fluorescence-based REL activity assay. This assay is compatible with a 384-well microplate format and sensitive, satisfies statistical criteria for high-throughput methods and is readily adaptable for other polynucleotide ligases. We validated the assay by determining kinetic properties of REL1 and by identifying REL1 inhibitors in a library of small, pharmacologically active compounds. PMID:26400159

  14. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity

    PubMed Central

    Kim, Joo Y.; Jang, In-Cheol; Seo, Hak S.

    2016-01-01

    Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity. PMID:27536318

  15. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling

    PubMed Central

    Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel

    2015-01-01

    The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810

  16. Structural basis of tubulin tyrosination by tubulin tyrosine ligase.

    PubMed

    Prota, Andrea E; Magiera, Maria M; Kuijpers, Marijn; Bargsten, Katja; Frey, Daniel; Wieser, Mara; Jaussi, Rolf; Hoogenraad, Casper C; Kammerer, Richard A; Janke, Carsten; Steinmetz, Michel O

    2013-02-01

    Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL-tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton. PMID:23358242

  17. Biotin Protein Ligase Is a Target for New Antibacterials.

    PubMed

    Feng, Jiage; Paparella, Ashleigh S; Booker, Grant W; Polyak, Steven W; Abell, Andrew D

    2016-01-01

    There is a desperate need for novel antibiotic classes to combat the rise of drug resistant pathogenic bacteria, such as Staphylococcus aureus. Inhibitors of the essential metabolic enzyme biotin protein ligase (BPL) represent a promising drug target for new antibacterials. Structural and biochemical studies on the BPL from S. aureus have paved the way for the design and development of new antibacterial chemotherapeutics. BPL employs an ordered ligand binding mechanism for the synthesis of the reaction intermediate biotinyl-5'-AMP from substrates biotin and ATP. Here we review the structure and catalytic mechanism of the target enzyme, along with an overview of chemical analogues of biotin and biotinyl-5'-AMP as BPL inhibitors reported to date. Of particular promise are studies to replace the labile phosphoroanhydride linker present in biotinyl-5'-AMP with alternative bioisosteres. A novel in situ click approach using a mutant of S. aureus BPL as a template for the synthesis of triazole-based inhibitors is also presented. These approaches can be widely applied to BPLs from other bacteria, as well as other closely related metabolic enzymes and antibacterial drug targets. PMID:27463729

  18. Structural basis of tubulin tyrosination by tubulin tyrosine ligase

    PubMed Central

    Prota, Andrea E.; Magiera, Maria M.; Kuijpers, Marijn; Bargsten, Katja; Frey, Daniel; Wieser, Mara; Jaussi, Rolf; Hoogenraad, Casper C.; Kammerer, Richard A.; Janke, Carsten

    2013-01-01

    Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL–tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton. PMID:23358242

  19. Molecular and immunological characterization of DNA ligase IV deficiency.

    PubMed

    Jiang, Jinqiu; Tang, Wenjing; An, Yunfei; Tang, Maozhi; Wu, Junfeng; Qin, Tao; Zhao, Xiaodong

    2016-02-01

    DNA ligase IV (LIG4) deficiency is an extremely rare autosomal recessive primary immunodeficiency disease caused by the LIG4 mutation. To date, fewer than 30 cases of patients have been reported worldwide. No reversion mutations have been previously identified in LIG4. This study enrolled seven Chinese patients with LIG4 deficiency who presented with combined immunodeficiency, microcephaly, and growth retardation. One patient (P1) acquired non-Hodgkin lymphoma. Four patients had impaired T cell proliferation function and skewed T cell receptor diversity. Five novel mutations in LIG4 and a potential hotspot mutation (c.833G>T; p.R278L) in the Chinese population were identified. TA cloning analysis of T cells, NK cells, granulocytes, and oral mucosa cells in P6 revealed wild-type clones and clones that contained both maternally and paternally inherited mutations, indicating possible somatic reversion which need further investigation since no functional or protein assays were possible for all the patients died and no cell lines were available. PMID:26762768

  20. Identification of Erwinia stewartii by a ligase chain reaction assay.

    PubMed Central

    Wilson, W J; Wiedmann, M; Dillard, H R; Batt, C A

    1994-01-01

    A PCR-coupled ligase chain reaction (LCR) assay was developed to distinguish the plant pathogenic bacterium Erwinia stewartii from other erwiniae. This new technique allows discrimination to the species level on the basis of a single-base-pair difference in the 16S rRNA gene which is unique to E. stewartii. Portions of the 16S rRNA genes of E. stewartii and the closely related Erwinia herbicola were sequenced. From comparison of the two 16S rRNA gene regions, two primer pairs were constructed such that only E. stewartii DNA gave a product in the LCR assay. The ligated product was separated from the radioactively labelled primers by denaturing polyacrylamide gel electrophoresis and visualized by autoradiography. Twenty-four different Erwinia species and strains were tested by PCR-coupled LCR to verify the specificity of the assay, and only E. stewartii strains gave a positive reaction. In addition, infected and healthy plant material was also assayed. E. stewartii was detected in infected plant material, even when large populations of epiphytic bacteria were present. No enrichment was necessary for detection of the pathogen in corn leaves. This assay has potential as a diagnostic technique for the detection of E. stewartii in infected plant and vector material. Images PMID:7509585

  1. Screening for E3-Ubiquitin ligase inhibitors: challenges and opportunities

    PubMed Central

    Landré, Vivien; Rotblat, Barak; Melino, Sonia; Bernassola, Francesca; Melino, Gerry

    2014-01-01

    The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides. PMID:25237759

  2. UHRF2, another E3 ubiquitin ligase for p53

    SciTech Connect

    Bai, Lu; Wang, Xiaohui; Jin, Fangmin; Yang, Yan; Qian, Guanhua; Duan, Changzhu

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UHRF2 associates with p53 in vivo and in vitro. Black-Right-Pointing-Pointer UHRF2 interacts with p53 through its SRA/YDG domain. Black-Right-Pointing-Pointer UHRF2 ubiquitinates p53 in vivo and in vitro. -- Abstract: UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.

  3. Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus*

    PubMed Central

    Soares da Costa, Tatiana P.; Tieu, William; Yap, Min Y.; Pendini, Nicole R.; Polyak, Steven W.; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D.; Wallace, John C.; Wilce, Matthew C. J.; Booker, Grant W.; Abell, Andrew D.

    2012-01-01

    There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. PMID:22437830

  4. The ubiquitin–protein ligase Itch regulates p73 stability

    PubMed Central

    Rossi, Mario; De Laurenzi, Vincenzo; Munarriz, Eliana; Green, Douglas R; Liu, Yun-Cai; Vousden, Karen H; Cesareni, Gianni; Melino, Gerry

    2005-01-01

    p73, a member of the p53 family of transcription factors, is upregulated in response to DNA damage, inducing cell cycle arrest and apoptosis. Besides indications that this p73 response is post-transcriptional, little is known about the underlying molecular mechanisms of p73 protein degradation. Ubiquitination and proteasomal-dependent degradation of p53 are regulated by its transcriptional target MDM2. However, unlike p53, p73 binds to, but is not degraded by, MDM2. Here we describe the binding of p73 to Itch, a Hect ubiquitin–protein ligase. Itch selectively binds and ubiquitinates p73 but not p53; this results in the rapid proteasome-dependent degradation of p73. Upon DNA damage Itch itself is downregulated, allowing p73 protein levels to rise and thus interfere with p73 function. In conclusion, we have identified a key mechanism in the control of p73 protein levels both in normal as well as in stress conditions. PMID:15678106

  5. Cinnamate:CoA Ligase Initiates the Biosynthesis of a Benzoate-Derived Xanthone Phytoalexin in Hypericum calycinum Cell Cultures1[W][OA

    PubMed Central

    Gaid, Mariam M.; Sircar, Debabrata; Müller, Andreas; Beuerle, Till; Liu, Benye; Ernst, Ludger; Hänsch, Robert; Beerhues, Ludger

    2012-01-01

    Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg2+ and K+ at optimum concentrations of 2.5 and 100 mm, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages. PMID:22992510

  6. RBCK1, an E3 Ubiquitin Ligase, Interacts with and Ubiquinates the Human Pregnane X Receptor

    PubMed Central

    Rana, Ritu; Coulter, Sherry; Kinyamu, Harriet

    2013-01-01

    The pregnane X receptor (PXR, NR1I2) plays a pivotal role in the disposition and detoxification of numerous foreign and endogenous chemicals by increasing transcription of numerous target genes, including phase I and II drug-metabolizing enzymes and transporters. In the present study, yeast two-hybrid screening identified an E3 ubiquitin ligase, RBCK1 (Ring-B-box-coiled-coil protein interacting with protein kinase C-1), as a human pregnane X receptor (hPXR)–interacting protein. Coimmunoprecipitation studies confirmed the interaction between RBCK1 and hPXR when both were ectopically expressed in AD-293 cells. Domain mapping studies showed that the interaction between RBCK1 and hPXR involves all RBCK1 domains. We further demonstrate that RBCK1 ubiquitinates hPXR, and this may target hPXR for degradation by the ubiquitin-proteasome pathway. Simultaneous ectopic overexpression of RBCK1 and PXR decreased PXR levels in AD-293 cells, and this decrease was inhibited by the proteasomal inhibitor MG-132 (carbobenzoxy-Leu-Leu-leucinal). Furthermore, overexpression of RBCK1 decreased endogenous levels of PXR in HepG2 cells. Of importance, ectopic overexpression and silencing of endogenous RBCK1 in primary human hepatocytes resulted in a decrease and increase, respectively, in endogenous PXR protein levels and in the induction of PXR target genes by rifampicin. These results suggest that RBCK1 is important for the ubiquitination of PXR and may play a role in its proteasomal degradation. PMID:23160820

  7. The substrate specificity-determining amino acid code of 4-coumarate:CoA ligase.

    PubMed

    Schneider, Katja; Hövel, Klaus; Witzel, Kilian; Hamberger, Björn; Schomburg, Dietmar; Kombrink, Erich; Stuible, Hans-Peter

    2003-07-01

    To reveal the structural principles determining substrate specificity of 4-coumarate:CoA ligase (4CL), the crystal structure of the phenylalanine activation domain of gramicidin S synthetase was used as a template for homology modeling. According to our model, 12 amino acid residues lining the Arabidopsis 4CL isoform 2 (At4CL2) substrate binding pocket (SBP) function as a signature motif generally determining 4CL substrate specificity. We used this substrate specificity code to create At4CL2 gain-of-function mutants. By increasing the space within the SBP we generated ferulic- and sinapic acid-activating At4CL2 variants. Increasing the hydrophobicity of the SBP resulted in At4CL2 variants with strongly enhanced conversion of cinnamic acid. These enzyme variants are suitable tools for investigating and influencing metabolic channeling mediated by 4CL. Knowledge of the 4CL specificity code will facilitate the prediction of substrate preference of numerous, still uncharacterized 4CL-like proteins. PMID:12819348

  8. SUMO-targeted ubiquitin ligase RNF4 plays a critical role in preventing chromosome loss.

    PubMed

    Hirota, Kouji; Tsuda, Masataka; Murai, Junko; Takagi, Tokiyo; Keka, Islam Shamima; Narita, Takeo; Fujita, Mari; Sasanuma, Hiroyuki; Kobayashi, Junya; Takeda, Shunichi

    2014-10-01

    RING finger protein 4 (RNF4) represents a subclass of ubiquitin ligases that target proteins modified by the small ubiquitin-like modifier (SUMO) for ubiquitin-mediated degradation. We disrupted the RNF4 gene in chicken DT40 cells and found that the resulting RNF4(-/-) cells gradually lost proliferation capability. Strikingly, this compromised proliferation was associated with an unprecedented cellular effect: the gradual decrease in the number of intact chromosomes. In the 6 weeks after gene targeting, there was a 25% reduction in the DNA content of the RNF4(-/-) cells. Regarding trisomic chromosome 2, 60% of the RNF4(-/-) cells lost one homologue, suggesting that DNA loss was mediated by whole chromosome loss. To determine the cause of this chromosome loss, we examined cell-cycle checkpoint pathways. RNF4(-/-) cells showed a partial defect in the spindle assembly checkpoint, premature dissociation of sister chromatids, and a marked increase in the number of lagging chromosomes at anaphase. Thus, combined defects in SAC and sister chromatid cohesion may result in increased lagging chromosomes, leading to chromosome loss without accompanying chromosome gain in RNF4(-/-) cells. We therefore propose that RNF4 plays a novel role in preventing the loss of intact chromosomes and ensures the maintenance of chromosome integrity. PMID:25205350

  9. Engineered ubiquitin ligase PTB-U-box targets insulin/insulin-like growth factor receptor for degradation and coordinately inhibits cancer malignancy

    PubMed Central

    Zhong, Daixing; Zhang, Jing; Yao, Libo; Li, Xia

    2014-01-01

    The type 1 insulin-like growth factor receptor (IGF-1R) is a promising target for cancer therapy with antibodies and small molecule tyrosine kinase inhibitors (TKIs) which have been actively tested clinically. Evidences have demonstrated that insulin receptor (IR), which is implicated in tumorigenesis, conveys resistance to IGF-1R targeted therapy. This provided the compelling rationale for co-targeting IGF-1R and IR. Herein we have developed an approach to simultaneously down-regulate IGF-1R and IR in protein levels. By generating and screening several engineered ubiquitin ligases, we have identified that, PTB-U-box, which is composed of an IGF-1R/IR-binding domain and a functional E3 ubiquitin ligase domain, binds activated IGF-1R/IR and targets their ubiquitination and degradation. When ectopically expressed in HepG2 and HeLa cells, PTB-U-box inhibits cell proliferation and invasion, increases chemo-sensitivity, as well as interrupts glucose metabolism. Finally, intratumoral injection of adenovirus carrying PTB-U-box dramatically retards the growth of HepG2 xenograft. Therefore, well-designed engineered ubiquitin ligase represents an effective therapeutic strategy for the treatment of the cancers with co-expressed IGF-1R/IR. PMID:24970814

  10. FLYING SAUCER1 Is a Transmembrane RING E3 Ubiquitin Ligase That Regulates the Degree of Pectin Methylesterification in Arabidopsis Seed Mucilage[W

    PubMed Central

    Voiniciuc, Cătălin; Dean, Gillian H.; Griffiths, Jonathan S.; Kirchsteiger, Kerstin; Hwang, Yeen Ting; Gillett, Alan; Dow, Graham; Western, Tamara L.; Estelle, Mark; Haughn, George W.

    2013-01-01

    Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca2+ ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca2+ or completely rescued using alkaline Ca2+ chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1–yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells. PMID:23482858

  11. Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage.

    PubMed

    Voiniciuc, Catalin; Dean, Gillian H; Griffiths, Jonathan S; Kirchsteiger, Kerstin; Hwang, Yeen Ting; Gillett, Alan; Dow, Graham; Western, Tamara L; Estelle, Mark; Haughn, George W

    2013-03-01

    Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca(2+) ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca(2+) or completely rescued using alkaline Ca(2+) chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1-yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells. PMID:23482858

  12. Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4

    PubMed Central

    Liddiard, Kate; Ruis, Brian; Takasugi, Taylor; Harvey, Adam; Ashelford, Kevin E.; Hendrickson, Eric A.; Baird, Duncan M.

    2016-01-01

    Telomeres shorten with each cell division and can ultimately become substrates for nonhomologous end-joining repair, leading to large-scale genomic rearrangements of the kind frequently observed in human cancers. We have characterized more than 1400 telomere fusion events at the single-molecule level, using a combination of high-throughput sequence analysis together with experimentally induced telomeric double-stranded DNA breaks. We show that a single chromosomal dysfunctional telomere can fuse with diverse nontelomeric genomic loci, even in the presence of an otherwise stable genome, and that fusion predominates in coding regions. Fusion frequency was markedly increased in the absence of TP53 checkpoint control and significantly modulated by the cellular capacity for classical, versus alternative, nonhomologous end joining (NHEJ). We observed a striking reduction in inter-chromosomal fusion events in cells lacking DNA ligase 4, in contrast to a remarkably consistent profile of intra-chromosomal fusion in the context of multiple genetic knockouts, including DNA ligase 3 and 4 double-knockouts. We reveal distinct mutational signatures associated with classical NHEJ-mediated inter-chromosomal, as opposed to alternative NHEJ-mediated intra-chromosomal, telomere fusions and evidence for an unanticipated sufficiency of DNA ligase 1 for these intra-chromosomal events. Our findings have implications for mechanisms driving cancer genome evolution. PMID:26941250

  13. Sensitive and specific miRNA detection method using SplintR Ligase.

    PubMed

    Jin, Jingmin; Vaud, Sophie; Zhelkovsky, Alexander M; Posfai, Janos; McReynolds, Larry A

    2016-07-27

    We describe a simple, specific and sensitive microRNA (miRNA) detection method that utilizes Chlorella virus DNA ligase (SplintR(®) Ligase). This two-step method involves ligation of adjacent DNA oligonucleotides hybridized to a miRNA followed by real-time quantitative PCR (qPCR). SplintR Ligase is 100X faster than either T4 DNA Ligase or T4 RNA Ligase 2 for RNA splinted DNA ligation. Only a 4-6 bp overlap between a DNA probe and miRNA was required for efficient ligation by SplintR Ligase. This property allows more flexibility in designing miRNA-specific ligation probes than methods that use reverse transcriptase for cDNA synthesis of miRNA. The qPCR SplintR ligation assay is sensitive; it can detect a few thousand molecules of miR-122. For miR-122 detection the SplintR qPCR assay, using a FAM labeled double quenched DNA probe, was at least 40× more sensitive than the TaqMan assay. The SplintR method, when coupled with NextGen sequencing, allowed multiplex detection of miRNAs from brain, kidney, testis and liver. The SplintR qPCR assay is specific; individual let-7 miRNAs that differ by one nucleotide are detected. The rapid kinetics and ability to ligate DNA probes hybridized to RNA with short complementary sequences makes SplintR Ligase a useful enzyme for miRNA detection. PMID:27154271

  14. A Pathogen Type III Effector with a Novel E3 Ubiquitin Ligase Architecture

    PubMed Central

    Skarina, Tatiana; Xu, Xiaohui; Cui, Hong; Eschen-Lippold, Lennart; Egler, Monique; Srikumar, Tharan; Raught, Brian; Lee, Justin; Scheel, Dierk; Savchenko, Alexei; Bonas, Ulla

    2013-01-01

    Type III effectors are virulence factors of Gram-negative bacterial pathogens delivered directly into host cells by the type III secretion nanomachine where they manipulate host cell processes such as the innate immunity and gene expression. Here, we show that the novel type III effector XopL from the model plant pathogen Xanthomonas campestris pv. vesicatoria exhibits E3 ubiquitin ligase activity in vitro and in planta, induces plant cell death and subverts plant immunity. E3 ligase activity is associated with the C-terminal region of XopL, which specifically interacts with plant E2 ubiquitin conjugating enzymes and mediates formation of predominantly K11-linked polyubiquitin chains. The crystal structure of the XopL C-terminal domain revealed a single domain with a novel fold, termed XL-box, not present in any previously characterized E3 ligase. Mutation of amino acids in the central cavity of the XL-box disrupts E3 ligase activity and prevents XopL-induced plant cell death. The lack of cysteine residues in the XL-box suggests the absence of thioester-linked ubiquitin-E3 ligase intermediates and a non-catalytic mechanism for XopL-mediated ubiquitination. The crystal structure of the N-terminal region of XopL confirmed the presence of a leucine-rich repeat (LRR) domain, which may serve as a protein-protein interaction module for ubiquitination target recognition. While the E3 ligase activity is required to provoke plant cell death, suppression of PAMP responses solely depends on the N-terminal LRR domain. Taken together, the unique structural fold of the E3 ubiquitin ligase domain within the Xanthomonas XopL is unprecedented and highlights the variation in bacterial pathogen effectors mimicking this eukaryote-specific activity. PMID:23359647

  15. RBR E3 ubiquitin ligases: new structures, new insights, new questions

    PubMed Central

    Spratt, Donald E.; Walden, Helen; Shaw, Gary S.

    2014-01-01

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology. PMID:24576094

  16. Entropy-driven mechanism of an E3 ligase.

    PubMed

    Truong, Khue; Su, Yang; Song, Jing; Chen, Yuan

    2011-06-28

    Ubiquitin-like modifications are macromolecular chemistry for which our understanding of the enzymatic mechanisms is lacking. Most E3 ligases in ubiquitin-like modifications do not directly participate in chemistry but are thought to confer allosteric effects; however, the nature of the allosteric effects has been elusive. Recent molecular dynamics simulations suggested that an E3 binding enhances the population of the conformational states of the E2·SUMO thioester that favor reactions. In this study, we conducted the first temperature-dependent enzyme kinetic analysis to investigate the role of an E3 on activation entropy and enthalpy. The small ubiquitin-like modifier (SUMO) E3, RanBP2, confers unusually large, favorable activation entropy to lower the activation energy of the reaction. Mutants of RanBP2, designed to alter the flexibilities of the E2·SUMO thioester, showed a direct correlation of their favorable entropic effects with their ability to restrict the conformational flexibility of the E2·SUMO thioester. While the more favorable activation entropy is consistent with the previously suggested role of E3 in conformational selection, the large positive entropy suggests a significant role of solvent in catalysis. Indeed, molecular dynamics simulations in explicit water revealed that the more stable E2·SUMO thioester upon E3 binding results in stabilization of a large number of bound water molecules. Liberating such structured water at the transition state can result in large favorable activation entropy but unfavorable activation enthalpy. The entropy-driven mechanism of the E3 is consistent with the lack of structural conservation among E3s despite their similar functions. This study also illustrates how proteins that bind both SUMO and E2 can function as E3s and how intrinsically unstructured proteins can enhance macromolecular chemistry in addition to their known advantages in protein--protein interactions. PMID:21568279

  17. Exploring Peptide Ligase Orthologs in Actinobacteria-Discovery of Pseudopeptide Natural Products, Ketomemicins.

    PubMed

    Ogasawara, Yasushi; Kawata, Junpei; Noike, Motoyoshi; Satoh, Yasuharu; Furihata, Kazuo; Dairi, Tohru

    2016-06-17

    We recently identified a novel peptide ligase (PGM1), an ATP-grasp-ligase, that catalyzes amide bond formation between (S)-2-(3,5-dihydroxy-4-methoxyphenyl)-2-guanidinoacetic acid and ribosomally supplied oligopeptides in pheganomycin biosynthesis. This was the first example of an ATP-grasp-ligase utilizing peptides as nucleophiles. To explore the potential of this type of enzyme, we performed a BLAST search and identified many orthologs. The orthologs of Streptomyces mobaraensis, Salinispora tropica, and Micromonospora sp. were found in similar gene clusters consisting of six genes. To probe the functions of these genes, we heterologously expressed each of the clusters in Streptomyces lividans and detected novel and structurally similar pseudotripeptides in the broth of all transformants. Moreover, a recombinant PGM1 ortholog of Micromonospora sp. was demonstrated to be a novel dipeptide ligase catalyzing amide bond formation between amidino-arginine and dipeptides to yield tripeptides; this is the first report of a peptide ligase utilizing dipeptides as nucleophiles. PMID:27023439

  18. Assembly of the Elongin A Ubiquitin Ligase Is Regulated by Genotoxic and Other Stresses.

    PubMed

    Weems, Juston C; Slaughter, Brian D; Unruh, Jay R; Hall, Shawn M; McLaird, Merry B; Gilmore, Joshua M; Washburn, Michael P; Florens, Laurence; Yasukawa, Takashi; Aso, Teijiro; Conaway, Joan W; Conaway, Ronald C

    2015-06-12

    Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription. PMID:25878247

  19. Structural and Functional Interaction Between the Human DNA Repair Proteins DNA ligase IV and XRCC4

    SciTech Connect

    Wu, P.; Meesala, S; Dauvillier, S; Modesti, M; Andres, S; Huang, Y; Sekiguchi, J; Calsou, P; Salles, B; Junop, M

    2009-01-01

    Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an extensive DNA ligase IV binding interface formed by a helix-loop-helix structure within the inter-BRCT linker region, as well as significant interactions involving the second BRCT domain, which induces a kink in the tail region of XRCC4. We further demonstrate that interaction with the second BRCT domain of DNA ligase IV is necessary for stable binding to XRCC4 in cells, as well as to achieve efficient dominant-negative effects resulting in radiosensitization after ectopic overexpression of DNA ligase IV fragments in human fibroblasts. Together our findings provide unanticipated insight for understanding the physical and functional architecture of the nonhomologous end-joining ligation complex.

  20. Low levels of DNA ligases III and IV sufficient for effective NHEJ.

    PubMed

    Windhofer, Frank; Wu, Wenqi; Iliakis, George

    2007-11-01

    Cells of higher eukaryotes rejoin double strand breaks (DSBs) in their DNA predominantly by a non-homologous DNA end joining (NHEJ) pathway that utilizes the products of DNA-PKcs, Ku, LIG4, XRCC4, XLF/Cernunnos, Artemis as well as DNA polymerase lambda (termed D-NHEJ). Mutants with defects in these proteins remove a large proportion of DSBs from their genome utilizing an alternative pathway of NHEJ that operates as a backup (B-NHEJ). While D-NHEJ relies exclusively on DNA ligase IV, recent work points to DNA ligase III as a component of B-NHEJ. Here, we use RNA interference (RNAi) to further investigate the activity requirements for DNA ligase III and IV in the pathways of NHEJ. We report that 70-80% knock down of LIG3 expression has no detectable effect on DSB rejoining, either in D-NHEJ proficient cells, or in cells where D-NHEJ has been chemically or genetically compromised. Surprisingly, also LIG4 knock down has no effect on repair proficient cells, but inhibits DSB rejoining in a radiosensitive cell line with a hypomorphic LIG4 mutation that severely compromises its activity. The results suggest that complete coverage for D-NHEJ or B-NHEJ is afforded by very low ligase levels and demonstrate residual end joining by DNA ligase IV in cells of patients with mutations in LIG4. PMID:17492771

  1. ATLs and BTLs, plant-specific and general eukaryotic structurally-related E3 ubiquitin ligases.

    PubMed

    Guzmán, Plinio

    2014-02-01

    Major components of the ubiquitin proteasome system are the enzymes that operate on the transfer of ubiquitin to selected target substrate, known as ubiquitin ligases. The RING finger is a domain that is present in key classes of ubiquitin ligases. This domain coordinates the interaction with a suitable E2 conjugase and the transfer of ubiquitin from the E2 to protein targets. Additional domains coupled to the same polypeptide are important for modulating the function of these ubiquitin ligases. Plants contain several types of E3 ubiquitin ligases that in many cases have expanded as multigene families. Some families are specific to the plant lineage, whereas others may have a common ancestor among plants and other eukaryotic lineages. Arabidopsis Tóxicos en Levadura (ATLs) and BCA2 zinc finger ATLs (BTLs) are two families of ubiquitin ligases that share some common structural features. These are intronless genes that encode a highly related RING finger domain, and yet during evolutionary history, their mode of gene expansion and function is rather different. In each of these two families, the co-occurrence of transmembrane helices or C2/C2 (BZF finger) domains with a selected variation on the RING finger has been subjected to strong selection pressure in order to preserve their unique domain architectures during evolution. PMID:24388516

  2. Assembly of the Elongin A Ubiquitin Ligase Is Regulated by Genotoxic and Other Stresses*

    PubMed Central

    Weems, Juston C.; Slaughter, Brian D.; Unruh, Jay R.; Hall, Shawn M.; McLaird, Merry B.; Gilmore, Joshua M.; Washburn, Michael P.; Florens, Laurence; Yasukawa, Takashi; Aso, Teijiro; Conaway, Joan W.; Conaway, Ronald C.

    2015-01-01

    Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription. PMID:25878247

  3. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    PubMed

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241

  4. Overexpression, purification and crystallization of an archaeal DNA ligase from Pyrococcus furiosus

    SciTech Connect

    Nishida, Hirokazu; Tsuchiya, Daisuke; Ishino, Yoshizumi; Morikawa, Kosuke

    2005-12-01

    Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. DNA ligases seal single-strand breaks in double-stranded DNA and their function is essential to maintain the integrity of the genome during various aspects of DNA metabolism, such as replication, excision repair and recombination. DNA-strand breaks are frequently generated as reaction intermediates in these events and the sealing of these breaks depends solely on the proper function of DNA ligase. Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. They belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 61.1, b = 88.3, c = 63.4 Å, β = 108.9°. The asymmetric unit contains one ligase molecule.

  5. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity

    PubMed Central

    Lohman, Gregory J. S.; Bauer, Robert J.; Nichols, Nicole M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C.

    2016-01-01

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241

  6. The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling

    PubMed Central

    Ji, Yan-Xiao; Zhang, Peng; Zhang, Xiao-Jing; Zhao, Yi-Chao; Deng, Ke-Qiong; Jiang, Xi; Wang, Pi-Xiao; Huang, Zan; Li, Hongliang

    2016-01-01

    Tumour necrosis factor receptor-associated factor 6 (TRAF6) is a ubiquitin E3 ligase that regulates important biological processes. However, the role of TRAF6 in cardiac hypertrophy remains unknown. Here, we show that TRAF6 levels are increased in human and murine hypertrophied hearts, which is regulated by reactive oxygen species (ROS) production. Cardiac-specific Traf6 overexpression exacerbates cardiac hypertrophy in response to pressure overload or angiotensin II (Ang II) challenge, whereas Traf6 deficiency causes an alleviated hypertrophic phenotype in mice. Mechanistically, we show that ROS, generated during hypertrophic progression, triggers TRAF6 auto-ubiquitination that facilitates recruitment of TAB2 and its binding to transforming growth factor beta-activated kinase 1 (TAK1), which, in turn, enables the direct TRAF6–TAK1 interaction and promotes TAK1 ubiquitination. The binding of TRAF6 to TAK1 and the induction of TAK1 ubiquitination and activation are indispensable for TRAF6-regulated cardiac remodelling. Taken together, we define TRAF6 as an essential molecular switch leading to cardiac hypertrophy in a TAK1-dependent manner. PMID:27249171

  7. Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface

    PubMed Central

    Menchon, Grégory; Bombarde, Oriane; Trivedi, Mansi; Négrel, Aurélie; Inard, Cyril; Giudetti, Brigitte; Baltas, Michel; Milon, Alain; Modesti, Mauro; Czaplicki, Georges; Calsou, Patrick

    2016-01-01

    The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference - NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity. PMID:26964677

  8. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR.

    PubMed

    Winter, Melanie; Sombroek, Dirk; Dauth, Ilka; Moehlenbrink, Jutta; Scheuermann, Karin; Crone, Johanna; Hofmann, Thomas G

    2008-07-01

    The tumour suppressor HIPK2 is an important regulator of cell death induced by DNA damage, but how its activity is regulated remains largely unclear. Here we demonstrate that HIPK2 is an unstable protein that colocalizes and interacts with the E3 ubiquitin ligase Siah-1 in unstressed cells. Siah-1 knockdown increases HIPK2 stability and steady-state levels, whereas Siah-1 expression facilitates HIPK2 polyubiquitination, degradation and thereby inactivation. During recovery from sublethal DNA damage, HIPK2, which is stabilized on DNA damage, is degraded through a Siah-1-dependent, p53-controlled pathway. Downregulation of Siah-1 inhibits HIPK2 degradation and recovery from damage, driving the cells into apoptosis. We have also demonstrated that DNA damage triggers disruption of the HIPK2-Siah-1 complex, resulting in HIPK2 stabilization and activation. Disruption of the HIPK2-Siah-1 complex is mediated by the ATM/ATR pathway and involves ATM/ATR-dependent phosphorylation of Siah-1 at Ser 19. Our results provide a molecular framework for HIPK2 regulation in unstressed and damaged cells. PMID:18536714

  9. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  10. The E3 ligase CHIP mediates ubiquitination and degradation of mixed-lineage kinase 3.

    PubMed

    Blessing, Natalya A; Brockman, April L; Chadee, Deborah N

    2014-08-01

    Mixed-lineage kinase 3 (MLK3) activates mitogen-activated protein kinase (MAPK) signaling pathways and has important functions in migration, invasion, proliferation, tumorigenesis, and apoptosis. We investigated the role of the E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) in the regulation of MLK3 protein levels. We show that CHIP interacts with MLK3 and, together with the E2 ubiquitin-conjugating enzyme UbcH5 (UbcH5a, -b, -c, or -d), ubiquitinates MLK3 in vitro. CHIP or Hsp70 overexpression promoted endogenous MLK3 ubiquitination and induced a decline in MLK3 protein levels in cells with Hsp90 inhibition. Furthermore, CHIP overexpression caused a proteasome-dependent reduction in exogenous MLK3 protein. Geldanamycin (GA), heat shock, and osmotic shock treatments also reduced the level of MLK3 protein via a CHIP-dependent mechanism. In addition, CHIP depletion in ovarian cancer SKOV3 cells increased cell invasion, and the enhancement of invasiveness was abrogated by small interfering RNA (siRNA)-mediated knockdown of MLK3. Thus, CHIP modulates MLK3 protein levels in response to GA and stress stimuli, and CHIP-dependent regulation of MLK3 is required for suppression of SKOV3 ovarian cancer cell invasion. PMID:24912674

  11. The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein.

    PubMed

    Xiong, Xin; Hao, Yan; Sun, Kan; Li, Jiaxing; Li, Xia; Mishra, Bibhudatta; Soppina, Pushpanjali; Wu, Chunlai; Hume, Richard I; Collins, Catherine A

    2012-01-01

    Axonal degeneration is a hallmark of many neuropathies, neurodegenerative diseases, and injuries. Here, using a Drosophila injury model, we have identified a highly conserved E3 ubiquitin ligase, Highwire (Hiw), as an important regulator of axonal and synaptic degeneration. Mutations in hiw strongly inhibit Wallerian degeneration in multiple neuron types and developmental stages. This new phenotype is mediated by a new downstream target of Hiw: the NAD+ biosynthetic enzyme nicotinamide mononucleotide adenyltransferase (Nmnat), which acts in parallel to a previously known target of Hiw, the Wallenda dileucine zipper kinase (Wnd/DLK) MAPKKK. Hiw promotes a rapid disappearance of Nmnat protein in the distal stump after injury. An increased level of Nmnat protein in hiw mutants is both required and sufficient to inhibit degeneration. Ectopically expressed mouse Nmnat2 is also subject to regulation by Hiw in distal axons and synapses. These findings implicate an important role for endogenous Nmnat and its regulation, via a conserved mechanism, in the initiation of axonal degeneration. Through independent regulation of Wnd/DLK, whose function is required for proximal axons to regenerate, Hiw plays a central role in coordinating both regenerative and degenerative responses to axonal injury. PMID:23226106

  12. Membrane-Associated Ubiquitin Ligase SAUL1 Suppresses Temperature- and Humidity-Dependent Autoimmunity in Arabidopsis.

    PubMed

    Disch, Eva-Maria; Tong, Meixuezi; Kotur, Tanja; Koch, Gerald; Wolf, Carl-Asmus; Li, Xin; Hoth, Stefan

    2016-01-01

    Plants have evolved elaborate mechanisms to regulate pathogen defense. Imbalances in this regulation may result in autoimmune responses that are affecting plant growth and development. In Arabidopsis, SAUL1 encodes a plant U-box ubiquitin ligase and regulates senescence and cell death. Here, we show that saul1-1 plants exhibit characteristics of an autoimmune mutant. A decrease in relative humidity or temperature resulted in reduced growth and systemic lesioning of saul1-1 rosettes. These physiological changes are associated with increased expression of salicylic acid-dependent and pathogenesis-related (PR) genes. Consistently, resistance of saul1-1 plants against Pseudomonas syringae pv. maculicola ES4326, P. syringae pv. tomato DC3000, or Hyaloperonospora arabidopsidis Noco2 was enhanced. Transmission electron microscopy revealed alterations in saul1-1 chloroplast ultrastructure and cell-wall depositions. Confocal analysis on aniline blue-stained leaf sections and cellular universal micro spectrophotometry further showed that these cell-wall depositions contain callose and lignin. To analyze signaling downstream of SAUL1, we performed epistasis analyses between saul1-1 and mutants in the EDS1/PAD4/SAG101 hub. All phenotypes observed in saul1-1 plants at low temperature were dependent on EDS1 and PAD4 but not SAG101. Taken together, SAUL1 negatively regulates immunity upstream of EDS1/PAD4, likely through the degradation of an unknown activator of the pathway. PMID:26505534

  13. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1

    PubMed Central

    Park, Bong Soo; Song, Jong Tae; Seo, Hak Soo

    2011-01-01

    Small ubiquitin-related modifier (SUMO) is a small polypeptide that modulates protein activity and regulates hormone signalling, abiotic and biotic responses in plants. Here we show that AtSIZ regulates nitrogen assimilation in Arabidopsis through its E3 SUMO ligase function. Dwarf plants of siz1-2 flower early, show abnormal seed development and have high salicylic acid content and enhanced resistance to bacterial pathogens. These mutant phenotypes are reverted to wild-type phenotypes by exogenous ammonium but not by nitrate, phosphate or potassium. Decreased nitrate reductase activity in siz1-2 plants resulted in low nitrogen concentrations, low nitric oxide production and high nitrate content in comparison with wild-type plants. The nitrate reductases, NIA1 and NIA2, are sumoylated by AtSIZ1, which dramatically increases their activity. Both sumoylated and non-sumoylated NIA1 and NIA2 can form dimers. Our results indicate that AtSIZ1 positively controls nitrogen assimilation by promoting sumoylation of NRs in Arabidopsis. PMID:21772271

  14. Ziram Causes Dopaminergic Cell Damage by Inhibiting E1 Ligase of the Proteasome*

    PubMed Central

    Chou, Arthur P.; Maidment, Nigel; Klintenberg, Rebecka; Casida, John E.; Li, Sharon; Fitzmaurice, Arthur G.; Fernagut, Pierre-Olivier; Mortazavi, Farzad; Chesselet, Marie-Francoise; Bronstein, Jeff M.

    2008-01-01

    The etiology of Parkinson disease (PD) is unclear but may involve environmental toxins such as pesticides leading to dysfunction of the ubiquitin proteasome system (UPS). Here, we measured the relative toxicity of ziram (a UPS inhibitor) and analogs to dopaminergic neurons and examined the mechanism of cell death. UPS (26 S) activity was measured in cell lines after exposure to ziram and related compounds. Dimethyl- and diethyldithiocarbamates including ziram were potent UPS inhibitors. Primary ventral mesencephalic cultures were exposed to ziram, and cell toxicity was assessed by staining for tyrosine hydroxylase (TH) and NeuN antigen. Ziram caused a preferential damage to TH+ neurons and elevated α-synuclein levels but did not increase aggregate formation. Mechanistically, ziram altered UPS function through interfering with the targeting of substrates by inhibiting ubiquitin E1 ligase. Sodium dimethyldithiocarbamate administered to mice for 2 weeks resulted in persistent motor deficits and a mild reduction in striatal TH staining but no nigral cell loss. These results demonstrate that ziram causes selective dopaminergic cell damage in vitro by inhibiting an important degradative pathway implicated in the etiology of PD. Chronic exposure to widely used dithiocarbamate fungicides may contribute to the development of PD, and elucidation of its mechanism would identify a new potential therapeutic target. PMID:18818210

  15. Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface

    NASA Astrophysics Data System (ADS)

    Menchon, Grégory; Bombarde, Oriane; Trivedi, Mansi; Négrel, Aurélie; Inard, Cyril; Giudetti, Brigitte; Baltas, Michel; Milon, Alain; Modesti, Mauro; Czaplicki, Georges; Calsou, Patrick

    2016-03-01

    The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference - NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.

  16. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1.

    PubMed

    Park, Bong Soo; Song, Jong Tae; Seo, Hak Soo

    2011-01-01

    Small ubiquitin-related modifier (SUMO) is a small polypeptide that modulates protein activity and regulates hormone signalling, abiotic and biotic responses in plants. Here we show that AtSIZ regulates nitrogen assimilation in Arabidopsis through its E3 SUMO ligase function. Dwarf plants of siz1-2 flower early, show abnormal seed development and have high salicylic acid content and enhanced resistance to bacterial pathogens. These mutant phenotypes are reverted to wild-type phenotypes by exogenous ammonium but not by nitrate, phosphate or potassium. Decreased nitrate reductase activity in siz1-2 plants resulted in low nitrogen concentrations, low nitric oxide production and high nitrate content in comparison with wild-type plants. The nitrate reductases, NIA1 and NIA2, are sumoylated by AtSIZ1, which dramatically increases their activity. Both sumoylated and non-sumoylated NIA1 and NIA2 can form dimers. Our results indicate that AtSIZ1 positively controls nitrogen assimilation by promoting sumoylation of NRs in Arabidopsis. PMID:21772271

  17. Trim17, a novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    PubMed Central

    Lassot, Irina; Robbins, Ian; Kristiansen, Mark; Rahmeh, Rita; Jaudon, Fanny; Magiera, Maria M.; Mora, Stéphan; Vanhille, Laurent; Lipkin, Alexey; Pettmann, Brigitte; Ham, Jonathan; Desagher, Solange

    2010-01-01

    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In the present study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin-ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during postnatal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This proapoptotic effect was abolished in Bax−/− neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. PMID:20559321

  18. Force Dependent Biotinylation of Myosin IIA by α-Catenin Tagged with a Promiscuous Biotin Ligase

    PubMed Central

    Ueda, Shuji; Blee, Alexandra M.; Macway, Katherine G.; Renner, Derrick J.; Yamada, Soichiro

    2015-01-01

    Tissues and organs undergo constant physical perturbations and individual cells must respond to mechanical forces to maintain tissue integrity. However, molecular interactions underlying mechano-transduction are not fully defined at cell-cell junctions. This is in part due to weak and transient interactions that are likely prevalent in force-induced protein complexes. Using in situ proximal biotinylation by the promiscuous biotin ligase BirA tagged to α-catenin and a substrate stretch cell chamber, we sought to identify force-dependent molecular interactions surrounding α-catenin, an actin regulator at the sites of cadherin mediated cell-cell adhesion. While E-cadherin, β-catenin, vinculin and actin localize with α-catenin at cell-cell contacts in immuno-fluorescent staining, only β-catenin and plakoglobin were biotinylated, suggesting that this proximal biotinylation is limited to the molecules that are in the immediate vicinity of α-catenin. In mechanically stretched samples, increased biotinylation of non-muscle myosin IIA, but not myosin IIB, suggests close spatial proximity between α-catenin and myosin IIA during substrate stretching. This force-induced biotinylation diminished as myosin II activity was inhibited by blebbistatin. Taken together, this promising technique enables us to identify force sensitive complexes that may be essential for mechano-responses in force bearing cell adhesion. PMID:25806963

  19. Force dependent biotinylation of myosin IIA by α-catenin tagged with a promiscuous biotin ligase.

    PubMed

    Ueda, Shuji; Blee, Alexandra M; Macway, Katherine G; Renner, Derrick J; Yamada, Soichiro

    2015-01-01

    Tissues and organs undergo constant physical perturbations and individual cells must respond to mechanical forces to maintain tissue integrity. However, molecular interactions underlying mechano-transduction are not fully defined at cell-cell junctions. This is in part due to weak and transient interactions that are likely prevalent in force-induced protein complexes. Using in situ proximal biotinylation by the promiscuous biotin ligase BirA tagged to α-catenin and a substrate stretch cell chamber, we sought to identify force-dependent molecular interactions surrounding α-catenin, an actin regulator at the sites of cadherin mediated cell-cell adhesion. While E-cadherin, β-catenin, vinculin and actin localize with α-catenin at cell-cell contacts in immuno-fluorescent staining, only β-catenin and plakoglobin were biotinylated, suggesting that this proximal biotinylation is limited to the molecules that are in the immediate vicinity of α-catenin. In mechanically stretched samples, increased biotinylation of non-muscle myosin IIA, but not myosin IIB, suggests close spatial proximity between α-catenin and myosin IIA during substrate stretching. This force-induced biotinylation diminished as myosin II activity was inhibited by blebbistatin. Taken together, this promising technique enables us to identify force sensitive complexes that may be essential for mechano-responses in force bearing cell adhesion. PMID:25806963

  20. The Ubiquitin Ligase SCF(Ucc1) Acts as a Metabolic Switch for the Glyoxylate Cycle.

    PubMed

    Nakatsukasa, Kunio; Nishimura, Takashi; Byrne, Stuart D; Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Okumura, Fumihiko; Kamura, Takumi

    2015-07-01

    Despite the crucial role played by the glyoxylate cycle in the virulence of pathogens, seed germination in plants, and sexual development in fungi, we still have much to learn about its regulation. Here, we show that a previously uncharacterized SCF(Ucc1) ubiquitin ligase mediates proteasomal degradation of citrate synthase in the glyoxylate cycle to maintain metabolic homeostasis in glucose-grown cells. Conversely, transcription of the F box subunit Ucc1 is downregulated in C2-compound-grown cells, which require increased metabolic flux for gluconeogenesis. Moreover, in vitro analysis demonstrates that oxaloacetate regenerated through the glyoxylate cycle induces a conformational change in citrate synthase and inhibits its recognition and ubiquitination by SCF(Ucc1), suggesting the existence of an oxaloacetate-dependent positive feedback loop that stabilizes citrate synthase. We propose that SCF(Ucc1)-mediated regulation of citrate synthase acts as a metabolic switch for the glyoxylate cycle in response to changes in carbon source, thereby ensuring metabolic versatility and flexibility. PMID:25982115

  1. The E3 ubiquitin ligase Itch controls the protein stability of p63

    PubMed Central

    Rossi, Mario; Aqeilan, Rami I.; Neale, Michael; Candi, Eleonora; Salomoni, Paolo; Knight, Richard A.; Croce, Carlo M.; Melino, Gerry

    2006-01-01

    p63, a member of the p53 family of transcription factors, plays an important role in epithelial development, regulating both cell cycle and apoptosis. Even though p63 activity is regulated mainly at the posttranslational level, the control of p63 protein stability is far from being fully understood. Here, we show that the Hect (homologous to the E6-associated protein C terminus)-containing Nedd4-like ubiquitin protein ligase Itch binds, ubiquitylates, and promotes the degradation of p63. The physical interaction occurs at the border between the PY and the SAM (sterile α motif) domains; a single Y504F mutation significantly affects p63 degradation. Itch and p63 are coexpressed in the epidermis and in primary keratinocytes where Itch controls the p63 protein steady-state level. Accordingly, p63 protein levels are significantly increased in Itch knockout keratinocytes. These data suggest that Itch has a fundamental role in the mechanism that controls endogenous p63 protein levels and therefore contributes to regulation of p63 in physiological conditions. PMID:16908849

  2. A route from darkness to light: emergence and evolution of luciferase activity in AMP-CoA-ligases inferred from a mealworm luciferase-like enzyme.

    PubMed

    Viviani, V R; Prado, R A; Neves, D R; Kato, D; Barbosa, J A

    2013-06-11

    The origin of luciferases and of bioluminescence is enigmatic. In beetles, luciferases seem to have evolved from AMP-CoA-ligases. How the new oxygenase luminogenic function originated from AMP-ligases leading to luciferases is one of the most challenging mysteries of bioluminescence. Comparison of the cloned luciferase-like enzyme from the nonluminescent Zophobas morio mealworm and beetle luciferases showed that the oxygenase activity may have emerged as a stereoselective oxidative drift with d-luciferin, a substrate that cannot be easily thioesterified to CoA as in the case of the l-isomer. While the overall kcat displayed by beetle luciferases is orders of magnitude greater than that of the luciferase-like enzyme, the respective oxidation rates and quantum yields of bioluminescence are roughly similar, suggesting that the rate constant of the AMP-ligase activity exerted on the new d-luciferin substrate in beetle protoluciferases was the main enzymatic property that suffered optimization during the evolution of luciferases. The luciferase-like enzyme and luciferases boost the rate of luciferyl-adenylate chemiluminescent oxidation by factors of 10(6) and 10(7), respectively, as compared to the substrate spontaneous oxidation in buffer. A similar enhancement of luciferyl-adenylate chemiluminescence is provided by nucleophilic aprotic solvents, implying that the peptide bonds in the luciferin binding site of beetle luciferase could provide a similar catalytically favorable environment. These data suggest that the luciferase-like enzyme and other similar AMP-ligases are potential alternative oxygenases. Site-directed mutagenesis studies of the luciferase-like enzyme and the red light-producing luciferase of Phrixotrix hirtus railroadworm confirm here a critical role for T/S345 in luciferase function. Mutations such as I327T/S in the luciferase-like enzyme, which simultaneously increases luciferase activity and promotes blue shifts in the emission spectrum, could have

  3. Composition, Roles, and Regulation of Cullin-Based Ubiquitin E3 Ligases

    PubMed Central

    Choi, Christina M.; Gray, William M.; Mooney, Sutton; Hellmann, Hanjo

    2014-01-01

    Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities. PMID:25505853

  4. GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth

    PubMed Central

    Zhang, Bicheng; Huang, Jun; Li, Hong-Liang; Liu, Ting; Wang, Yan-Yi; Waterman, Paul; Mao, Ai-Ping; Xu, Liang-Guo; Zhai, Zhonghe; Liu, Depei; Marrack, Philippa; Shu, Hong-Bing

    2011-01-01

    We report here the identification of GIDE, a mitochondrially located E3 ubiquitin ligase. GIDE contains a C-terminal Ring finger domain, which is mostly conserved with those of the IAP family members, and which is required for its E3 ligase activity. Overexpression of GIDE induces apoptosis via a pathway involving activation of caspases since the caspase inhibitors, XIAP and an inactive mutant of caspase-9 block GIDE-induced apoptosis. GIDE also activates JNK, and blockade of JNK activation inhibits GIDE-induced release of cytochrome c and Smac and apoptosis, suggesting that JNK activation precedes release of cytochrome c and Smac and is required for GIDE-induced apoptosis. These proapoptotic properties of GIDE require its E3 ligase activity. When somewhat over or underexpressed, GIDE slows or hastens cell growth respectively. These pro-apoptotic or growth rate effects of GIDE may account for its absence from tumor cells. PMID:18591963

  5. Discrimination of Listeria monocytogenes from other Listeria species by ligase chain reaction.

    PubMed Central

    Wiedmann, M; Czajka, J; Barany, F; Batt, C A

    1992-01-01

    A ligase chain reaction assay based on a single-base-pair difference in the V9 region of the 16S rRNA gene (16S rDNA) was developed to distinguish between Listeria monocytogenes and other Listeria species. For this purpose, two pairs of primers were designed, with one primer of each pair being radioactively labeled. The ligated product was separated from the primers by denaturing polyacrylamide gel electrophoresis and then detected by autoradiography. To achieve a higher sensitivity, the 16S rDNA was initially amplified by polymerase chain reaction prior to the ligase chain reaction. The ligase chain reaction was tested on 19 different Listeria species and strains and proved to be a highly specific diagnostic method for the detection of L. monocytogenes. Images PMID:1482171

  6. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis.

    PubMed

    Nguyen, Giang K T; Wang, Shujing; Qiu, Yibo; Hemu, Xinya; Lian, Yilong; Tam, James P

    2014-09-01

    Proteases are ubiquitous in nature, whereas naturally occurring peptide ligases, enzymes catalyzing the reverse reactions of proteases, are rare occurrences. Here we describe the discovery of butelase 1, to our knowledge the first asparagine/aspartate (Asx) peptide ligase to be reported. This highly efficient enzyme was isolated from Clitoria ternatea, a cyclic peptide-producing medicinal plant. Butelase 1 shares 71% sequence identity and the same catalytic triad with legumain proteases but does not hydrolyze the protease substrate of legumain. Instead, butelase 1 cyclizes various peptides of plant and animal origin with yields greater than 95%. With Kcat values of up to 17 s(-1) and catalytic efficiencies as high as 542,000 M(-1) s(-1), butelase 1 is the fastest peptide ligase known. Notably, butelase 1 also displays broad specificity for the N-terminal amino acids of the peptide substrate, thus providing a new tool for C terminus-specific intermolecular peptide ligations. PMID:25038786

  7. Structure of 5-formyltetrahydrofolate cyclo-ligase from Bacillus anthracis (BA4489)

    SciTech Connect

    Meier, Christoph; Carter, Lester G.; Winter, Graeme; Owens, Ray J.; Stuart, David I.; Esnouf, Robert M.

    2007-03-01

    The structure of 5-formyltetrahydrofolate cyclo-ligase from B. anthracis determined by X-ray crystallography at a resolution of 1.6 Å is described. Bacillus anthracis is a spore-forming bacterium and the causative agent of the disease anthrax. The Oxford Protein Production Facility has been targeting proteins from B. anthracis in order to develop high-throughput technologies within the Structural Proteomics in Europe project. As part of this work, the structure of 5-formyltetrahydrofolate cyclo-ligase (BA4489) has been determined by X-ray crystallography to 1.6 Å resolution. The structure, solved in complex with magnesium-ion-bound ADP and phosphate, gives a detailed picture of the proposed catalytic mechanism of the enzyme. Chemical differences from other cyclo-ligase structures close to the active site that could be exploited to design specific inhibitors are also highlighted.

  8. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB

    PubMed Central

    Lu, Yanyan; Liang, Feng-Xia; Wang, Xiaozhong

    2014-01-01

    SUMMARY Signaling in the ancestral branch of the unfolded protein response (UPR) is initiated by unconventional splicing of HAC1/XBP1 mRNA during endoplasmic reticulum (ER) stress. In mammals, IRE1α has been known to cleave the XBP1 intron. However, the enzyme responsible for ligation of two XBP1 exons remains unknown. Using an XBP1 splicing-based synthetic circuit, we identify RtcB as the primary UPR RNA ligase. In RtcB knockout cells, XBP1 mRNA splicing is defective during ER stress. Genetic rescue and in vitro splicing show that the RNA ligase activity of RtcB is directly required for the splicing of XBP1 mRNA. Taken together, these data demonstrate that RtcB is the long sought RNA ligase that catalyzes unconventional RNA splicing during the mammalian UPR. PMID:25087875

  9. The E3 ubiquitin ligase WVIP2 highlights the versatility of protein ubiquitination

    PubMed Central

    Guerra, Davide; Cattivelli, Luigi; Mazzucotelli, Elisabetta

    2012-01-01

    Plant cells regulate many cellular processes controlling the half-life of critical proteins through ubiquitination. Previously, we characterized two interacting RING-type E3 ubiquitin ligases of Triticum durum, TdRF1 and WVIP2. We revealed their role in tolerance to dehydration, and existing knowledge about their partners also indicated their involvement in the regulation of some aspects of plant development. Here we located WVIP2 in the regulation of the ABA signaling, based on sequence similarities. Further we acquired general evidence about the versatility of ubiquitination in plant cells. A protein can be target of different E3 ligases for a perfect tuning of its abundance as well as the same E3 ligase can ubiquitinate different and unrelated proteins, thus representing a cross-connections between different signaling pathways for a global coordination of cellular processes. PMID:22899050

  10. Immunoprecipitation of Cullin-RING Ligases (CRLs) in Arabidopsis thaliana Seedlings.

    PubMed

    Franciosini, Anna; Serino, Giovanna

    2016-01-01

    CRL (Cullin-RING ubiquitin ligase) is the major class of plant E3 ubiquitin ligases. Immunoprecipitation-based methods are useful techniques for revealing interactions among Cullin-RING Ligase (CRL) subunits or between CRLs and other proteins, as well as for detecting poly-ubiquitin modifications of the CRLs themselves. Here, we describe two immunoprecipitation (IP) procedures suitable for CRLs in Arabidopsis: a procedure for IP analysis of CRL subunits and their interactors and a second procedure for in vivo ubiquitination analysis of the CRLs. Both protocols can be divided into two major steps: (1) preparation of cell extracts without disruption of protein interactions and (2) affinity purification of the protein complexes and subsequent detection. We provide a thorough description of all the steps, as well as advice on how to choose proper buffers for these analyses. We also suggest a series of negative controls that can be used to verify the specificity of the procedure. PMID:27424742

  11. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107.

    PubMed

    Das-Bradoo, Sapna; Nguyen, Hai Dang; Wood, Jamie L; Ricke, Robin M; Haworth, Justin C; Bielinsky, Anja-Katrin

    2010-01-01

    In all eukaryotes, the ligation of newly synthesized DNA, also known as Okazaki fragments, is catalysed by DNA ligase I (ref. 1). An individual with a DNA ligase I deficiency exhibits growth retardation, sunlight sensitivity and severe immunosuppression, probably due to accumulation of DNA damage. Surprisingly, not much is known about the DNA damage response (DDR) in DNA ligase I-deficient cells. As DNA replication and DDR pathways are highly conserved in eukaryotes, we used Saccharomyces cerevisiae as a model system to address this issue. We uncovered a new pathway, which facilitates ubiquitylation at Lys 107 of proliferating cell nuclear antigen (PCNA). Unlike ubiquitylation at Lys 164 of PCNA in response to UV irradiation, which triggers translesion synthesis, modification of Lys 107 is not dependent on the ubiquitin conjugating enzyme (E2) Rad6 (ref. 4) nor the ubiquitin ligase (E3) Rad18 (ref. 5), but requires the E2 variant Mms2 (ref. 6) in conjunction with Ubc4 (ref. 7) and the E3 Rad5 (Refs 8, 9). Surprisingly, DNA ligase I-deficient S. cerevisiae cdc9-1 cells that carry a PCNAK107R mutation are inviable, because they cannot activate a robust DDR. Furthermore, we show that ubiquitylation of PCNA in response to DNA ligase I deficiency is conserved in humans, yet the lysine residue that is modified remains to be determined. We propose that PCNA ubiquitylation provides a 'DNA damage code' that allows cells to categorize different types of defects that arise during DNA replication. PMID:20010813

  12. Alterations in glutamate cysteine ligase content in the retina of two retinitis pigmentosa animal models.

    PubMed

    Sánchez-Vallejo, Violeta; Benlloch-Navarro, Soledad; Trachsel-Moncho, Laura; López-Pedrajas, Rosa; Almansa, Inmaculada; Romero, Francisco Javier; Miranda, María

    2016-07-01

    Retinitis Pigmentosa (RP) comprises a group of rare genetic retinal disorders in which one of several different mutations induces photoreceptor death. Oxidative stress and glutathione (GSH) alterations may be related to the pathogenesis of RP. GSH has been shown to be present in high concentrations in the retina. In addition, the retina has the capability to synthesize GSH. In this study, we tested whether the two subunits of glutamate cysteine ligase, the rate-limiting enzyme in GSH synthesis, and the concentrations of retinal GSH, oxidized glutathione (GSSG), cysteine (Cys) and glutamate are altered in the retina of two different RP mice models. Retinas from C3H and rd1 mice at different postnatal days (P7, P11, P15, P19, P21 and P28) and from C57BL/6 and rd10 mice at P21 were obtained. Western blot analysis was performed to determine the protein content of catalytic and modulatory subunits from glutamate cysteine ligase (GCLC and GCLM, respectively). In another set of experiments, control and rd1 mice were administered buthinine sulfoximine, a glutathione synthase inhibitor, or paraquat. GSH, GSSG, glutamate and Cys concentrations were determined, by HPLC. A decrease in retinal GCLC content was observed in C3H and rd1 mice with age, nevertheless, there was an increase in retinal GCLC in rd1 mice compared to control retinas at P19. No modifications in GCLM content with age and no difference between GCLM content in rd1 and control retinas were observed. The GSH concentration decreased in the rd1 retinas compared with control ones at P15, it increased at P19, and was again similar at P21 and P28. No changes in GSSG concentration in control retinas with age were observed; the GSSG levels in rd1 retinas were similar from P7 to P19 and then increased significantly at P21 and P28. Glutamate concentration was increased in the rd1 retinas compared to control mice from P7 to P15 and were comparable at P21 and P28. The Cys concentrations was measured in control and rd1

  13. Biochemical Properties and Biological Function of a Monofunctional Microbial Biotin Protein Ligase

    PubMed Central

    Daniels, Kyle G.; Beckett, Dorothy

    2010-01-01

    Biotin protein ligases constitute a family of enzymes that catalyze biotin linkage to biotin-dependent carboxylases. In bacteria these enzymes are functionally divided into two classes; the monofunctional enzymes that only catalyze biotin addition and the bifunctional enzymes that also bind to DNA to regulate transcription initiation. Biochemical and biophysical studies of the bifunctional Escherichia coli ligase suggest that several properties of the enzyme have evolved to support its additional regulatory role. Included among these properties are the order of substrate binding and linkage between oligomeric state and ligand binding. PMID:20499837

  14. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    PubMed Central

    Nielsen, Sofie V.; Lindorff-Larsen, Kresten; Hartmann-Petersen, Rasmus

    2016-01-01

    The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work indicates that San1 is

  15. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity.

    PubMed

    Imai, Yuzuru; Soda, Mariko; Hatakeyama, Shigetsugu; Akagi, Takumi; Hashikawa, Tsutomu; Nakayama, Kei Ichi; Takahashi, Ryosuke

    2002-07-01

    Unfolded Pael receptor (Pael-R) is a substrate of the E3 ubiquitin ligase Parkin. Accumulation of Pael-R in the endoplasmic reticulum (ER) of dopaminergic neurons induces ER stress leading to neurodegeneration. Here, we show that CHIP, Hsp70, Parkin, and Pael-R formed a complex in vitro and in vivo. The amount of CHIP in the complex was increased during ER stress. CHIP promoted the dissociation of Hsp70 from Parkin and Pael-R, thus facilitating Parkin-mediated Pael-R ubiquitination. Moreover, CHIP enhanced Parkin-mediated in vitro ubiquitination of Pael-R in the absence of Hsp70. Furthermore, CHIP enhanced the ability of Parkin to inhibit cell death induced by Pael-R. Taken together, these results indicate that CHIP is a mammalian E4-like molecule that positively regulates Parkin E3 activity. PMID:12150907

  16. RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties.

    PubMed

    Horn, Elizabeth J; Albor, Amador; Liu, Yuangang; El-Hizawi, Sally; Vanderbeek, Gretchen E; Babcock, Melissa; Bowden, G Tim; Hennings, Henry; Lozano, Guillermina; Weinberg, Wendy C; Kulesz-Martin, Molly

    2004-02-01

    Tripartite motif protein 32, Trim32, mRNA and protein expression was elevated in independently transformed and tumorigenic keratinocytes of a mouse epidermal carcinogenesis model, in ultraviolet B (UVB)-induced squamous cell carcinomas (SCC), and in approximately 20-25% of chemically induced mouse papillomas and human head and neck SCCs. This suggests that elevated Trim32 expression occurs frequently in experimental epidermal carcinogenesis and is relevant to human cancer. Transduced Trim32 increased colony number in an epidermal in vitro transformation assay and epidermal thickening in vivo when skin-grafted to athymic nu/nu mice. These effects were not associated with proliferation and were not sufficient for tumorigenesis, even with 12-O-tetradecanoylphorbol-13-acetate treatment or defects in the tumor suppressor p53. However, transduced Trim32 inhibited the synergistic effect of tumor necrosis factor alpha (TNFalpha) on UVB-induced apoptosis of keratinocytes in vitro and the apoptotic response of keratinocyte grafts exposed to UVB-light in vivo. Consistent with its RING domain, Trim32 exhibited characteristics of E3-ubiquitin ligases, including being ubiquitylated itself and interacting with ubiquitylated proteins, with increases in these properties following treatment of cultured keratinocytes with TNFalpha/UVB. Interestingly, missense point mutation of human TRIM32 has been reported in Limb-Girdle Muscular Dystrophy Type 2H, an autosomal recessive disease. We propose a model in which Trim32 activities as an E3-ubiquitin ligase favor initiated cell survival in carcinogenesis by blocking UVB-induced TNFalpha apoptotic signaling. PMID:14578165

  17. Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress

    PubMed Central

    Wei, Jing; Xiong, Zhe; Lee, Janine B.; Cheng, Jia; Duffney, Lara J.; Matas, Emmanuel

    2016-01-01

    Stress and the major stress hormone corticosterone induce profound influences in the brain. Altered histone modification and transcriptional dysfunction have been implicated in stress-related mental disorders. We previously found that repeated stress caused an impairment of prefrontal cortex (PFC)-mediated cognitive functions by increasing the ubiquitination and degradation of AMPA-type glutamate receptors via a mechanism depending on the E3 ubiquitin ligase Nedd4. Here, we demonstrated that in PFC of repeatedly stressed rats, active glucocorticoid receptor had the increased binding to the glucocorticoid response element of histone deacetylase 2 (HDAC2) promoter, resulting in the upregulation of HDAC2. Inhibition or knock-down of HDAC2 blocked the stress-induced impairment of synaptic transmission, AMPAR expression, and recognition memory. Furthermore, we found that, in stressed animals, the HDAC2-dependent downregulation of histone methyltransferase Ehmt2 (G9a) led to the loss of repressive histone methylation at the Nedd4-1 promoter and the transcriptional activation of Nedd4. These results have provided an epigenetic mechanism and a potential treatment strategy for the detrimental effects of chronic stress. SIGNIFICANCE STATEMENT Prolonged stress exposure can induce altered histone modification and transcriptional dysfunction, which may underlie the profound influence of stress in regulating brain functions. We report an important finding about the epigenetic mechanism controlling the detrimental effects of repeated stress on synaptic transmission and cognitive function. First, it has revealed the stress-induced alteration of key epigenetic regulators HDAC2 and Ehmt2, which determines the synaptic and behavioral effects of repeated stress. Second, it has uncovered the stress-induced histone modification of the target gene Nedd4, an E3 ligase that is critically involved in the ubiquitination and degradation of AMPA receptors and cognition. Third, it has provided

  18. Role of β-TrCP ubiquitin ligase receptor in UVB mediated responses in skin

    PubMed Central

    Bhatia, Neehar; Demmer, Tara A.; Sharma, Alok K.; Elcheva, Irina; Spiegelman, Vladimir S.

    2011-01-01

    Skin cancers are the most common cancers in the United States. Exposure to UVB radiation is a major risk factor for skin cancer induction. SCFβ-TrCP E3 ubiquitin ligase has been found to be involved in cell cycle, cell proliferation and transformation. Aberrant up-regulation of beta-transducin repeats-containing proteins (β-TrCP) is often found in cancer cell lines and primary tumors. We have previously demonstrated that β-TrCP2 is over-expressed in chemically induced mouse skin tumors [1]. Various cellular stress stimuli, including UVB, induce an increase in β-TrCP1 mRNA and protein levels in human cells [2]. We have previously shown that inhibition of β-TrCP function, by induction of dominant negative β-TrCP2 (β-TrCP2ΔF), in vitro in hTERT immortalized normal keratinocytes, results in increase in UVB induced apoptosis [3]. We have generated transgenic mice with inducible, selective expression of dominant negative β-TrCP2 in epidermis with the Keratin 5 promoter (K5-rTA × TRE-HA-β-TrCPΔF). Here we report that inhibition of β-TrCP function in mouse epidermis results in decrease in UVB-induced edema, hyperplasia, and inflammatory response and increment in UVB-induced apoptosis in skin. Our results suggest that β-TrCP may be an essential player in UVB induced responses in skin and can be a potential therapeutic target for skin cancer. PMID:21187057

  19. The expression of the ubiquitin ligase subunit Cks1 in human breast cancer

    PubMed Central

    Slotky, Merav; Shapira, Ma'anit; Ben-Izhak, Ofer; Linn, Shai; Futerman, Boris; Tsalic, Medy; Hershko, Dan D

    2005-01-01

    Introduction Loss of the cell-cycle inhibitory protein p27Kip1 is associated with a poor prognosis in breast cancer. The decrease in the levels of this protein is the result of increased proteasome-dependent degradation, mediated and rate-limited by its specific ubiquitin ligase subunits S-phase kinase protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1). Skp2 was recently found to be overexpressed in breast cancers, but the role of Cks1 in these cancers is unknown. The present study was undertaken to examine the role of Cks1 expression in breast cancer and its relation to p27Kip1 and Skp2 expression and to tumor aggressiveness. Methods The expressions of Cks1, Skp2, and p27Kip1 were examined immunohistochemically on formalin-fixed, paraffin-wax-embedded tissue sections from 50 patients with breast cancer and by immunoblot analysis on breast cancer cell lines. The relation between Cks1 levels and patients' clinical and histological parameters were examined by Cox regression and the Kaplan–Meier method. Results The expression of Cks1 was strongly associated with Skp2 expression (r = 0.477; P = 0.001) and inversely with p27Kip1 (r = -0.726; P < 0.0001). Overexpression of Cks1 was associated with loss of tumor differentiation, young age, lack of expression of estrogen receptors and of progesterone receptors, and decreased disease-free (P = 0.0007) and overall (P = 0.041) survival. In addition, Cks1 and Skp2 expression were increased by estradiol in estrogen-dependent cell lines but were down-regulated by tamoxifen. Conclusion These results suggest that Cks1 is involved in p27Kip1 down-regulation and may have an important role in the development of aggressive tumor behavior in breast cancer. PMID:16168119

  20. Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata.

    PubMed

    Wagner, Armin; Donaldson, Lloyd; Kim, Hoon; Phillips, Lorelle; Flint, Heather; Steward, Diane; Torr, Kirk; Koch, Gerald; Schmitt, Uwe; Ralph, John

    2009-01-01

    Severe suppression of 4-coumarate-coenzyme A ligase (4CL) in the coniferous gymnosperm Pinus radiata substantially affected plant phenotype and resulted in dwarfed plants with a "bonsai tree-like" appearance. Microscopic analyses of stem sections from 2-year-old plants revealed substantial morphological changes in both wood and bark tissues. This included the formation of weakly lignified tracheids that displayed signs of collapse and the development of circumferential bands of axial parenchyma. Acetyl bromide-soluble lignin assays and proton nuclear magnetic resonance studies revealed lignin reductions of 36% to 50% in the most severely affected transgenic plants. Two-dimensional nuclear magnetic resonance and pyrolysis-gas chromatography-mass spectrometry studies indicated that lignin reductions were mainly due to depletion of guaiacyl but not p-hydroxyphenyl lignin. 4CL silencing also caused modifications in the lignin interunit linkage distribution, including elevated beta-aryl ether (beta-O-4 unit) and spirodienone (beta-1) levels, accompanied by lower phenylcoumaran (beta-5), resinol (beta-beta), and dibenzodioxocin (5-5/beta-O-4) levels. A sharp depletion in the level of saturated (dihydroconiferyl alcohol) end groups was also observed. Severe suppression of 4CL also affected carbohydrate metabolism. Most obvious was an up to approximately 2-fold increase in galactose content in wood from transgenic plants due to increased compression wood formation. The molecular, anatomical, and analytical data verified that the isolated 4CL clone is associated with lignin biosynthesis and illustrated that 4CL silencing leads to complex, often surprising, physiological and morphological changes in P. radiata. PMID:18971431

  1. Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro.

    PubMed

    Kaminska, Joanna; Spiess, Matthias; Stawiecka-Mirota, Marta; Monkaityte, Rasa; Haguenauer-Tsapis, Rosine; Urban-Grimal, Daniele; Winsor, Barbara; Zoladek, Teresa

    2011-12-01

    Yeast Rsp5 ubiquitin ligase is involved in several cellular processes, including endocytosis. Actin patches are sites of endocytosis, a process involving actin assembly and disassembly. Here we show Rsp5 localization in cortical patches and demonstrate its involvement in actin cytoskeleton organization and dynamics. We found that the Rsp5-F1-GFP2 N-terminal fragment and full length GFP-Rsp5 were recruited to peripheral patches that temporarily co-localized with Abp1-mCherry, a marker of actin patches. Actin cytoskeleton organization was defective in a strain lacking RSP5 or overexpressing RSP5, and this phenotype was accompanied by morphological abnormalities. Overexpression of RSP5 caused hypersensitivity of cells to Latrunculin A, an actin-depolymerizing drug and was toxic to cells lacking Las17, an activator of actin nucleation. Moreover, Rsp5 was required for efficient actin polymerization in a whole cell extract based in vitro system. Rsp5 interacted with Las17 and Las17-binding proteins, Lsb1 and Lsb2, in a GST-Rsp5-WW2/3 pull down assay. Rsp5 ubiquitinated Lsb1-HA and Lsb2-HA without directing them for degradation. Overexpression of RSP5 increased the cellular level of HA-Las17 in wild type and in lsb1Δ lsb2Δ strains in which the basal level of Las17 was already elevated. This increase was prevented in a strain devoid of Las17-binding protein Sla1 which is also a target of Rsp5 ubiquitination. Thus, Rsp5 together with Lsb1, Lsb2 and Sla1 regulate the level of Las17, an important activator of actin polymerization. PMID:22000681

  2. Effective production of Pro-Gly by mutagenesis of l-amino acid ligase.

    PubMed

    Kino, Haruka; Nakajima, Shota; Arai, Toshinobu; Kino, Kuniki

    2016-08-01

    l-Amino acid ligase (Lal) catalyzes dipeptide synthesis from unprotected l-amino acids by hydrolysis ATP to ADP. Each Lal displays unique substrate specificity, and many different dipeptides can be synthesized by selecting suitable Lal. We have already successfully synthesized Met-Gly selectively by replacing the Pro85 residues of Lal from Bacillus licheniformis (BL00235). From these results, we deduced that the amino acid residue at position 85 had a key role in enzyme activity, and applied these findings to other Lals. When Pro and Gly were used as substrates, TabS from Pseudomonas syringae, synthesized the salt taste enhancing dipeptide Pro-Gly and other three dipeptides (Gly-Pro, Pro-Pro, and Gly-Gly) was hardly synthesized from its substrate specificity. However, the amount of Pro-Gly was low. Therefore, to alter the substrate specificity and increase the amount of Pro-Gly, we selected amino acid residues that might affect the enzyme activity, Ser85 corresponding to Pro85 of BL00235, and His294 on the results from previous studies and the predicted structure of TabS. These residues were replaced with 20 proteogenic amino acids, and Pro-Gly synthesizing reactions were conducted. The S85T and the H294D mutants synthesized more Pro-Gly than wild-type. Furthermore, the S85T/H294D double mutant synthesized considerably more Pro-Gly than the single mutant did. These results showed that the amino acid position 85 of TabS affect the enzyme activity similarly to BL00235. In addition, replacing the amino acid residue positioning around the N-terminal substrate and constructing the double mutant led to increase the amount of Pro-Gly. PMID:27017332

  3. SILENCING OF 4-COUMARATE-CoA LIGASE IN PINUS RADIATA, A CONIFEROUS GYMNOSPERM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enzyme 4-coumarate-CoA ligase (4CL) is involved in the general phenylpropanoid pathway and provides monolignol precursors such as p-coumaroyl-CoA, ultimately for the biosynthesis of lignin. Recombinant studies designed to assess the role of 4CL in the lignification process have focused on angios...

  4. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  5. THE ROLE OF E3 LIGASES IN THE UBIQUITIN-DEPENDENT REGULATION OF SPERMATOGENESIS*

    PubMed Central

    Richburg, John H.; Myers, Jessica L.; Bratton, Shawn B.

    2014-01-01

    The ubiquitination of proteins is a post-translational modification that was first described as a means to target misfolded or unwanted proteins for degradation by the proteasome. It is now appreciated that the ubiquitination of proteins also serves as a mechanism to modify protein function and cellular functions such as protein trafficking, cell signaling, DNA repair, chromatin modifications, cell-cycle progression and cell death. The ubiquitination of proteins occurs through the hierarchal transfer of ubiquitin from an E1 ubiquitin-activating enzyme to an E2 ubiquitin-conjugating enzyme and finally to an E3 ubiquitin ligase that transfers the ubiquitin to its target protein. It is the final E3 ubiquitin ligase that confers the substrate specificity for ubiquitination and is the focus of this review. Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells undergo mitotic proliferation and expansion of the diploid spermatogonial population, differentiate into spermatocytes and progress through two meiotic divisions to produce haploid spermatids that proceed through a final morphogenesis to generate mature spermatozoa. The ubiquitination of proteins in the cells of the testis occurs in many of the processes required for the progression of mature spermatozoa. Since it is the E3 ubiquitin ligase that recognizes the target protein and provides the specificity and selectivity for ubiquitination, this review highlights known examples of E3 ligases in the testis and the differing roles that they play in maintaining functional spermatogenesis. PMID:24632385

  6. The prolific ATL family of RING-H2 ubiquitin ligases

    PubMed Central

    Guzmán, Plinio

    2012-01-01

    An abundant class of E3 ubiquitin ligases encodes the RING-finger domain. The RING finger binds to the E2 ubiquitin-conjugating enzyme and brings together both the E2 and substrate. It is predicted that 477 RING finger E3 ligases exist in Arabidopsis thaliana. A particular family among them, named Arabidopsis Tóxicos en Levadura (ATL), consists of 91 members that contain the RING-H2 variation and a hydrophobic domain located at the N-terminal end. Transmembrane E3 ligases are important in several biological processes. For instance, some transmembrane RING finger E3 ligases are main participants in the endoplasmic reticulum-associated degradation pathway that targets misfolded proteins. Functional analysis of a number of ATLs has shown that some of them regulate distinct pathways in plants. Several ATLs have been shown to participate in defense responses, while others play a role in the regulation of the carbon/nitrogen response during post-germinative seedling growth transition, in the regulation of cell death during root development, in endosperm development, or in the transition to flowering under short day conditions. The ATL family has also been instrumental in evolution studies for showing how gene families are expanded in plant genomes. PMID:22827943

  7. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori.

    PubMed

    Pandey, Preeti; Tarique, Khaja Faisal; Mazumder, Mohit; Rehman, Syed Arif Abdul; Kumari, Nilima; Gourinath, Samudrala

    2016-01-01

    Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp. PMID:27499105

  8. Effective interaction studies for inhibition of DNA ligase protein from Staphylococcus aureus.

    PubMed

    Vijayalakshmi, Periyasamy; Daisy, Pitchai

    2015-02-01

    Staphylococcus aureus has been recognized as an important human pathogen for more than 100 years. It is among the most important causative agent of human infections in the twenty-first century. DNA ligase is the main protein responsible for the replication of S. aureus. In order to control the replication mechanism, DNA ligase is a successive drug target, hence we have chosen this protein for this study. We performed virtual screening using ZINC database for identification of potent inhibitor against DNA ligase. Based on the scoring methods, we have selected best five compounds from the ZINC database. In order to improve the accuracy, selected compounds were subjected into Quantum Polarized Ligand Docking (QPLD) docking, for which the results showed high docking score, compared to glide docking score. QPLD is more accurate as it includes charges in the scoring function, which was not available in the glide docking. Binding energy calculation results also indicated that selected compounds have good binding capacity with the target protein. In addition, these compounds on screening have good absorption, distribution, metabolism, excretion and toxicity property. In this study, we identified few compounds that particularly work against DNA ligase protein, having better interaction phenomenon and it would help further the experimental analysis. PMID:25055026

  9. Chimeric ubiquitin ligases inhibit non-small cell lung cancer via negative modulation of EGFR signaling.

    PubMed

    Zhong, Daixing; Ru, Yi; Wang, Qinhao; Zhang, Jing; Zhang, Jian; Wei, Junxia; Wu, Jin; Yao, Libo; Li, Xiaofei; Li, Xia

    2015-04-01

    Targeting epidermal growth factor receptor (EGFR) represents a promising therapeutic strategy for non-small cell lung cancers (NSCLC). The ubiquitin-proteasome system (UPS) is a major pathway that mediates protein degradation. To target the degradation of EGFR, we generated two artificial ubiquitin ligases, which are composed of an EGFR-binding domain, i.e., the SH2 domain from growth factor receptor binding protein 2 (Grb2), and an ubiquitin ligase catalytic domain, i.e., the RING domain from Cbl or the U-box domain from CHIP. When the chimeric ubiquitin ligases were introduced into lung cancer SPC-A1 cells, they effectively associated with EGFR, promoted its ubiquitination and degradation, and as a result, blocked the downstream PI3K-Akt signal pathway. Moreover, cell proliferation and invasion were inhibited, the sensitivity to docetaxel-induced apoptosis was enhanced and the tumorigenicity was suppressed. In conclusion, negative modulation of EGFR signaling by the chimeric ubiquitin ligases can inhibit malignancy of SPC-A1 cells and sensitize these cells to chemotherapy, thus it may be applied to targeted therapy for NSCLC. PMID:25573345

  10. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori

    PubMed Central

    Pandey, Preeti; Tarique, Khaja Faisal; Mazumder, Mohit; Rehman, Syed Arif Abdul; kumari, Nilima; Gourinath, Samudrala

    2016-01-01

    Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp. PMID:27499105

  11. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm.

    PubMed

    Yoo, Seung-Hee; Mohawk, Jennifer A; Siepka, Sandra M; Shan, Yongli; Huh, Seong Kwon; Hong, Hee-Kyung; Kornblum, Izabela; Kumar, Vivek; Koike, Nobuya; Xu, Ming; Nussbaum, Justin; Liu, Xinran; Chen, Zheng; Chen, Zhijian J; Green, Carla B; Takahashi, Joseph S

    2013-02-28

    Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals. PMID:23452855

  12. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex

    PubMed Central

    Stewart, Emerson V.; Nwosu, Christine C.; Tong, Zongtian; Roguev, Assen; Cummins, Timothy D.; Kim, Dong-Uk; Hayles, Jacqueline; Park, Han-Oh; Hoe, Kwang-Lae; Powell, David W.; Krogan, Nevan J.; Espenshade, Peter J.

    2011-01-01

    SUMMARY Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here, we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1–4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2 conjugating enzyme Ubc4, the Dsc1 RING E3 ligase and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation. PMID:21504829

  13. In vitro selection of optimal DNA substrates for T4 RNA ligase

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 RNA ligase. We find that the ensemble of selected sequences ligated about 10 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly, the majority of the selected sequences approximated a well-defined consensus sequence.

  14. Characterization and Promoter Analysis of a Cotton Ring-Type Ubiquitin Ligase (E3) Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cotton fiber cDNA, GhRING1, and its corresponding gene have been cloned and characterized. The GhRING1 gene encodes a RING-type ubiquitin ligase (E3) containing 337 amino acids (aa). The GhRING1 protein contains a RING finger motif with conserved cysteine and histine residues at the C-terminus a...

  15. A JUMONJI Protein with E3 Ligase and Histone H3 Binding Activities Affects Transposon Silencing in Arabidopsis.

    PubMed

    Kabelitz, Tina; Brzezinka, Krzysztof; Friedrich, Thomas; Górka, Michał; Graf, Alexander; Kappel, Christian; Bäurle, Isabel

    2016-05-01

    Transposable elements (TEs) make up a large proportion of eukaryotic genomes. As their mobilization creates genetic variation that threatens genome integrity, TEs are epigenetically silenced through several pathways, and this may spread to neighboring sequences. JUMONJI (JMJ) proteins can function as antisilencing factors and prevent silencing of genes next to TEs Whether TE silencing is counterbalanced by the activity of antisilencing factors is still unclear. Here, we characterize JMJ24 as a regulator of TE silencing. We show that loss of JMJ24 results in increased silencing of the DNA transposon AtMu1c, while overexpression of JMJ24 reduces silencing. JMJ24 has a JumonjiC (JmjC) domain and two RING domains. JMJ24 autoubiquitinates in vitro, demonstrating E3 ligase activity of the RING domain(s). JMJ24-JmjC binds the N-terminal tail of histone H3, and full-length JMJ24 binds histone H3 in vivo. JMJ24 activity is anticorrelated with histone H3 Lys 9 dimethylation (H3K9me2) levels at AtMu1c Double mutant analyses with epigenetic silencing mutants suggest that JMJ24 antagonizes histone H3K9me2 and requires H3K9 methyltransferases for its activity on AtMu1c Genome-wide transcriptome analysis indicates that JMJ24 affects silencing at additional TEs Our results suggest that the JmjC domain of JMJ24 has lost demethylase activity but has been retained as a binding domain for histone H3. This is in line with phylogenetic analyses indicating that JMJ24 (with the mutated JmjC domain) is widely conserved in angiosperms. Taken together, this study assigns a role in TE silencing to a conserved JmjC-domain protein with E3 ligase activity, but no demethylase activity. PMID:26979329

  16. Benzoate-coenzyme A ligase, encoded by badA, is one of three ligases able to catalyze benzoyl-coenzyme A formation during anaerobic growth of Rhodopseudomonas palustris on benzoate.

    PubMed Central

    Egland, P G; Gibson, J; Harwood, C S

    1995-01-01

    The first step of anaerobic benzoate degradation is the formation of benzoyl-coenzyme A by benzoate-coenzyme A ligase. This enzyme, purified from Rhodopseudomonas palustris, is maximally active with 5 microM benzoate. To study the molecular basis for this reaction, the benzoate-coenzyme A ligase gene (badA) was cloned and sequenced. The deduced amino acid sequence of badA showed substantial similarity to other coenzyme A ligases, with the highest degree of similarity being that to 4-hydroxybenzoate-coenzyme A ligase (50% amino acid identity) from R. palustris. A badA mutant that was constructed had barely detectable levels of ligase activity when cell extracts were assayed at 10 microM benzoate. Despite this, the mutant grew at wild-type rates on benzoate under laboratory culture conditions (3 mM benzoate), and mutant cell extracts had high levels of ligase activity when assayed at a high concentration of benzoate (1 mM). This suggested that R. palustris expresses, in addition to BadA, a benzoate-activating enzyme(s) with a relatively low affinity for benzoate. A possible role of 4-hydroxybenzoate-coenzyme A ligase (encoded by hbaA) in this capacity was investigated by constructing a badA hbaA double mutant. Although the double mutant grew more slowly on benzoate than badA cells, growth rates were still significant, suggesting the involvement of a third enzyme in benzoate activation. Competition experiments involving the addition of a small amount of cyclohexanecarboxylate to ligase assay mixtures implicated cyclohexanecarboxylate-coenzyme A ligase as being this third enzyme. These results show that wild-type R. palustris cells synthesize at least three enzymes that can catalyze the initial step in anaerobic benzoate degradation during growth on benzoate. This observation supports previous suggestions that benzoyl-coenzyme A formation plays a central role in anaerobic aromatic compound biodegradation. PMID:7592432

  17. Tripartite motif ligases catalyze polyubiquitin chain formation through a cooperative allosteric mechanism.

    PubMed

    Streich, Frederick C; Ronchi, Virginia P; Connick, J Patrick; Haas, Arthur L

    2013-03-22

    Ligation of polyubiquitin chains to proteins is a fundamental post-translational modification, often resulting in targeted degradation of conjugated proteins. Attachment of polyubiquitin chains requires the activities of an E1 activating enzyme, an E2 carrier protein, and an E3 ligase. The mechanism by which polyubiquitin chains are formed remains largely speculative, especially for RING-based ligases. The tripartite motif (TRIM) superfamily of ligases functions in many cellular processes including innate immunity, cellular localization, development and differentiation, signaling, and cancer progression. The present results show that TRIM ligases catalyze polyubiquitin chain formation in the absence of substrate, the rates of which can be used as a functional readout of enzyme function. Initial rate studies under biochemically defined conditions show that TRIM32 and TRIM25 are specific for the Ubc5 family of E2-conjugating proteins and, along with TRIM5α, exhibit cooperative kinetics with respect to Ubc5 concentration, with submicromolar [S]0.5 and Hill coefficients of 3-5, suggesting they possess multiple binding sites for their cognate E2-ubiquitin thioester. Mutation studies reveal a second, non-canonical binding site encompassing the C-terminal Ubc5α-helix. Polyubiquitin chain formation requires TRIM subunit oligomerization through the conserved coiled-coil domain, but can be partially replaced by fusing the catalytic domain to GST to promote dimerization. Other results suggest that TRIM32 assembles polyubiquitin chains as a Ubc5-linked thioester intermediate. These results represent the first detailed mechanistic study of TRIM ligase activity and provide a functional context for oligomerization observed in the superfamily. PMID:23408431

  18. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I.

    PubMed

    van den Boomen, D J H; Lehner, P J

    2015-12-01

    The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2's use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain. PMID:26210183

  19. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I

    PubMed Central

    van den Boomen, D.J.H.; Lehner, P.J.

    2015-01-01

    The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2’s use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain. PMID:26210183

  20. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis.

    PubMed

    Rastogi, Shubhra; Kumar, Ritesh; Chanotiya, Chandan S; Shanker, Karuna; Gupta, Madan M; Nagegowda, Dinesh A; Shasany, Ajit K

    2013-08-01

    Biosynthesis of eugenol shares its initial steps with that of lignin, involving conversion of hydroxycinnamic acids to their corresponding coenzyme A (CoA) esters by 4-coumarate:CoA ligases (4CLs). In this investigation, a 4CL (OS4CL) was identified from glandular trichome-rich tissue of Ocimum sanctum with high sequence similarity to an isoform (OB4CL_ctg4) from Ocimum basilicum. The levels of OS4CL and OB4CL_ctg4-like transcripts were highest in O. sanctum trichome, followed by leaf, stem and root. The eugenol content in leaf essential oil was positively correlated with the expression of OS4CL in the leaf at different developmental stages. Recombinant OS4CL showed the highest activity with p-coumaric acid, followed by ferulic, caffeic and trans-cinnamic acids. Transient RNA interference (RNAi) suppression of OS4CL in O. sanctum leaves caused a reduction in leaf eugenol content and trichome transcript level, with a considerable increase in endogenous p-coumaric, ferulic, trans-cinnamic and caffeic acids. A significant reduction in the expression levels was observed for OB4CL_ctg4-related transcripts in suppressed trichome compared with transcripts similar to the other four isoforms (OB4CL_ctg1, 2, 3 and 5). Sinapic acid and lignin content were also unaffected in RNAi suppressed leaf samples. Transient expression of OS4CL-green fluorescent protein fusion protein in Arabidopsis protoplasts was associated with the cytosol. These results indicate metabolite channeling of intermediates towards eugenol by a specific 4CL and is the first report demonstrating the involvement of 4CL in creation of virtual compartments through substrate utilization and committing metabolites for eugenol biosynthesis at an early stage of the pathway. PMID:23677922

  1. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    PubMed

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients. PMID:27295345

  2. E3 Ubiquitin Ligase Fbw7 Negatively Regulates Osteoblast Differentiation by Targeting Runx2 for Degradation.

    PubMed

    Kumar, Yogesh; Kapoor, Isha; Khan, Kainat; Thacker, Gatha; Khan, Mohd Parvez; Shukla, Nidhi; Kanaujiya, Jitendra Kumar; Sanyal, Sabyasachi; Chattopadhyay, Naibedya; Trivedi, Arun Kumar

    2015-12-25

    Runx2, a master regulator of osteoblast differentiation, is tightly regulated at both transcriptional and post-translational levels. Post-translational modifications such as phosphorylation and ubiquitination have differential effects on Runx2 functions. Here, we show that the reduced expression and functions of Runx2 upon its phosphorylation by GSK3β are mediated by its ubiquitin-mediated degradation through E3 ubiquitin ligase Fbw7α. Fbw7α through its WD domain interacts with Runx2 both in a heterologous (HEK293T cells) system as well as in osteoblasts. GSK3β was also present in the same complex as determined by co-immunoprecipitation. Furthermore, overexpression of either Fbw7α or GSK3β was sufficient to down-regulate endogenous Runx2 expression and function; however, both failed to inhibit endogenous Runx2 when either of them was depleted in osteoblasts. Fbw7α-mediated inhibition of Runx2 expression also led to reduced Runx2 transactivation and osteoblast differentiation. In contrast, inhibition of Fbw7α restored Runx2 levels and promoted osteoblast differentiation. We also observed reciprocal expression levels of Runx2 and Fbw7α in models of bone loss such as lactating (physiological bone loss condition) and ovariectomized (induction of surgical menopause) animals that show reduced Runx2 and enhanced Fbw7α, whereas this was reversed in the estrogen-treated ovariectomized animals. In addition, methylprednisolone (a synthetic glucocorticoid) treatment to neonatal rats showed a temporal decrease in Runx2 with a reciprocal increase in Fbw7 in their calvarium. Taken together, these data demonstrate that Fbw7α negatively regulates osteogenesis by targeting Runx2 for ubiquitin-mediated degradation in a GSK3β-dependent manner and thus provides a plausible explanation for GSK3β-mediated bone loss as described before. PMID:26542806

  3. Redox regulation of E3 ubiquitin ligases and their role in skeletal muscle atrophy.

    PubMed

    Olaso-Gonzalez, Gloria; Ferrando, Beatriz; Derbre, Frederic; Salvador-Pascual, Andrea; Cabo, Helena; Pareja-Galeano, Helios; Sabater-Pastor, Frederic; Gomez-Cabrera, Mari Carmen; Vina, Jose

    2014-10-01

    Muscle atrophy is linked to reactive oxygen species (ROS) production during hindlimb-unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of our study was to determine the mechanism by which ROS cause muscle atrophy and its possible prevention by allopurinol, a well-known inhibitor of XO widely used in clinical practice, and indomethacin, a nonsteroidal anti-inflammatory drug. We studied the activation of p38 MAP Kinase and NF-?B pathways, and the expression of two E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFb) and Muscle RING Finger-1 (MuRF-1). Male Wistar rats (3 mold) conditioned by 14 days of hindlimb unloading (n=18), with or without the treatment, were compared with freely ambulating controls (n=18). After the experimental intervention, soleus muscles were removed, weighted and analyzed to determine oxidative stress and inflammatory parameters. We found that hindlimb unloading induced a significant increase in XO activity in plasma (39%, p=0.001) and in the protein expression of CuZnSOD and Catalase in skeletal muscle. Inhibitionof XO partially prevented protein carbonylation, both in plasma and in soleus muscle, in the unloaded animals. The most relevant new fact reported is that allopurinol prevents soleus muscle atrophy by ~20% after hindlimb unloading. Combining allopurinol and indomethacin we found a further prevention in the atrophy process. This is mediated by the inhibition of the p38 MAPK-MAFbx and NF-?B -MuRF-1 pathways. Our data point out the potential benefit of allopurinol and indomethacin administration for bedridden, astronauts, sarcopenic and cachexic patients. PMID:26461377

  4. The Pellino E3 Ubiquitin Ligases Recognize Specific Phosphothreonine Motifs and Have Distinct Substrate Specificities

    PubMed Central

    2015-01-01

    The four mammalian Pellinos (Pellinos 1, 2, 3a, and 3b) are E3 ubiquitin ligases that are emerging as critical mediators for a variety of immune signaling pathways, including those activated by Toll-like receptors, the T-cell receptor, and NOD2. It is becoming increasingly clear that each Pellino has a distinct role in facilitating immune receptor signaling. However, the underlying mechanisms by which these highly homologous proteins act selectively in these signaling pathways are not clear. In this study, we investigate whether Pellino substrate recognition contributes to the divergent functions of Pellinos. Substrate recognition of each Pellino is mediated by its noncanonical forkhead-associated (FHA) domain, a well-characterized phosphothreonine-binding module. Pellino FHA domains share very high sequence identity, so a molecular basis for differences in substrate recognition is not immediately apparent. To explore Pellino substrate specificity, we first identify a high-affinity Pellino2 FHA domain-binding motif in the Pellino substrate, interleukin-1 receptor-associated kinase 1 (IRAK1). Analysis of binding of the different Pellinos to a panel of phosphothreonine-containing peptides derived from the IRAK1-binding motif reveals that each Pellino has a distinct phosphothreonine peptide binding preference. We observe a similar binding specificity in the interaction of Pellinos with a number of known Pellino substrates. These results argue that the nonredundant roles that Pellinos play in immune signaling are in part due to their divergent substrate specificities. This new insight into Pellino substrate recognition could be exploited for pharmacological advantage in treating inflammatory diseases that have been linked to the aberrant regulation of Pellinos. PMID:25027698

  5. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation

    PubMed Central

    Lechtenberg, Bernhard C.; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K.; Ware, Carl F.; Mace, Peter D.; Riedl, Stefan J.

    2015-01-01

    Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  6. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation.

    PubMed

    Lechtenberg, Bernhard C; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K; Ware, Carl F; Mace, Peter D; Riedl, Stefan J

    2016-01-28

    Ubiquitination is a central process affecting all facets of cellular signalling and function. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate. The RING-between-RING (RBR) family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases. The RBR family includes Parkin and HOIP, the central catalytic factor of the LUBAC (linear ubiquitin chain assembly complex). While structural insights into the RBR E3 ligases Parkin and HHARI in their overall auto-inhibited forms are available, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely unknown. Here we present the first structure, to our knowledge, of the fully active human HOIP RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP RBR adopts a conformation markedly different from that of auto-inhibited RBRs. HOIP RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centres ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, three distinct helix-IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~ubiquitin conjugate and, surprisingly, an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  7. SUMO-targeted ubiquitin ligase (STUbL) Slx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin

    PubMed Central

    Ohkuni, Kentaro; Takahashi, Yoshimitsu; Fulp, Alyona; Lawrimore, Josh; Au, Wei-Chun; Pasupala, Nagesh; Levy-Myers, Reuben; Warren, Jack; Strunnikov, Alexander; Baker, Richard E.; Kerscher, Oliver; Bloom, Kerry; Basrai, Munira A.

    2016-01-01

    Centromeric histone H3, CENP-ACse4, is essential for faithful chromosome segregation. Stringent regulation of cellular levels of CENP-ACse4 restricts its localization to centromeres. Mislocalization of CENP-ACse4 is associated with aneuploidy in yeast and flies and tumorigenesis in human cells; thus defining pathways that regulate CENP-A levels is critical for understanding how mislocalization of CENP-A contributes to aneuploidy in human cancers. Previous work in budding yeast shows that ubiquitination of overexpressed Cse4 by Psh1, an E3 ligase, partially contributes to proteolysis of Cse4. Here we provide the first evidence that Cse4 is sumoylated by E3 ligases Siz1 and Siz2 in vivo and in vitro. Ubiquitination of Cse4 by the small ubiquitin-related modifier (SUMO)-targeted ubiquitin ligase (STUbL) Slx5 plays a critical role in proteolysis of Cse4 and prevents mislocalization of Cse4 to euchromatin under normal physiological conditions. Accumulation of sumoylated Cse4 species and increased stability of Cse4 in slx5∆ strains suggest that sumoylation precedes ubiquitin-mediated proteolysis of Cse4. Slx5-mediated Cse4 proteolysis is independent of Psh1, since slx5∆ psh1∆ strains exhibit higher levels of Cse4 stability and mislocalization than either slx5∆ or psh1∆ strains. Our results demonstrate a role for Slx5 in ubiquitin-mediated proteolysis of Cse4 to prevent its mislocalization and maintain genome stability. PMID:26960795

  8. The adenovirus E4-ORF3 protein functions as a SUMO E3 ligase for TIF-1γ sumoylation and poly-SUMO chain elongation.

    PubMed

    Sohn, Sook-Young; Hearing, Patrick

    2016-06-14

    The adenovirus (Ad) early region 4 (E4)-ORF3 protein regulates diverse cellular processes to optimize the host environment for the establishment of Ad replication. E4-ORF3 self-assembles into multimers to form a nuclear scaffold in infected cells and creates distinct binding interfaces for different cellular target proteins. Previous studies have shown that the Ad5 E4-ORF3 protein induces sumoylation of multiple cellular proteins and subsequent proteasomal degradation of some of them, but the detailed mechanism of E4-ORF3 function remained unknown. Here, we investigate the role of E4-ORF3 in the sumoylation process by using transcription intermediary factor (TIF)-1γ as a substrate. Remarkably, we discovered that purified E4-ORF3 protein stimulates TIF-1γ sumoylation in vitro, demonstrating that E4-ORF3 acts as a small ubiquitin-like modifier (SUMO) E3 ligase. Furthermore, E4-ORF3 significantly increases poly-SUMO3 chain formation in vitro in the absence of substrate, showing that E4-ORF3 has SUMO E4 elongase activity. An E4-ORF3 mutant, which is defective in protein multimerization, exhibited severely decreased activity, demonstrating that E4-ORF3 self-assembly is required for these activities. Using a SUMO3 mutant, K11R, we found that E4-ORF3 facilitates the initial acceptor SUMO3 conjugation to TIF-1γ as well as poly-SUMO chain elongation. The E4-ORF3 protein displays no SUMO-targeted ubiquitin ligase activity in our assay system. These studies reveal the mechanism by which E4-ORF3 targets specific cellular proteins for sumoylation and proteasomal degradation and provide significant insight into how a small viral protein can play a role as a SUMO E3 ligase and E4-like SUMO elongase to impact a variety of cellular responses. PMID:27247387

  9. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling

    PubMed Central

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  10. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling.

    PubMed

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  11. Non-thermal plasma induces AKT degradation through turn-on the MUL1 E3 ligase in head and neck cancer

    PubMed Central

    Kim, Sun-Yong; Kim, Haeng-Jun; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Shin, Yoo Seob; Kim, Yeon Soo; Lee, Keunho; Kim, Chul-Ho

    2015-01-01

    Recent research on non-thermal plasma (NTP, an ionized gas) has identified it as a novel cancer therapeutic tool. However, the molecular mechanism remains unclear. In this study, we demonstrated NTP induced cell death of head and neck cancer (HNC) through the AKT ubiquitin–proteasome system. NTP increased the gene expression of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), an E3 ligase for AKT, and NTP-induced HNC cell death was prevented by MUL1 siRNA. We also showed that MUL1 inhibited the level of AKT and p-AKT and MUL1 expression was increased by NTP-induced ROS. Furthermore, we optimized and manufactured a new type of NTP, a liquid type of NTP (LTP). In syngeneic and xenograft in vivo tumor models, LTP inhibited tumor progression by increasing the MUL1 level and reducing p-AKT levels, indicating that LTP also has an anti-cancer effect through the same mechanism as that of NTP. Taken together, our results suggest that NTP and LTP have great potential for HNC therapy. PMID:26450902

  12. A SUMO-targeted ubiquitin ligase is involved in the degradation of the nuclear pool of the SUMO E3 ligase Siz1

    PubMed Central

    Westerbeck, Jason W.; Pasupala, Nagesh; Guillotte, Mark; Szymanski, Eva; Matson, Brooke C.; Esteban, Cecilia; Kerscher, Oliver

    2014-01-01

    The Slx5/Slx8 heterodimer constitutes a SUMO-targeted ubiquitin ligase (STUbL) with an important role in SUMO-targeted degradation and SUMO-dependent signaling. This STUbL relies on SUMO-interacting motifs in Slx5 to aid in substrate targeting and carboxy-terminal RING domains in both Slx5 and Slx8 for substrate ubiquitylation. In budding yeast cells, Slx5 resides in the nucleus, forms distinct foci, and can associate with double-stranded DNA breaks. However, it remains unclear how STUbLs interact with other proteins and their substrates. To examine the targeting and functions of the Slx5/Slx8 STUbL, we constructed and analyzed truncations of the Slx5 protein. Our structure–function analysis reveals a domain of Slx5 involved in nuclear localization and in the interaction with Slx5, SUMO, Slx8, and a novel interactor, the SUMO E3 ligase Siz1. We further analyzed the functional interaction of Slx5 and Siz1 in vitro and in vivo. We found that a recombinant Siz1 fragment is an in vitro ubiquitylation target of the Slx5/Slx8 STUbL. Furthermore, slx5∆ cells accumulate phosphorylated and sumoylated adducts of Siz1 in vivo. Specifically, we show that Siz1 can be ubiquitylated in vivo and is degraded in an Slx5-dependent manner when its nuclear egress is prevented in mitosis. In conclusion, our data provide a first look into the STUbL-mediated regulation of a SUMO E3 ligase. PMID:24196836

  13. A novel ubiquitin-protein ligase E3 functions as a modulator of immune response against lipopolysaccharide in Pacific oyster, Crassostrea gigas.

    PubMed

    Cheng, Qi; Wang, Hao; Jiang, Shuai; Wang, Lingling; Xin, Lusheng; Liu, Conghui; Jia, Zhihao; Song, Linsheng; Zhu, Beiwei

    2016-07-01

    Ubiquitination is an important post-translational protein modification and plays a crucial role in various processes such as cell cycle, signal transduction, and transcriptional regulation. In the present study, a novel ubiquitin (Ub)-protein ligase E3 (designed as CgE3Rv1) was identified from Crassostrea gigas, and its ubiquitination regulation in the immune response against lipopolysaccharide (LPS) stimulation was investigated. The open reading frame of CgE3Rv1 gene was of 1455 bp encoding a polypeptide of 484 amino acids with the predicted molecular mass of 54.89 kDa. There were two transmembrane regions and a RING-variant (RINGv) domain identified in CgE3Rv1. CgE3Rv1 shared similar C4HC3 zinc-finger-like motif with those RINGv domain Ub-protein ligases E3s identified from vertebrates and invertebrates, and it was closely clustered with the membrane-associated RING-CH2 (MARCH2) Ub-protein ligases E3s in the phylogenetic tree. The mRNA transcript of CgE3Rv1 was highest expressed in gonads and hemolymph (p < 0.05), and its mRNA expression level in hemocytes was significantly increased at 6 h (p < 0.01) after the stimulation of LPS, while the up-regulated mRNA expression was significantly decreased (p < 0.01) after acetylcholine stimulation. No significant changes of CgE3Rv1 expression were observed after peptidoglycan or mannan stimulation. Immunohistochemistry and in situ hybridization assays revealed that CgE3Rv1 protein and mRNA were dominantly distributed in the gonad. In the hemocytes, CgE3Rv1 was mainly located around the nucleus, and slightly distributed in the cytoplasm and on the cell membrane. Recombinant CgE3Rv1 RINGv domain protein (rCgE3Rv1-RINGv) was confirmed to activate the Ub reaction system in vitro with the aid of Ub-activating enzyme E1 and Ub-conjugating enzyme E2. These results demonstrated that CgE3Rv1 was an Ub-protein ligase E3, which was involved in the immune response against LPS and the interaction with cell surface signal

  14. AtCHIP, a U-Box-Containing E3 Ubiquitin Ligase, Plays a Critical Role in Temperature Stress Tolerance in Arabidopsis1

    PubMed Central

    Yan, Juqiang; Wang, Jing; Li, Qingtian; Hwang, Jae Ryoung; Patterson, Cam; Zhang, Hong

    2003-01-01

    The Arabidopsis gene AtCHIP encodes a protein with three tetratricopeptide repeats and a U-box domain, which is structurally similar to the animal CHIP proteins, a new class of E3 ubiquitin ligases. Like animal CHIP proteins, AtCHIP has E3 ubiquitin ligase activity in vitro. AtCHIP is a single-copy gene, and its transcript is up-regulated by several stress conditions such as low and high temperatures. However, increased AtCHIP expression alone was not correlated with increased stress tolerance; in fact, overexpression of AtCHIP in Arabidopsis rendered plants more sensitive to both low- and high-temperature treatments. Higher electrolyte leakage was observed in leaves of AtCHIP overexpression plants after chilling temperature treatment, suggesting that membrane function is likely impaired in these plants under such a condition. These results indicate that AtCHIP plays an important role in plant cellular metabolism under temperature stress conditions. PMID:12805616

  15. Structural Characterization of Modified Lignin in Transgenic Tobacco Plants in Which the Activity of 4-Coumarate:Coenzyme A Ligase Is Depressed.

    PubMed

    Kajita, S.; Hishiyama, S.; Tomimura, Y.; Katayama, Y.; Omori, S.

    1997-07-01

    Transgenic tobacco (Nicotiana tabacum L.) plants in which the activity of 4-coumarate:coenzyme A ligase is very low contain a novel lignin in their xylem. Details of changes in hydroxycinnamic acids bound to cell walls and in the structure of the novel lignin were identified by base hydrolysis, alkaline nitrobenzene oxidation, pyrolysis-gas chromatography, and 13C-nuclear magnetic resonance analysis. In the brownish tissue of the transgenic plants, the levels of three hydroxycinnamic acids, p-coumaric, ferulic, and sinapic, which were bound to cell walls, were apparently increased as a result of down-regulation of the expression of the gene for 4-coumarate:coenzyme A ligase. Some of these hydroxycinnamic acids were linked to cell walls via ester and ether linkages. The accumulation of hydroxycinnamic acids also induced an increase in the level of condensed units in the novel lignin of the brownish tissue. Our data indicate that the behavior of some of the incorporated hydroxycinnamic acids resembles lignin monomers in the brownish tissue, and their accumulation results in dramatic changes in the biosynthesis of lignin in transgenic plants. PMID:12223748

  16. The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation.

    PubMed

    Li, Ying; Zhang, Liang; Li, Dekuan; Liu, Zhibin; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a vital role in plant growth and development. The function of ABA is mediated by a group of newly discovered ABA receptors, named PYRABACTIN RESISTANCE 1/PYR-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORs (PYR1/PYLs/RCARs). Here, we report that an Arabidopsis thaliana F-box protein RCAR3 INTERACTING F-BOX PROTEIN 1 (RIFP1) interacts with ABA receptor (RCAR3) and SCF E3 ligase complex subunits Arabidopsis SKP1-LIKE PROTEINs (ASKs) in vitro and in vivo. The rifp1 mutant plants displayed increased ABA-mediated inhibition of seed germination and water loss of detached leaves, while the overexpression of RIFP1 in Arabidopsis led to plants being insensitive to ABA. Meanwhile, the rifp1 mutant plants showed greater tolerance to water deficit. In addition, the RCAR3 protein level was more stable in the rifp1 mutant plants than in the wild-type plants, indicating that RIFP1 facilitates the proteasome degradation of RCAR3. Accordingly, the loss of RIFP1 increased the transcript levels of several ABA-responsive genes. Taken together, these data indicate that RIFP1 plays a negative role in the RCAR3-mediated ABA signalling pathway and likely functions as an adaptor subunit of the SCF ubiquitin ligase complex to regulate ABA receptor RCAR3 stability. PMID:26386272

  17. Nuclear localization of glutamate-cysteine ligase is associated with proliferation in head and neck squamous cell carcinoma

    PubMed Central

    DEQUANTER, DIDIER; VAN DE VELDE, MAUREEN; BAR, ISABELLE; NUYENS, VINCENT; ROUSSEAU, ALEXANDRE; NAGY, NATHALIE; VANHAMME, LUC; VANHAEVERBEEK, MICHEL; BROHÉE, DANY; DELRÉE, PAUL; BOUDJELTIA, KARIM; LOTHAIRE, PHILIPPE; UZUREAU, PIERRICK

    2016-01-01

    Glutathione (GSH) is the keystone of the cellular response toward oxidative stress. Elevated GSH content correlates with increased resistance to chemotherapy and radiotherapy of head and neck (HN) tumors. The purpose of the present cross-sectional study was to evaluate whether the expression of glutamate-cysteine ligase (GCL) accounts for the increased GSH availability observed in HN squamous cell carcinoma (SCC). For that purpose, the messenger (m)RNA levels of the modifier (M) and catalytic (C) subunits of GCL and its putative regulators (namely, nuclear factor erythroid 2-related factor 2, heme oxygenase-1 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) were monitored in 35 surgical resections of untreated HNSCC. The localization of GCLM was evaluated using in situ hybridization and immunohistochemistry. GCLM expression was significantly increased in tumor samples, compared with normal mucosa, both at the mRNA and protein level (P=0.029), but the pathway of GCLM activation remains to be elucidated. Protein expression of GCLM was detected in the cytoplasm and nucleus. GCLM and the proliferation marker Ki-67 displayed a similar distribution, being both mainly expressed at the periphery of tumor lobules. The present study reported increased expression of GCL and the rate-limiting enzyme of GSH synthesis, within HNSCC. The nuclear localization of GCLM and the concomitant expression of Ki-67 suggested that the localization of GSH synthesis contributes to the protection against oxidative stress within hotspots of cell proliferation. PMID:27284370

  18. Identification of TRIM22 as a RING finger E3 ubiquitin ligase

    SciTech Connect

    Duan Zhijian; Gao Bo; Xu Wei; Xiong Sidong

    2008-09-26

    TRIM22, a member of the TRIM family proteins which contain RING finger, B-box, and coiled-coil domains, has been reported as a transcriptional regulator and involved in various cellular processes. In this study, the E3 ubiquitin ligase activity, a novel property of TRIM22, was demonstrated. It was found that TRIM22 underwent self-ubiquitylation in vitro in combination with the E2 enzyme UbcH5B and the ubiquitylation was dependent on its RING finger domain. Further evidences showed that TRIM22 could also be self-ubiquitylated in vivo. Importantly, TRIM22 was conjugated with poly-ubiquitin chains and stabilized by the proteasome inhibitor in 293T cells, suggesting that TRIM22 targeted itself for proteasomal degradation through the poly-ubiquitylation. We also found that TRIM22 was located in the nucleus, indicating that TRIM22 might function as a nuclear E3 ubiquitin ligase.

  19. Control of iron homeostasis by an iron-regulated ubiquitin ligase.

    PubMed

    Vashisht, Ajay A; Zumbrennen, Kimberly B; Huang, Xinhua; Powers, David N; Durazo, Armando; Sun, Dahui; Bhaskaran, Nimesh; Persson, Anja; Uhlen, Mathias; Sangfelt, Olle; Spruck, Charles; Leibold, Elizabeth A; Wohlschlegel, James A

    2009-10-30

    Eukaryotic cells require iron for survival and have developed regulatory mechanisms for maintaining appropriate intracellular iron concentrations. The degradation of iron regulatory protein 2 (IRP2) in iron-replete cells is a key event in this pathway, but the E3 ubiquitin ligase responsible for its proteolysis has remained elusive. We found that a SKP1-CUL1-FBXL5 ubiquitin ligase protein complex associates with and promotes the iron-dependent ubiquitination and degradation of IRP2. The F-box substrate adaptor protein FBXL5 was degraded upon iron and oxygen depletion in a process that required an iron-binding hemerythrin-like domain in its N terminus. Thus, iron homeostasis is regulated by a proteolytic pathway that couples IRP2 degradation to intracellular iron levels through the stability and activity of FBXL5. PMID:19762596

  20. Ozz-E3 ubiquitin ligase targets sarcomeric embryonic myosin heavy chain during muscle development.

    PubMed

    Campos, Yvan; Qiu, Xiaohui; Zanoteli, Edmar; Moshiach, Simon; Vergani, Naja; Bongiovanni, Antonella; Harris, A John; d'Azzo, Alessandra

    2010-01-01

    Muscle contractile proteins are expressed as a series of developmental isoforms that are in constant dynamic remodeling during embryogenesis, but how obsolete molecules are recognized and removed is not known. Ozz is a developmentally regulated protein that functions as the adaptor component of a RING-type ubiquitin ligase complex specific to striated muscle. Ozz(-/-) mutants exhibit defects in myofibrillogenesis and myofiber differentiation. Here we show that Ozz targets the rod portion of embryonic myosin heavy chain and preferentially recognizes the sarcomeric rather than the soluble pool of myosin. We present evidence that Ozz binding to the embryonic myosin isoform within sarcomeric thick filaments marks it for ubiquitination and proteolytic degradation, allowing its replacement with neonatal or adult isoforms. This unique function positions Ozz within a system that facilitates sarcomeric myosin remodeling during muscle maturation and regeneration. Our findings identify Ozz-E3 as the ubiquitin ligase complex that interacts with and regulates myosin within its fully assembled cytoskeletal structure. PMID:20352047

  1. An improved smaller biotin ligase for BioID proximity labeling

    PubMed Central

    Kim, Dae In; Jensen, Samuel C.; Noble, Kyle A.; KC, Birendra; Roux, Kenneth H.; Motamedchaboki, Khatereh; Roux, Kyle J.

    2016-01-01

    The BioID method uses a promiscuous biotin ligase to detect protein–protein associations as well as proximate proteins in living cells. Here we report improvements to the BioID method centered on BioID2, a substantially smaller promiscuous biotin ligase. BioID2 enables more-selective targeting of fusion proteins, requires less biotin supplementation, and exhibits enhanced labeling of proximate proteins. Thus BioID2 improves the efficiency of screening for protein–protein associations. We also demonstrate that the biotinylation range of BioID2 can be considerably modulated using flexible linkers, thus enabling application-specific adjustment of the biotin-labeling radius. PMID:26912792

  2. Structurally complex and highly active RNA ligases derived from random RNA sequences

    NASA Technical Reports Server (NTRS)

    Ekland, E. H.; Szostak, J. W.; Bartel, D. P.

    1995-01-01

    Seven families of RNA ligases, previously isolated from random RNA sequences, fall into three classes on the basis of secondary structure and regiospecificity of ligation. Two of the three classes of ribozymes have been engineered to act as true enzymes, catalyzing the multiple-turnover transformation of substrates into products. The most complex of these ribozymes has a minimal catalytic domain of 93 nucleotides. An optimized version of this ribozyme has a kcat exceeding one per second, a value far greater than that of most natural RNA catalysts and approaching that of comparable protein enzymes. The fact that such a large and complex ligase emerged from a very limited sampling of sequence space implies the existence of a large number of distinct RNA structures of equivalent complexity and activity.

  3. IAPs as E3 ligases of Rac1: shaping the move.

    PubMed

    Oberoi-Khanuja, Tripat Kaur; Rajalingam, Krishnaraj

    2012-01-01

    Inhibitors of Apoptosis Proteins (IAPs) are well-studied E3 ubiquitin ligases predominantly known for regulation of apoptosis. We uncovered that IAPs can function as a direct E3 ubiquitin ligase of RhoGTPase Rac1. cIAP1 and XIAP directly conjugate polyubiquitin chains to Lysine 147 of activated Rac1 and target it for proteasomal degradation. Consistently, loss of these IAPs by various strategies led to stabilization of Rac1 and mesenchymal mode of migration in tumor cells. IAPs also regulate Rac1 degradation upon RhoGDI1 depletion and CNF1 toxin treatment. Our observations revealed an evolutionarily conserved role of IAPs in regulating Rac1 stability shedding light on to the mechanisms behind ubiquitination-dependent inactivation of Rac1 signaling. PMID:22790203

  4. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus

    PubMed Central

    Pendini, Nicole R.; Polyak, Steve W.; Booker, Grant W.; Wallace, John C.; Wilce, Matthew C. J.

    2008-01-01

    Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 Å resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P42212, with unit-cell parameters a = b = 93.665, c = 131.95. PMID:18540065

  5. Neuromuscular regulation in zebrafish by a large AAA+ ATPase/ubiquitin ligase, mysterin/RNF213

    PubMed Central

    Kotani, Yuri; Morito, Daisuke; Yamazaki, Satoru; Ogino, Kazutoyo; Kawakami, Koichi; Takashima, Seiji; Hirata, Hiromi; Nagata, Kazuhiro

    2015-01-01

    Mysterin (also known as RNF213) is a huge intracellular protein with two AAA+ ATPase modules and a RING finger ubiquitin ligase domain. Mysterin was originally isolated as a significant risk factor for the cryptogenic cerebrovascular disorder moyamoya disease, and was found to be involved in physiological angiogenesis in zebrafish. However, the function and the physiological significance of mysterin in other than blood vessels remain largely unknown, although mysterin is ubiquitously expressed in animal tissues. In this study, we performed antisense-mediated suppression of a mysterin orthologue in zebrafish larvae and revealed that mysterin-deficient larvae showed significant reduction in fast myofibrils and immature projection of primary motoneurons, leading to severe motor deficits. Fast muscle-specific restoration of mysterin expression cancelled these phenotypes, and interestingly both AAA+ ATPase and ubiquitin ligase activities of mysterin were indispensable for proper fast muscle formation, demonstrating an essential role of mysterin and its enzymatic activities in the neuromuscular regulation in zebrafish. PMID:26530008

  6. CHIP: a quality-control E3 ligase collaborating with molecular chaperones.

    PubMed

    Murata, Shigeo; Chiba, Tomoki; Tanaka, Keiji

    2003-05-01

    It is notable that both the chaperone and ubiquitin-proteasome systems are required for removal of aberrant cellular proteins to ensure protein homeostasis in cells. However, the entity that links the two systems had remained elusive. Carboxyl-terminus of Hsc70 interacting protein (CHIP), originally identified as a co-chaperone of Hsc70, has both a tetratricopeptide repeat (TPR) motif and a U-box domain. The TPR motif associates with Hsc70 and Hsp90, while the U-box domain executes a ubiquitin ligase activity. Thus, CHIP is an ideal molecule acting as a protein quality-control ubiquitin ligase that selectively leads abnormal proteins recognized by molecular chaperones to degradation by the proteasome. Accumulating evidence from in vitro studies indicates that this is apparently the case. Here, we present and discuss several unresolved but critical issues related to the molecular mechanism and in vivo roles of CHIP. PMID:12672450

  7. “Ubiquitylation: mechanism and functions“ Review series: RBR E3-ligases at work

    PubMed Central

    Smit, Judith J; Sixma, Titia K

    2014-01-01

    The RING-in-between-RING (RBR) E3s are a curious family of ubiquitin E3-ligases, whose mechanism of action is unusual in several ways. Their activities are auto-inhibited, causing a requirement for activation by protein-protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT-like mechanism in which the RING1 domain facilitates E2-discharge to directly form a thioester intermediate with a cysteine in RING2. This short-lived, HECT-like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino-terminus, by presenting the target ubiquitin for modification using its distinctive LDD region. PMID:24469331

  8. 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris: purification, gene sequence, and role in anaerobic degradation.

    PubMed Central

    Gibson, J; Dispensa, M; Fogg, G C; Evans, D T; Harwood, C S

    1994-01-01

    Anaerobic metabolism of most aromatic acids is initiated by coenzyme A thioester formation. Rhodopseudomonas palustris grows well under anaerobic, phototrophic conditions with many aromatic acids, including benzoate and 4-hydroxybenzoate, as a carbon source. A coenzyme A ligase that reacts with 4-hydroxybenzoate was purified from 4-hydroxybenzoate-grown cells of R. palustris. This enzyme required MgATP, reduced coenzyme A, and 4-hydroxybenzoate, benzoate, or cyclohex-1,4-dienecarboxylate for optimal activity but also used phosphopantetheine, cyclohex-2,5-dienecarboxylate, and 4-fluorobenzoate at lower rates. The 4-hydroxybenzoate-coenzyme A ligase differed in molecular characteristics from a previously described benzoate-coenzyme A ligase from R. palustris, and the two ligases did not cross-react immunologically. The gene encoding the 4-hydroxybenzoate enzyme was cloned and sequenced. The deduced gene product showed about 20% amino acid identity with bacterial coenzyme A ligases involved in aerobic degradation of aromatic acids. An R. palustris mutant carrying a disrupted 4-hydroxybenzoate-coenzyme A ligase gene was unable to grow with 4-hydroxybenzoate under anaerobic conditions, indicating that the enzyme is essential for anaerobic degradation of this compound. Images PMID:8300518

  9. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians.

    PubMed

    Henderson, Jordana M; Nisperos, Sean V; Weeks, Joi; Ghulam, Mahjoobah; Marín, Ignacio; Zayas, Ricardo M

    2015-08-15

    E3 ubiquitin ligases constitute a large family of enzymes that modify specific proteins by covalently attaching ubiquitin polypeptides. This post-translational modification can serve to regulate protein function or longevity. In spite of their importance in cell physiology, the biological roles of most ubiquitin ligases remain poorly understood. Here, we analyzed the function of the HECT domain family of E3 ubiquitin ligases in stem cell biology and tissue regeneration in planarians. Using bioinformatic searches, we identified 17 HECT E3 genes that are expressed in the Schmidtea mediterranea genome. Whole-mount in situ hybridization experiments showed that HECT genes were expressed in diverse tissues and most were expressed in the stem cell population (neoblasts) or in their progeny. To investigate the function of all HECT E3 ligases, we inhibited their expression using RNA interference (RNAi) and determined that orthologs of huwe1, wwp1, and trip12 had roles in tissue regeneration. We show that huwe1 RNAi knockdown led to a significant expansion of the neoblast population and death by lysis. Further, our experiments showed that wwp1 was necessary for both neoblast and intestinal tissue homeostasis as well as uncovered an unexpected role of trip12 in posterior tissue specification. Taken together, our data provide insights into the roles of HECT E3 ligases in tissue regeneration and demonstrate that planarians will be a useful model to evaluate the functions of E3 ubiquitin ligases in stem cell regulation. PMID:25956527

  10. Structure And Function of the Yeast U-Box-Containing Ubiquitin Ligase Ufd2p

    SciTech Connect

    Tu, D.; Li, W.; Ye, Y.; Brunger, A.T.

    2009-06-04

    Proteins conjugated by Lys-48-linked polyubiquitin chains are preferred substrates of the eukaryotic proteasome. Polyubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). Occasionally, these enzymes only assemble short ubiquitin oligomers, and their extension to full length involves a ubiquitin elongating factor termed E4. Ufd2p, as the first E4 identified to date, is involved in the degradation of misfolded proteins of the endoplasmic reticulum and of a ubiquitin-{beta}-GAL fusion substrate in Saccharomyces cerevisiae. The mechanism of action of Ufd2p is unknown. Here we describe the crystal structure of the full-length yeast Ufd2p protein. Ufd2p has an elongated shape consisting of several irregular Armadillo-like repeats with two helical hairpins protruding from it and a U-box domain flexibly attached to its C terminus. The U-box of Ufd2p has a fold similar to that of the RING (Really Interesting New Gene) domain that is present in certain ubiquitin ligases. Accordingly, Ufd2p has all of the hallmarks of a RING finger-containing ubiquitin ligase: it associates with its cognate E2 Ubc4p via its U-box domain and catalyzes the transfer of ubiquitin from the E2 active site to Ufd2p itself or to an acceptor ubiquitin molecule to form unanchored diubiquitin oligomers. Thus, Ufd2p can function as a bona fide E3 ubiquitin ligase to promote ubiquitin chain elongation on a substrate.

  11. Cell cycle-dependent localization and properties of a second mitochondrial DNA ligase in Crithidia fasciculata.

    PubMed

    Sinha, Krishna Murari; Hines, Jane C; Ray, Dan S

    2006-01-01

    The mitochondrial DNA in kinetoplastid protozoa is contained in a single highly condensed structure consisting of thousands of minicircles and approximately 25 maxicircles. The disk-shaped structure is termed kinetoplast DNA (kDNA) and is located in the mitochondrial matrix near the basal body. We have previously identified a mitochondrial DNA ligase (LIG kbeta) in the trypanosomatid Crithidia fasciculata that localizes to antipodal sites flanking the kDNA disk where several other replication proteins are localized. We describe here a second mitochondrial DNA ligase (LIG kalpha). LIG kalpha localizes to the kinetoplast primarily in cells that have completed mitosis and contain either a dividing kinetoplast or two newly divided kinetoplasts. Essentially all dividing or newly divided kinetoplasts show localization of LIG kalpha. The ligase is present on both faces of the kDNA disk and at a high level in the kinetoflagellar zone of the mitochondrial matrix. Cells containing a single nucleus show localization of the LIG kalpha to the kDNA but at a much lower frequency. The mRNA level of LIG kalpha varies during the cell cycle out of phase with that of LIG kbeta. LIG kalpha transcript levels are maximal during the phase when cells contain two nuclei, whereas LIG kbeta transcript levels are maximal during S phase. The LIG kalpha protein decays with a half-life of 100 min in the absence of protein synthesis. The periodic expression of the LIG kalpha transcript and the instability of the LIG kalpha protein suggest a possible role of the ligase in regulating minicircle replication. PMID:16400168

  12. Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins

    PubMed Central

    Ju Shin, Yeong; Kyun Park, Seung; Jung Jung, Yoo; Na Kim, Ye; Sung Kim, Ki; Kyu Park, Ok; Kwon, Seung-Hae; Ho Jeon, Sung; Trinh, Le A.; Fraser, Scott E.; Kee, Yun; Joon Hwang, Byung

    2015-01-01

    Targeted protein degradation is a powerful tool in determining the function of specific proteins or protein complexes. We fused nanobodies to SPOP, an adaptor protein of the Cullin-RING E3 ubiquitin ligase complex, resulting in rapid ubiquitination and subsequent proteasome-dependent degradation of specific nuclear proteins in mammalian cells and zebrafish embryos. This approach is easily modifiable, as substrate specificity is conferred by an antibody domain that can be adapted to target virtually any protein. PMID:26373678

  13. Homology modeling, molecular docking and electrostatic potential analysis of MurF ligase from Klebsiella pneumonia.

    PubMed

    Sivaramakrishnan, Venkatabalasubramanian; Thiyagarajan, Chinnaiyan; Kalaivanan, Sivakumaran; Selvakumar, Raj; Anusuyadevi, Muthuswamy; Jayachandran, Kesavan Swaminathan

    2012-01-01

    In spite of availability of moderately protective vaccine and antibiotics, new antibacterial agents are urgently needed to decrease the global incidence of Klebsiella pneumonia infections. MurF ligase, a key enzyme, which participates in the bacterial cell wall assembly, is indispensable to existence of K. pneumonia. MurF ligase lack mammalian vis-à-vis and have high specificity, uniqueness, and occurrence only in eubacteria, epitomizing them as promising therapeutic targets for intervention. In this study, we present a unified approach involving homology modeling and molecular docking studies on MurF ligase enzyme. As part of this study, a homology model of K. pneumonia (MurF ligase) enzyme was predicted for the first time in order to carry out structurebased drug design. The accuracy of the model was further validated using different computational approaches. The comparative molecular docking study on this enzyme was undertaken using different phyto-ligands from Desmodium sp. and a known antibiotic Ciprofloxacin. The docking analysis indicated the importance of hotspots (HIS 281 and ASN 282) within the MurF binding pocket. The Lipinski's rule of five was analyzed for all ligands considered for this study by calculating the ADME/Tox, drug likeliness using Qikprop simulation. Only ten ligands were found to comply with the Lipinski rule of five. Based on the molecular docking results and Lipinki values 6-Methyltetrapterol A was confirmed as a promising lead compound. The present study should therefore play a guiding role in the experimental design and development of 6-Methyltetrapterol A as a bactericidal agent. PMID:22715301

  14. Discovery of bacterial NAD⁺-dependent DNA ligase inhibitors: improvements in clearance of adenosine series.

    PubMed

    Stokes, Suzanne S; Gowravaram, Madhusudhan; Huynh, Hoan; Lu, Min; Mullen, George B; Chen, Brendan; Albert, Robert; O'Shea, Thomas J; Rooney, Michael T; Hu, Haiqing; Newman, Joseph V; Mills, Scott D

    2012-01-01

    Optimization of clearance of adenosine inhibitors of bacterial NAD(+)-dependent DNA ligase is discussed. To reduce Cytochrome P-450-mediated metabolic clearance, many strategies were explored; however, most modifications resulted in compounds with reduced antibacterial activity and/or unchanged total clearance. The alkyl side chains of the 2-cycloalkoxyadenosines were fluorinated, and compounds with moderate antibacterial activity and favorable pharmacokinetic properties in rat and dog were identified. PMID:22154350

  15. Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.

  16. Homology modeling, molecular docking and electrostatic potential analysis of MurF ligase from Klebsiella pneumonia

    PubMed Central

    Sivaramakrishnan, Venkatabalasubramanian; Thiyagarajan, Chinnaiyan; Kalaivanan, Sivakumaran; Selvakumar, Raj; Anusuyadevi, Muthuswamy; Jayachandran, Kesavan Swaminathan

    2012-01-01

    In spite of availability of moderately protective vaccine and antibiotics, new antibacterial agents are urgently needed to decrease the global incidence of Klebsiella pneumonia infections. MurF ligase, a key enzyme, which participates in the bacterial cell wall assembly, is indispensable to existence of K. pneumonia. MurF ligase lack mammalian vis-à-vis and have high specificity, uniqueness, and occurrence only in eubacteria, epitomizing them as promising therapeutic targets for intervention. In this study, we present a unified approach involving homology modeling and molecular docking studies on MurF ligase enzyme. As part of this study, a homology model of K. pneumonia (MurF ligase) enzyme was predicted for the first time in order to carry out structurebased drug design. The accuracy of the model was further validated using different computational approaches. The comparative molecular docking study on this enzyme was undertaken using different phyto-ligands from Desmodium sp. and a known antibiotic Ciprofloxacin. The docking analysis indicated the importance of hotspots (HIS 281 and ASN 282) within the MurF binding pocket. The Lipinski's rule of five was analyzed for all ligands considered for this study by calculating the ADME/Tox, drug likeliness using Qikprop simulation. Only ten ligands were found to comply with the Lipinski rule of five. Based on the molecular docking results and Lipinki values 6-Methyltetrapterol A was confirmed as a promising lead compound. The present study should therefore play a guiding role in the experimental design and development of 6-Methyltetrapterol A as a bactericidal agent. PMID:22715301

  17. Synthesis and reactivity of intermediates formed in the T4 RNA ligase reaction.

    PubMed Central

    Hoffmann, P U; McLaughlin, L W

    1987-01-01

    The intermediate adenylated donor derivatives A(5')pp(5')dTp and A(5')pp(5')GpGpGp have been prepared from suitable phosphorylating reagents activated by 1-hydroxybenzotriazole. Phosphodiester bond formation between donor and acceptor oligonucleotides as catalyzed by T4 RNA ligase is shown to be more efficient when the adenylated form of the donor molecule is used. PMID:3299268

  18. Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity.

    PubMed

    Koliopoulos, Marios G; Esposito, Diego; Christodoulou, Evangelos; Taylor, Ian A; Rittinger, Katrin

    2016-06-01

    TRIM E3 ubiquitin ligases regulate a wide variety of cellular processes and are particularly important during innate immune signalling events. They are characterized by a conserved tripartite motif in their N-terminal portion which comprises a canonical RING domain, one or two B-box domains and a coiled-coil region that mediates ligase dimerization. Self-association via the coiled-coil has been suggested to be crucial for catalytic activity of TRIMs; however, the precise molecular mechanism underlying this observation remains elusive. Here, we provide a detailed characterization of the TRIM ligases TRIM25 and TRIM32 and show how their oligomeric state is linked to catalytic activity. The crystal structure of a complex between the TRIM25 RING domain and an ubiquitin-loaded E2 identifies the structural and mechanistic features that promote a closed E2~Ub conformation to activate the thioester for ubiquitin transfer allowing us to propose a model for the regulation of activity in the full-length protein. Our data reveal an unexpected diversity in the self-association mechanism of TRIMs that might be crucial for their biological function. PMID:27154206

  19. The E3 ubiquitin ligase TRIM32 regulates myoblast proliferation by controlling turnover of NDRG2.

    PubMed

    Mokhonova, Ekaterina I; Avliyakulov, Nuraly K; Kramerova, Irina; Kudryashova, Elena; Haykinson, Michael J; Spencer, Melissa J

    2015-05-15

    Limb girdle muscular dystrophy 2H is caused by mutations in the gene encoding the E3 ubiquitin ligase, TRIM32. Previously, we generated and characterized a Trim32 knockout mouse (T32KO) that displays both neurogenic and myopathic features. The myopathy in these mice is attributable to impaired muscle growth, associated with satellite cell senescence and premature sarcopenia. This satellite cell senescence is due to accumulation of the SUMO ligase PIASy, a substrate of TRIM32. The goal of this investigation was to identify additional substrates of TRIM32 using 2D fluorescence difference gel electrophoresis (2D-DIGE) in order to further explore its role in skeletal muscle. Because TRIM32 is an E3 ubiquitin ligase, we reasoned that TRIM32's substrates would accumulate in its absence. 2D-DIGE identified 19 proteins that accumulate in muscles from the T32KO mouse. We focused on two of these proteins, NDRG2 and TRIM72, due to their putative roles in myoblast proliferation and myogenesis. Follow-up analysis confirmed that both proteins were ubiquitinated by TRIM32 in vitro; however, only NDRG2 accumulated in skeletal muscle and myoblasts in the absence of TRIM32. NDRG2 overexpression in myoblasts led to reduced cell proliferation and delayed cell cycle withdrawal during differentiation. Thus, we identified NDRG2 as a novel target for TRIM32; these findings further corroborate the hypothesis that TRIM32 is involved in control of myogenic cells proliferation and differentiation. PMID:25701873

  20. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase

    PubMed Central

    Cappadocia, Laurent; Pichler, Andrea; Lima, Christopher D.

    2015-01-01

    E3 protein ligases enhance transfer of ubiquitin-like (Ubl) proteins from E2 conjugating enzymes to substrates by stabilizing the thioester-charged E2~Ubl in a closed configuration optimally aligned for nucleophilic attack. Here, we report biochemical and structural data that define the N-terminal domain of the Homo sapiens ZNF451 as the catalytic module for SUMO E3 ligase activity. ZNF451 catalytic module contains tandem SUMO interaction motifs (SIMs) bridged by a Proline-Leucine-Arginine-Proline (PLRP) motif. The first SIM and PLRP motif engage thioester charged E2~SUMO while the next SIM binds a second molecule of SUMO bound to the backside of E2. We show that ZNF451 is SUMO2 specific and that SUMO-modification of ZNF451 may contribute to activity by providing a second molecule of SUMO that interacts with E2. Our results are consistent with ZNF451 functioning as a bona fide SUMO E3 ligase. PMID:26524494

  1. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    PubMed Central

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke; Mortuza, Gulnahar B.; Räschle, Markus; Ibañez de Opakua, Alain; Oka, Yasuyoshi; Feng, Yunpeng; Blanco, Francisco J.; Mann, Matthias; Montoya, Guillermo; Groth, Anja; Bekker-Jensen, Simon

    2016-01-01

    Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks, allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication. PMID:26711499

  2. UBXN2A regulates nicotinic receptor degradation by modulating the E3 ligase activity of CHIP.

    PubMed

    Teng, Yanfen; Rezvani, Khosrow; De Biasi, Mariella

    2015-10-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) containing the α3 subunit are known for their prominent role in normal ganglionic transmission while their involvement in the mechanisms underlying nicotine addiction and smoking-related disease has been emerging only in recent years. The amount of information available on the maturation and trafficking of α3-containing nAChRs is limited. We previously showed that UBXN2A is a p97 adaptor protein that facilitates the maturation and trafficking of α3-containing nAChRs. Further investigation of the mechanisms of UBXN2A actions revealed that the protein interacts with CHIP (carboxyl terminus of Hsc70 interacting protein), whose ubiquitin E3 ligase activity regulates the degradation of several disease-related proteins. We show that CHIP displays E3 ligase activity toward the α3 nAChR subunit and contributes to its ubiquitination and subsequent degradation. UBXN2A interferes with CHIP-mediated ubiquitination of α3 and protects the nicotinic receptor subunit from endoplasmic reticulum associated degradation (ERAD). UBXN2A also cross-talks with VCP/p97 and HSC70/HSP70 proteins in a complex where α3 is likely to be targeted by CHIP. Overall,we identify CHIP as an E3 ligase for α3 and UBXN2A as a protein that may efficiently regulate the stability of CHIP's client substrates. PMID:26265139

  3. The E3 ubiquitin ligase RNF8 stabilizes TPP1 to promote telomere end protection

    PubMed Central

    Rai, Rekha; Li, Ju-Mei; Zheng, Hong; Lok, Gabriel Tsz-Mei; Deng, Yu; Huen, Michael; Chen, Junjie; Jin, Jianping; Chang, Sandy

    2013-01-01

    TPP1, a component of the mammalian shelterin complex, plays essential roles in telomere maintenance. It forms a heterodimer with POT1 to repress ATR-dependent DNA damage signaling at telomeres, and recruits telomerase to chromosome ends. Here we show that the E3 ubiquitin ligase RNF8 localizes to and promotes the accumulation of DNA damage proteins 53BP1 and γ-H2AX to uncapped telomeres. TPP1 is unstable in the absence of RNF8, resulting in telomere shortening and chromosome fusions via the alternative non-homologous end joining (A-NHEJ)-mediated DNA repair pathway. The RNF8 ubiquitin ligase RING domain is essential for TPP1 stability and retention at telomeres. RNF8 physically interacts with TPP1 to generate Ubc13-dependent K63 polyubiquitin chains that stabilizes TPP1 at telomeres. The conserved TPP1 lysine residue 233 is essential for RNF8-mediated TPP1 ubiquitylation and localization to telomeres. Our results demonstrate that TPP1 is a novel substrate for RNF8, and suggest a previously unrecognized role for RNF8 in telomere end protection. We propose a model in which engagement of classical vs. A-NHEJ repair pathways at dysfunctional telomeres is controlled by the ubiquitin ligase functions of RNF8. PMID:22101936

  4. The E3 ubiquitin ligase GREUL1 anteriorizes ectoderm during Xenopus development.

    PubMed

    Borchers, Annette G M; Hufton, Andrew L; Eldridge, Adam G; Jackson, Peter K; Harland, Richard M; Baker, Julie C

    2002-11-15

    We have identified a family of RING finger proteins that are orthologous to Drosophila Goliath (G1, Gol). One of the members, GREUL1 (Goliath Related E3 Ubiquitin Ligase 1), can convert Xenopus ectoderm into XAG-1- and Otx2-expressing cells in the absence of both neural tissue and muscle. This activity, combined with the finding that XGREUL1 is expressed within the cement gland, suggests a role for GREUL1 in the generation of anterior ectoderm. Although GREUL1 is not a direct inducer of neural tissue, it can activate the formation of ectopic neural cells within the epidermis of intact embryos. This suggests that GREUL1 can sensitize ectoderm to neuralizing signals. In this paper, we provide evidence that GREUL1 is an E3 ubiquitin ligase. Using a biochemical assay, we show that GREUL1 catalyzes the addition of polyubiquitin chains. These events are mediated by the RING domain since a mutation in two of the cysteines abolishes ligase activity. Mutation of these cysteines also compromises GREUL1's ability to induce cement gland. Thus, GREUL1's RING domain is necessary for both the ubiquitination of substrates and for the conversion of ectoderm to an anterior fate. PMID:12435366

  5. Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction.

    PubMed

    Wang, Xiaolong; Bao, Zhenmin; Hu, Jingjie; Wang, Shi; Zhan, Aibin

    2008-01-01

    A new DNA computing algorithm based on a ligase chain reaction is demonstrated to solve an SAT problem. The proposed DNA algorithm can solve an n-variable m-clause SAT problem in m steps and the computation time required is O (3m+n). Instead of generating the full-solution DNA library, we start with an empty test tube and then generate solutions that partially satisfy the SAT formula. These partial solutions are then extended step by step by the ligation of new variables using Taq DNA ligase. Correct strands are amplified and false strands are pruned by a ligase chain reaction (LCR) as soon as they fail to satisfy the conditions. If we score and sort the clauses, we can use this algorithm to markedly reduce the number of DNA strands required throughout the computing process. In a computer simulation, the maximum number of DNA strands required was 2(0.48n) when n=50, and the exponent ratio varied inversely with the number of variables n and the clause/variable ratio m/n. This algorithm is highly space-efficient and error-tolerant compared to conventional brute-force searching, and thus can be scaled-up to solve large and hard SAT problems. PMID:17904730

  6. Mechanistic Details of Glutathione Biosynthesis Revealed by Crystal Structures of Saccharomyces cerevisiae Glutamate Cysteine Ligase

    SciTech Connect

    Biterova, Ekaterina I.; Barycki, Joseph J.

    2009-12-01

    Glutathione is a thiol-disulfide exchange peptide critical for buffering oxidative or chemical stress, and an essential cofactor in several biosynthesis and detoxification pathways. The rate-limiting step in its de novo biosynthesis is catalyzed by glutamate cysteine ligase, a broadly expressed enzyme for which limited structural information is available in higher eukaryotic species. Structural data are critical to the understanding of clinical glutathione deficiency, as well as rational design of enzyme modulators that could impact human disease progression. Here, we have determined the structures of Saccharomyces cerevisiae glutamate cysteine ligase (ScGCL) in the presence of glutamate and MgCl{sub 2} (2.1 {angstrom}; R = 18.2%, R{sub free} = 21.9%), and in complex with glutamate, MgCl{sub 2}, and ADP (2.7 {angstrom}; R = 19.0%, R{sub free} = 24.2%). Inspection of these structures reveals an unusual binding pocket for the {alpha}-carboxylate of the glutamate substrate and an ATP-independent Mg{sup 2+} coordination site, clarifying the Mg{sup 2+} dependence of the enzymatic reaction. The ScGCL structures were further used to generate a credible homology model of the catalytic subunit of human glutamate cysteine ligase (hGCLC). Examination of the hGCLC model suggests that post-translational modifications of cysteine residues may be involved in the regulation of enzymatic activity, and elucidates the molecular basis of glutathione deficiency associated with patient hGCLC mutations.

  7. The E3 ubiquitin ligase TRIM32 regulates myoblast proliferation by controlling turnover of NDRG2

    PubMed Central

    Mokhonova, Ekaterina I.; Avliyakulov, Nuraly K.; Kramerova, Irina; Kudryashova, Elena; Haykinson, Michael J.; Spencer, Melissa J.

    2015-01-01

    Limb girdle muscular dystrophy 2H is caused by mutations in the gene encoding the E3 ubiquitin ligase, TRIM32. Previously, we generated and characterized a Trim32 knockout mouse (T32KO) that displays both neurogenic and myopathic features. The myopathy in these mice is attributable to impaired muscle growth, associated with satellite cell senescence and premature sarcopenia. This satellite cell senescence is due to accumulation of the SUMO ligase PIASy, a substrate of TRIM32. The goal of this investigation was to identify additional substrates of TRIM32 using 2D fluorescence difference gel electrophoresis (2D-DIGE) in order to further explore its role in skeletal muscle. Because TRIM32 is an E3 ubiquitin ligase, we reasoned that TRIM32's substrates would accumulate in its absence. 2D-DIGE identified 19 proteins that accumulate in muscles from the T32KO mouse. We focused on two of these proteins, NDRG2 and TRIM72, due to their putative roles in myoblast proliferation and myogenesis. Follow-up analysis confirmed that both proteins were ubiquitinated by TRIM32 in vitro; however, only NDRG2 accumulated in skeletal muscle and myoblasts in the absence of TRIM32. NDRG2 overexpression in myoblasts led to reduced cell proliferation and delayed cell cycle withdrawal during differentiation. Thus, we identified NDRG2 as a novel target for TRIM32; these findings further corroborate the hypothesis that TRIM32 is involved in control of myogenic cells proliferation and differentiation. PMID:25701873

  8. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity

    PubMed Central

    Kane, Lesley A.; Lazarou, Michael; Fogel, Adam I.; Li, Yan; Yamano, Koji; Sarraf, Shireen A.; Banerjee, Soojay

    2014-01-01

    PINK1 kinase activates the E3 ubiquitin ligase Parkin to induce selective autophagy of damaged mitochondria. However, it has been unclear how PINK1 activates and recruits Parkin to mitochondria. Although PINK1 phosphorylates Parkin, other PINK1 substrates appear to activate Parkin, as the mutation of all serine and threonine residues conserved between Drosophila and human, including Parkin S65, did not wholly impair Parkin translocation to mitochondria. Using mass spectrometry, we discovered that endogenous PINK1 phosphorylated ubiquitin at serine 65, homologous to the site phosphorylated by PINK1 in Parkin’s ubiquitin-like domain. Recombinant TcPINK1 directly phosphorylated ubiquitin and phospho-ubiquitin activated Parkin E3 ubiquitin ligase activity in cell-free assays. In cells, the phosphomimetic ubiquitin mutant S65D bound and activated Parkin. Furthermore, expression of ubiquitin S65A, a mutant that cannot be phosphorylated by PINK1, inhibited Parkin translocation to damaged mitochondria. These results explain a feed-forward mechanism of PINK1-mediated initiation of Parkin E3 ligase activity. PMID:24751536

  9. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity.

    PubMed

    Kane, Lesley A; Lazarou, Michael; Fogel, Adam I; Li, Yan; Yamano, Koji; Sarraf, Shireen A; Banerjee, Soojay; Youle, Richard J

    2014-04-28

    PINK1 kinase activates the E3 ubiquitin ligase Parkin to induce selective autophagy of damaged mitochondria. However, it has been unclear how PINK1 activates and recruits Parkin to mitochondria. Although PINK1 phosphorylates Parkin, other PINK1 substrates appear to activate Parkin, as the mutation of all serine and threonine residues conserved between Drosophila and human, including Parkin S65, did not wholly impair Parkin translocation to mitochondria. Using mass spectrometry, we discovered that endogenous PINK1 phosphorylated ubiquitin at serine 65, homologous to the site phosphorylated by PINK1 in Parkin's ubiquitin-like domain. Recombinant TcPINK1 directly phosphorylated ubiquitin and phospho-ubiquitin activated Parkin E3 ubiquitin ligase activity in cell-free assays. In cells, the phosphomimetic ubiquitin mutant S65D bound and activated Parkin. Furthermore, expression of ubiquitin S65A, a mutant that cannot be phosphorylated by PINK1, inhibited Parkin translocation to damaged mitochondria. These results explain a feed-forward mechanism of PINK1-mediated initiation of Parkin E3 ligase activity. PMID:24751536

  10. Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process.

    PubMed

    Leykauf, Kerstin; Salek, Mojibrahman; Bomke, Jörg; Frech, Matthias; Lehmann, Wolf-Dieter; Dürst, Matthias; Alonso, Angel

    2006-09-01

    Connexin43 is degraded by the proteasomal as well as the lysosomal pathway with ubiquitin playing a role in both degradation pathways. So far, no ubiquitin protein ligase has been identified for any of the connexins. By using pull-down assays, here we show binding of a ubiquitin protein ligase, Nedd4, to the C-terminus of connexin43. This observation was confirmed in vivo by coimmunoprecipitation and immunofluorescence, showing colocalization of Nedd4 and connexin43. Binding of Nedd4 to its interaction partners is generally carried out by its WW domains. Our results indicate that the interaction with connexin43 occurs through all three WW domains of Nedd4. Furthermore, whereas WW1 and WW2 domains mainly interact with the unphosphorylated form of connexin43, WW3 binds phosphorylated and unphosphorylated forms equally. In addition, using the surface plasmon resonance approach we show that only the WW2 domain binds to the PY motif located at the C-terminus of connexin43. Suppression of Nedd4 expression with siRNA resulted in an accumulation of gap junction plaques at the plasma membrane, suggesting an involvement of the ubiquitin protein ligase Nedd4 in gap junction internalization. PMID:16931598

  11. Disinhibition of the HECT E3 ubiquitin ligase WWP2 by polymerized Dishevelled

    PubMed Central

    Mund, Thomas; Graeb, Michael; Mieszczanek, Juliusz; Gammons, Melissa; Pelham, Hugh R. B.; Bienz, Mariann

    2015-01-01

    Dishevelled is a pivot in Wnt signal transduction, controlling both β-catenin-dependent transcription to specify proliferative cell fates, and cell polarity and other non-nuclear events in post-mitotic cells. In response to Wnt signals, or when present at high levels, Dishevelled forms signalosomes by dynamic polymerization. Its levels are controlled by ubiquitylation, mediated by various ubiquitin ligases, including NEDD4 family members that bind to a conserved PPxY motif in Dishevelled (mammalian Dvl1–3). Here, we show that Dvl2 binds to the ubiquitin ligase WWP2 and unlocks its ligase activity from autoinhibition. This disinhibition of WWP2 depends on several features of Dvl2 including its PPxY motif and to a lesser extent its DEP domain, but crucially on the ability of Dvl2 to polymerize, indicating that WWP2 is activated in Wnt signalosomes. We show that Notch intracellular domains are substrates for Dvl-activated WWP2 and their transcriptional activity is consequently reduced, providing a molecular mechanism for cross-talk between Wnt and Notch signalling. These regulatory interactions are conserved in Drosophila whose WWP2 orthologue, Suppressor-of-deltex, downregulates Notch signalling upon activation by Dishevelled in developing wing tissue. Attentuation of Notch signalling by Dishevelled signalosomes could be important during the transition of cells from the proliferative to the post-mitotic state. PMID:26701932

  12. Crystal growth in LiGaSe2 for semiconductor radiation detection applications

    NASA Astrophysics Data System (ADS)

    Stowe, A. C.; Woodward, J.; Tupitsyn, E.; Rowe, E.; Wiggins, B.; Matei, L.; Bhattacharya, P.; Burger, A.

    2013-09-01

    Lithium containing AIBIIICVI semiconductors are being considered as alternative materials for room temperature neutron detection. Materials such as LiGaSe2 have been synthesized for non-linear optical applications; however, when the crystal is grown enriched in the 6Li isotope, it is possible to imagine a radiation detector. A nuclear reaction occurs with 6Li, which can be detected within the semiconductor crystal. As such, high quality crystals are required, which have few defects which prohibit charge collection. One of the primary challenges in growing a high quality crystal is the reactivity of lithium metal. Vacuum purified lithium metal was therefore reacted with gallium to form LiGa as an intermediate to LiGaSe2 synthesis. Vertical and horizontal Bridgman growth was then conducted to determine the optimal growth conditions. Vertical Bridgman growth resulted in more pure crystals. Annealing in lithium metal vapor reduced crystal defects and improved optical and electrical properties of the subsequent LiGaSe2 crystal.

  13. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    PubMed Central

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  14. Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation.

    PubMed

    Erker, Yigit; Neyret-Kahn, Helene; Seeler, Jacob S; Dejean, Anne; Atfi, Azeddine; Levy, Laurence

    2013-06-01

    Arkadia is a RING domain E3 ubiquitin ligase that activates the transforming growth factor β (TGF-β) pathway by inducing degradation of the inhibitor SnoN/Ski. Here we show that Arkadia contains three successive SUMO-interacting motifs (SIMs) that mediate noncovalent interaction with poly-SUMO2. We identify the third SIM (VVDL) of Arkadia to be the most relevant one in this interaction. Furthermore, we provide evidence that Arkadia can function as a SUMO-targeted ubiquitin ligase (STUBL) by ubiquitinating SUMO chains. While the SIMs of Arkadia are not essential for SnoN/Ski degradation in response to TGF-β, we show that they are necessary for the interaction of Arkadia with polysumoylated PML in response to arsenic and its concomitant accumulation into PML nuclear bodies. Moreover, Arkadia depletion leads to accumulation of polysumoylated PML in response to arsenic, highlighting a requirement of Arkadia for arsenic-induced degradation of polysumoylated PML. Interestingly, Arkadia homodimerizes but does not heterodimerize with RNF4, the other STUBL involved in PML degradation, suggesting that these two E3 ligases do not act synergistically but most probably act independently during this process. Altogether, these results identify Arkadia to be a novel STUBL that can trigger degradation of signal-induced polysumoylated proteins. PMID:23530056

  15. The ubiquitin E3 ligase ITCH enhances breast tumor progression by inhibiting the Hippo tumor suppressor pathway

    PubMed Central

    Salah, Zaidoun; Itzhaki, Ella; Aqeilan, Rami I

    2014-01-01

    The Hippo kinase pathway is emerging as a conserved signaling pathway that is essential for organ growth and tumorigenesis. Recently, we reported that the ubiquitin E3 ligase ITCH negatively regulates LATS1, thereby increasing YAP activity, which leads to increased cell proliferation and decreased apoptosis. Here, we investigated the role of ITCH in breast tumorigenesis. In particular, we show that ITCH enhances epithelial-to-mesenchymal transition (EMT) through boosting YAP oncogenic function. By contrast, a point mutation in the catalytic domain or WW1 domain of ITCH abolished its EMT-mediated effects. Furthermore, while overexpression of ITCH expression in breast cells is associated with increased incidence of mammary tumor formation and progression, its knockdown inhibited breast cancer cell tumorigenicity and metastasis. Importantly, YAP knockdown was able to attenuate ITCH pro-tumorigenic functions. Lastly, we found that ITCH expression is significantly upregulated in invasive and metastatic breast cancer cases and is associated with worse survival. Together, our results reveal that ITCH pro-tumorigenic functions in breast cancer are mediated, at least in part, through inactivation of the Hippo tumor suppressor pathway. PMID:25350971

  16. Lipopolysaccharide Primes the NALP3 Inflammasome by Inhibiting Its Ubiquitination and Degradation Mediated by the SCFFBXL2 E3 Ligase*

    PubMed Central

    Han, SeungHye; Lear, Travis B.; Jerome, Jacob A.; Rajbhandari, Shristi; Snavely, Courtney A.; Gulick, Dexter L.; Gibson, Kevin F.; Zou, Chunbin; Chen, Bill B.; Mallampalli, Rama K.

    2015-01-01

    The inflammasome is a multiprotein complex that augments the proinflammatory response by increasing the generation and cellular release of key cytokines. Specifically, the NALP3 inflammasome requires two-step signaling, priming and activation, to be functional to release the proinflammatory cytokines IL-1β and IL-18. The priming process, through unknown mechanisms, increases the protein levels of NALP3 and pro-IL-1β in cells. Here we show that LPS increases the NALP3 protein lifespan without significantly altering steady-state mRNA in human cells. LPS exposure reduces the ubiquitin-mediated proteasomal processing of NALP3 by inducing levels of an E3 ligase component, FBXO3, which targets FBXL2. The latter is an endogenous mediator of NALP3 degradation. FBXL2 recognizes Trp-73 within NALP3 for interaction and targets Lys-689 within NALP3 for ubiquitin ligation and degradation. A unique small molecule inhibitor of FBXO3 restores FBXL2 levels, resulting in decreased NALP3 protein levels in cells and, thereby, reducing the release of IL-1β and IL-18 in human inflammatory cells after NALP3 activation. Our findings uncover NALP3 as a molecular target for FBXL2 and suggest that therapeutic targeting of the inflammasome may serve as a platform for preclinical intervention. PMID:26037928

  17. In vitro mutagenesis and functional expression in Escherichia coli of a cDNA encoding the catalytic domain of human DNA ligase I.

    PubMed Central

    Kodama, K; Barnes, D E; Lindahl, T

    1991-01-01

    Human cDNAs encoding fragments of DNA ligase I, the major replicative DNA ligase in mammalian cells, have been expressed as lacZ fusion proteins in Escherichia coli. A cDNA encoding the carboxyl-terminal catalytic domain of human DNA ligase I was able to complement a conditional-lethal DNA ligase mutation in E. coli as measured by growth of the mutant strain at the non-permissive temperature. Targeted deletions of the amino and carboxyl termini of the catalytic domain identified a minimum size necessary for catalytic function and a maximum size for optimal complementing activity in E. coli. The human cDNA was subjected to systematic site-directed mutagenesis in vitro and mutant polypeptides assayed for functional expression in the E. coli DNA ligase mutant. Such functional analysis of the active site of DNA ligase I identified specific residues required for the formation of an enzyme-adenylate reaction intermediate. Images PMID:1956768

  18. The RING Finger E3 Ligase SpRing is a Positive Regulator of Salt Stress Signaling in Salt-Tolerant Wild Tomato Species.

    PubMed

    Qi, Shilian; Lin, Qingfang; Zhu, Huishan; Gao, Fenghua; Zhang, Wenhao; Hua, Xuejun

    2016-03-01

    Protein ubiquitination in plants plays critical roles in many biological processes, including adaptation to abiotic stresses. Previously, RING finger E3 ligase has been characterized during salt stress response in several plant species, but little is known about its function in tomato. Here, we report that SpRing, a stress-inducible gene, is involved in salt stress signaling in wild tomato species Solanum pimpinellifolium 'PI365967'. In vitro ubiquitination assay revealed that SpRing is an E3 ubiquitin ligase and the RING finger conserved region is required for its activity. SpRing is expressed in all tissues of wild tomato and up-regulated by salt, drought and osmotic stresses, but repressed by low temperature. Green fluorescent protein (GFP) fusion analysis showed that SpRing is localized at the endoplasmic reticulum. Silencing of SpRing through a virus-induced gene silencing approach led to increased sensitivity to salt stress in wild tomato. Overexpression of SpRing in Arabidopsis thaliana resulted in enhanced salt tolerance during seed germination and early seedling development. The expression levels of certain key stress-related genes are altered both in SpRing-overexpressing Arabidopsis plants and virus-induced gene silenced tomato seedlings. Taken together, our results indicate that SpRing is involved in salt stress and functions as a positive regulator of salt tolerance. PMID:26786853

  19. Ring Finger Protein 149 Is an E3 Ubiquitin Ligase Active on Wild-type v-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF)*

    PubMed Central

    Hong, Seung-Woo; Jin, Dong-Hoon; Shin, Jae-Sik; Moon, Jai-Hee; Na, Young-Soon; Jung, Kyung-Ah; Kim, Seung-Mi; Kim, Jin Cheon; Kim, Kyu-pyo; Hong, Yong Sang; Lee, Jae-Lyun; Choi, Eun Kyung; Lee, Jung Shin; Kim, Tae Won

    2012-01-01

    Members of the RAF family (ARAF, BRAF, and CRAF/RAF-1) are involved in a variety of cellular activities, including growth, survival, differentiation, and transformation. An oncogene encodes BRAF, the function of which is linked to MEK activation. BRAF is the most effective RAF kinase in terms of induction of MEK/ERK activity. However, the mechanisms involved in BRAF regulation remain unclear. In the present work, we used a tandem affinity purification approach to show that RNF149 (RING finger protein 149) interacts with wild-type BRAF. The latter protein is a RING domain-containing E3 ubiquitin ligase involved in control of gene transcription, translation, cytoskeletal organization, cell adhesion, and epithelial development. We showed that RNF149 bound directly to the C-terminal kinase-containing domain of wild-type BRAF and induced ubiquitination, followed by proteasome-dependent degradation, of the latter protein. Functionally, RNF149 attenuated the increase in cell growth induced by wild-type BRAF. However, RNF149 did not bind to mutant BRAF or induce ubiquitination thereof. Thus, we show that RNF149 is an E3 ubiquitin ligase active on wild-type BRAF. PMID:22628551

  20. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas.

    PubMed

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B; Zhang, Donna D; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-09-13

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity. PMID:27573825

  1. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling.

    PubMed

    Miao, Min; Niu, Xiangli; Kud, Joanna; Du, Xinran; Avila, Julian; Devarenne, Timothy P; Kuhl, Joseph C; Liu, Yongsheng; Xiao, Fangming

    2016-07-01

    We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling. PMID:26879496

  2. Characterization of a long-chain fatty acid-CoA ligase 1 gene and association between its SNPs and growth traits in the clam Meretrix meretrix.

    PubMed

    Dai, Ping; Huan, Pin; Wang, Hongxia; Lu, Xia; Liu, Baozhong

    2015-07-25

    Long-chain fatty acid-CoA ligases (ACSLs) play crucial roles in fatty acid (FA) metabolism. They convert free long-chain FA into acyl-CoAs, which are key intermediates in both anabolic and catabolic pathways. A long-chain fatty acid-CoA ligase gene was cloned in the clam Meretrix meretrix (MmeACSL1), with a full-length cDNA of 1865 bp encoding 475 amino acids. Its expression was only detected in hepatopancreas by semi-quantitative reverse transcription PCR. Expression level of MmeACSL1 exhibited a significant increase in a starvation experiment (P<0.05). This indicates that MmeACSL1 plays an important role in normal metabolism of M. meretrix and may be involved in energy supply and storage. Two exon SNPs and six intron SNPs were developed in this gene by direct sequencing. A marker-trait association analysis showed that five of these SNPs were significantly associated with growth traits (P<0.05). Also, haplotypes comprised of the five SNPs were revealed to be significantly growth-related (P<0.05), which further corroborates the relationship of this gene to growth traits of M. meretrix. PMID:25900031

  3. The E3 Ubiquitin Ligase IDOL Induces the Degradation of the Low Density Lipoprotein Receptor Family Members VLDLR and ApoER2*

    PubMed Central

    Hong, Cynthia; Duit, Sarah; Jalonen, Pilvi; Out, Ruud; Scheer, Lilith; Sorrentino, Vincenzo; Boyadjian, Rima; Rodenburg, Kees W.; Foley, Edan; Korhonen, Laura; Lindholm, Dan; Nimpf, Johannes; van Berkel, Theo J. C.; Tontonoz, Peter; Zelcer, Noam

    2010-01-01

    We have previously identified the E3 ubiquitin ligase-inducible degrader of the low density lipoprotein receptor (LDLR) (Idol) as a post-translational modulator of LDLR levels. Idol is a direct target for regulation by liver X receptors (LXRs), and its expression is responsive to cellular sterol status independent of the sterol-response element-binding proteins. Here we demonstrate that Idol also targets two closely related LDLR family members, VLDLR and ApoE receptor 2 (ApoER2), proteins implicated in both neuronal development and lipid metabolism. Idol triggers ubiquitination of the VLDLR and ApoER2 on their cytoplasmic tails, leading to their degradation. We further show that the level of endogenous VLDLR is sensitive to cellular sterol content, Idol expression, and activation of the LXR pathway. Pharmacological activation of the LXR pathway in mice leads to increased Idol expression and to decreased Vldlr levels in vivo. Finally, we establish an unexpected functional link between LXR and Reelin signaling. We demonstrate that LXR activation results in decreased Reelin binding to VLDLR and reduced Dab1 phosphorylation. The identification of VLDLR and ApoER2 as Idol targets suggests potential roles for this LXR-inducible E3 ligase in the central nervous system in addition to lipid metabolism. PMID:20427281

  4. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2).

    PubMed

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J; Schmidt, Wolfgang

    2015-10-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)(1) and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  5. Novel Cul3 binding proteins function to remodel E3 ligase complexes

    PubMed Central

    2014-01-01

    Background Cullins belong to a family of scaffold proteins that assemble multi-subunit ubiquitin ligase complexes to recruit protein substrates for ubiquitination via unique sets of substrate adaptor, such as Skp1 or Elongin B, and a substrate-binding protein with a conserved protein-protein interacting domain, such as leucine-rich repeats (LRR), a WD40 domain, or a zinc-finger domain. In the case of the Cullin3 (Cul3), it forms a BTB-Cul3-Rbx1 (BCR) ubiquitin ligase complex where it is believed that a BTB domain-containing protein performs dual functions where it serves as both the substrate adaptor and the substrate recognition protein. Results Tandem affinity purification and LC/MS-MS analysis of the BCR complex led to the identification of 10,225 peptides. After the SEQUEST algorithm and CDART program were used for protein identification and domain prediction, we discovered a group of Cul3-bound proteins that contain either the LRR or WD40 domain (CLWs). Further biochemical analysis revealed that the LRR domain-containing CLWs could bind both Cul3 and BTB domain-containing proteins. The dual binding role for the LRR domain-containing CLWs results in causing the BTB-domain protein to become a substrate instead of an adaptor. To further distinguish potential substrates from other components that are part of the BCR ubiquitin ligase complex, we altered the parameters in the SEQUEST algorithm to select for peptide fragments with a modified lysine residue. This method not only identifies the potential substrates of the BCR ubiquitin ligase complex, but it also pinpoints the lysine residue in which the post-translational modification occurs. Interestingly, none of the CLWs were identified by this method, supporting our hypothesis that CLWs were not potential substrates but rather additional components of the BCR ubiquitin ligase complex. Conclusion Our study identified a new set of Cul3-binding proteins known as CLWs via tandem affinity purification and LC

  6. The interaction of Piasy with Trim32, an E3-ubiquitin ligase mutated in limb-girdle muscular dystrophy type 2H, promotes Piasy degradation and regulates UVB-induced keratinocyte apoptosis through NFkappaB.

    PubMed

    Albor, Amador; El-Hizawi, Sally; Horn, Elizabeth J; Laederich, Melanie; Frosk, Patrick; Wrogemann, Klaus; Kulesz-Martin, Molly

    2006-09-01

    Protein inhibitors of activated STATs (PIAS) family members are ubiquitin-protein isopeptide ligase-small ubiquitin-like modifier ligases for diverse transcription factors. However, the regulation of PIAS protein activity in cells is poorly understood. Previously, we reported that expression of Trim32, a RING domain ubiquitin-protein isopeptide ligase-ubiquitin ligase mutated in human limb-girdle muscular dystrophy type 2H (LGMD2H) and Bardet-Biedl syndrome, is elevated during mouse skin carcinogenesis, protecting keratinocytes from apoptosis induced by UVB and tumor necrosis factor-alpha (TNFalpha). Here we report that Trim32 interacts with Piasy and promotes Piasy ubiquitination and degradation. Ubiquitination of Piasy by Trim32 could be reproduced in vitro using purified components. Their interaction was induced by treatment with UVB/TNFalpha and involved redistribution of Piasy from the nucleus to the cytoplasm, where it accumulated in cytoplasmic granules that colocalized with Trim32. Piasy destabilization and ubiquitination required an intact RING domain in Trim32. The LGMD2H-associated missense point mutation prevented Trim32 binding to Piasy, and human Piasy failed to colocalize with human Trim32 in fibroblasts isolated from an LGMD2H patient. Trim32 expression increased the transcriptional activity of NFkappaB in epidermal keratinocytes, both under basal treatment and after UVB/TNFalpha treatment. Conversely, Piasy inhibited NFkappaB activity under the same conditions and sensitized keratinocytes to apoptosis induced by TNFalpha and UVB. Our results indicate that, by controlling Piasy stability, Trim32 regulates UVB-induced keratinocyte apoptosis through induction of NFkappaB and suggests loss of function of Trim32 in LGMD2H. PMID:16816390

  7. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase

    PubMed Central

    Franklin, Christopher C.; Backos, Donald S.; Mohar, Isaac; White, Collin C.; Forman, Henry J.; Kavanagh, Terrance J.

    2009-01-01

    Glutathione (GSH) is a tripeptide composed of glutamate, cysteine, and glycine. The first and rate-limiting step in GSH synthesis is catalyzed by glutamate cysteine ligase (GCL, previously known as γ-glutamylcysteine synthetase). GCL is a heterodimeric protein composed of catalytic (GCLC) and modifier (GCLM) subunits that are expressed from different genes. GCLC catalyzes a unique γ-carboxyl linkage from glutamate to cysteine and requires ATP and Mg++ as cofactors in this reaction. GCLM increases the Vmax and Kcat of GCLC, decreases the Km for glutamate and ATP, and increases the Ki for GSH-mediated feedback inhibition of GCL. While post-translational modifications of GCLC (e.g. phosphorylation, myristoylation, caspase-mediated cleavage) have modest effects on GCL activity, oxidative stress dramatically affects GCL holoenzyme formation and activity. Pyridine nucleotides can also modulate GCL activity in some species. Variability in GCL expression is associated with several disease phenotypes and transgenic mouse and rat models promise to be highly useful for investigating the relationships between GCL activity, GSH synthesis, and disease in humans. PMID:18812186

  8. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase

    SciTech Connect

    Wang, Yechun; Yi, Hankuil; Wang, Melissa; Yu, Oliver; Jez, Joseph M.

    2012-10-24

    To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of health-promoting activities, in yeast used an unnatural engineered fusion protein of Arabidopsis thaliana (thale cress) 4-coumaroyl-CoA ligase (At4CL1) and Vitis vinifera (grape) stilbene synthase (VvSTS) to increase resveratrol levels 15-fold relative to yeast expressing the individual enzymes. Here we present the crystallographic and biochemical analysis of the 4CL::STS fusion protein. Determination of the X-ray crystal structure of 4CL::STS provides the first molecular view of an artificial didomain adenylation/ketosynthase fusion protein. Comparison of the steady-state kinetic properties of At4CL1, VvSTS, and 4CL::STS demonstrates that the fusion protein improves catalytic efficiency of either reaction less than 3-fold. Structural and kinetic analysis suggests that colocalization of the two enzyme active sites within 70 {angstrom} of each other provides the basis for enhanced in vivo synthesis of resveratrol.

  9. Inhibition of MARCH5 ubiquitin ligase abrogates MCL1-dependent resistance to BH3 mimetics via NOXA

    PubMed Central

    Subramanian, Aishwarya; Andronache, Adrian; Li, Yao-Cheng; Wade, Mark

    2016-01-01

    BH3 mimetic compounds induce tumor cell death through targeted inhibition of anti-apoptotic BCL2 proteins. Resistance to one such compound, ABT-737, is due to increased levels of anti-apoptotic MCL1. Using chemical and genetic approaches, we show that resistance to ABT-737 is abrogated by inhibition of the mitochondrial RING E3 ligase, MARCH5. Mechanistically, this is due to increased expression of pro-apoptotic BCL2 family member, NOXA, and is associated with MARCH5 regulation of MCL1 ubiquitylation and stability in a NOXA-dependent manner. MARCH5 expression contributed to an 8-gene signature that correlates with sensitivity to the preclinical BH3 mimetic, navitoclax. Furthermore, we observed a synthetic lethal interaction between MCL1 and MARCH5 in MCL1-dependent breast cancer cells. Our data uncover a novel level at which the BCL2 family is regulated; furthermore, they suggest targeting MARCH5-dependent signaling will be an effective strategy for treatment of BH3 mimetic-resistant tumors, even in the presence of high MCL1. PMID:26910119

  10. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch

    PubMed Central

    Melino, Sonia; Bellomaria, Alessia; Nepravishta, Ridvan; Paci, Maurizio; Melino, Gerry

    2014-01-01

    Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition. PMID:25485500

  11. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch.

    PubMed

    Melino, Sonia; Bellomaria, Alessia; Nepravishta, Ridvan; Paci, Maurizio; Melino, Gerry

    2014-01-01

    Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition. PMID:25485500

  12. A Family of Salmonella Virulence Factors Functions as a Distinct Class of Autoregulated E3 Ubiquitin Ligases

    SciTech Connect

    Quezada, C.; Hicks, S; Galan, J; Stebbins, C

    2009-01-01

    Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E{sub 3} ligase [which we have termed NEL for Novel E{sub 3} Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E{sub 3} ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.

  13. Overexpression of a Soybean Ariadne-Like Ubiquitin Ligase Gene GmARI1 Enhances Aluminum Tolerance in Arabidopsis

    PubMed Central

    Zhang, Xiaolian; Wang, Ning; Chen, Pei; Gao, Mengmeng; Liu, Juge; Wang, Yufeng; Zhao, Tuanjie; Li, Yan; Gai, Junyi

    2014-01-01

    Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L.) Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2–4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress. PMID:25364908

  14. Structural Insight into the Human Immunodeficiency Virus Vif SOCS Box and Its Role in Human E3 Ubiquitin Ligase Assembly

    SciTech Connect

    Stanley,B.; Ehrlich, E.; Short, L.; Yu, Y.; Xiao, Z.; Yu, X.; Xiong, Y.

    2008-01-01

    Human immunodeficiency virus (HIV) virion infectivity factor (Vif) causes the proteasome-mediated destruction of human antiviral protein APOBEC3G by tethering it to a cellular E3 ubiquitin ligase composed of ElonginB, ElonginC, Cullin5, and Rbx2. It has been proposed that HIV Vif hijacks the E3 ligase through two regions within its C-terminal domain: a BC box region that interacts with ElonginC and a novel zinc finger motif that interacts with Cullin5. We have determined the crystal structure of the HIV Vif BC box in complex with human ElonginB and ElonginC. This complex presents direct structural evidence of the recruitment of a human ubiquitin ligase by a viral BC box protein that mimics the conserved interactions of cellular ubiquitin ligases. We further mutated conserved hydrophobic residues in a region downstream of the Vif BC box. These mutations demonstrate that this region, the Vif Cullin box, composes a third E3-ligase recruiting site critical for interaction between Vif and Cullin5. Furthermore, our homology modeling reveals that the Vif Cullin box and zinc finger motif may be positioned adjacent to the N terminus of Cullin5 for interaction with loop regions in the first cullin repeat of Cullin5.

  15. Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins

    PubMed Central

    Fang, Nancy N.; Ng, Alex H.M.; Measday, Vivien; Mayor, Thibault

    2016-01-01

    Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation. PMID:21983566

  16. Effects of oxidative stress on the solubility of HRD1, a ubiquitin ligase implicated in Alzheimer's disease.

    PubMed

    Saito, Ryo; Kaneko, Masayuki; Kitamura, Yoshihisa; Takata, Kazuyuki; Kawada, Koichi; Okuma, Yasunobu; Nomura, Yasuyuki

    2014-01-01

    The E3 ubiquitin ligase HRD1 is found in the endoplasmic reticulum membrane of brain neurons and is involved in endoplasmic reticulum-associated degradation. We previously demonstrated that suppression of HRD1 expression in neurons causes accumulation of amyloid precursor protein, resulting in amyloid β production associated with endoplasmic reticulum stress and apoptosis. Furthermore, HRD1 levels are significantly decreased in the cerebral cortex of Alzheimer's disease patients because of its insolubility. The mechanisms that affect HRD1 solubility are not well understood. We here show that HRD1 protein was insolubilized by oxidative stress but not by other Alzheimer's disease-related molecules and stressors, such as amyloid β, tau, and endoplasmic reticulum stress. Furthermore, we raise the possibility that modifications of HRD1 by 4-hydroxy-2-nonenal, an oxidative stress marker, decrease HRD1 protein solubility and the oxidative stress led to the accumulation of HRD1 into the aggresome. Thus, oxidative stress-induced HRD1 insolubilization might be involved in a vicious cycle of increased amyloid β production and amyloid β-induced oxidative stress in Alzheimer's disease pathogenesis. PMID:24788773

  17. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis

    PubMed Central

    Jia, Fengjuan; Wang, Chunyan; Huang, Jinguang; Yang, Guodong; Wu, Changai; Zheng, Chengchao

    2015-01-01

    Skp1–Cullin–F-box (SCF) E3 ligases are essential to the post-translational regulation of many important factors involved in cellular signal transduction. In this study, we identified an F-box protein from Arabidopsis thaliana, AtPP2-B11, which was remarkably induced with increased duration of salt treatment in terms of both transcript and protein levels. Transgenic Arabidopsis plants overexpressing AtPP2-B11 exhibited obvious tolerance to high salinity, whereas the RNA interference line was more sensitive to salt stress than wild-type plants. Isobaric tag for relative and absolute quantification analysis revealed that 4311 differentially expressed proteins were regulated by AtPP2-B11 under salt stress. AtPP2-B11 could upregulate the expression of annexin1 (AnnAt1) and function as a molecular link between salt stress and reactive oxygen species accumulation in Arabidopsis. Moreover, AtPP2-B11 influenced the expression of Na+ homeostasis genes under salt stress, and the AtPP2-B11 overexpressing lines exhibited lower Na+ accumulation. These results suggest that AtPP2-B11 functions as a positive regulator in response to salt stress in Arabidopsis. PMID:26041321

  18. The Sumo-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax

    PubMed Central

    Fryrear, Kimberly A.; Guo, Xin

    2012-01-01

    The Really Interesting New Gene (RING) Finger Protein 4 (RNF4) represents a class of ubiquitin ligases that target Small Ubiquitin-like Modifier (SUMO)–modified proteins for ubiquitin modification. To date, the regulatory function of RNF4 appears to be ubiquitin-mediated degradation of sumoylated cellular proteins. In the present study, we show that the Human T-cell Leukemia Virus Type 1 (HTLV-1) oncoprotein Tax is a substrate for RNF4 both in vivo and in vitro. We mapped the RNF4-binding site to a region adjacent to the Tax ubiquitin/SUMO modification sites K280/K284. Interestingly, RNF4 modification of Tax protein results in relocalization of the oncoprotein from the nucleus to the cytoplasm. Overexpression of RNF4, but not the RNF4 RING mutant, resulted in cytoplasmic enrichment of Tax. The RNF4-induced nucleus-to-cytoplasm relocalization was associated with increased NF-κB–mediated and decreased cAMP Response Element-Binding (CREB)–mediated Tax activity. Finally, depletion of RNF4 by RNAi prevented the DNA damage–induced nuclear/cytoplasmic translocation of Tax. These results provide important new insight into STUbL-mediated pathways that regulate the subcellular localization and functional dynamics of viral oncogenes. PMID:22106342

  19. The E3 ligase synoviolin controls body weight and mitochondrial biogenesis through negative regulation of PGC-1β.

    PubMed

    Fujita, Hidetoshi; Yagishita, Naoko; Aratani, Satoko; Saito-Fujita, Tomoko; Morota, Saori; Yamano, Yoshihisa; Hansson, Magnus J; Inazu, Masato; Kokuba, Hiroko; Sudo, Katsuko; Sato, Eiichi; Kawahara, Ko-Ichi; Nakajima, Fukami; Hasegawa, Daisuke; Higuchi, Itsuro; Sato, Tomoo; Araya, Natsumi; Usui, Chie; Nishioka, Kenya; Nakatani, Yu; Maruyama, Ikuro; Usui, Masahiko; Hara, Naomi; Uchino, Hiroyuki; Elmer, Eskil; Nishioka, Kusuki; Nakajima, Toshihiro

    2015-04-15

    Obesity is a major global public health problem, and understanding its pathogenesis is critical for identifying a cure. In this study, a gene knockout strategy was used in post-neonatal mice to delete synoviolin (Syvn)1/Hrd1/Der3, an ER-resident E3 ubiquitin ligase with known roles in homeostasis maintenance. Syvn1 deficiency resulted in weight loss and lower accumulation of white adipose tissue in otherwise wild-type animals as well as in genetically obese (ob/ob and db/db) and adipose tissue-specific knockout mice as compared to control animals. SYVN1 interacted with and ubiquitinated the thermogenic coactivator peroxisome proliferator-activated receptor coactivator (PGC)-1β, and Syvn1 mutants showed upregulation of PGC-1β target genes and increase in mitochondrion number, respiration, and basal energy expenditure in adipose tissue relative to control animals. Moreover, the selective SYVN1 inhibitor LS-102 abolished the negative regulation of PGC-1β by SYVN1 and prevented weight gain in mice. Thus, SYVN1 is a novel post-translational regulator of PGC-1β and a potential therapeutic target in obesity treatment. PMID:25698262

  20. E3 ubiquitin ligase E6AP negatively regulates adipogenesis by downregulating proadipogenic factor C/EBPalpha.

    PubMed

    Pal, Pooja; Lochab, Savita; Kanaujiya, Jitendra Kumar; Kapoor, Isha; Sanyal, Sabyasachi; Behre, Gerhard; Trivedi, Arun Kumar

    2013-01-01

    CCAAT/Enhancer Binding Protein Alpha (C/EBPα) is a key transcription factor involved in the adipocyte differentiation. Here for the first time we demonstrate that E6AP, an E3 ubiquitin ligase inhibits adipocyte differentiation in 3T3-L1 cells as revealed by reduced lipid staining with oil red. Knock down of E6AP in mouse 3T3L1 preadipocytes is sufficient to convert them to adipocytes independent of external hormonal induction. C/EBPα protein level is drastically increased in E6AP deficient 3T3L1 preadipocytes while inverse is observed when wild type E6AP is over expressed. We show that transient transfection of wild type E6AP downregulates C/EBPα protein expression in a dose dependent manner while catalytically inactive E6AP-C843A rather stabilizes it. In addition, wild type E6AP inhibits expression of proadipogenic genes while E6AP-C843A enhances them. More importantly, overexpression of E6AP-C843A in mesenchymal progenitor cells promotes accumulation of lipid droplets while there is drastically reduced lipid droplet formation when E6AP is over expressed. Taken together, our finding suggests that E6AP may negatively control adipogenesis by inhibiting C/EBPα expression by targeting it to ubiquitin-proteasome pathway for degradation. PMID:23762344

  1. Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signalling§

    PubMed Central

    Kruse, Michael; Hartmann, Thomas; Lempart, Justine; Mühlich, Susanne; Pfeiffer, Andreas F. H.; Field, Loren J.; Charron, Maureen J.; Pan, Zhen-Qiang; Engelhardt, Stefan; Sarikas, Antonio

    2014-01-01

    Dysfunctional regulation of signalling pathways downstream of the insulin receptor plays a pivotal role in the pathogenesis of insulin resistance and type 2 diabetes. In this study we report both in vitro and in vivo experimental evidence for a role of Cullin-RING E3 ubiquitin ligase 7 (CRL7) in the regulation of insulin signalling and glucose homeostasis. We show that Cul7−/− mouse embryonic fibroblasts displayed enhanced AKT and Erk MAP kinase phosphorylation upon insulin stimulation. Depletion of CUL7 by RNA interference in C2C12 myotubes led to increased activation of insulin signalling pathways and cellular glucose uptake, as well as a reduced capacity of these cells to execute insulin-induced degradation of insulin receptor substrate 1 (IRS1). In vivo, heterozygosity of either Cul7 or Fbxw8, both key components of CRL7, resulted in elevated PI3 kinase / AKT activation in skeletal muscle tissue upon insulin stimulation when compared to wild-type controls. Finally, Cul7+/− or Fbxw8+/− mice exhibited enhanced insulin sensitivity and plasma glucose clearance. Collectively, our findings point to a yet unrecognized role of CRL7 in insulin-mediated control of glucose homeostasis by restraining PI3 kinase / AKT activities in skeletal muscle cells. PMID:24219910

  2. The E3 ligase synoviolin controls body weight and mitochondrial biogenesis through negative regulation of PGC-1β

    PubMed Central

    Fujita, Hidetoshi; Yagishita, Naoko; Aratani, Satoko; Saito-Fujita, Tomoko; Morota, Saori; Yamano, Yoshihisa; Hansson, Magnus J; Inazu, Masato; Kokuba, Hiroko; Sudo, Katsuko; Sato, Eiichi; Kawahara, Ko-ichi; Nakajima, Fukami; Hasegawa, Daisuke; Higuchi, Itsuro; Sato, Tomoo; Araya, Natsumi; Usui, Chie; Nishioka, Kenya; Nakatani, Yu; Maruyama, Ikuro; Usui, Masahiko; Hara, Naomi; Uchino, Hiroyuki; Elmer, Eskil; Nishioka, Kusuki; Nakajima, Toshihiro

    2015-01-01

    Obesity is a major global public health problem, and understanding its pathogenesis is critical for identifying a cure. In this study, a gene knockout strategy was used in post-neonatal mice to delete synoviolin (Syvn)1/Hrd1/Der3, an ER-resident E3 ubiquitin ligase with known roles in homeostasis maintenance. Syvn1 deficiency resulted in weight loss and lower accumulation of white adipose tissue in otherwise wild-type animals as well as in genetically obese (ob/ob and db/db) and adipose tissue-specific knockout mice as compared to control animals. SYVN1 interacted with and ubiquitinated the thermogenic coactivator peroxisome proliferator-activated receptor coactivator (PGC)-1β, and Syvn1 mutants showed upregulation of PGC-1β target genes and increase in mitochondrion number, respiration, and basal energy expenditure in adipose tissue relative to control animals. Moreover, the selective SYVN1 inhibitor LS-102 abolished the negative regulation of PGC-1β by SYVN1 and prevented weight gain in mice. Thus, SYVN1 is a novel post-translational regulator of PGC-1β and a potential therapeutic target in obesity treatment. PMID:25698262

  3. Structural and Functional Impact of Parkinson Disease-Associated Mutations in the E3 Ubiquitin Ligase Parkin

    PubMed Central

    Fiesel, Fabienne C.; Caulfield, Thomas R.; Moussaud-Lamodière, Elisabeth L.; Ogaki, Kotaro; Dourado, Daniel F.A.R.; Flores, Samuel C.; Ross, Owen A.; Springer, Wolfdieter

    2015-01-01

    Mutations in the PARKIN/PARK2 gene that result in loss-of-function of the encoded, neuroprotective E3 ubiquitin ligase Parkin cause recessive, familial early-onset Parkinson disease. As an increasing number of rare Parkin sequence variants with unclear pathogenicity are identified, structure-function analyses will be critical to determine their disease relevance. Depending on the specific amino acids affected, several distinct pathomechanisms can result in loss of Parkin function. These include disruption of overall Parkin folding, decreased solubility and protein aggregation. However pathogenic effects can also result from misregulation of Parkin auto-inhibition and of its enzymatic functions. In addition, interference of binding to co-enzymes, substrates and adaptor proteins can affect its catalytic activity too. Herein, we have performed a comprehensive structural and functional analysis of 21 PARK2 missense mutations distributed across the individual protein domains. Using this combined approach we were able to pinpoint some of the pathogenic mechanisms of individual sequence variants. Similar analyses will be critical in gaining a complete understanding of the complex regulations and enzymatic functions of Parkin. These studies will not only highlight the important residues, but will also help to develop novel therapeutics aimed at activating and preserving an active, neuroprotective form of Parkin. PMID:25939424

  4. Pooled RNAi screen identifies ubiquitin ligase Itch as crucial for influenza A virus release from the endosome during virus entry

    PubMed Central

    Su, Wen-Chi; Chen, Yung-Chia; Tseng, Chung-Hsin; Hsu, Paul Wei-Che; Tung, Kuo-Feng; Jeng, King-Song; Lai, Michael M. C.

    2013-01-01

    Influenza viruses, like other viruses, rely on host factors to support their life cycle as viral proteins usually “hijack,” or collaborate with, cellular proteins to execute their functions. Identification and understanding of these factors can increase the knowledge of molecular mechanisms manipulated by the viruses and facilitate development of antiviral drugs. To this end, we developed a unique genome-wide pooled shRNA screen to search for cellular factors important for influenza A virus (IAV) replication. We identified an E3 ubiquitin ligase, Itch, as an essential factor for an early step in the viral life cycle. In Itch knockdown cells, the incorporation of viral ribonucleoprotein complex into endosomes was normal, but its subsequent release from endosomes and transport to the nucleus was retarded. In addition, upon virus infection, Itch was phosphorylated and recruited to the endosomes, where virus particles were located. Furthermore, Itch interacted with viral M1 protein and ubiquitinated M1 protein. Collectively, our findings unravel a critical role of Itch in mediating IAV release from the endosome and offer insights into the mechanism for IAV uncoating during virus entry. These findings also highlight the feasibility of pooled RNAi screening for exploring the cellular cofactors of lytic viruses. PMID:24101521

  5. Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity

    PubMed Central

    Brough, Rachel; Hodny, Zdenek; Ashworth, Alan; Bartek, Jiri; Lord, Christopher J.

    2015-01-01

    Based on a series of basic, preclinical and clinical studies, the Poly (ADP-ribose) Polymerase 1 (PARP1) inhibitor, olaparib, has recently been approved for use in ovarian cancer patients with BRCA1 or BRCA2 mutations. By identifying novel predictive biomarkers of tumour cell sensitivity to olaparib, it is possible that the utility of PARP inhibitors could be extended beyond this patient subgroup. Many of the known genetic determinants of PARP inhibitor response have key roles in DNA damage response (DDR) pathways. Although protein ubiquitylation is known to play an important role in regulating the DDR, the exact mechanisms by which this occurs are not fully understood. Using two parallel RNA interference-based screening approaches, we identified the E3 ubiquitin ligase, CBLC, as a candidate biomarker of response to olaparib. We validated this observation by demonstrating that silencing of CBLC causes increased sensitivity to olaparib in breast cancer cell line models and that defective homologous recombination (HR) DNA repair is the likely cause. This data provides an example of how defects in the ubiquitin machinery have the potential to influence the response of tumour cells to PARP inhibitors. PMID:25883215

  6. The E3 ubiquitin ligase WWP1 regulates {Delta}Np63-dependent transcription through Lys63 linkages

    SciTech Connect

    Peschiaroli, Angelo; Scialpi, Flavia; Bernassola, Francesca; Sherbini, El Said El; Melino, Gerry

    2010-11-12

    Research highlights: {yields} WWP1 ubiquitylates {Delta}Np63 through conjugation of Lys63-linked poly-ubiquitin chains. {yields} WWP1 does not control {Delta}Np63 protein stability. {yields} WWP1 regulates {Delta}Np63-dependent transcription. -- Abstract: The transcription factor p63, a member of the p53 family, plays a crucial role in epithelial development and tumorigenesis through the regulation of epithelial progenitor cell proliferation, differentiation and apoptosis. Similarly to p53, p63 activity is regulated by post-translational modifications, including ubiquitylation. Here, we report that the WWP1 E3 ubiquitin ligase binds specifically to {Delta}Np63 isoform but it does not trigger {Delta}Np63 proteasome-dependent degradation. Accordingly, we found that WWP1-dependent ubiquitylation of {Delta}Np63 occurs through the formation of Lys63-linked poly-ubiquitin chains. Importantly, we found that WWP1 is able to increase {Delta}Np63-dependent transcription and depletion of WWP1 in human primary keratinocytes induces cell cycle arrest. All together these results indicate that WWP1 regulates {Delta}Np63 transcriptional activity, acting thus as a potential regulator of the proliferation and survival of epithelial-derived cells.

  7. Regulating ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1.

    PubMed

    Zhang, Quan; Jia, Kai-Zhi; Xia, Shi-Tao; Xu, Yang-Hua; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2016-01-01

    Ehrlich and demethiolation pathways as two competing branches converted amino acid into alcohols. Controlling both pathways offers considerable potential for industrial applications including alcohols overproduction, flavor-quality control and developing new flavors. While how to regulate ehrlich and demethiolation pathways is still not applicable. Taking the conversion of methionine into methionol and methanethiol for example, we constructed two suppression subtractive cDNA libraries of Clonostachys rosea by using suppression subtractive hybridization (SSH) technology for screening regulators controlling the conversion. E3 ubiquitin-protein ligase gene HUWE1 screened from forward SSH library was validated to be related with the biosynthesis of end products. Overexpressing HUWE1 in C. rosea and S. cerevisiae significantly increased the biosynthesis of methanethiol and its derivatives in demethiolation pathway, while suppressed the biosynthesis of methional and methionol in ehrlich pathway. These results attained the directional regulation of both pathways by overexpressing HUWE1. Thus, HUWE1 has potential to be a key target for controlling and enhancing alcohols production by metabolic engineering. PMID:26860895

  8. Sequential Poly-ubiquitylation by Specialized Conjugating Enzymes Expands the Versatility of a Quality Control Ubiquitin Ligase.

    PubMed

    Weber, Annika; Cohen, Itamar; Popp, Oliver; Dittmar, Gunnar; Reiss, Yuval; Sommer, Thomas; Ravid, Tommer; Jarosch, Ernst

    2016-09-01

    The Doa10 quality control ubiquitin (Ub) ligase labels proteins with uniform lysine 48-linked poly-Ub (K48-pUB) chains for proteasomal degradation. Processing of Doa10 substrates requires the activity of two Ub conjugating enzymes. Here we show that the non-canonical conjugating enzyme Ubc6 attaches single Ub molecules not only to lysines but also to hydroxylated amino acids. These Ub moieties serve as primers for subsequent poly-ubiquitylation by Ubc7. We propose that the evolutionary conserved propensity of Ubc6 to mount Ub on diverse amino acids augments the number of ubiquitylation sites within a substrate and thereby increases the target range of Doa10. Our work provides new insights on how the consecutive activity of two specialized conjugating enzymes facilitates the attachment of poly-Ub to very heterogeneous client molecules. Such stepwise ubiquitylation reactions most likely represent a more general cellular phenomenon that extends the versatility yet sustains the specificity of the Ub conjugation system. PMID:27570077

  9. Mitochondrial E3 ligase March5 maintains stemness of mouse ES cells via suppression of ERK signalling.

    PubMed

    Gu, Hao; Li, Qidong; Huang, Shan; Lu, Weiguang; Cheng, Fangyuan; Gao, Ping; Wang, Chen; Miao, Lin; Mei, Yide; Wu, Mian

    2015-01-01

    Embryonic stem cells (ESCs) possess pluripotency, which is the capacity of cells to differentiate into all lineages of the mature organism. Increasing evidence suggests that the pluripotent state of ESCs is regulated by a combination of extrinsic and intrinsic factors. The underlying mechanisms, however, are not completely understood. Here, we show that March5, an E3 ubiquitin ligase, is involved in maintaining mouse-ESC (mESC) pluripotency. Knockdown of March5 in mESCs led to differentiation from naive pluripotency. Mechanistically, as a transcriptional target of Klf4, March5 catalyses K63-linked polyubiquitination of Prkar1a, a negative regulatory subunit of PKA, to activate PKA, thereby inhibiting the Raf/MEK/ERK pathway. Moreover, March5 is able to replace a MEK/ERK inhibitor to maintain mESC pluripotency under serum-free culture conditions. In addition, March5 can partially replace the use of Klf4 for somatic cell reprogramming. Collectively, our study uncovers a role for the Klf4-March5-PKA-ERK pathway in maintaining the stemness properties of mESCs. PMID:26033541

  10. Relationship between genetic polymorphisms of DNA ligase 1 and non-small cell lung cancer susceptibility and radiosensitivity.

    PubMed

    Tian, H; He, X; Yin, L; Guo, W J; Xia, Y Y; Jiang, Z X

    2015-01-01

    The aim of this study was to examine the relationship between genetic polymorphisms in DNA ligase 1 (LIG1) and non-small cell lung cancer (NSCLC) susceptibility and radiosensitivity in a Chinese population. This was a case-control study that included 352 NSCLC patients and 448 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism analysis was conducted to detect HaeIII polymorphisms in exon 6 of the LIG1 gene in this popula-tion. This information was used to observe the effects of radiation in pa-tients with different genotypes in order to determine the genotypes as-sociated with radiosensitivity. The CC genotype and C allele frequency were significantly higher in the NSCLC group than in the control group (P = 0.012 and P = 0.023, respectively). The relative risk of experienc-ing NSCLC was 2.55 [95% confidence interval (CI), 1.12-3.98] for CC homozygous patients and 0.87 (95%CI, 0.46-1.88) for AA homozygous patients. Analysis of LIG1 genetic polymorphisms and radiosensitiv-ity of NSCLC patients showed that AA homozygous patients were sig-nificantly more radiosensitive than the control group (AA vs AC, P = 0.014; AA vs CC, P < 0.001; AC vs CC, P = 0.023). Therefore, the LIG1 CC genotype was associated with susceptibility to NSCLC, and the AA genotype demonstrated increased radiosensitivity compared to the AC and CC genotypes. PMID:26125914

  11. Autophagic UVRAG Promotes UV-Induced Photolesion Repair by Activation of the CRL4(DDB2) E3 Ligase.

    PubMed

    Yang, Yongfei; He, Shanshan; Wang, Qiaoxiu; Li, Fan; Kwak, Mi-Jeong; Chen, Sally; O'Connell, Douglas; Zhang, Tian; Pirooz, Sara Dolatshahi; Jeon, YongHeui; Chimge, Nyam-Osor; Frenkel, Baruch; Choi, Younho; Aldrovandi, Grace M; Oh, Byung-Ha; Yuan, Zengqiang; Liang, Chengyu

    2016-05-19

    UV-induced DNA damage, a major risk factor for skin cancers, is primarily repaired by nucleotide excision repair (NER). UV radiation resistance-associated gene (UVRAG) is a tumor suppressor involved in autophagy. It was initially isolated as a cDNA partially complementing UV sensitivity in xeroderma pigmentosum (XP), but this was not explored further. Here we show that UVRAG plays an integral role in UV-induced DNA damage repair. It localizes to photolesions and associates with DDB1 to promote the assembly and activity of the DDB2-DDB1-Cul4A-Roc1 (CRL4(DDB2)) ubiquitin ligase complex, leading to efficient XPC recruitment and global genomic NER. UVRAG depletion decreased substrate handover to XPC and conferred UV-damage hypersensitivity. We confirmed the importance of UVRAG for UV-damage tolerance using a Drosophila model. Furthermore, increased UV-signature mutations in melanoma correlate with reduced expression of UVRAG. Our results identify UVRAG as a regulator of CRL4(DDB2)-mediated NER and suggest that its expression levels may influence melanoma predisposition. PMID:27203177

  12. Pooled RNAi screen identifies ubiquitin ligase Itch as crucial for influenza A virus release from the endosome during virus entry.

    PubMed

    Su, Wen-Chi; Chen, Yung-Chia; Tseng, Chung-Hsin; Hsu, Paul Wei-Che; Tung, Kuo-Feng; Jeng, King-Song; Lai, Michael M C

    2013-10-22

    Influenza viruses, like other viruses, rely on host factors to support their life cycle as viral proteins usually "hijack," or collaborate with, cellular proteins to execute their functions. Identification and understanding of these factors can increase the knowledge of molecular mechanisms manipulated by the viruses and facilitate development of antiviral drugs. To this end, we developed a unique genome-wide pooled shRNA screen to search for cellular factors important for influenza A virus (IAV) replication. We identified an E3 ubiquitin ligase, Itch, as an essential factor for an early step in the viral life cycle. In Itch knockdown cells, the incorporation of viral ribonucleoprotein complex into endosomes was normal, but its subsequent release from endosomes and transport to the nucleus was retarded. In addition, upon virus infection, Itch was phosphorylated and recruited to the endosomes, where virus particles were located. Furthermore, Itch interacted with viral M1 protein and ubiquitinated M1 protein. Collectively, our findings unravel a critical role of Itch in mediating IAV release from the endosome and offer insights into the mechanism for IAV uncoating during virus entry. These findings also highlight the feasibility of pooled RNAi screening for exploring the cellular cofactors of lytic viruses. PMID:24101521

  13. E3 Ubiquitin Ligase E6AP Negatively Regulates Adipogenesis by Downregulating Proadipogenic Factor C/EBPalpha

    PubMed Central

    Pal, Pooja; Lochab, Savita; Kanaujiya, Jitendra Kumar; Kapoor, Isha; Sanyal, Sabyasachi; Behre, Gerhard; Trivedi, Arun Kumar

    2013-01-01

    CCAAT/Enhancer Binding Protein Alpha (C/EBPα) is a key transcription factor involved in the adipocyte differentiation. Here for the first time we demonstrate that E6AP, an E3 ubiquitin ligase inhibits adipocyte differentiation in 3T3-L1 cells as revealed by reduced lipid staining with oil red. Knock down of E6AP in mouse 3T3L1 preadipocytes is sufficient to convert them to adipocytes independent of external hormonal induction. C/EBPα protein level is drastically increased in E6AP deficient 3T3L1 preadipocytes while inverse is observed when wild type E6AP is over expressed. We show that transient transfection of wild type E6AP downregulates C/EBPα protein expression in a dose dependent manner while catalytically inactive E6AP-C843A rather stabilizes it. In addition, wild type E6AP inhibits expression of proadipogenic genes while E6AP-C843A enhances them. More importantly, overexpression of E6AP-C843A in mesenchymal progenitor cells promotes accumulation of lipid droplets while there is drastically reduced lipid droplet formation when E6AP is over expressed. Taken together, our finding suggests that E6AP may negatively control adipogenesis by inhibiting C/EBPα expression by targeting it to ubiquitin-proteasome pathway for degradation. PMID:23762344

  14. Regulating ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1

    PubMed Central

    Zhang, Quan; Jia, Kai-Zhi; Xia, Shi-Tao; Xu, Yang-Hua; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2016-01-01

    Ehrlich and demethiolation pathways as two competing branches converted amino acid into alcohols. Controlling both pathways offers considerable potential for industrial applications including alcohols overproduction, flavor-quality control and developing new flavors. While how to regulate ehrlich and demethiolation pathways is still not applicable. Taking the conversion of methionine into methionol and methanethiol for example, we constructed two suppression subtractive cDNA libraries of Clonostachys rosea by using suppression subtractive hybridization (SSH) technology for screening regulators controlling the conversion. E3 ubiquitin-protein ligase gene HUWE1 screened from forward SSH library was validated to be related with the biosynthesis of end products. Overexpressing HUWE1 in C. rosea and S. cerevisiae significantly increased the biosynthesis of methanethiol and its derivatives in demethiolation pathway, while suppressed the biosynthesis of methional and methionol in ehrlich pathway. These results attained the directional regulation of both pathways by overexpressing HUWE1. Thus, HUWE1 has potential to be a key target for controlling and enhancing alcohols production by metabolic engineering. PMID:26860895

  15. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage.

    PubMed

    Yin, Yili; Seifert, Anne; Chua, Joy Shijia; Maure, Jean-François; Golebiowski, Filip; Hay, Ronald T

    2012-06-01

    Here we demonstrate that RNF4, a highly conserved small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, plays a critical role in the response of mammalian cells to DNA damage. Human cells in which RNF4 expression was ablated by siRNA or chicken DT40 cells with a homozygous deletion of the RNF4 gene displayed increased sensitivity to DNA-damaging agents. Recruitment of RNF4 to double-strand breaks required its RING and SUMO interaction motif (SIM) domains and DNA damage factors such as NBS1, mediator of DNA damage checkpoint 1 (MDC1), RNF8, 53BP1, and BRCA1. In the absence of RNF4, these factors were still recruited to sites of DNA damage, but 53BP1, RNF8, and RNF168 displayed delayed clearance from such foci. SILAC-based proteomics of SUMO substrates revealed that MDC1 was SUMO-modified in response to ionizing radiation. As a consequence of SUMO modification, MDC1 recruited RNF4, which mediated ubiquitylation at the DNA damage site. Failure to recruit RNF4 resulted in defective loading of replication protein A (RPA) and Rad51 onto ssDNA. This appeared to be a consequence of reduced recruitment of the CtIP nuclease, resulting in inefficient end resection. Thus, RNF4 is a novel DNA damage-responsive protein that plays a role in homologous recombination and integrates SUMO modification and ubiquitin signaling in the cellular response to genotoxic stress. PMID:22661230

  16. The Sumo-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax.

    PubMed

    Fryrear, Kimberly A; Guo, Xin; Kerscher, Oliver; Semmes, O John

    2012-02-01

    The Really Interesting New Gene (RING) Finger Protein 4 (RNF4) represents a class of ubiquitin ligases that target Small Ubiquitin-like Modifier (SUMO)-modified proteins for ubiquitin modification. To date, the regulatory function of RNF4 appears to be ubiquitin-mediated degradation of sumoylated cellular proteins. In the present study, we show that the Human T-cell Leukemia Virus Type 1 (HTLV-1) oncoprotein Tax is a substrate for RNF4 both in vivo and in vitro. We mapped the RNF4-binding site to a region adjacent to the Tax ubiquitin/SUMO modification sites K280/K284. Interestingly, RNF4 modification of Tax protein results in relocalization of the oncoprotein from the nucleus to the cytoplasm. Overexpression of RNF4, but not the RNF4 RING mutant, resulted in cytoplasmic enrichment of Tax. The RNF4-induced nucleus-to-cytoplasm relocalization was associated with increased NF-κB-mediated and decreased cAMP Response Element-Binding (CREB)-mediated Tax activity. Finally, depletion of RNF4 by RNAi prevented the DNA damage-induced nuclear/cytoplasmic translocation of Tax. These results provide important new insight into STUbL-mediated pathways that regulate the subcellular localization and functional dynamics of viral oncogenes. PMID:22106342

  17. Cancer-testis antigen MAGE-C2 binds Rbx1 and inhibits ubiquitin ligase-mediated turnover of cyclin E

    PubMed Central

    Wang, Jingjing; Guo, Chengli; Li, Yan; Li, Bing; Zhang, Yu; Yin, Yanhui

    2015-01-01

    Cancer-testis antigen MAGE-C2 is normally expressed in testis but aberrantly expressed in various kinds of tumors. Its functions in tumor cells are mostly unknown. Here, we show that MAGE-C2 binds directly to the RING domain protein Rbx1, and participates in Skp1-Cullin1-F box protein (SCF) complex. Furthermore, MAGE-C2 can inhibit the E3 ubiquitin ligase activity of SCF complex. Ablation of endogenous MAGE-C2 decreases the level of cyclin E and accelerates cyclin E turnover by inhibiting ubiquitin-mediated proteasome degradation. Overexpression of MAGE-C2 increases the level of cyclin E and promotes G1-S transition and cell proliferation, and the results are further confirmed by knockdown of MAGE-C2. Overall, the study indicates that MAGE-C2 is involved in SCF complex and increases the stability of cyclin E in tumor cells. PMID:26540345

  18. TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein.

    PubMed

    Bhatnagar, Sanchita; Gazin, Claude; Chamberlain, Lynn; Ou, Jianhong; Zhu, Xiaochun; Tushir, Jogender S; Virbasius, Ching-Man; Lin, Ling; Zhu, Lihua J; Wajapeyee, Narendra; Green, Michael R

    2014-12-01

    The TRIM37 (also known as MUL) gene is located in the 17q23 chromosomal region, which is amplified in up to ∼ 40% of breast cancers. TRIM37 contains a RING finger domain, a hallmark of E3 ubiquitin ligases, but its protein substrate(s) is unknown. Here we report that TRIM37 mono-ubiquitinates histone H2A, a chromatin modification associated with transcriptional repression. We find that in human breast cancer cell lines containing amplified 17q23, TRIM37 is upregulated and, reciprocally, the major H2A ubiquitin ligase RNF2 (also known as RING1B) is downregulated. Genome-wide chromatin immunoprecipitation (ChIP)-chip experiments in 17q23-amplified breast cancer cells identified many genes, including multiple tumour suppressors, whose promoters were bound by TRIM37 and enriched for ubiquitinated H2A. However, unlike RNF2, which is a subunit of polycomb repressive complex 1 (PRC1), we find that TRIM37 associates with polycomb repressive complex 2 (PRC2). TRIM37, PRC2 and PRC1 are co-bound to specific target genes, resulting in their transcriptional silencing. RNA-interference-mediated knockdown of TRIM37 results in loss of ubiquitinated H2A, dissociation of PRC1 and PRC2 from target promoters, and transcriptional reactivation of silenced genes. Knockdown of TRIM37 in human breast cancer cells containing amplified 17q23 substantially decreases tumour growth in mouse xenografts. Conversely, ectopic expression of TRIM37 renders non-transformed cells tumorigenic. Collectively, our results reveal TRIM37 as an oncogenic H2A ubiquitin ligase that is overexpressed in a subset of breast cancers and promotes transformation by facilitating silencing of tumour suppressors and other genes. PMID:25470042

  19. UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1.

    PubMed

    Xie, Lisi; Lang-Mladek, Christina; Richter, Julia; Nigam, Neha; Hauser, Marie-Theres

    2015-08-01

    The UV-B inducible ARIADNE12 (ARI12) gene of Arabidopsis thaliana is a member of the RING-between-RING (RBR) family of E3 ubiquitin ligases for which a novel ubiquitination mechanism was identified in mammalian homologs. This RING-HECT hybrid mechanism needs a conserved cysteine which is replaced by serine in ARI12 and might affect the E3 ubiquitin ligase activity. We have shown that under photomorphogenic UV-B, ARI12 is a downstream target of the classical ultraviolet B (UV-B) UV Resistance Locus 8 (UVR8) pathway. However, under high fluence rate of UV-B ARI12 was induced independently of UVR8 and the UV-A/blue light and red/far-red photoreceptors. A key component of several light signaling pathways is Constitutively Photomorphogenic 1 (COP1). Upon UV-B COP1 is trapped in the nucleus through interaction with UVR8 permitting the activation of genes that regulate the biosynthesis of UV-B protective metabolites and growth adaptations. To clarify the role of COP1 in the regulation of ARI12 mRNA expression and ARI12 protein stability, localization and interaction with COP1 was assessed with and without UV-B. We found that COP1 controls ARI12 in white light, low and high fluence rate of UV-B. Furthermore we show that ARI12 is indeed an E3 ubiquitin ligase which is mono-ubiquitinated, a prerequisite for the RING-HECT hybrid mechanism. Finally, genetic analyses with transgenes expressing a genomic pmARI12:ARI12-GFP construct confirm the epistatic interaction between COP1 and ARI12 in growth responses to high fluence rate UV-B. PMID:25817546

  20. The Ubiquitin Ligase Ubr11 Is Essential for Oligopeptide Utilization in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Nakase, Mai; Tohda, Hideki; Takegawa, Kaoru

    2012-01-01

    Uptake of extracellular oligopeptides in yeast is mediated mainly by specific transporters of the peptide transporter (PTR) and oligopeptide transporter (OPT) families. Here, we investigated the role of potential peptide transporters in the yeast Schizosaccharomyces pombe. Utilization of naturally occurring dipeptides required only Ptr2/SPBC13A2.04c and none of the other 3 OPT proteins (Isp4, Pgt1, and Opt3), whereas only Isp4 was indispensable for tetrapeptide utilization. Both Ptr2 and Isp4 localized to the cell surface, but under rich nutrient conditions Isp4 localized in the Golgi apparatus through the function of the ubiquitin ligase Pub1. Furthermore, the ubiquitin ligase Ubr11 played a significant role in oligopeptide utilization. The mRNA levels of both the ptr2 and isp4 genes were significantly reduced in ubr11Δ cells, and the dipeptide utilization defect in the ubr11Δ mutant was rescued by the forced expression of Ptr2. Consistent with its role in transcriptional regulation of peptide transporter genes, the Ubr11 protein was accumulated in the nucleus. Unlike the situation in Saccharomyces cerevisiae, the oligopeptide utilization defect in the S. pombe ubr11Δ mutant was not rescued by inactivation of the Tup11/12 transcriptional corepressors, suggesting that the requirement for the Ubr ubiquitin ligase in the upregulation of peptide transporter mRNA levels is conserved in both yeasts; however, the actual mechanism underlying the control appears to be different. We also found that the peptidomimetic proteasome inhibitor MG132 was still operative in a strain lacking all known PTR and OPT peptide transporters. Therefore, irrespective of its peptide-like structure, MG132 is carried into cells independently of the representative peptide transporters. PMID:22226946

  1. UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1

    PubMed Central

    Xie, Lisi; Lang-Mladek, Christina; Richter, Julia; Nigam, Neha; Hauser, Marie-Theres

    2015-01-01

    The UV-B inducible ARIADNE12 (ARI12) gene of Arabidopsis thaliana is a member of the RING-between-RING (RBR) family of E3 ubiquitin ligases for which a novel ubiquitination mechanism was identified in mammalian homologs. This RING-HECT hybrid mechanism needs a conserved cysteine which is replaced by serine in ARI12 and might affect the E3 ubiquitin ligase activity. We have shown that under photomorphogenic UV-B, ARI12 is a downstream target of the classical ultraviolet B (UV-B) UV RESISTANCE LOCUS 8 (UVR8) pathway. However, under high fluence rate of UV-B ARI12 was induced independently of UVR8 and the UV-A/blue light and red/far-red photoreceptors. A key component of several light signaling pathways is CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). Upon UV-B COP1 is trapped in the nucleus through interaction with UVR8 permitting the activation of genes that regulate the biosynthesis of UV-B protective metabolites and growth adaptations. To clarify the role of COP1 in the regulation of ARI12 mRNA expression and ARI12 protein stability, localization and interaction with COP1 was assessed with and without UV-B. We found that COP1 controls ARI12 in white light, low and high fluence rate of UV-B. Furthermore we show that ARI12 is indeed an E3 ubiquitin ligase which is mono-ubiquitinated, a prerequisite for the RING-HECT hybrid mechanism. Finally, genetic analyses with transgenes expressing a genomic pmARI12:ARI12-GFP construct confirm the epistatic interaction between COP1 and ARI12 in growth responses to high fluence rate UV-B. PMID:25817546

  2. The ubiquitin ligase APC/CCdh1 puts the brakes on DNA-end resection

    PubMed Central

    Lafranchi, Lorenzo; Sartori, Alessandro A

    2015-01-01

    DNA double-strand breaks (DSBs) are highly deleterious lesions and their misrepair can promote genomic instability, a hallmark of cancer. DNA-end resection is a cell cycle-regulated mechanism that is required for the faithful repair of DSBs. We recently discovered that the anaphase-promoting complex/cyclosome-Cdh1 (APC/CCdh1) ubiquitin ligase is responsible for the timely degradation of CtBP-interacting protein (CtIP), a key DNA-end resection factor, providing a new layer of regulation of DSB repair in human cells. PMID:27308488

  3. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase.

    PubMed

    Schumacher, Dominik; Helma, Jonas; Mann, Florian A; Pichler, Garwin; Natale, Francesco; Krause, Eberhard; Cardoso, M Cristina; Hackenberger, Christian P R; Leonhardt, Heinrich

    2015-11-01

    A novel chemoenzymatic approach for simple and fast site-specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin-derived recognition sequence (Tub-tag). This novel strategy enables a broad range of high-yielding and fast chemoselective C-terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site-specific labeling of nanobodies, GFP, and ubiquitin. PMID:26404067

  4. Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4.

    PubMed

    Xu, Yingqi; Plechanovová, Anna; Simpson, Peter; Marchant, Jan; Leidecker, Orsolya; Kraatz, Sebastian; Hay, Ronald T; Matthews, Steve J

    2014-01-01

    The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer. PMID:24969970

  5. Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4

    PubMed Central

    Xu, Yingqi; Plechanovová, Anna; Simpson, Peter; Marchant, Jan; Leidecker, Orsolya; Kraatz, Sebastian; Hay, Ronald T.; Matthews, Steve J.

    2014-01-01

    The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer. PMID:24969970

  6. RMND5 from Xenopus laevis Is an E3 Ubiquitin-Ligase and Functions in Early Embryonic Forebrain Development

    PubMed Central

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K.; Menssen, Ruth; Wolf, Dieter H.; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development. PMID:25793641

  7. Development of a novel immunochromatographic assay for rapid detection of VanA ligase-producing vancomycin-resistant enterococci.

    PubMed

    Ji, Gil Yong; Song, Hyung Geun; Son, Bo Ra; Hong, Seung Bok; Kim, Jong Wan; Shin, Kyeong Seob

    2014-03-28

    We developed a novel immunochromatographic assay (ICA) (EZ-Step VanA rapid kit; Dinona, Korea) for the detection of VanA ligase from vancomycin-resistant enterococci (VRE). Of eight monoclonal antibodies screened by ELISAs, the VanA ligase ICA constructed with 1H9 plus 3G11 showed the greatest reactivity. The detection limit of the kit was 6.3 × 10(6) CFU per test. Of 127 vancomycin-resistant microorganisms, 100 vanA VRE were positive in the VanA ligase ICA, and 27 non-vanA vancomycin-resistant isolates were negative. These results were consistent with those of the PCR analyses. Thus, our ICA is a reliable and easy-to-use immunological assay for detecting VanA-producing VRE in clinical laboratories. PMID:24346470

  8. Homeostatic defects in B cells deficient in the E3 ubiquitin ligase ARF-BP1 are restored by enhanced expression of MYC

    PubMed Central

    Qi, Chen-Feng; Zhang, Ruihua; Sun, Jiafang; Li, Zhaoyang; Shin, Dong-Mi; Wang, Hongsheng; Kovalchuk, Alexander L.; Sakai, Tomomi; Xiong, Huabao; Kon, Ning; Gu, Wei; Morse, Herbert C.

    2014-01-01

    The E3 ligase ARF-BP1 governs the balance of life and death decisions by directing the degradation of p53 and enhancing the transcriptional activity of MYC. We find B cells selectively deficient in ARF-BP1 have many defects in developing and mature B cells associated with increased expression of p53 and reduced expression of Myc. Overexpression of Myc results in suppression of p53 and complete reversal of defects induced by ARF-BP1 deficiency. These findings indicate that the dynamic balance between MYC and p53 required for normal B cell maturation and function is finely tuned and critically dependent on the activities of ARF-BP1. PMID:24199708

  9. The Role of E3 Ubiquitin Ligase Cbl Proteins in β-Elemene Reversing Multi-Drug Resistance of Human Gastric Adenocarcinoma Cells

    PubMed Central

    Zhang, Ye; Mu, Xiao-Dong; Li, En-Zhe; Luo, Ying; Song, Na; Qu, Xiu-Juan; Hu, Xue-Jun; Liu, Yun-Peng

    2013-01-01

    Recent studies indicate that β-elemene, a compound isolated from the Chinese herbal medicine Curcuma wenyujin, is capable of reversing tumor MDR, although the mechanism remains elusive. In this study, β-Elemene treatment markedly increased the intracellular accumulation of doxorubicin (DOX) and rhodamine 123 in both K562/DNR and SGC7901/ADR cells and significantly inhibited the expression of P-gp. Treatment of SGC7901/ADR cells with β-elemene led to downregulation of Akt phosphorylation and significant upregulation of the E3 ubiquitin ligases, c-Cbl and Cbl-b. Importantly, β-elemene significantly enhanced the anti-tumor activity of DOX in nude mice bearing SGC7901/ADR xenografts. Taken together, our results suggest that β-elemene may target P-gp-overexpressing leukemia and gastric cancer cells to enhance the efficacy of DOX treatment. PMID:23665906

  10. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate-cysteine ligase subunits.

    PubMed

    Sikalidis, Angelos K; Mazor, Kevin M; Lee, Jeong-In; Roman, Heather B; Hirschberger, Lawrence L; Stipanuk, Martha H

    2014-05-01

    Using HepG2/C3A cells and MEFs, we investigated whether induction of GSH synthesis in response to sulfur amino acid deficiency is mediated by the decrease in cysteine levels or whether it requires a decrease in GSH levels per se. Both the glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunit mRNA levels were upregulated in response to a lack of cysteine or other essential amino acids, independent of GSH levels. This upregulation did not occur in MEFs lacking GCN2 (general control non-derepressible 2, also known as eIF2α kinase 4) or in cells expressing mutant eIF2α lacking the eIF2α kinase Ser(51) phosphorylation site, indicating that expression of both GCLC and GCLM was mediated by the GCN2/ATF4 stress response pathway. Only the increase in GCLM mRNA level, however, was accompanied by a parallel increase in protein expression, suggesting that the enhanced capacity for GSH synthesis depended largely on increased association of GCLC with its regulatory subunit. Upregulation of both GCLC and GLCM mRNA levels in response to cysteine deprivation was dependent on new protein synthesis, which is consistent with expression of GCLC and GCLM being mediated by proteins whose synthesis depends on activation of the GCN2/ATF4 pathway. Our data suggest that the regulation of GCLC expression may be mediated by changes in the abundance of transcriptional regulators, whereas the regulation of GCLM expression may be mediated by changes in the abundance of mRNA stabilizing or destabilizing proteins. Upregulation of GCLM levels in response to low cysteine levels may serve to protect the cell in the face of a future stress requiring GSH as an antioxidant or conjugating/detoxifying agent. PMID:24557597

  11. Upregulation of the E3 ligase NEDD4-1 by Oxidative Stress Degrades IGF-1 Receptor Protein in Neurodegeneration

    PubMed Central

    Kwak, Young-Don; Wang, Bin; Li, Jing Jing; Wang, Ruishan; Deng, Qiyue; Diao, Shiyong; Chen, Yaomin; Xu, Raymond; Masliah, Eliezer; Xu, Huaxi; Sung, Jung-Joon

    2012-01-01

    The importance of ubiquitin E3 ligases in neurodegeneration is being increasingly recognized. The crucial role of NEDD4-1 in neural development is well appreciated; however, its role in neurodegeneration remains unexplored. Herein, we report increased NEDD4-1 expression in the degenerated tissues of several major neurodegenerative diseases. Moreover, its expression is upregulated in cultured neurons in response to various neurotoxins, including zinc and hydrogen superoxide, via transcriptional activation likely mediated by the reactive oxygen species (ROS)-responsive FOXM1B. Reduced protein levels of the insulin-like growth factor receptor (IGF-1Rβ) were observed as a consequence of upregulated NEDD4-1 via the ubiquitin-proteasome system. Overexpression of a familial mutant form of superoxide dismutase 1 (SOD1) (G93A) in neuroblastoma cells resulted in a similar reduction of IGF-1Rβ protein. This inverse correlation between NEDD4-1 and IGF-1Rβ was also observed in the cortex and spinal cords of mutant (G93A) SOD1 transgenic mice at a presymptomatic age, which was similarly induced by in vivo-administered zinc in wild-type C57BL/6 mice. Furthermore, histochemistry reveals markedly increased NEDD4-1 immunoreactivity in the degenerating/degenerated motor neurons in the lumbar anterior horn of the spinal cord, suggesting a direct causative role for NEDD4-1 in neurodegeneration. Indeed, downregulation of NEDD4-1 by shRNA or overexpression of a catalytically inactive form rescued neurons from zinc-induced cell death. Similarly, neurons with a NEDD4-1 haplotype are more resistant to apoptosis, largely due to expression of higher levels of IGF-1Rβ.Together, our work identifies a novel molecular mechanism for ROS-upregulated NEDD4-1 and the subsequently reduced IGF-1Rβ signaling in neurodegeneration. PMID:22875931

  12. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate-cysteine ligase subunits

    PubMed Central

    Sikalidis, Angelos K.; Mazor, Kevin M.; Lee, Jeong-In; Roman, Heather B.; Hirschberger, Lawrence L.; Stipanuk, Martha H.

    2014-01-01

    Using HepG2/C3A cells and MEFs, we investigated whether induction of GSH synthesis in response to sulfur amino acid deficiency is mediated by the decrease in cysteine levels or whether it requires a decrease in GSH levels per se. Both the glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunit mRNA levels were upregulated in response to a lack of cysteine or other essential amino acids, independent of GSH levels. This upregulation did not occur in MEFs lacking GCN2 (general control non-derepressible 2, also known as eIF2α kinase 4) or in cells expressing mutant eIF2α lacking the eIF2α kinase Ser51 phosphorylation site, indicating that expression of both GCLC and GCLM was mediated by the GCN2/ATF4 stress response pathway. Only the increase in GCLM mRNA level, however, was accompanied by a parallel increase in protein expression, suggesting that the enhanced capacity for GSH synthesis depended largely on increased association of GCLC with its regulatory subunit. Upregulation of both GCLC and GLCM mRNA levels in response to cysteine deprivation was dependent on new protein synthesis, which is consistent with expression of GCLC and GCLM being mediated by proteins whose synthesis depends on activation of the GCN2/ATF4 pathway. Our data suggest that the regulation of GCLC expression may be mediated by changes in the abundance of transcriptional regulators, whereas the regulation of GCLM expression may be mediated by changes in the abundance of mRNA stabilizing or destabilizing proteins. Upregulation of GCLM levels in response to low cysteine levels may serve to protect the cell in the face of a future stress requiring GSH as an antioxidant or conjugating/detoxifying agent. PMID:24557597

  13. F-box only protein 9 is an E3 ubiquitin ligase of PPARγ

    PubMed Central

    Lee, Kyeong Won; Kwak, Soo Heon; Koo, Young Do; Cho, Yun-Kyung; Lee, Hak Mo; Jung, Hye Seung; Cho, Young Min; Park, Young Joo; Chung, Sung Soo; Park, Kyong Soo

    2016-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a critical regulator of carbohydrate and lipid metabolism, adipocyte differentiation and inflammatory response. Post-translational modification of PPARγ and its degradation involve several pathways, including the ubiquitin–proteasome system. Here, we identified F-box only protein 9 (FBXO9) as an E3 ubiquitin ligase of PPARγ. We screened interacting partners of PPARγ using immunoprecipitation and mass spectrometric analysis and identified FBXO9 as an E3 ubiquitin ligase of PPARγ. FBXO9 directly interacted with PPARγ through the activation function-1 domain and ligand-binding domain. FBXO9 decreased the protein stability of PPARγ through induction of ubiquitination. We found that the F-box motif of FBXO9 was required for its ubiquitination function. The activity of PPARγ was significantly decreased by FBXO9 overexpression. Furthermore, FBXO9 overexpression in 3T3-L1 adipocytes resulted in decreased levels of endogenous PPARγ and suppression of adipogenesis. These results suggest that FBXO9 is an important enzyme that regulates the stability and activity of PPARγ through ubiquitination. PMID:27197753

  14. PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation.

    PubMed

    Sargent, Graeme; van Zutphen, Tim; Shatseva, Tatiana; Zhang, Ling; Di Giovanni, Valeria; Bandsma, Robert; Kim, Peter Kijun

    2016-09-12

    Peroxisomes are metabolic organelles necessary for anabolic and catabolic lipid reactions whose numbers are highly dynamic based on the metabolic need of the cells. One mechanism to regulate peroxisome numbers is through an autophagic process called pexophagy. In mammalian cells, ubiquitination of peroxisomal membrane proteins signals pexophagy; however, the E3 ligase responsible for mediating ubiquitination is not known. Here, we report that the peroxisomal E3 ubiquitin ligase peroxin 2 (PEX2) is the causative agent for mammalian pexophagy. Expression of PEX2 leads to gross ubiquitination of peroxisomes and degradation of peroxisomes in an NBR1-dependent autophagic process. We identify PEX5 and PMP70 as substrates of PEX2 that are ubiquitinated during amino acid starvation. We also find that PEX2 expression is up-regulated during both amino acid starvation and rapamycin treatment, suggesting that the mTORC1 pathway regulates pexophagy by regulating PEX2 expression levels. Finally, we validate our findings in vivo using an animal model. PMID:27597759

  15. Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase.

    PubMed Central

    Lahav-Baratz, S; Sudakin, V; Ruderman, J V; Hershko, A

    1995-01-01

    Cyclin B/cdc2 is responsible both for driving cells into mitosis and for activating the ubiquitin-dependent degradation of mitotic cyclins near the end of mitosis, an event required for the completion of mitosis and entry into interphase of the next cell cycle. Previous work with cell-free extracts of rapidly dividing clam embryos has identified two specific components required for the ubiquitination of mitotic cyclins: E2-C, a cyclin-selective ubiquitin carrier protein that is constitutively active during the cell cycle, and E3-C, a cyclin-selective ubiquitin ligase that purifies as part of a approximately 1500-kDa complex, termed the cyclosome, and which is active only near the end of mitosis. Here, we have separated the cyclosome from its ultimate upstream activator, cdc2. The mitotic, active form of the cyclosome can be inactivated by incubation with a partially purified, endogenous okadaic acid-sensitive phosphatase; addition of cdc2 restores activity to the cyclosome after a lag that reproduces that seen previously in intact cells and in crude extracts. These results demonstrate that activity of cyclin-ubiquitin ligase is controlled by reversible phosphorylation of the cyclosome complex. Images Fig. 3 PMID:7568122

  16. Roles of E3 ubiquitin ligases in cell adhesion and migration.

    PubMed

    Huang, Cai

    2010-01-01

    Recent studies have demonstrated that a number of E3 ubiquitin ligases, including Cbl, Smurf1, Smurf2, HDM2, BCA2, SCF(beta-TRCP) and XRNF185, play important roles in cell adhesion and migration. Cbl negatively regulates cell adhesion via alpha integrin and Rap1 and inhibits actin polymerization by ubiquitinating mDab1 and WAVE2. Smurf1 regulates cell migration through ubiquitination of RhoA, talin head domain and hPEM2, while Smurf2 ubiquitinates Smurf1, TGFbeta type I receptor and RaplB to modulate cell migration and adhesion. HDM2 negatively regulates cell migration by targeting NFAT (a transcription factor) for ubiquitination and degradation, while SCF(beta-TRCP) ubiquitinates Snail (a transcriptional repressor of E-cadherin) to inhibit cell migration. TRIM32 promotes cell migration through ubiquitination of Abl interactor 2 (Abi2), a tumor suppressor. RNF5 and XRNF185 modulate cell migration by ubiquitinating paxillin. Thus, these E3 ubiquitin ligases regulate cell adhesion and (or) migration through ubiquitination of their specific substrates. PMID:20009572

  17. RAD5a ubiquitin ligase is involved in ubiquitination of Arabidopsis thaliana proliferating cell nuclear antigen.

    PubMed

    Strzalka, Wojciech; Bartnicki, Filip; Pels, Katarzyna; Jakubowska, Agata; Tsurimoto, Toshiki; Tanaka, Katsunori

    2013-02-01

    The proliferating cell nuclear antigen (PCNA) is post-translationally modified by ubiquitin in yeast and mammalian cells. It is widely accepted that in yeast mono- and polyubiquitinated PCNA is involved in distinct pathways of DNA postreplication repair. This study showed an interaction between plant ubiquitin and PCNA in the plant cell. Using different approaches, it was demonstrated that Arabidopsis RAD5a ubiquitin ligase is involved in the post-translational modification of plant PCNA. A detailed analysis of the properties of selected Arabidopsis ubiquitin-conjugating enzymes (AtUBC) has shown that a plant homologue of yeast RAD6 (AtUBC2) is sufficient to monoubiquitinate AtPCNA in the absence of ubiquitin ligase. Using different combinations of selected AtUBC proteins together with AtRAD5a, it was demonstrated that plants have potential to use different pathways to ubiquitinate PCNA. The analysis of Arabidopsis PCNA1 and PCNA2 did not demonstrate substantial differences in the ubiquitination pattern between these two proteins. The major ubiquitination target of Arabidopsis PCNA, conserved in eukaryotes, is lysine 164. Taken together, the presented results clearly demonstrate the involvement of Arabidopsis UBC and RAD5a proteins in the ubiquitination of plant PCNA at lysine 164. The data show the complexity of the plant ubiquitination system and open new questions about its regulation in the plant cell. PMID:23314815

  18. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    PubMed Central

    Penas, Clara; Ramachandran, Vimal; Ayad, Nagi George

    2011-01-01

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy. PMID:22655255

  19. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide

    PubMed Central

    Fischer, Eric S.; Böhm, Kerstin; Lydeard, John R.; Yang, Haidi; Stadler, Michael B.; Cavadini, Simone; Nagel, Jane; Serluca, Fabrizio; Acker, Vincent; Lingaraju, Gondichatnahalli M.; Tichkule, Ritesh B.; Schebesta, Michael; Forrester, William C.; Schirle, Markus; Hassiepen, Ulrich; Ottl, Johannes; Hild, Marc; Beckwith, Rohan E. J.; Harper, J. Wade; Jenkins, Jeremy L.; Thomä, Nicolas H.

    2015-01-01

    In the 1950s the drug thalidomide administered as a sedative to pregnant women led to the birth of thousands of children with multiple defects. Despite its teratogenicity, thalidomide and its derivatives lenalidomide and pomalidomide (together known as Immunomodulatory Drugs: IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-dysplasia. IMiDs target the CUL4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase and promote the ubiquitination of Ikaros/Aiolos transcription factors by CRL4CRBN. Here we present the crystal structure of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes CRBN as a CRL4CRBN substrate receptor, which enantioselectively binds IMiDs. Through an unbiased screen we identify the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4CRBN. Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4CRBN when recruiting Ikaros/Aiolos for degradation. This dual activity implies that small molecules can principally modulate a ligase to up- or down-regulate the ubiquitination of proteins. PMID:25043012

  20. MDM2 Inhibits Axin-Induced p53 Activation Independently of its E3 Ligase Activity.

    PubMed

    He, Ying; Lian, Guili; Lin, Shuyong; Ye, Zhiyun; Li, Qinxi

    2013-01-01

    MDM2 plays a crucial role in negatively regulating the functions of tumor suppressor p53. Here we show that MDM2 can inhibit Axin-stimulated p53-dependent apoptosis by suppressing p53 phosphorylation at Ser 46 and apoptosis-related p53 transactivational activity. Interestingly, the ubiquitin E3 ligase activity of MDM2 is not required for this inhibitory effect. Mechanically, either wildtype MDM2 or its E3-dead mutant, disrupts the Axin-based HIPK2/p53 complex formation by blocking the binding of p53 and HIPK2 to Axin. MDM2Δp53, a deletion mutant that lacks p53 binding domain fails to exert the inhibitory effect, demonstrating that the interaction of MDM2 and p53, but not its E3 ligase activity toward p53 plays key role in suppressing Axin-stimulated p53 activation. Our results thus have revealed a novel aspect of the mechanism by which MDM2 regulates p53 activities. PMID:23826318

  1. SpyLigase peptide–peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture

    PubMed Central

    Fierer, Jacob O.; Veggiani, Gianluca; Howarth, Mark

    2014-01-01

    Individual proteins can now often be modified with atomic precision, but there are still major obstacles to connecting proteins into larger assemblies. To direct protein assembly, ideally, peptide tags would be used, providing the minimal perturbation to protein function. However, binding to peptides is generally weak, so assemblies are unstable over time and disassemble with force or harsh conditions. We have recently developed an irreversible protein–peptide interaction (SpyTag/SpyCatcher), based on a protein domain from Streptococcus pyogenes, that locks itself together via spontaneous isopeptide bond formation. Here we develop irreversible peptide–peptide interaction, through redesign of this domain and genetic dissection into three parts: a protein domain termed SpyLigase, which now ligates two peptide tags to each other. All components expressed efficiently in Escherichia coli and peptide tags were reactive at the N terminus, at the C terminus, or at internal sites. Peptide–peptide ligation enabled covalent and site-specific polymerization of affibodies or antibodies against the tumor markers epidermal growth factor receptor (EGFR) and HER2. Magnetic capture of circulating tumor cells (CTCs) is one of the most promising approaches to improve cancer prognosis and management, but CTC capture is limited by inefficient recovery of cells expressing low levels of tumor antigen. SpyLigase-assembled protein polymers made possible the isolation of cancerous cells expressing lower levels of tumor antigen and should have general application in enhancing molecular capture. PMID:24639550

  2. XLF-Cernunnos promotes DNA ligase IV-XRCC4 re-adenylation following ligation.

    PubMed

    Riballo, Enriqueta; Woodbine, Lisa; Stiff, Thomas; Walker, Sarah A; Goodarzi, Aaron A; Jeggo, Penny A

    2009-02-01

    XLF-Cernunnos (XLF) is a component of the DNA ligase IV-XRCC4 (LX) complex, which functions during DNA non-homologous end joining (NHEJ). Here, we use biochemical and cellular approaches to probe the impact of XLF on LX activities. We show that XLF stimulates adenylation of LX complexes de-adenylated by pyrophosphate or following LX decharging during ligation. XLF enhances LX ligation activity in an ATP-independent and dependent manner. ATP-independent stimulation can be attributed to enhanced end-bridging. Whilst ATP alone fails to stimulate LX ligation activity, addition of XLF and ATP promotes ligation in a manner consistent with XLF-stimulated readenylation linked to ligation. We show that XLF is a weakly bound partner of the tightly associated LX complex and, unlike XRCC4, is dispensable for LX stability. 2BN cells, which have little, if any, residual XLF activity, show a 3-fold decreased ability to repair DNA double strand breaks covering a range of complexity. These findings strongly suggest that XLF is not essential for NHEJ but promotes LX adenylation and hence ligation. We propose a model in which XLF, by in situ recharging DNA ligase IV after the first ligation event, promotes double stranded ligation by a single LX complex. PMID:19056826

  3. The Ubiquitin Ligase CBLC Maintains the Network Organization of the Golgi Apparatus

    PubMed Central

    Chia, Joanne; Boey, Adrian; Gunko, Natalia V.; Bard, Frederic

    2015-01-01

    The Golgi apparatus plays a pivotal role in the sorting and post-translational modifications of secreted and membrane proteins. In mammalian cells, the Golgi is organized in stacks of cisternae linked together to form a network with a ribbon shape. Regulation of Golgi ribbon formation is poorly understood. Here we find in an image-based RNAi screen that depletion of the ubiquitin-ligase CBLC induces Golgi fragmentation. Depletions of the close homologues CBL and CBLB do not induce any visible defects. In CBLC-depleted cells, Golgi stacks appear relatively unperturbed at both the light and electron microscopy levels, suggesting that CBLC controls mostly network organization. CBLC partially localizes on Golgi membranes and this localization is enhanced after activation of the SRC kinase. Inhibition of SRC reverts CBLC depletion effects, suggesting interplay between the two. CBLC’s regulation of Golgi network requires its ubiquitin ligase activity. However, SRC levels are not significantly affected by CBLC, and CBLC knockdown does not phenocopy SRC activation, suggesting that CBLC’s action at the Golgi is not direct downregulation of SRC. Altogether, our results demonstrate a role of CBLC in regulating Golgi ribbon by antagonizing the SRC tyrosine kinase. PMID:26393512

  4. Targeting quantum dots to surface proteins in living cells with biotin ligase

    NASA Astrophysics Data System (ADS)

    Howarth, Mark; Takao, Keizo; Hayashi, Yasunori; Ting, Alice Y.

    2005-05-01

    Escherichia coli biotin ligase site-specifically biotinylates a lysine side chain within a 15-amino acid acceptor peptide (AP) sequence. We show that mammalian cell surface proteins tagged with AP can be biotinylated by biotin ligase added to the medium, while endogenous proteins remain unmodified. The biotin group then serves as a handle for targeting streptavidin-conjugated quantum dots (QDs). This labeling method helps to address the two major deficiencies of antibody-based labeling, which is currently the most common method for targeting QDs to cells: the size of the QD conjugate after antibody attachment and the instability of many antibody-antigen interactions. To demonstrate the versatility of our method, we targeted QDs to cell surface cyan fluorescent protein and epidermal growth factor receptor in HeLa cells and to -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in neurons. Labeling requires only 2 min, is extremely specific for the AP-tagged protein, and is highly sensitive. We performed time-lapse imaging of single QDs bound to AMPA receptors in neurons, and we compared the trafficking of different AMPA receptor subunits by using two-color pulse-chase labeling. BirA | labeling | streptavidin | glutamate receptor | single molecule

  5. Cytoplasmic CUL9/PARC ubiquitin ligase is a tumor suppressor and promotes p53-dependent apoptosis

    PubMed Central

    Pei, Xin-Hai; Bai, Feng; Li, Zhijun; Smith, Matthew D.; Whitewolf, Gabrielle; Jin, Ran; Xiong, Yue

    2011-01-01

    A wide range of cell stresses, including DNA damage, signal to p53 through post-translational modification of p53. The cytoplasmic functions of p53 are emerging as an important constituent of p53’s role in tumor suppression. Here we report that deletion of the Cul9 (formerly Parc) gene, which encodes an E3 ubiquitin ligase that binds to p53 and localizes in the cytoplasm, resulted in spontaneous tumor development, accelerated Eμ-Myc-induced lymphomagenesis and rendered mice susceptible to carcinogenesis. Cul9-p53 double mutant mice exhibited indistinguishable tumor phenotypes as p53 single mutant mice, indicating that the function of Cul9 in tumor suppression is largely mediated by p53. Deletion of Cul9 had no significant effect on cell cycle progression, but attenuated DNA damage-induced apoptosis. Ectopic expression of wild-type CUL9, but not a point mutant CUL9 deficient in p53 binding, promotes apoptosis. These results demonstrate CUL9 as a potential p53 activating E3 ligase in the cytoplasm. PMID:21487039

  6. Detection of low abundant mutations in DNA using single-molecule FRET and ligase detection reactions

    NASA Astrophysics Data System (ADS)

    Wabuyele, Musundi B.; Farquar, Hannah; Stryjewski, Wieslaw J.; Hammer, Robert P.; Soper, Steven A.; Cheng, Yu-Wei; Barany, Francis

    2003-06-01

    New strategies for analyzing molecular signatures of disease states in real time using single pair fluorescence resonance energy transfer (spFRET) were developed to rapidly detect point mutations in unamplified genomic DNA (DNA diagnostics). The assay was carried out using allele-specific primers, which flanked the point mutation in the target gene fragment and were ligated using a thremostable ligase enzyme only when the genomic DNA carried this mutation (ligase detection reaction, LDR). We coupled LDR with spFRET to identify a single base mutation in codon 12 of a K-ras oncogene that has high diagnostic value for colorectal cancers. A simple diode laser-based fluorescence system capable of interrogating single fluorescent molecules undergoing FRET was used to detect photon bursts generated from the MB probes formed upon ligation. We demonstrated the ability to rapidly discriminate single base differences in heterogeneous populations having as little as 600 copies of human genomic DNA without PCR amplification. Single base difference in the K-ras gene was discriminated in less than 5 min at a frequency of 1 mutant DNA per 10 normals using only a single LDR thermal cycle of genomic DNA. Real time analyses of point mutations were also performed in PMMA microfluidic device.

  7. An E3 ubiquitin ligase, ERECT LEAF1, functions in brassinosteroid signaling of rice

    PubMed Central

    Sakamoto, Tomoaki; Kitano, Hidemi; Fujioka, Shozo

    2013-01-01

    A spontaneous rice mutant, erect leaf1 (elf1–1), produced a dwarf phenotype with erect leaves and short grains. Physiological analyses suggested that elf1–1 is brassinosteroid-insensitive, so we hypothesized that ELF1 encodes a positive regulator of brassinosteroid signaling. ELF1, identified by means of positional cloning, encodes a protein with both a U-box domain and ARMADILLO (ARM) repeats. U-box proteins have been shown to function as E3 ubiquitin ligases; in fact, ELF1 possessed E3 ubiquitin ligase activity in vitro. However, ELF1 itself does not appear to be polyubiquitinated. Mutant phenotypes of 2 more elf1 alleles indicate that the entire ARM repeats is indispensable for ELF1 activity. These results suggest that ELF1 ubiquitinates target proteins through an interaction mediated by ARM repeats. Similarities in the phenotypes of elf1 and d61 mutants (mutants of brassinosteroid receptor gene OsBRI1), and in the regulation of ELF1 and OsBRI1 expression, imply that ELF1 functions as a positive regulator of brassinosteroid signaling in rice. PMID:24299927

  8. Characterization of the mammalian family of DCN-type NEDD8 E3 ligases

    PubMed Central

    Keuss, Matthew J.; Thomas, Yann; Mcarthur, Robin; Wood, Nicola T.; Knebel, Axel; Kurz, Thimo

    2016-01-01

    ABSTRACT Cullin-RING ligases (CRL) are ubiquitin E3 enzymes that bind substrates through variable substrate receptor proteins and are activated by attachment of the ubiquitin-like protein NEDD8 to the cullin subunit. DCNs are NEDD8 E3 ligases that promote neddylation. Mammalian cells express five DCN-like (DCNL) proteins but little is known about their specific functions or interaction partners. We found that DCNLs form stable stoichiometric complexes with CAND1 and cullins that can only be neddylated in the presence of a substrate adaptor. These CAND–cullin–DCNL complexes might represent ‘reserve’ CRLs that can be rapidly activated when needed. We further found that all DCNLs interact with most cullin subtypes, but that they are probably responsible for the neddylation of different subpopulations of any given cullin. This is consistent with the fact that the subcellular localization of DCNLs in tissue culture cells differs and that they show unique tissue-specific expression patterns in mice. Thus, the specificity between DCNL-type NEDD8 E3 enzymes and their cullin substrates is only apparent in well-defined physiological contexts and related to their subcellular distribution and restricted expression. PMID:26906416

  9. The SUMO (Small Ubiquitin-like Modifier) Ligase PIAS3 Primes ATR for Checkpoint Activation.

    PubMed

    Wu, Ching-Shyi; Zou, Lee

    2016-01-01

    The maintenance of genomic stability relies on the concerted action of DNA repair and DNA damage signaling pathways. The PIAS (protein inhibitor of activated STAT) family of SUMO (small ubiquitin-like modifier) ligases has been implicated in DNA repair, but whether it plays a role in DNA damage signaling is still unclear. Here, we show that the PIAS3 SUMO ligase is important for activation of the ATR (ataxia telangiectasia and Rad3 related)-regulated DNA damage signaling pathway. PIAS3 is the only member of the PIAS family that is indispensable for ATR activation. In response to different types of DNA damage and replication stress, PIAS3 plays multiple roles in ATR activation. In cells treated with camptothecin (CPT), PIAS3 contributes to formation of DNA double-stranded breaks. In UV (ultraviolet light)- or HU (hydroxyurea)-treated cells, PIAS3 is required for efficient ATR autophosphorylation, one of the earliest events during ATR activation. Although PIAS3 is dispensable for ATRIP (ATR-interacting protein) SUMOylation and the ATR-ATRIP interaction, it is required for maintaining the basal kinase activity of ATR prior to DNA damage. In the absence of PIAS3, ATR fails to display normal kinase activity after DNA damage, which accompanies with reduced phosphorylation of ATR substrates. Together, these results suggest that PIAS3 primes ATR for checkpoint activation by sustaining its basal kinase activity, revealing a new function of the PIAS family in DNA damage signaling. PMID:26565033

  10. CUL4A ubiquitin ligase: a promising drug target for cancer and other human diseases

    PubMed Central

    Sharma, Puneet; Nag, Alo

    2014-01-01

    The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed. PMID:24522884

  11. Ubiquitin ligase Siah2 regulates RevErbα degradation and the mammalian circadian clock

    PubMed Central

    DeBruyne, Jason P.; Baggs, Julie E.; Sato, Trey K.; Hogenesch, John B.

    2015-01-01

    Regulated degradation of proteins by the proteasome is often critical to their function in dynamic cellular pathways. The molecular clock underlying mammalian circadian rhythms relies on the rhythmic expression and degradation of its core components. However, because the tools available for identifying the mechanisms underlying the degradation of a specific protein are limited, the mechanisms regulating clock protein degradation are only beginning to be elucidated. Here we describe a cell-based functional screening approach designed to quickly identify the ubiquitin E3 ligases that induce the degradation of potentially any protein of interest. We screened the nuclear hormone receptor RevErbα (Nr1d1), a key constituent of the mammalian circadian clock, for E3 ligases that regulate its stability and found Seven in absentia2 (Siah2) to be a key regulator of RevErbα stability. Previously implicated in hypoxia signaling, Siah2 overexpression destabilizes RevErbα/β, and siRNA depletion of Siah2 stabilizes endogenous RevErbα. Moreover, Siah2 depletion delays circadian degradation of RevErbα and lengthens period length. These results demonstrate the utility of functional screening approaches for identifying regulators of protein stability and reveal Siah2 as a previously unidentified circadian clockwork regulator that mediates circadian RevErbα turnover. PMID:26392558

  12. Hippo Stabilises Its Adaptor Salvador by Antagonising the HECT Ubiquitin Ligase Herc4

    PubMed Central

    Aerne, Birgit L.; Gailite, Ieva; Sims, David; Tapon, Nicolas

    2015-01-01

    Signalling through the Hippo (Hpo) pathway involves a kinase cascade, which leads to the phosphorylation and inactivation of the pro-growth transcriptional co-activator Yorkie (Yki). Despite the identification of a large number of pathway members and modulators, our understanding of the molecular events that lead to activation of Hpo and the downstream kinase Warts (Wts) remain incomplete. Recently, targeted degradation of several Hpo pathway components has been demonstrated as a means of regulating pathway activity. In particular, the stability of scaffold protein Salvador (Sav), which is believed to promote Hpo/Wts association, is crucially dependent on its binding partner Hpo. In a cell-based RNAi screen for ubiquitin regulators involved in Sav stability, we identify the HECT domain protein Herc4 (HECT and RLD domain containing E3 ligase) as a Sav E3 ligase. Herc4 expression promotes Sav ubiquitylation and degradation, while Herc4 depletion stabilises Sav. Interestingly, Hpo reduces Sav/Herc4 interaction in a kinase-dependent manner. This suggests the existence of a positive feedback loop, where Hpo stabilises its own positive regulator by antagonising Herc4-mediated degradation of Sav. PMID:26125558

  13. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain

    NASA Technical Reports Server (NTRS)

    Jaeger, L.; Wright, M. C.; Joyce, G. F.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 10(16) different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3',5'-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3' hydroxyl and the other a 5' triphosphate. Ligation occurs in the context of a Watson-Crick duplex, with a catalytic rate of 0.26 min(-1) under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.

  14. 3-Hydroxybenzoate:coenzyme A ligase from cell cultures of Centaurium erythraea: isolation and characterization.

    PubMed

    Barillas, W; Beerhues, L

    2000-02-01

    In xanthone biosynthesis, 3-hydroxybenzoate:coenzyme A ligase (3HBL) supplies the starter substrate for the formation of an intermediate benzophenone. 3HBL from cell cultures of the medicinal plant Centaurium erythraea was purified to apparent homogeneity using a seven-step-procedure. The enzyme was an AMP-forming CoA ligase with a Km = 14.7 microM for 3-hydroxybenzoic acid, 8.5 microM for coenzyme A and 229 microM for ATP. The pH and temperature optima were 7.5 and 35 degrees C, respectively. In SDS-PAGE, two polypeptides of Mr 41,500 and 40,500 were detected. Both proteins were structurally related to each other as shown by tryptic digestion. Their N-termini were blocked. The difference in their apparent molecular masses could not be attributed to glycosylation. 3HBL had a native Mr of approx. 50,000 and is thus active as a monomer. PMID:10746747

  15. Human BRCA1-BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection.

    PubMed

    Densham, Ruth M; Garvin, Alexander J; Stone, Helen R; Strachan, Joanna; Baldock, Robert A; Daza-Martin, Manuel; Fletcher, Alice; Blair-Reid, Sarah; Beesley, James; Johal, Balraj; Pearl, Laurence H; Neely, Robert; Keep, Nicholas H; Watts, Felicity Z; Morris, Joanna R

    2016-07-01

    The opposing activities of 53BP1 and BRCA1 influence pathway choice in DNA double-strand-break repair. How BRCA1 counteracts the inhibitory effect of 53BP1 on DNA resection and homologous recombination is unknown. Here we identify the site of BRCA1-BARD1 required for priming ubiquitin transfer from E2∼ubiquitin and demonstrate that BRCA1-BARD1's ubiquitin ligase activity is required for repositioning 53BP1 on damaged chromatin. We confirm H2A ubiquitination by BRCA1-BARD1 and show that an H2A-ubiquitin fusion protein promotes DNA resection and repair in BARD1-deficient cells. BRCA1-BARD1's function in homologous recombination requires the chromatin remodeler SMARCAD1. SMARCAD1 binding to H2A-ubiquitin and optimal localization to sites of damage and activity in DNA repair requires its ubiquitin-binding CUE domains. SMARCAD1 is required for 53BP1 repositioning, and the need for SMARCAD1 in olaparib or camptothecin resistance is alleviated by 53BP1 loss. Thus, BRCA1-BARD1 ligase activity and subsequent SMARCAD1-dependent chromatin remodeling are critical regulators of DNA repair. PMID:27239795

  16. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression

    PubMed Central

    Chan, Chia-Hsin; Morrow, John Kenneth; Li, Chien-Feng; Gao, Yuan; Jin, Guoxiang; Moten, Asad; Stagg, Loren J.; Ladbury, John E.; Cai, Zhen; Xu, Dazhi; Logothetis, Christopher J.; Hung, Mien-Chie; Zhang, Shuxing; Lin, Hui-Kuan

    2013-01-01

    Skp2 E3 ligase is overexpressed in numerous human cancers and plays a critical role in cell cycle progression, senescence, metabolism, cancer progression and metastasis. In the present study, we identified a specific Skp2 inhibitor using high-throughput in silico screening of large and diverse chemical libraries. This Skp2 inhibitor selectively suppresses Skp2 E3 ligase activity, but not activity of other SCF complexes. It also phenocopies the effects observed upon genetic Skp2 deficiency, such as suppressing survival, Akt-mediated glycolysis as well as triggering p53-independent cellular senescence. Strikingly, we discovered a critical function of Skp2 in positively regulating cancer stem cell populations and self-renewal ability through genetic and pharmacological approaches. Notably, Skp2 inhibitor exhibits potent anti-tumor activities in multiple animal models and cooperates with chemotherapeutic agents to reduce cancer cell survival. Our study thus provides pharmacological evidence that Skp2 is a promising target for restricting cancer stem cell and cancer progression. PMID:23911321

  17. A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility.

    PubMed

    Indriolo, Emily; Goring, Daphne R

    2014-01-01

    Ubiquitination plays essential roles in the regulation of many processes in plants including pollen rejection in self-incompatible species. In the Brassicaceae (mustard family), self-incompatibility drives the rejection of self-pollen by preventing pollen hydration following pollen contact with the stigmatic surface. Self-pollen is recognized by a ligand-receptor pair: the pollen S-locus cysteine rich/S-locus protein 11 (SCR/SP11) ligand and the pistil S receptor kinase (SRK). Following self-pollen contact, the SCR/SP11 ligand on the pollen surface binds to SRK on the pistil surface, and the SRK-activated signaling pathway is initiated. This pathway includes the armadillo repeat containing 1 (ARC1) protein, a member of the plant U-box (PUB) family of E3 ubiquitin ligases. ARC1 is a functional E3 ligase and is required downstream of SRK for the self-incompatibility response. This mini review highlights our recent progress in establishing ARC1's conserved role in self-pollen rejection in Brassica and Arabidopsis species and discusses future research directions in this field. PMID:24847339

  18. Degringolade, a SUMO-targeted ubiquitin ligase, inhibits Hairy/Groucho-mediated repression.

    PubMed

    Abed, Mona; Barry, Kevin C; Kenyagin, Dorit; Koltun, Bella; Phippen, Taryn M; Delrow, Jeffrey J; Parkhurst, Susan M; Orian, Amir

    2011-04-01

    Transcriptional cofactors are essential for proper embryonic development. One such cofactor in Drosophila, Degringolade (Dgrn), encodes a RING finger/E3 ubiquitin ligase. Dgrn and its mammalian ortholog RNF4 are SUMO-targeted ubiquitin ligases (STUbLs). STUbLs bind to SUMOylated proteins via their SUMO interaction motif (SIM) domains and facilitate substrate ubiquitylation. In this study, we show that Dgrn is a negative regulator of the repressor Hairy and its corepressor Groucho (Gro/transducin-like enhancer (TLE)) during embryonic segmentation and neurogenesis, as dgrn heterozygosity suppresses Hairy mutant phenotypes and embryonic lethality. Mechanistically Dgrn functions as a molecular selector: it targets Hairy for SUMO-independent ubiquitylation that inhibits the recruitment of its corepressor Gro, without affecting the recruitment of its other cofactors or the stability of Hairy. Concomitantly, Dgrn specifically targets SUMOylated Gro for sequestration and antagonizes Gro functions in vivo. Our findings suggest that by targeting SUMOylated Gro, Dgrn serves as a molecular switch that regulates cofactor recruitment and function during development. As Gro/TLE proteins are conserved universal corepressors, this may be a general paradigm used to regulate the Gro/TLE corepressors in other developmental processes. PMID:21343912

  19. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis.

    PubMed

    Plechanovová, Anna; Jaffray, Ellis G; Tatham, Michael H; Naismith, James H; Hay, Ronald T

    2012-09-01

    Ubiquitin modification is mediated by a large family of specificity determining ubiquitin E3 ligases. To facilitate ubiquitin transfer, RING E3 ligases bind both substrate and a ubiquitin E2 conjugating enzyme linked to ubiquitin via a thioester bond, but the mechanism of transfer has remained elusive. Here we report the crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin. While the E2 contacts a single protomer of the RING, ubiquitin is folded back onto the E2 by contacts from both RING protomers. The carboxy-terminal tail of ubiquitin is locked into an active site groove on the E2 by an intricate network of interactions, resulting in changes at the E2 active site. This arrangement is primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate. PMID:22842904

  20. The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif.

    PubMed

    Yang, Shen-hsi; Sharrocks, Andrew D

    2010-05-01

    Protein modification by SUMO conjugation has emerged to be an important regulatory event. Recently, the mechanisms through which SUMO elicits its effects on target proteins have been elucidated. One of these is the noncovalent association between SUMO and coregulatory proteins via SUMO interaction motifs (SIMs). We therefore searched for additional binding proteins to elucidate how SUMO acts as a signal to potentiate novel noncovalent interactions with SUMO-binding proteins. We identified an E3 ligase, Pc2, as a SUMO-binding protein with two functionally distinct SIMs. Here, we focus on the role of SIM2 and demonstrate that it is crucial for many of the documented Pc2 functions, which converge on determining its E3 ligase activity. One role of SUMO binding in this context is the subnuclear partitioning of the active form of Ubc9 (SUMO approximately Ubc9) by Pc2. The significance of the SIM2-dependent functions of Pc2 is demonstrated in the control of the precise expression of lineage-specific genes during embryonic stem cell differentiation. PMID:20176810

  1. Synthesis of ATP derivatives of compounds of the mevalonate pathway (isopentenyl di- and triphosphate; geranyl di- and triphosphate, farnesyl di- and triphosphate, and dimethylallyl diphosphate) catalyzed by T4 RNA ligase, T4 DNA ligase and other ligases Potential relationship with the effect of bisphosphonates on osteoclasts.

    PubMed

    Sillero, Maria A Günther; de Diego, Anabel; Tavares, Janeth E F; Silva, Joana A D Catanho da; Pérez-Zúñiga, Francisco J; Sillero, Antonio

    2009-08-15

    Compounds of the mevalonate pathway containing a terminal di- or triphosphate (mev-PP or mev-PPP) were tested as substrates of several enzyme ligases (T4 RNA ligase, T4 DNA ligase, firefly luciferase and other ligases) for the synthesis of ATP derivatives of the mev-pppA or mev-ppppA type. T4 RNA ligase, in the presence of ATP and the substrates: geranyl, farnesyl or isopentenyl triphosphates, and geranyl, farnesyl, dimethylallyl or isopentenyl diphosphates, all at 0.3 mM concentration, catalyzed the synthesis of the corresponding ATP derivatives at a relative rate of activity of: 7.6+/-1.4 mU/mg or 100%; 39%; 42%; 24%; 18%; 12% and 6%, respectively. Inhibition (%) of the synthesis by excess of substrate (0.8 mM vs. 0.3 mM) was observed with farnesyl diphosphate (99%); farnesyl triphosphate (96%) and geranyl triphosphate (32%). V(max), K(m), K(cat) and K(cat)/K(m) values were also determined. The K(cat)/K(m) values calculated were for: farnesyl triphosphate, 166; geranyl triphosphate, 52.2; farnesyl diphosphate, 12.1; geranyl diphosphate, 8.6; isopentenyl triphosphate, 6.7; dimethylallyl diphosphate, 3.1 and isopentenyl diphosphate, 0.9. Similar results were obtained with T4 DNA ligase. The above-mentioned compounds were also substrates of firefly luciferase synthesizing the mev-pppA or mev-ppppA derivatives. In our hands, neither the acyl- or acetyl-CoA synthetases nor the ubiquiting activating enzyme (E1) catalyzed the synthesis of ATP derivatives of these compounds. The results here presented could be related with the mechanism of action of bisphosphonates on osteoclasts or tumor cells. PMID:19414000

  2. The E3 ligase APC/C(Cdh1) promotes ubiquitylation-mediated proteolysis of PAX3 to suppress melanocyte proliferation and melanoma growth.

    PubMed

    Cao, Juxiang; Dai, Xiangpeng; Wan, Lixin; Wang, Hongshen; Zhang, Jinfang; Goff, Philip S; Sviderskaya, Elena V; Xuan, Zhenyu; Xu, Zhixiang; Xu, Xiaowei; Hinds, Philip; Flaherty, Keith T; Faller, Douglas V; Goding, Colin R; Wang, Yongjun; Wei, Wenyi; Cui, Rutao

    2015-09-01

    The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/C(Cdh1)) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/C(Cdh1) may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)-induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/C(Cdh1) in melanocytes, and APC/C(Cdh1)-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase-deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/C(Cdh1) in melanocytes and that targeting PAX3 may be a strategy for treating melanoma. PMID:26329581

  3. Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions.

    PubMed

    Suh, Ji Yeon; Kim, Woo Taek

    2015-08-01

    Phosphate (Pi) remobilization in plants is critical to continuous growth and development. AtATL80 is a plasma membrane (PM)-localized RING E3 ubiquitin (Ub) ligase that belongs to the Arabidopsis Tóxicos en Levadura (ATL) family. AtATL80 was upregulated by long-term low Pi (0-0.02 mM KH2PO4) conditions in Arabidopsis seedlings. AtATL80-overexpressing transgenic Arabidopsis plants (35S:AtATL80-sGFP) displayed increased phosphorus (P) accumulation in the shoots and lower biomass, as well as reduced P-utilization efficiency (PUE) under high Pi (1 mM KH2PO4) conditions compared to wild-type plants. The loss-of-function atatl80 mutant line exhibited opposite phenotypic traits. The atatl80 mutant line bolted earlier than wild-type plants, whereas AtATL80-overexpressors bloomed significantly later and produced lower seed yields than wild-type plants under high Pi conditions. Thus, AtATL80 is negatively correlated not only with P content and PUE, but also with biomass and seed yield in Arabidopsis. In addition, AtATL80-overexpressors were significantly more sensitive to cold stress than wild-type plants, while the atatl80 mutant line exhibited an increased tolerance to cold stress. Taken together, our results suggest that AtATL80, a PM-localized ATL-type RING E3 Ub ligase, participates in the Pi mobilization and cold stress response as a negative factor in Arabidopsis. PMID:26086094

  4. Recognition mechanism of p63 by the E3 ligase Itch: novel strategy in the study and inhibition of this interaction.

    PubMed

    Bellomaria, Alessia; Barbato, Gaetano; Melino, Gerry; Paci, Maurizio; Melino, Sonia

    2012-10-01

    The HECT-containing E3 ubiquitin ligase Itch mediates the degradation of several proteins, including p63 and p73, involved in cell specification and fate. Itch contains four WW domains, which are essential for recognition on the target substrate, which contains a short proline-rich sequence. Several signaling complexes containing these domains have been associated with human diseases such as muscular dystrophy, Alzheimer's or Huntington's diseases. To gain further insight into the structural determinants of the Itch-WW2 domain, we investigated its interaction with p63. We assigned, by 3D heteronuclear NMR experiments, the backbone and side chains of the uniformly (13)C-(15)N-labeled Itch-WW2. In vitro interaction of Itch-WW2 domain with p63 was studied using its interactive p63 peptide, pep63. Pep63 is an 18-mer peptide corresponding to the region from 534-551 residue of p63, encompassing the PPxY motif that interacts with the Itch-WW domains, and we identified the residues involved in this molecular recognition. Moreover, here, a strategy of stabilization of the conformation of the PPxY peptide has been adopted, increasing the WW-ligand binding. We demonstrated that cyclization of pep63 leads to an increase of both the biological stability of the peptide and of the WW-ligand complex. Stable metal-binding complexes of the pep63 have been also obtained, and localized oxidative damage on Itch-WW2 domain has been induced, demonstrating the possibility of use of metal-pep63 complexes as models for the design of metal drugs to inhibit the Itch-WW-p63 recognition in vivo. Thus, our data suggest a novel strategy to study and inhibit the recognition mechanism of Itch E3-ligase. PMID:22935697

  5. Down-regulation of intestinal apical calcium entry channel TRPV6 by ubiquitin E3 ligase Nedd4-2.

    PubMed

    Zhang, Wei; Na, Tao; Wu, Guojin; Jing, Haiyan; Peng, Ji-Bin

    2010-11-19

    Nedd4-2 is an archetypal HECT ubiquitin E3 ligase that disposes target proteins for degradation. Because of the proven roles of Nedd4-2 in degradation of membrane proteins, such as epithelial Na(+) channel, we examined the effect of Nedd4-2 on the apical Ca(2+) channel TRPV6, which is involved in transcellular Ca(2+) transport in the intestine using the Xenopus laevis oocyte system. We demonstrated that a significant amount of Nedd4-2 protein was distributed to the absorptive epithelial cells in ileum, cecum, and colon along with TRPV6. When co-expressed in oocytes, Nedd4-2 and, to a lesser extent, Nedd4 down-regulated the protein abundance and Ca(2+) influx of TRPV6 and TRPV5, respectively. TRPV6 ubiquitination was increased, and its stability was decreased by Nedd4-2. The Nedd4-2 inhibitory effects on TRPV6 were partially blocked by proteasome inhibitor MG132 but not by the lysosome inhibitor chloroquine. The rate of TRPV6 internalization was not significantly altered by Nedd4-2. The HECT domain was essential to the inhibitory effect of Nedd4-2 on TRPV6 and to their association. The WW1 and WW2 domains interacted with TRPV6 terminal regions, and a disruption of the interactions by D204H and D376H mutations in the WW1 and WW2 domains increased TRPV6 ubiquitination and degradation. Thus, WW1 and WW2 may serve as a molecular switch to limit the ubiquitination of TRPV6 by the HECT domain. In conclusion, Nedd4-2 may regulate TRPV6 protein abundance in intestinal epithelia by controlling TRPV6 ubiquitination. PMID:20843805

  6. Comparison of a Ligase Chain Reaction-Based Assay and Cell Culture for Detection of Pharyngeal Carriage of Chlamydia trachomatis

    PubMed Central

    Winter, Andrew J.; Gilleran, Gerry; Eastick, Kirstine; Ross, Jonathan D. C.

    2000-01-01

    In 264 genitourinary medicine clinic attenders reporting recent fellatio, the prevalence of pharyngeal Chlamydia trachomatis determined by an expanded standard including cell culture and two in-house PCR tests was 1.5% in 194 women and zero in 70 men. The ligase chain reaction (Abbott LCx) had a specificity of 99.2% and a positive predictive value of 60%. PMID:10970416

  7. Discovery of Mdm2-MdmX E3 Ligase Inhibitors Using a Cell-Based Ubiquitination Assay

    PubMed Central

    Herman, Ariel G.; Hayano, Miki; Poyurovsky, Masha V.; Shimada, Kenichi; Skouta, Rachid; Prives, Carol; Stockwell, Brent R.

    2011-01-01

    E3 ubiquitin ligases are of interest as drug targets for their ability to regulate protein stability and function. The oncogene Mdm2 is an attractive E3 ligase to target, as it is the key negative regulator of the tumor suppressor p53, which controls the transcription of genes involved in cell fate. Overexpression of Mdm2 facilitates tumorigenesis by inactivating p53, and through p53-independent oncogenic effects. We developed a high-throughput cellular Mdm2 auto-ubiquitination assay, which we used to discover a class of small molecule Mdm2 ligase activity inhibitors. These compounds inhibit Mdm2 and p53 ubiquitination in cells, reduce viability of cells with wild-type p53, and synergize with DNA-damaging agents to cause cell death. We determined that these compounds effectively inhibit the E3 ligase activity of the Mdm2-MdmX hetero-complex. This mechanism may be exploitable to create a new class of anti-tumor agents. PMID:22586610

  8. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis

    PubMed Central

    Gu, Huiqiong; Yoshinari, Shigeo; Ghosh, Raka; Ignatochkina, Anna V.; Gollnick, Paul D.; Murakami, Katsuhiko S.; Ho, C. Kiong

    2016-01-01

    An ATP-dependent RNA ligase from Methanobacterium thermoautotrophicum (MthRnl) catalyzes intramolecular ligation of single-stranded RNA to form a closed circular RNA via covalent ligase-AMP and RNA-adenylylate intermediate. Here, we report the X-ray crystal structures of an MthRnl•ATP complex as well as the covalent MthRnl–AMP intermediate. We also performed structure-guided mutational analysis to survey the functions of 36 residues in three component steps of the ligation pathway including ligase-adenylylation (step 1), RNA adenylylation (step 2) and phosphodiester bond synthesis (step 3). Kinetic analysis underscored the importance of motif 1a loop structure in promoting phosphodiester bond synthesis. Alanine substitutions of Thr117 or Arg118 favor the reverse step 2 reaction to deadenylate the 5′-AMP from the RNA-adenylate, thereby inhibiting step 3 reaction. Tyr159, Phe281 and Glu285, which are conserved among archaeal ATP-dependent RNA ligases and are situated on the surface of the enzyme, are required for RNA binding. We propose an RNA binding interface of the MthRnl based on the mutational studies and two sulfate ions that co-crystallized at the active site cleft in the MthRnl–AMP complex. PMID:26896806

  9. Characterization of a novel RING-type ubiquitin E3 ligase GhRING2 differentially expressed in cotton fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome proteolysis pathway is responsible for the degradation of abnormal and short-lived proteins to regulate many important biochemical activities in eukaryotes. By employing affymetrix microarray analysis, we have identified a novel ubiquitin ligase E3 gene GhRING2 that is diffe...

  10. Length-dependent binding of human XLF to DNA and stimulation of XRCC4.DNA ligase IV activity.

    PubMed

    Lu, Haihui; Pannicke, Ulrich; Schwarz, Klaus; Lieber, Michael R

    2007-04-13

    An XRCC4-like factor, called XLF or Cernunnos, was recently identified as another important factor in the non-homologous DNA end joining (NHEJ) process. NHEJ is the major pathway for the repair of double-strand DNA breaks. The similarity in the putative secondary structures of XLF and XRCC4 as well as the association of XLF with XRCC4.DNA ligase IV in vivo suggested a role in the final ligation step of NHEJ. Here, we find that purified XLF directly interacts with purified XRCC4.DNA ligase IV complex and stimulates the ligase complex in a direct assay for ligation activity. Purified XLF has DNA binding activity, but this binding is dependent on DNA length in a manner most consistent with orientation of the C-terminal alpha helices parallel to the DNA helix. To better understand the function of XLF, we purified an XLF mutant (R57G), which was identified in patients with NHEJ deficiency and severe combined immunodeficiency. Surprisingly, the mutant protein retained its ability to stimulate XRCC4.DNA ligase IV but failed to translocate to the nucleus, and this appears to be the basis for the NHEJ defect in this patient. PMID:17317666

  11. Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We cloned the full length 4CL ortholog encoding 4-coumarate: coenzymeA ligase from kenaf (Hibiscus cannabiuns) using degenerate primers and RACE (rapid amplification of cDNA ends) systems. The 4CL is a key regulatory enzyme of the phenylpropanoid pathway that regulates the activation of cinnamic ac...

  12. Sorghum Brown midrib 2 (Bmr2) gene encodes the major 4-coumarate Coenzyme A ligase involved in lignin synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful modification of plant cell wall composition without compromising plant integrity is dependent on being able to modify the expression of specific genes, but can be very challenging when the target genes are members of multigene families. 4-Coumarate:CoA ligase (4CL) catalyzes the formatio...

  13. Physical and functional interaction of the HECT ubiquitin-protein ligases E6AP and HERC2.

    PubMed

    Kühnle, Simone; Kogel, Ulrike; Glockzin, Sandra; Marquardt, Andreas; Ciechanover, Aaron; Matentzoglu, Konstantin; Scheffner, Martin

    2011-06-01

    Deregulation of the ubiquitin-protein ligase E6AP contributes to the development of the Angelman syndrome and to cervical carcinogenesis suggesting that the activity of E6AP needs to be under tight control. However, how E6AP activity is regulated at the post-translational level under non-pathologic conditions is poorly understood. In this study, we report that the giant protein HERC2, which is like E6AP a member of the HECT family of ubiquitin-protein ligases, binds to E6AP. The interaction is mediated by the RCC1-like domain 2 of HERC2 and a region spanning amino acid residues 150-200 of E6AP. Furthermore, we provide evidence that HERC2 stimulates the ubiquitin-protein ligase activity of E6AP in vitro and within cells and that this stimulatory effect does not depend on the ubiquitin-protein ligase activity of HERC2. Thus, the data obtained indicate that HERC2 acts as a regulator of E6AP. PMID:21493713

  14. Purification, crystallization and preliminary crystallographic analysis of the biotin–protein ligase from Pyrococcus horikoshii OT3

    SciTech Connect

    Bagautdinov, Bagautdin; Kuroishi, Chizu; Sugahara, Mitsuaki; Kunishima, Naoki

    2005-02-01

    The biotin–protein ligase from P. horikoshii OT3 was overexpressed, purified, crystallized and cocrystallized with biotin, ADP and biotinyl-5′-AMP. The crystals belong to space group P2{sub 1} and diffract to beyond 1.6 Å resolution.

  15. Atypical ubiquitination by E3 ligase WWP1 inhibits the proteasome-mediated degradation of mutant huntingtin.

    PubMed

    Lin, Li; Jin, Zhenzhen; Tan, Huiping; Xu, Qiaoqiao; Peng, Ting; Li, He

    2016-07-15

    Huntington's disease (HD) is caused by the expansion of CAG trinucleotide repeats in exon 1 of HD gene encoding huntingtin (Htt), which is characterized by aggregation and formation of mutant Htt containing expanded polyglutamine (polyQ) repeats. Dysfunction of the ubiquitin-proteasome system (UPS) plays a critical role in the pathogenesis of HD. As the linkage mediator between ubiquitin and specific target proteins, E3 ubiquitin ligases have been suggested to be involved in mHtt degradation and HD pathology. However, the potential involvement of the E3 ligase WWP1 in HD has not been explored. The present study determined whether WWP1 is involved in the development of HD in both in vivo and in vitro models. The results showed that in contrast to several other E3 ligases, expression of WWP1 is enhanced in mice and N2a cells expressing mutant Htt (160Q) and co-localized with mHtt protein aggregates. In addition, expression of WWP1 positively regulates mutan Htt levels, aggregate formation, and cell toxicity. Further analysis revealed that WWP1 ubiquitinated mHtt at an atypical position of Lys-63, which may have inhibited degradation of mutant Htt through the ubiquitin-proteasome pathway. In conclusion, these results suggested that the E3 ligase WWP1 is involved in the pathogenesis of HD; therefore, it may be a novel target for therapeutic intervention. PMID:27107943

  16. RING-type ubiquitin ligase McCPN1 catalyzes UBC8-dependent protein ubiquitination and interacts with Argonaute 4 in halophyte ice plant.

    PubMed

    Li, Chang-Hua; Chiang, Chih-Pin; Yang, Jun-Yi; Ma, Chia-Jou; Chen, Yu-Chan; Yen, Hungchen Emilie

    2014-07-01

    RING-type copines are a small family of plant-specific RING-type ubiquitin ligases. They contain an N-terminal myristoylation site for membrane anchoring, a central copine domain for substrate recognition, and a C-terminal RING domain for E2 docking. RING-type copine McCPN1 (copine1) from halophyte ice plant (Mesembryanthemum crystallinum L.) was previously identified from a salt-induced cDNA library. In this work, we characterize the activity, expression, and localization of McCPN1 in ice plant. An in vitro ubiquitination assay of McCPN1 was performed using two ice plant UBCs, McUBC1 and McUBC2, characterized from the same salt-induced cDNA library. The results showed that McUBC2, a member of the UBC8 family, stimulated the autoubiquitination activity of McCPN1, while McUBC1, a homolog of the UBC35 family, did not. The results indicate that McCPN1 has selective E2-dependent E3 ligase activity. We found that McCPN1 localizes primarily on the plasma membrane and in the nucleus of plant cells. Under salt stress, the accumulation of McCPN1 in the roots increases. A yeast two-hybrid screen was used to search for potential McCPN1-interacting partners using a library constructed from salt-stressed ice plants. Screening with full-length McCPN1 identified several independent clones containing partial Argonaute 4 (AGO4) sequence. Subsequent agro-infiltration, protoplast two-hybrid analysis, and bimolecular fluorescence complementation assay confirmed that McCPN1 and AGO4 interacted in vivo in the nucleus of plant cells. The possible involvement of a catalyzed degradation of AGO4 by McCPN1 in response to salt stress is discussed. PMID:24811676

  17. HECT E3 Ubiquitin Ligase Itch Functions as a Novel Negative Regulator of Gli-Similar 3 (Glis3) Transcriptional Activity

    PubMed Central

    ZeRuth, Gary T.; Williams, Jason G.; Cole, Yasemin C.; Jetten, Anton M.

    2015-01-01

    The transcription factor Gli-similar 3 (Glis3) plays a critical role in the generation of pancreatic ß cells and the regulation insulin gene transcription and has been implicated in the development of several pathologies, including type 1 and 2 diabetes and polycystic kidney disease. However, little is known about the proteins and posttranslational modifications that regulate or mediate Glis3 transcriptional activity. In this study, we identify by mass-spectrometry and yeast 2-hybrid analyses several proteins that interact with the N-terminal region of Glis3. These include the WW-domain-containing HECT E3 ubiquitin ligases, Itch, Smurf2, and Nedd4. The interaction between Glis3 and the HECT E3 ubiquitin ligases was verified by co-immunoprecipitation assays and mutation analysis. All three proteins interact through their WW-domains with a PPxY motif located in the Glis3 N-terminus. However, only Itch significantly contributed to Glis3 polyubiquitination and reduced Glis3 stability by enhancing its proteasomal degradation. Itch-mediated degradation of Glis3 required the PPxY motif-dependent interaction between Glis3 and the WW-domains of Itch as well as the presence of the Glis3 zinc finger domains. Transcription analyses demonstrated that Itch dramatically inhibited Glis3-mediated transactivation and endogenous Ins2 expression by increasing Glis3 protein turnover. Taken together, our study identifies Itch as a critical negative regulator of Glis3-mediated transcriptional activity. This regulation provides a novel mechanism to modulate Glis3-driven gene expression and suggests that it may play a role in a number of physiological processes controlled by Glis3, such as insulin transcription, as well as in Glis3-associated diseases. PMID:26147758

  18. Heterologous expression of OsSIZ1, a rice SUMO E3 ligase, enhances broad abiotic stress tolerance in transgenic creeping bentgrass.

    PubMed

    Li, Zhigang; Hu, Qian; Zhou, Man; Vandenbrink, Joshua; Li, Dayong; Menchyk, Nick; Reighard, Shane; Norris, Ayla; Liu, Haibo; Sun, Dongfa; Luo, Hong

    2013-05-01

    Sumoylation is a posttranslational regulatory process in higher eukaryotes modifying substrate proteins through conjugation of small ubiquitin-related modifiers (SUMOs). Sumoylation modulates protein stability, subcellular localization and activity; thus, it regulates most cellular functions including response to environmental stress in plants. To study the feasibility of manipulating SUMO E3 ligase, one of the important components in the sumoylation pathway in transgenic (TG) crop plants for improving overall plant performance under adverse environmental conditions, we have analysed TG creeping bentgrass (Agrostis stolonifera L.) plants constitutively expressing OsSIZ1, a rice SUMO E3 ligase. Overexpression of OsSIZ1 led to increased photosynthesis and overall plant growth. When subjected to water deficiency and heat stress, OsSIZ1 plants exhibited drastically enhanced performance associated with more robust root growth, higher water retention and cell membrane integrity than wild-type (WT) controls. OsSIZ1 plants also displayed significantly better growth than WT controls under phosphate-starvation conditions, which was associated with a higher uptake of phosphate (Pi) and other minerals, such as potassium and zinc. Further analysis revealed that overexpression of OsSIZ1 enhanced stress-induced SUMO conjugation to substrate in TG plants, which was associated with modified expression of stress-related genes. This strongly supports a role sumoylation plays in regulating multiple molecular pathways involved in plant stress response, establishing a direct link between sumoylation and plant response to environmental adversities. Our results demonstrate the great potential of genetic manipulation of sumoylation process in TG crop species for improved resistance to broad abiotic stresses. PMID:23231430

  19. The Ubiquitin Ligase Synoviolin Up-regulates Amyloid β Production by Targeting a Negative Regulator of γ-Secretase, Rer1, for Degradation*

    PubMed Central

    Tanabe, Chiaki; Maeda, Tomoji; Zou, Kun; Liu, Junjun; Liu, Shuyu; Nakajima, Toshihiro; Komano, Hiroto

    2012-01-01

    Alzheimer's disease is characterized by the deposition of Aβ, which is generated from the amyloid precursor protein through its cleavage by β- and γ-secretases. The γ-secretase complex component nicastrin (NCT) plays significant roles in the assembly and proper trafficking of the γ-secretase complex and in the recognition of amyloid precursor protein. NCT is incorporated into the γ-secretase complex in the endoplasmic reticulum (ER) and glycosylated in the Golgi. In contrast, unassembled NCT is retrieved or retained in the ER by the protein Retention in endoplasmic reticulum 1 (Rer1). We reported previously that synoviolin (Syvn), an E3 ubiquitin ligase, degrades NCT and affects the generation of Aβ. Here, we examined in more detail the effect of Syvn on the generation of Aβ. We found that overexpression of a dominant negative form of Syvn (C307A mutant) and a Syvn-RNAi decreased the generation of Aβ. These results indicate that the ubiquitin ligase activity of Syvn up-regulates the generation of Aβ. We hypothesized, therefore, that Syvn regulates the assembly or localization of the γ-secretase complex by ubiquitinating Rer1, resulting in its subsequent degradation. Our findings that the level of Rer1 was increased in Syvn knockout fibroblasts because of inhibition of its degradation support this hypothesis. Moreover, we found that Rer1 interacts with Syvn in the ER, is ubiquitinated by Syvn, and is then degraded via the proteasome or lysosomal pathways. Finally, we showed that localization of mature NCT to the plasma membrane as well as γ-secretase complex levels are decreased in fibroblasts of Syvn knockout mice. Thus, it is likely that Syvn regulates the assembly of the γ-secretase complex via the degradation of Rer1, which results in the generation of Aβ. PMID:23129766

  20. The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation

    PubMed Central

    Hochrainer, Karin; Pejanovic, Nadja; Olaseun, Victoria A.; Zhang, Sheng; Iadecola, Costantino; Anrather, Josef

    2015-01-01

    Activation of NF-κB-dependent transcription represents an important hallmark of inflammation. While the acute inflammatory response is per se beneficial, it can become deleterious if its spatial and temporal profile is not tightly controlled. Classically, NF-κB activity is limited by cytoplasmic retention of the NF-κB dimer through binding to inhibitory IκB proteins. However, increasing evidence suggests that NF-κB activity can also be efficiently contained by direct ubiquitination of NF-κB subunits. Here, we identify the HECT-domain ubiquitin ligase HERC3 as novel negative regulator of NF-κB activity. We find that HERC3 restricts NF-κB nuclear import and DNA binding without affecting IκBα degradation. Instead HERC3 indirectly binds to the NF-κB RelA subunit after liberation from IκBα inhibitor leading to its ubiquitination and protein destabilization. Remarkably, the regulation of RelA activity by HERC3 is independent of its inherent ubiquitin ligase activity. Rather, we show that HERC3 and RelA are part of a multi-protein complex containing the proteasome as well as the ubiquitin-like protein ubiquilin-1 (UBQLN1). We present evidence that HERC3 and UBQLN1 provide a link between NF-κB RelA and the 26S proteasome, thereby facilitating RelA protein degradation. Our findings establish HERC3 as novel candidate regulating the inflammatory response initiated by NF-κB. PMID:26476452

  1. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells

    SciTech Connect

    Duan Wenrui; Gao, Li; Wu Xin; Zhang Yang; Otterson, Gregory A.; Villalona-Calero, Miguel A. . E-mail: Miguel.villalona@osumc.edu

    2006-10-15

    Pirh2, a recently identified ubiquitin-protein ligase, has been reported to promote p53 degradation. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of MDM2. Like MDM2, Pirh2 is thought to participate in an autoregulatory feedback loop that controls p53 function. We have previously reported that Pirh2 was overexpressed in human and murine lung cancers as compared to uninvolved lung tissue. Pirh2 increase could potentially cause degradation of wildtype p53 and reduce its tumor suppression function in the lung tumor cells. Since Pirh2 has been reported to be transactivated by p53, however, the mechanisms by which a high level of Pirh2 expression is maintained in tumor cells despite low level of wildtype p53 protein are unclear. In order to evaluate p53 involvement in the transactivation of Pirh2, we evaluated Pirh2, MDM2, p53 and p21 expression with Western blot analysis and real time PCR after {gamma} irradiation or cisplatin DNA damage treatment using human cancer cell lines containing wildtype (A549, MCF-7), mutant (H719) and null (H1299) p53. Surprisingly, Pirh2 expression was not affected by the presence of wildtype p53 in the cancer cells. In contrast, MDM2 was upregulated by wildtype p53 in A549 and MCF-7 cells and was absent from the H1299 and the H719 cells. We conclude that Pirh2 operates in a distinct manner from MDM2 in response to DNA damage in cancer cells. Pirh2 elevation in p53 null cells indicates the existence of additional molecular mechanisms for Pirh2 upregulation and suggests that p53 is not the sole target of Pirh2 ubiquitin ligase activity.

  2. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV.

    PubMed

    Li, Weiwei; Gu, Xueyan; Zhang, Xiaoning; Kong, Jinxin; Ding, Nan; Qi, Yongmei; Zhang, Yingmei; Wang, Jufang; Huang, Dejun

    2015-09-01

    Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1-8h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells. PMID:26201248

  3. The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation.

    PubMed

    Hochrainer, Karin; Pejanovic, Nadja; Olaseun, Victoria A; Zhang, Sheng; Iadecola, Costantino; Anrather, Josef

    2015-11-16

    Activation of NF-κB-dependent transcription represents an important hallmark of inflammation. While the acute inflammatory response is per se beneficial, it can become deleterious if its spatial and temporal profile is not tightly controlled. Classically, NF-κB activity is limited by cytoplasmic retention of the NF-κB dimer through binding to inhibitory IκB proteins. However, increasing evidence suggests that NF-κB activity can also be efficiently contained by direct ubiquitination of NF-κB subunits. Here, we identify the HECT-domain ubiquitin ligase HERC3 as novel negative regulator of NF-κB activity. We find that HERC3 restricts NF-κB nuclear import and DNA binding without affecting IκBα degradation. Instead HERC3 indirectly binds to the NF-κB RelA subunit after liberation from IκBα inhibitor leading to its ubiquitination and protein destabilization. Remarkably, the regulation of RelA activity by HERC3 is independent of its inherent ubiquitin ligase activity. Rather, we show that HERC3 and RelA are part of a multi-protein complex containing the proteasome as well as the ubiquitin-like protein ubiquilin-1 (UBQLN1). We present evidence that HERC3 and UBQLN1 provide a link between NF-κB RelA and the 26S proteasome, thereby facilitating RelA protein degradation. Our findings establish HERC3 as novel candidate regulating the inflammatory response initiated by NF-κB. PMID:26476452

  4. Molecular cloning and analysis of Ancylostoma ceylanicum glutamate-cysteine ligase.

    PubMed

    Wiśniewski, Marcin; Lapiński, Maciej; Zdziarska, Anna; Długosz, Ewa; Bąska, Piotr

    2014-08-01

    Glutamate-cysteine ligase (GCL) is a heterodimer enzyme composed of a catalytic subunit (GCLC) and a modifier subunit (GCLM). This enzyme catalyses the synthesis of γ-glutamylcysteine, a precursor of glutathione. cDNAs of the putative glutamate-cysteine ligase catalytic (Ace-GCLC) and modifier subunits (Ace-GCLM) of Ancylostoma ceylanicum were cloned using the RACE-PCR amplification method. The Ace-gclc and Ace-gclm cDNAs encode proteins with 655 and 254 amino acids and calculated molecular masses of 74.76 and 28.51kDa, respectively. The Ace-GCLC amino acid sequence shares about 70% identity and 80% sequence similarity with orthologs in Loa loa, Onchocerca volvulus, Brugia malayi, and Ascaris suum, whereas the Ace-GCLM amino acid sequence has only about 30% sequence identity and 50% similarity to homologous proteins in those species. Real-time PCR analysis of mRNA expression in L3, serum stimulated L3 and adult stages of A. ceylanicum showed the highest level of Ace-GCLC and Ace-GCLM expression occurred in adult worms. No differences were detected among adult hookworms harvested 21 and 35dpi indicating expression of Ace-gclc and Ace-gclm in adult worms is constant during the course of infection. Positive interaction between two subunits of glutamate-cysteine ligase was detected using the yeast two-hybrid system, and by specific enzymatic reaction. Ace-GCL is an intracellular enzyme and is not exposed to the host immune system. Thus, as expected, we did not detect IgG antibodies against Ace-GCLC or Ace-GCLM on days 21, 60 and 120 of A. ceylanicum infection in hamsters. Furthermore, vaccination with one or both antigens did not reduce worm burdens, and resulted in no improvement of clinical parameters (hematocrit and hemoglobin) of infected hamsters. Therefore, due to the significant role of the enzyme in parasite metabolism, our analyses raises hope for the development of a successful new drug against ancylostomiasis based on the specific GCL inhibitor. PMID

  5. E3 ubiquitin ligases promote progression of differentiation during C. elegans embryogenesis.

    PubMed

    Du, Zhuo; He, Fei; Yu, Zidong; Bowerman, Bruce; Bao, Zhirong

    2015-02-15

    Regulated choice between cell fate maintenance and differentiation provides decision points in development to progress toward more restricted cell fates or to maintain the current one. Caenorhabditis elegans embryogenesis follows an invariant cell lineage where cell fate is generally more restricted upon each cell division. EMS is a progenitor cell in the four-cell embryo that gives rise to the endomesoderm. We recently found that when ubiquitin-mediated protein degradation is compromised, the anterior daughter of EMS, namely MS, reiterates the EMS fate. This observation demonstrates an essential function of ubiquitin-mediated protein degradation in driving the progression of EMS-to-MS differentiation. Here we report a genome-wide screen of the ubiquitin pathway and extensive lineage analyses. The results suggest a broad role of E3 ligases in driving differentiation progression. First, we identified three substrate-binding proteins for two Cullin-RING ubiquitin ligase (CRL) E3 complexes that promote the progression from the EMS fate to MS, namely LIN-23/β-TrCP and FBXB-3 for the CRL1/SCF complex and ZYG-11/ZYG-11B for the CRL2 complex. Genetic analyses suggest these E3 ligases function through a multifunctional protein OMA-1 and the endomesoderm lineage specifier SKN-1 to drive differentiation. Second, we found that depletion of components of the CRL1/SCF complex induces fate reiteration in all major founder cell lineages. These data suggest that regulated choice between self-renewal and differentiation is widespread during C. elegans embryogenesis as in organisms with regulative development, and ubiquitin-mediated protein degradation drives the choice towards differentiation. Finally, bioinformatic analysis of time series gene expression data showed that expression of E3 genes is transiently enriched during time windows of developmental stage transitions. Transcription factors show similar enrichment, but not other classes of regulatory genes. Based on these

  6. E3 ubiquitin ligases promote progression of differentiation during C. elegans embryogenesis

    PubMed Central

    Du, Zhuo; He, Fei; Yu, Zidong; Bowerman, Bruce; Bao, Zhirong

    2014-01-01

    Regulated choice between cell fate maintenance and differentiation provides decision points in development to progress toward more restricted cell fates or to maintain the current one. C. elegans embryogenesis follows an invariant cell lineage where cell fate is generally more restricted upon each cell division. EMS is a progenitor cell in the four-cell embryo that gives rise to the endomesoderm. We recently found that when ubiquitin-mediated protein degradation is compromised, the anterior daughter of EMS, namely MS, reiterates the EMS fate. This observation demonstrates an essential function of ubiquitin-mediated protein degradation in driving the progression of EMS-to-MS differentiation. Here we report a genome-wide screen of the ubiquitin pathway and extensive lineage analyses. The results suggest a broad role of E3 ligases in driving differentiation progression. First, we identified three substrate-binding proteins for two CRL (Cullin-RING ubiquitin Ligase) E3 complexes that promote the progression from the EMS fate to MS, namely LIN-23/β-TrCP and FBXB-3 for the CRL1/SCF complex and ZYG-11/ZYG-11B for the CRL2 complex. Genetic analyses suggest these E3 ligases function through a multifunctional protein OMA-1 and the endomesoderm lineage specifier SKN-1 to drive differentiation. Second, we found that depletion of components of the CRL1/SCF complex induces fate reiteration in all major founder cell lineages. These data suggest that regulated choice between self-renewal and differentiation is widespread during C. elegans embryogenesis as in organisms with regulative development, and ubiquitin-mediated protein degradation drives the choice towards differentiation. Finally, bioinformatic analysis of time series gene expression data showed that expression of E3 genes is transiently enriched during time windows of developmental stage transitions. Transcription factors show similar enrichment, but not other classes of regulatory genes. Based on these findings we

  7. Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages.

    PubMed

    Suzuki, Shiho; Mimuro, Hitomi; Kim, Minsoo; Ogawa, Michinaga; Ashida, Hiroshi; Toyotome, Takahito; Franchi, Luigi; Suzuki, Masato; Sanada, Takahito; Suzuki, Toshihiko; Tsutsui, Hiroko; Núñez, Gabriel; Sasakawa, Chihiro

    2014-10-01

    When nucleotide-binding oligomerization domain-like receptors (NLRs) sense cytosolic-invading bacteria, they induce the formation of inflammasomes and initiate an innate immune response. In quiescent cells, inflammasome activity is tightly regulated to prevent excess inflammation and cell death. Many bacterial pathogens provoke inflammasome activity and induce inflammatory responses, including cell death, by delivering type III secreted effectors, the rod component flagellin, and toxins. Recent studies indicated that Shigella deploy multiple mechanisms to stimulate NLR inflammasomes through type III secretion during infection. Here, we show that Shigella induces rapid macrophage cell death by delivering the invasion plasmid antigen H7.8 (IpaH7.8) enzyme 3 (E3) ubiquitin ligase effector via the type III secretion system, thereby activating the NLR family pyrin domain-containing 3 (NLRP3) and NLR family CARD domain-containing 4 (NLRC4) inflammasomes and caspase-1 and leading to macrophage cell death in an IpaH7.8 E3 ligase-dependent manner. Mice infected with Shigella possessing IpaH7.8, but not with Shigella possessing an IpaH7.8 E3 ligase-null mutant, exhibited enhanced bacterial multiplication. We defined glomulin/flagellar-associated protein 68 (GLMN) as an IpaH7.8 target involved in IpaH7.8 E3 ligase-dependent inflammasome activation. This protein originally was identified through its association with glomuvenous malformations and more recently was described as a member of a Cullin ring ligase inhibitor. Modifying GLMN levels through overexpression or knockdown led to reduced or augmented inflammasome activation, respectively. Macrophages stimulated with lipopolysaccharide/ATP induced GLMN puncta that localized with the active form of caspase-1. Macrophages from GLMN(+/-) mice were more responsive to inflammasome activation than those from GLMN(+/+) mice. Together, these results highlight a unique bacterial adaptation that hijacks inflammasome activation via

  8. Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity

    PubMed Central

    Ohtsubo, Motoaki; Yasunaga, Shin'ichiro; Ohno, Yoshinori; Tsumura, Miyuki; Okada, Satoshi; Ishikawa, Nobutsune; Shirao, Kenichiro; Kikuchi, Akira; Nishitani, Hideo; Kobayashi, Masao; Takihara, Yoshihiro

    2008-01-01

    Polycomb-group (PcG) genes encode multimeric nuclear protein complexes, PcG complex 1 and 2. PcG complex 2 was proved to induce transcription repression and to further methylate histone H3 at lysine-27 (H3K27). Subsequently PcG complex 1 is recruited through recognition of methylated H3K27 and maintains the transcription silencing by mediating monoubiquitination of histone H2A at lysine-119. Genetic evidence demonstrated a crucial role for PcG complex 1 in stem cells, and Bmi1, a member of PcG complex 1, was shown to sustain adult stem cells through direct repression of the INK4a locus encoding cyclin-dependent kinase inhibitor, p16CKI, and p19ARF. The molecular functions of PcG complex 1, however, remain insufficiently understood. In our study, deficiency of Rae28, a member of PcG complex 1, was found to impair ubiquitin-proteasome-mediated degradation of Geminin, an inhibitor of DNA replication licensing factor Cdt1, and to increase protein stability. The resultant accumulation of Geminin, based on evidence from retroviral transduction experiments, presumably eliminated hematopoietic stem cell activity in Rae28-deficient mice. Rae28 mediates recruiting Scmh1, which provides PcG complex 1 an interaction domain for Geminin. Moreover, PcG complex 1 acts as the E3 ubiquitin ligase for Geminin, as we demonstrated in vivo as well as in vitro by using purified recombinant PcG complex 1 reconstituted in insect cells. Our findings suggest that PcG complex 1 supports the activity of hematopoietic stem cells, in which high-level Geminin expression induces quiescence securing genome stability, by enhancing cycling capability and hematopoietic activity through direct regulation of Geminin. PMID:18650381

  9. The E3 ubiquitin protein ligase HERC2 modulates the activity of tumor protein p53 by regulating its oligomerization.

    PubMed

    Cubillos-Rojas, Monica; Amair-Pinedo, Fabiola; Peiró-Jordán, Roser; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2014-05-23

    The tumor suppressor p53 is a transcription factor that coordinates the cellular response to several kinds of stress. p53 inactivation is an important step in tumor progression. Oligomerization of p53 is critical for its posttranslational modification and its ability to regulate the transcription of target genes necessary to inhibit tumor growth. Here we report that the HECT E3 ubiquitin ligase HERC2 interacts with p53. This interaction involves the CPH domain of HERC2 (a conserved domain within Cul7, PARC, and HERC2 proteins) and the last 43 amino acid residues of p53. Through this interaction, HERC2 regulates p53 activity. RNA interference experiments showed how HERC2 depletion reduces the transcriptional activity of p53 without affecting its stability. This regulation of p53 activity by HERC2 is independent of proteasome or MDM2 activity. Under these conditions, up-regulation of cell growth and increased focus formation were observed, showing the functional relevance of the HERC2-p53 interaction. This interaction was maintained after DNA damage caused by the chemotherapeutic drug bleomycin. In these stressed cells, p53 phosphorylation was not impaired by HERC2 knockdown. Interestingly, p53 mutations that affect its tetramerization domain disrupted the HERC2-p53 interaction, suggesting a role for HERC2 in p53 oligomerization. This regulatory role was shown using cross-linking assays. Thus, the inhibition of p53 activity after HERC2 depletion can be attributed to a reduction in p53 oligomerization. Ectopic expression of HERC2 (residues 2292-2923) confirmed these observations. Together, these results identify HERC2 as a novel regulator of p53 signaling. PMID:24722987

  10. Lack of maternal glutamate cysteine ligase modifier subunit (Gclm) decreases oocyte glutathione concentrations and disrupts preimplantation development in mice.

    PubMed

    Nakamura, Brooke N; Fielder, Thomas J; Hoang, Yvonne D; Lim, Jinhwan; McConnachie, Lisa A; Kavanagh, Terrance J; Luderer, Ulrike

    2011-07-01

    Glutathione (GSH) is the most abundant intracellular thiol and an important regulator of cellular redox status. Mice that lack the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH synthesis. Nicotinamide nucleotide transhydrogenase, an inner mitochondrial membrane protein, catalyzes the interconversion of reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate; reduced nicotinamide adenine dinucleotide phosphate is required for reduction of GSH disulfide. Previous work supports roles for GSH in preimplantation development. We hypothesized that Gclm-/- mice have increased preimplantation embryonic mortality and that this effect is enhanced by absence of a functioning Nnt gene. Gclm-/- females produced significantly fewer pups per litter than Gclm+/+ littermates. Numbers of oocytes ovulated in a natural estrous cycle or upon superovulation did not differ by genotype. Fewer uterine implantation sites were observed in the Gclm-/- females. Prepubertal Gclm-/- and Gclm+/+ females were superovulated, then mated overnight with a Gclm+/+ male. At 0.5 d postcoitum, Gclm-/- females had significantly lower percentages of zygotes with two pronuclei and higher percentages of zygotes with one pronucleus than Gclm+/+ or Gclm+/- females. At 3.5 d postcoitum, a significantly lower percentage of blastocyst stage embryos was recovered from uteri of Gclm-/- females than Gclm+/+ females. Embryonic development to the blastocyst stage, but not the two-cell stage, was significantly decreased after in vitro fertilization of oocytes from Gclm-/- females compared with Gclm+/+ females. The Nnt mutation did not enhance the effects of Gclm genotype on female fertility. These results demonstrate critical roles for maternal GSH in supporting normal preimplantation development. PMID:21558310

  11. Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast.

    PubMed

    Osaka, F; Saeki, M; Katayama, S; Aida, N; Toh-E, A; Kominami, K; Toda, T; Suzuki, T; Chiba, T; Tanaka, K; Kato, S

    2000-07-01

    A ubiquitin-like modifier, NEDD8, is covalently attached to cullin-family proteins, but its physiological role is poorly understood. Here we report that the NEDD8-modifying pathway is essential for cell viability and function of Pcu1 (cullin-1 orthologue) in fission yeast. Pcu1 assembled on SCF ubiquitin-ligase was completely modified by NEDD8. Pcu1(K713R) defective for NEDD8 conjugation lost the ability to complement lethality due to pcu1 deletion. Forced expression of Pcu1(K713R) or depletion of NEDD8 in cells resulted in impaired cell proliferation and marked stabilization of the cyclin-dependent kinase inhibitor Rum1, which is a substrate of the SCF complex. Based on these findings, we propose that covalent modification of cullin-1 by the NEDD8 system plays an essential role in the function of SCF in fission yeast. PMID:10880460

  12. Single Quantum Dot Analysis Enables Multiplexed Point Mutation Detection by Gap Ligase Chain Reaction

    PubMed Central

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2014-01-01

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and tedious assay processes. In this report, we propose an assay technology which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single molecule coincidence detection and superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. PMID:23239594

  13. Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP.

    PubMed

    Scaglione, K Matthew; Zavodszky, Eszter; Todi, Sokol V; Patury, Srikanth; Xu, Ping; Rodríguez-Lebrón, Edgardo; Fischer, Svetlana; Konen, John; Djarmati, Ana; Peng, Junmin; Gestwicki, Jason E; Paulson, Henry L

    2011-08-19

    The mechanisms by which ubiquitin ligases are regulated remain poorly understood. Here we describe a series of molecular events that coordinately regulate CHIP, a neuroprotective E3 implicated in protein quality control. Through their opposing activities, the initiator E2, Ube2w, and the specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating, and terminating the CHIP ubiquitination cycle. Monoubiquitination of CHIP by Ube2w stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the length of chains attached to CHIP substrates. Upon completion of substrate ubiquitination, ataxin-3 deubiquitinates CHIP, effectively terminating the reaction. Our results suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point of regulation in ubiquitin-dependent protein quality control. In addition, the results shed light on disease pathogenesis in SCA3, a neurodegenerative disorder caused by polyglutamine expansion in ataxin-3. PMID:21855799

  14. Structural insights into the role of domain flexibility in human DNA ligase IV.

    PubMed

    Ochi, Takashi; Wu, Qian; Chirgadze, Dimitri Y; Grossmann, J Günter; Bolanos-Garcia, Victor M; Blundell, Tom L

    2012-07-01

    Knowledge of the architecture of DNA ligase IV (LigIV) and interactions with XRCC4 and XLF-Cernunnos is necessary for understanding its role in the ligation of double-strand breaks during nonhomologous end joining. Here we report the structure of a subdomain of the nucleotidyltrasferase domain of human LigIV and provide insights into the residues associated with LIG4 syndrome. We use this structural information together with the known structures of the BRCT/XRCC4 complex and those of LigIV orthologs to interpret small-angle X-ray scattering of LigIV in complex with XRCC4 and size exclusion chromatography of LigIV, XRCC4, and XLF-Cernunnos. Our results suggest that the flexibility of the catalytic region is limited in a manner that affects the formation of the LigIV/XRCC4/XLF-Cernunnos complex. PMID:22658747

  15. Merlin's tumor suppression linked to inhibition of the E3 ubiquitin ligase CRL4DCAF1

    PubMed Central

    Li, Wei

    2010-01-01

    The mechanism by which the FERM domain protein Merlin, encoded by the tumor suppressor NF2, restrains cell proliferation is poorly understood. Prior studies have suggested that Merlin exerts its antimitogenic effect by interacting with multiple signaling proteins located at or near the plasma membrane. We have recently observed that Merlin translocates into the nucleus and binds to and inhibits the E3 ubiquitin ligase CRL4DCAF1. Genetic evidence indicates that inactivation of Merlin induces oncogenic gene expression, hyperproliferation, and tumorigenicity by unleashing the activity of CRL4DCAF1. In addition to providing a potential explanation for the diverse effects that loss of Merlin exerts in multiple cell types, these findings suggest that compounds inhibiting CRL4DCAF1 may display therapeutic efficacy in Neurofibromatosis type 2 and other cancers driven by Merlin inactivation. PMID:21084862

  16. Detection of Listeria monocytogenes with a nonisotopic polymerase chain reaction-coupled ligase chain reaction assay.

    PubMed Central

    Wiedmann, M; Barany, F; Batt, C A

    1993-01-01

    A polymerase chain reaction (PCR)-coupled ligase chain reaction (LCR) assay for the specific detection of Listeria monocytogenes (M. Wiedmann, J. Czajka, F. Barany, and C. A. Batt, Appl. Environ. Microbiol. 58:3443-3447, 1992) has been modified for detection of the LCR products with a nonisotopic readout. When a chemiluminescent or a colorimetric substrate for the nonisotopic detection of the LCR products was used, the PCR-coupled LCR gave a sensitivity of 10 CFU of L. monocytogenes. The detection method with the chemiluminescent substrate Lumi-Phos 530 permitted detection of the LCR products in less than 3 h, so that the whole assay can be completed within 10 h. Images PMID:8368859

  17. Structural Insights into the Role of Domain Flexibility in Human DNA Ligase IV

    PubMed Central

    Ochi, Takashi; Wu, Qian; Chirgadze, Dimitri Y.; Grossmann, J. Günter; Bolanos-Garcia, Victor M.; Blundell, Tom L.

    2012-01-01

    Summary Knowledge of the architecture of DNA ligase IV (LigIV) and interactions with XRCC4 and XLF-Cernunnos is necessary for understanding its role in the ligation of double-strand breaks during nonhomologous end joining. Here we report the structure of a subdomain of the nucleotidyltrasferase domain of human LigIV and provide insights into the residues associated with LIG4 syndrome. We use this structural information together with the known structures of the BRCT/XRCC4 complex and those of LigIV orthologs to interpret small-angle X-ray scattering of LigIV in complex with XRCC4 and size exclusion chromatography of LigIV, XRCC4, and XLF-Cernunnos. Our results suggest that the flexibility of the catalytic region is limited in a manner that affects the formation of the LigIV/XRCC4/XLF-Cernunnos complex. PMID:22658747

  18. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin

    PubMed Central

    Howarth, Mark; Ting, Alice Y

    2009-01-01

    This protocol describes a simple and efficient way to label specific cell surface proteins with biophysical probes on mammalian cells. Cell surface proteins tagged with a 15-amino acid peptide are biotinylated by Escherichia coli biotin ligase (BirA), whereas endogenous proteins are not modified. The biotin group then allows sensitive and stable binding by streptavidin conjugates. This protocol describes the optimal use of BirA and streptavidin for site-specific labeling and also how to produce BirA and monovalent streptavidin. Streptavidin is tetravalent and the cross-linking of biotinylated targets disrupts many of streptavidin’s applications. Monovalent streptavidin has only a single functional biotin-binding site, but retains the femtomolar affinity, low off-rate and high thermostability of wild-type streptavidin. Site-specific biotinylation and streptavidin staining take only a few minutes, while expression of BirA takes 4 d and expression of monovalent streptavidin takes 8 d. PMID:18323822

  19. Structural and functional insights into the E3 ligase, RNF126.

    PubMed

    Krysztofinska, Ewelina M; Martínez-Lumbreras, Santiago; Thapaliya, Arjun; Evans, Nicola J; High, Stephen; Isaacson, Rivka L

    2016-01-01

    RNF126 is an E3 ubiquitin ligase that collaborates with the BAG6 sortase complex to ubiquitinate hydrophobic substrates in the cytoplasm that are destined for proteasomal recycling. Composed of a trimeric complex of BAG6, TRC35 and UBL4A the BAG6 sortase is also associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates. Here we solve the solution structure of the RNF126 zinc finger domain in complex with the BAG6 UBL domain. We also characterise an interaction between RNF126 and UBL4A and analyse the competition between SGTA and RNF126 for the N-terminal BAG6 binding site. This work sheds light on the sorting mechanism of the BAG6 complex and its accessory proteins which, together, decide the fate of stray hydrophobic proteins in the aqueous cytoplasm. PMID:27193484

  20. Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9

    PubMed Central

    Yu, Bing; Swatkoski, Stephen; Holly, Alesia; Lee, Liam C.; Giroux, Valentin; Lee, Chih-Shia; Hsu, Dennis; Smith, Jordan L.; Yuen, Garmen; Yue, Junqiu; Ann, David K.; Simpson, R. Mark; Creighton, Chad J.; Figg, William D.; Gucek, Marjan; Luo, Ji

    2015-01-01

    The small GTPase KRAS is frequently mutated in human cancer and currently there are no targeted therapies for KRAS mutant tumors. Here, we show that the small ubiquitin-like modifier (SUMO) pathway is required for KRAS-driven transformation. RNAi depletion of the SUMO E2 ligase Ubc9 suppresses 3D growth of KRAS mutant colorectal cancer cells in vitro and attenuates tumor growth in vivo. In KRAS mutant cells, a subset of proteins exhibit elevated levels of SUMOylation. Among these proteins, KAP1, CHD1, and EIF3L collectively support anchorage-independent growth, and the SUMOylation of KAP1 is necessary for its activity in this context. Thus, the SUMO pathway critically contributes to the transformed phenotype of KRAS mutant cells and Ubc9 presents a potential target for the treatment of KRAS mutant colorectal cancer. PMID:25805818

  1. Detection of bovine leukocyte adhesion deficiency by nonisotopic ligase chain reaction.

    PubMed

    Batt, C A; Wagner, P; Wiedmann, M; Luo, J; Gilbert, R

    1994-04-01

    A nonisotopic ligase chain reaction (LCR) assay was developed to detect the mutation (D128G; Shuster et al. (1992) PNAS 89, 9225-9) for bovine leukocyte adhesion deficiency (BLAD). Two sets of diagonally opposed discriminating LCR primers that differentiate the normal and BLAD allele were designed so that the 3' end of each primer overlapped the D128G mutation. These discriminating primers were synthesized with a 5' biotin and could be captured using streptavidin-coated microtitre wells. A common set of primers that abut these discriminating primers were also synthesized and 3'-tailed with digoxigenin-ddUTP. Captured LCR products were then detected using antidigoxigenin antibodies coupled to alkaline phosphatase. The assay readout was a chemiluminescent signal generated by the hydrolysis of Lumi-Phos 530 and the entire assay including DNA isolation can be completed within 8 h. PMID:7912052

  2. New role of E3 ubiquitin ligase in the regulation of necroptosis.

    PubMed

    Seo, Jinho; Lee, Eun-Woo; Song, Jaewhan

    2016-05-01

    Necroptosis is a well-known form of caspase-independent cell death. Necroptosis can be triggered by various extrinsic stimuli, including death ligands in the presence of receptorinteracting protein kinase 3 (RIPK3), a key mediator of necroptosis induction. Our recent studies have revealed that C-terminus HSC-70 interacting protein (CHIP), an E3 ligase, can function as an inhibitor of necroptosis. CHIP-/- mouse embryonic fibroblast showed higher sensitivity to necrotic stimuli than wild-type mouse embryonic fibroblast cells. Deleterious effects of CHIP knockout MEFs were retrieved by RIPK3 depletion. We found that CHIP negatively regulated RIPK3 and RIPK1 by ubiquitylation- and lysosome- dependent degradation. In addition, CHIP-/- mice showed postnatal lethality with intestinal defects that could be rescued by crossing with RIPK3-/- mice. These results suggest that CHIP is a negative regulator of RIPK1 and RIPK3, thus inhibiting necroptosis. [BMB Reports 2016; 49(5): 247-248]. PMID:27099235

  3. [TUMOR SUPPRESSOR p63 REGULATES EXPRESSION OF UBIQUITIN LIGASE Pirh2].

    PubMed

    Daks, A A; Petukhov, A V; Shuvalov, O Yu; Vasilieva, E A; Melino, G; Barlev, N A; Fedorova, O A

    2015-01-01

    Transcription factor p63 is a member of the p53 protein family. Due to the high degree of structural similarity p53, p63, and p73 are known to have overlapping functions relating to cell cycle regulation, apoptosis and tumor transformation. Furthermore, p63 plays crucial role in epidermal tissue development and differentiation. Pirh2 (product of RCHY1 gene) is an E3 ubiquitin ligase modifying all three members of the p53 family resulting in their subsequent proteasomal degradation. Our results demonstrate that p63, similar to p53, is able to regulate expression levels of Pirh2. Importantly, Pirh2 expression is activated only by transcriptionally active isoform of p63--TAp63, but not the N-terminally truncated ΔNp63. PMID:26995965

  4. A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration

    PubMed Central

    Chu, Jessie; Hong, Nancy A.; Masuda, Claudio A.; Jenkins, Brian V.; Nelms, Keats A.; Goodnow, Christopher C.; Glynne, Richard J.; Wu, Hua; Masliah, Eliezer; Joazeiro, Claudio A. P.; Kay, Steve A.

    2009-01-01

    A mouse neurological mutant, lister, was identified through a genome-wide N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Homozygous lister mice exhibit profound early-onset and progressive neurological and motor dysfunction. lister encodes a RING finger protein, LISTERIN, which functions as an E3 ubiquitin ligase in vitro. Although lister is widely expressed in all tissues, motor and sensory neurons and neuronal processes in the brainstem and spinal cord are primarily affected in the mutant. Pathological signs include gliosis, dystrophic neurites, vacuolated mitochondria, and accumulation of soluble hyperphosphorylated tau. Analysis with a different lister allele generated through targeted gene trap insertion reveals LISTERIN is required for embryonic development and confirms that direct perturbation of a LISTERIN-regulated process causes neurodegeneration. The lister mouse uncovers a pathway involved in neurodegeneration and may serves as a model for understanding the molecular mechanisms underlying human neurodegenerative disorders. PMID:19196968

  5. Novel roles of Skp2 E3 ligase in cellular senescence, cancer progression, and metastasis

    PubMed Central

    Wang, Guocan; Chan, Chia-Hsin; Gao, Yuan; Lin, Hui-Kuan

    2012-01-01

    S-phase kinase-associated protein 2 (Skp2) belongs to the F-box protein family. It is a component of the SCF E3 ubiquitin ligase complex. Skp2 has been shown to regulate cellular proliferation by targeting several cell cycle-regulated proteins for ubiquitination and degradation, including cyclin-dependent kinase inhibitor p27. Skp2 has also been demonstrated to display an oncogenic function since its overexpression has been observed in many human cancers. This review discusses the recent discoveries on the novel roles of Skp2 in regulating cellular senescence, cancer progression, and metastasis, as well as the therapeutic potential of targeting Skp2 for human cancer treatment. PMID:22200179

  6. The E3 Ubiquitin Ligase MID1 Catalyzes Ubiquitination and Cleavage of Fu

    PubMed Central

    Schweiger, Susann; Dorn, Stephanie; Fuchs, Melanie; Köhler, Andrea; Matthes, Frank; Müller, Eva-Christina; Wanker, Erich; Schneider, Rainer; Krauß, Sybille

    2014-01-01

    SHH (Sonic Hedgehog)-GLI signaling plays an important role during embryogenesis and in tumorigenesis. The survival and growth of several types of cancer depend on autonomously activated SHH-GLI signaling. A protein complex containing the ubiquitin ligase MID1 and protein phosphatase 2A regulates the nuclear localization and transcriptional activity of GLI3, a transcriptional effector molecule of SHH, in cancer cell lines with autonomously activated SHH signaling. However, the exact molecular mechanisms that mediate the interaction between MID1 and GLI3 remained unknown. Here, we show that MID1 catalyzes the ubiquitination and proteasomal cleavage of the GLI3 regulator Fu. Our data suggest that Fu ubiquitination and cleavage is one of the key elements connecting the MID1-PP2A protein complex with GLI3 activity control. PMID:25278022

  7. Structural and functional insights into the E3 ligase, RNF126

    PubMed Central

    Krysztofinska, Ewelina M.; Martínez-Lumbreras, Santiago; Thapaliya, Arjun; Evans, Nicola J.; High, Stephen; Isaacson, Rivka L.

    2016-01-01

    RNF126 is an E3 ubiquitin ligase that collaborates with the BAG6 sortase complex to ubiquitinate hydrophobic substrates in the cytoplasm that are destined for proteasomal recycling. Composed of a trimeric complex of BAG6, TRC35 and UBL4A the BAG6 sortase is also associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates. Here we solve the solution structure of the RNF126 zinc finger domain in complex with the BAG6 UBL domain. We also characterise an interaction between RNF126 and UBL4A and analyse the competition between SGTA and RNF126 for the N-terminal BAG6 binding site. This work sheds light on the sorting mechanism of the BAG6 complex and its accessory proteins which, together, decide the fate of stray hydrophobic proteins in the aqueous cytoplasm. PMID:27193484

  8. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  9. Lenalidomide Stabilizes the Erythropoietin Receptor by Inhibiting the E3 Ubiquitin Ligase RNF41.

    PubMed

    Basiorka, Ashley A; McGraw, Kathy L; De Ceuninck, Leentje; Griner, Lori N; Zhang, Ling; Clark, Justine A; Caceres, Gisela; Sokol, Lubomir; Komrokji, Rami S; Reuther, Gary W; Wei, Sheng; Tavernier, Jan; List, Alan F

    2016-06-15

    In a subset of patients with non-del(5q) myelodysplastic syndrome (MDS), lenalidomide promotes erythroid lineage competence and effective erythropoiesis. To determine the mechanism by which lenalidomide promotes erythropoiesis, we investigated its action on erythropoietin receptor (EpoR) cellular dynamics. Lenalidomide upregulated expression and stability of JAK2-associated EpoR in UT7 erythroid cells and primary CD71+ erythroid progenitors. The effects of lenalidomide on receptor turnover were Type I cytokine receptor specific, as evidenced by coregulation of the IL3-Rα receptor but not c-Kit. To elucidate this mechanism, we investigated the effects of lenalidomide on the E3 ubiquitin ligase RNF41. Lenalidomide promoted EpoR/RNF41 association and inhibited RNF41 auto-ubiquitination, accompanied by a reduction in EpoR ubiquitination. To confirm that RNF41 is the principal target responsible for EpoR stabilization, HEK293T cells were transfected with EpoR and/or RNF41 gene expression vectors. Steady-state EpoR expression was reduced in EpoR/RNF41 cells, whereas EpoR upregulation by lenalidomide was abrogated, indicating that cellular RNF41 is a critical determinant of drug-induced receptor modulation. Notably, shRNA suppression of CRBN gene expression failed to alter EpoR upregulation, indicating that drug-induced receptor modulation is independent of cereblon. Immunohistochemical staining showed that RNF41 expression decreased in primary erythroid cells of lenalidomide-responding patients, suggesting that cellular RNF41 expression merits investigation as a biomarker for lenalidomide response. Our findings indicate that lenalidomide has E3 ubiquitin ligase inhibitory effects that extend to RNF41 and that inhibition of RNF41 auto-ubiquitination promotes membrane accumulation of signaling competent JAK2/EpoR complexes that augment Epo responsiveness. Cancer Res; 76(12); 3531-40. ©2016 AACR. PMID:27197154

  10. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    SciTech Connect

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  11. Allosteric Activation of the RNF146 Ubiquitin Ligase by a Poly(ADP-ribosyl)ation Signal

    PubMed Central

    DaRosa, Paul A.; Wang, Zhizhi; Jiang, Xiaomo; Pruneda, Jonathan N.; Cong, Feng; Klevit, Rachel E.; Xu, Wenqing

    2014-01-01

    Protein poly(ADP-ribosyl)ation (PARylation) plays a role in diverse cellular processes such as DNA repair, transcription, Wnt signaling, and cell death1–6. Recent studies have shown that PARylation can serve as a signal for the polyubiquitination and degradation of several critical regulatory proteins, including Axin and 3BP2 (refs 7–9). The RING-type E3 ubiquitin ligase RNF146 (a.k.a. Iduna) is responsible for PARylation-dependent ubiquitination (PARdU)10–12. Here we provide a structural basis for RNF146 catalyzed PARdU and how PARdU specificity is achieved. First, we show that iso-ADPr, the smallest internal poly(ADP-ribose) (PAR) structural unit, binds between the WWE and RING domains of RNF146 and functions as an allosteric signal that switches the RING domain from a catalytically inactive state to an active one. In the absence of PAR, the RING domain is unable to efficiently bind and activate an E2. Binding of PAR/iso-ADPr induces a major conformational change that creates a functional RING structure. Thus RNF146 represents a new mechanistic class of RING E3 ligases whose activities are regulated by non-covalent ligand binding, which may provide a template for designing inducible protein-degradation systems. Second, we found that RNF146 directly interacts with the PAR polymerase tankyrase (TNKS). Disruption of the RNF146/TNKS interaction inhibits turnover of the substrate Axin in cells. Thus, both substrate PARylation and PARdU are catalyzed by enzymes within the same protein complex, and PARdU substrate specificity may be primarily determined by the substrate-TNKS interaction. We propose that maintenance of unliganded RNF146 in an inactive state may serve to maintain the stability of the RNF146-TNKS complex, which in turn regulates the homeostasis of PARdU activity in the cell. PMID:25327252

  12. SGR9, a RING type E3 ligase, modulates amyloplast dynamics important for gravity sensing.

    NASA Astrophysics Data System (ADS)

    Morita, Miyo T.; Nakamura, Moritaka; Tasaka, Masao

    Gravitropism is triggered when the directional change of gravity is sensed in the specific cells, called statocytes. In higher plants, statocytes contain sinking heavier amyloplasts which are particular plastids accumulating starch granules. The displacement of amyloplasts within the statocytes is thought to be the initial event of gravity perception. We have demonstrated that endodermal cells are most likely to be the statocytes in Arabidop-sis shoots. Live cell imaging of the endodermal cell of stem has shown that most amyloplasts are sediment to the direction of gravity but they are not static. Several amyloplasts move dynamically in an actin filament (F-actin) dependent manner. In the presence of actin poly-merization inhibitor, all amyloplasts become static and sediment to the direction of gravity. In addition, stems treated with the inhibitor can exhibit gravitropism. These results suggest that F-actin-dependent dynamic movement of amyloplasts is not essential for gravity sensing. sgr (shoot gravitropism) 9 mutant exhibits greatly reduced shoot gravitropism. In endodermal cells of sgr9, dynamic amyloplast movement was predominantly observed and amyloplasts did not sediment to the direction of gravity. Interestingly, inhibition of actin polymerization re-stored both gravitropism and amyloplast sedimentation in sgr9. The SGR9 encodes a novel RING finger protein, which is localized to amyloplasts in endodermal cells. SGR9 showed ubiq-uitin E3 ligase activity in vitro. Together with live cell imaging of amyloplasts and F-actin, our data suggest that SGR9 modulate interaction between amyloplasts and F-actin on amylo-plasts. SGR9 positively act on amyloplasts sedimentation, probably by releasing amyloplasts from F-actin. SGR9 that is localized to amyloplast, possibly degrades unknown substrates by its E3 ligase activity, and this might promote release of amyloplasts from F-actin.

  13. Solution structure of the E3 ligase HOIL-1 Ubl domain.

    PubMed

    Beasley, Steven A; Safadi, Susan S; Barber, Kathryn R; Shaw, Gary S

    2012-07-01

    The E3 ligases HOIL-1 and parkin are each comprised of an N-terminal ubiquitin-like (Ubl) domain followed by a zinc-binding region and C-terminal RING-In-between-RING-RING domains. These two proteins, involved in the ubiquitin-mediated degradation pathway, are the only two known E3 ligases to share this type of multidomain architecture. Further, the Ubl domain of both HOIL-1 and parkin has been shown to interact with the S5a subunit of the 26S proteasome. The solution structure of the HOIL-1 Ubl domain was solved using NMR spectroscopy to compare it with that of parkin to determine the structural elements responsible for S5a intermolecular interactions. The final ensemble of 20 structures had a β-grasp Ubl-fold with an overall backbone RMSD of 0.59 ± 0.10 Å in the structured regions between I55 and L131. HOIL-1 had a unique extension of both β1 and β2 sheets compared to parkin and other Ubl domains, a result of a four-residue insertion in this region. A similar 15-residue hydrophobic core in the HOIL-1 Ubl domain resulted in a comparable stability to the parkin Ubl, but significantly lower than that observed for ubiquitin. A comparison with parkin and other Ubl domains indicates that HOIL-1 likely uses a conserved hydrophobic patch (W58, V102, Y127, Y129) found on the β1 face, the β3-β4 loop and β5, as well as a C-terminal basic residue (R134) to recruit the S5a subunit as part of the ubiquitin-mediated proteolysis pathway. PMID:22517668

  14. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    PubMed

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV. PMID:26573366

  15. The Functions of the HIV1 protein Vpr and its action through the DCAF1•DDB1•Cullin4 ubiquitin ligase

    PubMed Central

    Casey, Laurieann; Wen, Xiaoyun; de Noronha, Carlos M.C.

    2010-01-01

    Among the proteins encoded by human and simian immunodeficiency viruses (HIV and SIV) at least three, Vif, Vpu and Vpr, subvert cellular ubiquitin ligases to block the action of anti-viral defenses. This review focuses on Vpr and its HIV2/SIV counterparts, Vpx and Vpr, which all engage the DDB1•Cullin4 ubiquitin ligase complex through the DCAF1 adaptor protein. Here, we discuss the multiple functions that have been linked to Vpr expression and summarize the current knowledge on the role of the ubiquitin ligase complex in carrying out a subset of these activities. PMID:20347598

  16. The CUL3–KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction

    PubMed Central

    Ohta, Akihito; Schumacher, Frances-Rose; Mehellou, Youcef; Johnson, Clare; Knebel, Axel; Macartney, Thomas J.; Wood, Nicola T.; Alessi, Dario R.; Kurz, Thimo

    2013-01-01

    The WNK (with no lysine kinase)–SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) signalling pathway plays an important role in controlling mammalian blood pressure by modulating the activity of ion co-transporters in the kidney. Recent studies have identified Gordon's hypertension syndrome patients with mutations in either CUL3 (Cullin-3) or the BTB protein KLHL3 (Kelch-like 3). CUL3 assembles with BTB proteins to form Cullin–RING E3 ubiquitin ligase complexes. To explore how a CUL3–KLHL3 complex might operate, we immunoprecipitated KLHL3 and found that it associated strongly with WNK isoforms and CUL3, but not with other components of the pathway [SPAK/OSR1 or NCC (Na+/Cl− co-transporter)/NKCC1 (Na+/K+/2Cl− co-transporter 1)]. Strikingly, 13 out of the 15 dominant KLHL3 disease mutations analysed inhibited binding to WNK1 or CUL3. The recombinant wild-type CUL3–KLHL3 E3 ligase complex, but not a disease-causing CUL3–KLHL3[R528H] mutant complex, ubiquitylated WNK1 in vitro. Moreover, siRNA (small interfering RNA)-mediated knockdown of CUL3 increased WNK1 protein levels and kinase activity in HeLa cells. We mapped the KLHL3 interaction site in WNK1 to a non-catalytic region (residues 479–667). Interestingly, the equivalent region in WNK4 encompasses residues that are mutated in Gordon's syndrome patients. Strikingly, we found that the Gordon's disease-causing WNK4[E562K] and WNK4[Q565E] mutations, as well as the equivalent mutation in the WNK1[479–667] fragment, abolished the ability to interact with KLHL3. These results suggest that the CUL3–KLHL3 E3 ligase complex regulates blood pressure via its ability to interact with and ubiquitylate WNK isoforms. The findings of the present study also emphasize that the missense mutations in WNK4 that cause Gordon's syndrome strongly inhibit interaction with KLHL3. This could elevate blood pressure by increasing the expression of WNK4 thereby stimulating

  17. MAGE-A Cancer/Testis Antigens Inhibit MDM2 Ubiquitylation Function and Promote Increased Levels of MDM4

    PubMed Central

    Marcar, Lynnette; Ihrig, Bianca; Hourihan, John; Bray, Susan E.; Quinlan, Philip R.; Jordan, Lee B.; Thompson, Alastair M.; Hupp, Ted R.; Meek, David W.

    2015-01-01

    Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically. PMID:26001071

  18. ABD1 Is an Arabidopsis DCAF Substrate Receptor for CUL4-DDB1–Based E3 Ligases That Acts as a Negative Regulator of Abscisic Acid Signaling[W

    PubMed Central

    Seo, Kyoung-In; Lee, Jae-Hoon; Nezames, Cynthia D.; Zhong, Shangwei; Song, Eunyoung; Byun, Myung-Ok; Deng, Xing Wang

    2014-01-01

    Members of the DDB1-CUL4–associated factors (DCAFs) family directly bind to DAMAGED DNA BINDING PROTEIN1 (DDB1) and function as the substrate receptors in CULLIN4-based E3 (CUL4) ubiquitin ligases, which regulate the selective ubiquitination of proteins. Here, we describe a DCAF protein, ABD1 (for ABA-hypersensitive DCAF1), that negatively regulates abscisic acid (ABA) signaling in Arabidopsis thaliana. ABD1 interacts with DDB1 in vitro and in vivo, indicating that it likely functions as a CUL4 E3 ligase substrate receptor. ABD1 expression is induced by ABA, and mutations in ABD1 result in ABA- and NaCl-hypersensitive phenotypes. Loss of ABD1 leads to hyperinduction of ABA-responsive genes and higher accumulation of the ABA-responsive transcription factor ABA INSENSITIVE5 (ABI5), hypersensitivity to ABA during seed germination and seedling growth, enhanced stomatal closure, reduced water loss, and, ultimately, increased drought tolerance. ABD1 directly interacts with ABI5 in yeast two-hybrid assays and associates with ABI5 in vivo by coimmunoprecipitation, and the interaction was found in the nucleus by bimolecular fluorescence complementation. Furthermore, loss of ABD1 results in a retardation of ABI5 degradation by the 26S proteasome. Taken together, these data suggest that the DCAF-CUL4 E3 ubiquitin ligase assembled with ABD1 is a negative regulator of ABA responses by directly binding to and affecting the stability of ABI5 in the nucleus. PMID:24563203

  19. E3 ligase CHIP and Hsc70 regulate Kv1.5 protein expression and function in mammalian cells.

    PubMed

    Li, Peili; Kurata, Yasutaka; Maharani, Nani; Mahati, Endang; Higaki, Katsumi; Hasegawa, Akira; Shirayoshi, Yasuaki; Yoshida, Akio; Kondo, Tatehito; Kurozawa, Youichi; Yamamoto, Kazuhiro; Ninomiya, Haruaki; Hisatome, Ichiro

    2015-09-01

    Kv1.5 confers ultra-rapid delayed-rectifier potassium channel current (IKur) which contributes to repolarization of the atrial action potential. Kv1.5 proteins, degraded via the ubiquitin-proteasome pathway, decreased in some atrial fibrillation patients. Carboxyl-terminus heat shock cognate 70-interacting protein (CHIP), an E3 ubiquitin ligase, is known to ubiquitinate short-lived proteins. Here, we investigated the roles of CHIP in Kv1.5 degradation to provide insights into the mechanisms of Kv1.5 decreases and treatments targeting Kv1.5 for atrial fibrillation. Coexpression of CHIP with Kv1.5 in HEK293 cells increased Kv1.5 protein ubiquitination and decreased the protein level. Immunofluorescence revealed decreases of Kv1.5 proteins in the endoplasmic reticulum and on the cell membrane. A siRNA against CHIP suppressed Kv1.5 protein ubiquitination and increased its protein level. CHIP mutants, lacking either the N-terminal tetratricopeptide region domain or the C-terminal U-box domain, failed to exert these effects on Kv1.5 proteins. Immunoprecipitation showed that CHIP formed complexes with Kv1.5 proteins and heat shock cognate protein 70 (Hsc70). Effects of Hsc70 on Kv1.5 were similar to CHIP by altering interaction of CHIP with Kv1.5 protein. Coexpression of CHIP and Hsc70 with Kv1.5 additionally enhanced Kv1.5 ubiquitination. Kv1.5 currents were decreased by overexpression of CHIP or Hsc70 but were increased by knockdown of CHIP or Hsc70 in HEK 293 cells stably expressing Kv1.5. These effects of CHIP and Hsc70 were also observed on endogenous Kv1.5 in HL-1 mouse cardiomyocytes, decreasing IKur and prolonging action potential duration. These results indicate that CHIP decreases the Kv1.5 protein level and functional channel by facilitating its degradation in concert with chaperone Hsc70. PMID:26232501

  20. In vitro construction of bacteriophage lambda carrying segments of the Escherichia coli chromosome: selection of hybrids containing the gene for DNA ligase.

    PubMed Central

    Cameron, J R; Panasenko, S M; Lehman, I R; Davis, R W

    1975-01-01

    DNA from lambdagt-lambdaB bacteriophage was cleaved with EcoRI endonuclease and fragments from EcoRI-digested E. coli DNA were inserted. This DNA was used to infect E. coli, and phages containing the gene for DNA ligase were isolated by genetic selection. Two different hybrids were found with the same E. coli segment inserted in opposite orientations. Both hybrids produced similar levels of ligase as measured in crude extracts of infected cells. Images PMID:1103146

  1. Investigation of the intermolecular recognition mechanism between the E3 ubiquitin ligase Keap1 and substrate based on multiple substrates analysis.

    PubMed

    Jiang, Zheng-Yu; Xu, Li-Li; Lu, Meng-Chen; Pan, Yang; Huang, Hao-Ze; Zhang, Xiao-Jin; Sun, Hao-Peng; You, Qi-Dong

    2014-12-01

    E3 ubiquitin ligases are attractive drug targets due to their specificity to the ubiquitin machinery. However, the development of E3 ligase inhibitors has proven challenging for the fact that they must disrupt protein-protein interactions (PPIs). The E3 ligase involved in interactome provide new hope for the discovery of the E3 ligase inhibitors. These currently known natural binding partners of the E3 ligase can benefit the discovery of other unknown substrates and also the E3 ligase inhibitors. Herein, we present a novel strategy that using multiple substrates to elucidate the molecular recognition mechanism of E3 ubiquitin ligase. Molecular dynamics simulation, molecular mechanics-generalized born surface area (MM-GBSA) binding energy calculation and energy decomposition scheme were incorporated to evaluate the quantitative contributions of sub-pocket and per-residue to binding. In this case, Kelch-like ECH-associated protein-1 (Keap1), a substrate adaptor component of the Cullin-RING ubiquitin ligases complex, is applied for the investigation of how it recognize its substrates, especially Nrf2, a master regulator of the antioxidant response. By analyzing multiple substrates binding determinants, we found that both the polar sub-pockets (P1 and P2) and the nonpolar sub-pockets (P4 and P5) of Keap1 can make remarkable contributions to intermolecular interactions. This finding stresses the requirement for substrates to interact with the polar and nonpolar sub-pockets simultaneously. The results discussed in this paper not only show the binding determinants of the Keap1 substrates but also provide valuable implications for both Keap1 substrate discovery and PPI inhibitor design. PMID:25301376

  2. Identification of an Unconventional E3 Binding Surface on the UbcH5 ∼ Ub Conjugate Recognized by a Pathogenic Bacterial E3 Ligase by a pathogenic bacterial E3 ligase.

    SciTech Connect

    Levin, Itay; Eakin, Catherine M.; Blanc, Marie-Pierre; Klevit, Rachel E.; Miller, Samuel I.; Brzovic, Peter S.

    2010-02-16

    Gram-negative bacteria deliver a cadre of virulence factors directly into the cytoplasm of eukaryotic host cells to promote pathogenesis and/or commensalism. Recently, families of virulence proteins have been recognized that function as E3 Ubiquitin-ligases. How these bacterial ligases integrate into the ubiquitin (Ub) signaling pathways of the host and how they differ functionally from endogenous eukaryotic E3s is not known. Here we show that the bacterial E3 SspH2 from S. typhimurium selectively binds the human UbcH5 ∼ Ub conjugate recognizing regions of both UbcH5 and Ub subunits. The surface of the E2 UbcH5 involved in this interaction differs substantially from that defined for other E2/E3 complexes involving eukaryotic E3-ligases. In vitro, SspH2 directs the synthesis of K48-linked poly-Ub chains, suggesting that cellular protein targets of SspH2-catalyzed Ub transfer are destined for proteasomal destruction. Unexpectedly, we found that intermediates in SspH2-directed reactions are activated poly-Ub chains directly tethered to the UbcH5 active site (UbcH5 ∼ Ubn). Rapid generation of UbcH5 ∼ Ubn may allow for bacterially directed modification of eukaryotic target proteins with a completed poly-Ub chain, efficiently tagging host targets for destruction.

  3. Structures of Pup Ligase PafA and Depupylase Dop of the Prokaryotic Ubiquitin-like Modification Pathway

    PubMed Central

    Özcelik, Dennis; Barandun, Jonas; Schmitz, Nikolaus; Sutter, Markus; Guth, Ethan; Damberger, Fred F.; Allain, Frédéric H.-T.; Ban, Nenad; Weber-Ban, Eilika

    2015-01-01

    Pupylation is a post-translational protein modification occurring in mycobacteria and other actinobacteria that is functionally analogous to ubiquitination. Here, we report the crystal structures of the modification enzymes involved in this pathway, the Pup ligase PafA and the depupylase/deamidase Dop. Both feature a larger N-terminal domain consisting of a central β-sheet packed against a cluster of helices, a fold characteristic for carboxylate-amine ligases, and a smaller C-terminal domain unique to PafA/Dop members. The active site is located on the concave surface of the β-sheet with the nucleotide bound in a deep pocket. A conserved groove leading into the active site could play a role in Pup-binding. NMR and biochemical experiments determine the region of Pup that interacts with PafA and Dop. Structural data and mutational studies identify crucial residues for catalysis of both enzymes. PMID:22910360

  4. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters

    PubMed Central

    Costessi, Adalberto; Mahrour, Nawel; Tijchon, Esther; Stunnenberg, Rieka; Stoel, Marieke A; Jansen, Pascal W; Sela, Dotan; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan W; Conaway, Ronald C; Stunnenberg, Hendrik G

    2011-01-01

    The human tumour antigen PRAME (preferentially expressed antigen of melanoma) is frequently overexpressed in tumours. High PRAME levels correlate with poor clinical outcome of several cancers, but the mechanisms by which PRAME could be involved in tumourigenesis remain largely elusive. We applied protein-complex purification strategies and identified PRAME as a substrate recognition subunit of a Cullin2-based E3 ubiquitin ligase. PRAME can be recruited to DNA in vitro, and genome-wide chromatin immunoprecipitation experiments revealed that PRAME is specifically enriched at transcriptionally active promoters that are also bound by NFY and at enhancers. Our results are consistent with a role for the PRAME ubiquitin ligase complex in NFY-mediated transcriptional regulation. PMID:21822215

  5. Expression, purification, crystallization and preliminary crystallographic analysis of a thermostable DNA ligase from the archaeon Thermococcus sibiricus.

    PubMed

    Petrova, T E; Bezsudnova, E Y; Dorokhov, B D; Slutskaya, E S; Polyakov, K M; Dorovatovskiy, P V; Ravin, N V; Skryabin, K G; Kovalchuk, M V; Popov, V O

    2012-02-01

    DNA ligases join single-strand breaks in double-stranded DNA by catalyzing the formation of a phosphodiester bond between adjacent 5'-phosphate and 3'-hydroxyl termini. Their function is essential to maintain the integrity of the genome in DNA replication, recombination and repair. A recombinant ATP-dependent DNA ligase from the hyperthermophilic anaerobic archaeon Thermococcus sibiricus was expressed in Escherichia coli and purified. Crystals were grown by vapour diffusion using the hanging-drop method with 17%(w/v) PEG 4000 and 8.5%(v/v) 2-propanol as precipitants. A diffraction experiment was performed with a single crystal, which diffracted X-rays to 3.0 Å resolution. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 58.590, b = 87.540, c = 126.300 Å. PMID:22297989

  6. Crystal structure of the substrate-recognition domain of the Shigella E3 ligase IpaH9.8.

    PubMed

    Takagi, Kenji; Kim, Minsoo; Sasakawa, Chihiro; Mizushima, Tsunehiro

    2016-04-01

    Infectious diseases caused by bacteria have significant impacts on global public health. During infection, pathogenic bacteria deliver a variety of virulence factors, called effectors, into host cells. The Shigella effector IpaH9.8 functions as an ubiquitin ligase, ubiquitinating the NF-κB essential modulator (NEMO)/IKK-γ to inhibit host inflammatory responses. IpaH9.8 contains leucine-rich repeats (LRRs) involved in substrate recognition and an E3 ligase domain. To elucidate the structural basis of the function of IpaH9.8, the crystal structure of the LRR domain of Shigella IpaH9.8 was determined and this structure was compared with the known structures of other IpaH family members. This model provides insights into the structural features involved in substrate specificity. PMID:27050259

  7. Structure of the Siz/PIAS SUMO E3 Ligase Siz1 and Determinants Required for SUMO Modification of PCNA

    SciTech Connect

    Yunus, Ali A.; Lima, Christopher D.

    2010-01-12

    Siz1 is a founding member of the Siz/PIAS RING family of SUMO E3 ligases. The X-ray structure of an active Siz1 ligase revealed an elongated tripartite architecture comprised of an N-terminal PINIT domain, a central zinc-containing RING-like SP-RING domain, and a C-terminal domain we term the SP-CTD. Structure-based mutational analysis and biochemical studies show that the SP-RING and SP-CTD are required for activation of the E2SUMO thioester, while the PINIT domain is essential for redirecting SUMO conjugation to the proliferating cell nuclear antigen (PCNA) at lysine 164, a nonconsensus lysine residue that is not modified by the SUMO E2 in the absence of Siz1. Mutational analysis of Siz1 and PCNA revealed surfaces on both proteins that are required for efficient SUMO modification of PCNA in vitro and in vivo.

  8. The Human EKC/KEOPS Complex Is Recruited to Cullin2 Ubiquitin Ligases by the Human Tumour Antigen PRAME

    PubMed Central

    Costessi, Adalberto; Mahrour, Nawel; Sharma, Vikram; Stunnenberg, Rieka; Stoel, Marieke A.; Tijchon, Esther; Conaway, Joan W.; Conaway, Ronald C.; Stunnenberg, Hendrik G.

    2012-01-01

    The human tumour antigen PRAME (preferentially expressed antigen in melanoma) is frequently overexpressed during oncogenesis, and high PRAME levels are associated with poor clinical outcome in a variety of cancers. However, the molecular pathways in which PRAME is implicated are not well understood. We recently characterized PRAME as a BC-box subunit of a Cullin2-based E3 ubiquitin ligase. In this study, we mined the PRAME interactome to a deeper level and identified specific interactions with OSGEP and LAGE3, which are human orthologues of the ancient EKC/KEOPS complex. By characterizing biochemically the human EKC complex and its interactions with PRAME, we show that PRAME recruits a Cul2 ubiquitin ligase to EKC. Moreover, EKC subunits associate with PRAME target sites on chromatin. Our data reveal a novel link between the oncoprotein PRAME and the conserved EKC complex and support a role for both complexes in the same pathways. PMID:22912744

  9. Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence.

    PubMed

    Gu, Jiafeng; Lu, Haihui; Tsai, Albert G; Schwarz, Klaus; Lieber, Michael R

    2007-01-01

    The double-strand DNA break repair pathway, non-homologous DNA end joining (NHEJ), is distinctive for the flexibility of its nuclease, polymerase and ligase activities. Here we find that the joining of ends by XRCC4-ligase IV is markedly influenced by the terminal sequence, and a steric hindrance model can account for this. XLF (Cernunnos) stimulates the joining of both incompatible DNA ends and compatible DNA ends at physiologic concentrations of Mg2+, but only of incompatible DNA ends at higher concentrations of Mg2+, suggesting charge neutralization between the two DNA ends within the ligase complex. XRCC4-DNA ligase IV has the distinctive ability to ligate poly-dT single-stranded DNA and long dT overhangs in a Ku- and XLF-independent manner, but not other homopolymeric DNA. The dT preference of the ligase is interesting given the sequence bias of the NHEJ polymerase. These distinctive properties of the XRCC4-DNA ligase IV complex explain important aspects of its in vivo roles. PMID:17717001

  10. CUL4-DDB1-CDT2 E3 Ligase Regulates the Molecular Clock Activity by Promoting Ubiquitination-Dependent Degradation of the Mammalian CRY1

    PubMed Central

    Tong, Xin; Zhang, Deqiang; Guha, Anirvan; Arthurs, Blake; Cazares, Victor; Gupta, Neil; Yin, Lei

    2015-01-01

    The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant’s resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1. PMID:26431207

  11. Sterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB

    PubMed Central

    Roussel, Benoit D.; Newton, Timothy M.; Malzer, Elke; Simecek, Nikol; Haq, Imran; Thomas, Sally E.; Burr, Marian L.; Lehner, Paul J.; Crowther, Damian C.; Marciniak, Stefan J.; Lomas, David A.

    2013-01-01

    Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR. PMID:23814041

  12. Expansion and Diversification of BTL Ring-H2 Ubiquitin Ligases in Angiosperms: Putative Rabring7/BCA2 Orthologs

    PubMed Central

    Aguilar-Henonin, Laura; Guzmán, Plinio

    2013-01-01

    RING finger E3 ligases are components of the ubiquitin proteasome system (UPS) that mediate the transfer of ubiquitin to substrates. Single-subunit RING finger E3s binds the E2 ubiquitin-conjugating enzyme and contains recognition sequences for the substrate within the same polypeptide. Here we describe the characterization of a class of RING finger E3 ligases that is conserved among eukaryotes. This class encodes a RING-H2 domain related in sequence to the ATL RING-H2 domain, another class of E3 ligases, and a C2/C2 zing finger at the amino-terminus, formerly described as BZF. In viridiplantae (green algae and land plants), we designed this family as BTL for BZF ATLs. BTLs are putative orthologs of the mammalian Rabring7/BCA2 RING-H2 E3s that have expanded in angiosperms. They are found in numbers ranging from three to thirty-one, which is in contrast to the one to three members normally found in animals, fungi, and protists. Furthermore, the number of sequence LOGOs generated in angiosperms is four times greater than that in other eukaryotes. In contrast to ATLs, which show expansion by tandem duplication, tandemly duplicated BTLs are scarce. The mode of action of Rabring7/BCA2 and BTLs may be similar since both the Rabring7/BCA2 BZF and the ath|BTL4 BZF are likely to mediate the binding of ubiquitin. This study introduces valuable information on the evolution and domain structure of the Rabring7/BCA2/BTL class of E3 ligases which may be important for core eukaryotic genes. PMID:23951330

  13. Expansion and diversification of BTL ring-H2 ubiquitin ligases in angiosperms: putative Rabring7/BCA2 orthologs.

    PubMed

    Aguilar-Hernández, Victor; Medina, Juliana; Aguilar-Henonin, Laura; Guzmán, Plinio

    2013-01-01

    RING finger E3 ligases are components of the ubiquitin proteasome system (UPS) that mediate the transfer of ubiquitin to substrates. Single-subunit RING finger E3s binds the E2 ubiquitin-conjugating enzyme and contains recognition sequences for the substrate within the same polypeptide. Here we describe the characterization of a class of RING finger E3 ligases that is conserved among eukaryotes. This class encodes a RING-H2 domain related in sequence to the ATL RING-H2 domain, another class of E3 ligases, and a C2/C2 zing finger at the amino-terminus, formerly described as BZF. In viridiplantae (green algae and land plants), we designed this family as BTL for BZF ATLs. BTLs are putative orthologs of the mammalian Rabring7/BCA2 RING-H2 E3s that have expanded in angiosperms. They are found in numbers ranging from three to thirty-one, which is in contrast to the one to three members normally found in animals, fungi, and protists. Furthermore, the number of sequence LOGOs generated in angiosperms is four times greater than that in other eukaryotes. In contrast to ATLs, which show expansion by tandem duplication, tandemly duplicated BTLs are scarce. The mode of action of Rabring7/BCA2 and BTLs may be similar since both the Rabring7/BCA2 BZF and the ath|BTL4 BZF are likely to mediate the binding of ubiquitin. This study introduces valuable information on the evolution and domain structure of the Rabring7/BCA2/BTL class of E3 ligases which may be important for core eukaryotic genes. PMID:23951330

  14. Highly sensitive DNA methylation analysis at CpG resolution by surface-enhanced Raman scattering via ligase chain reaction.

    PubMed

    Wang, Yuling; Wee, Eugene J H; Trau, Matt

    2015-07-11

    Sensitive and accurate DNA methylation analysis at CpG resolution was demonstrated using surface-enhanced Raman scattering (SERS) via ligase chain reaction (LCR). The method was sensitive to 10% changes in methylation and the accuracy of methylation estimates in cells and serum DNA validated with sequencing. The LCR/SERS approach may have broad applications as an alternative (epi)genetic detection method. PMID:26063626

  15. Crystal structures of biotin protein ligase from Pyrococcus horikoshii OT3 and its complexes: structural basis of biotin activation.

    PubMed

    Bagautdinov, Bagautdin; Kuroishi, Chizu; Sugahara, Mitsuaki; Kunishima, Naoki

    2005-10-21

    Biotin protein ligase (EC 6.3.4.15) catalyses the synthesis of an activated form of biotin, biotinyl-5'-AMP, from substrates biotin and ATP followed by biotinylation of the biotin carboxyl carrier protein subunit of acetyl-CoA carboxylase. The three-dimensional structure of biotin protein ligase from Pyrococcus horikoshii OT3 has been determined by X-ray diffraction at 1.6A resolution. The structure reveals a homodimer as the functional unit. Each subunit contains two domains, a larger N-terminal catalytic domain and a smaller C-terminal domain. The structural feature of the active site has been studied by determination of the crystal structures of complexes of the enzyme with biotin, ADP and the reaction intermediate biotinyl-5'-AMP at atomic resolution. This is the first report of the liganded structures of biotin protein ligase with nucleotide and biotinyl-5'-AMP. The structures of the unliganded and the liganded forms are isomorphous except for an ordering of the active site loop upon ligand binding. Catalytic binding sites are suitably arranged to minimize the conformational changes required during the reaction, as the pockets for biotin and nucleotide are located spatially adjacent to each other in a cleft of the catalytic domain and the pocket for biotinyl-5'-AMP binding mimics the combination of those of the substrates. The exact locations of the ligands and the active site residues allow us to propose a general scheme for the first step of the reaction carried out by biotin protein ligase in which the positively charged epsilon-amino group of Lys111 facilitates the nucleophilic attack on the ATP alpha-phosphate group by the biotin carboxyl oxygen atom and stabilizes the negatively charged intermediates. PMID:16169557

  16. Fbxw5 suppresses nuclear c-Myb activity via DDB1-Cul4-Rbx1 ligase-mediated sumoylation

    SciTech Connect

    Kanei-Ishii, Chie; Nomura, Teruaki; Egoh, Ayako; Ishii, Shunsuke

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Fbxw5 enhances sumoylation of c-Myb. Black-Right-Pointing-Pointer The DDB1-Cul4A-Rbx1 complex mediates c-Myb sumoylation. Black-Right-Pointing-Pointer The Fbxw5-DDB1-Cul4A-Rdx1 complex is a dual SUMO/ubiquitin ligase. Black-Right-Pointing-Pointer Fbxw5 suppresses the c-Myb trans-activating capacity. -- Abstract: The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling. In this process, Fbxw7{alpha}, the F-box protein of the SCF complex, binds to c-Myb via its C-terminal WD40 domain, and induces the ubiquitination of c-Myb. Here, we report that Fbxw5, another F-box protein, enhances sumoylation of nuclear c-Myb. Fbxw5 enhanced c-Myb sumoylation via the DDB1-Cul4A-Rbx1 complex. Since the Fbxw5-DDB1-Cul4A-Rbx1 complex was shown to act as a ubiquitin ligase for tumor suppressor TSC2, our results suggest that this complex can function as a dual SUMO/ubiquitin ligase. Fbxw5, which is localized to both nucleus and cytosol, enhanced sumoylation of nuclear c-Myb and induced the localization of c-Myb to nuclear dot-like domains. Co-expression of Fbxw5 suppressed the trans-activation of c-myc promoter by wild-type c-Myb, but not by v-Myb, which lacks the sumoylation sites. These results suggest that multiple E3 ligases suppress c-Myb activity through sumoylation or ubiquitination, and that v-Myb is no longer subject to these negative regulations.

  17. Chlorovirus Skp1-Binding Ankyrin Repeat Protein Interplay and Mimicry of Cellular Ubiquitin Ligase Machinery

    PubMed Central

    Noel, Eric A.; Kang, Ming; Adamec, Jiri; Oyler, George A.

    2014-01-01

    ABSTRACT The ubiquitin-proteasome system is targeted by many viruses that have evolved strategies to redirect host ubiquitination machinery. Members of the genus Chlorovirus are proposed to share an ancestral lineage with a broader group of related viruses, nucleo-cytoplasmic large DNA viruses (NCLDV). Chloroviruses encode an Skp1 homolog and ankyrin repeat (ANK) proteins. Several chlorovirus-encoded ANK repeats contain C-terminal domains characteristic of cellular F-boxes or related NCLDV chordopox PRANC (pox protein repeats of ankyrin at C-terminal) domains. These observations suggested that this unique combination of Skp1 and ANK repeat proteins might form complexes analogous to the cellular Skp1-Cul1-F-box (SCF) ubiquitin ligase complex. We identified two ANK proteins from the prototypic chlorovirus Paramecium bursaria chlorella virus-1 (PBCV-1) that functioned as binding partners for the virus-encoded Skp1, proteins A682L and A607R. These ANK proteins had a C-terminal Skp1 interactional motif that functioned similarly to cellular F-box domains. A C-terminal motif of ANK protein A682L binds Skp1 proteins from widely divergent species. Yeast two-hybrid analyses using serial domain deletion constructs confirmed the C-terminal localization of the Skp1 interactional motif in PBCV-1 A682L. ANK protein A607R represents an ANK family with one member present in all 41 sequenced chloroviruses. A comprehensive phylogenetic analysis of these related ANK and viral Skp1 proteins suggested partnered function tailored to the host alga or common ancestral heritage. Here, we show protein-protein interaction between corresponding family clusters of virus-encoded ANK and Skp1 proteins from three chlorovirus types. Collectively, our results indicate that chloroviruses have evolved complementing Skp1 and ANK proteins that mimic cellular SCF-associated proteins. IMPORTANCE Viruses have evolved ways to direct ubiquitination events in order to create environments conducive to their

  18. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase

    PubMed Central

    Li, Hua

    2013-01-01

    SAG (Sensitive to Apoptosis Gene), also known as RBX2 (RING box protein 2), ROC2 (Regulator of Cullins 2), or RNF7 (RING Finger Protein 7), was originally cloned in our laboratory as a redox inducible antioxidant protein and later characterized as the second member of the RBX/ROC RING component of the SCF (SKP1-CUL-F-box Proteins) E3 ubiquitin ligase. When acting alone, SAG scavenges oxygen radicals by forming inter- and intra- molecular disulfide bonds, whereas by forming a complex with other components of the SCF E3 ligase, SAG promotes ubiquitination and degradation of a number of protein substrates, including c-JUN, DEPTOR, HIF-1α, IκBα, NF1, NOXA, p27, and procaspase-3, thus regulating various signaling pathways and biological processes. Specifically, SAG protects cells from apoptosis, confers radioresistance, and plays an essential and non-redundant role in mouse embryogenesis and vasculogenesis. Furthermore, stress-inducible SAG is overexpressed in a number of human cancers and SAG overexpression correlates with poor patient prognosis. Finally, SAG transgenic expression in epidermis causes an early stage inhibition, but later stage promotion, of skin tumorigenesis triggered by DMBA/TPA. Given its major role in promoting targeted degradation of tumor suppressive proteins, leading to apoptosis suppression and accelerated tumorigenesis, SAG E3 ligase appears to be an attractive anticancer target. PMID:23136067

  19. Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP.

    PubMed

    Shi, Chang-He; Schisler, Jonathan C; Rubel, Carrie E; Tan, Song; Song, Bo; McDonough, Holly; Xu, Lei; Portbury, Andrea L; Mao, Cheng-Yuan; True, Cadence; Wang, Rui-Hao; Wang, Qing-Zhi; Sun, Shi-Lei; Seminara, Stephanie B; Patterson, Cam; Xu, Yu-Ming

    2014-02-15

    Gordon Holmes syndrome (GHS) is a rare Mendelian neurodegenerative disorder characterized by ataxia and hypogonadism. Recently, it was suggested that disordered ubiquitination underlies GHS though the discovery of exome mutations in the E3 ligase RNF216 and deubiquitinase OTUD4. We performed exome sequencing in a family with two of three siblings afflicted with ataxia and hypogonadism and identified a homozygous mutation in STUB1 (NM_005861) c.737C→T, p.Thr246Met, a gene that encodes the protein CHIP (C-terminus of HSC70-interacting protein). CHIP plays a central role in regulating protein quality control, in part through its ability to function as an E3 ligase. Loss of CHIP function has long been associated with protein misfolding and aggregation in several genetic mouse models of neurodegenerative disorders; however, a role for CHIP in human neurological disease has yet to be identified. Introduction of the Thr246Met mutation into CHIP results in a loss of ubiquitin ligase activity measured directly using recombinant proteins as well as in cell culture models. Loss of CHIP function in mice resulted in behavioral and reproductive impairments that mimic human ataxia and hypogonadism. We conclude that GHS can be caused by a loss-of-function mutation in CHIP. Our findings further highlight the role of disordered ubiquitination and protein quality control in the pathogenesis of neurodegenerative disease and demonstrate the utility of combining whole-exome sequencing with molecular analyses and animal models to define causal disease polymorphisms. PMID:24113144

  20. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex

    PubMed Central

    Brzovic, Peter S.; Keeffe, Jennifer R.; Nishikawa, Hiroyuki; Miyamoto, Keiko; Fox, David; Fukuda, Mamoru; Ohta, Tomohiko; Klevit, Rachel

    2003-01-01

    BRCA1 is a breast and ovarian cancer tumor suppressor protein that associates with BARD1 to form a RING/RING heterodimer. The BRCA1/BARD1 RING complex functions as an ubiquitin (Ub) ligase with activity substantially greater than individual BRCA1 or BARD1 subunits. By using NMR spectroscopy and site-directed mutagenesis, we have mapped the binding site on the BRCA1/BARD1 heterodimer for the Ub-conjugating enzyme UbcH5c. The results demonstrate that UbcH5c binds only to the BRCA1 RING domain and not the BARD1 RING. The binding interface is formed by the first and second Zn2+-loops and central α-helix of the BRCA1 RING domain, a region disrupted by cancer-predisposing mutations. Unexpectedly, a second Ub-conjugating enzyme, UbcH7, also interacts with the BRCA1/BARD1 complex with similar affinity, although it is not active in Ub-ligase activity assays. Thus, binding alone is not sufficient for BRCA1-dependent Ub-ligase activity. PMID:12732733

  1. Distinct SUMO Ligases Cooperate with Esc2 and Slx5 to Suppress Duplication-Mediated Genome Rearrangements

    PubMed Central

    Albuquerque, Claudio P.; Wang, Guoliang; Lee, Nancy S.; Kolodner, Richard D.; Putnam, Christopher D.; Zhou, Huilin

    2013-01-01

    Suppression of duplication-mediated gross chromosomal rearrangements (GCRs) is essential to maintain genome integrity in eukaryotes. Here we report that SUMO ligase Mms21 has a strong role in suppressing GCRs in Saccharomyces cerevisiae, while Siz1 and Siz2 have weaker and partially redundant roles. Understanding the functions of these enzymes has been hampered by a paucity of knowledge of their substrate specificity in vivo. Using a new quantitative SUMO-proteomics technology, we found that Siz1 and Siz2 redundantly control the abundances of most sumoylated substrates, while Mms21 more specifically regulates sumoylation of RNA polymerase-I and the SMC-family proteins. Interestingly, Esc2, a SUMO-like domain-containing protein, specifically promotes the accumulation of sumoylated Mms21-specific substrates and functions with Mms21 to suppress GCRs. On the other hand, the Slx5-Slx8 complex, a SUMO-targeted ubiquitin ligase, suppresses the accumulation of sumoylated Mms21-specific substrates. Thus, distinct SUMO ligases work in concert with Esc2 and Slx5-Slx8 to control substrate specificity and sumoylation homeostasis to prevent GCRs. PMID:23935535

  2. The Structural Basis for Partitioning of the XRCC1/DNA Ligase III-alpha BRCT-mediated Dimer Complexes

    SciTech Connect

    M Cuneo; S Gabel; J Krahn; M Ricker; R London

    2011-12-31

    The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-{alpha}. For efficient ligation, ligase III-{alpha} is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-{alpha} BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex.

  3. The structural basis for partitioning of the XRCC1/DNA ligase III-[alpha] BRCT-mediated dimer complexes

    SciTech Connect

    Cuneo, Matthew J.; Gabel, Scott A.; Krahn, Joseph M.; Ricker, Melissa A.; London, Robert E.

    2011-11-17

    The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-{alpha}. For efficient ligation, ligase III-{alpha} is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-{alpha} BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex.

  4. The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress

    PubMed Central

    Melnik, Andre; Wilson-Zbinden, Caroline; Schellhaas, René; Kastner, Lisa; Piwko, Wojciech; Dees, Martina; Picotti, Paola; Maric, Marija; Labib, Karim; Luke, Brian; Peter, Matthias

    2016-01-01

    Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1’s replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks. PMID:26849847

  5. The C-Terminal Domain of Yeast PCNA Is Required for Physical And Functional Interactions With Cdc9 DNA Ligase

    SciTech Connect

    Vijayakumar, S.; Chapados, B.R.; Schmidt, K.H.; Kolodner, R.D.; Tainer, J.A.; Tomkinson, A.E.

    2007-07-13

    There is compelling evidence that proliferating cell nuclear antigen (PCNA), a DNA sliding clamp, co-ordinates the processing and joining of Okazaki fragments during eukaryotic DNA replication. However, a detailed mechanistic understanding of functional PCNA:ligase I interactions has been incomplete. Here we present the co-crystal structure of yeast PCNA with a peptide encompassing the conserved PCNA interaction motif of Cdc9, yeast DNA ligase I. The Cdc9 peptide contacts both the inter-domain connector loop (IDCL) and residues near the C-terminus of PCNA. Complementary mutational and biochemical results demonstrate that these two interaction interfaces are required for complex formation both in the absence of DNA and when PCNA is topologically linked to DNA. Similar to the functionally homologous human proteins, yeast RFC interacts with and inhibits Cdc9 DNA ligase whereas the addition of PCNA alleviates inhibition by RFC. Here we show that the ability of PCNA to overcome RFC-mediated inhibition of Cdc9 is dependent upon both the IDCL and the C-terminal interaction interfaces of PCNA. Together these results demonstrate the functional significance of the {beta}-zipper structure formed between the C-terminal domain of PCNA and Cdc9 and reveal differences in the interactions of FEN-1 and Cdc9 with the two PCNA interfaces that may contribute to the coordinated, sequential action of these enzymes.

  6. Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level

    PubMed Central

    2011-01-01

    Background Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin. Results After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming a functional complex, laforin and perhaps malin may also have independent functions. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32, which belongs to the tripartite-motif containing family of proteins. We present experimental evidence that both malin and TRIM32 share some substrates for ubiquitination, although they produce ubiquitin chains with different topologies. However, TRIM32-specific substrates were not reciprocally ubiquitinated by the laforin-malin complex. Conclusions We found that malin and laforin are not conserved in the same genomes. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32. The latter result suggests a common origin for malin and TRIM32 and provides insights into possible functional relationships between both proteins. PMID:21798009

  7. Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions.

    PubMed

    Medina-Medina, Ixaura; García-Beltrán, Paola; de la Mora-de la Mora, Ignacio; Oria-Hernández, Jesús; Millot, Guy; Fahraeus, Robin; Reyes-Vivas, Horacio; Sampedro, José G; Olivares-Illana, Vanesa

    2016-08-15

    HDM2 and HDMX are key negative regulatory factors of the p53 tumor suppressor under normal conditions by promoting its degradation or preventing its trans activity, respectively. It has more recently been shown that both proteins can also act as positive regulators of p53 after DNA damage. This involves phosphorylation by ATM on serine residues HDM2(S395) and HDMX(S403), promoting their respective interaction with the p53 mRNA. However, the underlying molecular mechanisms of how these phosphorylation events switch HDM2 and HDMX from negative to positive regulators of p53 is not known. Our results show that these phosphorylation events reside within intrinsically disordered domains and change the conformation of the proteins. The modifications promote the exposition of N-terminal interfaces that support the formation of a new HDMX-HDM2 heterodimer independent of the C-terminal RING-RING interaction. The E3 ubiquitin ligase activity of this complex toward p53 is prevented by the p53 mRNA ligand but, interestingly, does not affect the capacity to ubiquitinate HDMX and HDM2. These results show how ATM-mediated modifications of HDMX and HDM2 switch HDM2 E3 ubiquitin ligase activity away from p53 but toward HDMX and itself and illustrate how the substrate specificity of HDM2 E3 ligase activity is regulated. PMID:27215386

  8. The Drosophila melanogaster DNA Ligase IV gene plays a crucial role in the repair of radiation-induced DNA double-strand breaks and acts synergistically with Rad54.

    PubMed Central

    Gorski, Marcin M; Eeken, Jan C J; de Jong, Anja W M; Klink, Ilse; Loos, Marjan; Romeijn, Ron J; van Veen, Bert L; Mullenders, Leon H; Ferro, Wouter; Pastink, Albert

    2003-01-01

    DNA Ligase IV has a crucial role in double-strand break (DSB) repair through nonhomologous end joining (NHEJ). Most notably, its inactivation leads to embryonic lethality in mammals. To elucidate the role of DNA Ligase IV (Lig4) in DSB repair in a multicellular lower eukaryote, we generated viable Lig4-deficient Drosophila strains by P-element-mediated mutagenesis. Embryos and larvae of mutant lines are hypersensitive to ionizing radiation but hardly so to methyl methanesulfonate (MMS) or the crosslinking agent cis-diamminedichloroplatinum (cisDDP). To determine the relative contribution of NHEJ and homologous recombination (HR) in Drosophila, Lig4; Rad54 double-mutant flies were generated. Survival studies demonstrated that both HR and NHEJ have a major role in DSB repair. The synergistic increase in sensitivity seen in the double mutant, in comparison with both single mutants, indicates that both pathways partially overlap. However, during the very first hours after fertilization NHEJ has a minor role in DSB repair after exposure to ionizing radiation. Throughout the first stages of embryogenesis of the fly, HR is the predominant pathway in DSB repair. At late stages of development NHEJ also becomes less important. The residual survival of double mutants after irradiation strongly suggests the existence of a third pathway for the repair of DSBs in Drosophila. PMID:14704177

  9. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification

    PubMed Central

    Kwon, Duk-Hwa; Eom, Gwang Hyeon; Ko, Jeong Hyeon; Shin, Sera; Joung, Hosouk; Choe, Nakwon; Nam, Yoon Seok; Min, Hyun-Ki; Kook, Taewon; Yoon, Somy; Kang, Wanseok; Kim, Yong Sook; Kim, Hyung Seok; Choi, Hyuck; Koh, Jeong-Tae; Kim, Nacksung; Ahn, Youngkeun; Cho, Hyun-Jai; Lee, In-Kyu; Park, Dong Ho; Suk, Kyoungho; Seo, Sang Beom; Wissing, Erin R.; Mendrysa, Susan M.; Nam, Kwang-Il; Kook, Hyun

    2016-01-01

    Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC. Loss of HDAC1 activity via either chemical inhibitor or genetic ablation enhances VC. HDAC1 protein, but not mRNA, is reduced in cell and animal calcification models and in human calcified coronary artery. Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC and it is mediated by MDM2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination. Overexpression of MDM2 enhances VC, whereas loss of MDM2 blunts it. Decoy peptide spanning HDAC1 K74 and RG 7112, an MDM2 inhibitor, prevent VC in vivo and in vitro. These results uncover a previously unappreciated ubiquitination pathway and suggest MDM2-mediated HDAC1 ubiquitination as a new therapeutic target in VC. PMID:26832969

  10. A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin.

    PubMed

    Noike, Motoyoshi; Matsui, Takashi; Ooya, Koichi; Sasaki, Ikuo; Ohtaki, Shouta; Hamano, Yoshimitsu; Maruyama, Chitose; Ishikawa, Jun; Satoh, Yasuharu; Ito, Hajime; Morita, Hiroyuki; Dairi, Tohru

    2015-01-01

    Peptide antibiotics are typically biosynthesized by one of two distinct machineries in a ribosome-dependent or ribosome-independent manner. Pheganomycin (PGM (1)) and related analogs consist of the nonproteinogenic amino acid (S)-2-(3,5-dihydroxy-4-hydroxymethyl)phenyl-2-guanidinoacetic acid (2) and a proteinogenic core peptide, making their origin uncertain. We report the identification of the biosynthetic gene cluster from Streptomyces cirratus responsible for PGM production. Unexpectedly, the cluster contains a gene encoding multiple precursor peptides along with several genes plausibly encoding enzymes for the synthesis of amino acid 2. We identified PGM1, which has an ATP-grasp domain, as potentially capable of linking the precursor peptides with 2, and validate this hypothesis using deletion mutants and in vitro reconstitution. We document PGM1's substrate permissivity, which could be rationalized by a large binding pocket as confirmed via structural and mutagenesis experiments. This is to our knowledge the first example of cooperative peptide synthesis achieved by ribosomes and peptide ligases using a peptide nucleophile. PMID:25402768

  11. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination

    PubMed Central

    Xu, Congfeng; Feng, Kuan; Zhao, Xiaonan; Huang, Shiqian; Cheng, Yiji; Qian, Liu; Wang, Yanan; Sun, Hongxing; Jin, Min; Chuang, Tsung-Hsien; Zhang, Yanyun

    2015-01-01

    Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases. PMID:25484083

  12. Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin.

    PubMed

    Szyk, Agnieszka; Deaconescu, Alexandra M; Piszczek, Grzegorz; Roll-Mecak, Antonina

    2011-11-01

    Tubulin tyrosine ligase (TTL) catalyzes the post-translational C-terminal tyrosination of α-tubulin. Tyrosination regulates recruitment of microtubule-interacting proteins. TTL is essential. Its loss causes morphogenic abnormalities and is associated with cancers of poor prognosis. We present the first crystal structure of TTL (from Xenopus tropicalis), defining the structural scaffold upon which the diverse TTL-like family of tubulin-modifying enzymes is built. TTL recognizes tubulin using a bipartite strategy. It engages the tubulin tail through low-affinity, high-specificity interactions, and co-opts what is otherwise a homo-oligomerization interface in structurally related ATP grasp-fold enzymes to form a tight hetero-oligomeric complex with the tubulin body. Small-angle X-ray scattering and functional analyses reveal that TTL forms an elongated complex with the tubulin dimer and prevents its incorporation into microtubules by capping the tubulin longitudinal interface, possibly modulating the partition of tubulin between monomeric and polymeric forms. PMID:22020298

  13. Substrates of the ASB2α E3 ubiquitin ligase in dendritic cells

    PubMed Central

    Spinner, Camille A.; Uttenweiler-Joseph, Sandrine; Metais, Arnaud; Stella, Alexandre; Burlet-Schiltz, Odile; Moog-Lutz, Christel; Lamsoul, Isabelle; Lutz, Pierre G.

    2015-01-01

    Conventional dendritic cells (cDCs) comprise distinct populations with specialized immune functions that are mediators of innate and adaptive immune responses. Transcriptomic and proteomic approaches have been used so far to identify transcripts and proteins that are differentially expressed in these subsets to understand the respective functions of cDCs subsets. Here, we showed that the Cullin 5-RING E3 ubiquitin ligase (E3) ASB2α, by driving degradation of filamin A (FLNa) and filamin B (FLNb), is responsible for the difference in FLNa and FLNb abundance in the different spleen cDC subsets. Importantly, the ability of these cDC subsets to migrate correlates with the level of FLNa. Furthermore, our results strongly point to CD4 positive and double negative cDCs as distinct populations. Finally, we develop quantitative global proteomic approaches to identify ASB2α substrates in DCs using ASB2 conditional knockout mice. As component of the ubiquitin-proteasome system (UPS) are amenable to pharmacological manipulation, these approaches aimed to the identification of E3 substrates in physiological relevant settings could potentially lead to novel targets for therapeutic strategies. PMID:26537633

  14. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    PubMed Central

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  15. Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8

    PubMed Central

    Yu, Clinton; Mao, Haibin; Novitsky, Eric J.; Tang, Xiaobo; Rychnovsky, Scott D.; Zheng, Ning; Huang, Lan

    2015-01-01

    The full enzymatic activity of the cullin-RING ubiquitin ligases (CRLs) requires a ubiquitin-like protein (that is, Nedd8) modification. By deamidating Gln40 of Nedd8 to glutamate (Q40E), the bacterial cycle-inhibiting factor (Cif) family is able to inhibit CRL E3 activities, thereby interfering with cellular functions. Despite extensive structural studies on CRLs, the molecular mechanism by which Nedd8 Gln40 deamidation affects CRL functions remains unclear. We apply a new quantitative cross-linking mass spectrometry approach to characterize three different types of full-length human Cul1–Rbx1 complexes and uncover major Nedd8-induced structural rearrangements of the CRL1 catalytic core. More importantly, we find that those changes are not induced by Nedd8(Q40E) conjugation, indicating that the subtle change of a single Nedd8 amino acid is sufficient to revert the structure of the CRL catalytic core back to its unmodified form. Our results provide new insights into how neddylation regulates the conformation and activity of CRLs. PMID:26632597

  16. E3 ubiquitin ligase TRIM32 negatively regulates tumor suppressor p53 to promote tumorigenesis.

    PubMed

    Liu, Ju; Zhang, C; Wang, X L; Ly, P; Belyi, V; Xu-Monette, Z Y; Young, K H; Hu, W; Feng, Z

    2014-11-01

    Tumor suppressor p53 has a key role in maintaining genomic stability and preventing tumorigenesis through its regulation of cellular stress responses, including apoptosis, cell cycle arrest and senescence. To ensure its proper levels and functions in cells, p53 is tightly regulated mainly through post-translational modifications, such as ubiquitination. Here, we identified E3 ubiquitin ligase TRIM32 as a novel p53 target gene and negative regulator to regulate p53-mediated stress responses. In response to stress, such as DNA damage, p53 binds to the p53 responsive element in the promoter of the TRIM32 gene and transcriptionally induces the expression of TRIM32 in cells. In turn, TRIM32 interacts with p53 and promotes p53 degradation through ubiquitination. Thus, TRIM32 negatively regulates p53-mediated apoptosis, cell cycle arrest and senescence in response to stress. TRIM32 is frequently overexpressed in different types of human tumors. TRIM32 overexpression promotes cell oncogenic transformation and tumorigenesis in mice in a largely p53-dependent manner. Taken together, our results demonstrated that as a novel p53 target and a novel negative regulator for p53, TRIM32 has an important role in regulation of p53 and p53-mediated cellular stress responses. Furthermore, our results also revealed that impairing p53 function is a novel mechanism for TRIM32 in tumorigenesis. PMID:25146927

  17. The E3 Ubiquitin Ligase COP1 Regulates Thermosensory Flowering by Triggering GI Degradation in Arabidopsis

    PubMed Central

    Jang, Kiyoung; Gil Lee, Hong; Jung, Su-Jin; Paek, Nam-Chon; Joon Seo, Pil

    2015-01-01

    Floral transition is influenced by environmental factors such as light and temperature. Plants are capable of integrating photoperiod and ambient temperature signaling into their developmental program. Despite extensive investigations on individual genetic pathways, little is known about the molecular components that integrate both pathways. Here, we demonstrate that the RING finger–containing E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) acts as an integrator of photoperiod and ambient temperature signaling. In addition to the role in photoperiodic destabilization of CONSTANS (CO), COP1 also regulates temperature sensitivity by controlling the degradation of GIGANTEA (GI). COP1-impaired mutants showed reduced sensitivity to low ambient temperature. Notably, COP1 is more stabilized at low temperature and accelerates GI turnover in a 26S proteasome-dependent manner. The direct association of GI with the promoter of FLOWERING LOCUS T (FT) was reduced because of its ambient temperature-dependent protein stability control, and thus COP1-triggered GI turnover delays flowering at low temperatures via a CO-independent pathway. Taken together, our findings indicate that environmental conditions regulate the stability of COP1, and conditional specificity of its target selection stimulates proper developmental responses and ensures reproductive success. PMID:26159740

  18. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells

    PubMed Central

    Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression. PMID:26151554

  19. Structure of the human Parkin ligase domain in an autoinhibited state

    PubMed Central

    Wauer, Tobias; Komander, David

    2013-01-01

    Mutations in the protein Parkin are associated with Parkinson's disease (PD), the second most common neurodegenerative disease in men. Parkin is an E3 ubiquitin (Ub) ligase of the structurally uncharacterized RING-in-between-RING(IBR)-RING (RBR) family, which, in an HECT-like fashion, forms a catalytic thioester intermediate with Ub. We here report the crystal structure of human Parkin spanning the Unique Parkin domain (UPD, also annotated as RING0) and RBR domains, revealing a tightly packed structure with unanticipated domain interfaces. The UPD adopts a novel elongated Zn-binding fold, while RING2 resembles an IBR domain. Two key interactions keep Parkin in an autoinhibited conformation. A linker that connects the IBR with the RING2 over a 50-Å distance blocks the conserved E2∼Ub binding site of RING1. RING2 forms a hydrophobic interface with the UPD, burying the catalytic Cys431, which is part of a conserved catalytic triad. Opening of intra-domain interfaces activates Parkin, and enables Ub-based suicide probes to modify Cys431. The structure further reveals a putative phospho-peptide docking site in the UPD, and explains many PD-causing mutations. PMID:23727886

  20. Regulation of a Spindle Positioning Factor at Kinetochores by SUMO-Targeted Ubiquitin Ligases.

    PubMed

    Schweiggert, Jörg; Stevermann, Lea; Panigada, Davide; Kammerer, Daniel; Liakopoulos, Dimitris

    2016-02-22

    Correct function of the mitotic spindle requires balanced interplay of kinetochore and astral microtubules that mediate chromosome segregation and spindle positioning, respectively. Errors therein can cause severe defects ranging from aneuploidy to developmental disorders. Here, we describe a protein degradation pathway that functionally links astral microtubules to kinetochores via regulation of a microtubule-associated factor. We show that the yeast spindle positioning protein Kar9 localizes not only to astral but also to kinetochore microtubules, where it becomes targeted for proteasomal degradation by the SUMO-targeted ubiquitin ligases (STUbLs) Slx5-Slx8. Intriguingly, this process does not depend on preceding sumoylation of Kar9 but rather requires SUMO-dependent recruitment of STUbLs to kinetochores. Failure to degrade Kar9 leads to defects in both chromosome segregation and spindle positioning. We propose that kinetochores serve as platforms to recruit STUbLs in a SUMO-dependent manner in order to ensure correct spindle function by regulating levels of microtubule-associated proteins. PMID:26906737

  1. Proteomic insight into the effects of the Salmonella ubiquitin ligase SlrP on host cells.

    PubMed

    Cordero-Alba, Mar; García-Gómez, Juan José; Aguilera-Herce, Julia; Ramos-Morales, Francisco

    2016-04-01

    The virulence of the human and animal pathogen Salmonella enterica serovar Typhimurium is dependent on two type III secretion systems. These systems translocate proteins called effectors into eukaryotic host cells. SlrP is a Salmonella type III secretion effector with ubiquitin ligase activity. Here, we used two complementary proteomic approaches, two-dimensional gel electrophoresis and iTRAQ (isobaric tags for relative and absolute quantification) to study the consequences of the presence of SlrP in human epithelial cells. We identified 37 proteins that were differentially expressed in HeLa cells expressing slrP compared to control cells. Microarray analysis revealed that more than a half of differentially expressed proteins did not show changes in the transcriptome, suggesting post-transcriptional regulation. A gene ontology overrepresentation test carried out on the differentially expressed proteins revealed enrichment of ontology terms related to several types of junctions mediating adhesion in epithelial cells. Consistently, slrP-transfected cells showed defects in migration and adhesion. Our results suggest that the modification of cell-cell interaction ability of the host could be one of the final consequences of the action of SlrP during an infection. PMID:26966069

  2. Atypical ubiquitin ligase RNF31: the nuclear factor modulator in breast cancer progression.

    PubMed

    Zhu, Jian; Zhuang, Ting; Yang, Huijie; Li, Xin; Liu, Huandi; Wang, Hui

    2016-01-01

    Breast cancer causes the No.1 women cancer prevalence and the No.2 women cancer mortality worldwide. Nuclear receptor/transcriptional factor signaling is aberrant and plays important roles in breast cancer pathogenesis and evolution, such as estrogen receptor α (ERα/ESR1), tumor protein p53 (p53/TP53) and Nuclear factor kappa B (NFκB). About 60-70 % of breast tumors are ERα positive, while approximate 70 % of breast tumors are P53 wild type. Recent studies indicate that nuclear receptors/transcriptional factors could be tightly controlled through protein post-translational modification.The nuclear receptors/transcriptional factors could endure several types of modifications, including phosphorylation, acetylation and ubiquitination. Compared with the other two types of modifications, ubiquitination was mostly linked to protein degradation process, while few researches focused on the functional changes of the target proteins. Until recent years, ubiquitination process is no longer regarded as merely a protein degradation process, but aslo treated as one kind of modification signal.As an atypical E3 ubiquitin ligase, RNF31 was previously found to facilitate NFκB signaling transduction through linear ubiquitination on IKKγ(IκB kinase γ). Our previous studies showed important regulatory functions of RNF31 in controlling important oncogenic pathways in breast cancer, such as ERα and p53. This review highlights recent discoveries on RNF31 functions in nuclear factor modifications, breast cancer progression and possible therapeutic inhibitors targeting RNF31. PMID:27460922

  3. Transcription Factor hDREF Is a Novel SUMO E3 Ligase of Mi2α.

    PubMed

    Yamashita, Daisuke; Moriuchi, Takanobu; Osumi, Takashi; Hirose, Fumiko

    2016-05-27

    The human transcription factor DNA replication-related element-binding factor (hDREF) is essential for the transcription of a number of housekeeping genes. The mechanisms underlying constitutively active transcription by hDREF were unclear. Here, we provide evidence that hDREF possesses small ubiquitin-like modifier (SUMO) ligase activity and can specifically SUMOylate Mi2α, an ATP-dependent DNA helicase in the nucleosome remodeling and deacetylation complex. Moreover, immunofluorescent staining and biochemical analyses showed that coexpression of hDREF and SUMO-1 resulted in dissociation of Mi2α from chromatin, whereas a SUMOylation-defective Mi2α mutant remained tightly bound to chromatin. Chromatin immunoprecipitation and quantitative RT-PCR analysis demonstrated that Mi2α expression diminished transcription of the ribosomal protein genes, which are positively regulated by hDREF. In contrast, coexpression of hDREF and SUMO-1 suppressed the transcriptional repression by Mi2α. These data indicate that hDREF might incite transcriptional activation by SUMOylating Mi2α, resulting in the dissociation of Mi2α from the gene loci. We propose a novel mechanism for maintaining constitutively active states of a number of hDREF target genes through SUMOylation. PMID:27068747

  4. The Evolutionarily Conserved E3 Ubiquitin Ligase AtCHIP Contributes to Plant Immunity

    PubMed Central

    Copeland, Charles; Ao, Kevin; Huang, Yan; Tong, Meixuizi; Li, Xin

    2016-01-01

    Plants possess a sophisticated immune system to recognize and respond to microbial threats in their environment. The level of immune signaling must be tightly regulated so that immune responses can be quickly activated in the presence of pathogens, while avoiding autoimmunity. HSP90s, along with their diverse array of co-chaperones, forms chaperone complexes that have been shown to play both positive and negative roles in regulating the accumulation of immune receptors and regulators. In this study, we examined the role of AtCHIP, an evolutionarily conserved E3 ligase that was known to interact with chaperones including HSP90s in multicellular organisms including fruit fly, Caenorhabditis elegans, plants and human. Atchip knockout mutants display enhanced disease susceptibility to a virulent oomycete pathogen, and overexpression of AtCHIP causes enhanced disease resistance at low temperature. Although CHIP was reported to target HSP90 for ubiquitination and degradation, accumulation of HSP90.3 was not affected in Atchip plants. In addition, protein accumulation of nucleotide-binding, leucine-rich repeat domain immune receptor (NLR) SNC1 is not altered in Atchip mutant. Thus, while AtCHIP plays a role in immunity, it does not seem to regulate the turnover of HSP90 or SNC1. Further investigation is needed in order to determine the exact mechanism behind AtCHIP’s role in regulating plant immune responses. PMID:27014328

  5. Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation

    SciTech Connect

    Duda,D.; Borg, L.; Scott, D.; Hunt, H.; Hammel, M.; Schulman, B.

    2008-01-01

    Cullin-RING ligases (CRLs) comprise the largest ubiquitin E3 subclass, in which a central cullin subunit links a substrate-binding adaptor with an E2-binding RING. Covalent attachment of the ubiquitin-like protein NEDD8 to a conserved C-terminal domain (ctd) lysine stimulates CRL ubiquitination activity and prevents binding of the inhibitor CAND1. Here we report striking conformational rearrangements in the crystal structure of NEDD8{approx}Cul5ctd-Rbx1 and SAXS analysis of NEDD8{approx}Cul1ctd-Rbx1 relative to their unmodified counterparts. In NEDD8ylated CRL structures, the cullin WHB and Rbx1 RING subdomains are dramatically reoriented, eliminating a CAND1-binding site and imparting multiple potential catalytic geometries to an associated E2. Biochemical analyses indicate that the structural malleability is important for both CRL NEDD8ylation and subsequent ubiquitination activities. Thus, our results point to a conformational control of CRL activity, with ligation of NEDD8 shifting equilibria to disfavor inactive CAND1-bound closed architectures, and favor dynamic, open forms that promote polyubiquitination.

  6. Fine Tuning of the UPR by the Ubiquitin Ligases Siah1/2

    PubMed Central

    Scortegagna, Marzia; Kim, Hyungsoo; Li, Jian-Liang; Yao, Hang; Brill, Laurence M.; Han, Jaeseok; Lau, Eric; Bowtell, David; Haddad, Gabriel; Kaufman, Randal J.; Ronai, Ze'ev A.

    2014-01-01

    The endoplasmic reticulum (ER) responds to changes in intracellular homeostasis through activation of the unfolded protein response (UPR). Yet, it is not known how UPR-signaling coordinates adaptation versus cell death. Previous studies suggested that signaling through PERK/ATF4 is required for cell death. We show that high levels of ER stress (i.e., ischemia-like conditions) induce transcription of the ubiquitin ligases Siah1/2 through the UPR transducers PERK/ATF4 and IRE1/sXBP1. In turn, Siah1/2 attenuates proline hydroxylation of ATF4, resulting in its stabilization, thereby augmenting ER stress output. Conversely, ATF4 activation is reduced upon Siah1/2 KD in cultured cells, which attenuates ER stress-induced cell death. Notably, Siah1a+/−::Siah2−/− mice subjected to neuronal ischemia exhibited smaller infarct volume and were protected from ischemia-induced death, compared with the wild type (WT) mice. In all, Siah1/2 constitutes an obligatory fine-tuning mechanism that predisposes cells to death under severe ER stress conditions. PMID:24809345

  7. Co-chaperone CHIP stabilizes aggregate-prone malin, a ubiquitin ligase mutated in Lafora disease.

    PubMed

    Rao, Sudheendra N R; Sharma, Jaiprakash; Maity, Ranjan; Jana, Nihar Ranjan

    2010-01-01

    Lafora disease (LD) is an autosomal recessive neurodegenerative disorder caused by mutation in either the dual specificity phosphatase laforin or ubiquitin ligase malin. A pathological hallmark of LD is the accumulation of cytoplasmic polyglucosan inclusions commonly known as Lafora bodies in both neuronal and non-neuronal tissues. How mutations in these two proteins cause disease pathogenesis is not well understood. Malin interacts with laforin and recruits to aggresomes upon proteasome inhibition and was shown to degrade misfolded proteins. Here we report that malin is spontaneously misfolded and tends to be aggregated, degraded by proteasomes, and forms not only aggresomes but also other cytoplasmic and nuclear aggregates in all transfected cells upon proteasomal inhibition. Malin also interacts with Hsp70. Several disease-causing mutants of malin are comparatively more unstable than wild type and form aggregates in most transfected cells even without the inhibition of proteasome function. These cytoplasmic and nuclear aggregates are immunoreactive to ubiquitin and 20 S proteasome. Interestingly, progressive proteasomal dysfunction and cell death is also most frequently observed in the mutant malin-overexpressed cells compared with the wild-type counterpart. Finally, we demonstrate that the co-chaperone carboxyl terminus of the Hsc70-interacting protein (CHIP) stabilizes malin by modulating the activity of Hsp70. All together, our results suggest that malin is unstable, and the aggregate-prone protein and co-chaperone CHIP can modulate its stability. PMID:19892702

  8. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis

    PubMed Central

    Kumar, Atul; Aguirre, Jacob D; Condos, Tara EC; Martinez-Torres, R Julio; Chaugule, Viduth K; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Mercier, Pascal; Knebel, Axel; Spratt, Donald E; Barber, Kathryn R; Shaw, Gary S; Walden, Helen

    2015-01-01

    The PARK2 gene is mutated in 50% of autosomal recessive juvenile parkinsonism (ARJP) cases. It encodes parkin, an E3 ubiquitin ligase of the RBR family. Parkin exists in an autoinhibited state that is activated by phosphorylation of its N-terminal ubiquitin-like (Ubl) domain and binding of phosphoubiquitin. We describe the 1.8 Å crystal structure of human parkin in its fully inhibited state and identify the key interfaces to maintain parkin inhibition. We identify the phosphoubiquitin-binding interface, provide a model for the phosphoubiquitin–parkin complex and show how phosphorylation of the Ubl domain primes parkin for optimal phosphoubiquitin binding. Furthermore, we demonstrate that the addition of phosphoubiquitin leads to displacement of the Ubl domain through loss of structure, unveiling a ubiquitin-binding site used by the E2∼Ub conjugate, thus leading to active parkin. We find the role of the Ubl domain is to prevent parkin activity in the absence of the phosphorylation signals, and propose a model for parkin inhibition, optimization for phosphoubiquitin recruitment, release of inhibition by the Ubl domain and engagement with an E2∼Ub conjugate. Taken together, this model provides a mechanistic framework for activating parkin. PMID:26254304

  9. Membrane-anchored ubiquitin ligase complex is required for the turnover of lysosomal membrane proteins

    PubMed Central

    Li, Ming; Koshi, Tatsuhiro

    2015-01-01

    Cells must regulate the abundance and activity of numerous nutrient transporters in different organelle membranes to achieve nutrient homeostasis. As the recycling center and major storage organelle, lysosomes are essential for maintaining nutrient homeostasis. However, very little is known about mechanisms that govern the regulation of its membrane proteins. In this study, we demonstrated that changes of Zn2+ levels trigger the downregulation of vacuolar Zn2+ transporters. Low Zn2+ levels cause the degradation of the influx transporter Cot1, whereas high Zn2+ levels trigger the degradation of the efflux channel Zrt3. The degradation process depends on the vacuole membrane recycling and degradation pathway. Unexpectedly, we identified a RING domain–containing E3 ligase Tul1 and its interacting proteins in the Dsc complex that are important for the ubiquitination of Cot1 and partial ubiquitination of Zrt3. Our study demonstrated that the Dsc complex can function at the vacuole to regulate the composition and lifetime of vacuolar membrane proteins. PMID:26527740

  10. Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum.

    PubMed

    Gao, Shuai; Yu, Hai-Na; Xu, Rui-Xue; Cheng, Ai-Xia; Lou, Hong-Xiang

    2015-03-01

    Plant phenylpropanoids represent a large group of secondary metabolites which have played an important role in terrestrial plant life, beginning with the evolution of land plants from primitive green algae. 4-Coumarate: coenzyme A ligase (4CL) is a provider of activated thioester substrates within the phenylpropanoid synthesis pathway. Although 4CLs have been extensively characterized in angiosperm, gymnosperm and moss species, little is known of their functions in liverworts. Here, a 4CL homolog (designated as Pa4CL1) was isolated from the liverwort species Plagiochasma appendiculatum. The full-length cDNA sequence of Pa4CL1 contains 1644bp and is predicted to encode a protein with 547amino acids. The gene products were 40-50% identical with 4CL sequences reported in public databases. The recombinant protein was heterologously expressed in Escherichia coli and exhibited a high level of 4CL activity, catalyzing formation of hydroxycinnamate-CoA thioesters by a two-step reaction mechanism from corresponding hydroxycinnamic acids. Kinetic analysis indicated that the most favorable substrate for Pa4CL1 is p-coumaric acid. The transcription of Pa4CL1 was induced when P. appendiculatum thallus was treated with either salicylic acid or methyl jasmonate. PMID:25593011

  11. The Ubiquitin Ligase Praja1 Reduces NRAGE Expression and Inhibits Neuronal Differentiation of PC12 Cells

    PubMed Central

    Teuber, Jan; Mueller, Bettina; Fukabori, Ryoji; Lang, Daniel; Albrecht, Anne; Stork, Oliver

    2013-01-01

    Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect. PMID:23717400

  12. The ubiquitin ligase Praja1 reduces NRAGE expression and inhibits neuronal differentiation of PC12 cells.

    PubMed

    Teuber, Jan; Mueller, Bettina; Fukabori, Ryoji; Lang, Daniel; Albrecht, Anne; Stork, Oliver

    2013-01-01

    Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect. PMID:23717400

  13. Release from myosin V via regulated recruitment of an E3 Ub ligase controls organelle localization

    PubMed Central

    Yau, Richard G.; Peng, Yutian; Valiathan, Rajeshwari R.; Birkeland, Shanda R.; Wilson, Thomas E.; Weisman, Lois S.

    2014-01-01

    Summary Molecular motors transport organelles to specific subcellular locations. Upon arrival at their correct locations, motors release organelles via unknown mechanisms. The yeast myosin-V, Myo2, binds the vacuole specific adaptor, Vac17, to transport the vacuole from the mother cell to the bud. Here, we show that vacuole detachment from Myo2 occurs in multiple regulated steps along the entire pathway of vacuole transport. Detachment initiates in the mother cell with the phosphorylation of Vac17 which recruits the E3 ligase, Dma1, to the vacuole. However, Dma1 recruitment also requires the assembly of the vacuole transport complex and is first observed after the vacuole enters the bud. Dma1 remains on the vacuole until the bud and mother vacuoles separate. Subsequently, Dma1 targets Vac17 for proteasomal degradation. Notably, we find that the termination of peroxisome transport also requires Dma1. We predict that this is a general mechanism which detaches myosin-V from select cargoes. PMID:24636257

  14. The Evolutionarily Conserved E3 Ubiquitin Ligase AtCHIP Contributes to Plant Immunity.

    PubMed

    Copeland, Charles; Ao, Kevin; Huang, Yan; Tong, Meixuizi; Li, Xin

    2016-01-01

    Plants possess a sophisticated immune system to recognize and respond to microbial threats in their environment. The level of immune signaling must be tightly regulated so that immune responses can be quickly activated in the presence of pathogens, while avoiding autoimmunity. HSP90s, along with their diverse array of co-chaperones, forms chaperone complexes that have been shown to play both positive and negative roles in regulating the accumulation of immune receptors and regulators. In this study, we examined the role of AtCHIP, an evolutionarily conserved E3 ligase that was known to interact with chaperones including HSP90s in multicellular organisms including fruit fly, Caenorhabditis elegans, plants and human. Atchip knockout mutants display enhanced disease susceptibility to a virulent oomycete pathogen, and overexpression of AtCHIP causes enhanced disease resistance at low temperature. Although CHIP was reported to target HSP90 for ubiquitination and degradation, accumulation of HSP90.3 was not affected in Atchip plants. In addition, protein accumulation of nucleotide-binding, leucine-rich repeat domain immune receptor (NLR) SNC1 is not altered in Atchip mutant. Thus, while AtCHIP plays a role in immunity, it does not seem to regulate the turnover of HSP90 or SNC1. Further investigation is needed in order to determine the exact mechanism behind AtCHIP's role in regulating plant immune responses. PMID:27014328

  15. System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes.

    PubMed

    Zhang, Wei; Wu, Kuen-Phon; Sartori, Maria A; Kamadurai, Hari B; Ordureau, Alban; Jiang, Chong; Mercredi, Peter Y; Murchie, Ryan; Hu, Jicheng; Persaud, Avinash; Mukherjee, Manjeet; Li, Nan; Doye, Anne; Walker, John R; Sheng, Yi; Hao, Zhenyue; Li, Yanjun; Brown, Kevin R; Lemichez, Emmanuel; Chen, Junjie; Tong, Yufeng; Harper, J Wade; Moffat, Jason; Rotin, Daniela; Schulman, Brenda A; Sidhu, Sachdev S

    2016-04-01

    HECT-family E3 ligases ubiquitinate protein substrates to control virtually every eukaryotic process and are misregulated in numerous diseases. Nonetheless, understanding of HECT E3s is limited by a paucity of selective and potent modulators. To overcome this challenge, we systematically developed ubiquitin variants (UbVs) that inhibit or activate HECT E3s. Structural analysis of 6 HECT-UbV complexes revealed UbV inhibitors hijacking the E2-binding site and activators occupying a ubiquitin-binding exosite. Furthermore, UbVs unearthed distinct regulation mechanisms among NEDD4 subfamily HECTs and proved useful for modulating therapeutically relevant targets of HECT E3s in cells and intestinal organoids, and in a genetic screen that identified a role for NEDD4L in regulating cell migration. Our work demonstrates versatility of UbVs for modulating activity across an E3 family, defines mechanisms and provides a toolkit for probing functions of HECT E3s, and establishes a general strategy for systematic development of modulators targeting families of signaling proteins. PMID:26949039

  16. E3Miner: a text mining tool for ubiquitin-protein ligases.

    PubMed

    Lee, Hodong; Yi, Gwan-Su; Park, Jong C

    2008-07-01

    Ubiquitination is a regulatory process critically involved in the degradation of >80% of cellular proteins, where such proteins are specifically recognized by a key enzyme, or a ubiquitin-protein ligase (E3). Because of this important role of E3s, a rapidly growing body of the published literature in biology and biomedical fields reports novel findings about various E3s and their molecular mechanisms. However, such findings are neither adequately retrieved by general text-mining tools nor systematically made available by such protein databases as UniProt alone. E3Miner is a web-based text mining tool that extracts and organizes comprehensive knowledge about E3s from the abstracts of journal articles and the relevant databases, supporting users to have a good grasp of E3s and their related information easily from the available text. The tool analyzes text sentences to identify protein names for E3s, to narrow down target substrates and other ubiquitin-transferring proteins in E3-specific ubiquitination pathways and to extract molecular features of E3s during ubiquitination. E3Miner also retrieves E3 data about protein functions, other E3-interacting partners and E3-related human diseases from the protein databases, in order to help facilitate further investigation. E3Miner is freely available through http://e3miner.biopathway.org. PMID:18483079

  17. Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10.

    PubMed

    Ruggiano, Annamaria; Mora, Gabriel; Buxó, Laura; Carvalho, Pedro

    2016-08-01

    The endoplasmic reticulum (ER) plays a central role in the biogenesis of most membrane proteins. Among these are proteins localized to the surface of lipid droplets (LDs), fat storage organelles delimited by a phospholipid monolayer. The LD monolayer is often continuous with the membrane of the ER allowing certain membrane proteins to diffuse between the two organelles. In these connected organelles, how some proteins concentrate specifically at the surface of LDs is not known. Here, we show that the ERAD ubiquitin ligase Doa10 controls the levels of some LD proteins. Their degradation is dependent on the localization to the ER and appears independent of the folding state. Moreover, we show that by degrading the ER pool of these LD proteins, ERAD contributes to restrict their localization to LDs. The signals for LD targeting and Doa10-mediated degradation overlap, indicating that these are competing events. This spatial control of protein localization is a novel function of ERAD that might contribute to generate functional diversity in a continuous membrane system. PMID:27357570

  18. Proteomic analysis and identification of cellular interactors of the giant ubiquitin ligase HERC2.

    PubMed

    Galligan, Jeffrey T; Martinez-Noël, Gustavo; Arndt, Verena; Hayes, Sebastian; Chittenden, Thomas W; Harper, J Wade; Howley, Peter M

    2015-02-01

    HERC2 is a large E3 ubiquitin ligase with multiple structural domains that has been implicated in an array of cellular processes. Mutations in HERC2 are linked to developmental delays and impairment caused by nervous system dysfunction, such as Angelman Syndrome and autism-spectrum disorders. However, HERC2 cellular activity and regulation remain poorly understood. We used a broad proteomic approach to survey the landscape of cellular proteins that interact with HERC2. We identified nearly 300 potential interactors, a subset of which we validated binding to HERC2. The potential HERC2 interactors included the eukaryotic translation initiation factor 3 complex, the intracellular transport COPI coatomer complex, the glycogen regulator phosphorylase kinase, beta-catenin, PI3 kinase, and proteins involved in fatty acid transport and iron homeostasis. Through a complex bioinformatic analysis of potential interactors, we linked HERC2 to cellular processes including intracellular protein trafficking and transport, metabolism of cellular energy, and protein translation. Given its size, multidomain structure, and association with various cellular activities, HERC2 may function as a scaffold to integrate protein complexes and bridge critical cellular pathways. This work provides a significant resource with which to interrogate HERC2 function more deeply and evaluate its contributions to mechanisms governing cellular homeostasis and disease. PMID:25476789

  19. An allosteric inhibitor of substrate recognition by the SCF[superscript Cdc4] ubiquitin ligase

    SciTech Connect

    Orlicky, Stephen; Tang, Xiaojing; Neduva, Victor; Elowe, Nadine; Brown, Eric D.; Sicheri, Frank; Tyers, Mike

    2010-09-17

    The specificity of SCF ubiquitin ligase-mediated protein degradation is determined by F-box proteins. We identified a biplanar dicarboxylic acid compound, called SCF-I2, as an inhibitor of substrate recognition by the yeast F-box protein Cdc4 using a fluorescence polarization screen to monitor the displacement of a fluorescein-labeled phosphodegron peptide. SCF-I2 inhibits the binding and ubiquitination of full-length phosphorylated substrates by SCF{sup Cdc4}. A co-crystal structure reveals that SCF-I2 inserts itself between the {beta}-strands of blades 5 and 6 of the WD40 propeller domain of Cdc4 at a site that is 25 {angstrom} away from the substrate binding site. Long-range transmission of SCF-I2 interactions distorts the substrate binding pocket and impedes recognition of key determinants in the Cdc4 phosphodegron. Mutation of the SCF-I2 binding site abrogates its inhibitory effect and explains specificity in the allosteric inhibition mechanism. Mammalian WD40 domain proteins may exhibit similar allosteric responsiveness and hence represent an extensive class of druggable target.

  20. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    PubMed Central

    Poulsen, Sara L.; Hansen, Rebecca K.; Wagner, Sebastian A.; van Cuijk, Loes; van Belle, Gijsbert J.; Streicher, Werner; Wikström, Mats; Choudhary, Chunaram; Houtsmuller, Adriaan B.; Marteijn, Jurgen A.; Bekker-Jensen, Simon

    2013-01-01

    Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (