Science.gov

Sample records for light scattering spectroscopy

  1. Microscopic Imaging and Spectroscopy with Scattered Light

    PubMed Central

    Boustany, Nada N.; Boppart, Stephen A.; Backman, Vadim

    2012-01-01

    Optical contrast based on elastic scattering interactions between light and matter can be used to probe cellular structure and dynamics, and image tissue architecture. The quantitative nature and high sensitivity of light scattering signals to subtle alterations in tissue morphology, as well as the ability to visualize unstained tissue in vivo, has recently generated significant interest in optical scatter based biosensing and imaging. Here we review the fundamental methodologies used to acquire and interpret optical scatter data. We report on recent findings in this field and present current advances in optical scatter techniques and computational methods. Cellular and tissue data enabled by current advances in optical scatter spectroscopy and imaging stand to impact a variety of biomedical applications including clinical tissue diagnosis, in vivo imaging, drug discovery and basic cell biology. PMID:20617940

  2. Detecting skin malignancy using elastic light scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Akman, Ayşe; Çiftçioğlu, M. Akif; Alpsoy, Erkan

    2007-07-01

    We have used elastic light scattering spectroscopy to differentiate between malign and benign skin lesions. The system consists of a UV spectrometer, a single optical fiber probe and a laptop. The single optical fiber probe was used for both delivery and detection of white light to tissue and from the tissue. The single optical fiber probe received singly scattered photons rather than diffused photons in tissue. Therefore, the spectra are correlated with morphological differences of the cells. It has been shown that spectra of malign skin lesions are different than spectra of benign skin lesions. While slopes of the spectra taken on benign lesions or normal skin tissues were positive, slopes of the spectra taken on malign skin lesions tissues were negative. In vivo experiments were conducted on 20 lesions from 18 patients (11 men with mean age of 68 +/- 9 years and 7 women with mean age of 52 +/- 20 years) applied to the Department of Dermatology and Venerology. Before the biopsy, spectra were taken on the lesion and adjacent (approximately 1 cm distant) normal-appearing skin. Spectra of the normal skin were used as a control group. The spectra were correlated to the pathology results with sensitivity and specificity of 82% and 89%, respectively. Due to small diameter of fiber probe and limited number of sampling (15), some positive cases are missed, which is lowered the sensitivity of the system. The results are promising and could suggest that the system may be able to detect malignant skin lesion non-invasively and in real time.

  3. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy

    NASA Astrophysics Data System (ADS)

    Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael

    2009-03-01

    Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett's esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued.

  4. Aerosol particle absorption spectroscopy by photothermal modulation of Mie scattered light

    SciTech Connect

    Campillo, A.J.; Dodge, C.J.; Lin, H.B.

    1981-09-15

    Absorption spectroscopy of suspended submicron-sized aqueous ammonium-sulfate aerosol droplets has been performed by employing a CO/sub 2/ laser to photothermally modulate visible Mie scattered light. (AIP)

  5. Signal sources in elastic light scattering by biological cells and tissues: what can elastic light scattering spectroscopy tell us?

    NASA Astrophysics Data System (ADS)

    Xu, M.; Wu, Tao T.; Qu, Jianan Y.

    2008-02-01

    We used a unified Mie and fractal model to analyze elastic light spectroscopy of cell suspensions to obtain the size distributions of cells and nuclei, their refractive indices, and the background refractive index fluctuation inside the cell, for different types of cells, including human cervical squamous carcinoma epithelial (SiHa) cells, androgen-independent malignant rat prostate carcinoma epithelial (AT3.1) cells, non-tumorigenic fibroblast (Rat1p) cells in the plateau phase of growth, and tumorigenic fibroblast (Rat1-T1E) cells in the exponential phase of growth. Signal sources contributing to the scattering (μs) and reduced scattering (μ 's) coefficients for these cells of various types or at different growth stages are compared. It is shown that the contribution to μ s from the nucleus is much more important than that from the background refractive index fluctuation. This trend is more significant with increase of the probing wavelength. On the other hand, the background refractive index fluctuation overtakes the nucleus and may even dominate in the contribution to reduced scattering. The implications of the above findings on biomedical light scattering techniques are discussed.

  6. Elastic light single-scattering spectroscopy for detection of dysplastic tissues

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda

    2013-11-01

    Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.

  7. Spectroscopy of diffuse light in dust clouds. Scattered light and the solar neighbourhood radiation field

    NASA Astrophysics Data System (ADS)

    Lehtinen, K.; Mattila, K.

    2013-01-01

    Context. The optical surface brightness of dark nebulae is mainly due to scattering of integrated starlight by classical dust grains. It contains information on the impinging interstellar radiation field, cloud structure, and grain scattering properties. We have obtained spectra of the scattered light from 3500 to 9000 Å in two globules, the Thumbprint Nebula and DC 303.8-14.2. Aims. We use observations of the scattered light to study the impinging integrated starlight spectrum as well as the scattered Hα and other line emissions from all over the sky. We search also for the presence of other than scattered light in the two globules. Methods. We obtained long-slit spectra encompassing the whole globule plus adjacent sky in a one-slit setting, thus enabling efficient elimination of airglow and other foreground sky components. We calculated synthetic integrated starlight spectra for the solar neighbourhood using HIPPARCOS-based stellar distributions and the spectral library of Pickles. Results. Spectra are presented separately for the bright rims and dark cores of the globules. The continuum spectral energy distributions and absorption line spectra can be well modelled with the synthetic integrated starlight spectra. Emission lines of Hα +[N II], Hβ, and [S II] are detected and are interpreted in terms of scattered light plus an in situ warm ionized medium component behind the globules. We detected an excess of emission over the wavelength range 5200-8000 Å in DC 303.8-14.2 but the nature of this emission remains open. Based on observations collected at the European Southern Observatory, Chile, under programme ESO No. 073.C-0239(A). Appendix A is available in electronic form at http://www.aanda.org.

  8. Ultrasonic attenuation spectroscopy and light scattering study of the ageing of very fine emulsions

    NASA Astrophysics Data System (ADS)

    Herrmann, N.; Lemaréchal, P.

    1999-02-01

    Very fine, 10% vol/vol, n-hexadecane and n-octadecane oil-in-water emulsions, stabilized by sodium dodecyl sulfate, have been prepared. Due to the very small size of the oil droplets, these emulsions are susceptible to undergo Ostwald ripening and/or coalescence. The maturation of the emulsions was studied over several months by three different techniques: ultrasonic attenuation spectroscopy, static light scattering and dynamic light scattering. Ultrasonic spectroscopy measurements between 0.5 and 10 MHz appeared as the most convenient technique for monitoring the changes in the size of such droplets. Moreover, the correlation of the results from the three different techniques allows a complete determination of the particle size and polydispersity during the ageing.

  9. Correlated IR spectroscopy and visible light scattering measurements of mineral dust aerosol

    NASA Astrophysics Data System (ADS)

    Meland, B.; Kleiber, P. D.; Grassian, V. H.; Young, M. A.

    2010-10-01

    A combined infrared spectroscopy and visible light scattering study of the optical properties of quartz aerosol, a major component of atmospheric dust, is reported. Scattering phase function and polarization measurements for quartz dust at three visible wavelengths (470, 550, 660 nm) are compared with results from T-matrix theory simulations using a uniform spheroid model for particle shape. Aerosol size distributions were measured simultaneously with light scattering. Particle shape distributions were determined in two ways: (1) analysis of electron microscope images of the dust, and (2) spectral fitting of infrared resonance extinction features. Since the aerosol size and shape distributions were measured, experimental scattering data could be directly compared with T-matrix simulations with no adjustable parameters. χ2 analysis suggests that T-matrix simulations based on a uniform spheroid approximation can be used to model the optical properties of irregularly shaped dust particles in the accumulation mode size range, provided the particle shape distribution can be reliably determined. Particle shape distributions derived from electron microscope image analysis give poor fits, indicating that two-dimensional images may not give an accurate representation of the shape distribution for three-dimensional particles. However, simulations based on particle shape models inferred from IR spectral analysis give excellent fits to the experimental data. Our work suggests that correlated IR spectral and visible light scattering measurements, together with the use of theoretical light scattering models, may offer a more accurate method for characterizing atmospheric dust loading, and aerosol composition, size, and shape distributions, which are of great importance in climate modeling.

  10. Photon and fluorescence correlation spectroscopy and light scattering of eye-lens proteins at moderate concentrations.

    PubMed Central

    Andries, C; Guedens, W; Clauwaert, J; Geerts, H

    1983-01-01

    The bovine eye-lens protein, alpha L-crystallin, has been studied with photon correlation spectroscopy to obtain the mutual diffusion coefficient, Dm, with fluorescence correlation spectroscopy to determine the tracer diffusion coefficient, DT, and with light scattering to get the isothermal osmotic compressibility (delta pi/delta c) P,T. The concentration dependence of Dm, DT, and (delta pi/delta c) P,T up to a volume fraction phi of the protein of 2.5 x 10(-2) has been interpreted on the basis of four different interaction potentials: (a) an extended hard-sphere potential; (b) a shielded Coulomb potential; (c) a shielded Coulomb interaction where the effect of counterions is included; (d) a simple mixed potential. The three parameters Dm, DT, and (delta pi/delta c) P,T have also been combined in the generalized Stokes-Einstein equation, Dm = [(delta pi/delta c)P,T . (1--phi) . (DT)]/(kappa B . T). Our results indicate that, in the case that photon correlation spectroscopy gives the mutual diffusion coefficient Dm, the applicability of the Stokes-Einstein equation can be questioned; or that, when one assumes the Stokes-Einstein equation to be valid, there is significant discrepancy between the result of photon correlation spectroscopy and Dm. PMID:6626672

  11. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  12. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    PubMed

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products. PMID:27400522

  13. Time-Resolved Light Scattering and Fluorescence Spectroscopy in Biomedical and Model Random Media

    NASA Astrophysics Data System (ADS)

    Das, Bidyut Baran

    Optical spectroscopy, light scattering and ultrafast time-gated imaging have been shown to offer novel approaches to study the optical characteristics of various biomedical and other random media. Fluorescence spectra from human malignant and nonmalignant breast tissues were measured at 300 nm excitation and a significant spectral difference was found between the two tissue types by using the ratio of fluorescence intensities at 340 and 440 nm. Optical density measurements on thin breast tissues show that the scattering cross-sections of breast tissues are relatively constant over the visible and the uv region. Transport mean free paths and the absorption lengths for various tissues and model random media were measured using time-resolved transmission. The scattering coefficients for human breast and chicken tissues were found to remain relatively constant in 570-630 nm wavelength region while they change significantly at 1064 nm. Chicken breast and fat tissues were found to be good models for human breast tissues as the values of the optical parameters of the two tissue types are about the same. The less scattering observed at 1064 nm makes tissues more transparent in the NIR region making it easier to image in thick tissues. Time-resolved backscattering measurements show that the scattering and the absorption parameters of a random medium can be obtained accurately in a two-fiber configuration as long as the radial distance is more than about seven times the transport mean free path of the sample. The single point source-detection configuration provides a tool to diagnose breast malignancy though it fails to give accurate values of the optical parameters of tissues. This failure is attributed to the invalidity of the diffusion approximation in this experimental configuration. A 2.5 mm thin chicken fat strip was imaged inside a 40 mm thick chicken breast tissue using snake photons at 625 nm with ultrafast time-gated detection. A simple model to describe the effect

  14. Experimental and theoretical realization of enhanced light scattering spectroscopy of gold nanorods

    SciTech Connect

    Li, Yunbo; Song, Linlin; Qiao, Yisha

    2015-01-12

    Assisted with transmission electron microscopy and extinction spectra, the enhanced light scattering (ELS) experiments were performed with gold nanoparticles. Although both the nanospheres and nanorods can enhance light scattering in study aggregation, the spectral characteristics of gold nanorods is relatively simple compared to that of nanospheres. This will further extend the application range of ELS method to determinate the amounts of inorganic ions in analytical field and investigate on the macromolecular aggregation in polymeric research due to its simplicity, rapidity, and sensitivity.

  15. Experimental and theoretical realization of enhanced light scattering spectroscopy of gold nanorods

    NASA Astrophysics Data System (ADS)

    Li, Yunbo; Song, Linlin; Qiao, Yisha

    2015-01-01

    Assisted with transmission electron microscopy and extinction spectra, the enhanced light scattering (ELS) experiments were performed with gold nanoparticles. Although both the nanospheres and nanorods can enhance light scattering in study aggregation, the spectral characteristics of gold nanorods is relatively simple compared to that of nanospheres. This will further extend the application range of ELS method to determinate the amounts of inorganic ions in analytical field and investigate on the macromolecular aggregation in polymeric research due to its simplicity, rapidity, and sensitivity.

  16. Laser light scattering review

    NASA Technical Reports Server (NTRS)

    Schaetzel, Klaus

    1989-01-01

    Since the development of laser light sources and fast digital electronics for signal processing, the classical discipline of light scattering on liquid systems experienced a strong revival plus an enormous expansion, mainly due to new dynamic light scattering techniques. While a large number of liquid systems can be investigated, ranging from pure liquids to multicomponent microemulsions, this review is largely restricted to applications on Brownian particles, typically in the submicron range. Static light scattering, the careful recording of the angular dependence of scattered light, is a valuable tool for the analysis of particle size and shape, or of their spatial ordering due to mutual interactions. Dynamic techniques, most notably photon correlation spectroscopy, give direct access to particle motion. This may be Brownian motion, which allows the determination of particle size, or some collective motion, e.g., electrophoresis, which yields particle mobility data. Suitable optical systems as well as the necessary data processing schemes are presented in some detail. Special attention is devoted to topics of current interest, like correlation over very large lag time ranges or multiple scattering.

  17. Laser light scattering review

    NASA Astrophysics Data System (ADS)

    Schaetzel, Klaus

    1989-08-01

    Since the development of laser light sources and fast digital electronics for signal processing, the classical discipline of light scattering on liquid systems experienced a strong revival plus an enormous expansion, mainly due to new dynamic light scattering techniques. While a large number of liquid systems can be investigated, ranging from pure liquids to multicomponent microemulsions, this review is largely restricted to applications on Brownian particles, typically in the submicron range. Static light scattering, the careful recording of the angular dependence of scattered light, is a valuable tool for the analysis of particle size and shape, or of their spatial ordering due to mutual interactions. Dynamic techniques, most notably photon correlation spectroscopy, give direct access to particle motion. This may be Brownian motion, which allows the determination of particle size, or some collective motion, e.g., electrophoresis, which yields particle mobility data. Suitable optical systems as well as the necessary data processing schemes are presented in some detail. Special attention is devoted to topics of current interest, like correlation over very large lag time ranges or multiple scattering.

  18. Intra-operative brain tumor detection using elastic light single-scattering spectroscopy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Akyüz, Mahmut; Gökhan, Güzide Ayşe; Gürer, Elif Inanç; Tuncer, Recai

    2009-09-01

    We have investigated the potential application of elastic light single-scattering spectroscopy (ELSSS) as an adjunctive tool for intraoperative rapid detection of brain tumors and demarcation of the tumor from the surrounding normal tissue. Measurements were performed on 29 excised tumor specimens from 29 patients. There were 21 instances of low-grade tumors and eight instances of high-grade tumors. Normal gray matter and white matter brain tissue specimens of four epilepsy patients were used as a control group. One low-grade and one high-grade tumor were misclassified as normal brain tissue. Of the low- and high-grade tumors, 20 out of 21 and 7 out of 8 were correctly classified by the ELSSS system, respectively. One normal white matter tissue margin was detected in a high-grade tumor, and three normal tissue margins were detected in three low-grade tumors using spectroscopic data analysis and confirmed by histopathology. The spectral slopes were shown to be positive for normal white matter brain tissue and negative for normal gray matter and tumor tissues. Our results indicate that signs of spectral slopes may enable the discrimination of brain tumors from surrounding normal white matter brain tissue with a sensitivity of 93% and specificity of 100%.

  19. Brillouin light scattering spectroscopy of parametrically excited dipole-exchange magnons

    NASA Astrophysics Data System (ADS)

    Serga, A. A.; Sandweg, C. W.; Vasyuchka, V. I.; Jungfleisch, M. B.; Hillebrands, B.; Kreisel, A.; Kopietz, P.; Kostylev, M. P.

    2012-10-01

    The spectral distribution of parametrically excited dipole-exchange magnons in an in-plane magnetized epitaxial film of yttrium-iron garnet was studied by means of frequency- and wavevector-resolved Brillouin light scattering spectroscopy. The experiment was performed in a parallel pumping geometry, where an exciting microwave magnetic field was parallel to the magnetizing field. It was found that for both dipolar and exchange spectral areas parallel pumping excites the lowest volume magnon modes propagating in the film plane perpendicularly to the magnetization direction. No excitation of the high-order volume modes has been registered. In order to interpret the experimental observations, we used a microscopic Heisenberg model that includes exchange as well as dipole-dipole interactions to calculate the magnon spectrum and construct the eigenstates. As proven in our calculations, the observed magnons are characterized by having the highest possible ellipticity of precession, which suggests the lowest threshold of parametric generation. Applying different pumping powers we observe modifications in the magnon spectrum that are described theoretically by a softening of the spin stiffness.

  20. Detection of precancerous cervical conditions using elastic light single-scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkceken, Tuba; Karaveli, Seyda; Pestereli, Elif; Erdoğan, Gülgün; Özel, Deniz; Bilge, Uğur; Simsek, Tayup

    2010-02-01

    We have investigated the potential application of elastic light single-scattering spectroscopy (ELSSS) as an adjunctive tool for screening of cervical precancerous lesions non-invasively and in real time. Ex-vivo measurements were performed on 95 cervix biopsy tissue of 60 patients. Normal cervix tissue from 10 patients after hysterectomy was used as a control group. Correlation between ELSSS spectra and histopathology results were investigated. It was found that the spectral slope was positive for all the spectra taken on normal cervix tissue samples from the control group. We assumed that if there is only one spectrum with a negative spectral slope among the all spectra taken on a biopsy specimen, the biopsy specimen is pathologically abnormal. This shows that pap smear and ELSSS results are in good agreement. Most biopsy tissue samples had both positive and negative spectral slopes. Therefore, we calculated the percentage of negative spectral slopes and hypothesized that this was correlated to dysplastic percentage of the epithelial tissue of the biopsy material. The ROC curve was calculated using the dysplastic percentage and high squamous intraepithelial lesion (HSIL) and low squamous intraepitherlial lesions (LSIL) biopsy specimens were differentiated from non HSIL and LSIL with a sensitivity and specificity of 70.4% and 66.7% respectively, with p < 0.05.

  1. Detecting positive surgical margins of prostate tissues using elastic light single-scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Başsorgun, Ibrahim; Yücel, Selçuk; Çiftçioğlu, M. A.; Baykara, Mehment

    2011-09-01

    Elastic light single-scattering spectroscopy (ELSSS) system with a single optical fiber probe was employed to differentiate cancerous prostate tissue from non-cancerous prostate tissue ex-vivo just after radical prostatectomy. First, ELSSS spectra were acquired from cancerous prostate tissue to define its spectral features. Then, spectra were acquired from surgical margins of excised prostate tissue to detect positive surgical margins based on the spectral features of the spectra taken from cancerous prostate tissues. Of the total 128 tissue samples were evaluated from 18 patients by ELSSS system. Comparing of histopathology results and ELSSS measurements revealed that sign of the spectral slopes of cancerous prostate tissue is negative and non-cancerous tissue is positive in the wavelength range from 450 to 750 nm. Sign of the spectral slopes were used as a discrimination parameter between cancerous and non-cancerous prostate tissues. Based on the correlation between histopathology results and sign of the spectral slopes, ELSSS system differentiates cancerous prostate tissue from non-cancerous with a sensitivity of 0.97 and a specificity of 0.87.

  2. Detecting positive surgical margins of prostate tissues using elastic light single-scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Başsorgun, İbrahim; Yücel, Selçuk; Çiftçioğlu, M. A.; Baykara, Mehment

    2012-02-01

    Elastic light single-scattering spectroscopy (ELSSS) system with a single optical fiber probe was employed to differentiate cancerous prostate tissue from non-cancerous prostate tissue ex-vivo just after radical prostatectomy. First, ELSSS spectra were acquired from cancerous prostate tissue to define its spectral features. Then, spectra were acquired from surgical margins of excised prostate tissue to detect positive surgical margins based on the spectral features of the spectra taken from cancerous prostate tissues. Of the total 128 tissue samples were evaluated from 18 patients by ELSSS system. Comparing of histopathology results and ELSSS measurements revealed that sign of the spectral slopes of cancerous prostate tissue is negative and non-cancerous tissue is positive in the wavelength range from 450 to 750 nm. Sign of the spectral slopes were used as a discrimination parameter between cancerous and non-cancerous prostate tissues. Based on the correlation between histopathology results and sign of the spectral slopes, ELSSS system differentiates cancerous prostate tissue from non-cancerous with a sensitivity of 0.97 and a specificity of 0.87.

  3. Investigation of calcium aluminates by IR spectroscopy in diffusely scattered light

    SciTech Connect

    Medin, A.S.; Borovkov, V.Yu.; Nissenbaum, V.D.; Yakerson, V.I.; Kazanskii, V.B.

    1989-01-01

    The hydroxyl covering and the adsorption sites for CO and H/sub 2/O on aluminum-calcium catalysts and supports with developed surfaces have been studied by IR spectroscopy in diffusely scattered light. The presence of several types of surface OH groups, viz., terminal groups bonded to calcium ions with different types of coordination, bridging OH groups, and groups appearing in (CaOH)/sup +/ groupings, which perform the role of compensating cations in the zeolite-like structure of calcium aluminates, has been established. The shifts of the bands of the OH groups upon the adsorption of C/sub 6/H/sub 6/ and cyclo-C/sub 6/H/sub 12/ point out their weakly acidic or basic character. When calcium aluminates are dehydroxylated, aprotic sites appear on their surfaces, and the rehydration of such surfaces is accompanied by the formation of OH groups and the weakening of the Al-O-M bonds (M = Al, Ca) with the appearance of additional sites for the strong adsorption of water.

  4. Noninvasive identification of subcellular organization and nuclear morphology features associated with leukemic cells using light-scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsiao, Austin; Hunter, Martin; Greiner, Cherry; Gupta, Sharad; Georgakoudi, Irene

    2011-03-01

    Leukemia is the most common and deadly cancer among children and one of the most prevalent cancers among adults. Improvements in its diagnosis and monitoring of leukemic patients could have a significant impact in their long-term treatment. We demonstrate that light-scattering spectroscopy (LSS)-based approaches could serve as a tool to achieve this goal. Specifically, we characterize the light scattering properties of leukemic (NALM-6) cells and compare them to those of normal lymphocytes and granulocytes in the 440-710 nm range, over +/-4 deg about the exact backscattering direction. We find that the LSS spectra are well described by an inverse power-law wavelength dependence, with a power exponent insensitive to the scattering angle but significantly higher for leukemic cells than for normal leukocytes. This is consistent with differences in the subcellular morphology of these cells, detected in differential interference contrast images. Furthermore, the residual light-scattering signal, extracted after subtracting the inverse power-law fit from the data, can be analyzed assuming a Gaussian distribution of spherical scatterers using Mie theory. This analysis yields scatterer sizes that are consistent with the diameters of cell nuclei and allows the detection of the larger nuclei of NALM-6 cells compared to those of lymphocytes and granulocytes.

  5. Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus.

    PubMed Central

    Santos, N C; Castanho, M A

    1996-01-01

    The tobacco mosaic virus is used as a model molecular assembly to illustrate the basic potentialities of light scattering techniques (both static and dynamic) to undergraduates. The work has two objectives: a pedagogic one (introducing light scattering to undergraduate students) and a scientific one (stabilization of the virus molecular assembly structure by the nucleic acid). Students are first challenged to confirm the stabilization of the cylindrical shape of the virus by the nucleic acid, at pH and ionic strength conditions where the coat proteins alone do not self-assemble. The experimental intramolecular scattering factor is compared with the theoretical ones for several model geometries. The data clearly suggest that the geometry is, in fact, a rod. Comparing the experimental values of gyration radius and hydrodynamic radius with the theoretical expectations further confirms this conclusion. Moreover, the rod structure is maintained over a wider range of pH and ionic strength than that valid for the coat proteins alone. The experimental values of the diffusion coefficient and radius of gyration are compared with the theoretical expectations assuming the dimensions detected by electron microscopy techniques. In fact, both values are in agreement (length approximately 300 nm, radius approximately 20 nm). PMID:8874039

  6. Critical fluid light scattering

    NASA Technical Reports Server (NTRS)

    Gammon, Robert W.

    1988-01-01

    The objective is to measure the decay rates of critical density fluctuations in a simple fluid (xenon) very near its liquid-vapor critical point using laser light scattering and photon correlation spectroscopy. Such experiments were severely limited on Earth by the presence of gravity which causes large density gradients in the sample when the compressibility diverges approaching the critical point. The goal is to measure fluctuation decay rates at least two decades closer to the critical point than is possible on earth, with a resolution of 3 microK. This will require loading the sample to 0.1 percent of the critical density and taking data as close as 100 microK to the critical temperature. The minimum mission time of 100 hours will allow a complete range of temperature points to be covered, limited by the thermal response of the sample. Other technical problems have to be addressed such as multiple scattering and the effect of wetting layers. The experiment entails measurement of the scattering intensity fluctuation decay rate at two angles for each temperature and simultaneously recording the scattering intensities and sample turbidity (from the transmission). The analyzed intensity and turbidity data gives the correlation length at each temperature and locates the critical temperature. The fluctuation decay rate data from these measurements will provide a severe test of the generalized hydrodynamic theories of transport coefficients in the critical regions. When compared to equivalent data from binary liquid critical mixtures they will test the universality of critical dynamics.

  7. Resonance light scattering spectroscopy of procyanidin-CPB-DNA ternary system and its potential application

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Bi, Shuyun; Zhou, Huifeng; Zhao, Tingting

    2015-07-01

    A new method for the determination of calf thymus DNA at nanogram level was proposed based on the enhanced resonance light scattering (RLS) signals of DNA in the presence of procyanidin and cetylpyridinium bromide dihydrate (CPB). Under the experimental conditions, the RLS intensity of DNA at 291.0 nm was greatly enhanced by procyanidin-CPB at pH 7.0. There was a good linear relationship (r = 0.9993) between the enhanced RLS intensity (ΔIRLS) and DNA concentration of 0.0084-3.36 μg mL-1. The limit of detection (LOD) was 2.27 ng mL-1 (3S0/S). Three synthetic DNA samples were measured with satisfactory, and the recovery was 102.3-107.2%.

  8. Identifying mitosis deep in tissue using dynamic light scattering fluctuation spectroscopy

    NASA Astrophysics Data System (ADS)

    An, Ran; Jeong, Kwan; Turek, John; Nolte, David

    2012-03-01

    In the cell cycle, mitosis is the most dramatic phase, especially in Telophase and Cytokinesis. For single cells and cell monolayer, there are precise microscopic studies of mitosis, while for 3-D tissue such as tumor spheroids the light signal is obscured by the high background of diffusely scattered light. Therefore, the mitosis phase cannot be detected deep inside 3-D tissue using conventional microscopic techniques. In this work, we detect mitosis in living tissue using Tissue Dynamic Imaging (TDI). We trace depth-gated dynamic speckles from a tumor spheroid (up to 1mm in diameter) using coherence-gated digital holography imaging. Frequency-versus-time spectrograms depend on specific types of perturbation such as cell shape change, membrane undulation and cell organelles movements. By using these spectral responses as functional finger prints, we can identify mitosis events from different voxels at a specified depth inside tumor spheroids. By performing B-scans of the tumor spheroid, we generate 3-D mitosis maps (or movies) for the entire tumor spheroids. We show that for healthy tumor spheroids, the mitosis events only happen within the proliferating shell. We also compare results when anti-cancer drugs are applied to arrest, release and synchronize mitosis. This shows the application of TDI for drug screening. The technique can identify and monitor complex motilities inside 3-D tissue with a strong potential for drug diagnosis and developmental biology studies.

  9. Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy.

    PubMed

    Bendoula, Ryad; Gobrecht, Alexia; Moulin, Benoit; Roger, Jean-Michel; Bellon-Maurel, Veronique

    2015-01-01

    Near-infrared spectroscopy (NIRS) is a powerful non-destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in line in industries, in vivo with biomedical applications, or in field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentration. Instead of spectral pre-processing, which is commonly used by NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, i.e., coupling polarized light with NIR spectrometry, to free spectra from scattering effect. This should allow us to retrieve linear and steady conditions for spectral analysis. When tested in visible-NIR (Vis-NIR) range (400-800 nm) on model media, mixtures of scattering and absorbing particles, the setup provided significant improvements in absorber concentration estimation precision as well as in the quality and robustness of the calibration model. PMID:25498765

  10. Concomitant Raman spectroscopy and dynamic light scattering for characterization of therapeutic proteins at high concentrations.

    PubMed

    Zhou, Chen; Qi, Wei; Lewis, E Neil; Carpenter, John F

    2015-03-01

    A Raman spectrometer and dynamic light scattering system were combined in a single platform (Raman-DLS) to provide concomitant higher order structural and hydrodynamic size data for therapeutic proteins at high concentration. As model therapeutic proteins, we studied human serum albumin (HSA) and intravenous immunoglobulin (IVIG). HSA concentration and temperature interval during heating did not affect the onset temperatures for conformation perturbation or aggregation. The impact of pH on thermal stability of HSA was tested at pHs 3, 5, and 8. Stability was the greatest at pH 8, but distinct unfolding and aggregation behaviors were observed at the different pHs. HSA structural transitions and aggregation kinetics were also studied in real time during isothermal incubations at pH 7. In a forced oxidation study, it was found that hydrogen peroxide (H2O2) treatment reduced the thermal stability of HSA. Finally, the structure and thermal stability of IVIG were studied, and a comprehensive characterization of heating-induced structural perturbations and aggregation was obtained. In conclusion, by providing comprehensive data on protein tertiary and secondary structures and hydrodynamic size during real-time heating or isothermal incubation experiments, the Raman-DLS system offers unique physical insights into the properties of high-concentration protein samples. PMID:25475399

  11. Size-dependent magnetization dynamics in individual Ni80Fe20 disk using micro-focused Brillouin Light Scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Shimon, G.; Adeyeye, A. O.

    2015-09-01

    A direct and systematic investigation of the magnetization dynamics in individual circular Ni80Fe20 disk of diameter (D) in the range from 300 nm to 1 μm measured using micro-focused Brillouin Light Scattering (μ-BLS) spectroscopy is presented. At high field, when the disks are in a single domain state, the resonance frequency of the uniform center mode is observed to reduce with reducing disk's diameter. For D = 300 nm, additional edge and end-domains resonant modes are observed due to size effects. At low field, when the disks are in a vortex state, a systematic increase of resonant frequency of magnetostatic modes in a vortex state with the square root of the disks' aspect ratio (thickness divided by radius) is observed. Such dependence diminishes for disks with larger aspect ratio due to an increasing exchange energy contribution. Micromagnetic simulations are in excellent agreement with the experiments.

  12. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  13. Structure and phase diagram of an adhesive colloidal dispersion under high pressure: A small angle neutron scattering, diffusing wave spectroscopy, and light scattering study

    NASA Astrophysics Data System (ADS)

    Vavrin, R.; Kohlbrecher, J.; Wilk, A.; Ratajczyk, M.; Lettinga, M. P.; Buitenhuis, J.; Meier, G.

    2009-04-01

    We have applied small angle neutron scattering (SANS), diffusing wave spectroscopy (DWS), and dynamic light scattering (DLS) to investigate the phase diagram of a sterically stabilized colloidal system consisting of octadecyl grafted silica particles dispersed in toluene. This system is known to exhibit gas-liquid phase separation and percolation, depending on temperature T, pressure P, and concentration φ. We have determined by DLS the pressure dependence of the coexistence temperature and the spinodal temperature to be dP /dT=77 bar/K. The gel line or percolation limit was measured by DWS under high pressure using the condition that the system became nonergodic when crossing it and we determined the coexistence line at higher volume fractions from the DWS limit of turbid samples. From SANS measurements we determined the stickiness parameter τB(P,T,φ) of the Baxter model, characterizing a polydisperse adhesive hard sphere, using a global fit routine on all curves in the homogenous regime at various temperatures, pressures, and concentrations. The phase coexistence and percolation line as predicted from τB(P,T,φ) correspond with the determinations by DWS and were used to construct an experimental phase diagram for a polydisperse sticky hard sphere model system. A comparison with theory shows good agreement especially concerning the predictions for the percolation threshold. From the analysis of the forward scattering we find a critical scaling law for the susceptibility corresponding to mean field behavior. This finding is also supported by the critical scaling properties of the collective diffusion.

  14. Feasibility of minimally-invasive fiber-based evaluation of chondrodystrophoid canine intervertebral discs by light absorption and scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanyuan; McKeirnan, Kelci; Piao, Daqing; Bartels, Kenneth E.

    2011-03-01

    Extrusion or protrusion of an intervertebral disc is a common, frequently debilitating, painful, and sometimes fatal neurologic disease in the chondrodystrophic dog (dachshund, Pekingese, etc.). A similar condition of intervertebral disc degeneration with extrusion/protrusion is also a relatively common neurologic condition in human patients. Degeneration of the relatively avascular chondrodystrophoid intervertebral disc is associated with loss of water content, increased collagen, and deposits of calcified mineral in the nucleus pulposus. Current diagnostic methods have many limitations for providing accurate information regarding disc composition in situ prior to surgical intervention. Disc composition (i.e., mineralization), can influence the type of treatment regime and potentially prognosis and recurrence rates. The objective of this study is to investigate the feasibility of using a fiber-needle spectroscopy sensor to analyze the changes of tissue compositions involved in the chondrodystrophoid condition of the canine intervertebral disc. The nucleous pulposus, in which the metaplastic process / degeneration develops, is approximately 2mm thick and 5mm in diameter in the dachshund-sized dog. It lies in the center of the disc, surrounded by the annulus fibrosis and is enclosed by cartilaginous vertebral endplates cranially and caudally. This "shallow-and-small-slab" geometry limits the configuration of a fiber probe to sense the disc tissue volume without interference from the vertebrae. A single-fiber sensor is inserted into a 20 gauge myelographic spinal needle for insertion into the disc in situ and connected via a bifurcated fiber to the light source and a spectrometer. A tungsten light source and a 940nm light-emitting-diode are combined for spectral illumination covering VIS/NIR with expected improved sensitivity to water. Analysis of the reflectance spectra is expected to provide information of scattering and absorption compositions of tissue in

  15. Glass-transition dynamics of a polyurethane gel using ultrasonic spectroscopy, dynamic light scattering, and dynamical mechanical thermal analysis

    NASA Astrophysics Data System (ADS)

    Tabellout, M.; Baillif, P.-Y.; Randrianantoandro, H.; Litzinger, F.; Emery, J. R.; Nicolai, T.; Durand, D.

    1995-05-01

    The glass-transition dynamics of a polyurethane gel were studied over a wide temperature and frequency range using ultrasonic spectroscopy (US), dynamic light scattering (DLS), and dynamical mechanical thermal analysis (DMTA). DMTA showed both an α and a β relaxation, while with DLS only the α relaxation could be observed. The α relaxation measured by DLS and DMTA was analyzed in terms of a continuous relaxation time distribution. This analysis method is compared to an analysis in terms of the Kohlrausch-Williams-Watts function for the DLS results and the Havriliak-Negami function for the DMTA results. The shape of the relaxation time distribution is temperature independent over the temperature range covered and identical for both techniques. The temperature dependence of the characteristic relaxation rates is well described by the so-called Vogel-Fulcher-Tamman-Hesse equation. Characteristic relaxation rates measured by DLS were about a factor 10 smaller than interpolated from the US and DMTA measurements. Since DLS measures a compliance and the two other techniques a modulus, lower values are expected. If the compliance data are converted into corresponding values for the modulus, the DLS results are compatible with the US and DMTA results.

  16. Scattering Of Light Nuclei

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  17. Fluorescence and Light Scattering

    ERIC Educational Resources Information Center

    Clarke, Ronald J.; Oprysa, Anna

    2004-01-01

    The aim of the mentioned experiment is to aid students in developing tactics for distinguishing between signals originating from fluorescence and light scattering. Also, the experiment provides students with a deeper understanding of the physicochemical bases of each phenomenon and shows that the techniques are actually related.

  18. Hydrodynamic diameters of murine mammary, Rous sarcoma, and feline leukemia RNA tumor viruses: studies by laser beat frequency light-scattering spectroscopy and electron microscopy.

    PubMed Central

    Salmeen, I; Rimai, L; Luftig, R B; Libes, L; Retzel, E; Rich, M; McCormick, J J

    1976-01-01

    We have studied purified preparations of murine mammary tumor virus (MuMTV), Rous sarcoma virus (RSV; Prague strain), and feline leukemia virus (FeLV) by laser beat frequency light-scattering spectroscopy, ultra-centrifugation, and electron microscopy. The laser beat frequency light-scattering spectroscopy measurements yield the light-scattering intensity, weighted diffusion coefficients. The corresponding average hydrodynamic diameters, as calculated from the diffusion coefficients by the Stokes-Einstein equation for MuMTV, RSV, and FeLV, respectively, are: 144 +/- 6 nm, 147 +/- 7 nm, and 168 +/- 6 nm. Portions of the purified RSV and MuMTV preparations, from which light-scattering samples were obtained, and portions of the actual FeLV light-scattering samples were examined by negatively stained, catalase crystal-calibrated electron microscopy. The light-scattering intensity weighted averages of the electron micrograph size distributions were calculated by weighing each size by its theoretical relative scattering intensity, as obtained from published tables computed according to the Mie scattering theory. These averages and the experimentally observed hydrodynamic diameters agreed to within +/- 5%, which is the combined experimental error in the electron microscopic and light-scattering techniques. We conclude that the size distributions of singlet particles observed in the electron micrographs are statistically true representations of the sedimentation-purified solution size distributions. The sedimentation coefficients (S20, w) for MuMTV, RSV, and FeLV, respectively, are: 595 +/- 29S, 689 +/- 35S, and 880 +/- 44S. Virus partial specific volumes were taken as the reciprocals of the buoyant densities, determined in sucrose density gradients. The Svedberg equation was used to calculate particle weights from the measured diffusion and sedimentation coefficients. The particle weights for MuMTV, RSV, and FeLV, respectively, are: (3.17 +/- 0.32) x 10(8), (4.17 +/- 0

  19. Understanding growth kinetics of nanorods in microemulsion: a combined fluorescence correlation spectroscopy, dynamic light scattering, and electron microscopy study.

    PubMed

    Sharma, Soma; Pal, Nibedita; Chowdhury, Pramit K; Sen, Sobhan; Ganguli, Ashok K

    2012-12-01

    Even though nanostructures of various shapes and sizes can be controlled by microemulsions, there is substantial difficulty in understanding their growth mechanism. The evolution of nanostructures from the time of mixing of reactants to their final stage is a heterogeneous process involving a variety of intermediates. To obtain a deeper insight into these kinetic steps, we studied the slow growth kinetics (extending over eight days) of iron oxalate nanorods inside the polar core of water-in-oil microemulsion droplets made of cetyltrimethylammonium bromide/1-butanol/isooctane. Fluorescence correlation spectroscopy (FCS), dynamic light scattering (DLS), and transmission electron microscopy (TEM) have been employed to monitor the nanostructure growth at (near) the single-droplet level and in an ensemble. Analyzing FCS data with suitable kinetic model we obtain transient dimer lifetime (28 μs) and the droplet fusion rates (and fusion tendency) on each day as the reaction proceeds. The droplet fusion rate is found to directly control the nanorod growth in microemulsion solution and attains its maximum value (3.55 × 10(4) s(-1)) on day 6, when long nanorods are found in TEM data, implying that more and more reactants are fed into the growing system at this stage. Combining FCS, DLS, and TEM results, we find three distinct periods in the entire growth process: a long nucleation-dominant nanoparticle growth period which forms nanoparticles of critical (average) size of ∼53 nm, followed by a short period where isotropic nanoparticles switch to anisotropic growth to form nanorods, and finally elongation of nanorods and growth (and shrinking) of nanoparticles. PMID:23140268

  20. Probing multi-scale self-similarity of tissue structures using light scattering spectroscopy: prospects in pre-cancer detection

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya

    2013-02-01

    Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.

  1. Light Scattering by Spheroids

    NASA Astrophysics Data System (ADS)

    Xie, Ya-Ming; Ji, Xia

    Nowadays, with the development of technology, particles with size at nanoscale have been synthesized in experiments. It is noticed that anisotropy is an unavoidable problem in the production of nanospheres. Besides, nonspherical nanoparticles have also been extensively used in experiments. Comparing with spherical model, spheroidal model can give a better description for the characteristics of nonspherical particles. Thus the study of analytical solution for light scattering by spheroidal particles has practical implications. By expanding incident, scattered, and transmitted electromagnetic fields in terms of appropriate vector spheroidal wave functions, an analytic solution is obtained to the problem of light scattering by spheroids. Unknown field expansion coefficients can be determined with the combination of boundary conditions and rotational-translational addition theorems for vector spheroidal wave functions. Based on the theoretical derivation, a Fortran code has been developed to calculate the extinction cross section and field distribution, whose results agree well with those obtain by FDTD simulation. This research is supported by the National Natural Science Foundation of China No. 91230203.

  2. Improved Optics For Quasi-Elastic Light Scattering

    NASA Technical Reports Server (NTRS)

    Cheung, Harry Michael

    1995-01-01

    Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.

  3. Nanowire electron scattering spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Bronikowski, Michael (Inventor); Wong, Eric W. (Inventor); von Allmen, Paul (Inventor); Oyafuso, Fabiano A. (Inventor)

    2009-01-01

    Methods and devices for spectroscopic identification of molecules using nanoscale wires are disclosed. According to one of the methods, nanoscale wires are provided, electrons are injected into the nanoscale wire; and inelastic electron scattering is measured via excitation of low-lying vibrational energy levels of molecules bound to the nanoscale wire.

  4. Portable sample preparation and analysis system for micron and sub-micron particle characterization using light scattering and absorption spectroscopy

    DOEpatents

    Stark, Peter C.; Zurek, Eduardo; Wheat, Jeffrey V.; Dunbar, John M.; Olivares, Jose A.; Garcia-Rubio, Luis H.; Ward, Michael D.

    2011-07-26

    There is provided a method and device for remote sampling, preparation and optical interrogation of a sample using light scattering and light absorption methods. The portable device is a filtration-based device that removes interfering background particle material from the sample matrix by segregating or filtering the chosen analyte from the sample solution or matrix while allowing the interfering background particles to be pumped out of the device. The segregated analyte is then suspended in a diluent for analysis. The device is capable of calculating an initial concentration of the analyte, as well as diluting the analyte such that reliable optical measurements can be made. Suitable analytes include cells, microorganisms, bioparticles, pathogens and diseases. Sample matrixes include biological fluids such as blood and urine, as well as environmental samples including waste water.

  5. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  6. Multiple Light Scattering Probes of Soft Materials

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2007-02-01

    I will discuss both static and dynamic properties of diffuse waves. In practical applications the optical properties of colloidal systems play an important role, for example in commercial products such as sunscreen lotions, food (drinks), coatings but also in medicine for example in cataract formation (eye lens turbidity). It is thus of importance to know the key parameters governing optical turbidity from the single to the multiple scattering regime. Temporal fluctuations of multiply scattered light are studied with photon correlation spectroscopy (Diffusing Wave Spectroscopy). This DWS method and its various implementations will be treated.

  7. Circularly symmetric light scattering from nanoplasmonic spirals.

    PubMed

    Trevino, Jacob; Cao, Hui; Dal Negro, Luca

    2011-05-11

    In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors. PMID:21466155

  8. Spectroscopy, scattering, and KK molecules

    SciTech Connect

    Weinstein, J.

    1994-04-01

    The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.

  9. Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue.

    PubMed

    Dehghani, H; Delpy, D T

    2000-09-01

    Previous modeling of near-infrared (NIR) light distribution in models of the adult head incorporating a clear nonscattering cerebrospinal fluid (CSF) layer have shown the latter to have a profound effect on the resulting photon measurement density function (PMDF). In particular, the presence of the CSF limits the PMDF largely to the outer cortical gray matter with little signal contribution from the deeper white matter. In practice, the CSF is not a simple unobstructed clear layer but contains light-scattering membranes and is crossed by various blood vessels. Using a radiosity-diffusion finite-element model, we investigated the effect on the PMDF of introducing intrusions within the clear layer. The results show that the presence of such obstructions does not significantly increase the light penetration into the brain tissue, except immediately adjacent to the obstruction and that its presence also increases the light sampling of the adjacent skull tissues, which would lead to additional contamination of the NIR spectroscopy signal by the surface tissue layers. PMID:18350064

  10. Resonance elastic light scattering (RELS) spectroscopy of fast non-Langmuirian ligand-exchange in glutathione-induced gold nanoparticle assembly.

    PubMed

    Stobiecka, Magdalena; Coopersmith, Kaitlin; Hepel, Maria

    2010-10-01

    The interactions of a biomolecule glutathione (GSH) with citrate-capped gold nanoparticles (AuNP) have been investigated to evaluate the viability of a rapid GSH-capture by gold nanoparticle carriers, as a model system for applications ranging from designing nanoparticle-enhanced functional biosensor interfaces to nanomedicine. The measurements, performed using resonance elastic light scattering (RELS) spectroscopy, have shown a strong dependence of GSH-induced scattering cross-section on gold nanoparticle size. A large increase in RELS intensity after injection of GSH, in a short reaction time (tau=60 s), has been observed for small AuNP (5nm dia.) and ascribed to the fast ligand-exchange followed by AuNP assembly. The unexpected non-Langmuirian concentration dependence of scattering intensity for AuNP (5 nm) indicates on a 2D nucleation and growth mechanism of the ligand-exchange process. The ligand-exchange and small nanoparticle ensemble formation followed by relaxation have been observed in long term (10 h) monitoring of GSH-AuNP interactions by RELS. The results of molecular dynamics and quantum mechanical calculations corroborate the mechanism of the formation of hydrogen-bonded GSH-linkages and interparticle interactions and show that the assembly is driven by multiple H-bonding between GSH-capped AuNP and electrostatic zwitterionic interactions. The RELS spectroscopy has been found as a very sensitive tool for studying interparticle interactions. The application of RELS can be expanded to monitor reactivities and assembly of other monolayer-protected metal clusters, especially in very fast processes which cannot be followed by other techniques. PMID:20591439

  11. Integrated light-scattering spectroscopy, a sensitive probe for peptide-vesicle binding: application to the membrane-bound colicin E1 channel peptide.

    PubMed Central

    Strawbridge, K. B.; Palmer, L. R.; Merrill, A. R.; Hallett, F. R.

    1995-01-01

    Integrated light-scattering (ILS) spectroscopy was used to monitor the binding of the colicin E1 channel peptide to POPC:POPG large unilamellar vesicles (LUV; 60:40, mol:mol) at acidic pH (3.5). Binding conditions were chosen such that nearly all of the channel peptide was bound to the vesicles with little free peptide remaining in solution. The increase in vesicle size upon the insertion of the channel peptide was measured by performing a discrete inversion technique on data obtained from an ILS spectrometer. Vesicle size number distributions were determined for five different systems having peptide/vesicle ratios of approximately 0, 77, 154, 206, and 257. The experiment was repeated four times (twice at two different vesicle concentrations) to determine reproducibility. The relative changes in vesicle radius upon peptide binding to the membrane vesicles was remarkably reproducible even though these changes represented only a few nanometers. A comparison of vesicle size number distributions in the absence of bound peptide was made between ILS and dynamic light scattering (DLS) data and showed similar results. However, DLS was incapable of detecting the small changes due to peptide-induced vesicle swelling. The membrane-bound volume of the colicin E1 channel peptide was approximately 177 +/- 22 nm3. These data indicate that in the absence of a membrane potential (closed channel state) the colicin E1 channel peptide inserts into the membrane resulting in a significant displacement of the lipid bilayer as evidenced from the dose-dependent increase in the vesicle radius. These results indicate that ILS spectroscopy is a sensitive sizing technique that is capable of detecting relatively small changes in membrane vesicles and may have a wide application in the determination of peptide binding to membrane vesicles. Images FIGURE 2 PMID:7711234

  12. Standardization of light scattering measurements

    NASA Astrophysics Data System (ADS)

    Schröder, Sven; von Finck, Alexander; Duparré, Angela

    2015-10-01

    In every advanced optical system, light scattering caused by the imperfections of optical components sooner or later becomes an issue that needs to be addressed. Light scattering can be a critical factor for both the throughput and the imaging quality of optical systems. On a component level, the quantities to describe these effects are the scatter loss or total scattering (TS) and the scattering distribution function or angle-resolved light scattering (ARS). In the last decades, a number of instruments have been developed worldwide for the measurement of TS and ARS. However, numerous pitfalls have to be avoided to obtain objective, reliable, and reproducible measurement results. This is, in particular, true for low scatter levels of high-end optical components. Standard procedures that have to be both concise and easy to implement are thus of crucial importance for the optics community. This paper tries to give an overview on existing standards as well as an outlook on new standards that are still being developed. Special emphasis is put on ISO standards jointly developed, reviewed, and revised by the international experts in the field.

  13. Light Scattering at Various Angles

    PubMed Central

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  14. Scattered Light And Fluorescent Photomechanics

    NASA Astrophysics Data System (ADS)

    Fourney, M. E.; Chang, Ban W.

    1987-02-01

    A new technique for determining the stress state in a three-dimensional transparent body is described. This method involves cast-ing dye molecules into a model material and using the fluorescent light to analysis the stress state. The techniques of scattered light photoelasticity and speckle interferometry are considered and the enhancement of these techniques by the use of fluorescent is reported. The amount of illumination is greatly increased and the wavelength red-shifted, which eliminates the undesirable boundary halo; however, at the expense of a loss of coherence and a degree of depolarization of the light. Rhodamine 6G dye molecules are cast into gelatin, epoxy resin (PLM-4) and urethane rubber (Solithane 113) model materials. The light scattering, fluorescent, and fringe formation processes of each material is investigated. It is observed that even for the standard scattered light photoelastic materials without dye molecules the scattering is not Rayleigh, but rather has a large amount of wavelength broadening, the center wavelength, is red-shifted, and a high degree of depolarization occurs. A theory of photoelastic fringe formation for fluorescent materials is proposed. Experimental results are presented and the use of digital image processor in filtering background illumination is shown to greatly enhance fringe visibility.

  15. On the formation of new reverse micelles: a comparative study of benzene/surfactants/ionic liquids systems using UV-visible absorption spectroscopy and dynamic light scattering.

    PubMed

    Falcone, R Darío; Correa, N Mariano; Silber, Juana J

    2009-09-15

    The microenvironment of the polar core generated in different ionic liquid reverse micelle (IL RM) systems were investigated using the solvatochromic behavior of 1-methyl-8-oxyquinolinium betaine (QB) as an absorption probe and dynamic light scattering (DLS) technique. The novel RM systems consist of two different ILs--1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (bmimTf2N)--sequestrated by two different surfactants--Triton X-100 (TX-100) and benzyl-n-hexadecyldimethylammonium chloride (BHDC)--in order to make IL/surfactant/benzene RMs. The effect of the variation of Ws (Ws=[IL]/[surfactant]) on the QB spectroscopy was used to characterize these nonaqueous RMs. DLS results confirm the formation of these IL RM systems because increasing Ws increases the droplet sizes. Moreover it is demonstrated that the structure of the sequestrated ILs depends strongly on the type of surfactant use to create the RMs. PMID:19678620

  16. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    PubMed Central

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  17. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies.

    PubMed

    Strocov, V N; Schmitt, T; Flechsig, U; Schmidt, T; Imhof, A; Chen, Q; Raabe, J; Betemps, R; Zimoch, D; Krempasky, J; Wang, X; Grioni, M; Piazzalunga, A; Patthey, L

    2010-09-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 degrees rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/DeltaE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 x 10(13) photons s(-1) (0.01% BW)(-1) at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 microm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/DeltaE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  18. Shear Brillouin light scattering microscope.

    PubMed

    Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J J; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun

    2016-01-11

    Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution. PMID:26832263

  19. Light Scattering by Nonspherical Particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Travis, Larry D.; Hovenier, Joop W.

    1998-01-01

    Improved understanding of electromagnetic scattering by nonspherical particles is important to many science and engineering disciplines and was the subject of the Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. The conference was held 29 September-1 October 1998 at the Goddard Institute for Space Studies in New York City and brought together 115 participants from 18 countries. The main objective of the conference was to highlight and summarize the rapid advancements in the field, including numerical methods for computing the single and multiple scattering of electromagnetic radiation by nonspherical and heterogeneous particles, measurement approaches, knowledge of characteristic features in scattering patterns, retrieval and remote sensing techniques, nonspherical particle sizing, and various practical applications. The conference consisted of twelve oral and one poster sessions. The presentations were loosely grouped based on broad topical categories. In each of these categories invited review talks highlighted and summarized specific active areas of research. To ensure a high-quality conference, all abstracts submitted had been reviewed by members of the Scientific Organizing Committee for technical merit and content. The conference program was published in the June 1998 issue of the Bulletin of the American Meteorological Society and is available on the World Wide Web at http://www.giss.nasa.gov/-crmim/conference/program.html. Authors of accepted papers and review presentations contributed to a volume of preprints published by the American Meteorological Society' and distributed to participants at the conference.

  20. The light meson spectroscopy program

    SciTech Connect

    Smith, Elton S.

    2014-06-01

    Recent discoveries of a number of unexpected new charmomium-like meson states at the BaBar and Belle B-factories have demonstrated how little is still known about meson spectroscopy. In this talk we will review recent highlights of the light quark spectroscopy from collider and fixed target experiments.

  1. Measuring Size, Size Distribution, and Polydispersity of Water-in-Oil Microemulsion Droplets using Fluorescence Correlation Spectroscopy: Comparison to Dynamic Light Scattering.

    PubMed

    Khan, Mohammad Firoz; Singh, Moirangthem Kiran; Sen, Sobhan

    2016-02-11

    Water-in-oil microemulsion droplets (MEDs) are thermodynamically stable supramolecular structures formed in a mixture of water and oil, stabilized by surfactant layer. Here we use fluorescence correlation spectroscopy (FCS) to measure the diffusion, and the size, size distribution, and polydispersity of MEDs prepared in ternary mixtures of water/oil/sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in heptane, isooctane, and nonane at (near) single droplet level. We compare FCS data directly to dynamic light scattering (DLS) data, which shows that the optical matching point (OMP) conditions of MEDs in different oils (where excess optical polarizability of droplets vanish) severely influence DLS data, while FCS extracts the accurate size, size distribution, and polydispersity of AOT-MEDs in all three oils. This suggests that extreme precaution must be taken in acquiring and explaining DLS data of MEDs in solution. FCS data show nearly identical W0-dependent (peak) size variations of AOT-MEDs in all three oils, though a subtle increase in (average) polydispersity of droplets is observed with increase in carbon chain length of oils. Establishing the accuracy of FCS data for AOT-MEDs, we further apply FCS to measure the size parameters of MEDs prepared in a quaternary mixture of water/oil/cetyltrimethylammonium bromide (CTAB)/1-butanol in hexane, heptane, and isooctane. Unlike AOT-MEDs, FCS data show substantial effect of added cosurfactant (1-butanol) and external oil on size, size distribution and polydispersity of quaternary CTAB-MEDs. Analysis of size distributions reveals large variation of polydispersity which possibly indicates the existence of larger shape heterogeneity, together with size heterogeneity, of CTAB-MEDs compared to AOT-MEDs in solution. PMID:26784288

  2. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  3. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  4. Dynamic light scattering homodyne probe

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Inventor); Cannell, David S. (Inventor); Smart, Anthony E. (Inventor)

    2002-01-01

    An optical probe for analyzing a sample illuminated by a laser includes an input optical fiber operably connectable to the laser where the input optical fiber has an entrance end and an exit end. The probe also includes a first beam splitter where the first beam splitter is adapted to transmit an alignment portion of a light beam from the input fiber exit end and to reflect a homodyning portion of the light beam from the input fiber. The probe also includes a lens between the input fiber exit end and the first beam splitter and a first and a second output optical fiber, each having an entrance end and an exit end, each exit end being operably connectable to respective optical detectors. The probe also includes a second beam splitter which is adapted to reflect at least a portion of the reflected homodyning portion into the output fiber entrance ends and to transmit light from the laser scattered by the sample into the entrance ends.

  5. Enhanced Light Scattering of the Forbidden longitudinal Optical Phonon Mode Studied by Micro-Raman Spectroscopy on Single InN nanowires

    SciTech Connect

    Sutter, E.; Schafer-Nolte, E.O.; Stoica T.; Gotschke, T.; Limbach, F.A.; Sutter, P.; Grutzmacher, D.; Calarco, R.

    2010-08-06

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  6. Depolarized light scattering spectroscopy of Ca0.4K0.6(NO3)1.4: A reexamination of the ``knee''

    NASA Astrophysics Data System (ADS)

    Barshilia, H. C.; Li, G.; Shen, G. Q.; Cummins, H. Z.

    1999-05-01

    The ``knee'' found in the depolarized light scattering spectra of Ca0.4K0.6(NO3)1.4 at low temperatures by G. Li, W.M. Du, X.K. Chen, H.Z. Cummins, and N.J. Tao [Phys. Rev. A 45, 3867 (1992)] appears to have been an experimental artifact. The origin of this feature is analyzed, and its implications for the mode coupling theory of the liquid-glass transition are considered.

  7. Light-scattering spectroscopy of the liquid-glass transition in CaKNO[sub 3] and in the molecular glass Salol: Extended-mode-coupling-theory analysis

    SciTech Connect

    Cummins, H.Z.; Du, W.M. ); Fuchs, M.; Goetze, W.; Hildebrand, S.; Latz, A. ); Li, G.; Tao, N.J. )

    1993-06-01

    Recently reported light-scattering studies of CaKNO[sub 3] and Salol are reanalyzed, using the extended version of the mode-coupling theory of the liquid-glass transition including activated transport or hopping effects. Problems found in the original fits due to the neglect of hopping terms are largely corrected, and quantitative predictions for the susceptibility minimum below the crossover temperature [ital T][sub [ital c

  8. Light scattering of degenerate fermions

    NASA Astrophysics Data System (ADS)

    Aubin, S.; Leblanc, L. J.; Myrskog, S.; Extavour, M. H. T.; McKay, D.; Stummer, A.; Thywissen, J. H.

    2006-05-01

    We report on progress in measuring the suppression of resonant light scattering in a gas of degenerate fermions. A gas of trapped degenerate fermions is expected to exhibit narrower optical linewidths and longer excited state lifetimes than single atoms when the Fermi energy is larger than the photon recoil energy [1-3]. In this case, the number of available states into which a scattered atom can recoil is significantly reduced due to the filling of the Fermi sea. We produce a degenerate gas of 4x10^4 ultra-cold fermionic ^40K atoms by sympathetic cooling with bosonic ^87Rb in a micro-magnetic chip trap. The atoms can then be loaded into a tight dipole trap just above the surface of the chip and probed with a near resonance laser pulse. [1] Th. Busch, J. R. Anglin, J. I. Cirac, and P. Zoller, Europhys. Lett. 44, 1 (1998). [2] B. DeMarco and D. S. Jin, Phys. Rev. A 58, R4267 (1998). [3] J. Javanainen and J. Ruostekosky, Phys. Rev. A 52, 3033 (1995). Work supported by NSERC, CFI, OIT, Research Corporation, and PRO.

  9. Resonantly enhanced Bragg-scattering spectroscopy of an atomic transition

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Qiao, Cuifang; Li, Chuanliang; Chen, Fenghua

    2016-07-01

    A novel resonantly enhanced Bragg-scattering (REBS) spectroscopy from a population difference grating (PDG) is reported. The PDG is formed by a standing-wave (SW) pump field, which periodically modulates the space population distributions of two levels in the 87Rb D1 line. Then, a probe beam, having identical frequency and orthogonal polarization with the SW pump field, is Bragg-scattered by the PDG. The research achievement shows that the Bragg-scattered light is strongest at an atomic transition, and forms an REBS spectrum with a high signal-to-noise ratio and sub-natural linewidth. The observed REBS can be applied in precise frequency measurements.

  10. Biological cell classification by multiangle light scattering

    DOEpatents

    Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.

    1975-06-03

    The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.

  11. Light scattering from dislocations in silicon

    NASA Astrophysics Data System (ADS)

    Monier, Vanessa; Capello, Luciana; Kononchuk, Oleg; Pichaud, Bernard

    2010-11-01

    Nondecorated glide dislocations in Czochralski grown silicon have been studied by laser scattering tomography technique. Dependence of intensity of scattered light on polarization of the incident light has been measured for different orientations of the dislocation line and Burgers vector. Detailed theory of light scattering by dislocation in silicon crystals is presented. It is shown that by combination of polarization and tomography measurements it is possible to determine slip system of nondecorated mixed dislocation in Si.

  12. Light scattering by randomly oriented spheroidal particles

    NASA Technical Reports Server (NTRS)

    Asano, S.; Sato, M.

    1980-01-01

    A study of the light scattering properties of randomly oriented, identical spheroidal particles is presented. A computation method was developed to integrate the Asano and Yamomoto solution (1975) for scattering from a homogeneous spheroid over all particle orientations; the extinction and scattering cross-sections, the asymmetry factor, and scattering matrix elements are calculated for randomly oriented prolate and oblate spheroids and compared with the calculations for spheres and laboratory measurements. The angular scattering behavior of spheroids is found to be different from that of the spheres for side scattering to backscattering directions, and prolate and oblate spheroids of the same shape parameter have similar angular scattering patterns.

  13. Charge-Carrier-Scattering Spectroscopy With BEEM

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.; Bell, Lloyd D.; Kaiser, William J.

    1992-01-01

    Ballistic-electron-emission microscopy (BEEM) constitutes basis of new spectroscopy of scattering of electrons and holes. Pointed tip electrode scans near surface of metal about 100 angstrom thick on semiconductor. Principle similar to scanning tunneling microscope, except metal acts as third electrode. Used to investigate transport phenomena, scattering phenomena, and creation of hot charge carriers in Au/Si and Au/GaAs metal/semiconductor microstructures.

  14. Multiple Scattering in Transit Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Misra, Amit; Meadows, V.; Crisp, D.

    2014-01-01

    Exoplanet transit transmission spectroscopy is a powerful tool that has been used to characterize Jupiter and Neptune-sized transiting exoplanets, and a Super-Earth/Mini-Neptune. Because of the flat and featureless spectra for many of these planets, a large number of exoplanets are thought to have cloud or aerosol haze layers in their atmospheres. Clouds and aerosols lead to extinction of flux, but can also scatter photons into the beam to a distant observer. Most transit transmission spectroscopy models include extinction from cloud and aerosol particles, but do not include the effects of directional and multiple scattering from these particles. We have updated an existing transit transmission spectroscopy model to include a backwards Monte Carlo ray tracing scheme that simulates directional and multiple scattering from cloud and aerosol particles. For the paths which connect the host star to a distant observer, we generate a transit transmission spectrum using the calculated paths. We have run simulations for scattering functions ranging from isotropic to strongly forward scattering. We vary the optical depth from optically thin (max transmission of 10% on limb) to very optically thick (max transmission of 0.1%) and the particle vertical distribution from homogeneously distributed in the atmosphere to over a only one layer of the model atmosphere. We find that for a particle layer that is optically thin and confined to a narrow vertical extent, multiple scattering can lead to significant decreases in planetary absorption by nearly 30% when compared to model results with only extinction from clouds and aerosols.

  15. Theory of Light Scattering in Axion Electrodynamics

    NASA Astrophysics Data System (ADS)

    Ochiai, Tetsuyuki

    2012-09-01

    Taking account of the axion term in the Maxwell Lagrangian, we present a rigorous theory of light scattering in piecewise-constant axion fields. In particular, we focus on axionic substances with confined and/or curved geometries, and the scattering matrices of an axionic slab, cylinder, and sphere are derived analytically. The axion term generates a surface current with off-diagonal optical conductivity, giving rise to a new type of photospin--orbit interaction. As a result, various novel light-scattering phenomena can take place. We demonstrate enhanced Faraday rotation, parity-violating light scattering, and strong perturbation of dipole radiation.

  16. Forward-peaked scattering of polarized light.

    PubMed

    Clark, Julia P; Kim, Arnold D

    2014-11-15

    Polarized light propagation in a multiple scattering medium is governed by the vector radiative transfer equation. We analyze the vector radiative transfer equation in asymptotic limit of forward-peaked scattering and derive an approximate system of equations for the Stokes parameters, which we call the vector Fokker-Planck approximation. The vector Fokker-Planck approximation provides valuable insight into several outstanding issues regarding the forward-peaked scattering of polarized light such as the polarization memory phenomenon. PMID:25490484

  17. Bidirectional scattering of light from tree leaves

    NASA Technical Reports Server (NTRS)

    Brakke, Thomas W.; Smith, James A.; Harnden, Joann M.

    1989-01-01

    A laboratory goniometer consisting of an He-Ne laser (632.8 nm), vertical leaf holder, and silicon photovoltaic detector was used to measure the bidirectional scattering (both transmittance and reflectance) of red oak and red maple. The illumination angles were 0, 30, and 60 deg, and the scattering was recorded approximately every 10 deg in the principal plane. The scattering profiles obtained show the non-Lambertian characteristics of the scattering, particularly for the off-nadir illumination directions. The transmitted light was more isotropic than the reflected light.

  18. Light-scattering theory of diffraction.

    PubMed

    Guo, Wei

    2010-03-01

    Since diffraction is a scattering process in principle, light propagation through one aperture in a screen is discussed in the light-scattering theory. Through specific calculation, the expression of the electric field observed at an observation point is obtained and is used not only to explain why Kirchhoff's diffraction theory is a good approximation when the screen is both opaque and sufficiently thin but also to demonstrate that the mathematical and physical problems faced by Kirchhoff's theory are avoided in the light-scattering theory. PMID:20208939

  19. Correction of sunspot intensities for scattered light

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1973-01-01

    Correction of sunspot intensities for scattered light usually involves fitting theoretical curves to observed aureoles (Zwaan, 1965; Staveland, 1970, 1972). In this paper we examine the inaccuracies in the determination of scattered light by this method. Earlier analyses are extended to examine uncertainties due to the choice of the expression for limb darkening. For the spread function, we consider Lorentzians and Gaussians for which analytic expressions for the aureole can be written down. Lorentzians lead to divergence and normalization difficulties, and should not be used in scattered light determinations. Gaussian functions are more suitable.

  20. Forward-scattered light: Spectral broadening and temporal coherence

    NASA Astrophysics Data System (ADS)

    Swanson, N. L.; van Winkle, D. H.

    1997-06-01

    Fabry-Pérot spectroscopy was used to observe a spectral broadening of 1.3+/-0.2 MHz in laser light forward scattered through a colloidal solution. Light from a single-mode argon-ion laser was collected after scattering through water to which measured amounts of diatomaceous earth or 0.08-μm-diam polystyrene spheres were successively added. The broadening is attributed to coupling between fluctuations in particle concentration and spontaneous thermal fluctuations. Though spontaneous fluctuations exist in all pure fluids, they are very weak in water. However, the presence of the particles induces temperature gradients in the fluid, which in turn induce fluctuations in particle concentration.

  1. Conformational States of the Rapana thomasiana Hemocyanin and Its Substructures Studied by Dynamic Light Scattering and Time-Resolved Fluorescence Spectroscopy

    PubMed Central

    Georgieva, Dessislava; Schwark, Daniel; Nikolov, Peter; Idakieva, Krassimira; Parvanova, Katja; Dierks, Karsten; Genov, Nicolay; Betzel, Christian

    2005-01-01

    Hemocyanins are dioxygen-transporting proteins freely dissolved in the hemolymph of mollusks and arthropods. Dynamic light scattering and time-resolved fluorescence measurements show that the oxygenated and apo-forms of the Rapana thomasiana hemocyanin, its structural subunits RtH1 and RtH2, and those of the functional unit RtH2e, exist in different conformations. The oxygenated respiratory proteins are less compact and more asymmetric than the respective apo-forms. Different conformational states were also observed for the R. thomasiana hemocyanin in the absence and presence of an allosteric regulator. The results are in agreement with a molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins including transfer of conformational changes from one functional unit to another. PMID:15533921

  2. Factors Influencing Light Scattering in the Eye

    NASA Astrophysics Data System (ADS)

    Ikaunieks, G.; Ozolinsh, M.; Stepanovs, A.; Lejiete, V.; Reva, N.

    2009-01-01

    Our vision in the twilight or dark is strongly affected by the intraocular light scattering (straylight). Of especial importance is to assess this phenomenon in view of the night driving. The authors have studied the spectral dependence of retinal stray-light and estimated the possibility to reduce it with yellow filters and small apertures. For the measurements the direct compensation flicker method was used. The results show that this spectral dependence is close to Rayleigh's scattering (∝λ-4). As could be expected from the known data, the yellow filter should reduce retinal straylight, especially for blue light. However, in the experiments this scattering was not removed with such a filter but instead slightly increased. The optical apertures reduced light scattering in the eye, especially for red color.

  3. Deep Water Cherenkov Light Scatter Meter

    SciTech Connect

    Pappalardo, L; Petta, C.; Russo, G.V.

    2000-12-31

    The relevant parameters for the site choice of an underwater neutrino's telescope are discussed. The in situ measurement of the scattering distribution of the cherenkov light requires a suitable experimental setup. Its main features are described here.

  4. Light scattering and birefrigence by magnetic bacteria

    SciTech Connect

    Johnston, R.G.; Jacobson, P.L.

    1990-01-01

    The bacterium Aquaspirillum magnetotacticum grows its own internal single domain magnets. For a number of reasons, these magnets make the bacterium an extremely interesting scattering particle. We are engaging in light scattering and birefringence studies on Aquaspirillum magnetotacticum. 9 refs., 4 figs.

  5. Microscope spectrometer for light scattering investigations

    SciTech Connect

    Barbara, Aude; Lopez-Rios, Tomas; Dumont, Sylvain; Gay, Frederic; Quemerais, Pascal

    2010-08-01

    We describe a setup including a microscope to study volumes of a few {mu}m{sup 3} by static and dynamic light scattering (DLS) in a backscattering configuration. Light scattered by individual objects of micrometric size can be analyzed in the 400-800 nm spectral range. This setup can also be employed to study both diluted and concentrated colloidal solutions by DLS measurements. For diluted solutions we found evidence of the fluctuations of the number of particles in a confocal volume. We discuss their contribution to the autocorrelation function of the scattered intensity measured as a function of time.

  6. Pathlength determination for gas in scattering media absorption spectroscopy.

    PubMed

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  7. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  8. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, Stanley E.; Livingston, Ronald R.; Prather, William S.

    1995-01-01

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  9. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  10. The Whiteness of Things and Light Scattering

    ERIC Educational Resources Information Center

    Gratton, L. M.; Lopez-Arias, T.; Calza, G.; Oss, S.

    2009-01-01

    We discuss some simple experiments dealing with intriguing properties of light and its interaction with matter. In particular, we show how to emphasize that light reflection, refraction and scattering can provide a proper, physical description of human perception of the "colour" white. These experiments can be used in the classroom with an enquiry…

  11. Polarization of light scattered by clover

    NASA Technical Reports Server (NTRS)

    Woessner, Paul; Hapke, Bruce

    1987-01-01

    This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. This phenomenon is not well understood but is potentially of interest for remote sensing of the earth. The intensity and polarization of light scattered by clover in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of vegetation were measured. The Umov effect, or inverse relation between polarization and reflectance noted by many earlier workers, was observed here and is shown to be a very general property of diffusely scattering surfaces. The light transmitted through the leaves was found to be negatively polarized. The polarization of light scattered from aggregations of leaves is affected by this negatively polarized, transmitted light. The light scattered from the upper leaf surfaces was found to be positively polarized in a manner which could be accounted for quantitatively by specular Fresnel reflection from small, randomly oriented facets on the surfaces of the leaves.

  12. Light scattering study of rheumatoid arthritis

    SciTech Connect

    Beuthan, J; Netz, U; Minet, O; Mueller, G; Scheel, A; Henniger, J

    2002-11-30

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient {mu}{sub s}, absorption coefficient {mu}{sub a}, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results. (laser biology and medicine)

  13. Light Scattering Study on SWNTs Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Liu, Tao; Veedu Sreekumar, T.; Kumar, Satish; Tannenbaum, Rina; Moore, Vallerie; Hauge, R. H.; Smalley, R. E.

    2003-03-01

    SWNT/Oleum dispersions are being used to form film and fibers showing high electrical conductivity. PVP wrapped SWNTs have also been dissolved in aqueous medium. Light scattering studies have been performed in this study to understand the nanotube dispersion on both SWNT/Oleum as well as PVP/SWNT/surfactant/water dispersions. Preliminary studies on PVP wrapped SWNTs/water and SWNTs/oleum dispersion system show the existence of a critical concentration (c*) of SWNTs. Below c*, the detected scattering intensity increases with concentration; and above c*, the detected scattering intensity decreases with concentration. This observed phenomenon is attributed to the competition of scattering and strong absorption of SWNTs to visible light. Based on this study, level of SWNT dispersion is being studied. Results of these studies will be reported.

  14. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  15. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    NASA Astrophysics Data System (ADS)

    Remer, Itay; Bilenca, Alberto

    2016-09-01

    We demonstrate a high-speed stimulated Brillouin scattering (SBS) spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (˜25 dB in water samples and ˜15 dB in tissue phantoms). These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  16. Light scattering by aggregated red blood cells.

    PubMed

    Tsinopoulos, Stephanos V; Sellountos, Euripides J; Polyzos, Demosthenes

    2002-03-01

    In low flow rates, red blood cells (RBCs) fasten together along their axis of symmetry and form a so-called rouleaux. The scattering of He-Ne laser light by a rouleau consisting of n (2 < or = n < or = 8) average-sized RBCs is investigated. The interaction problem is treated numerically by means of an advanced axisymmetric boundary element--fast Fourier transform methodology. The scattering problem of one RBC was solved first, and the results showed that the influence of the RBC's membrane on the scattering patterns is negligible. Thus the rouleau is modeled as an axisymmetric, homogeneous, low-contrast dielectric cylinder, on the surface of which appears, owing to aggregated RBCs, a periodic roughness along the direction of symmetry. The direction of the incident laser light is considered to be perpendicular to the scatterer's axis of symmetry. The differential scattering cross sections in both perpendicular and parallel scattering planes and for all the scattering angles are calculated and presented in detail. PMID:11900021

  17. Light scattering by aggregated red blood cells

    NASA Astrophysics Data System (ADS)

    Tsinopoulos, Stephanos V.; Sellountos, Euripides J.; Polyzos, Demosthenes

    2002-03-01

    In low flow rates, red blood cells (RBCs) fasten together along their axis of symmetry and form a so-called rouleaux. The scattering of He-Ne laser light by a rouleau consisting of n (2 less-than-or-equal n less-than-or-equal 8) average-sized RBCs is investigated. The interaction problem is treated numerically by means of an advanced axisymmetric boundary element--fast Fourier transform methodology. The scattering problem of one RBC was solved first, and the results showed that the influence of the RBC's membrane on the scattering patterns is negligible. Thus the rouleau is modeled as an axisymmetric, homogeneous, low-contrast dielectric cylinder, on the surface of which appears, owing to aggregated RBCs, a periodic roughness along the direction of symmetry. The direction of the incident laser light is considered to be perpendicular to the scatterer's axis of symmetry. The differential scattering cross sections in both perpendicular and parallel scattering planes and for all the scattering angles are calculated and presented in detail.

  18. An automatic light scattering CCN counter

    NASA Technical Reports Server (NTRS)

    Lala, G. G.

    1981-01-01

    The counter is a static thermal diffusion chamber which has been modified to include an optical system for the determination of droplet concentration by the measurement of scattered light. The determination of concentration is made by measurement of the peak scattered light signal from the cloud of growing droplets which is a function of both the droplet concentration and chamber supersaturation. Because the formation of the peak is related to the rate of growth of the droplets and sedimentation, both of which are determined by supersaturation, the system calibration can be uniquely determined by comparison with an absolute counter such as a static diffusion chamber with a photographic recording system.

  19. An automatic light scattering CCN counter

    NASA Astrophysics Data System (ADS)

    Lala, G. G.

    1981-11-01

    The counter is a static thermal diffusion chamber which has been modified to include an optical system for the determination of droplet concentration by the measurement of scattered light. The determination of concentration is made by measurement of the peak scattered light signal from the cloud of growing droplets which is a function of both the droplet concentration and chamber supersaturation. Because the formation of the peak is related to the rate of growth of the droplets and sedimentation, both of which are determined by supersaturation, the system calibration can be uniquely determined by comparison with an absolute counter such as a static diffusion chamber with a photographic recording system.

  20. Flexible detection optics for light scattering

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1984-05-01

    We have designed and built a compact, modular apparatus for the collection, viewing, and detection of scattered light for less than 1200, based on a commercially available optical bench. The novelty of our instrument is that it has the flexibility of modular design while allowing the user to see exactly what is happening: both the real image of the sample and the spatial coherence of the scattered light can be examined. There is built-in control over polarization, filtering, magnification, and other parameters.

  1. Light scattering from cylindrical structures on surfaces.

    PubMed

    Taubenblatt, M A

    1990-03-01

    Light scattering from a dielectric cylindrical structure on a surface by a plane wave with field vector along the cylinder axis is calculated with a modification of the coupled-dipole method. The interaction matrix is calculated with the use of both the direct contribution of a polarization current filament and its reflection from the surface. The reflected cylindrical waves are computed with the use of the Sommerfeld-type integral expression. Light scattering from structures of arbitrary cross section and the size of the order of a wavelength can be quickly determined with this method. PMID:19759774

  2. Inelastic light scattering from a Mott insulator

    SciTech Connect

    Oosten, D. van; Dickerscheid, D.B.M.; Farid, B.; Stoof, H.T.C.; Straten, P. van der

    2005-02-01

    We propose to use Bragg spectroscopy to measure the excitation spectrum of the Mott-insulator state of an atomic Bose gas in an optical lattice. We calculate the structure factor of the Mott insulator taking into account both the self-energy corrections of the atoms and the corresponding dressing of the atom-photon interaction. We determine the scattering rate of photons in the stimulated Raman transition and show that by measuring this scattering rate in an experiment, in particular, the excitation gap of the Mott insulator can be determined.

  3. Study on neutron scattering in light water

    NASA Astrophysics Data System (ADS)

    Scotta, Juan Pablo; Marquez Damian, Ignacio; Noguere, Gilles; Bernard, David

    2016-03-01

    It is presented a method to produce covariance matrices of the light water total cross section from thermal scattering laws of the JEFF-3.1.1 nuclear data library and CAB model. The generalized least square method was used to fit the LEAPR module parameters of the processing tool NJOY with light water experimental transmission measurements at 293.6K with CONRAD code. The marginalization technique was applied to account for systematic uncertainties.

  4. The whiteness of things and light scattering

    NASA Astrophysics Data System (ADS)

    Gratton, L. M.; López-Arias, T.; Calzà, G.; Oss, S.

    2009-07-01

    We discuss some simple experiments dealing with intriguing properties of light and its interaction with matter. In particular, we show how to emphasize that light reflection, refraction and scattering can provide a proper, physical description of human perception of the 'colour' white. These experiments can be used in the classroom with an enquiry approach, and it is in this spirit that we will present them.

  5. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

    PubMed Central

    Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.E.; Aizpurua, J.; Hillenbrand, R.

    2012-01-01

    Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering. PMID:22353715

  6. Light scattering by a reentrant fractal surface.

    PubMed

    Mendoza-Suárez, A; Méndez, E R

    1997-05-20

    Recently, rigorous numerical techniques for treating light scattering problems with one-dimensional rough surfaces have been developed. In their usual formulation, these techniques are based on the solution of two coupled integral equations and are applicable only to surfaces whose profiles can be described by single-valued functions of a coordinate in the mean plane of the surface. In this paper we extend the applicability of the integral equation method to surfaces with multivalued profiles. A procedure for finding a parametric description of a given profile is described, and the scattering equations are established within the framework of this formalism. We then present some results of light scattering from a sequence of one-dimensional flat surfaces with defects in the form of triadic Koch curves. Beyond a certain order of the prefractal, the scattering patterns become stationary (within the numerical accuracy of the method). It can then be argued that the results obtained correspond to a surface with a fractal structure. These constitute, to our knowledge, the first rigorous calculations of light scattering from a reentrant fractal surface. PMID:18253371

  7. Light scattering by randomly oriented crystals

    NASA Astrophysics Data System (ADS)

    Muinonen, Karri; Lumme, Kari; Peltoniemi, Jouni; Irvine, William M.

    The scattering phase function and the degree of linear polarization for small crystals oriented randomly in space have been computed using the geometric ray tracing theory and assuming that the crystals are homogeneous and isotropic. Calculations have been carried out for the main crystal geometries. Detection of halos from crystals other than hexagonal water ice is briefly discussed. The crystal size and shape parameters have also been averaged over some simple distributions in order to examine general light scattering properties of sharp-edged particles. A scalar physical optics correction has been developed for the geometric optics phase functions. Results can be applied to light scattering from regoliths and planetary rings, and possibly also to atmospheric halos. Retroreflecting crystals in the regolith would cause an opposition spike, a phenomenon observed for many bright satellites.

  8. Light scattering by randomly oriented crystals

    NASA Technical Reports Server (NTRS)

    Muinonen, Karri; Lumme, Kari; Peltoniemi, Jouni; Irvine, William M.

    1989-01-01

    The scattering phase function and the degree of linear polarization for small crystals oriented randomly in space have been computed using the geometric ray tracing theory and assuming that the crystals are homogeneous and isotropic. Calculations have been carried out for the main crystal geometries. Detection of halos from crystals other than hexagonal water ice is briefly discussed. The crystal size and shape parameters have also been averaged over some simple distributions in order to examine general light scattering properties of sharp-edged particles. A scalar physical optics correction has been developed for the geometric optics phase functions. Results can be applied to light scattering from regoliths and planetary rings, and possibly also to atmospheric halos. Retroreflecting crystals in the regolith would cause an opposition spike, a phenomenon observed for many bright satellites.

  9. Light scattering from diatomaceous earth aerosol

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer M.; Meland, B.; Laskina, Olga; Young, M. A.; Grassian, V. H.; Kleiber, P. D.

    2013-08-01

    The light scattering and extinction properties of mineral aerosol are strongly affected by dust particle shape. In this work, scattering phase function and polarization profiles of diatomaceous earth aerosol are measured at a wavelength of 550 nm, and the results are compared to T-matrix theory based simulations using uniform spheroid models for the particle shape. The particle shape distribution is determined by spectral fitting of the experimental infrared (IR) extinction spectral line profile for diatomaceous earth dust. It is found that a particle shape model that peaks toward both extreme rod-like and disk-like shapes results in the best fits to the IR spectral data. This particle shape model is then used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the data, the fits are generally better than those obtained using more commonly invoked particle shape distributions.

  10. Immunoassay control method based on light scattering

    NASA Astrophysics Data System (ADS)

    Bilyi, Olexander I.; Kiselyov, Eugene M.; Petrina, R. O.; Ferensovich, Yaroslav P.; Yaremyk, Roman Y.

    1999-11-01

    The physics principle of registration immune reaction by light scattering methods is concerned. The operation of laser nephelometry for measuring antigen-antibody reaction is described. The technique of obtaining diagnostic and immune reactions of interaction latex agglutination for diphtheria determination is described.

  11. Scattered light in the STIS echelle modes

    NASA Technical Reports Server (NTRS)

    Landsman, W.; Bowers, C.

    1997-01-01

    The Space Telescope Imaging Spectrograph (STIS) echelle spectra obtained during the Early Release Observations have non-zero residuals in the cores of saturated interstellar lines, indicating the need for a scattered light correction. A rough measure of the magnitude of the needed correction shows the ratio of the interorder to the in-order flux in different echelle modes in both pre-launch calibration images of a continuum lamp source and in post-launch images of stellar continuum sources. The interorder and in-order fluxes are computed by averaging the central 200 pixels in the dispersion direction. The amount of scattered light in the interorder region rises toward shorter wavelengths for two reasons: (1) the order separation decreases toward shorter wavelengths; and (2) the amount of echelle scattering is expected to have an inverse dependence on wavelength. At the shortest wavelengths the fraction of light scattered into the interorder region can be 10% for the Near-ultraviolet-Multi-Anode Microchannel Array (NUV-MAMA) and 15% for the Far-ultraviolet-Multi-Anode Microchannel Array (FUV-MAMA).

  12. Dynamic Light Scattering From Colloidal Gels

    NASA Technical Reports Server (NTRS)

    Krall, A. H.; Weitz, David A.

    1996-01-01

    We present a brief, preliminary account of the interpretation of dynamic light scattering from fractal colloidal gels. For small scattering angles, and for high initial colloid particle volume fractions, the correlation functions exhibit arrested decay, reflecting the non-ergodic nature of these systems and allowing us to directly determine the elastic modulus of the gels. For smaller initial volume fractions, the correlation functions decay completely. In all cases, the initial decay is not exponential, but is instead described by a stretched exponential. We summarize the principles of a model that accounts for these data and discuss the scaling behavior of the measured parameters.

  13. Light scattering by cirrus cloud layers.

    NASA Technical Reports Server (NTRS)

    Liou, K.-N.

    1972-01-01

    The properties of the reflection, transmission, and absorption of the cirrus cloud layers are calculated under the assumption that the ice crystals in cirrus clouds may be approximated long circular cylinders randomly oriented in space. The phase function, the single scattering albedo, and the extinction cross section are obtained on the basis of Liou's (1972) calculations of light scattering by ice clouds in the visible and infrared. A modified two-stream approximation for radiative transfer is developed and is used to evaluate the radiative properties of the cirrus cloud layers.

  14. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  15. Scattering of dark particles with light mediators

    NASA Astrophysics Data System (ADS)

    Soper, Davison E.; Spannowsky, Michael; Wallace, Chris J.; Tait, Tim M. P.

    2014-12-01

    We present a treatment of the high energy scattering of dark Dirac fermions from nuclei, mediated by the exchange of a light vector boson. The dark fermions are produced by proton-nucleus interactions in a fixed target and, after traversing shielding that screens out strongly interacting products, appear similarly to neutrino neutral current scattering in a detector. Using the Fermilab experiment E613 as an example, we place limits on a secluded dark matter scenario. Visible scattering in the detector includes both the familiar regime of large momentum transfer to the nucleus (Q2) described by deeply inelastic scattering, as well as small Q2 kinematics described by the exchanged vector mediator fluctuating into a quark-antiquark pair whose interaction with the nucleus is described by a saturation model. We find that the improved description of the low Q2 scattering leads to important corrections, resulting in more robust constraints in a regime where a description entirely in terms of deeply inelastic scattering cannot be trusted.

  16. Atmospheric particulate analysis using angular light scattering

    NASA Technical Reports Server (NTRS)

    Hansen, M. Z.

    1980-01-01

    Using the light scattering matrix elements measured by a polar nephelometer, a procedure for estimating the characteristics of atmospheric particulates was developed. A theoretical library data set of scattering matrices derived from Mie theory was tabulated for a range of values of the size parameter and refractive index typical of atmospheric particles. Integration over the size parameter yielded the scattering matrix elements for a variety of hypothesized particulate size distributions. A least squares curve fitting technique was used to find a best fit from the library data for the experimental measurements. This was used as a first guess for a nonlinear iterative inversion of the size distributions. A real index of 1.50 and an imaginary index of -0.005 are representative of the smoothed inversion results for the near ground level atmospheric aerosol in Tucson.

  17. Laser light scattering in eye lens model

    NASA Astrophysics Data System (ADS)

    Larionova, Nadezhda L.; Maksimova, Irina L.; Kochubey, Vyacheslav I.

    2000-11-01

    Theoretical investigations of laser light radiation scattered by eye lens model as a system of spheres with various parameters were performed on the base of Mie theory of electromagnetic scattering by a single sphere. The calculations were performed for systems of particles whose coordinates were specifically realized in random fashion according to the specified probabilities defined by the approximation of hard spheres. The modeling of lens biotissue was carried out by using of medical data about internal structure of lens of human and some animals. In general the researchable model presents the system of homogeneous spherical particles those are randomly distributed in the layer of thickness. We study the optical properties such as scattering effective cross-section and function of correlation in different models.

  18. Laser Light Scattering by Shock Waves

    NASA Technical Reports Server (NTRS)

    Panda, J.; Adamovsky, G.

    1995-01-01

    Scattering of coherent light as it propagates parallel to a shock wave, formed in front of a bluff cylindrical body placed in a supersonic stream, is studied experimentally and numerically. Two incident optical fields are considered. First, a large diameter collimated beam is allowed to pass through the shock containing flow. The light intensity distribution in the resultant shadowgraph image, measured by a low light CCD camera, shows well-defined fringes upstream and downstream of the shadow cast by the shock. In the second situation, a narrow laser beam is brought to a grazing incidence on the shock and the scattered light, which appears as a diverging sheet from the point of interaction, is visualized and measured on a screen placed normal to the laser path. Experiments are conducted on shocks formed at various free-stream Mach numbers, M, and total pressures, P(sub 0). It is found that the widths of the shock shadows in a shadowgraph image become independent of M and P(sub 0) when plotted against the jump in the refractive index, (Delta)n, created across the shock. The total scattered light measured from the narrow laser beam and shock interaction also follows the same trend. In the numerical part of the study, the shock is assumed to be a 'phase object', which introduces phase difference between the upstream and downstream propagating parts of the light disturbances. For a given shape and (Delta)n of the bow shock the phase and amplitude modulations are first calculated by ray tracing. The wave front is then propagated to the screen using the Fresnet diffraction equation. The calculated intensity distribution, for both of the incident optical fields, shows good agreement with the experimental data.

  19. Light scattering measurement of sodium polyacrylate products

    NASA Astrophysics Data System (ADS)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  20. Bacterial Identification Using Light Scattering Measurements: a Preliminary Report

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1971-01-01

    The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.

  1. Parametric dependence of ion temperature and electron density in the SUMMA hot-ion plasma using laser light scattering and emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Patch, R. W.; Lauver, M. R.

    1980-01-01

    Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Penning discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathodes. Steady-state plasmas with ion kinetic temperatures from 18 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.

  2. SCATTERED NEBULAR LIGHT IN THE EXTENDED ORION NEBULA

    SciTech Connect

    O'Dell, C. R.; Goss, W. M.

    2009-11-15

    We have combined 327.5 MHz radio observations and optical spectroscopy to study conditions in the Extended Orion Nebula (EON). We see a steady progression of characteristics with increasing distance from the dominant photoionizing star {theta}{sup 1}Ori C. This progression includes a decrease in the F(H{alpha})/F(H{beta}) ratio, an increase in the relative strength of scattered stellar continuum, decrease in electron density determined from the [S II] doublet, and increase in the ratio of emission measures derived from the H{beta} line and the 327.5 MHz radio continuum. We conclude that beyond about 5' south of {theta}{sup 1}Ori C that scattered light from the much brighter central Huygens region of the nebula significantly contaminates local emission. This strengthens earlier arguments that wavelength and model-dependent scattering of emission-line radiation imposes a fundamental limit on our ability to determine the physical conditions and abundances in this and arguably other similar Galactic Nebulae. The implications for the study of extragalactic H II regions are even more severe. We confirm the result of an earlier study that at least the eastern boundary of the EON is dominated by scattered light from the Huygens region.

  3. Meson Spectroscopy in the Light Quark Sector

    SciTech Connect

    de Vita, Raffaella

    2014-04-01

    Understanding the hadron spectrum is one of the fundamental issues in modern particle physics. We know that existing hadron configurations include baryons, made of three quarks, and mesons, made of quark-antiquark pairs. However most of the mass of the hadrons is not due to the mass of these elementary constituents but to their binding force. Studying the hadron spectrum is therefore a tool to understand one of the fundamental forces in nature, the strong force, and Quantum Chromo Dynamics (QCD), the theory that describes it. This investigation can provide an answer to fundamental questions as what is the origin of the mass of hadrons, what is the origin of quark confinement, what are the relevant degrees of freedom to describe these complex systems and how the transition between the elementary constituents, quarks and gluons, and baryons and mesons occurs. In this field a key tool is given by meson spectroscopy. Mesons, being made by a quark and an anti-quark, are the simplest quark bound system and therefore the ideal benchmark to study the interaction between quarks and understand what the role of gluons is. In this investigation, it is fundamental to precisely determine the spectrum and properties of mesons but also to search for possible unconventional states beyond the configuration q{anti q} as tetraquarks (qq{anti qq}), hybrids (q{anti q}g) and glueballs. These states can be distinguished unambiguously from regular mesons when they have exotic quantum numbers, i.e. combinations of total angular momentum, spin and parity that are not allowed for q{anti q} states. These are called exotic quantum numbers and the corresponding states are referred to as exotics. The study of the meson spectrum and the search for exotics is among the goals of several experiments in the world that exploit different reaction processes, as e{sup +}e{sup −} annihilation, p{anti p} annihilation, pion scattering, proton-proton scattering and photo-production, to produce meson states

  4. An investigation of light transport through scattering bodies with non-scattering regions.

    PubMed

    Firbank, M; Arridge, S R; Schweiger, M; Delpy, D T

    1996-04-01

    Near-infra-red (NIR) spectroscopy is increasingly being used for monitoring cerebral oxygenation and haemodynamics. One current concern is the effect of the clear cerebrospinal fluid upon the distribution of light in the head. There are difficulties in modelling clear layers in scattering systems. The Monte Carlo model should handle clear regions accurately, but is too slow to be used for realistic geometries. The diffusion equation can be solved quickly for realistic geometries, but is only valid in scattering regions. In this paper we describe experiments carried out on a solid slab phantom to investigate the effect of clear regions. The experimental results were compared with the different models of light propagation. We found that the presence of a clear layer had a significant effect upon the light distribution, which was modelled correctly by Monte Carlo techniques, but not by diffusion theory. A novel approach to calculating the light transport was developed, using diffusion theory to analyze the scattering regions combined with a radiosity approach to analyze the propagation through the clear region. Results from this approach were found to agree with both the Monte Carlo and experimental data. PMID:8730669

  5. Modeling light scattering from diesel soot particles

    SciTech Connect

    Hull, Patricia; Shepherd, Ian; Hunt, Arlon

    2002-07-16

    The Mie model is widely used to analyze light scattering from particulate aerosols. The Diesel Particle Scatterometer (DPS), for example, determines the size and optical properties of diesel exhaust particles that are characterized by measuring three angle-dependent elements of the Mueller scattering matrix. These elements are then fitted using Mie calculations with a Levenburg-Marquardt optimization program. This approach has achieved good fits for most experimental data. However, in many cases, the predicted real and imaginary parts of the index of refraction were less than that for solid carbon. To understand this result and explain the experimental data, we present an assessment of the Mie model by use of a light scattering model based on the coupled dipole approximation. The results indicate that the Mie calculation can be used to determine the largest dimension of irregularly shaped particles at sizes characteristic of Diesel soot and, for particles of known refractive index, tables can be constructed to determine the average porosity of the particles from the predicted index of refraction.

  6. The new IAA Light Scattering Facility

    NASA Astrophysics Data System (ADS)

    Muñoz, O.; Moreno, F.; Molina, A.; Guirado, D.; Ramos, J. L.; López, A.; Girela, F.; Costillo, L. P.

    2005-05-01

    We are building up a light scattering setup at the Instituto de Astrofísica de Andalucía (IAA), Granada, Spain. The design of this new setup is based on the well known apparatus currently located at the Astronomical Institute "Anton Pannekoek", University of Amsterdam, The Neteherlands [1],[2]. By using a polarization modulation technique, all scattering matrix elements as function of the scattering angle are obtained from 8 separate measurement runs. In this new setup we use an Argon-Kripton laser (483 nm, 488 nm, 514 nm, 568 nm, and 647 nm) as light source. The detectors are mounted on dove tails that allow their movement backward and forward. In addition, the detectors have been designed to minimize blockage of the laser beam at positions close to the forward and backward directions. In this way we intend to do measurements covering an angle range from 3 to 177 degrees. The alignment of the optics is automatically done and controlled from the computer reducing the measurement time.

  7. Measurement of light scattering in deep sea

    NASA Astrophysics Data System (ADS)

    Maragos, N.; Balasi, K.; Domvoglou, T.; Kiskiras, I.; Lenis, D.; Maniatis, M.; Stavropoulos, G.

    2016-04-01

    The deep-sea neutrino telescope in the Mediterranean Sea, being prepared by the KM3NET collaboration, will contain thousands of optical sensors to readout. The accurate knowledge of the optical properties of deep-sea water is of great importance for the neutrino event reconstruction process. In this study we describe our progress in designing an experimental setup and studying a method to measure the parameters describing the absorption and scattering characteristics of deep-sea water. Three PMTs will be used to measure in situ the scattered light emitted from six laser diodes in three different wavelengths covering the Cherenkov radiation spectrum. The technique for the evaluation of the parameters is based on Monte Carlo simulations and our results show that we are able to determine these parameters with satisfying precision.

  8. Light Scattering Study of Titania Aerosols

    NASA Astrophysics Data System (ADS)

    Oh, Choonghoon; Sorensen, Chris

    1997-03-01

    We studied the fractal morphology of titania aerosols by light scattering. Titania aerosols were generated by the thermal decomposition of titanium tetraisopropoxide (TTIP) in a silica tube furnace. TTIP was evaporated at temperatures up to 80^circC and its vapor was carried by dry nitrogen to a furnace with temperature in the range of 400 - 600^circC. A TEM analysis of the generated particles showed a typical DLCA structure with a monomer diameter about 50 nm. The particles were then made to flow through a narrow outlet as a laminar stream. The light scattering from these particles was measured using a He-Ne laser as a light source. The measured structure factor clearly showed the Rayleigh, Guinier, and fractal regimes. The fractal morphological parameters, such as the cluster radius of gyration, the fractal dimension, and the fractal prefactor were studied from the structure factor as a function of particle generation conditions. The cluster radius of gyration was about 1 μm and showed a modest dependency on the generation conditions. The fractal dimension was about 1.7 in all cases. These results are in good agreement with the TEM analysis.

  9. Infrared spectroscopy with visible light

    NASA Astrophysics Data System (ADS)

    Kalashnikov, Dmitry A.; Paterova, Anna V.; Kulik, Sergei P.; Krivitsky, Leonid A.

    2016-02-01

    Spectral measurements in the infrared optical range provide unique fingerprints of materials, which are useful for material analysis, environmental sensing and health diagnostics. Current infrared spectroscopy techniques require the use of optical equipment suited for operation in the infrared range, components of which face challenges of inferior performance and high cost. Here, we develop a technique that allows spectral measurements in the infrared range using visible-spectral-range components. The technique is based on nonlinear interference of infrared and visible photons, produced via spontaneous parametric down conversion. The intensity interference pattern for a visible photon depends on the phase of an infrared photon travelling through a medium. This allows the absorption coefficient and refractive index of the medium in the infrared range to be determined from the measurements of visible photons. The technique can substitute and/or complement conventional infrared spectroscopy and refractometry techniques, as it uses well-developed components for the visible range.

  10. LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES

    SciTech Connect

    Zugger, M. E.; Kane, T. J.; Kasting, J. F.; Williams, D. M.; Philbrick, C. R.

    2010-11-10

    Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180{sup 0}, whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30{sup 0}. Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74{sup 0}; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90{sup 0}, but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.

  11. Light scattering from dense cold atomic media

    NASA Astrophysics Data System (ADS)

    Zhu, Bihui; Cooper, John; Ye, Jun; Rey, Ana Maria

    2016-08-01

    We theoretically study the propagation of light through a cold atomic medium, where the effects of motion, laser intensity, atomic density, and polarization can all modify the properties of the scattered light. We present two different microscopic models: the "coherent dipole model" and the "random-walk model", both suitable for modeling recent experimental work done in large atomic arrays in the low-light-intensity regime. We use them to compute relevant observables such as the linewidth, peak intensity, and line center of the emitted light. We further develop generalized models that explicitly take into account atomic motion. Those are relevant for hotter atoms and beyond the low-intensity regime. We show that atomic motion can lead to drastic dephasing and to a reduction of collective effects, together with a distortion of the line shape. Our results are applicable to model a full gamut of quantum systems that rely on atom-light interactions, including atomic clocks, quantum simulators, and nanophotonic systems.

  12. Detection of circular polarization in light scattered from photosynthetic microbes

    PubMed Central

    Sparks, William B.; Hough, James; Germer, Thomas A.; Chen, Feng; DasSarma, Shiladitya; DasSarma, Priya; Robb, Frank T.; Manset, Nadine; Kolokolova, Ludmilla; Reid, Neill; Macchetto, F. Duccio; Martin, William

    2009-01-01

    The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Because of the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches. PMID:19416893

  13. Atom-interferometric studies of light scattering

    SciTech Connect

    Beattie, S.; Barrett, B.; Chan, I.; Mok, C.; Kumarakrishnan, A.; Yavin, I.

    2009-07-15

    We have used an echo-type atom interferometer that manipulates laser-cooled atoms in a single ground state to investigate the effect of light scattering from pulsed and continuous-wave light. The interferometer uses two off-resonant standing-wave pulses applied at times t=0 and t=T to diffract and recombine momentum states separated by 2({Dirac_h}/2{pi})k at t=2T. Matter wave interference is associated with the formation of a density grating with period {lambda}/2 in the vicinity of this echo time. The grating contrast is measured by recording the intensity of coherently backscattered light. The interferometer is perturbed by an additional pulse applied at t=2T-{delta}T or by continuous-wave background light. If the additional pulse is a standing wave, the momentum states interfering at t=2T are displaced and the grating contrast can be completely recovered due to constructive interference. In this case, the contrast shows a periodic modulation at the atomic recoil frequency as a function of {delta}T. In a recent work, it was shown that the atomic recoil frequency can be measured easily and precisely when using coherence functions to model the signal shape. This paper provides an alternative description of the signal shape through an analytical calculation of echo formation in the presence of an additional standing-wave pulse. Using this treatment, it is possible to model the effects of spontaneous emission and spatial profile of the laser beam on the signal shape. Additionally, the theory predicts scaling laws as a function of the pulse area and the number of additional standing-wave pulses. These scaling laws are investigated experimentally and can be exploited to improve precision measurements of the atomic recoil frequency. We also show that coherence functions can be used to make a direct measurement of the populations of momentum states associated with the ground state under conditions where the Doppler-broadened velocity distribution of the sample is much

  14. Light Scattering From Fractal Titania Aggregates

    NASA Astrophysics Data System (ADS)

    Pande, Rajiv; Sorensen, Christopher M.

    1996-03-01

    We studied the fractal morphology of titania aggregates by light scattering. Titanium dioxide particles were generated by the thermal decomposition of titanium tetra-isopropoxide(TTIP) in a glass furnace at various temperatures in the range of 100 - 500^o C. We scattered vertically polarized He-Ne laser (λ = 6328Ålight from a laminar aerosol stream of particles and measured the optical structure factor. This structure factor shows Rayleigh, Guinier, fractal and Porod regimes. The radius of gyration Rg was determined from the Guinier analysis. The data were then fit to the Fisher-Burford form to determine the fractal dimension of about 2.0. This fit also delineated the crossover from the fractal to Porod regime, which can be used to determine the monomer particle size of about 0.1 μm. These optical measurements will be compared to electron microscope analysis of aggregates collected from the aerosol. This work was supported by NSF grant CTS-9908153.

  15. Overview of single-cell elastic light scattering techniques.

    PubMed

    Kinnunen, Matti; Karmenyan, Artashes

    2015-05-01

    We present and discuss several modern optical methods based on elastic light scattering (ELS), along with their technical features and applications in biomedicine and life sciences. In particular, we review some ELS experiments at the single-cell level and explore new directions of applications. Due to recent developments in experimental systems (as shown in the literature), ELS lends itself to useful applications in the life sciences. Of the developed methods, we cover elastic scattering spectroscopy, optical tweezer-assisted measurement, goniometers, Fourier transform light scattering (FTLS), and microscopic methods. FTLS significantly extends the potential analysis of single cells by allowing monitoring of dynamical changes at the single-cell level. The main aim of our review is to demonstrate developments in the experimental investigation of ELS in single cells including issues related to theoretical “representations” and modeling of biological systems (cells, cellular systems, tissues, and so on). Goniometric measurements of ELS from optically trapped single cells are shown and the importance of the experimental verification of theoretical models of ELS in the context of biomedical applications is discussed. PMID:25760756

  16. Squeezed light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage.

  17. LIGHT SCATTERING: Fast path-integration technique in simulation of light propagation through highly scattering objects

    NASA Astrophysics Data System (ADS)

    Voronov, Aleksandr V.; Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.

    2004-06-01

    Based on the path-integration technique and the Metropolis method, the original calculation scheme is developed for solving the problem of light propagation through highly scattering objects. The elimination of calculations of 'unnecessary' realisations and the phenomenological description of processes of multiple small-angle scattering provided a drastic increase (by nine and more orders of magnitude) in the calculation rate, retaining the specific features of the problem (consideration of spatial inhomogeneities, boundary conditions, etc.). The scheme allows one to verify other fast calculation algorithms and to obtain information required to reconstruct the internal structure of highly scattering objects (of size ~1000 scattered lengths and more) by the method of diffusion optical tomography.

  18. Doppler optical mixing spectroscopy in multiparticle scattering fluids

    SciTech Connect

    Dubnishchev, Yu N

    2011-03-31

    We discuss the basic scheme of laser Doppler optical mixing spectroscopy for the analysis of media with multiparticle scattering. It is shown that the Rayleigh scheme, in contrast to the heterodyne and differential schemes, is insensitive to the effects of multiparticle scattering. (laser applications and other aspects of quantum electronics)

  19. The role of cellular environment in dynamic light scattering

    NASA Astrophysics Data System (ADS)

    An, Ran; Jeong, Kwan; Turek, John; Nolte, David

    2011-03-01

    We have developed motility contrast imaging (MCI) as a coherence-domain volumetric imaging approach that uses subcellular dynamics as an endogenous imaging contrast agent of living tissue. Fluctuation spectroscopy analysis of dynamic light scattering (DLS) from 3-D tissue has identified functional frequency bands related to organelle transport, membrane undulations and cell shape change. In this paper, we track the behavior of dynamic light scattering as we bridge the gap between the two extremes of 2-D cell culture on the one hand, and 3-D tissue spheroids on the other. In a light backscattering geometry, we capture speckle from 2-D cell culture consisting of isolated cells or planar rafts of cells on cell-culture surfaces. DLS from that cell culture shows differences and lower sensitivity to intra-cellular dynamics compared with the 3-D tissue. The motility contrast is weak in this limit. As the cellular density increases to cover the surface, the motility contrast increases. As environmental perturbations or pharmaceuticals are applied, the fluctuation spectral response becomes more dramatic as the dimensionality of the cellular aggregations increases. We show that changing optical thickness of the cellular-to-tissue targets usually causes characteristic frequency shifts in the spectrograms, while changing cellular dimensionality causes characteristic frequencies to be enhanced or suppressed.

  20. Single-atom electron energy loss spectroscopy of light elements

    PubMed Central

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  1. Modeling of light scattering by icy bodies

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Mackowski, D.; Pitman, K.; Verbiscer, A.; Buratti, B.; Momary, T.

    2014-07-01

    As a result of ground-based, space-based, and in-situ spacecraft mission observations, a great amount of photometric, polarimetric, and spectroscopic data of icy bodies (satellites of giant planets, Kuiper Belt objects, comet nuclei, and icy particles in cometary comae and rings) has been accumulated. These data have revealed fascinating light-scattering phenomena, such as the opposition surge resulting from coherent backscattering and shadow hiding and the negative polarization associated with them. Near-infrared (NIR) spectra of these bodies are especially informative as the depth, width, and shape of the absorption bands of ice are sensitive not only to the ice abundance but also to the size of icy grains. Numerous NIR spectra obtained by Cassini's Visual and Infrared Mapping Spectrometer (VIMS) have been used to map the microcharacteristics of the icy satellites [1] and rings of Saturn [2]. VIMS data have also permitted a study of the opposition surge for icy satellites of Saturn [3], showing that coherent backscattering affects not only brightness and polarization of icy bodies but also their spectra [4]. To study all of the light-scattering phenomena that affect the photopolarimetric and spectroscopic characteristics of icy bodies, including coherent backscattering, requires computer modeling that rigorously considers light scattering by a large number of densely packed small particles that form either layers (in the case of regolith) or big clusters (ring and comet particles) . Such opportunity has appeared recently with a development of a new version MSTM4 of the Multi-Sphere T-Matrix code [5]. Simulations of reflectance and absorbance spectra of a ''target'' (particle layer or cluster) require that the dimensions of the target be significantly larger than the wavelength, sphere radius, and layer thickness. For wavelength-sized spheres and packing fractions typical of regolith, targets can contain dozens of thousands of spheres that, with the original MSTM

  2. A Study of Brownian Motion Using Light Scattering

    ERIC Educational Resources Information Center

    Clark, Noel A.; Lunacek, Joseph H.

    1969-01-01

    Describes an apparatus designed to investigate molecular motion by means of light scattering. Light from a He-Ne laser is focused into a cell containing a suspension of polystyrene spheres. The scattered light, collected on the photosurface of a photomultiplier tube, is analyzed. The apparatus won first prize in Demonstration Lecture Apparatus in…

  3. Fourier-transform light scattering of individual colloidal clusters.

    PubMed

    Yu, HyeonSeung; Park, HyunJoo; Kim, Youngchan; Kim, Mahn Won; Park, YongKeun

    2012-07-01

    We present measurements of the scalar-field light scattering of individual dimer, trimer, and tetrahedron shapes among colloidal clusters. By measuring the electric field with quantitative phase imaging at the sample plane and then numerically propagating to the far-field scattering plane, the two-dimensional light-scattering patterns from individual colloidal clusters are effectively and precisely retrieved. The measured scattering patterns are consistent with simulated patterns calculated from the generalized multiparticle Mie solution. PMID:22743460

  4. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    NASA Astrophysics Data System (ADS)

    Walker, Bennett N.; James, Robert H.; Calogero, Don; Ilev, Ilko K.

    2015-09-01

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  5. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    SciTech Connect

    Walker, Bennett N.; James, Robert H.; Ilev, Ilko K.; Calogero, Don

    2015-09-15

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  6. Aggregation behavior of illite using light scattering

    SciTech Connect

    Derrendinger, L.; Sposito, G.

    1995-12-01

    Stable environmental particles can be at the origin of facilitated transport of metals and organic compounds, especially contaminants. We investigated the destabilization (aggregation) kinetics of both a reference and a soil clay mineral: Imt-1 (Silver Hill) illite and Hanford soil illite, respectively. Dynamic and static light scattering was used to follow the aggregation kinetics and infer the structure of the resulting clusters. Kinetics curves showed exponential and power-law shapes, corresponding respectively to reaction-limited and diffusion-limited regimes. The fractal dimension of the clusters showed no observable change with the change of aggregation regime, its value always being between 2.10 and 2.25 ({plus_minus}0.12). The change in aggregation regime for Na-illite (or ccc) was measured to be 45 mol.m{sup -3}.

  7. Improved optics for laser light scattering

    NASA Technical Reports Server (NTRS)

    Cheung, H. Michael

    1989-01-01

    Laser light scattering experiments contemplated for use in a microgravity environment must conform to a number of operational constraints which do not apply on Earth. In particular, the use of index matching fluid to control flare is unacceptable. Work to eliminate index matching fluids by the use of high spatial resolution receiving optics is described. By increasing on-axis spatial resolution flare from the sample cell walls (both the cell sample and cell air interfaces) can be effectively prevented from reaching the photodetector. In general, improving the on-axis discrimination degrades the angular resolution of a receiving optical train. Several different possible configurations of receiving optics are compared for their spatial resolution and angular resolution. For cylinder symmetric optics, the dual lens, fourier transform pair, receiving train with a center mask located between the lenses gives the best on-axis spatial resolution.

  8. Collective processes during stimulated light scattering

    NASA Astrophysics Data System (ADS)

    Sidorovich, V. G.

    2013-06-01

    An approach to the analysis of the phase conjugation by stimulated light scattering that is alternative to the mode theory of 3D hologram, which is usually applied for these purposes, has been studied. As is known, the use of the mode theory is based on the phenomenological gain factor of the Stokes wave, which is induced by a pump wave in a nonlinear medium. The approach developed in this work directly considers the interaction between plane components of the pump and Stokes waves via hypersonic gratings of the dielectric permittivity, which the pump and Stokes waves induce in the medium. It has been shown that, as a result of the phase conjugation, two hypersonic gratings participate equally efficiently in the interaction between any pair of plane components of the pump and Stokes waves, with one of these gratings being excited by the interacting waves themselves. The other grating in each such pair is unambiguously identified with a simplest vector diagram. Conditions have been analyzed under which numerous other gratings, which could also participate in the interaction of each pair of plane components of the pump and Stokes waves without violating the Bragg conditions and the joining conditions of the transverse components of the wave vectors at the interface between the two media, contribute negligibly to stimulated light scattering. It has been shown that, if the pump is spatially coherent, the considered approach yields the same results as the standard mode theory does. In October 2011, I reported the results of this work at the Vavilov State Optical Institute at the Memorial Meeting "Half a Century of New Optics in Russia: Lasers, Nonlinear Optics, and Optical Holography" and at the International Conference "Laser Optics—2012" (June 2012).

  9. LIGHT SCATTERING: Observation of multiple scattering of laser radiation from a light-induced jet of microparticles in suspension

    NASA Astrophysics Data System (ADS)

    Kondrat'ev, Andrei V.

    2004-06-01

    Variation in the correlation function of light multiply scattered by a random medium was observed with increasing the incident beam power. The light-induced motion of microparticles in suspension, caused by a high-power laser radiation, serves as an additional factor in the decorrelation of the scattered light. The experimental data are in good agreement with the results of theoretical analysis.

  10. Modeling fluorescent light distributions in scattering media

    NASA Astrophysics Data System (ADS)

    Phillips, Kevin G.; Jacques, Steven L.

    2010-02-01

    It is hoped that the non-invasive optical characterization of physiological features of normal and diseased epithelia can be assessed through the fluorescent emission of such tissues. With a high percentage of cancers arising in the epithelium, the characterization of carcinogenesis in such tissues is imperative. Fluorescent emission from the epithelium, e.g. oral mucosa, has been shown to be sensitive to physiological features, such as cellular morphology, and the amount and types of biochemical agents present in the tissue. Efforts to distinguish the spectral signatures of diseased and healthy states of tissues from fluorescence have been confounded by the distortion of the intrinsic fluorescent signature as a result of wavelength dependent absorption and scattering within the tissue. Theoretical models of light propagation in biological media are required for understanding the distortion of the intrinsic fluorescence arising from compromised tissues. In this work we model the distortion of the intrinsic fluorescence emitted from a tissue with wavelength dependent optical properties, arising from varying blood and water content, using the radiative transport equation. As an example, we demonstrate the ability of blood and water content to distort the signal of a white light source as it is embedded deeper into a tissue.

  11. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  12. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    PubMed Central

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-01-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from −70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth. PMID:24867385

  13. Tissue optics, light distribution, and spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Utz, Sergei R.; Yaroslavsky, Ilya V.

    1994-10-01

    A model of multilayered tissue is considered. The Monte Carlo simulation technique is used to study laser beam transport through tissues with varying optical properties for each layer (absorption, scattering, scattering anisotropy factor, and refractive index). Calculations are performed for some models of the human skin and adjacent tissues for visible and UV wavelength ranges. New technology for human epidermis optical parameters determination is presented. This technology includes epidermis upper layers glue stripping; in vitro measurements of total transmission, diffuse reflection, and angular scattering of stripping samples; and using an inverse calculation technique based on four-flux approximation of radiation transport theory. The technology was successfully used for depth dependence monitoring of epidermis optical parameters. An inverse Monte Carlo technique for determining the optical properties of tissues based on spectrophotometric measurements is developed. This technique takes into accounts the 2-D geometry of the experiment, finite sizes of incident beam and integrating sphere ports, boundary conditions, and sideways losses of light.

  14. Angular distribution of light scattered from heavily doped silica fibres

    SciTech Connect

    Alekseev, V V; Likhachev, M E; Bubnov, M M; Salganskii, M Yu; Khopin, V F; Gur'yanov, Aleksei N; Dianov, Evgenii M

    2011-10-31

    This paper describes an experimental setup for precision measurements of the angular distribution of light scattered by optical fibres in a wide angular range and demonstrates that the models of anomalous scattering proposed to date need to be refined. We have found and interpreted a discrepancy between the Rayleigh scattering coefficients measured by different techniques.

  15. Recovering the vorticity of a light beam after scattering

    SciTech Connect

    Salla, Gangi Reddy Perumangattu, Chithrabhanu; Anwar, Ali; Prabhakar, Shashi; Singh, Ravindra P.

    2015-07-13

    We generate optical vortices and scatter them through a rough surface. However, the scattered light passing through a lens shows the same vorticity when probed at the Fourier plane. The vorticity is measured using a nonseparable state of polarization and orbital angular momentum of light as it cannot be confirmed by the standard interferometric technique. The observed vorticity is found to be independent of the amount of scattered light collected. Therefore, vortices can be used as information carriers even in the presence of scattering media. The experimental results are well supported by the theoretical results.

  16. Recovering the vorticity of a light beam after scattering

    NASA Astrophysics Data System (ADS)

    Salla, Gangi Reddy; Perumangattu, Chithrabhanu; Prabhakar, Shashi; Anwar, Ali; Singh, Ravindra P.

    2015-07-01

    We generate optical vortices and scatter them through a rough surface. However, the scattered light passing through a lens shows the same vorticity when probed at the Fourier plane. The vorticity is measured using a nonseparable state of polarization and orbital angular momentum of light as it cannot be confirmed by the standard interferometric technique. The observed vorticity is found to be independent of the amount of scattered light collected. Therefore, vortices can be used as information carriers even in the presence of scattering media. The experimental results are well supported by the theoretical results.

  17. Particle detection by a light-scattering technique

    NASA Technical Reports Server (NTRS)

    Kormanyos, S.; Mastroeni, J.

    1972-01-01

    Instrument measures concentration of small particles in aqueous medium in terms of amount of light scattered and degree to which light transmission is attenuated. Sensitivity to small particles is optimized because both scattered and transmitted illumination levels are detected by photodiodes.

  18. UTILITY OF LIGHT SCATTER IN THE MORPHOLOGICAL ANALYSIS OF SPERM

    EPA Science Inventory

    By using an Ortho flow cytometer to detect the forward light scatter from a red (helium-neon) laser, we were able to differentiate the morphologically diverse sperm nuclei of four animal species. ytograms composed of the axial light loss and forward red scatter signals revealed u...

  19. NASA Laser Light Scattering Advanced Technology Development Workshop, 1988

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Editor)

    1989-01-01

    The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.

  20. Utility of light scatter in the morphological analysis of sperm

    EPA Science Inventory

    We were able to differentiate the morphologically diverse sperm nuclei of four animal species by using an Ortho flow cytometer to detect the forward light scatter from a red (helium-neon) laser. Cytograms depicting the axial light loss and forward red scatter signals revealed uni...

  1. Theory of ghost scattering with incoherent light sources

    NASA Astrophysics Data System (ADS)

    Cheng, Jing

    2016-04-01

    Inspired by the idea of ghost imaging, we propose a ghost scattering scheme to study light scattering with incoherent light sources through the nonlocal correlation measurement of the differential scattering cross-section fluctuations in two different optical paths. We present a rigorous formal theory to describe the ghost scattering process. Also we have derived a simple and closed-form ghost scattering formula within the first-order Born approximation which is particularly suited for weak scatterers. We find that the scattering information of a test scatterer can be obtained by using only a single-pixel detector in the corresponding optical path through the nonlocal correlation measurement with the help of another reference path.

  2. Dynamic light scattering can determine platelet function

    NASA Astrophysics Data System (ADS)

    Lee, Nathan

    2011-10-01

    Platelet transfusions are life-saving procedures for patients who are bleeding or undergoing chemotherapy. The effectiveness of transfusions depends on the number of platelets transfused and the platelet function. Platelet function correlates with proportion of discoid to activated platelets, morphology response to temperature stress, and inversely correlates with microparticle content. ThromboLUX is a novel device that determines platelet function by measuring all of these characteristics using dynamic light scattering (DLS). During periods of stress, such as decreased temperature, cytoskeletal rearrangements will cause normal, discoid platelets to activate and become spiny spheres. The formation of pseudopods of various lengths facilitates the clotting cascade and also increases the apparent size of platelets. ThromboLUX uses a 37-20-37 C temperature cycle that mimics the bleeding, storage, and transfusion process. As the temperature fluctuates, DLS will measure the changing platelet hydrodynamic radius and the size of any microparticles present. ThromboLUX analysis of platelet concentrates in vitro would allow determination of high platelet function units before transfusion and would therefore improve transfusion outcomes and patient safety. This study examined how DLS is able to distinguish between discoid and activated platelets as well as measure the parameters that contribute to high platelet function.

  3. Light scattering by marine heterotrophic bacteria

    NASA Technical Reports Server (NTRS)

    Ulloa, Osvaldo; Sathyendranath, Shubha; Platt, Trevor; Quinones, Renato A.

    1992-01-01

    Mie theory is applied to estimate scattering by polydispersions of marine heterotrophic bacteria, and a simple expression is derived for the bacterial scattering coefficient. The error incurred in deriving bacterial optical properties by use of the van de Hulst approximations is computed. The scattering properties of natural bacterial assemblages in three marine environments, Georges Bank, Northeast Channel, and Sargasso Sea, are assessed by applying Mie theory to field data on bacterial size and abundance. Results are used to examine the potential contribution of bacteria to the scattering properties of seawater. The utility of using pigment data to predict the magnitude of scattering by bacteria is discussed.

  4. Anisotropic light scattering of individual sickle red blood cells

    NASA Astrophysics Data System (ADS)

    Kim, Youngchan; Higgins, John M.; Dasari, Ramachandra R.; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  5. Study of erythrocyte membrane fluctuation using light scattering analysis

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoon; Lee, Sangyun; Park, YongKeun; Shin, Sehyun

    2016-03-01

    It is commonly known that alteration of erythrocyte deformability lead to serious microcirculatory diseases such as retinopathy, nephropathy, etc. Various methods and technologies have been developed to diagnose such membrane properties of erythrocytes. In this study, we developed an innovative method to measure hemorheological characteristics of the erythrocyte membrane using a light scattering analysis with simplified optic setting and multi-cell analysis as well. Light scattering intensity through multiple erythrocytes and its power density spectrum were obtained. The results of light scattering analyses were compared in healthy control and artificially hardened sample which was treated with glutaraldehyde. These results were further compared with conventional assays to measure deformable property in hemorheology. We found that light scattering information would reflect the disturbance of membrane fluctuation in artificially damaged erythrocytes. Therefore, measuring fluctuation of erythrocyte membrane using light scattering signal could facilitate simple and precise diagnose of pathological state on erythrocyte as well as related complications.

  6. Limitations for heterodyne detection of Brillouin scattered light

    SciTech Connect

    Allemeier, R.T.; Wagner, J.W.; Telschow, K.L.

    1995-01-01

    One means by which elastic properties of a material may be determined is measuring sound wave velocities in the material, from which elastic moduli of interest can be computed. Velocity can be measured by conventional piezoelectric transduction techniques, by applying laser ultrasonics, or by using Brillouin-scattering methods. Brillouin-scattering techniques for determining the sound wave velocity are particularly attractive since they are completely noninvasive. Only a probe beam of light is required since the thermal energy in the material provides the elastic motion. Heterodyne methods for detection of Brillouin-scattered light are considered one possible means to increase the speed of the scattered light frequency detection. Results of experiments with simulated Brillouin scattering suggest that heterodyne detection of the Brillouin-scattered light is feasible. Experiments to detect Brillouin-scattered light, with water as the scattering medium, were designed and interpreted using the results of the simulated scattering experiments. Overall, results showed that it is difficult to narrow the linewidth for Brillouin scattering to an acceptable level. The results given indicate that heterodyne detection of the Brillouin components requires detection bandwidths that are quite small, perhaps 10 Hz or lower. These small bandwidths can be routinely achieved using lock-in amplifier techniques.

  7. Narrowly peaked forward light scattering on particulate media: II. Angular spreading of light scattered by polystyrene microspheres

    NASA Astrophysics Data System (ADS)

    Turcu, Ioan; Bratfalean, Radu; Neamtu, Silvia

    2008-07-01

    The adequacy of the effective phase function (EPF) used to describe the light scattered at small angles was tested on aqueous suspensions of polystyrene microspheres. Angular resolved light scattering measurements were performed on two types of latex suspension, which contained polystyrene spheres of 3 µm and 5 µm diameters, respectively. The experimental data were fitted with two EPF approximants. If the polystyrene spheres are at least 3 µm in diameter the quasi-ballistic light scattering process can be described relatively well by the EPF in a small angular range centered in the forward direction. The forward light scattering by macroscopic samples containing microspheres can be modeled relatively well if the true Mie single particle scattering phase function is replaced by a simpler Henyey-Greenstein dependence having the same width at half-height as the first scattering lobe.

  8. DUST SCATTERING IN TURBULENT MEDIA: CORRELATION BETWEEN THE SCATTERED LIGHT AND DUST COLUMN DENSITY

    SciTech Connect

    Seon, Kwang-Il; Witt, Adolf N.

    2013-12-01

    Radiative transfer models in a spherical, turbulent interstellar medium (ISM), in which the photon source is situated at the center, are calculated to investigate the correlation between the scattered light and the dust column density. The medium is modeled using fractional Brownian motion structures that are appropriate for turbulent ISM. The correlation plot between the scattered light and optical depth shows substantial scatter and deviation from simple proportionality. It was also found that the overall density contrast is smoothed out in scattered light. In other words, there is an enhancement of the dust-scattered flux in low-density regions, while the scattered flux is suppressed in high-density regions. The correlation becomes less significant as the scattering becomes closer to being isotropic and the medium becomes more turbulent. Therefore, the scattered light observed in near-infrared wavelengths would show much weaker correlation than the observations in optical and ultraviolet wavelengths. We also find that the correlation plot between scattered lights at two different wavelengths shows a tighter correlation than that of the scattered light versus the optical depth.

  9. Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology

    NASA Astrophysics Data System (ADS)

    Sokolov, Konstantin; Drezek, Rebekah A.; Gossage, Kirk; Richards-Kortum, Rebecca R.

    1999-12-01

    We present a method for selective detection of size-dependent scattering characteristics of epithelial cells in vivo based on polarized illumination and polarization sensitive detection of scattered light. We illustrate the method using phantoms designed to simulate squamous epithelial tissue and progressing to epithelial tissue in vitro and in vivo. Elastic light scattering spectroscopy with polarized illumination/detection dramatically reduces background signals due to both diffuse stromal scattering and hemoglobin absorption. Resulting spectra can be described as a linear combination of forward and backscattering components determined from Mie theory. Nuclear sizes and refractive indices extracted by fitting experimental spectra to this model agree well with previous measurements. Reflectance spectroscopy with polarized light can provide quantitative morphological information which could potentially be used for non-invasive detection of neoplastic changes.

  10. Projection screen having reduced ambient light scattering

    DOEpatents

    Sweatt, William C.

    2010-05-11

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  11. Light-echo spectroscopy of historic Supernovae

    NASA Astrophysics Data System (ADS)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  12. Applications of Raman scattering spectroscopy to halide glasses

    NASA Astrophysics Data System (ADS)

    Bendow, B.; Banerjee, P. K.; Drexhage, M. G.

    1983-04-01

    Polarized Raman scattering spectroscopy is a useful tool for investigating fundamental vibrational properties, structure and bonding, origins of IR edge absorption, and dispersion of the IR refractive index. In this paper, the application of Raman spectroscopy to halide glasses and, in particular, heavy metal fluoride glasses, is described. The spectra of the latter differ substantially from those of simple oxide, halide or chalcogenide glasses and, moreover, display a wide range of vibrational characteristics, depending on composition. In combination with infrared spectroscopy, useful guidelines can be developed for tailoring glass compositions for specific applications.

  13. An analysis of scattered light in low dispersion IUE spectra

    NASA Technical Reports Server (NTRS)

    Basri, G.; Clarke, J. T.; Haisch, B. M.

    1985-01-01

    A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.

  14. Dynamic Light Scattering of Diabetic Vitreopathy

    NASA Technical Reports Server (NTRS)

    Sebag, J.; Ansari, Rafat R.; Dunker, Stephan; Suh, Kwang I.

    1999-01-01

    Diabetes induces pathology throughout the body via nonenzymatic glycation of proteins. Vitreous, which is replete with type 11 collagen, undergoes significant changes in diabetes. The resultant diabetic vitreopathy plays an important role in diabetic retinopathy. Detecting these molecular changes could provide insight into diabetic eye disease as well as molecular effects elsewhere in the body. Human eyes were obtained at autopsy and studied in the fresh, unfixed state. Sclera, choroid, and retina were dissected off the vitreous for dark-field slit microscopy and dynamic light scattering (DLS). For the former, the entire vitreous was exposed. For the latter, only a window at the equator was dissected in some specimens, and the anterior segment was removed leaving the posterior lens capsule intact in others. DLS was performed to determine particle sizes at multiple sites 0.5 mm apart, spanning the globe at the equator (window dissections) and along the antero-posterior axis. Dark-field slit microscopy in diabetic subjects detected findings typical of age-related vitreous degeneration, but at much younger ages than nondiabetic controls. Noninvasive DLS measurements found a greater heterogeneity and larger particle sizes in vitreous of subjects with diabetes as compared to age-matched controls. DLS can detect and quantify the early molecular effects that cause vitreous collagen fibrils to cross-link and aggregate. This could provide valuable insight into ocular and systemic effects of hyperglycemia, because the molecular changes in diabetic vitreopathy could serve as an index of such effects throughout the body. In addition to the diagnostic implications, this methodology could provide a rapid, reproducible way to monitor the response to therapy with novel agents intended to prevent the complications of diabetes on a molecular level.

  15. Experimental studies of light propagation in active scattering media

    NASA Astrophysics Data System (ADS)

    Perkins, Amy Elizabeth

    1998-10-01

    Over the past several years there has been a great deal of renewed interest in multiple scattering systems with gain. Laser action has been demonstrated in systems containing high gain laser dyes mixed with passive scattering particles. In these materials, known as photonic paint, the scatterers redirect the light and provide the feedback mechanism to initiate lasing. A method of decreasing the linewidth which has been used in conventional laser systems is injection locking, in which a seed at the desired wavelength is introduced into the cavity to initiate lasing. Experiments are presented which demonstrate injection locking of this new laser system. It is also of particular interest to study the phenomenon of weak localization of light in these photonic paint systems. The interference between scattered light paths increases the probability of light traveling opposite to the direction of the incident light, and produces a cone of enhanced reflected light in that direction. In the presence of amplification, the coherent backscattering cone narrows. In this high gain scattering system, an unstudied regime can be achieved in which significant amplification takes place over one scattering length. The results of the coherent backscattering experiment in a high gain scattering system is discussed. There are certain intrinsic problems with inversion gain systems, such as photonic paint, which makes the narrowing of the coherent backscattering cone less pronounced. In Raman materials, these effects are greatly reduced. Experimental studies of the amplification of a probe beam in a disordered Raman scattering medium, and the Monte Carlo simulations of this experiment, are presented. It is also of interest to study absorptive scattering systems which appear in a number of different situations, including the determination of the excitation volume in a scattering gain system and the modeling of biological tissue. The addition of an absorbing species into a scattering medium

  16. Determination of molecular weight distributions of large water soluble macromolecules using dynamic light scattering

    SciTech Connect

    Mettille, M.J.; Hester, R.D.

    1988-05-01

    Characterization of polymer molecular weight is an extremely important aspect of polymer research, and a vast number of analytical techniques has been used to determine molecular weights. One method is dynamic light scattering (DLS). DLS is also referred to as photon correlation spectroscopy (PCS), quasi-elastic light scattering (QLS), and may other appellations. The phenomenon that gives rise to the DLS technique was first observed in the early 1930's. In the mid 1950's, measurement techniques similar to modern dynamic light scattering were developed. Two major technical developments have greatly enhanced the use of DLS. The first was the development of the laser. This provided a light source with very high intensity at a single frequency. Also, major advances in digital electronics have allowed better data acquisition and faster data analysis than were previously available.

  17. Light scattering by a finite obstacle and fano resonances.

    PubMed

    Tribelsky, Michael I; Flach, Sergej; Miroshnichenko, Andrey E; Gorbach, Andrey V; Kivshar, Yuri S

    2008-02-01

    The conditions for observing Fano resonances at elastic light scattering by a single finite-size obstacle are discussed. General arguments are illustrated by consideration of the scattering by a small (relative to the incident light wavelength) spherical obstacle based upon the exact Mie solution of the diffraction problem. The most attention is paid to recently discovered anomalous scattering. An exactly solvable one-dimentional discrete model with nonlocal coupling for simulating diffraction in wave scattering in systems with reduced spatial dimensionality is also introduced and analyzed. Deep connections between the resonances in the continuous and discrete systems are revealed. PMID:18352275

  18. Correlating the morphological and light scattering properties of biological cells

    NASA Astrophysics Data System (ADS)

    Moran, Marina

    The scattered light pattern from a biological cell is greatly influenced by the internal structure and optical properties of the cell. This research project examines the relationships between the morphological and scattering properties of biological cells through numerical simulations. The mains goals are: (1) to develop a procedure to analytically model biological cells, (2) to quantitatively study the effects of a range of cell characteristics on the features of the light scattering patterns, and (3) to classify cells based on the features of their light scattering patterns. A procedure to create an analytical cell model was developed which extracted structural information from the confocal microscopic images of cells and allowed for the alteration of the cell structure in a controlled and systematic way. The influence of cell surface roughness, nuclear size, and mitochondrial volume density, spatial distribution, size and shape on the light scattering patterns was studied through numerical simulations of light scattering using the Discrete Dipole Approximation. It was found that the light scattering intensity in the scattering angle range of 25° to 45° responded to changes in the surface fluctuation of the cell and the range of 90° to 110° was well suited for characterization of mitochondrial density and nuclear size. A comparison of light scattering pattern analysis methods revealed that the angular distribution of the scattered light and Gabor filters were most helpful in differentiating between the cell characteristics. In addition, a measured increase in the Gabor energy of the light scattering patterns in response to an increase in the complexity of the cell models suggested that a complex nuclear structure and mitochondria should be included when modeling biological cells for light scattering simulations. Analysis of the scattering pattern features with Gabor filters resulted in discrimination of the cell models according to cell surface roughness

  19. Squeezed-light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan W.

    2016-05-01

    We report quantum enhancement of Faraday rotation spin noise spectroscopy by polarization squeezing of the probe beam. Using natural abundance Rb in 100 Torr of N2 buffer gas and squeezed light from a subthreshold optical parametric oscillator stabilized 20 GHz to the blue of the D1 resonance, we observe that an input squeezing of 3.0 dB improves the signal-to-noise ratio by 1.5 to 2.6 dB over the combined (power)⊗(number density) ranges (0.5-4.0 mW)⊗(1.5 ×1012cm-3 to 1.3 ×1013 cm-3), covering the ranges used in optimized spin noise spectroscopy experiments. We also show that squeezing improves the tradeoff between statistical sensitivity and broadening effects, a previously unobserved quantum advantage.

  20. Infrared light scattering in biological tissues and fluids

    NASA Astrophysics Data System (ADS)

    Thomas, Gordon A.; Koo, Tae-Woong; Dasari, Ramachandra R.; Feld, Michael S.

    2001-03-01

    We have studied the elastic and Raman scattering from whole blood, blood serum and related biological fluids and tissues. The motivation of this work is to determine the composition and elastic scattering properties with a non-invasive, optical method. An example of the possible applications is the determination of the glucose concentration and its variations in a way that would be clinically effective for patients with diabetes. We have imaged the elastically scattered light and determined the scattering parameters in order to assess appropriate geometries for efficient collection of the Raman scattering. Using the Raman apectra we have determined the concentration of glucose and the other analytes under laboratory conditions.

  1. Measurements and interpretations of light scattering from intact biological cells

    NASA Astrophysics Data System (ADS)

    Wilson, Jeremy D.

    Visible light interacts with biological cells primarily through elastic scattering. The details of how cells scatter light depend on their morphology and their substructures. In this thesis we first present a series of experiments and models to discern the specific contributions of certain sub-cellular constituents to whole-cell scattering. Exploiting the findings of those studies, we report on experiments within model systems of cell death that demonstrate the potential of light scattering measurements as a tool in modern biology. Instrumentation capable of exploiting the findings of this thesis from a biology-relevant microscopy platform is designed and developed. A Mie theory based interpretation of light scattering signals originating from a collection of particles with a broad size distribution is developed. Upon applying this model to scattering data from intact cells, we find that it robustly extracts the size scale of dominant light scattering particles, suggests that scattering measurements are sensitive primarily to mitochondrial and lysosomal morphology, and unites conflicting results in the literature. Using this model as a basis, we present a collection of studies in which we use various strategies of photodynamic therapy (PDT) as a biophysical tool to perturb mitochondria and lysosomes, and observe the effects of these perturbations on whole-cell scattering. Through these experiments, we are able to discern the individual contributions of mitochondria and lysosomes to whole-cell light scattering, and demonstrate that mitochondria are responsible for roughly 80% of the scattering signal. Results of experiments aimed at demonstrating the potential role that light scattering measurements have to play in future studies of cell death biology are presented. We first show that mitochondrial-PDT-induced morphology changes measured with light scattering map into the cell killing efficacy of the therapy. We next demonstrate that mitochondrial

  2. Light scattering from a moving atom.

    PubMed

    Guo, Wei

    2012-12-01

    In this work, scattering of an incident electric field from a moving atom is reexamined classically in two steps: the time-dependent current density created by the field inside the atom is first calculated under the electric-dipole approximation, and is then used to calculate the field scattered from the atom. Unlike the conventional frame-hopping method, the present method does not need to treat the Doppler effect as an effect separated from the scattering process, and it derives instead of simply uses the Doppler effect. PMID:23455906

  3. Theoretical aspects of light meson spectroscopy

    SciTech Connect

    Barnes, T. |

    1995-12-31

    In this pedagogical review the authors discuss the theoretical understanding of light hadron spectroscopy in terms of QCD and the quark model. They begin with a summary of the known and surmised properties of QCD and confinement. Following this they review the nonrelativistic quark potential model for q{anti q} mesons and discuss the quarkonium spectrum and methods for identifying q{anti q} states. Finally, they review theoretical expectations for non-q{anti q} states (glueballs, hybrids and multiquark systems) and the status of experimental candidates for these states.

  4. Speckle-based measurement of the light scattering by red blood cells in vivo

    NASA Astrophysics Data System (ADS)

    Fine, I.; Kaminsky, A.

    2011-03-01

    Optical spectroscopy approach, using non-coherent light sources, has become an important tool for non-invasive analysis in vivo. It is based on the assumption that biochemical characteristics of biological system can be determined through the optical coefficients of blood and tissue particles. Thus, in the framework of this approach, the major concern is to express the obtained optical signals in terms the optical coefficients of the single particle of blood or tissue. However, since the light propagation in tissue is dominated by the multiple-scattering component, a direct measurement of single scattering characteristics turns to be a very difficult task. Practically, only the relative changes of absorption and scattering coefficients are measured. We suggested to adopt the dynamic light scattering (DLS) or speckle technique for the determination of the light scattering coefficients of the red blood cells under stasis conditions in vivo. We assumed that under zero flow conditions the RBC movement is driven mostly by the Brownian motion. It was shown, that under appropriate measurement geometry, the measured optical signal can be decomposed into a few major components. The most dominant components are ascribed to the single backscattering and forward scattering coefficients of the red blood cells. In-vitro and in vivo experimental tests have shown a good correspondence between the theoretically estimated and experientially measured results. The obtained results indicate that the DLS technique can be adopted for the determination of blood particles scattering characteristics in addition to the movement and effective viscosity parameters measurement in vivo.

  5. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.

    1998-01-01

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available.

  6. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.

    1998-09-29

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available. 5 figs.

  7. How to distinguish elastically scattered light from Stokes shifted light for solid-state lighting?

    NASA Astrophysics Data System (ADS)

    Meretska, M. L.; Lagendijk, A.; Thyrrestrup, H.; Mosk, A. P.; IJzerman, W. L.; Vos, W. L.

    2016-03-01

    We have studied the transport of light through phosphor diffuser plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain YAG:Ce+3 phosphor particles that both elastically scatter and Stokes shift light in the visible wavelength range (400-700 nm). We excite the phosphor with a narrowband light source and measure spectra of the outgoing light. The Stokes shifted light is spectrally separated from the elastically scattered light in the measured spectra, and using this technique, we isolate the elastic transmission of the plates. This result allows us to extract the transport mean free path ltr over the full wavelength range by employing diffusion theory. Simultaneously, we determine the absorption mean free path labs in the wavelength range 400 to 530 nm where YAG:Ce+3 absorbs. The diffuse absorption (μa=1/labs ) spectrum is qualitatively similar to the absorption coefficient of YAG:Ce+3 in powder, with the diffuse spectrum being wider than the absorption coefficient. We propose a design rule for the solid-state lighting diffuser plates.

  8. Bright-White Beetle Scales Optimise Multiple Scattering of Light

    NASA Astrophysics Data System (ADS)

    Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia

    2014-08-01

    Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.

  9. Bright-white beetle scales optimise multiple scattering of light.

    PubMed

    Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S; Steiner, Ullrich; Vignolini, Silvia

    2014-01-01

    Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure. PMID:25123449

  10. Bright-White Beetle Scales Optimise Multiple Scattering of Light

    PubMed Central

    Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia

    2014-01-01

    Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure. PMID:25123449

  11. Investigation of the domain wall dynamic by the inelastic light scattering method (abstract)

    NASA Astrophysics Data System (ADS)

    Kreines, N. M.

    1991-04-01

    Light scattering by a moving domain wall (DW) has been investigated by means of Brillouin-Mandel'stam spectroscopy for the first time.1,2 The proportional to the DW velocity frequency shift due to Doppler effect has been observed in the light scattering spectra in the weak ferromagnets. The DW velocity (till 13 km/s) and the intensity of the scattered light as a function of pulsed magnetic field are determined from the spectra at different temperatures. As the DW velocity approaches that of sound (transversal or longitudinal) the scattered light intensity increases dramatically due to phonons emitted by the DW (Cherenkov radiation). Regions of the nonstationary DW motion are observed wherein scattering spectra have complicated character. The inelastic light scattering directly by the excited sound soliton (or phonons) has been observed. The space and time spreading of this soliton was investigated.3 The mean free path l of the acoustic phonons was determined. For YFeO3 at T=2 K l≂300 μm for transversal sound with ν≂12 GHz. The temperature dependence of the DW mobility was studied.

  12. Dynamic light scattering by polyelectrolytes in low ionic strength buffers

    SciTech Connect

    Schmitz, K.S.

    1993-12-31

    Dynamic light scattering is a generic term which refers to all techniques that monitor fluctuation in the intensity of scattered light. Quasielastic light scattering (QELS) is that configuration in which no external field is applied in the course of data collection. In the case of charged macroions, QELS studies indicate a bifurcation in the relaxation modes as the ionic strength is lowered. This phenomenon is discussed in terms of an extended couple mode theory in which the dynamics of the macroions are coupled with those of the electrolyte ions. The QELS results are correlated with studies in which external electric fields of wave forms that are constant (ELS, electrophoretic light scattering) or pure sinusoidal (QELS-SEF).

  13. Hierarchical mesoporous silica nanoparticles as superb light scattering materials.

    PubMed

    Ryu, Jaehoon; Yun, Juyoung; Lee, Jungsup; Lee, Kisu; Jang, Jyongsik

    2016-02-01

    A novel approach to enhance the light scattering effect was explored by applying hierarchical silica nanoparticles in DSSCs as scattering layers. The WSN-incorporated cells showed a PCE value of 9.53% and a PCE enhancement of 30.19% compared with those of the reference cells. PMID:26699659

  14. Field Fluctuation Spectroscopy in a Reverberant Cavity with Moving Scatterers

    NASA Astrophysics Data System (ADS)

    de Rosny, Julien; Roux, Philippe; Fink, Mathias; Page, J. H.

    2003-03-01

    We report a study of transient ultrasonic waves inside a reverberant cavity containing moving scatterers. We show that the elastic mean free path and the dynamics of the scatterers govern the evolution of the autocorrelation of acoustic wave field. A parallel is established between these results and a closely related technique, diffusing acoustic wave spectroscopy. Excellent agreement is found between experiment and theory for a moving stainless steel ball in a water tank, thereby elucidating the underlying physics, and a potential application, fish monitoring inside aquariums, is demonstrated.

  15. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  16. Depolarization of Light Scattered from Rough Cylindrical Surfaces

    NASA Astrophysics Data System (ADS)

    Aparicio, R.; Quintián, F. Perez; Rebollo, M. A.

    2008-04-01

    In this work we study the state of polarization of light scattered from rough cylindrical surfaces. The experimental results show that the amount of cross-polarized light at a particular observation angle is correlated with the roughness of the cylinders. We compare these results with those obtained using the Kirchhoff's vector theory and analyze if the differences can be modeled on multiple-scattering effects.

  17. Evaluation of advanced light scattering technology for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Fredericks, W. J.; Rosenblum, W. M.

    1990-01-01

    The capabilities of modern light scattering equipment and the uses it might have in studying processes in microgravity are evaluated. Emphasis is on the resolution of polydisperse systems. This choice was made since a major use of light scattering was expected to be the study of crystal growth of macromolecules in low gravity environments. An evaluation of a modern photon correlation spectrometer and a Mie spectrometer is presented.

  18. Efficient light propagation for multiple anisotropic volume scattering

    SciTech Connect

    Max, N. |

    1993-12-01

    Realistic rendering of participating media like clouds requires multiple anisotropic light scattering. This paper presents a propagation approximation for light scattered into M direction bins, which reduces the ``ray effect`` problem in the traditional ``discrete ordinates`` method. For a volume of n{sup 3} elements, it takes O(M n{sup 3} log n + M{sup 2} n{sup 3}) time and O(M n{sup 3}) space.

  19. Interpretation of light scattering and turbidity measurements in aggregated systems: effect of intra-cluster multiple-light scattering.

    PubMed

    Soos, Miroslav; Lattuada, Marco; Sefcik, Jan

    2009-11-12

    In this work we studied the effect of intracluster multiple-light scattering on the scattering properties of a population of fractal aggregates. To do so, experimental data of diffusion-limited aggregation for three polystyrene latexes with similar surface properties but different primary particle diameters (equal to 118, 420, and 810 nm) were obtained by static light scattering and by means of a spectrophotometer. In parallel, a population balance equation (PBE) model, which takes into account the effect of intracluster multiple-light scattering by solving the T-matrix and the mean-field version of T-matrix, was formulated and validated against time evolution of the root mean radius of gyration, , of the zero angle intensity of scattered light, I(0), and of the turbidity, tau. It was found that the mean-field version of the T-matrix theory is able to correctly predict the time evolution of all measured light scattering quantities for all sizes of primary particles without any adjustable parameter. The structure of the aggregates, characterized by fractal dimension, d(f), was independent of the primary particle size and equal to 1.7, which is in agreement with values found in literature. Since the mean-field version of the T-matrix theory used is rather complicated and requires advanced knowledge of cluster structure (i.e., the particle-particle correlation function), a simplified version of the light scattering model was proposed and tested. It was found that within the range of operating conditions investigated, the simplified version of the light scattering model was able to describe with reasonable accuracy the time evolution of all measured light scattering quantities of the cluster mass distribution (CMD) for all three sizes of primary particles and two values of the laser wavelength. PMID:19845324

  20. Detection of cervical intraepithelial neoplasias and cancers in cervical tissue by in vivo light scattering.

    PubMed

    Mourant, Judith R; Bocklage, Thérese J; Powers, Tamara M; Greene, Heather M; Dorin, Maxine H; Waxman, Alan G; Zsemlye, Meggan M; Smith, Harriet O

    2009-10-01

    OBJECTIVE: To examine the utility of in vivo elastic light scattering measurements to identify cervical intraepithelial neoplasias (CIN) 2/3 and cancers in women undergoing colposcopy and to determine the effects of patient characteristics such as menstrual status on the elastic light scattering spectroscopic measurements. MATERIALS AND METHODS: A fiber optic probe was used to measure light transport in the cervical epithelium of patients undergoing colposcopy. Spectroscopic results from 151 patients were compared with histopathology of the measured and biopsied sites. A method of classifying the measured sites into two clinically relevant categories was developed and tested using five-fold cross-validation. RESULTS: Statistically significant effects by age at diagnosis, menopausal status, timing of the menstrual cycle, and oral contraceptive use were identified, and adjustments based upon these measurements were incorporated in the classification algorithm. A sensitivity of 77±5% and a specificity of 62±2% were obtained for separating CIN 2/3 and cancer from other pathologies and normal tissue. CONCLUSIONS: The effects of both menstrual status and age should be taken into account in the algorithm for classifying tissue sites based on elastic light scattering spectroscopy. When this is done, elastic light scattering spectroscopy shows good potential for real-time diagnosis of cervical tissue at colposcopy. Guiding biopsy location is one potential near-term clinical application area, while facilitating "see and treat" protocols is a longer term goal. Improvements in accuracy are essential. PMID:20694193

  1. Molecular origin of background light in Thomson scattering measurements

    SciTech Connect

    McNeill, D.H.

    1986-06-01

    The plasma background light in Thomson scattering measurements is often far higher than expected for a pure hydrogen plasma. The spectral distribution of light from three plasmas (duration: 1 ms to steady state; electron density: below 10/sup 12/ to over 10/sup 14/ cm/sup -3/; temperature: below 20 to over 1000 eV) and signal-to-noise and intensity data from the Thomson scattering systems used on them are compared with analytic estimates to show that in two of these plasmas molecular light dominates the spectrum, while in the other, molecular light is present, but bremsstrahlung is usually more intense. Knowledge of the mechanism for background light can aid in designing detection systems for Thomson scattering and provide information on the neutral species composition and effective charge of the plasma.

  2. Excited light meson spectroscopy from lattice QCD

    SciTech Connect

    Christopher Thomas, Hadron Spectrum Collaboration

    2012-04-01

    I report on recent progress in calculating excited meson spectra using lattice QCD, emphasizing results and phenomenology. With novel techniques we can now extract extensive spectra of excited mesons with high statistical precision, including spin-four states and those with exotic quantum numbers. As well as isovector meson spectra, I will present new calculations of the spectrum of excited light isoscalar mesons, something that has up to now been a challenge for lattice QCD. I show determinations of the flavor content of these mesons, including the eta-eta' mixing angle, providing a window on annihilation dynamics in QCD. I will also discuss recent work on using lattice QCD to map out the energy-dependent phase shift in pi-pi scattering and future applications of the methodology to the study of resonances and decays.

  3. Circular polarization of light scattered by randomly built aggregates.

    NASA Astrophysics Data System (ADS)

    Guirado, D.; Moreno, F.; Hovenier, J. W.

    2007-06-01

    We present calculations of the scattering angle dependence of the degree of linear polarization of light singly scattered at 500 nm by randomly oriented randomly built aggregates of optically inactive homogenous identical spheres. Using the T-matrix method we analyzed the effect of changing the size of the monomers for two different geometries. The values of the computed degreee of circular polarization are comparable to the observed ones for light scattered by dust particles in comets P/Halley, C/1995 O1 (Hale-Bopp) and C/1999 S4 (LINEAR).

  4. Hybrid graphene nematic liquid crystal light scattering device.

    PubMed

    Qasim, M M; Khan, A A; Kostanyan, A; Kidambi, P R; Cabrero-Vilatela, A; Braeuninger-Weimer, P; Gardiner, D J; Hofmann, S; Wilkinson, T D

    2015-09-01

    A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm(-1)) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications. PMID:26243047

  5. Backward elastic light scattering of malaria infected red blood cells

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun; Lu, Wei

    2011-08-01

    We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.

  6. Holographic light scattering in photorefractive crystals with local response

    NASA Astrophysics Data System (ADS)

    Goulkov, M.; Odoulov, S.; Woike, Th.; Imbrock, J.; Imlau, M.; Krätzig, E.; Bäumer, C.; Hesse, H.

    2002-05-01

    Strong polarization-isotropic wide-angle light scattering in photorefractive crystals with dominating photovoltaic response is explained referring to different experimental results obtained for LiTaO3:Fe crystals. It is shown experimentally that the steady-state amplification of the light scattering results from a nonzero shift in the temporal frequency between the coherent optical noise and the pump beam. Competition of photovoltaic and diffusion contributions in the photorefractive effect leads to a spatial and temporal asymmetry of nonlinear scattering. Contributions of ``hot'' electrons in the diffusion process have to be assumed.

  7. Light scattering of semitransparent sintered polytetrafluoroethylene films.

    PubMed

    Li, Qinghe; Lee, Bong Jae; Zhang, Zhuomin M; Allen, David W

    2008-01-01

    Polytetrafluoroethylene (PTFE) is a strongly scattering material and has been regarded to have optical properties similar to biological tissues. In the present study, the bidirectional reflectance distribution function (BRDF) and the bidirectional transmittance distribution function (BTDF) of several PTFE films, with thicknesses from 0.11 to 10 mm, are measured using a laser scatterometer at the wavelength of 635 nm. The directional-hemispherical reflectance (R) and transmittance (T) were obtained by integrating BRDF and BTDF for normal incidence. Comparison of the ratio of the measured R and T with that calculated from the adding-doubling method allows the determination of the reduced scattering coefficient. Furthermore, the effect of surface scattering is investigated by measuring the polarization-dependent BRDF and BTDF at oblique incidence. By analyzing the measurement uncertainty of BTDF in the near-normal observation angles at normal incidence, the present authors found that the scattering coefficient of PTFE should exceed 1200 cm(-1), which is much greater than that of biological tissues. On the other hand, the absorption coefficient of PTFE must be less than 0.01 cm(-1), much smaller than that of biological tissues, a necessary condition to achieve R > or =0.98 with a 10-mm-thick slab. PMID:19021442

  8. Fiber optic light-scattering measurement system for evaluation of embryo viability: light-scattering characteristics from live mouse embryo

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1997-06-01

    We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.

  9. Huge light scattering from active anisotropic spherical particles.

    PubMed

    Fan, Xiaofeng; Shen, Zexiang; Luk'yanchuk, Boris

    2010-11-22

    The light scattering by a spherical particle with radial anisotropic permittivity ε and permeability μ are discussed in detail by expanding Mie theory. With the modified vector potential formulation, the electric anisotropy effects on scattering efficiency are addressed by studying the extinction, scattering, absorption and radar cross sections following the change of the transverse permittivity ε(t), the longitudinal permittivity ε(r) and the particle size q. The huge scattering cross sections are shown by considering the possible coupling between active medium and plasmon polaritons and this will be possible to result in spaser from the active plasmons of small particle. PMID:21164832

  10. Angle- and Spectral-Dependent Light Scattering from Plasmonic Nanocups

    SciTech Connect

    King, Nicholas S.; Li, Yang; Ayala-Orozco, Ciceron; Brannan, Travis; Nordlander, Peter; Halas, Naomi J.

    2011-09-27

    As optical frequency nanoantennas, reduced-symmetry plasmonic nanoparticles have light-scattering properties that depend strongly on geometry, orientation, and variations in dielectric environment. Here we investigate how these factors influence the spectral and angular dependence of light scattered by Au nanocups. A simple dielectric substrate causes the axial, electric dipole mode of the nanocup to deviate substantially from its characteristic cos² θ free space scattering profile, while the transverse, magnetic dipole mode remains remarkably insensitive to the presence of the substrate. Nanoscale irregularities of the nanocup rim and the local substrate permittivity have a surprisingly large effect on the spectral- and angle-dependent light-scattering properties of these structures.

  11. Study of Light Scattering in the Human Eye

    NASA Astrophysics Data System (ADS)

    Perez, I. Kelly; Bruce, N. C.; Valdos, L. R. Berriel

    2008-04-01

    In this paper we present a numerical model of the human eye to be used in studies of the scattering of light in different components of the eye's optical system. Different parts of the eye are susceptible to produce scattering for different reasons; age, illness or injury. For example, cataracts can appear in the human lens or injuries or fungi can appear on the cornea. The aim of the study is to relate the backscattered light, which is what doctors measure or detect, to the forward scattered light, which is what affects the patient's vision. We present the model to be used, the raytrace procedure and some preliminary results for the image on the retina without scattering.

  12. Simulation of light scattering from exoskeletons of scarab beetles.

    PubMed

    Valyukh, Sergiy; Arwin, Hans; Järrendahl, Kenneth

    2016-03-21

    An approach for simulation of light scattering from beetles exhibiting structural colors originating from periodic helicoidal structures is presented. Slight irregularities of the periodic structure in the exoskeleton of the beetles are considered as a major cause of light scattering. Two sources of scattering are taken into account: surface roughness and volume non-uniformity. The Kirchhoff approximation is applied to simulate the effect of surface roughness. To describe volume non-uniformity, the whole structure is modeled as a set of domains distributed in space in different orientations. Each domain is modeled as an ideal uniformly twisted uniaxial medium and differs from each other by the pitch. Distributions of the domain parameters are assumed to be Gaussian. The analysis is performed using the Mueller matrix formalism which, in addition to spectral and spatial characteristics, also provides polarization properties of the scattered light. PMID:27136777

  13. Polar nephelometer for light-scattering measurements of ice crystals.

    PubMed

    Barkey, B; Liou, K N

    2001-02-15

    We report on a small, lightweight polar nephelometer for the measurement of the light-scattering properties of cloud particles, specifically designed for use on a balloonborne platform in cirrus cloud conditions. The instrument consists of 33 fiber-optic light guides positioned in a two-dimensional plane from 5 degrees to 175 degrees that direct the scattered light to photodiode detectors-amplifier units. The system uses an onboard computer and data acquisition card to collect and store the measured signals. The instrument's calibration is tested by measurement of light scattered into a two-dimensional plane from small water droplets generated by an ultrasonic humidifier. Excellent comparisons between the measured water-droplet scattering properties and expectations generated by Mie calculation are shown. The measured scattering properties of ice crystals generated in a cold chamber also compare reasonably well with the theoretical results based on calculations from a unified theory of light scattering by ice crystals that use the particle size distribution measured in the chamber. PMID:18033557

  14. Wide-angle light scattering (WALS) for soot aggregate characterization

    SciTech Connect

    Oltmann, Hergen; Reimann, Joerg; Will, Stefan

    2010-03-15

    A novel set-up for the experimental determination of aggregate morphology in combustion processes based on elastic light scattering has been designed and realized. A key feature of this wide-angle light scattering (WALS) approach is an ellipsoidal mirror which is used to collect scattered light over a wide angular range of about 10-170 . The set-up employs a cw solid-state laser as light source and an intensified CCD-camera as detector. By means of the mirror the scattered light is imaged onto the detector allowing for a simultaneous acquisition of a full scattering diagram with a high angular resolution of about 0.6 . To demonstrate the performance of the approach, measurements for various sooting flames produced by premixed combustion in a flat flame burner were carried out, where the burner was operated with different equivalence ratios and fuels. It is shown that radii of gyration of soot particles may efficiently be obtained from an analysis of the scattering diagrams. (author)

  15. Local Measurement of Flap Oxygen Saturation: An Application of Visible Light Spectroscopy.

    PubMed

    Nasseri, Nassim; Kleiser, Stefan; Reidt, Sascha; Wolf, Martin

    2016-01-01

    The aim was to develop and test a new device (OxyVLS) to measure tissue oxygen saturation by visible light spectroscopy independently of the optical pathlength and scattering. Its local applicability provides the possibility of real time application in flap reconstruction surgery. We tested OxyVLS in a liquid phantom with optical properties similar to human tissue. Our results were in good agreement with a conventional near infrared spectroscopy device. PMID:26782237

  16. Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement.

    PubMed

    Wang, Hao; Liu, Pu; Ke, Yanlin; Su, Yunkun; Zhang, Lei; Xu, Ningsheng; Deng, Shaozhi; Chen, Huanjun

    2015-01-27

    Steering incident light into specific directions at the nanoscale is very important for future nanophotonics applications of signal transmission and detection. A prerequisite for such a purpose is the development of nanostructures with high-efficiency unidirectional light scattering properties. Here, from both theoretical and experimental sides, we conceived and demonstrated the unidirectional visible light scattering behaviors of a heterostructure, Janus dimer composed of gold and silicon nanospheres. By carefully adjusting the sizes and spacings of the two nanospheres, the Janus dimer can support both electric and magnetic dipole modes with spectral overlaps and comparable strengths. The interference of these two modes gives rise to the narrow-band unidirectional scattering behaviors with enhanced forward scattering and suppressed backward scattering. The directionality can further be improved by arranging the dimers into one-dimensional chain structures. In addition, the dimers also show remarkable electromagnetic field enhancements. These results will be important not only for applications of light emitting devices, solar cells, optical filters, and various surface enhanced spectroscopies but also for furthering our understanding on the light-matter interactions at the nanoscale. PMID:25554917

  17. Rayleigh Light Scattering from Nematic Liquid Crystals at Oblique Incidence.

    NASA Astrophysics Data System (ADS)

    da, Xiao-Yi.

    Ryuichi Akiyama 1980 and his co-workers first showed the possibility that light scattering experiments on nematic liquid crystals could be carried out preferably by using oblique incidence rather than the conventional normal incidence. Miraldi, et al 1980 strongly recommended the application of oblique incidence, and gave a discussion in detail. The present work starts from an attempt to obtain the three Frank elastic constants and viscosity coefficients of nematic liquid crystals by Rayleigh light scattering. A suitable scattering geometry has been chosen; a systematic method of measuring these constants and coefficients has been developed by measuring the linewidths of the scattered light from a single sample at various incidence angles and fitting the measured linewidths with appropriate theoretical expressions. It is shown in the present work that the light scattering experiments on nematic liquid crystals at oblique incidence have many advantages over the same kind of experiments at normal incidence so far widely employed, and show a promising future. After a brief introduction to the general theory of the dynamic light scattering, nematic liquid crystals and light scattering from nematic liquid crystals in Chapters 1, 2, and 3, and a brief review of the measurements of elastic constants and viscosity coefficients of nematic liquid crystals by light scattering in Chapter 4, a straightforward method concerning the calculation of variations of the wave vectors upon scattering is developed in Chapter 5. This method assumes that a nematic liquid crystal behaves optically like a uniaxial crystal. In doing so, all we have to know is the ordinary and extraordinary refractive indices n(,o) and n(,e) of the sample under consideration. The linewidth and intensity distributions of the scattered light can then be determined by inserting the variations in wave vectors into appropriate equations for a known material for which the knowledge of the elastic constants as well

  18. Confocal zero-angle dynamic depolarized light scattering.

    PubMed

    Potenza, M A C; Sanvito, T; Alaimo, M D; Degiorgio, V; Giglio, M

    2010-01-01

    We present a novel Dynamic Depolarized Scattering method based on a tight confocal, zero scattering angle, heterodyne scheme. The method is highly immune from parasitic multiple-scattering contributions, so that it can operate with non-index-matched samples presenting large turbidity. It provides measurements of both rotational and translational diffusion coefficients, the latter via number fluctuation spectroscopy. In addition, the amplitude ratio between the two baselines for the fast rotational mode and the slow translational mode can be used to determine the particles intrinsic birefringence. PMID:20087622

  19. Surface Characterization from Doubly Scattered Light

    NASA Astrophysics Data System (ADS)

    Perez-Quintián, Fernando; Rebollo, María A.

    2004-05-01

    When a translucent diffuser is illuminated by a speckle pattern, a new speckle pattern is produced. We show that the decorrelation of this intensity pattern by displacement of the diffusing surface is related to the standard deviation of the slope's distribution when the illuminating speckle grain is chosen appropriately small. The experimental results are compared with those obtained by measuring the angular distribution of the mean scattered intensity, and they show good agreement with each other.

  20. Scattering Meters For Light In The Sea

    NASA Astrophysics Data System (ADS)

    Wells, Willard H.

    1984-09-01

    To solve radiative transfer problems in seawater, we need two inherent properties, the volume scattering function (VSF) and the absorption. The traditional direct way to obtain these quantities uses a transmissometer and a scattering meter. However, there are prob-lems with the small sample size and errors in obtaining absorption by integration of the VSF. An indirect method also shows promise. One measures the radiance field and then inverts the equations of radiative transfer to obtain the inherent properties from the apparent. The only serious shortcoming is that radiance must be a function of only one position coordinate (plus two angles). (This coordinate is depth in the case of sunlight, or distance from an isotropic lamp otherwise.) We discuss two practical implementations of this indirect approach. One would measure the radiance field with a set of fisheye cameras (following R. Smith's precedent). This very thorough method produces lots of data and requires extensive calibration and number crunching. A proposed alternate radiometer would measure certain spherical moments of the radiance field, the moments being selected to facilitate recovery of the inherent properties [Appl. Opt. 22, 2313 (Aug 83)]. This scheme would produce fewer data, but it permits recovery of absorption and moments of the VSF in (nearly) real time. Similar direct and indirect approaches apply to the measurement of very small-angle scattering, from a milliradian to a few degrees, the sort of angles that blur vision. The indirect method infers small-angle scattering from the loss of contrast in images of bar charts. In this case, the indirect method is clearly superior for the same reasons that bar charts and other test patterns are widely used (instead of point spread functions) to evaluate the performance of television and various optical systems. We built a seawater MTF meter on this principle before 1970, and its features are briefly reviewed.

  1. Scattering of light by molecules over a rough surface.

    PubMed

    Long, Maureen; Khine, Michelle; Kim, Arnold D

    2010-05-01

    We present a theory for the multiple scattering of light by obstacles situated over a rough surface. This problem is important for applications in biological and chemical sensors. To keep the formulation of this theory simple, we study scalar waves. This theory requires knowledge of the scattering operator (t-matrix) for each of the obstacles as well as the reflection operator for the rough surface. The scattering operator gives the field scattered by the obstacle due to an exciting field incident on the scatterer. The reflection operator gives the field reflected by the rough surface due to an exciting field incident on the rough surface. We apply this general theory for the special case of point scatterers and a slightly rough surface with homogeneous Dirichlet and Neumann boundary conditions. We show examples that demonstrate the utility of this theory. PMID:20448766

  2. Spectral Imaging with Scattered Light: From Early Cancer Detection to Cell Biology

    PubMed Central

    Qiu, Le; Turzhitsky, Vladimir; Chuttani, Ram; Pleskow, Douglas; Goldsmith, Jeffrey D.; Guo, Lianyu; Vitkin, Edward; Itzkan, Irving; Hanlon, Eugene B.

    2012-01-01

    This article reports the evolution of scanning spectral imaging techniques using scattered light for minimally invasive detection of early cancerous changes in tissue and cell biology applications. Optical spectroscopic techniques have shown promising results in the diagnosis of disease on a cellular scale. They do not require tissue removal, can be performed in vivo, and allow for real time diagnoses. Fluorescence and Raman spectroscopy are most effective in revealing molecular properties of tissue. Light scattering spectroscopy (LSS) relates the spectroscopic properties of light elastically scattered by small particles, such as epithelial cell nuclei and organelles, to their size, shape and refractive index. It is capable of characterizing the structural properties of tissue on cellular and sub-cellular scales. However, in order to be useful in the detection of early cancerous changes which are otherwise not visible to the naked eye, it must rapidly survey a comparatively large area while simultaneously detecting these cellular changes. Both goals are achieved by combining LSS with spatial scanning imaging. Two examples are described in this article. The first reviews a clinical system for screening patients with Barrett’s esophagus. The second presents a novel advancement in confocal light absorption and scattering spectroscopic (CLASS) microscopy. PMID:23087592

  3. Light focusing through strongly scattering media by binary amplitude modulation

    NASA Astrophysics Data System (ADS)

    Huang, Hui-ling; Sun, Cun-zhi; Chen, Zi-yang; Pu, Ji-xiong

    2015-07-01

    Based on the angular spectrum method and the circular Gaussian distribution (CGD) model of scattering media, we numerically simulate light focusing through strongly scattering media. A high contrast focus in the target area is produced by using feedback optimization algorithm with binary amplitude modulation. It is possible to form the focusing with one focus or multiple foci at arbitrary areas. The influence of the number of square segments of spatial light modulation on the enhancement factor of intensity is discussed. Simulation results are found to be in good agreement with theoretical analysis for light refocusing.

  4. Polarized light transport in refractive weak scattering media.

    PubMed

    Soloviev, Vadim Y

    2016-07-01

    This paper is devoted to modeling of the light transport in refractive and weak scattering media by means of the vector radiative transfer equation. In refractive media polarization of light depends not only on the law of scattering but also on the refractive index distribution and can change along curved light trajectories according to the Rytov law of the polarization ellipse rotation. Results of numerical simulations are presented in the form of CCD camera images, which is how data are acquired in tomographic imaging experiments. PMID:27409689

  5. Light Scattering by Surface Tension Waves.

    ERIC Educational Resources Information Center

    Weisbuch, G.; Garbay, F.

    1979-01-01

    This simple and inexpensive experiment is an illustration of the physical concepts of interaction between light and surface tension waves, and provides a new method of measuring surface tension. (Author/GA)

  6. Comparative Study of Light Scattering from Hepatoma Cells and Hepatocytes

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wang, Rongrong; Guo, Yongcai; Gao, Chao; Guo, Xiaoen

    2012-11-01

    Primary liver cancer is one of the highest mortality malignant tumors in the world. China is a high occurrence area of primary liver cancer. Diagnosis of liver cancer, especially early diagnosis, is essential for improving patients' survival. Light scattering and measuring method is an emerging technology developed in recent decades, which has attracted a large number of biomedical researchers due to its advantages, such as fast, simple, high accuracy, good repeatability, and non-destructive. The hypothesis of this project is that there may be some different light scattering information between hepatoma cells and hepatocyte. Combined with the advantages of the dynamic light scattering method and the biological cytology, an experimental scheme to measure the light scattering information of cells was formulated. Hepatoma cells and hepatic cells were irradiated by a semiconductor laser (532 nm). And the Brookhaven BI-200SM wide-angle light scattering device and temperature control apparatus were adopted. The light scattering information of hepatoma cells and hepatic cells in vitro within the 15°C to 30°C temperature range was processed by a BI-9000AT digital autocorrelator. The following points were found: (a) the scattering intensities of human hepatic cells and hepatoma cells are nearly not affected by the temperature factor, and the former is always greater than the latter and (b) the relaxation time of hepatoma cells is longer than that of hepatic cells, and both the relaxation time are shortened with increasing temperature from 15°C to 25°C. It can be concluded that hepatoma cells could absorb more incident light than hepatic cells. The reason may be that there exists more protein and nucleic acid in cancerous cells than normal cells. Furthermore, based on the length relaxation time, a conclusion can be inferred that the Brownian movement of cancer cells is greater.

  7. Cell light scattering characteristic research based on FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Zhu, Hao; Li, Wenchao; Ye, Changbin

    2015-10-01

    As with the number of cancer increases year by year, so it is important to be found and treated earlier. With biological cells and tissues are sensitive to infrared and visible light, cell morphology and physical structure of the optical properties can easily obtain, we can provide theoretical basis for the early diagnosis of cancer by observing the difference of optical properties between normal and cancerous cells. Compared with Mie scattering theory, finite difference time domain (FDTD) algorithm can analyze any complex structure model. In this paper we use mathematical modeling method to establish the single cell mathematical model and with finite difference time domain algorithm to simulate the propagation and scattering of light in the biological cells, you can calculate the scattering of electromagnetic field distribution at anytime and anywhere. With radar cross section (RCS) to measure the results of the scattering characteristics. Due to the difference between normal cells and cancerous cells are embodied in cell shape, size and the refractive index, through the simulation we can get different cell parameters of light scattering information, Find out the cell parameters change the changing rule of the influence on the scattering characteristics and find out change regularity of scattering characteristics. These data can judge very accurate of the cells is normal or cancerous cells.

  8. Reconstruction of Rain Microstructure From Spectrum of Scattering Light

    NASA Astrophysics Data System (ADS)

    Sterlyadkin, V.; Gluschenko, A.

    Night photoregistration of light, scattered by drops had proved that practically all drops oscillate as they fall. As drop oscillation frequency W monotony diminish with drop volume V rise, so different fractions of rain form different parts of spectrum. Thereby it is possible to reconstruct rain microstructure from remote optical measure- ments. In common case the form of spectrum depends not only on drop size distri- bution N(V) but also on oscillation amplitudes function, scattering phase function for oscillating drops and on frequency dependence W(V). The statistical treatment of our field data had shown that average oscillation amplitude rise with drop volume V as , where A is a some constant. This result allows to solve the inverse problem: to re- construct drop size distribution N(V) from the power spectrum of light, scattering by rain. Scattering phase function for nonspherical and oscillating drops was calculated in straight-line approximation. Analysis of optical properties of oscillating water drop had shown some optimal measurement geometry for registration of rain microstruc- ture. For low intensity rains it is reasonable to use the effect of abnormal high modu- lation of light scattered by oscillating drops, which we discovered earlier in laboratory condition and under field measurements. (The effect of abnormal high modulation al- lows us to detect 2-3 mm raindrop deformations from 5 m distance). The results of reconstruction of drop size distributions from spectra of light, scattered by rains are presented and discussed.

  9. Transport calculations for light scattering in blood.

    PubMed Central

    Pedersen, G D; McCormick, N J; Reynolds, L O

    1976-01-01

    In vivo measurement of the oxygen saturation levels in blood may be obtained from relative amounts of backscattered monochromatic light at two different wavelengths, as measured with a fiber-optic catheter oximeter. Because of the short mean free path length of light in blood, the backscattering can be well approximated by a previously-derived, one-wavelength transport theory solution for the half-space searchlight problem. This solution, unlike simple diffusion approximations has the advantage that the boundary condition describing illumination of a localized area of blood by a monodirectional light beam can be rigorously satisfied. Sample calculations using the solution are compared with experimental values of the reflectance of blood. PMID:1252576

  10. Effects of dust particle internal structure on light scattering

    NASA Astrophysics Data System (ADS)

    Kemppinen, O.; Nousiainen, T.; Jeong, G. Y.

    2015-07-01

    There is a large variety of internal structures inside atmospheric dust particles, making them inherently inhomogeneous. Such structures may have a large effect on ground-level and atmospheric radiation. So far, dust particle internal structures and their effect on the light scattering properties have proved to be hard to quantify, in part due to challenges in obtaining information about these structures. Recently, internal structures of individual dust particles were revealed through focused ion beam milling and analyzed. Here, we perform a sensitivity study to evaluate the optical impacts of some of the typical internal structures revealed. To obtain suitable model particles, the first step is to generate inhomogeneous particles with varying internal structures by using an algorithm that is based on three-dimensional Voronoi tessellation. The parameters for the particle generation are obtained from studies of real-world Asian dust particles. The second step is to generate homogeneous versions of the generated particles by using an effective-medium approximation, for comparison. Third, light scattering by both versions of these particles is simulated with discrete-dipole approximation code. This allows us to see how different internal structures affect light scattering, and how important it is to account for these structures explicitly. Further, this allows us to estimate the potential inaccuracies caused by using only homogeneous model particles for atmospheric studies and remote sensing measurements. The results show that the effects vary greatly between different kinds of internal structures and single-scattering quantity considered, but for most structure types the effects are overall notable. Most significantly, hematite inclusions in particles impact light scattering heavily. Furthermore, internal pores and hematite-rich coating both affect some form of light scattering noticeably. Based on this work, it seems that it is exceedingly important that the

  11. Effects of dust particle internal structure on light scattering

    NASA Astrophysics Data System (ADS)

    Kemppinen, O.; Nousiainen, T.; Jeong, G. Y.

    2015-10-01

    There is a large variety of internal structures inside atmospheric dust particles, making them inherently inhomogeneous. Such structures may have a large effect on ground-level and atmospheric radiation. So far, dust particle internal structures and their effect on the light scattering properties have proved to be hard to quantify, in part due to challenges in obtaining information about these structures. Recently, internal structures of individual dust particles were revealed through focused ion beam milling and analyzed. Here, we perform a sensitivity study to evaluate the optical impacts of some of the typical internal structures revealed. To obtain suitable model particles, the first step is to generate inhomogeneous particles with varying internal structures by using an algorithm that is based on three-dimensional Voronoi tessellation. The parameters for the particle generation are obtained from studies of real-world Asian dust particles. The second step is to generate homogeneous versions of the generated particles by using an effective-medium approximation, for comparison. Third, light scattering by both versions of these particles is simulated with discrete dipole approximation code. This allows us to see how different internal structures affect light scattering, and how important it is to account for these structures explicitly. Further, this allows us to estimate the potential inaccuracies caused by using only homogeneous model particles for atmospheric studies and remote-sensing measurements. The results show that the effects vary greatly between different kinds of internal structures and single-scattering quantity considered, but for most structure types the effects are overall notable. Most significantly, hematite inclusions in particles impact light scattering heavily. Furthermore, internal pores and hematite-rich coating both affect some form of light scattering noticeably. Based on this work, it seems that it is exceedingly important that the

  12. Scattered light in the IUE spectra of Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Aitner, B.; Chapman, R. D.; Kondo, Y.; Stencel, R. E.

    1985-01-01

    As a result of this work it was found that light scattered from the longer wavelengths constitutes a small but non-negligible, wavelength and time dependent fraction of the measured flux in the far UV. The reality of the UV excess has not been unambigiously ruled out. However, it is noted that there are still uncertainties in the assumed scattering profile. New measurements of the scattering properties of the cross disperser grating are planned in order to verify the results of Mount and Fastie and extend the wavelength coverage into the far wings of the profile. The results of these measurements will no doubt reduce some of these uncertainties. For the present, it is felt that the BCH approach is a significant improvement over the methods heretofore available for the treatment of scattered light in IUE spectra.

  13. Indigenous development of static laser light scattering (SLS) spectrometer

    NASA Astrophysics Data System (ADS)

    Joseph, David; Kumar, Amit

    2013-02-01

    An indigenous laser light scattering spectrometer is being developed for the studies of biological cells, macromolecules and their interactions. A laboratory spectrometer is used and modified as scattering arm, Turn Table and Collimating arm. Both the arms have polarizers, one acting as polarizer and the other as analyzer. The scattered light from the scattering cell is analyzed by an analyzer and is fed to a PMT and a photon counting module. Except for the PMT all the accessories are being fabricated indigenously. The studies are based initially on the studies of red blood cells. Studies are focused on for their single particle and their aggregation behavior. Using the ORT program developed by Otto Glatter the morphology of red blood cells will be analyzed.

  14. LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.

    2002-11-01

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.

  15. Resonance light scattering determination of metallothioneins using levofloxacin-palladium complex as a light scattering probe

    NASA Astrophysics Data System (ADS)

    Xue, Jin-Hua; Qian, Qiu-Mei; Wang, Yong-Sheng; Meng, Xia-Ling; Liu, Lu

    2013-02-01

    A novel method of resonance light scattering (RLS) was developed for the analysis of trace metallothioneins (MTs) in human urine. In a CH3COOH-CH3COONa buffer solution of pH 4.5, the formation of a complex between levofloxacin (LEV)-Pd and MTs led to enhance the RLS intensity of the system, and the enhanced RLS intensity at 468 nm was proportional to the concentration of MTs in the range of 0.059-22.4 μg mL-1. The linear regression equation was ΔI = 127.5 ρ (μg mL-1)-88.02 with a correlation coefficient of 0.9992, and the detection limit of 17.8 ng mL-1. The relative standard deviation and the average recovery were 3.8-5.4% (n = 11) and 92.15%, respectively. The proposed method is convenient, reliable and sensitive, and has been used successfully for the determination of trace MTs in human urine samples.

  16. An experimental study of light scattering by large, irregular particles

    NASA Technical Reports Server (NTRS)

    Mcguire, Audrey F.; Hapke, Bruce W.

    1995-01-01

    The intensity and polarization of light scattered by a variety of types of artificial partices large compared to the wavelength were measured as a function of phase angle. Shape, surface roughness, absorption coefficient, and internal scattering coefficient were varied systematically and their effects studied. Scattering by clear, smooth-surfaced spheres is in quantitative agreement with the predictions of the geometrical optics (ray theory) approximation to physical optics (Mie theory). The phase functions of almost all of the particles measured have both forward and backward scattering lobes. A two-parameter, double Henyey-Greenstein function generally provides reasonably good descriptions of the data, while keeping the number of free parameters to the minimum necessary. On a double Henyey- Greenstein parameter plot all of the particles fall into an L-shaped area of restricted size in which the location is characteristic of the particle type. Formalisms based on the equivalent slab model are also given for estimating the scattering efficiency of a large, irregular particle. For most dielectric particles the transmitted, forward scattered light is partially negatively polarized. It is this component that is respopnsible for the well-known maximum in the polarization curves of planetary regoliths at phase angles around 100 deg. For phase angles between about 30 deg and 70 deg the internally scattered light is found to be randomly polarized in the particles studied here, so that the only contribution to the second component of the Stokes vector is by Fresnel reflection from the particle surface. If this empirical result is general, measurement of the second Stokes vector of the light scattered from a regolith at these angles may provide a method of remotely measuring the mean refractive index.

  17. Scattering of non-separable states of light

    NASA Astrophysics Data System (ADS)

    Perumangatt, Chithrabhanu; Salla, Gangi Reddy; Anwar, Ali; Aadhi, A.; Prabhakar, Shashi; Singh, R. P.

    2015-11-01

    We experimentally show that the non-separability of polarization and orbital angular momentum present in a light beam remains preserved under scattering through a random medium like rotating ground glass. We verify this by measuring the degree of polarization and observing the intensity distribution of the beam when projected to different polarization states, before as well as after the scattering. We extend our study to the non-maximally non-separable states also.

  18. Neutron and light scattering studies of light-harvesting photosynthetic antenna complexes

    SciTech Connect

    Tang, Kuo-Hsiang; Blankenship, Robert E.

    2011-06-28

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been employed in studying the structural information of various biological systems, particularly in systems without high-resolution structural information available. In this report, we briefly present some principles and biological applications of neutron scattering and DLS, compare the differences in information that can be obtained with small-angle X-ray scattering (SAXS), and then report recent studies of SANS and DLS, together with other biophysical approaches, for light-harvesting antenna complexes and reaction centers of purple and green phototrophic bacteria.

  19. Inferring mixture Gibbs free energies from static light scattering data

    NASA Astrophysics Data System (ADS)

    Ross, David; Wahle, Christopher; Thurston, George

    We describe a light scattering partial differential equation for the free energy of mixing that applies to connected, isotropic ternary and quaternary liquid composition domains, including restricted domains which may not touch all binary axes. For restricted domains, contrasting light scattering efficiency patterns obtained at different wavelengths can correspond to the same underlying free energy, and supplement the available information. We discuss well-posed problems for this fully nonlinear, degenerate elliptic partial differential equation. Using Monte Carlo simulations, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, and indicate how measurement time depends on instrument throughput. These methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain liquid domains. Supported by NIH EY018249.

  20. Diffusion of interacting particles: light scattering study of microemulsions

    SciTech Connect

    Cazabat, A.M.; Langevin, D.

    1981-03-15

    The diffusion coefficient data obtained from light scattering experiments on water-in-oil microemulsions have been compared with existing theoretical treatments involving the interaction potential. The observed behavior deviates largely from hard sphere systems and independent information was obtained about the interaction potential to check the theories. This was achieved by measuring simultaneously the intensity and the correlation function of the scattered light. The intensity has been analyzed with a very simple model for interaction forces involving only 2 parameters: a hard sphere radius and the amplitude of a small perturbation added to hard sphere potential. This model allows for the variation of the diffusion coefficient at small volume fractions. Light scattering techniques are a very useful method for obtaining information about sizes and interactions in microemulsions. Some general conclusions have been made: droplet sizes depend mostly on the ratio of water to soap, and interactions on continuous phase polarity and alcohol chain length.

  1. Laser light scattering as a probe of fractal colloid aggregates

    NASA Technical Reports Server (NTRS)

    Weitz, David A.; Lin, M. Y.

    1989-01-01

    The extensive use of laser light scattering is reviewed, both static and dynamic, in the study of colloid aggregation. Static light scattering enables the study of the fractal structure of the aggregates, while dynamic light scattering enables the study of aggregation kinetics. In addition, both techniques can be combined to demonstrate the universality of the aggregation process. Colloidal aggregates are now well understood and therefore represent an excellent experimental system to use in the study of the physical properties of fractal objects. However, the ultimate size of fractal aggregates is fundamentally limited by gravitational acceleration which will destroy the fractal structure as the size of the aggregates increases. This represents a great opportunity for spaceborne experimentation, where the reduced g will enable the growth of fractal structures of sufficient size for many interesting studies of their physical properties.

  2. Light scattering study of enzymatic degradation of polyurethane

    NASA Astrophysics Data System (ADS)

    Himel, Denny; Norwood, David; Howard, Gary

    2000-11-01

    It is known that naturally occurring enzymes produced by members of the genus Pseudomonas hydrolytically degrade synthetic polyesterurethanes. Enzymes from the three species Pseudomonas fluorescens, Pseudomonas clororaphis and Comamonas acidovarans have been isolated and show hydrolytic activity. Further, it has been shown that static laser light scattering, in both batch mode (SLS) and time resolved (TRSLS), is a technique effective in characterizing systems undergoing enzymatic degradation. A general theory of TRSLS is summarized. This theory is then used when we employ static laser light scattering (SLS) to carefully characterize both the high molecular weight polyurethane substrate and the isolated enzymes, and time resolved static laser light scattering (TRSLS) to determine the absolute rate of degradation and to characterize the mechanism of enzymes isolated from bacteria mentioned above.

  3. Multiple light scattering methods for multiphase flow diagnostics

    NASA Astrophysics Data System (ADS)

    Estevadeordal, Jordi

    2015-11-01

    Multiphase flows of gases and liquids containing droplets, bubbles, or particulates present light scattering imaging challenges due to the interference from each phase, such as secondary reflections, extinctions, absorptions, and refractions. These factors often prevent the unambiguous detection of each phase and also produce undesired beam steering. The effects can be especially complex in presence of dense phases, multispecies flows, and high pressure environments. This investigation reports new methods for overcoming these effects for quantitative measurements of velocity, density, and temperature fields. The methods are based on light scattering techniques combining Mie and filtered Rayleigh scattering and light extinction analyses and measurements. The optical layout is designed to perform multiple property measurements with improved signal from each phase via laser spectral and polarization characterization, etalon decontamination, and use of multiple wavelengths and imaging detectors.

  4. Scattered light in the IUE spectra of Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Altner, B.; Chapman, R. D.; Kondo, Y.; Stencel, R. E.

    1986-01-01

    Recent infrared photometry indicates that the alleged disk of particulate matter surrounding the mysterious secondary object in the Epsilon Aur system is cold, around 500 K. IUE spectra, on the other hand, contain significant flux in excess of that expected from an F0 Ia star in the far UV, which if interpreted as a hot secondary star leads to a possible contradiction with the IR data. Other models of the UV excess have been proposed, including the idea that the bulk of the short-wavelength flux is light scattered into the SWP camera from longer wavelengths. With the recent availability of a detailed generalized IUE descattering algorithm it is possible to thoroughly investigate the scattered-light contribution to the short-wavelength continuum. It is found that the IUE spectra are indeed partially contaminated by scattered light, but that even after correction for this instrumental effect a significant time-dependent UV excess is still present.

  5. Additivity of light-scattering patterns of aggregated biological particles

    NASA Astrophysics Data System (ADS)

    Moskalensky, Alexander E.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.

    2014-08-01

    The paper is focused on light scattering by aggregates of optically soft particles with a size larger than the wavelength, in particular, blood platelets. We conducted a systematic simulation of light scattering by dimers and larger aggregates of blood platelets, each modeled as oblate spheroids, using the discrete dipole approximation. Two-dimensional (2-D) light scattering patterns (LSPs) and internal fields showed that the multiple scattering between constituent particles can be neglected. Additionally, we derived conditions of the scattering angle and orientation of the dimer, under which the averaging of the 2-D LSPs over the azimuthal scattering angle washes out interference in the far field, resulting in averaged LSPs of the aggregate being equal to the sum of that for its constituents. We verified theoretical conclusions using the averaged LSPs of blood platelets measured with the scanning flow cytometer (SFC). Moreover, we obtained similar results for a model system of aggregates of polystyrene beads, studied both experimentally and theoretically. Finally, we discussed the potential of discriminating platelet aggregates from monomers using the SFC.

  6. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    SciTech Connect

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  7. Novel Trapping and Scattering of Light in Resonant Nanophotonic Structures

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei

    Nanophotonic structures provide unique ways to control light and alter its behaviors in ways not possible in macroscopic structures. In this thesis, we explore novel behaviors of light created by nanophotonic structures, with a common theme on resonance effects. The first half of the thesis focuses on a peculiar type of electromagnetic resonance, where the resonance lifetime diverges to infinity. These states, called bound states in the continuum, remain localized in space even though their frequency lie within a continuum of extended modes. We find such states in photonic crystal slabs and the surface of bulk photonic crystals. We show the conditions necessary for them to exist, and provide the first experimental observation of these unusual states. We also show that these states have a topological nature, with conserved and quantized topological charges that govern their generation, evolution, and annihilation. The second half of the thesis concerns light scattering from resonant nanophotonic structures, where resonances can enhance or suppress scattering at particular wavelengths and angles. We show that multiple resonances in one nanostructure and in the same multipole channel generally lead to a scattering dark state where the structure becomes transparent. Based on the coherent interference from multiple scatterers, we show there are geometries that can achieve a sharp structural color where the hue, saturation, and brightness are all viewing-angle independent. We also invent a new type of transparent display based on wavelength-selective light scattering from nanostructures.

  8. Development and Validation of the Light and Spectroscopy Concept Inventory

    ERIC Educational Resources Information Center

    Bardar, Erin M.; Prather, Edward E.; Brecher, Kenneth; Slater, Timothy F.

    2007-01-01

    This article describes the development and validation of the Light and Spectroscopy Concept Inventory (LSCI), a 26-item diagnostic test designed (1) to measure students' conceptual understanding of topics related to light and spectroscopy, and (2) to evaluate the effectiveness of instructional interventions in promoting meaningful learning gains…

  9. Coherent anti-Stokes Raman scattering imaging under ambient light.

    PubMed

    Zhang, Yinxin; Liao, Chien-Sheng; Hong, Weili; Huang, Kai-Chih; Yang, Huaidong; Jin, Guofan; Cheng, Ji-Xin

    2016-08-15

    We demonstrate an ambient light coherent anti-Stokes Raman scattering microscope that allows CARS imaging to be operated under environmental light for field use. The CARS signal is modulated at megahertz frequency and detected by a photodiode equipped with a lab-built resonant amplifier, then extracted through a lock-in amplifier. The filters in both the spectral domain and the frequency domain effectively blocked the room light contamination of the CARS image. In situ hyperspectral CARS imaging of tumor tissue under ambient light is demonstrated. PMID:27519113

  10. Investigation of light scattering on a single dust grain

    NASA Astrophysics Data System (ADS)

    Pavlu, Jiri; Nemecek, Zdenek; Safrankova, Jana; Barton, Petr

    2016-07-01

    Complex phenomenon of light scattering by dust grains plays an important role in all dust--light interactions, especially in space, e.g., light passing through dense dusty clouds in the space as well as in the upper atmosphere, dust charging by photoemission, etc. When the wavelength of the incident light is about the size of the grain, the Mie theory is often used to characterize the scattering process. Unfortunately, we have only very limited knowledge of necessary material constants for most of the space-related materials and also the solution of Mie equations for general grain shapes is difficult or unknown. We develop an apparatus for observations of light scattering on small (micrometer-sized) arbitrary shaped dust grains. We directly measure the scattering by levitating grains in the field created by the standing-wave ultrasonic trap, where we can study single grains or small grain clusters. The experiment is performed at atmospheric air --- unlike other experiments, where grains were measured in water or other liquids. Therefore, the background effects are significantly reduced. Currently, the trap is under development and first tests are carried out. Besides initial results, we focus on theoretical computations of the ultrasonic field of the selected trap.

  11. Study of resonance light scattering for remote optical probing

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; Morey, W. W.; St. Peters, R. L.; Silverstein, S. D.; Lapp, M.; White, D. R.

    1973-01-01

    Enhanced scattering and fluorescence processes in the visible and UV were investigated which will enable improved remote measurements of gas properties. The theoretical relationship between scattering and fluorescence from an isolated molecule in the approach to resonance is examined through analysis of the time dependence of re-emitted light following excitation of pulsed incident light. Quantitative estimates are developed for the relative and absolute intensities of fluorescence and resonance scattering. New results are obtained for depolarization of scattering excited by light at wavelengths within a dissociative continuum. The experimental work was performed in two separate facilities. One of these utilizes argon and krypton lasers, single moded by a tilted etalon, and a 3/4 meter double monochromator. This facility was used to determine properties of the re-emission from NO2, I2 and O3 excited by visible light. The second facility involves a narrow-line dye laser, and a 3/4 meter single monochromator. The dye laser produces pulsed light with 5 nsec pulse duration and 0.005 nm spectral width.

  12. Bulk and surface light scattering from transparent silica aerogel

    NASA Astrophysics Data System (ADS)

    Platzer, Werner J.; Bergkvist, Mikael

    1992-11-01

    Elastic light scattering has been used to study structural properties of different transparent aerogels, which may be used as filling materials in super-windows. With a goniometer having an angular resolution better than 0.6 degree(s) and a He-Ne laser as the light source we investigated the angular distribution of scattered intensity from transparent silica aerogels and one xerogel. The densities ranged between 0.11 and 0.60 gcm-3. An exponential correlation function for the density fluctuations of a random porous medium has been utilized to analyze the large-angle scattering, which is dominated by bulk scattering, for different polarization of the incident light. The determination of correlation lengths in the nanometer range was possible, because the absolute scattering intensities were determined. For relative angular dependence measurements, this range would have been accessible only to small angle x-ray scattering (SAXS). The resulting mean pore sizes between 8 nm and 50 nm and specific surface areas between 500 and 700 m2/g agree well with nitrogen-porosimetry data from the literature. The data compare quite well with correlation lengths calculated from specular transmittance data from an ordinary spectrophotometer. This method, which is not sensitive to the angular distribution of superposed forward scattering with large correlation lengths, has also been applied to a series of base-catalyzed TMOS aerogels with different catalyst concentrations. The forward scattering peak of the signal may be attributed to correlation lengths in the micrometer range. Experimental results for aerogel surfaces with evaporated aluminum indicate that this might be due to the surface properties. A quantitative analysis, however, is not possible yet.

  13. Wavelet transform fast inverse light scattering analysis for size determination of spherical scatterers

    PubMed Central

    Ho, Derek; Kim, Sanghoon; Drake, Tyler K.; Eldridge, Will J.; Wax, Adam

    2014-01-01

    We present a fast approach for size determination of spherical scatterers using the continuous wavelet transform of the angular light scattering profile to address the computational limitations of previously developed sizing techniques. The potential accuracy, speed, and robustness of the algorithm were determined in simulated models of scattering by polystyrene beads and cells. The algorithm was tested experimentally on angular light scattering data from polystyrene bead phantoms and MCF-7 breast cancer cells using a 2D a/LCI system. Theoretical sizing of simulated profiles of beads and cells produced strong fits between calculated and actual size (r2 = 0.9969 and r2 = 0.9979 respectively), and experimental size determinations were accurate to within one micron. PMID:25360350

  14. Visualizing Light Scattering in Silicon Waveguides with Black Phosphorus Photodetectors.

    PubMed

    Wang, Tianjiao; Hu, Shuren; Chamlagain, Bhim; Hong, Tu; Zhou, Zhixian; Weiss, Sharon M; Xu, Ya-Qiong

    2016-09-01

    A black phosphorus photodetector is utilized to investigate the light-scattering patterns of a silicon waveguide through wavelength- and polarization-dependent scanning photocurrent measurements. The photocurrent signals exhibit similar patterns to the light-intensity distribution of the waveguide calculated by finite-difference time-domain simulations, suggesting that photoexcited electron-hole pairs in the silicon waveguide can be injected into phosphorene to induce its photoresponse. PMID:27296253

  15. Dispersion relation for hadronic light-by-light scattering

    NASA Astrophysics Data System (ADS)

    Procura, Massimiliano; Colangelo, Gilberto; Hoferichter, Martin; Stoffer, Peter

    2016-04-01

    The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (g - 2)μ come from hadronic contributions. In particular, in a few years the subleading hadronic light-by-light (HLbL) contribution might dominate the theory uncertainty. We present a dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. This opens up the possibility of a data-driven determination of the HLbL contribution to (g - 2)μ with the aim of reducing model dependence and achieving a reliable error estimate. Our dispersive approach defines unambiguously the pion-pole and the pion-box contribution to the HLbL tensor. Using Mandelstam's double-spectral representation, we have proven that the pion-box contribution coincides exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.

  16. Effects of acetic acid on light scattering from cells

    PubMed Central

    Marina, Oana C.; Sanders, Claire K.

    2012-01-01

    Abstract. Acetic acid has been used for decades as an aid for the detection of precancerous cervical lesions, and the use of acetic acid is being investigated in several other tissues. Nonetheless, the mechanism of acetowhitening is unclear. This work tests some of the hypotheses in the literature and measures changes in light scattering specific to the nucleus and the cytoplasm. Wide angle side scattering from both the nucleus and the cytoplasm increases with acetic application to tumorigenic cells, with the increase in nuclear scattering being greater. In one cell line, the changes in nuclear scattering are likely due to an increase in number or scattering efficiency of scattering centers smaller than the wavelength of excitation light. There are likely several cellular changes that cause acetowhitening and the cellular changes may differ with cell type. These results should lead to a better understanding of acetowhitening and potentially the development of adjunct techniques to improve the utility of acetic acid application. For the well-studied case of cervical tissue, acetowhitening has been shown to be sensitive, but not specific for oncogenic changes needing treatment. PMID:23224185

  17. The impact of dust particle morphological details on light scattering

    NASA Astrophysics Data System (ADS)

    Kemppinen, Osku; Nousiainen, Timo; Lindqvist, Hannakaisa; Jeong, Gi Young

    2016-04-01

    We investigate the impact of dust particle surface roughness and internal structure on light scattering. Starting from digital representation of realistically shaped dust particles, we vary the particle morphology, and perform light scattering simulations to both the original and the modified particles. By mapping the changes in morphology to the changes in scattering, we will get information of how strongly and in which way a particular change affects scattering. All investigations have been done with complex, irregular particle shapes. For surface roughness studies we have kept the particle total volume virtually constant during the roughening process, and the roughness element size small enough to keep the overall shape relatively unchanged. For internal structure studies, the size and the external shape are kept constant. These safety measures help ensure that the effects seen are in fact due to the feature studied. The work is notable for model development, because some models can not include surface roughness, for example. In that case, the people who use such models have to adjust for the fact that the results are inaccurate, and by knowing how surface roughness typically changes the scattering results, the adjustment can be made. As a corollary, if it is shown that a particular feature does not change scattering results in any noticeable way, the model developers can confidently ignore or simplify it.

  18. Circular polarization of light scattered by asymmetrical particles

    NASA Astrophysics Data System (ADS)

    Guirado, D.; Hovenier, J. W.; Moreno, F.

    2007-07-01

    We present calculations of the degree of circular polarization of light singly scattered by some kinds of asymmetrical particles in random orientation as a function of the scattering angle, using the T-matrix method. To clarify the possible contribution of asymmetry of particles to circular polarization we considered aggregates of optically inactive homogeneous identical spheres. We analysed the effect of changing the size of the monomers and the refractive index. We also performed calculations for two different geometries. The values of the computed degree of circular polarization are generally in the range of the observed ones for light scattered by dust particles in comets P/Halley, C/1995 O1 (Hale-Bopp) and C/1999 S4 (LINEAR), in the interplanetary medium and in the interstellar medium of our galaxy.

  19. Light scattering by nonspherical particles: some practical aspects

    NASA Astrophysics Data System (ADS)

    Farafonov, Victor G.; Il'in, Vladimir; Voshchinnikov, Nikolai V.; Prokopjeva, M. S.

    2005-03-01

    Real scatterers are known to usually have complex shape and some structure. Therefore, to perform light scattering simulations, one should specify their models and select proper computational methods. To help in solution of these problems, we have created an internet cite DOP (Database of Optical Properties of non-spherical particles). The currnet content of the DOP (optical constants, reviews and bibliographies, codes, etc.) is briefly described. A special attention is paid to recently developed fast methods and codes to treat light scattering by non-spherical inhomogeneous particles using the layered models. First results of application of these tools to comparable study of the optical properties of layered particles and particles with inclusions are presented.

  20. Debye series for light scattering by a multilayered sphere.

    PubMed

    Li, Renxian; Han, Xiange; Jiang, Huifen; Ren, Kuan Fang

    2006-02-20

    We have derived the formula for the Debye-series decomposition for light scattering by a multilayered sphere. This formulism permits the mechanism of light scattering to be studied. An efficient algorithm is introduced that permits stable calculation for a large sphere with many layers. The formation of triple first-order rainbows by a three-layered sphere and single-order rainbows and the interference of different-order rainbows by a sphere with a gradient refractive index, are then studied by use of the Debye model and Mie calculation. The possibility of taking only one single mode or several modes for each layer is shown to be useful in the study of the scattering characteristics of a multilayered sphere and in the measurement of the sizes and refractive indices of particles. PMID:16523791

  1. A Study of Brownian Motion Using Light Scattering

    ERIC Educational Resources Information Center

    Clark, Noel A.; And Others

    1970-01-01

    Presents an advanced laboratory experiment and lecture demonstration by which the intensity spectrum of light scattered by a suspension of particles in a fluid can be studied. From this spectrum, it is possible to obtain quantitative information about the motion of the particles, including an accurate determination of their diffusion constant.…

  2. Light Scattering by Polymers: Two Experiments for Advanced Undergraduates.

    ERIC Educational Resources Information Center

    Matthews, G. P.

    1984-01-01

    Background information, procedures, equipment, and results for two experiments are presented. The first involves the measurement of the mass-average and degree of coiling of polystyrene and is interpreted by the full mathematical theory of light scattering. The second is the study of transitions in gelatin. (JN)

  3. Angular and spectral light scattering from complex multidielectric coatings

    NASA Astrophysics Data System (ADS)

    Grèzes-Besset, Catherine; Torricini, Didier; Krol, Hélène; Zerrad, Myriam; Lequime, Michel; Amra, Claude

    2011-09-01

    Due to the improvement of deposition technologies and polishing techniques, light scattering has been considerably reduced in optical coatings these last decades, with the result of high quality dense optical filters with minimal losses. However such improvements coupled with modern monitoring techniques have also allowed designing and producing more complex coatings with layer numbers exceeding several hundred in some situations. Within this framework light scattering must again be revisited and analysed in detail, including global loss levels together with angular and spectral analysis. This paper is devoted to the optical balance of sophisticated components for Earth Observation, where the same scene is observed simultaneously in several adjacent wavebands. Self-blocking multilayer stacks are involved to eliminate out-of band harmonics in the instrument but the filter performances are degraded due to an increase of cross talk originating from light scattering. To address this problem we use the theories of light scattering from surface roughness and bulk heterogeneity, which allows to quantity cross-talk levels and choose more adequate filters. A special emphasis is given to the case of hyperspectral filters assemblies located in the focal plane for image filtering.

  4. OLIGOMERIZATION STATE OF RUBISCO ACTIVASE REVEALED BY DYNAMIC LIGHT SCATTERING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The self-association of Rubisco activase has been suggested to be required for Rubisco activation via ATP hydrolysis. To study the oligmerization patterns in detail, we initially measured the size of each isoform (42 KDa and 45 KDa) of recombinant spinach activase using dynamic light scattering spec...

  5. Half a century of light scatter metrology and counting

    NASA Astrophysics Data System (ADS)

    Stover, John C.

    2014-09-01

    Back in the early days Bill Wolf once said something like: "The guy with the lowest scatter measurement is closest to the right answer." He was often right then - but not anymore. Everything has changed. Today measurements are limited by Rayleigh scatter from the air - not the instrument. We have both written and physical standards and everybody spells BRDF the same way. In the time it takes to give this talk, over 100,000 silicon wafers will be inspected around the world using a few thousand scatterometers - average price about one million dollars each. The way the world illuminates everything from homes to football fields is changing with the advent of high brightness LED's and these lighting systems are designed using a combination of scatter metrology and analysis techniques - many of which were started at The Optical Sciences Center. This paper reviews two major highlights in half a century of scatter metrology progress.

  6. Resonating Rays in Light Ion Scattering from AN Optical Potential.

    NASA Astrophysics Data System (ADS)

    Stoyanov, Basil John

    Recent experimental investigations reveal that resonances of composite ion-ion systems are a general phenomenon in light- and heavy-ion scattering. The experimentally observed phenomenon known as the anomalous large-angle scattering (ALAS) of alpha-particle from certain isotopes, such as (alpha)-('40)Ca, manifests itself in the form of successive peaks in the back-scattering excitation function. Earlier theoretical studies were mainly concentrated either on the surface-wave or geometrical-wave description of these phenomena, whereas the pont of view taken here, which is based on the results of physical acoustics, is that the ion-ion scattering amplitude contains both the surface-wave and the geometrical-wave contributions. Therefore a comprehensive approach would be to investigate both of these contributions simultaneously. This is achieved in the present work through a decomposition, by applying the Sommerfeld-Watson and Imai transformations, of the scattering amplitude into its ingredients and by analyzing both the resulting geometrical rays and the surface waves in terms of resonances. This procedure generates a precise mathematical description of resonance processes in ion scattering (via the S-function poles) and at the same time leads in a semi -classical framework to their thorough physical interpretation (via the generalized Bohr-Sommerfeld quantization condition). The existence of resonances in both the geometrical and surface waves emerges from such a description, and is exemplified by numerical calculations for (alpha)-('40)Ca elastic scattering.

  7. Free-form thin lens design with light scattering surfaces for practical LED down light illumination

    NASA Astrophysics Data System (ADS)

    Lin, Raychiy J.; Sun, Ching-Cherng

    2016-05-01

    The free-form optical quasilens surface technology was utilized to develop and design a solid transparent plastic optical lens for the LED down light with the narrow angular light distribution requirement in the LED lighting applications. In order to successfully complete the mission, the precise mid-field angular distribution model of the LED light source was established and built. And also the optical scattering surface property of the Harvey BSDF scattering model was designed, measured, and established. Then, the optical simulation for the entire optical system was performed to develop and design this solid transparent plastic optical lens system. Finally, the goals of 40 deg angular light distribution pattern defined at full width half maximum with glare reduced in the areas of interest and the optical performance of nearly 82% light energy transmission optics were achieved for the LED down light illumination.

  8. Scattering Optical Elements: Stand-Alone Optical Elements Exploiting Multiple Light Scattering.

    PubMed

    Park, Jongchan; Cho, Joong-Yeon; Park, Chunghyun; Lee, KyeoReh; Lee, Heon; Cho, Yong-Hoon; Park, YongKeun

    2016-07-26

    Optical design and fabrication techniques are crucial for making optical elements. From conventional lenses to diffractive optical elements and to recent metasurfaces, various types of optical elements have been proposed to manipulate light where optical materials are fabricated into desired structures. Here, we propose a scattering optical element (SOE) that exploits multiple light scattering and wavefront shaping. Instead of fabricating optical materials, the SOE consists of a disordered medium and a photopolymer-based wavefront recorder, with shapes impinging on light on demand. With the proposed stand-alone SOEs, we experimentally demonstrate control of various properties of light, including intensity, polarization, spectral frequency, and near field. Due to the tremendous freedom brought about by disordered media, the proposed approach will provide unexplored routes to manipulate arbitrary optical fields in stand-alone optical elements. PMID:27331616

  9. Determination of the cervical transformation zone using elastic-scattering spectroscopy

    SciTech Connect

    Bigio, I.J.; Johnson, T.M.; Mourant, J.R.

    1996-04-01

    Optical measurements of the cervical transformation zone (sometimes referred to as the transition zone) using elastic-scattering spectroscopy, demonstrate sensitivity to the epithelial cell-type differences.

  10. Shape-dependent light scattering properties of subwavelength silicon nanoblocks.

    PubMed

    Ee, Ho-Seok; Kang, Ju-Hyung; Brongersma, Mark L; Seo, Min-Kyo

    2015-03-11

    We explore the shape-dependent light scattering properties of silicon (Si) nanoblocks and their physical origin. These high-refractive-index nanostructures are easily fabricated using planar fabrication technologies and support strong, leaky-mode resonances that enable light manipulation beyond the optical diffraction limit. Dark-field microscopy and a numerical modal analysis show that the nanoblocks can be viewed as truncated Si waveguides, and the waveguide dispersion strongly controls the resonant properties. This explains why the lowest-order transverse magnetic (TM01) mode resonance can be widely tuned over the entire visible wavelength range depending on the nanoblock length, whereas the wavelength-scale TM11 mode resonance does not change greatly. For sufficiently short lengths, the TM01 and TM11 modes can be made to spectrally overlap, and a substantial scattering efficiency, which is defined as the ratio of the scattering cross section to the physical cross section of the nanoblock, of ∼9.95, approaching the theoretical lowest-order single-channel scattering limit, is achievable. Control over the subwavelength-scale leaky-mode resonance allows Si nanoblocks to generate vivid structural color, manipulate forward and backward scattering, and act as excellent photonic artificial atoms for metasurfaces. PMID:25668601

  11. IQENS - dynamic light scattering complementarity on hydrogenous systems

    NASA Astrophysics Data System (ADS)

    Magazu', S.

    1996-02-01

    This paper deals with two comparative studies of dynamic light scattering and incoherent quasi-elastic neutron scattering (IQENS) on hydrogenous systems, namely polymeric aqueous solutions and alcohols. In the first topic, attention is focused on the peculiar hydration processes present in poly(ethylene oxide) aqueous solutions and their influence on translational diffusive properties. Dynamic light scattering shows that water behaves as a good solvent and furnishes the temperature evolution of the hydration number. IQENS, on the other hand, reveals the presence of entangled water and evidences the effects of H-bond on the diffusive motions. The second topic concerns the study of rotational diffusion in two isomeric alcohols, normal-pentanol and 2-methyl-2-butanol. The comparison of the rotational relaxation times, obtained by IQENS and light scattering, allows to separate the self particle contribution from the collective one. The results allow, following Angell's classification, to attribute a more fragile character to the tertiary isomer and a stronger one to the primary alcohol.

  12. Dynamic Light Scattering Study of Pig Vitreous Body

    NASA Astrophysics Data System (ADS)

    Matsuura, Toyoaki; Idota, Naokazu; Hara, Yoshiaki; Annaka, Masahiko

    The phase behaviors and dynamical properties of pig vitreous body were studied by macroscopic observation of swelling behavior and dynamic light scattering under various conditions. From the observations of the dynamics of light scattered by the pig vitreous body under physiological condition, intensity autocorrelation functions that revealed two diffusion coefficients, D fast and D slow were obtained. We developed the theory for describing the density fluctuation of the entities in the vitreous gel system with sodium hyaluronate filled in the meshes of collagen fiber network. The dynamics of collagen and sodium hyaluronate explains two relaxation modes of the fluctuation. The diffusion coefficient of collagen obtained from D fast and D slow is very close to that in aqueous solution, which suggests the vitreous body is in the swollen state. Divergent behavior in the measured total scattered light intensities and diffusion coefficients upon varying the concentration of salt (NaCl and CaCl2) was observed. Namely, a slowing down of the dynamic modes accompanied by increased “static” scattered intensities was observed. This is indicative of the occurrence of a phase transition upon salt concentration.

  13. The Scattering of Light III. External Scattering from a Finite Molecular Fluid

    NASA Astrophysics Data System (ADS)

    Hynne, F.; Bullough, R. K.

    1990-03-01

    We calculate the external incoherent scattering from a finite molecular fluid exposed to a weak, external, coherent electromagnetic field. The scattered field is detected outside the fluid and the system models a real scattering experiment in all its aspects. The analysis is based on a classical all order many-body theory developed in two previous papers. The theory is microscopic, i.e. is developed ab initio and in detail in terms of individual scattering processes in vacuo at a strictly molecular level. But it is shown that the collective action of these generates all of the macroscopic features expected in the external scattering: for example, the refractive index, as it was calculated previously from the many-body theory, plays much of its expected macroscopic role. These macroscopic results are reached by showing that the complete scattering process (from a wave incident in vacuo on the fluid to a wave in vacuo scattered from the fluid) separates into three independent collective processes compactly described by a particular quadrilinear form quadratic in a field E induced in the fluid by any coherent external field, and quadratic in a `weight' field ɛ describing the scattered field in the fluid. The internal fields E and ɛ couple separately to the external incoming field and to one representing the external scattered field respectively. In each case they account for all collective surface effects. The kernel of the quadrilinear form accounts for all of the internal scattering processes in the fluid. The weight field ɛ and the equations associated with it describe refraction and (multiple) internal reflection of the scattered light at the surface of the medium in all details: these collective surface effects are managed in a very effective way through a new reciprocity principle derived from the microscopic theory and containing a new form of optical extinction theorem for external scattering. The kernel of the quadrilinear form for internal scattering has

  14. Incorporating hydrangea-like titanium dioxide light scatterer with high dye-loading on the photoanode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Chen; Tang, Bing-Hong; Lu, Yen-Wei; Yu, Wan-Chin; Lin, Lu-Yin; Wu, Ren-Jang

    2016-07-01

    The light scattering layer is significant for dye-sensitized solar cells (DSSCs) to harvest incident light more efficiently and excite larger amounts of electrons. Hydrangea-like TiO2 (Hsbnd TiO2) and coral-like TiO2 (Csbnd TiO2) nanostructures are synthesized via a hydrothermal method without using templates. Both of the nanostructures are applied as the light scattering layer for DSSCs with the commercial P90 TiO2 nanoparticles as the dye-adsorbed underlayer in the photoanodes. The DSSC with Hsbnd TiO2 as the light scattering layer achieves a higher light-to-electricity conversion efficiency (η) of 7.50% than those of 6.70% and 6.61% for the cells with Csbnd TiO2 and commercial TiO2 as the light scattering layer, and of 6.41% for the DSSC without a light scattering layer in its photoanode, mainly due to the enhanced photocurrent density through the abundant dye adsorption coupled with the inherent light scattering ability for the former case. The results indicate that not only the importance of the light scattering layer in the photoanode but the morphology of the nanostructure composed of the light scattering layer plays great roles on the light scattering and the dye-adsorbing capabilities. The incident photon-to-current efficiency the electrochemical impedance spectroscopy measurements are also applied to analyze the electrochemical performance of the resulting DSSCs.

  15. Light Scattering by Fractal Dust Aggregates. I. Angular Dependence of Scattering

    NASA Astrophysics Data System (ADS)

    Tazaki, Ryo; Tanaka, Hidekazu; Okuzumi, Satoshi; Kataoka, Akimasa; Nomura, Hideko

    2016-06-01

    In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T-matrix method, and the results were then compared with those obtained using the Rayleigh–Gans–Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster–cluster agglomerates (BCCAs) and ballistic particle–cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.

  16. Ultrasharp light-scattering resonances of structured nanospheres: effects of size-dependent dielectric functions

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Boris N.; Khlebtsov, Nikolai G.

    2006-07-01

    Recently, Chen et al. [J. Biomed. Opt. Vol. 10, 024005 (2005)] reported on the concept of multicolor molecular imaging, which uses resonant light-scattering spectroscopy of multilayer nanospheres. They claimed that the resonance scattering peaks of three-layer nanoshells can be designed so that the ultrasharp widths are as narrow as 10 nm. Here we show that such ultrasharp labels cannot be fabricated in reality because the effects of size-dependent dielectric functions result in the five- to tenfold broadening of resonant scattering peaks. Furthermore, contrary to the data of Chen et al., we did not find any significant advantages of three-layer structures, as compared with the usual silica/metal nanoshells.

  17. Absorption and elastic scattering of light by particle aggregates.

    PubMed

    Quinten, M; Kreibig, U

    1993-10-20

    Light scattering and absorption by spherical particles is extended to aggregates of spheres with arbitrary shape and size. We applied the theory of G6rardy and Ausloos [Phys. Rev. B 25, 4204-4229 (1082)] to compute the total extinction loss spectra of several aggregates of nanometer-sized silver spheres from the near IR to the near UV. Silver was best suited to provide quantitative comparison with experiments concerning the scattering and absorption in the visible spectral region. Additional resonant extinction was obtained besides the resonant extinction of the single silver sphere. The spectra were discussed in detail to give general results that are independent of the particle material. PMID:20856447

  18. Cooperative scattering of light and atoms in ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Uys, H.; Meystre, P.

    2008-07-01

    Superradiance and coherent atomic recoil lasing are two closely related phenomena, both resulting from the cooperative scattering of light by atoms. In ultracold atomic gases below the critical temperature for Bose-Einstein condensation these processes take place with the simultaneous amplification of the atomic matter waves. We explore these phenomena by surveying some of the experimental and theoretical developments that have emerged in this field of study since the first observation of superradiant scattering from a Bose-Einstein condensate in 1999 [1].

  19. Halos and rainbows: The elastic scattering of light exotic nuclei

    SciTech Connect

    Satchler, G.R.; Hussein, M.H.

    1993-10-01

    The scattering of an exotic light nucleus with a halo is compared with that of a normal nucleus. Four, sometimes opposing effects arising from the halo are identified. Semiclassical expressions are derived which embody these effects. The cases of {sup 11}Li and {sup 11}C scattering from {sup 12}C at E/A = 60 MeV are compared. We conclude that the {sup 11}Li differential cross sections are probably smaller than those for {sup 11}C, in agreement with recent analyses of the measurements.

  20. Debye series for light scattering by a coated nonspherical particle

    SciTech Connect

    Xu Feng; Lock, James A.

    2010-06-15

    By using the extended boundary condition method, the Debye series is developed for light scattered by a coated nonspherical particle in order to interpret the angular dependence of the scattered intensity in terms of various physical processes. Numerical calculations are performed to study the influence of the coating thickness and the ellipticity of a coated spheroid on the angular position of the {alpha} and {beta} primary rainbows, which are produced by partial waves experiencing one internal reflection. The hyperbolic umbilic focal section is demonstrated and is analyzed for both the {alpha} and the {beta} rainbows.

  1. Debye series for light scattering by a coated nonspherical particle

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Lock, James A.

    2010-06-01

    By using the extended boundary condition method, the Debye series is developed for light scattered by a coated nonspherical particle in order to interpret the angular dependence of the scattered intensity in terms of various physical processes. Numerical calculations are performed to study the influence of the coating thickness and the ellipticity of a coated spheroid on the angular position of the α and β primary rainbows, which are produced by partial waves experiencing one internal reflection. The hyperbolic umbilic focal section is demonstrated and is analyzed for both the α and the β rainbows.

  2. Characterization of super smooth surfaces by light scattering techniques

    NASA Astrophysics Data System (ADS)

    Mattsson, Lars H.

    1989-03-01

    A characteristic feature of a supersmooth surface is its low scatter. The scatter is proportional to the square of the rms surface roughness. Therefore, light scattering is a suitable and nondestructive method for characterization of smooth surfaces. It is possible to detect scattering created by height differences of a few atomic layers but the lateral sensitivity is limited to the order of the wavelength, ~0.5μm. The new F 1048-87 ASTM standard test method for measuring the effective surface roughness of optical components is based on total integrated scattering (TIS). The amount of scattering, caused by the surface roughness, is of primary interest for optical applications, while the roughness itself is of greater concern in the fields of microelectronics and magnetic memory storage. This paper will highlight the use of a low noise TIS instrument for characterization of sub-Å roughness on semiconductor wafers, for thin film characterization, and for detection of traces of contamination on silicon surfaces.

  3. Orientation-Preserving Transfer and Directional Light Scattering from Individual Light-Bending Nanoparticles

    SciTech Connect

    Zhang, Yu; Barhoumi, Aoune; Lassiter, J. Britt; Halas, Naomi J.

    2011-04-13

    A nanocup, or semishell, is an asymmetric plasmonic “Janus” nanoparticle with electric and magnetic plasmon modes; the latter scatters light in a direction controlled by nanoparticle orientation, making it the nanoscale analog of a parabolic antenna. Here we report a method for transferring nanocups from their growth substrate to oxide-terminated substrates that precisely preserves their three-dimensional orientation, enabling their use as nanophotonic components. This enables us to selectively excite and probe the electric and magnetic plasmon modes of individual nanocups, showing how the scattered light depends on the direction of incoming light and the orientation of this nanoparticle antenna.

  4. Efficient light scattering in plasmonic light trapping designs for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ji, Liming; Varadan, Vasundara V.

    2015-04-01

    Plasmonic structures have been proposed for enhancing light absorption in thin film solar cells, for which insufficient light absorption is a limiting factor for further improvement of efficiency. The optical path of light in the absorber layer of a solar cell is increased due to the enhanced light scattering by plasmonic structures at resonance. This process involves two steps of energy conversion: light-electron and then electron-light. The first step couples optical energy into the kinetic energy of collective electron motions in plasmonic structures, forming oscillating current. This step is easy to implement as long as plasmonic structures are at resonance. The second step releases the energy from electrons to photons. An efficient release of photon energy is a must for solar cell applications and it is dependent on the two competing effects: light scattering and field localization that results in heat loss. Theoretical discussions and simulation work are provided in the paper. The scattering of light by a plasmonic structure is analyzed based on the antenna radiation theory. Three factors are found to be important for the efficiency of a plasmonic light trapping design: the radiation of each unit structure, the array factor and the energy feeding of the structure. An efficient plasmonic light trapping design requires proper considerations of all the three factors.

  5. In situ measurement of inelastic light scattering in natural waters

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda < 510nm is negligible for the whole water column, and this percentage increases with depth at /lambda > 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to

  6. Real-time detection of concealed chemical hazards under ambient light conditions using Raman spectroscopy.

    PubMed

    Cletus, Biju; Olds, William; Fredericks, Peter M; Jaatinen, Esa; Izake, Emad L

    2013-07-01

    Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for noninvasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs, and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper, and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than 1 min. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers, and customs checkpoints. PMID:23692353

  7. Long-wavelength scattered-light halos in ASC CCDs

    NASA Astrophysics Data System (ADS)

    Sirianni, Marco; Clampin, Mark; Hartig, George F.; Rafal, Marc D.; Ford, Holland C.; Golimowski, David A.; Tremonti, C.; Illingworth, Garth; Blouke, Morley M.; Lesser, Michael P.; Burmester, William; Kimble, Randy A.; Sullivan, Pamela; Krebs, Carolyn A.; Yagelowicz, John

    1998-07-01

    During the ground calibration of the Space Telescope Imaging Spectrograph (STIS) large scattered light haloes were identified in images of point sources and long slit spectral images at long wavelengths (greater than 750 nm). The long wavelength scattering was traced to the SITe 1024 X 1024 CCD and its header package, raising concerns for the performance of the Advanced Camera for Surveys (ACS) CCD detectors. ACS is a third generation axial instrument for the Hubble Space Telescope (HST) and will be installed during the 1999 Servicing Mission. Two of the ACS imaging channels employ SITe CCDs, so the ACS team have conducted a study of the long- wavelength scattering, in collaboration with SITe, to assess the impact to the ACS science program and develop a solution. In this paper we discuss our solution, its implementation on ACS CCDs, and describe the results of initial tests.

  8. Paper area density measurement from forward transmitted scattered light

    DOEpatents

    Koo, Jackson C.

    2001-01-01

    A method whereby the average paper fiber area density (weight per unit area) can be directly calculated from the intensity of transmitted, scattered light at two different wavelengths, one being a non-absorpted wavelength. Also, the method makes it possible to derive the water percentage per fiber area density from a two-wavelength measurement. In the optical measuring technique optical transmitted intensity, for example, at 2.1 microns cellulose absorption line is measured and compared with another scattered, optical transmitted intensity reference in the nearby spectrum region, such as 1.68 microns, where there is no absorption. From the ratio of these two intensities, one can calculate the scattering absorption coefficient at 2.1 microns. This absorption coefficient at this wavelength is, then, experimentally correlated to the paper fiber area density. The water percentage per fiber area density can be derived from this two-wavelength measurement approach.

  9. Angularly-resolved elastic light scattering of micro-particles

    NASA Astrophysics Data System (ADS)

    Aptowicz, Kevin B.

    From microbiology to astrophysics, the scientific community has long embraced elastic light scattering from small particles as a diagnostic tool. Elastic light scattering has an extremely large scattering cross-section, allowing for single particle interrogation. This is critical in applications where trace amounts of suspect particles are to be detected in a diverse background of natural aerosols. By angularly-resolving the elastically scattered light, features can be detected in these patterns that are sensitive to a particle's morphology (shape, size, internal structure, and composition). An apparatus to collect LA TAOS (Large-Angle Two-dimensional Angular Optical Scattering) patterns from single particles in-situ and in real-time was designed and constructed. The setup utilizes a cross-beam trigger system to minimize the effects of the aberration coma stemming from the main collection optic, an ellipsoidal mirror. LA TAOS patterns of ambient aerosols were collected and analyzed. Approximately 15% of the ambient aerosol had a sphere-like shape. The refractive index of these spheres was estimated by curve-fitting to Lorenz-Mie theory. In addition, the island features prevalent in the LA TAOS pattern were analyzed. Metrics generated from these were used to get partial discrimination between clusters of Bacillus subtilis spores (a simulant for anthrax) and aerosol particles found in the ambient atmosphere. A novel experimental setup for collecting simultaneously LA TAOS patterns at two wavelengths in the mid-infrared was also implemented. With this setup, the relative strength of single-particle absorption could be discerned at the two illuminating wavelengths.

  10. Surface diagnostics by ion scattering spectroscopy in gaseous environment

    NASA Astrophysics Data System (ADS)

    Mamedov, N. V.; Kurnaev, V. A.; Sinelnikov, D. N.; Kolodko, D. V.

    2016-01-01

    Nowadays, it is important to perform in-situ analysis of composition and thickness of ultra-thin (∼5-50 Å) surface layers in the course of the surface exposure to plasma or its components. For this aim, a new experimental facility based on the MEPhI Mass Monochromator is being developed, where low and medium energy ion spectroscopy of samples is used just after or during plasma exposure/ion treatment. A differentially pumped energy analyzer is used for recoil ion spectroscopy under grazing incidence conditions in the automated ion mass monochromator. A built-in Penning plasma source is used for plasma/ion treatment of samples. In this paper, the influence of the working gas (during the plasma source operation) on the energy spectra of reflected and recoil ions is studied. It is shown that the peak shape of the energy spectrum of scattered H+ ions increases during gas injection, and, at the same time, the signal intensity of the ionized recoils from the sample decreases. Nevertheless, analysis of the surface composition and thickness of the outer layer could be done at pressures ranging up to 10-4 Torr.

  11. A Possible Application of Coherent Light Scattering on Biological Fluids

    NASA Astrophysics Data System (ADS)

    Chicea, Dan; Chicea, Liana Maria

    2007-04-01

    Human urine from both healthy patients and patients with different diseases was used as scattering medium in a coherent light scattering experiment. The time variation of the light intensity in the far field speckle image was acquired using a data acquisition system on a PC and a time series resulted for each sample. The autocorrelation function for each sample was calculated and the autocorrelation time was determined. The same samples were analyzed in a medical laboratory using the standard procedure. We found so far that the autocorrelation time is differently modified by the presence of pus, albumin, urobilin and sediments. The results suggest a fast procedure that can be used as laboratory test to detect the presence not of each individual component in suspensions but of big conglomerates as albumin, cylinders, oxalate crystals.

  12. Space telescope low scattered light camera - A model

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Kuper, T. G.; Shack, R. V.

    1982-01-01

    A design approach for a camera to be used with the space telescope is given. Camera optics relay the system pupil onto an annular Gaussian ring apodizing mask to control scattered light. One and two dimensional models of ripple on the primary mirror were calculated. Scattered light calculations using ripple amplitudes between wavelength/20 wavelength/200 with spatial correlations of the ripple across the primary mirror between 0.2 and 2.0 centimeters indicate that the detection of an object a billion times fainter than a bright source in the field is possible. Detection of a Jovian type planet in orbit about alpha Centauri with a camera on the space telescope may be possible.

  13. Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor.

    PubMed

    Herffurth, Tobias; Schröder, Sven; Trost, Marcus; Duparré, Angela; Tünnermann, Andreas

    2013-05-10

    Light scattering measurement and analysis is a powerful tool for the characterization of optical and nonoptical surfaces. A new 3D scatter measurement system based on a detector matrix is presented. A compact light-scatter sensor is used to characterize the scattering and nanostructures of surfaces and to identify the origins of anisotropic scattering features. The results from the scatter sensor are directly compared with white light interferometry to analyze surface defects as well as surface roughness and the corresponding scattering distributions. The scattering of surface defects is modeled based on the Kirchhoff integral equation and the approach of Beckmann for rough surfaces. PMID:23669841

  14. Light pulse propagation and charge carrier scattering in semiconductor amplifiers

    SciTech Connect

    Binder, R.; Knorr, A.; Koch, S.W.

    1994-12-31

    The carrier dynamics in inverted semiconductors (optical amplifiers) and light pulse propagations in optical amplifiers have been studied extensively both theoretically and experimentally. Light induced carrier heating processes, which are caused, for example, by two-photon absorption and free carrier absorption, have been studied mainly on the basis of phenomenological models. The full microscopic theory of these processes and their influence on light pulse propagation is still an unsolved problem. Here, the authors present theoretical results on light pulse propagation in inverted semiconductors and semiconductor laser diodes. The theory is based on the semiconductor Maxwell Bloch equations and includes incoherent phenomena due to charge-carrier scattering based on the solution of the appropriate Boltzman equation.

  15. Metamaterials. Invisibility cloaking in a diffusive light scattering medium.

    PubMed

    Schittny, Robert; Kadic, Muamer; Bückmann, Tiemo; Wegener, Martin

    2014-07-25

    In vacuum, air, and other surroundings that support ballistic light propagation according to Maxwell's equations, invisibility cloaks that are macroscopic, three-dimensional, broadband, passive, and that work for all directions and polarizations of light are not consistent with the laws of physics. We show that the situation is different for surroundings leading to multiple light scattering, according to Fick's diffusion equation. We have fabricated cylindrical and spherical invisibility cloaks made of thin shells of polydimethylsiloxane doped with melamine-resin microparticles. The shells surround a diffusively reflecting hollow core, in which arbitrary objects can be hidden. We find good cloaking performance in a water-based diffusive surrounding throughout the entire visible spectrum and for all illumination conditions and incident polarizations of light. PMID:24903561

  16. Light source for narrow and broadband coherent Raman scattering microspectroscopy.

    PubMed

    Brinkmann, Maximilian; Dobner, Sven; Fallnich, Carsten

    2015-12-01

    We present a light source that is well adapted to both narrow- and broadband coherent Raman scattering (CRS) methods. Based on a single oscillator, the light source delivers synchronized broadband pulses via supercontinuum generation and narrowband, frequency-tunable pulses via four-wave mixing in a photonic crystal fiber. Seeding the four-wave mixing with a spectrally filtered part of the supercontinuum yields high-pulse energies up to 8 nJ and the possibility of scanning a bandwidth of 2000  cm(-1) in 25 ms. All pulses are emitted with a repetition frequency of 1 MHz, which ensures efficient generation of CRS signals while avoiding significant damage of the samples. Consequently, the light source combines the performance of individual narrow- and broadband CRS light sources in one setup, thus enabling hyperspectral imaging and rapid single-resonance imaging in parallel. PMID:26625022

  17. Capillary-scale direct measurement of hemoglobin concentration of erythrocytes using photothermal angular light scattering.

    PubMed

    Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin

    2015-12-15

    We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. PMID:26176206

  18. Development of a versatile laser light scattering instrument

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Ansari, Rafat R.

    1992-01-01

    NASA Lewis Research Center is providing and coordinating the technology for placing a compact Laser Light Scattering (LLS) instrument in a microgravity environment. This will be accomplished by defining and assessing user requirements for microgravity experiments, coordinating needed technological developments, and filling technical gaps. This effort is striving to brassboard and evaluate a miniature multi-angle LLS instrument. The progress of the program is reported.

  19. Light scattering measurements supporting helical structures for chromatin in solution.

    PubMed

    Campbell, A M; Cotter, R I; Pardon, J F

    1978-05-01

    Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model. PMID:662693

  20. Using light scattering to evaluate the separation of polydisperse nanoparticles.

    PubMed

    Galyean, Anne A; Vreeland, Wyatt N; Filliben, James J; Holbrook, R David; Ripple, Dean C; Weinberg, Howard S

    2015-07-30

    The analysis of natural and otherwise complex samples is challenging and yields uncertainty about the accuracy and precision of measurements. Here we present a practical tool to assess relative accuracy among separation protocols for techniques using light scattering detection. Due to the highly non-linear relationship between particle size and the intensity of scattered light, a few large particles may obfuscate greater numbers of small particles. Therefore, insufficiently separated mixtures may result in an overestimate of the average measured particle size. Complete separation of complex samples is needed to mitigate this challenge. A separation protocol can be considered improved if the average measured size is smaller than a previous separation protocol. Further, the protocol resulting in the smallest average measured particle size yields the best separation among those explored. If the differential in average measured size between protocols is less than the measurement uncertainty, then the selected protocols are of equivalent precision. As a demonstration, this assessment metric is applied to optimization of cross flow (V(x)) protocols in asymmetric flow field flow fractionation (AF(4)) separation interfaced with online quasi-elastic light scattering (QELS) detection using mixtures of polystyrene beads spanning a large size range. Using this assessment metric, the V(x) parameter was modulated to improve separation until the average measured size of the mixture was in statistical agreement with the calculated average size of particles in the mixture. While we demonstrate this metric by improving AF(4) V(x) protocols, it can be applied to any given separation parameters for separation techniques that employ dynamic light scattering detectors. PMID:26320655

  1. Periodic or random nanostructures for light scattering control

    NASA Astrophysics Data System (ADS)

    Berginc, Gerard

    2016-04-01

    Our paper mainly focuses on the control of light scattering by periodic or randomly rough structures. First designed with bi-periodical structures, antireflective surfaces can be achieved with random patterns. We present some new structures with periodic or random patterns, which have been designed by rigorous numerical methods (FDTD) or analytical methods. We show that random interfaces offer new degrees of freedom and possibilities by control of their statistical properties.

  2. Elasticity of biomembranes studied by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Fujime, Satoru; Miyamoto, Shigeaki

    1991-05-01

    Combination of osmotic swelling and dynamic light scattering makes it possible to measure the elastic modulus of biomembranes. By this technique we have observed a drastic increase in membrane flexibility on activation of Na/glucose cotransporters in membrane vesicles prepared from brush-borders of rat small intestine and on activation by micromolar [Ca2] of exocytosis in secretory granules isolated from rat pancreatic acinar cells and bovine adrenal chromaffin cells. 1 .

  3. Light scattering studies of an electrorheological fluid in oscillatory shear

    SciTech Connect

    Martin, J.E.; Odinek, J.

    1995-12-31

    We have conducted a real time, two-dimensional light scattering study of the nonlinear dynamics of field-induced structures in an electrorheological fluid subjected to oscillatory shear. We have developed a kinetic chain model of the observed dynamics by considering the response of a fragmenting/aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. This structural theory is then used to describe the nonlinear rheology of ER fluids.

  4. Fiber optic detector probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Wu, Chi; Chu, Benjamin

    1989-01-01

    An experimental investigation of the role of fiber optic detector probes in laser light scattering is presented. A quantitative comparison between different detector configurations is accomplished by measuring the time taken for one million photocounts to be accumulated in the extrapolated zeroth delay channel of the net unnormalized intensity time correlation function. A considerable reduction in the accumulation time is achieved by relaxing a rather stringent requirement for the spatial coherence of the optical field.

  5. Light scattering by microorganisms in the open ocean

    NASA Astrophysics Data System (ADS)

    Stramski, Dariusz; Kiefer, Dale A.

    Recent enumeration and identification of marine particles that are less than 2μm in diameter, suggests that they may be the major source of light scattering in the open ocean. The living components of these small particles include viruses, heterotrophic and photoautotrophic bacteria and the smallest eucaryotic cells. In order to examine the relative contribution by these (and other) microorganisms to scattering, we have calculated a budget for both the total scattering and backscattering coefficients (at 550nm) of suspended particles. This budget is determined by calculating the product of the numerical concentration of particles of a given category and the scattering cross-section of that category. Values for this product are then compared to values for the particulate scattering coefficients predicted by the models of GORDON and MOREL (1983) and MOREL (1988). In order to make such a comparison, we have estimated both the total scattering and backscattering cross-section of various microbial components that include viruses, heterotrophic bacteria, prochlorophytes, cyanobacteria, ultrananoplankton (2-8μm), larger nanoplankton (8-20μm) and microplankton (>20 μm). Such determinations are based upon Mie scattering calculations and measurements of the cell size distribution and the absorption and scattering coefficients of microbial cultures. In addition, we have gathered published information on the numerical concentration of living and detrial marine particles in the size range from 0.03 to 100μm. The results of such a study are summarized as follows. The size distribution of microorganisms in the ocean roughly obeys an inverse 4th power law over three orders of magnitude in cell diameter, from 0.2 to 100μm. Thus, the size distribution of living organisms is similar to that for total particulate matter as determined by electronic particle counters. For representative values of refractive index, it appears that most of the scattering in the sea comes from

  6. Light Scattering and Intermediate Range Order in Glasses: Nanoscale Inhomogeneities.

    NASA Astrophysics Data System (ADS)

    Schroeder, John; Kratzer, Joseph H.; Moynihan, Cornelius T.; Hwa, Luu-Gen

    2002-03-01

    Light scattering from oxide and halide glasses at temperatures up to the glass transition region exhibits anomalous Rayleigh scattering. In all glasses a hysteresis effect is seen in the Rayleigh scattering intensity behavior when heating and cooling experiments are compared. This hysteresis effect in the Rayleigh scattering is an indication that an intermediate range order exists in these glasses. Measurements of the Boson peak, a low lying Raman line that is intrinsic to all glass systems, located about 20/cm to 110/cm from the exciting line frequency are identified with the existence of intermediate range order in glass. Large pressure induced changes in the Boson peak frequency location are observed and predicted from existing theory. The non-coincidence effect, a comparison of the Boson peak maximum location for isotropic versus anisotropic spectra, gives additional evidence that glasses have tendencies to form intermediate range order. This intermediate range order or nanoscale inhomogeneities extend from about two to five nanometers in size for the glasses under consideration. These nanoscale inhomogeneities will be identified as a possible source for non-exponential structural relaxation kinetics in all glasses. The nature of the Boson peak, the anomalous Rayleigh scattering and non-coincidence effect in glasses, is discussed with respect to their interrelationships in terms of existing theories.

  7. Screening for enzyme activity in turbid suspensions with scattered light.

    PubMed

    Huber, Robert; Wulfhorst, Helene; Maksym, Lukas; Stehr, Regina; Pöhnlein, Martin; Jäger, Gernot; Spiess, Antje C; Büchs, Jochen

    2011-01-01

    New screening techniques for improved enzyme variants in turbid media are urgently required in many industries such as the detergent and food industry. Here, a new method is presented to measure enzyme activity in different types of substrate suspensions. This method allows a semiquantitative determination of protease activity using native protein substrates. Unlike conventional techniques for measurement of enzyme activity, the BioLector technology enables online monitoring of scattered light intensity and fluorescence signals during the continuous shaking of samples in microtiter plates. The BioLector technique is hereby used to monitor the hydrolysis of an insoluble protein substrate by measuring the decrease of scattered light. The kinetic parameters for the enzyme reaction (V(max,app) and K(m,app)) are determined from the scattered light curves. Moreover, the influence of pH on the protease activity is investigated. The optimal pH value for protease activity was determined to be between pH 8 to 11 and the activities of five subtilisin serine proteases with variations in the amino acid sequence were compared. The presented method enables proteases from genetically modified strains to be easily characterized and compared. Moreover, this method can be applied to other enzyme systems that catalyze various reactions such as cellulose decomposition. PMID:21302369

  8. Photovoltaic structures having a light scattering interface layer and methods of making the same

    SciTech Connect

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  9. Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media

    PubMed Central

    Riley, Jason; Boukari, Hacène; Gandjbakhche, Amir; Nossal, Ralph

    2012-01-01

    Abstract. Fluorescence correlation spectroscopy (FCS) is increasingly being used to assess the movement of particles diffusing in complex, optically dense surroundings, in which case measurement conditions may complicate data interpretation. It is considered how a single-photon FCS measurement can be affected if the sample properties result in scattering of the incident light. FCS autocorrelation functions of Atto 488 dye molecules diffusing in solutions of polystyrene beads are measured, which acted as scatterers. Data indicated that a scattering-linked increase in the illuminated volume, as much as two fold, resulted in minimal increase in diffusivity. To analyze the illuminated beam profile, Monte-Carlo simulations were employed, which indicated a larger broadening of the beam along the axial than the radial directions, and a reduction of the incident intensity at the focal point. The broadening of the volume in the axial direction has only negligible effect on the measured diffusion time, since intensity fluctuations due to diffusion events in the radial direction are dominant in FCS measurements. Collectively, results indicate that multiple scattering does not result in FCS measurement artifacts and thus, when sufficient signal intensity is attainable, single-photon FCS can be a useful technique for measuring probe diffusivity in optically dense media. PMID:23208294

  10. Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media.

    PubMed

    Zustiak, Silviya; Riley, Jason; Boukari, Hacène; Gandjbakhche, Amir; Nossal, Ralph

    2012-12-01

    Fluorescence correlation spectroscopy (FCS) is increasingly being used to assess the movement of particles diffusing in complex, optically dense surroundings, in which case measurement conditions may complicate data interpretation. It is considered how a single-photon FCS measurement can be affected if the sample properties result in scattering of the incident light. FCS autocorrelation functions of Atto 488 dye molecules diffusing in solutions of polystyrene beads are measured, which acted as scatterers. Data indicated that a scattering-linked increase in the illuminated volume, as much as two fold, resulted in minimal increase in diffusivity. To analyze the illuminated beam profile, Monte-Carlo simulations were employed, which indicated a larger broadening of the beam along the axial than the radial directions, and a reduction of the incident intensity at the focal point. The broadening of the volume in the axial direction has only negligible effect on the measured diffusion time, since intensity fluctuations due to diffusion events in the radial direction are dominant in FCS measurements. Collectively, results indicate that multiple scattering does not result in FCS measurement artifacts and thus, when sufficient signal intensity is attainable, single-photon FCS can be a useful technique for measuring probe diffusivity in optically dense media. PMID:23208294

  11. Use of fluorescence signals generated by elastic scattering under monochromatic incident light for determining the scattering efficiencies of various plasmonic nanoparticles.

    PubMed

    Song, Ji Eun; Park, Ji Hoon; La, Ju A; Park, Seyeon; Jeong, Min Kuk; Cho, Eun Chul

    2016-08-01

    We present a route that estimates the scattering/absorption characteristics of plasmonic nanoparticles by using fluorescence and UV-visible spectroscopy. Because elastic scattering of nanoparticles caused by a monochromatic incident light is reflected in fluorescence emission spectra when recording at the excitation wavelength, the scattering intensities at the excitation wavelength during fluorescence emission scans are used to compare the scattering characteristics of various plasmonic nanoparticles under conditions where the extinction values of all of the nanoparticles are kept constant at this wavelength. For the two excitation wavelengths (519 and 560 nm) we investigated, the scattering intensities of spherical gold nanoparticles increase with increasing size (15, 33, 51, 73, and 103 nm in diameter). These results are correlated with the nanoparticles' scattering efficiencies (the ratios of scattering to the extinction cross-sections), which are theoretically calculated in the literature using Mie theory. Then, linear calibration equations at each wavelength are derived to estimate the scattering efficiencies of two Au nanorods, Au nanocages, and spherical Ag nanoparticles (15, 25, 37, and 62 nm). The values are very comparable with literature values. For various purposes such as biomedicine and optoelectronics, the present method could be beneficial to those who wish to easily compare and determine the scattering characteristics of various plasmonic nanoparticles at a certain wavelength by using commercially-available spectroscopic techniques. PMID:27215291

  12. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    SciTech Connect

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  13. Light scattering and dynamics of interacting Brownian particles

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1982-01-01

    The relative motions of interacting Brownian particles in liquids may be described as radial diffusion in an effective potential of the mean force. By using a harmonic approximation for the effective potential, the intermediate scattering function may also be evaluated. For polystyrene spheres of 250 A mean radius in aqueous environment at 0.00125 g/cu cm concentration, the results for the calculated mean square displacement are in qualitative agreement with experimental data from photon correlation spectroscopy. Because of the interactions, the functions deviate considerably from the exponential forms for the free particles.

  14. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?

    NASA Astrophysics Data System (ADS)

    Voudouris, P.; Gomopoulos, N.; Le Grand, A.; Hadjichristidis, N.; Floudas, G.; Ediger, M. D.; Fytas, G.

    2010-02-01

    The primary α-relaxation time (τα) for molecular and polymeric glass formers probed by dielectric spectroscopy and two light scattering techniques (depolarized light scattering and photon correlation spectroscopy) relates to the decay of the torsional autocorrelation function computed by molecular dynamics simulation. It is well known that Brillouin light scattering spectroscopy (BLS) operating in gigahertz frequencies probes a fast (10-100 ps) relaxation of the longitudinal modulus M∗. The characteristic relaxation time, irrespective of the fitting procedure, is faster than the α-relaxation which obeys the non-Arrhenius Vogel-Fulcher-Tammann equation. Albeit, this has been noticed, it remains a puzzling finding in glass forming systems. The available knowledge is based only on temperature dependent BLS experiments performed, however, at a single wave vector (frequency). Using a new BLS spectrometer, we studied the phonon dispersion at gigahertz frequencies in molecular [o-terphenyl (OTP)] and polymeric [polyisoprene (PI) and polypropylene (PP)] glass formers. We found that the hypersonic dispersion does relate to the glass transition dynamics but the disparity between the BLS-relaxation times and τα is system dependent. In PI and PP, the former is more than one order of magnitude faster than τα, whereas the two relaxation times become comparable in the case of OTP. The difference between the two relaxation times appears to relate to the "breadth" of the relaxation time distribution function. In OTP the α-relaxation process assumes a virtually single exponential decay at high temperatures well above the glass transition temperature, in clear contrast with the case of the amorphous bulk polymers.

  15. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?

    PubMed

    Voudouris, P; Gomopoulos, N; Le Grand, A; Hadjichristidis, N; Floudas, G; Ediger, M D; Fytas, G

    2010-02-21

    The primary alpha-relaxation time (tau(alpha)) for molecular and polymeric glass formers probed by dielectric spectroscopy and two light scattering techniques (depolarized light scattering and photon correlation spectroscopy) relates to the decay of the torsional autocorrelation function computed by molecular dynamics simulation. It is well known that Brillouin light scattering spectroscopy (BLS) operating in gigahertz frequencies probes a fast (10-100 ps) relaxation of the longitudinal modulus M*. The characteristic relaxation time, irrespective of the fitting procedure, is faster than the alpha-relaxation which obeys the non-Arrhenius Vogel-Fulcher-Tammann equation. Albeit, this has been noticed, it remains a puzzling finding in glass forming systems. The available knowledge is based only on temperature dependent BLS experiments performed, however, at a single wave vector (frequency). Using a new BLS spectrometer, we studied the phonon dispersion at gigahertz frequencies in molecular [o-terphenyl (OTP)] and polymeric [polyisoprene (PI) and polypropylene (PP)] glass formers. We found that the hypersonic dispersion does relate to the glass transition dynamics but the disparity between the BLS-relaxation times and tau(alpha) is system dependent. In PI and PP, the former is more than one order of magnitude faster than tau(alpha), whereas the two relaxation times become comparable in the case of OTP. The difference between the two relaxation times appears to relate to the "breadth" of the relaxation time distribution function. In OTP the alpha-relaxation process assumes a virtually single exponential decay at high temperatures well above the glass transition temperature, in clear contrast with the case of the amorphous bulk polymers. PMID:20170250

  16. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  17. Multispectral light scattering imaging and multivariate analysis of airborne particulates

    NASA Astrophysics Data System (ADS)

    Holler, Stephen; Skelsey, Charles R.; Fuerstenau, Stephen D.

    2005-05-01

    Light scattering patterns from non-spherical particles and aggregates exhibit complex structure that is only revealed when observing in two angular dimensions. However, due to the varied shape and packing of such aerosols, the rich structure in the two-dimensional angular optical scattering (TAOS) pattern varies from particle to particle. We examine two-dimensional light scattering patterns obtained at multiple wavelengths using a single CCD camera with minimal cross talk between channels. The integration of the approach with a single CCD camera assures that data is acquired within the same solid angle and orientation. Since the optical size of the scattering particle is inversely proportional to the illuminating wavelength, the spectrally resolved scattering information provides characteristic information about the airborne particles simultaneously in two different scaling regimes. The simultaneous acquisition of data from airborne particulate matter at two different wavelengths allows for additional degrees of freedom in the analysis and characterization of the aerosols. Whereas our previous multivariate analyses of aerosol particles has relied solely on spatial frequency components, our present approach attempts to incorporate the relative symmetry of the particledetector system while extracting information content from both spectral channels. In addition to single channel data, this current approach also examines relative metrics. Consequently, we have begun to employ multivariate techniques based on novel morphological descriptors in order to classify "unknown" particles within a database of TAOS patterns from known aerosols utilizing both spectral and spatial information acquired. A comparison is made among several different classification metrics, all of which show improved classification capabilities relative to our previous approaches.

  18. Light Scattering and Absorption Studies of Sickle Cell Hemoglobin

    NASA Astrophysics Data System (ADS)

    Kim-Shapiro, Daniel

    1997-11-01

    The use of physical techniques has been very important in understanding the pathophysiology of sickle cell disease. In particular, light scattering and absorption studies have been used to measure the kinetics of sickle cell hemoglobin polymerization and depolymerization (melting). The theory of sickle cell polymerization that has been derived and tested by these methods has not only led to an increased understanding of the pathophysiology of the disease but has also led to improved treatment strategies. Sickle cell disease effects about 1 out of 600 people of African descent born in the United States. The disease is caused by a mutant form of hemoglobin (the oxygen transporting molecule in the blood), hemoglobin S (HbS), which differs from normal adult hemoglobin by the substitution of a single amino acid for another. The polymerization of HbS, which occurs under conditions of low oxygen pressure, causes distortion and increased rigidity of the sickle red blood cell that leads to blockage of the capillaries and a host of resulting complications. The disease is associated with tissue damage, severe painful crises and a high degree of mortality. Light scattering studies of purified HbS and whole cells (conducted by F.A. Ferrone, J. Hofrichter, W.A. Eaton, and their associates) have been used to determine the mechanism of HbS polymerization. Polymerization will generally not occur when the hemoglobin is in an oxygen-rich environment. The question is, when HbS is rapidly deoxygenated (as it is when going from the lungs to the tissues) what is the kinetics of polymerization? Photolysis methods were used to rapidly deoxygenate HbS and light scattering was used as a function of time to measure the kinetics of polymerization. Polarized light scattering may be a more effective way to measure polymer content than total intensity light scattering. It was found that no polymerization occurs during a period of time called the delay time and subsequent polymerization occurs

  19. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    NASA Astrophysics Data System (ADS)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and

  20. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  1. Stray Light Correction in the Optical Spectroscopy of Crystals

    PubMed Central

    Hendler, Richard W.; Meuse, Curtis W.; Gallagher, Travis; Labahn, Joerg; Kubicek, Jan; Smith, Paul D.; Kakareka, John W.

    2015-01-01

    It has long been known in spectroscopy that light not passing through a sample, but reaching the detector (i.e., stray light), results in a distortion of the spectrum known as absorption flattening. In spectroscopy with crystals, one must either include such stray light or take steps to exclude it. In the former case, the derived spectra are not accurate. In the latter case, a significant amount of the crystal must be masked off and excluded. In this paper, we describe a method that allows use of the entire crystal by correcting the distorted spectrum. PMID:26688880

  2. Stray-light suppression with high-collection efficiency in laser light-scattering experiments

    NASA Technical Reports Server (NTRS)

    Deilamian, K.; Gillaspy, J. D.; Kelleher, D. E.

    1992-01-01

    An optical system is described for collecting a large fraction of fluorescent light emitted isotropically from a cylindrical interaction region. While maintaining an overall detection efficiency of 9 percent, the system rejects, by more than 12 orders of magnitude, incident laser light along a single axis that intersects the interaction region. Such a system is useful for a wide variety of light-scattering experiments in which high-collection efficiency is desirable, but in which light from an incident laser beam must be rejected without resorting to spectral filters.

  3. An electro-optic modulator-assisted wavevector-resolving Brillouin light scattering setup.

    PubMed

    Neumann, T; Schneider, T; Serga, A A; Hillebrands, B

    2009-05-01

    Brillouin light scattering spectroscopy is a powerful technique which incorporates several extensions such as space-, time-, phase-, and wavevector-resolution. Here, we report on the improvement of the wavevector-resolving setup by including an electro-optic modulator. This provides a reference to calibrate the position of the diaphragm hole which is used for wavevector selection. The accuracy of this calibration is only limited by the accuracy of the wavevector measurement itself. To demonstrate the validity of the approach the wavevectors of dipole-dominated spin waves excited by a microstrip antenna were measured. PMID:19485518

  4. Light scattering Q-space analysis of irregularly shaped particles

    NASA Astrophysics Data System (ADS)

    Heinson, Yuli W.; Maughan, Justin B.; Heinson, William R.; Chakrabarti, Amitabha; Sorensen, Christopher M.

    2016-01-01

    We report Q-space analysis of light scattering phase function data for irregularly shaped dust particles and of theoretical model output to describe them. This analysis involves plotting the scattered intensity versus the magnitude of the scattering wave vector q = (4π/λ)sin(θ/2), where λ is the optical wavelength and θ is the scattering angle, on a double-logarithmic plot. In q-space all the particle shapes studied display a scattering pattern which includes a q-independent forward scattering regime; a crossover, Guinier regime when q is near the inverse size; a power law regime; and an enhanced backscattering regime. Power law exponents show a quasi-universal functionality with the internal coupling parameter ρ'. The absolute value of the exponents start from 4 when ρ' < 1, the diffraction limit, and decreases as ρ' increases until a constant 1.75 ± 0.25 when ρ' ≳ 10. The diffraction limit exponent implies that despite their irregular structures, all the particles studied have mass and surface scaling dimensions of Dm = 3 and Ds = 2, respectively. This is different from fractal aggregates that have a power law equal to the fractal dimension Df because Df = Dm = Ds < 3. Spheres have Dm = 3 and Ds = 2 but do not show a single power law nor the same functionality with ρ'. The results presented here imply that Q-space analysis can differentiate between spheres and these two types of irregularly shaped particles. Furthermore, they are applicable to analysis of the contribution of aerosol radiative forcing to climate change and of aerosol remote sensing data.

  5. Enhanced photoluminescence of Si nanocrystals-doped cellulose nanofibers by plasmonic light scattering

    SciTech Connect

    Sugimoto, Hiroshi; Zhang, Ran; Reinhard, Björn M.; Fujii, Minoru; Perotto, Giovanni; Marelli, Benedetto; Omenetto, Fiorenzo G.; Dal Negro, Luca

    2015-07-27

    We report the development of bio-compatible cellulose nanofibers doped with light emitting silicon nanocrystals and Au nanoparticles via facile electrospinning. By performing photoluminescence (PL) spectroscopy as a function of excitation wavelength, we demonstrate plasmon-enhanced PL by a factor of 2.2 with negligible non-radiative quenching due to plasmon-enhanced scattering of excitation light from Au nanoparticles to silicon nanocrystals inside the nanofibers. These findings provide an alternative approach for the development of plasmon-enhanced active systems integrated within the compact nanofiber geometry. Furthermore, bio-compatible light-emitting nanofibers prepared by a cost-effective solution-based processing are very promising platforms for biophotonic applications such as fluorescence sensing and imaging.

  6. A Light Scattering Layer for Internal Light Extraction of Organic Light-Emitting Diodes Based on Silver Nanowires.

    PubMed

    Lee, Keunsoo; Shin, Jin-Wook; Park, Jun-Hwan; Lee, Jonghee; Joo, Chul Woong; Lee, Jeong-Ik; Cho, Doo-Hee; Lim, Jong Tae; Oh, Min-Cheol; Ju, Byeong-Kwon; Moon, Jaehyun

    2016-07-13

    We propose and fabricate a random light scattering layer for light extraction in organic light-emitting diodes (OLEDs) with silver nanodots, which were obtained by melting silver nanowires. The OLED with the light scattering layer as an internal light extraction structure was enhanced by 49.1% for the integrated external quantum efficiency (EQE). When a wrinkle structure is simultaneously used for an external light extraction structure, the total enhancement of the integrated EQE was 65.3%. The EQE is maximized to 65.3% at a current level of 2.0 mA/cm(2). By applying an internal light scattering layer and wrinkle structure to an OLED, the variance in the emission spectra was negligible over a broad viewing angle. Power mode analyses with finite difference time domain (FDTD) simulations revealed that the use of a scattering layer effectively reduced the waveguiding mode while introducing non-negligible absorption. Our method offers an effective yet simple approach to achieve both efficiency enhancement and spectral stability for a wide range of OLED applications. PMID:27314500

  7. Investigating nanoparticle aggregation dynamics in an aqueous magnetic fluid by light scattering anisotropy

    NASA Astrophysics Data System (ADS)

    Chicea, Dan

    2010-05-01

    Light scattering on particles having the diameter comparable with the wavelength is accurately described by the Mie theory and the light scattering anisotropy can conveniently be described by the one parameter Henyey Greenstein phase function. An aqueous suspension containing magnetite nanoparticles was the target of a coherent light scattering experiment. By fitting the scattering phase function on the experimental data the scattering anisotropy parameter can be assessed. As the scattering parameter strongly depends of the scatterer size, the average particle diameter was thus estimated and particle aggregates presence was probed. This technique was used to investigate the nanoparticle aggregation dynamics and the results are presented in this work.

  8. Studies of toxic aerosols via elastic and inelastic light scattering

    SciTech Connect

    Foss, W.; Li, W.; Allen, T.M.; Blair, D.S.; Davis, E.J. )

    1993-02-01

    Evaporation rates and chemical characteristics of potentially toxic aerosols have been determined by elastic and inelastic light-scattering measurements. The aerosol systems examined were a commercial catalyst consisting of a mixture of stannous octanoate (SNO) and 2-ethylhexanoic acid (EHA) and droplets emitted from open tanks of chromic acid solutions used for anodizing aluminum. The heavy metals contained in these aerosols represent a danger to the workplace if such materials are inhaled. Nanogram amounts of the solutions were studied by suspending single microdroplets in electrodynamic balances in a flow of air to measure evaporation rates and to obtain Raman spectra. Elastic scattering data include phase functions and morphological resonance spectra from which droplet sizes are determined. The inelastic light-scattering data or Raman spectra provide molecular vibrational bond information. It was found that EHA spectra agree with bulk data in the literature, and that SNO Raman spectra, which are not available in the literature, are consistent with infrared spectra for bulk SNO. At room temperature the vapor pressure of SNO is on the order of 0.01 Pa while that of EHA is on the order of 0.1 Pa. Raman data for the residue of evaporated chromic acid solutions show the presence of chromium oxides (Cr[sup 6+] compounds), surfactants, and bound (nonvolatile) water. 31 refs., 14 figs.

  9. Discovery of polarized light scattered by dust around Alpha Orionis

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. S.; Tapia, S.

    1978-01-01

    Following the suggestion by Jura and Jacoby (1976), linearly polarized blue continuum starlight scattered by the dust shell around the M2 Iab star Alpha Orionis (Betelgeuse) has been discovered. The polarization has been traced in the NE, NW, SE, and SW directions and has positive (tangential) orientation. Some asymmetry of the optical depth in the shell exists 15 and 30 arcsec from the star. In the NE direction the polarization was measured as far as 90 arcsec (17,000 AU) from the star. The dependence of the average intensity of the scattered light from the nebula on angular distance from the star is more consistent with an inverse-square density law than with inverse 1.5 or inverse-cube laws. Assuming that the density is proportional to the inverse square of distance from the star, the scattering optical depth in blue light along a radius of 0.03 arcsec is no more than 0.15 + or - 0.05. Future observations of the wavelength dependence of polarization will allow a determination of grain size.

  10. Development of an image-analysis light-scattering technique

    NASA Astrophysics Data System (ADS)

    Algarni, Saad; Kashuri, Hektor; Iannacchione, Germano

    2013-03-01

    We describe the progress in developing a versatile image-analysis approach for a light-scattering experiment. Recent advances in image analysis algorithms, computational power, and CCD image capture has allowed for the complete digital recording of the scattering of coherent laser light by a wide variety of samples. This digital record can then yield both static and dynamic information about the scattering events. Our approach is described using a very simple and in-expensive experimental arrangement for liquid samples. Calibration experiments were performed on aqueous suspensions of latex spheres having 0.5 and 1.0 micrometer diameter for three concentrations of 2 X 10-6, 1 X 10-6, and 5 X 10-7 % w/w at room temperature. The resulting data span a wave-vector range of q = 102 to 105 cm-1 and time averages over 0.05 to 1200 sec. The static analysis yield particle sizes in good agreement with expectations and a simple dynamic analysis yields an estimate of the characteristic time scale of the particle dynamics. Further developments in image corrections (laser stability, vibration, curvature, etc.) as well as time auto-correlation analysis will also be discussed.

  11. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells

    NASA Astrophysics Data System (ADS)

    Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.

    2010-03-01

    We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.

  12. Profiling and light scattering studies of Si surfaces

    SciTech Connect

    Church, E.L.; Takacs, P.Z.; Stover, J.C.

    1994-10-01

    There is great interest in the semiconductor industry in developing light-scattering techniques for detecting ``killer particles`` on Si wafer surfaces. The surface power spectral density (PSD) is important since it determines the intensity and angular dependence of the background scattering; understanding it will lead to a deeper understanding of finishing processes. Scattering measurements showed that Si wafer surfaces have the radiation-wavelength and angular dependences expected for weak topographic scattering. The data and independent profile measurements were used to deduce consistent values of the surface PSDs over the wavelength range 50 nm to 1 mm. The profile PSDs were found to consist of a sum of inverse power-law components, i.e., the surfaces are fractal-like. There is an analogy between the results and spontaneous thermodynamic roughening of solid surfaces: Below the critical roughening temperature, the surface topography is determined by the underlying crystal structure, while above it, the surface ``melts`` and the roughness is determined by capillary-wave excitations of the surface. Capillary waves have the well-known 1/f{sub x} profile power spectrum.

  13. The application of dynamic light scattering to complex plasmas

    NASA Astrophysics Data System (ADS)

    Aschinger, Andreas; Winter, Jörg

    2012-09-01

    The dynamic light scattering (DLS) technique is applied to the dust component of a complex (dusty) plasma, revealing a Gaussian intensity autocorrelation function for scattering angles between 4° and 175°. The Gaussian decay form represents free (ballistic) particle motion and allows determination of the one-dimensional squared particle velocity \\left \\langle v_x^2\\right \\rangle . At scattering angles below 1°, the intensity autocorrelation function is shown to be a combination of a Gaussian and an exponential function. This allows determination of the particle velocity and the diffusion constants at the same time. The dust system is fully described by the two components of motion in the horizontal and vertical directions. The two components are simultaneously measured on two scattering paths using only a single incident laser beam. In contrast to standard imaging techniques, the DLS method can be applied even to the disordered phase state where the dust particles have very high kinetic energies. In the ordered phase state, the assumptions of the DLS approach were verified by the independent Charge Coupled Device technique on the fundamental kinetic level. Furthermore, a careful discussion of the standard deviation of the DLS method proves that it can be used to study phase transitions of complex plasmas in detail.

  14. Measurements of the nonlinear refractive index in scattering media using the Scattered Light Imaging Method--SLIM.

    PubMed

    Jorge, Kelly C; García, Hans A; Amaral, Anderson M; Reyna, Albert S; Menezes, Leonardo de S; de Araújo, Cid B

    2015-07-27

    The Scattered Light Imaging Method (SLIM) was applied to measure the nonlinear refractive index of scattering media. The measurements are based on the analysis of the side-view images of the laser beam propagating inside highly scattering liquid suspensions. Proof-of-principle experiments were performed with colloids containing silica nanoparticles that behave as light scatterers. The technique allows measurements with lasers operating with arbitrary repetition rate as well as in the single-shot regime. The new method shows advantages and complementarity with respect to the Z-scan technique which is not appropriate to characterize scattering media. PMID:26367609

  15. Stray-light correction in 2D spectroscopy

    NASA Astrophysics Data System (ADS)

    Schlichenmaier, R.; Franz, M.

    2013-07-01

    Context. In solar physics, spectropolarimeters based on Fabry-Pérot interferometers are commonly used for high spatial resolution observations. In the data pipeline, corrections for scattered light may be performed on each narrow band image. Aims: We elaborate on the effects of stray-light corrections on Doppler maps. Methods: First, we demonstrate the basic correction effect in a simplified situation of two profiles that suffer from stray light. Then, we study the correction effects on velocity maps by transforming a Hinode SP map into a two-dimensional spectroscopic data set with i(x,y) at each wavelength point, which mimicks narrow band images. Velocity maps are inferred from line profiles of original and stray-light corrected data. Results: The correction of scattered light in narrow band images affects the inferred Doppler velocity maps: relative red shifts always become more red, and relative blue shifts become more blue. This trend is independent of whether downflows have dark or bright intensities. As a result, the effects of overcorrection produce both downflows and upflows. Conclusions: In 2D spectropolarimetry, corrections for scattered light can improve the image intensity and velocity contrast but inherently produce downflow signatures in the penumbra. Hence, such corrections are justified only if the properties of the stray light (seeing, telescope, and instrument) are well known.

  16. Visible Light Spectroscopy of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Our goal is to understand the physical characteristics of debris at geosynchronous orbit (GEO). Our approach is to compare the observed reflectance as a function of wavelength with laboratory measurements of typical spacecraft surfaces to understand what the materials are likely to be. Because debris could be irregular in shape and tumbling at an unknown rate, rapid simultaneous measurements over a range of wavelengths are required. Acquiring spectra of optically faint objects with short exposure times to minimize these effects requires a large telescope. We describe optical spectroscopy obtained during 12-14 March 2012 with the IMACS imaging spectrograph on the 6.5-m 'Walter Baade' Magellan telescope at Las Campanas Observatory in Chile. When used in f/2 imaging mode for acquisition, this instrument has a field of view of 30 arc-minutes in diameter. After acquisition and centering of a GEO object, a 2.5 arc-second wide slit and a grism are moved into the beam for spectroscopy. We used a 200 l/mm grism blazed at 660 nm for wavelength coverage in the 500-900 nm region. Typical exposure times for spectra were 15-30 seconds. Spectra were obtained for five objects in the GEO regime listed as debris in the US Space Command public catalog, and one high area to mass ratio GEO object. In addition spectra were obtained of three cataloged IDCSP (Initial Defense Communications Satellite Program) satellites with known initial properties just below the GEO regime. All spectra were calibrated using white dwarf flux standards and solar analog stars. We will describe our experiences using Magellan, a telescope never used previously for orbital debris spectroscopy, and our initial results.

  17. Scattering of light by crystals - A modified Kirchhoff approximation

    NASA Technical Reports Server (NTRS)

    Muinonen, Karri

    1989-01-01

    A modified Kirchhoff approximation (MKA) is developed for the scattering of light by randomly oriented crystals. The reflected and transmitted near fields are calculated from ray tracing; the corresponding far fields are then obtained via the vector Kirchhoff integral. On the shadow side of the particle, an additional near field exactly cancels the incident field and causes the forward diffraction. MKA contains a particle size dependence, which is not included in ray optics treatments, and satisfactory results can be obtained for size parameters larger than ten. The scattering phase functions and degrees of linear polarization are calculated for some hexagonal and cubic water ice crystals using MKA. The Kirchhoff approximation for particles other than crystals is discussed, and attention is paid to the backscattering enhancement due to the cyclic passage of internally or multiply externally reflected electromagnetic waves.

  18. Speckle size of light scattered from slightly rough cylindrical surfaces

    NASA Astrophysics Data System (ADS)

    Berlasso, Ricardo G.; Quintian, Fernando Perez; Rebollo, Maria A.; Gaggioli, Nestor G.; Brea, Luis Miguel Sanchez; Martinez, Eusebio Bernabeu

    2002-04-01

    This research is an extension of the optical method of quality control presented in a previous paper [Appl. Opt. 39, 5811 (2000)] to the case of slightly rough cylindrical surfaces. Applying the Kirchhoff scalar diffraction theory yields an analytical expression of the autocorrelation function of the intensity scattered from slightly rough cylindrical surfaces. This function, which is related to speckle size and shape, is shown to depend on the surface correlation length, unlike for plane surfaces for which the speckle depends on the illuminated area only. The theoretical expression is compared with that for the speckle produced by the light scattered from a cylindrical bearing and from various high-quality wires, showing that the method allows the correlation lengths of high-quality cylindrical surfaces to be determined.

  19. Cavity-enhanced coherent light scattering from a quantum dot

    PubMed Central

    Bennett, Anthony J.; Lee, James P.; Ellis, David J. P.; Meany, Thomas; Murray, Eoin; Floether, Frederik F.; Griffths, Jonathan P.; Farrer, Ian; Ritchie, David A.; Shields, Andrew J.

    2016-01-01

    The generation of coherent and indistinguishable single photons is a critical step for photonic quantum technologies in information processing and metrology. A promising system is the resonant optical excitation of solid-state emitters embedded in wavelength-scale three-dimensional cavities. However, the challenge here is to reject the unwanted excitation to a level below the quantum signal. We demonstrate this using coherent photon scattering from a quantum dot in a micropillar. The cavity is shown to enhance the fraction of light that is resonantly scattered toward unity, generating antibunched indistinguishable photons that are 16 times narrower than the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create two-photon N00N states with which we make superresolving phase measurements in a photonic circuit. PMID:27152337

  20. Cavity-enhanced coherent light scattering from a quantum dot.

    PubMed

    Bennett, Anthony J; Lee, James P; Ellis, David J P; Meany, Thomas; Murray, Eoin; Floether, Frederik F; Griffths, Jonathan P; Farrer, Ian; Ritchie, David A; Shields, Andrew J

    2016-04-01

    The generation of coherent and indistinguishable single photons is a critical step for photonic quantum technologies in information processing and metrology. A promising system is the resonant optical excitation of solid-state emitters embedded in wavelength-scale three-dimensional cavities. However, the challenge here is to reject the unwanted excitation to a level below the quantum signal. We demonstrate this using coherent photon scattering from a quantum dot in a micropillar. The cavity is shown to enhance the fraction of light that is resonantly scattered toward unity, generating antibunched indistinguishable photons that are 16 times narrower than the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create two-photon N00N states with which we make superresolving phase measurements in a photonic circuit. PMID:27152337

  1. An introduction to dynamic light scattering of macromolecules

    SciTech Connect

    Schmitz, K.S. )

    1990-01-01

    Dynamic light scattering (DLS) techniques provide information about size, shape, and flexibility of particles as well as offering insight concerning the nature of the interactions between particles and their environments. This book offers a study of DLS by macromolecular and polyelectrolyte solutions. With an emphasis on the interpretation of DLS data, the material is organized according to the increasing complexity of the system, ranging from dilute solutions of noninteracting small particles to the more complex multicomponent systems of strongly interacting large particles. Because the dynamics of these systems can be complex, various methods used to analyze correlation functions of multidecay processes are discussed. Also covered are complementary techniques that assist in the interpretation of DLS data - such as neutron scattering and spin echo.

  2. Light scattering in porous materials: Geometrical optics and stereological approach

    NASA Astrophysics Data System (ADS)

    Malinka, Aleksey V.

    2014-07-01

    Porous material has been considered from the point of view of stereology (geometrical statistics), as a two-phase random mixture of solid material and air. Considered are the materials having the refractive index with the real part that differs notably from unit and the imaginary part much less than unit. Light scattering in such materials has been described using geometrical optics. These two - the geometrical optics laws and the stereological approach - allow one to obtain the inherent optical properties of such a porous material, which are basic in the radiative transfer theory: the photon survival probability, the scattering phase function, and the polarization properties (Mueller matrix). In this work these characteristics are expressed through the refractive index of the material and the random chord length distribution. The obtained results are compared with the traditional approach, modeling the porous material as a pack of particles of different shapes.

  3. CIRCULAR INTENSITY DIFFERENTIAL SCATTERING OF LIGHT BY HELICAL STRUCTURES. III. A GENERAL POLARIZABILITY TENSOR AND ANOMALOUS SCATTERING

    SciTech Connect

    Bustamante, Carlos; Maestre, Marcos F.; Tinoco, Jr., Ignacio

    1980-11-01

    Numerical calculations of the circular intensity differential scattering of light by oriented helical structures made of units with general polarizability tensors are presented. The effects on the scattering patterns of both absorptive and dispersive properties of the units are illustrated. The differential scattering and the total scattering both show anomalous scattering phenomena; the differential scattering pattern is asymmetric when the wavelength of incident light is within an absorption band. Equations for bi-axial polarizabilities are used to derive the symmetry properties of the differential scattering pattern and to show how this symmetry can be used to determine the right- or left-handed sense of the helical structure. The wavelength dependence of the scattering pattern is obtained for a Lorentzian polarizability.

  4. Dynamic light scattering in veterinary medicine: refinement of diagnostic criteria

    NASA Astrophysics Data System (ADS)

    Dubin, Stephen; Zietz, Stanley; Gabriel, Karl L.; Gabriel, David; DellaVecchia, Michael A.; Ansari, Rafat R.

    2001-05-01

    In dynamic light scattering (DLS), the structure or material of interest, suspended in a fluid, is illuminated by a beam of laser light and the scattered light is interpreted in terms of diffusion coefficient, particle size or its distribution. DLS has shown clear promise as a non-invasive, objective and precise diagnostic modality for investigation of lens opacity (cataract) and other medical and toxicological problems. The clinical potential of LDS has been demonstrated in several species both in vivo and in vitro. In many clinical cases, discernment between normal and diseased patients is possible by simple inspection of the particle size distribution. However a more rigorous and sensitive classification scheme is needed, particularly for evaluation of therapy and estimation of tissue injury. The data supplied by DLS investigation is inherently multivariate and its most efficient interpretation requires a multivariate approach which includes the variability among specimens as well as any correlation among the variables (e.g. across the particle size distribution). We present a brief review of DLS methodology, illustrative data and our efforts toward a diagnostic classification scheme. In particular we will describe application of the Mahalanobis distance and related statistical methods to DLS data.

  5. Estimating aerosol light scattering at the Fresno Supersite

    NASA Astrophysics Data System (ADS)

    Watson, John G.; Chow, Judith C.; Lowenthal, Douglas H.; Magliano, Karen L.

    Aerosol light scattering (Bsp) was estimated from particle size and chemical measurements during the winter intensive period (15 December 2000-3 February 2001) at the Fresno Supersite as part of the California Regional PM 10/PM 2.5 Air Quality Study (CRPAQS). Bsp was underestimated by 41-46% from scanning mobility particle sizer (SMPS) and optical particle counter (OPC) particle size distributions depending on assumptions about refractive index and hygroscopic growth. Bsp was underestimated by 35% using the Interagency Monitoring of PROtected Visual Environments (IMPROVE) light extinction equation and by 25% using chemical size distributions measured with micro orifice uniform deposit impactor (MOUDI) cascade impactors and a Desert Research Institute (DRI) PM 2.5 sequential filter sampler (SFS). Underestimation of Bsp in Fresno was related to differences in the temperature and relative humidity (RH) at which various measurements were made. Evaporation of ammonium nitrate in the heated environment in which the SMPS and OPC instruments were located caused a reduction in particle size and number concentration. The MOUDI was operated outdoors at ambient temperature and RH, while a smart-heater equipped Radiance nephelometer was operated at RH <72%. Comparing estimated and measured Bsp required adjusting the SMPS, OPC, and MOUDI size distributions to the nephelometer RH. A systematic low-bias in estimated scattering suggests that organic aerosols may have contributed to hygroscopic growth. Consistent measurement strategies are needed to properly estimate aerosol light extinction under conditions such as those found in Fresno during winter.

  6. Light scattering in opal-based photonic crystals

    NASA Astrophysics Data System (ADS)

    Limonov, M. F.

    2010-05-01

    We present a new light scattering pattern in low-contrast opal-based photonic crystals (PhCs). The structure of real opals is always imperfect because of the a-SiO2 particles being inherently inhomogeneous and nonuniform in size and average dielectric permittivity. We found that opals possess all predictable properties of multi-component PhCs, which we define as periodic structures consisting of inhomogeneous or multiple (three or more) components. By theory, by properly tuning the permittivity of one of the components in ordered, low-contrast multi-component PhCs (for instance, of the filler ɛf in an opal), one can produce selective disappearance of any non-resonant (hkl) stop band. A study of transmission spectra of opals revealed that stop bands exhibit different (including resonant) behavior under variation of ɛf. Experiment did not, however, substantiate complete disappearance of stop bands predicted by theory for an ordered PhC. In the region of the predicted disappearance, a new effect has been observed, namely flip-over of the Bragg band, i.e., transformation of the Bragg dip into a Bragg rise. The flip-over effect, which has been studied in considerable detail in the particular example of the (111) stop band, originates from the nonuniformity of a-SiO2 particles. This nonuniformity leads to additional broad-band light scattering, the character of which is determined by Mie scattering. Thus, Mie scattering is responsible for two components in opal transmission spectra, more specifically, narrow Bragg bands and broad-band background. Their interference gives rise to formation of the Fano resonance, which in opal spectra becomes manifest, first, in a Bragg band asymmetry, and, second, in the flip-over effect, i.e., transformation of a photonic stop band into a photonic pass band.

  7. Ultrafast image-based dynamic light scattering for nanoparticle sizing.

    PubMed

    Zhou, Wu; Zhang, Jie; Liu, Lili; Cai, Xiaoshu

    2015-11-01

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been proved to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing. PMID:26628172

  8. Changes in hemodynamics and light scattering during cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Yang, Yuanyuan; Luo, Qingming

    2005-01-01

    Cortical spreading depression (CSD) has been known to play an important role in the mechanism of migraine, stroke and brain injure. Optical imaging of intrinsic signals has been shown a powerful method for characterizing the spatial and temporal pattern of the propagation of CSD. However, the possible physiological mechanisms underlying the intrinsic optical signal (IOS) during CSD still remain incompletely understood. In this study, a spectroscopic recording of the change in optical intrinsic signal during CSD was performed and an analysis method based on the modified Beer-Lambert law was used to estimate the changes in the concentration of HbO2 and Hb, and changes in light scattering from the spectra data. The CSD were induced by pinprick in 10 α-chloralose/urethane anesthetized Sprague-Dawley rats. In all experiments, four-phasic changes in optical reflectance were observed at 450 nm ~ 570 nm, and triphasic changes in optical reflectance were observed in the range of 570 nm ~750 nm. But at 750 nm ~ 850 nm, only biphasic changes of optical signal were detected. Converting the spectra data to the changes in light scattering and concentration of Hb and HbO2, we found that the CSD induced an initial increase in concentration of HbO2 (amplitude: 9.0+/-3.7%), which was 26.2+/-18.6 s earlier than the onset of increase of Hb concentration. Furthermore, the concentration of HbO2 showed a four-phasic change, whereas the concentration of Hb only showed a biphasic change. For the changes in light scattering during CSD, a triphasic change was observed.

  9. Ultrafast image-based dynamic light scattering for nanoparticle sizing

    NASA Astrophysics Data System (ADS)

    Zhou, Wu; Zhang, Jie; Liu, Lili; Cai, Xiaoshu

    2015-11-01

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been proved to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.

  10. Ultrafast image-based dynamic light scattering for nanoparticle sizing

    SciTech Connect

    Zhou, Wu; Zhang, Jie; Liu, Lili; Cai, Xiaoshu

    2015-11-15

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been proved to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.

  11. A biophysical study of clathrin utilizing light scattering, neutron scattering and structure based computer modeling

    NASA Astrophysics Data System (ADS)

    Ferguson, Matthew Lee

    A principal component in the protein coats of certain post-golgi and endocytic vesicles is clathrin, which appears as a three-legged heteropolymer (known as a triskelion) that assembles into polyhedral baskets principally made up of pentagonal and hexagonal faces. In vitro, this assembly depends on the pH, with baskets forming more readily at low pH and less readily at high pH. We have developed procedures, based on static and dynamic light scattering, to determine the radius of gyration, Rg, and hydrodynamic radius, RH, of isolated triskelia under conditions where basket assembly occurs. Calculations based on rigid molecular bead models of a triskelion show that the measured values can be accounted for by bending of the legs and a puckering at the vertex. We also show that the values of Rg and R H measured for clathrin triskelia in solution are qualitatively consistent with the conformation of an individual triskelion that is part of a "D6 barrel" basket assembly measured by cryo-EM tomography. We extended this study by performing small angle neutron scattering (SANS) experiments on isolated triskelia in solution under conditions where baskets do not assemble. SANS experiments were consistent with previous static light scattering experiments but showed a shoulder in the scattering function at intermediate q-values just beyond the central diffraction peak (the Guinier regime). Theoretical calculations based on rigid bead models of a triskelion showed well-defined features in this region different from the experiment. A flexible bead-spring model of a triskelion and Brownian dynamics simulations were used to generate a time averaged scattering function. This model adequately described the experimental data for flexibilities close to previous estimates from the analysis of electron micrographs.

  12. Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis.

    PubMed

    Turner, Daniel B; Howey, Dylan J; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2013-07-25

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities. PMID:23176195

  13. Thomson scattering calibration with ultrabright supercontinuum light source

    SciTech Connect

    Pasqualotto, R.; Alfier, A.

    2006-10-15

    The recently developed supercontinuum light source (SLS) finds a useful application in the calibration of a Thomson scattering (TS) diagnostic. When filter polychromators are used, the relative responsivity of the spectral channels is generally measured with a cw halogen light source from the dc output of the detectors, while the TS signal is measured from an ac output. In a TS system with optical delay lines, like in RFX-mod, a cw light source cannot discriminate differences between the relative responsivities of the positions that share the same polychromator but are connected to different delay lines: this can be achieved with a pulsed white light source instead. In addition a pulsed source with a time response similar to the TS signals would avoid any frequency response problem, because the same ac output of the detectors used for the TS signals could also be used for the calibration. An SLS produces a 5 ns Gaussian pulse, with a wide and smooth spectrum that covers the range of 550-1600 nm. The SLS provides a light source sufficiently bright to calibrate simultaneously all spectrometers. The experimental setup used for the calibration and obtained results are presented.

  14. Polarized light scattering technique for morphological characterization of waterborne pathogens

    NASA Astrophysics Data System (ADS)

    Devarakonda, Venkat V.; Manickavasagam, Sivakumar

    2009-05-01

    We have recently developed an elliptically polarized light scattering (EPLS) technique to characterize the morphology of fine particles suspended in an optically non-absorbing medium such as water. This technique provides the size distribution, shape and agglomeration characteristics of suspended particles. This technique can be used to detect various types of biological pathogens such as bacteria, protozoa and viruses in potable water systems. Here we report results obtained from EPLS measurements on two strains of Bacillus spores suspended in water along with comparison with electron microscopy.

  15. POLARIZED LIGHT REFLECTED AND TRANSMITTED BY THICK RAYLEIGH SCATTERING ATMOSPHERES

    SciTech Connect

    Natraj, Vijay; Hovenier, J. W.

    2012-03-20

    Accurate values for the intensity and polarization of light reflected and transmitted by optically thick Rayleigh scattering atmospheres with a Lambert surface underneath are presented. A recently reported new method for solving integral equations describing Chandrasekhar's X- and Y-functions is used. The results have been validated using various tests and techniques, including the doubling-adding method, and are accurate to within one unit in the eighth decimal place. Tables are stored electronically and expected to be useful as benchmark results for the (exo)planetary science and astrophysics communities. Asymptotic expressions to obtain Stokes parameters for a thick layer from those of a semi-infinite atmosphere are also provided.

  16. Peregrinations through topics in light scattering and radiative transfer

    NASA Astrophysics Data System (ADS)

    Kattawar, George W.

    2016-07-01

    In this van de Hulst essay, I have taken the liberty to present a journey through some topics in light scattering and radiative transfer which I feel were major contributions to the field but the number of topics I would like to cover is far more numerous than I have the time or the space to present. I also wanted to share with the reader some heartwarming memories I have of my wonderful friend and truly distinguished colleague Hendrik Christoffel van de Hulst (affectionately known to his colleagues as "Henk") whom I consider to be one of the preeminent scientists of his era.

  17. Goniometric observations of light scattered from soils and leaves

    NASA Technical Reports Server (NTRS)

    Kestner, Joann M.; Leidecker, Henning W.; Irons, James R.; Smith, James A.; Brakke, Thomas W.

    1988-01-01

    The laboratory established at NASA-Goddard to measure and model the light-scattering properties of soil samples and individual plant leaves employs two goniometers: one for the measurement of directional reflectance and transmittance from vertically-mounted leaf samples, and the other for measurement of directional reflectance from such horizontal, semiinfinite particulate surfaces as soil samples. Sample observations of various soil minerals and plant leaves are presented; these goniometric data are compared to the results of a reflectance model from particulate surfaces and those of a ray-tracing model of leaf reflectance and transmittance.

  18. Multiple scattering of light in three-dimensional photonic quasicrystals.

    PubMed

    Ledermann, Alexandra; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg

    2009-02-01

    Recent experiments on three-dimensional icosahedral dielectric photonic quasicrystals have shown several unexpected features: transmitted femtosecond pulses developed a trailing "diffusive" exponential tail and the sum of (zeroth-order) transmittance and reflectance was well below unity. These experimental findings have previously been ascribed to sample imperfections. Here, we analyze these findings by using 3D periodic approximants of the ideal photonic quasicrystals. We show that the experimental observations can be explained in terms of multiple scattering of light within these structures, i.e., in terms of intrinsic rather than purely extrinsic quasicrystal properties. PMID:19189014

  19. HD100546 multi-epoch scattered light observations

    SciTech Connect

    Avenhaus, Henning; Quanz, Sascha P.; Meyer, Michael R.; Brittain, Sean D.; Carr, John S.; Najita, Joan R.

    2014-07-20

    We present H, K{sub s}, and L' filter polarimetric differential imaging (PDI) data for the transitional disk around HD100546 obtained in 2013, together with an improved re-reduction of previously published 2006 data. We reveal the disk in polarized scattered light in all three filters, achieving an inner working angle of ∼0.''1. Additional, short-exposure observations in the H and K{sub s} filters probe the surroundings of the star down to ∼0.''03 (∼3 AU). HD100546 is fascinating because of its variety of sub-structures possibly related to forming planets in the disk, and PDI is currently the best technique for imaging them in the near-IR. For the first time ever, we detect a disk in L-band PDI data, and we constrain the outer radius of the inner hole to 14 ± 2 AU and its eccentricity to <0.133. A dark lane is detected between ∼0.''2-0.''6 AU in the front side of the disk, which is likely an effect of the scattering angle and the scattering function of the grains. We find a spiral arm in the northeast that has no obvious connection to spiral arms seen before by other authors further out in the disk, but winds are in the same direction (clockwise). The two bright scattering peaks along the semi-major axis are asymmetric, with the southeastern one being significantly brighter. This could be related to the inner companion candidate that is close to the brighter side of the disk at the time of the observations. The scattering color is close to gray between the H and K{sub s} filters ([H]–[K{sub s}] = 0.19 ± 0.11), but the scattering in the L' filter is significantly weaker ([H]–[L'] = –1.08 ± 0.35, [K{sub s}]–[L'] = –1.27 ± 0.35). We measure the position angle of the disk to be 138° ± 3°, consistent with previous observations, and we derive the dust scattering function in the H and K{sub s} filters between ∼35° and ∼130° at two different radii (30-50 and 80-110 AU) and show that our results are consistent with a disk that is more strongly

  20. Light-Scattering Study of Petroleum Asphaltene Aggregation

    NASA Astrophysics Data System (ADS)

    Burya, Yevgeniy G.; Yudin, Igor K.; Dechabo, Victor A.; Kosov, Victor I.; Anisimov, Mikhail A.

    2001-08-01

    Dynamic light scattering with an original optical scheme has been used for the investigation of opaque (strongly light-absorbing) asphaltene colloids in crude oils and hydrocarbon mixtures. Diffusion-limited aggregation and reaction-limited aggregation as well as a crossover between these two regimes have been observed. A simple interpolation for the crossover kinetics is proposed. Asphaltene colloidal structures, originally persisting in crude oils, have been detected. Addition of a precipitant above a threshold induces asphaltene aggregation. Depending on the nature of the precipitant, different crude oils respond differently on its addition: (a) exponential-in-time growth of aggregates to huge flocks or (b) fast formation of stable-in-size particles.

  1. Light-scattering Characteristics of Metal Nanoparticles on a Single Bacterial Cell.

    PubMed

    Kinoshita, Takamasa; Kiso, Keita; LE, Dung Q; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2016-01-01

    Metal nanoparticles express unique light-scattering characteristics based on the localized surface plasmon resonance, which depends on the metal species, particle size, and aggregation state of the nanoparticles. Therefore, we focused on the light-scattering characteristics of metal nanoparticles, such as silver, gold, and copper oxide, adsorbed on a bacterium. Monodisperse silver nanoparticles expressed the strongest scattered light among them, and showed various colors of scattered light. Although a monodisperse gold nanoparticle produced monochromatic light (green color), the color of the scattered light strongly depended on the aggregation state of the nanoparticles on a bacterium. On the other hand, copper oxide nanoparticles expressed monochromatic light (blue color), regardless of their aggregation states on a bacterium. We examined details concerning the light-scattering characteristics of metal nanoparticles, and discussed the possibility of their applications to bacterial cell imaging. PMID:26960609

  2. Study of Scattered Light from Known Debris Disks

    NASA Technical Reports Server (NTRS)

    Rodriguez, Joseph E.; Weinberger, Alycia J.; Roberge, Aki

    2011-01-01

    Using the Spitzer Space Telescope, a group of edge on debris disks, surrounding main-sequence shell stars have been discovered in the infrared. These disks are of high interest because they not only have dust, but an observed amount of circumstellar gas. HD158352 was an ideal target to try and image the disk because it was one of the closest stars in this group. Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph (STIS), we attempted to take a direct image of the light scattered from the known disk in a broad optical bandpass. Studying these particular type of disks in high detail will allow us to learn more about gas-dust interactions. In particular, this will allow us to learn how the circumstellar gas evolves during the planet-forming phase. Even though it was predicted that the disk should have a magnitude of 20.5 at 3", no disk was seen in any of the optical images. This suggests that the parameters used to predict the brightness of the disk are not what we first anticipated and adjustments to the model must be performed. We also present the blue visible light spectrum of the scattered light from the debris disk surrounding Beta Pictoris. We are analyzing archival observations taken by Heap, using Hubble Space Telescope's STIS instrument. A long slit with a bar was used to occult Beta Pictoris as well as the PSF star. This was done because it is necessary to subtract a PSF observed the same way at the target to detect the disk. It appears that we have detected light from the disk but the work was in progress at the time of the abstract deadline.

  3. Quantifying the Solubility of Boron Nitride Nanotubes and Sheets with Static Light Scattering and Refractometry

    SciTech Connect

    Mutz, M; Eastwood, Eric Allen; Dadmun, Mark D

    2013-01-01

    The dissolution of nanoparticles, particularly those containing boron, is an important area of interest for polymer nanocomposite formation and material development. In this work, the solubility of boron nitride nanotubes (BNNT), functionalized boron nitride nanotubes (FBNNT), and boron nitride sheets (BNZG) is quantified in toluene and THF with static light scattering, refractometry, UV vis spectroscopy, and physical observations. UV vis spectroscopy provides a method to determine the concentration and solubility limits of the solutions tested. Using light scattering, the second virial coefficient, A2, is determined and used to calculate , the solute solvent interaction parameter. The Hildebrand solubility parameter, , is then extracted from this data using the Hildebrand Scatchard Solution Theory. A list of potential good solvents based on the estimated value is provided for each nanoparticle. Single-walled carbon nanotubes (SWNTs) and prepolymers (EN4 and EN8) used to synthesize polyurethanes were also tested, because the published and molar attraction constants of these materials provided a selfconsistent check. The dn/dc of SWNTs and boron-containing particles was measured for the first time in this work. A solvent screen for BN-ZG provides additional information that supports the obtained and . Three systems were found to have values below 0.5 and were thermodynamically soluble: BNNT in THF, EN8 in THF, and EN8 in toluene.

  4. Discrimination of airborne material particles from light scattering (TAOS) patterns

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni F.; Pan, Yong-Le; Videen, Gorden; Aptowicz, Kevin B.; Chang, Richard K.

    2013-05-01

    Two-dimensional angle-resolved optical scattering (TAOS) is an experimental method which collects the intensity pattern of monochromatic light scattered by a single, micron-sized airborne particle. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. The solution proposed herewith relies on a learning machine (LM): rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified. The LM consists of two interacting modules: a feature extraction module and a linear classifier. Feature extraction relies on spectrum enhancement, which includes the discrete cosine Fourier transform and non-linear operations. Linear classification relies on multivariate statistical analysis. Interaction enables supervised training of the LM. The application described in this article aims at discriminating the TAOS patterns of single bacterial spores (Bacillus subtilis) from patterns of atmospheric aerosol and diesel soot particles. The latter are known to interfere with the detection of bacterial spores. Classification has been applied to a data set with more than 3000 TAOS patterns from various materials. Some classification experiments are described, where the size of training sets has been varied as well as many other parameters which control the classifier. By assuming all training and recognition patterns to come from the respective reference materials only, the most satisfactory classification result corresponds to ≍ 20% false negatives from Bacillus subtilis particles and <= 11% false positives from environmental and diesel particles.

  5. THE SPECTRUM OF THE DIFFUSE GALACTIC LIGHT: THE MILKY WAY IN SCATTERED LIGHT

    SciTech Connect

    Brandt, Timothy D.; Draine, B. T.

    2012-01-10

    We measure the optical spectrum of the diffuse Galactic light (DGL)-the local Milky Way in reflection-using 92,000 blank sky spectra from the Sloan Digital Sky Survey (SDSS). We correlate the SDSS optical intensity in regions of blank sky against 100 {mu}m intensity independently measured by the Cosmic Background Explorer and Infrared Astronomy satellites, which provides a measure of the dust column density times the intensity of illuminating starlight. The spectrum of scattered light is very blue and shows a clear 4000 A break and broad Mg b absorption. This is consistent with scattered starlight, and the continuum of the DGL is well reproduced by a simple radiative transfer model of the Galaxy. We also detect line emission in H{alpha}, H{beta}, [N II], and [S II], consistent with scattered light from the local interstellar medium. The strength of [N II] and [S II], combined with upper limits on [O III] and He I, indicates a relatively soft ionizing spectrum. We find that our measurements of the DGL can constrain dust models, favoring a grain size distribution with relatively few large grains. We also estimate the fraction of high-latitude H{alpha} which is scattered to be 19% {+-} 4%.

  6. Total internal reflection and dynamic light scattering microscopy of gels

    NASA Astrophysics Data System (ADS)

    Gregor, Brian F.

    Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third

  7. Online submicron particle sizing by dynamic light scattering using autodilution

    NASA Technical Reports Server (NTRS)

    Nicoli, David F.; Elings, V. B.

    1989-01-01

    Efficient production of a wide range of commercial products based on submicron colloidal dispersions would benefit from instrumentation for online particle sizing, permitting real time monitoring and control of the particle size distribution. Recent advances in the technology of dynamic light scattering (DLS), especially improvements in algorithms for inversion of the intensity autocorrelation function, have made it ideally suited to the measurement of simple particle size distributions in the difficult submicron region. Crucial to the success of an online DSL based instrument is a simple mechanism for automatically sampling and diluting the starting concentrated sample suspension, yielding a final concentration which is optimal for the light scattering measurement. A proprietary method and apparatus was developed for performing this function, designed to be used with a DLS based particle sizing instrument. A PC/AT computer is used as a smart controller for the valves in the sampler diluter, as well as an input-output communicator, video display and data storage device. Quantitative results are presented for a latex suspension and an oil-in-water emulsion.

  8. Lysozyme Aggregation and Fibrillation Monitored by Dynamic Light Scattering

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis; Flanders, Bret; Schmit, Jeremy; Sorensen, Christopher

    2012-02-01

    The aggregation of amyloidogenic proteins provides a rich phase space with significant biomedical implications, including a link with several age-related diseases. We employed dynamic light scattering to monitor the aggregation of lysozyme, a model protein, from a monomeric state until the formation of micron-sized fibrils. For an aqueous lysozyme solution buffered at pH 2, the auto-correlation function of the scattered light intensity was found to be well-fit by a single exponential function with decay time τ = 1/(2Dq^2) = 0.25 ms, which corresponds to a mean hydrodynamic radius (RH) of 2.2 nm, very likely generated by monomers. Ethanol (4% v/v final concentration) induced a partial unfolding, to RH = 4.6 nm. The subsequent addition of 70 mM KCl was found to shrink the size back to RH = 2.5 nm, as expected when a denatured protein refolds due to partial screening of the intramolecular repulsion. However, further aggregation was not observed. At pH 4, using a low-salt acetate buffer, more ethanol (10% v/v) was required to initiate unfolding, but once it occurred, larger aggregates formed. These results are consistent with the model that partial unfolding, which exposes beta-motif secondary structure, is a prerequisite for aggregation and fibrillation, but the aggregation fate depends on the protein charge state (pH) and screening (salt concentration).

  9. Probing a Spray Using Frequency-Analyzed Light Scattering

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Lee, Michael H.; Rhys, Noah O.

    2008-01-01

    Frequency-analyzed laser-light scattering (FALLS) is a relatively simple technique that can be used to measure principal characteristics of a sheet of sprayed liquid as it breaks up into ligaments and then the ligaments break up into droplets. In particular, through frequency analysis of laser light scattered from a spray, it is possible to determine whether the laser-illuminated portion of the spray is in the intact-sheet region, the ligament region, or the droplet region. By logical extension, it is possible to determine the intact length from the location of the laser beam at the transition between the intact-sheet and ligament regions and to determine a breakup frequency from the results of the frequency analysis. Hence, FALLS could likely be useful both as a means of performing research on sprays in general and as a means of diagnostic sensing in diverse applications in which liquid fuels are sprayed. Sprays are also used for drying and to deposit paints and other coating materials.

  10. Particle sizing by weighted measurements of scattered light

    NASA Technical Reports Server (NTRS)

    Buchele, Donald R.

    1988-01-01

    A description is given of a measurement method, applicable to a poly-dispersion of particles, in which the intensity of scattered light at any angle is weighted by a factor proportional to that angle. Determination is then made of four angles at which the weighted intensity is four fractions of the maximum intensity. These yield four characteristic diameters, i.e., the diameters of the volume/area mean (D sub 32 the Sauter mean) and the volume/diameter mean (D sub 31); the diameters at cumulative volume fractions of 0.5 (D sub v0.5 the volume median) and 0.75 (D sub v0.75). They also yield the volume dispersion of diameters. Mie scattering computations show that an average diameter less than three micrometers cannot be accurately measured. The results are relatively insensitive to extraneous background light and to the nature of the diameter distribution. Also described is an experimental method of verifying the conclusions by using two microscopic slides coated with polystyrene microspheres to simulate the particles and the background.

  11. Dynamic light scattering of cutinase in AOT reverse micelles.

    PubMed

    Melo, E P; Fojan, P; Cabral, J M; Petersen, S B

    2000-08-01

    The fungal lipolytic enzyme cutinase, incorporated into sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles has been investigated using dynamic light scattering. The reversed micelles form spontaneously when water is added to a solution of sodium bis-(2ethylhexyl) sulfosuccinate in isooctane. When an enzyme is previously dissolved in the water before its addition to the organic phase, the enzyme will be incorporated into the micelles. Enzyme encapsulation in reversed micelles can be advantageous namely to the conversion of water insoluble substrates and to carry out synthesis reactions. However protein unfolding occurs in several systems as for cutinase in sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles. Dynamic light scattering measurements of sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles with and without cutinase were taken at different water to surfactant ratios. The results indicate that cutinase was attached to the micellar wall and that might cause cutinase unfolding. The interactions between cutinase and the bis-(2ethylhexyl) sulfosuccinate interface are probably the driving force for cutinase unfolding at room temperature. Twenty-four hours after encapsulation, when cutinase is unfolded, a bimodal distribution was clearly observed. The radii of reversed micelles with unfolded cutinase were determined and found to be considerable larger than the radii of the empty reversed micelles. The majority of the reversed micelles were empty (90-96% of mass) and the remainder (4-10%) containing unfolded cutinase were larger by 26-89 A. PMID:10930568

  12. Detection of Changes on and below the Surface in Epithelium Mucosal Tissue Structure using Scattered Light

    NASA Astrophysics Data System (ADS)

    Taslidere, Ezgi

    The aim of this work is to answer the question of whether it is possible to detect changes on and below the surface in epithelium tissue structure using light reflected from the tissue over an area (2-D scan) illuminated by an optical sensor (fiber) emitting light at either one wavelength or with white light. Towards that end we model the 2-D reflected scans using a Stochastic Decomposition Method (SDM). The emphasis in this work is on the novelty of the proposed model and its theoretical pinning and foundation. The model is biologically motivated by the stochastic textural nature of the tissue. We model the textural content (which relates to tissue morphology) that manifests itself in the 2-D scans. Unlike previous works that analyze the scattered signal at one spot at various wavelengths, our method statistically analyzes 2-D scans of light scattering data over an area, and extracts from the data features (SDM parameters) that change with changes in the tissue morphology. The examination of an area rather than a spot not only leads to a more reliable calculation of the extracted parameters using single techniques (e.g. nuclear size distribution), but it also leads to the computation of additional information embedded in the spatial texture that our decomposition technique arrives at by modeling the hidden correlations that are obtained only by interrogating a wide sample area. To the best of our knowledge, this is the first attempt at modeling the scattered light over an area using a stochastic decomposition model that allows for the assessment of correlation and textural characteristics that otherwise could not be revealed when the analysis of the scattering signal is a function of wavelength or angle. We also come up with a segmentation technique to raise a flag on the fly when a transition occurs between different mucosal architectures on the surface. The segmentation is based on a novel difference metric for detecting an abrupt change in the parameters

  13. Light scattering from sea-salt aerosols at Interagency Monitoring of Protected Visual Environments (IMPROVE) sites.

    PubMed

    Lowenthal, Douglas; Kumar, Naresh

    2006-05-01

    A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant. PMID:16739800

  14. Spectroscopy of light and heavy quarks

    SciTech Connect

    Cooper, S.

    1986-11-01

    New results on various controversial light mesons are reviewed, including the glueball candidates f/sub 2/(1720) and eta(1460), the 1/sup + +/-0/sup - +/ mass ''coincidences'' f/sub 1/(1285)-eta(1275) and f/sub 1/(1420)-eta(1420), as well as evidence for the X(3100)..--> lambda..anti p+n..pi.. and the rho(1480)..-->..phi ..pi.., which have quantum numbers not allowed for q anti q. The ..gamma gamma -->..VV effects move out of the threshold region with data on ..gamma gamma --> omega..rho. Statistically weak data on GAMMA/sub ..gamma gamma../eta/sub c/ and the search for heavy quark P/sub 1/ states are presented. GAMMA/sub ee/, B/sub ..mu mu../, and GAMMA/sub tot/ for the UPSILON(1S), UPSILON(2S), and UPSILON(3S) are updated using new data and a consistent treatment of the radiative corrections for GAMMA/sub ee/. New data on the mass splittings of the chi/sub b/(2P) compare favorably with the scalar confinement model, which may however have new trouble. 150 refs., 43 figs.

  15. Gas in Scattering Media Absorption Spectroscopy -- Laser Spectroscopy in Unconventional Environments

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2010-02-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The GASMAS technique combines narrow-band diode-laser spectroscopy with optical propagation in diffuse media. Whereas solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures. These are typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. Molecular oxygen and water vapor have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen gas, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the human sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen, while breathing normally through the mouth. A clinical study comprising 40 patients has been concluded.

  16. Multiangle dynamic light scattering analysis using an improved recursion algorithm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Wei; Wang, Wanyan; Zeng, Xianjiang; Chen, Junyao; Du, Peng; Yang, Kecheng

    2015-10-01

    Multiangle dynamic light scattering (MDLS) compensates for the low information in a single-angle dynamic light scattering (DLS) measurement by combining the light intensity autocorrelation functions from a number of measurement angles. Reliable estimation of PSD from MDLS measurements requires accurate determination of the weighting coefficients and an appropriate inversion method. We propose the Recursion Nonnegative Phillips-Twomey (RNNPT) algorithm, which is insensitive to the noise of correlation function data, for PSD reconstruction from MDLS measurements. The procedure includes two main steps: 1) the calculation of the weighting coefficients by the recursion method, and 2) the PSD estimation through the RNNPT algorithm. And we obtained suitable regularization parameters for the algorithm by using MR-L-curve since the overall computational cost of this method is sensibly less than that of the L-curve for large problems. Furthermore, convergence behavior of the MR-L-curve method is in general superior to that of the L-curve method and the error of MR-L-curve method is monotone decreasing. First, the method was evaluated on simulated unimodal lognormal PSDs and multimodal lognormal PSDs. For comparison, reconstruction results got by a classical regularization method were included. Then, to further study the stability and sensitivity of the proposed method, all examples were analyzed using correlation function data with different levels of noise. The simulated results proved that RNNPT method yields more accurate results in the determination of PSDs from MDLS than those obtained with the classical regulation method for both unimodal and multimodal PSDs.

  17. Electrochemical in-situ reaction cell for X-ray scattering, diffraction and spectroscopy

    SciTech Connect

    Braun, Artur; Granlund, Eric; Cairns, Elton J.

    2003-01-27

    An electrochemical in-situ reaction cell for hard X-ray experiments with battery electrodes is described. Applications include the small angle scattering, diffraction, and near-edge spectroscopy of lithium manganese oxide electrodes.

  18. Polyelectrolyte Conformation, Interactions and Hydrodynamics as Studied by Light Scattering.

    NASA Astrophysics Data System (ADS)

    Ghosh, Snehasish

    Polyelectrolyte conformation, interactions and hydrodynamics show a marked dependence on the ionic strength (C_{rm s}) of the medium, the concentration (C_{rm p}) of the polymer itself and their charge density (xi). The apparent electrostatic persistence length obtained from static light scattering varied approximately as the inverse square root of C _{rm s} for highly pure, high molecular weight hyaluronate (HA) as well as for variably ionized acrylamide/sodium acrylate copolymers (NaPAA), and linearly with xi. The experimental values of persistence length and second virial coefficient (A_2) are compared to predictions from theories based on the Debye-Huckel approximation for the Poisson-Boltzmann equation and on excluded-volume. Although the mean square radius of gyration (< S^2>) depended strongly on C _{rm s}. < S^2> decreasing with increasing C_{rm s} for both HA and NaPAA indicating clear evidence of polyion expansion, dynamic light scattering values of the translational diffusion coefficient (D) remains constant when extrapolated to infinite polymer concentration for both the polymers. The behavior of D is compared to predictions from coupled mode theory in the linear limit. The effects of NaOH on the conformations, interactions, diffusion and hydrolysis rates of HA are characterized in detail using static, dynamic and time-dependent light scattering supplemented by size exclusion chromatography (SEC). For the HA < S^2>, A_2 and the hydrolysis rates all resemble superposing titration curves, while the D remains independent of both the concentration of NaOH, and the contraction of < S^2>. The indication is that the interactions, conformations and the hydrolysis rates are all controlled by the titration of the HA hydroxyl groups by the NaOH to yield -O ^-, which (i) destroys single strand hydrogen bonds, leading to de-stiffening and contraction of the HA coil and a large decrease in intermolecular interaction, and (ii) slowly depolymerizes HA. The experimental

  19. Enhancement of Raman light scattering in dye-labeled cell membrane on metal-containing conducting polymer film

    NASA Astrophysics Data System (ADS)

    Grushevskaya, H. V.; Krylova, N. G.; Lipnevich, I. V.; Orekhovskaja, T. I.; Egorova, V. P.; Shulitski, B. G.

    2016-03-01

    An enhanced Raman spectroscopy method based on a plasmon resonance in ultrathin metal-containing LB-film deposited on nanoporous anodic alumina supports has been proposed. This material has been utilized to enhance Raman scattering of light in fluorescent-labeled subcellular membrane structures. It has been shown that the plasmon resonance between vibrational modes of the organometallic complexes monolayers and dye-labeled subcellular structures happens. It makes possible to detect interactions between living cell monolayers and an extracellular matrix.

  20. QUANTUM CONTROL OF LIGHT: From Slow Light and FAST CARS to Nuclear γ-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scully, Marlan

    2007-06-01

    In recent work we have demonstrated strong coherent backward wave oscillation using forward propagating fields only. This surprising result is achieved by applying laser fields to an ultra-dispersive medium with proper chosen detunings to excite a molecular vibrational coherence that corresponds to a backward propagating wave [PRL, 97, 113001 (2006)]. The physics then has much in common with propagation of ultra-slow light. Applications of coherent scattering and remote sensing to the detection of bio and chemical pathogens (e.g., anthrax) via Coherent Anti-Raman Scattering together with Femtosecond Adaptive Spectroscopic Techniques (FAST CARS [Opt. Comm., 244, 423 (2005)]) will be discussed. Furthermore, the interplay between quantum optics (Dicke super and sub-radiant states) and nuclear physics (forward scattering of γ radiation) provides interesting problems and insights into the quantum control of scattered light [PRL, 96, 010501 (2005)].

  1. Phase separation of polymer mixtures induced by light and heat: a comparative study by light scattering

    NASA Astrophysics Data System (ADS)

    Ochi, Yuki; Kawakubo, Rie; Van-Pham, Dan-Thuy; Kitamura, Yuki; Nakanishi, Hideyuki; Norisuye, Tomohisa; Tran-Cong-Miyata, Qui

    2015-12-01

    Phase separation of binary blends composed of a polystyrene derivative (PS) and poly (vinyl methyl ether) (PVME) with a lower critical solution temperature (LCST) was experimentally induced by two different methods: heating and UV light irradiation. Using laser light scattering combined with the temperature jump (T-jump) technique, it was demonstrated that in the case of heating, the mixture undergoes phase separation via the nucleation-and-growth (NG) and the spinodal decomposition (SN) processes under shallow and deep quenches, respectively. Particularly, the crossover from the spinodal decomposition to the nucleation-and-growth process was observed at long time under a deep T-jump by light-scattering experiments. On the other hand, in the photo-crosslink case, the PS/PVME blends undergo a nucleation-and-growth process upon irradiation with weak light intensity, whereas the mixture exhibits the spinodal decomposition under irradiation with strong light intensity. From the analysis of the light-scattering data obtained for the blends under the photo-crosslink, the kinetic data reveal the suppression of morphologies having large characteristic length scales. This feature clearly differs from the phase separation induced by heating where no mode-suppression process was observed. It was also found that distribution of the characteristic length scales (the regularity) of the morphology becomes narrow as the phase separation proceeds for reacting blends, whereas it becomes broader as the phase separation proceeds by heating, revealing the important roles of reaction in the suppression of fluctuations with long wavelengths. These experimental results establish a method to control the length scales and the regularity of the morphology of polymer blends by chemical reaction.

  2. The application of scattered light to transmitted light rate in the measurement of milk constituents

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Wu, Juan; Zou, Zhongyu; Zhao, Hong

    2006-11-01

    This paper presents a new method to measure the constituents of the milk, which uses the scattered light to transmitted light rate of the laser(called s-t rate for short) to detect the protein and fat content of the milk. The basic theory is discussed in the test in detail and the feasibility of the plan is analyzed. A relation curve between the fat and protein of milk and the ratio is built by multiple linear regression method. The uncertainty of the result is mentioned in the paper.

  3. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    SciTech Connect

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku

    2015-01-07

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  4. Scanning radiometer for measurement of forward-scattered light to determine mean diameter of spray particles

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1976-01-01

    A scanning radiometer is reported that measures forward-scattered light to determine the mean diameter of spray particles. An optical scanning method gives a continuous measurement of the light-scattering angle during spray nozzle tests. A method of calibration and a correction for background light are presented. Mean particle diameters of 10 to 500 micrometers can be measured.

  5. Development of a versatile laser light scattering instrument

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Ansari, Rafat R.

    1990-01-01

    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.

  6. Elastic scattering, fusion, and breakup of light exotic nuclei

    NASA Astrophysics Data System (ADS)

    Kolata, J. J.; Guimarães, V.; Aguilera, E. F.

    2016-05-01

    The present status of fusion reactions involving light ( A < 20) radioactive projectiles at energies around the Coulomb barrier ( E < 10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed.

  7. Preface: Electromagnetic and Light Scattering by Nonspherical Particles XIV

    NASA Technical Reports Server (NTRS)

    Dubovik, Oleg; Labonnete, Laurent; Litvinov, Pavel; Parol, Frederic; Mischenko, Michael

    2014-01-01

    The 14th Electromagnetic and Light Scattering Conference (ELS-XIV) was held at the Universit de Lille 1, Villeneuve d'Ascq, France on 17-21 June 2013. The conference was attended by 200 scientists from 26 countries. The scientific program included one plenary lecture, 12 invited reviews, 100 contributed oral talks, and 86 poster presentations. The program, the abstracts, and the slides of the oral presentations are available at the conference web site http:www-loa.univ-lille1.frELS-XIV. To highlight one of the traditional ELS themes, the ELS-XIV featured a special session on Remote sensing of aerosols and clouds using polarimetric observations. This session was sponsored and co-organized by the French space agency CNES and attracted representatives from nearly all research teams word-wide involved in the development and active use of space-borne, in situ, and ground-based polarimetric observations.

  8. Characterization of magnetic nanoparticle by dynamic light scattering

    PubMed Central

    2013-01-01

    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350

  9. Synthesis of Polymeric Microgels and their Characterization with Light Scattering

    NASA Astrophysics Data System (ADS)

    Gunder, Christian; Streletzky, Kiril A.; Freeman, Krista; Mino, Janna

    Polymeric microgels were synthesized in by chemically crosslinking hydroxypropylcellulose (HPC) chains in aqueous solutions of sodium hydroxide at temperatures above the low critical solution temperature (LCST) of HPC. In order to create a narrower size distribution of HPC microgels, surfactant was added. It was found that the LCST of the solution moved from 40C up to 80C with an increase in surfactant concentration from 0 to 12 g/l. Formed microgels were characterized by dynamic light scattering (DLS). Microgel solutions synthesized resulted in reasonably monodispersed nanoparticles with Rh of 90-150 nm below the transition, and Rh of 50-90 nm above the transition. The effect of synthesis temperature and crosslinker concentration on microgel size, polydispersity, and swelling ratio were also studied.

  10. Spray characterization with a nonintrusive technique using absolute scattered light

    NASA Technical Reports Server (NTRS)

    Hess, C. F.; Espinosa, V. E.

    1984-01-01

    A technique to measure the size and velocity of particles is discussed, and results are presented. In this technique two small laser beams of one color identify the center of a laser beam of a different color. This defines a region of almost uniform intensity where the light scattered by the individual particles can be related to their sizes. A variation of this technique that uses two polarizations of the same color of laser beam is also presented. Results are presented for monodisperse, bimodal, trimodal, and polydisperse sprays produced by the Berglund-Liu droplet generator and a pressure nozzle. Size distributions obtained at three different ranges for the same spray show excellent self-consistency in the overlapping regions. Measurements of a spray of known characteristics exhibit errors in the order of 10 percent.

  11. Light Scattering By Nonspherical Particles: Current Status and Challenging Issues

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2000-01-01

    Quantitative analyses of remote sensing measurements of aerosols, clouds, precipitation, and particulate surfaces as well as computations of the Earth's radiation balance require detailed understanding of the interaction of small particles with light and other electromagnetic radiation. The convenient availability of the Lorenz-Mie theory has led to a widespread practice of treating all particles as if they were spheres. However, many natural and anthropogenic particles have nonspherical shapes, and the accumulated knowledge suggests that their scattering and radiative properties can be dramatically different from those of equivalent spheres. This presentation will summarize the recent significant progress achieved in the area of electromagnetic scattering by nonspherical particles and outline major problems that still await solution. The talk will cover the following specific topics: (1) comparison of most widely used exact and approximate theoretical techniques; (2) outline of laboratory and field measurement techniques; (3) compare theory and experiment; (4) need for a statistical approach in dealing with natural particles; (5) remote sensing and radiative transfer applications; and (6) major unsolved problems.

  12. Updates on the Optical Emission Spectroscopy and Thomson Scattering Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Duke-Tinson, Omar; Karama, Jackson; Azzari, Phillip; Royce, James; Page, Eric; Schlank, Carter; Sherman, Justin; Stutzman, Brooke; Zuniga, Jonathan

    2014-10-01

    HPX at the Coast Guard Academy Plasma Laboratory (CGAPL) have set up spectral probes to verify plasma mode transitions to the W-mode. These optical probes utilize movable filters, and ccd cameras to gather data at selected spectral frequency bands. Raw data collected will be used to measure the plasma's relative density, temperature, structure, and behavior during experiments. Direct measurements of the plasma's properties can be determined through modeling and by comparison with the state transition tables, using Optical Emission Spectroscopy (OES). The spectral probes will take advantage of HPX's magnetic field structure to define and measure the plasma's radiation temp as a function of time and space. In addition, the Thomson Scattering (TS) device will measure internal temperature and density data as the HPX plasma transitions through capacitive and inductive modes while developing into helicon plasma. Currently CGAPL is focused on building its laser beam transport and scattered light collection optical systems. Recently, HPX has acquired an Andor ICCD spectrometer for the spectral analysis. Data collected by the TS system will be logged in real time by CGAPL's Data Acquisition (DAQ) system with LabView remote access. Further progress on HPX will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  13. Lectures on the scattering of light. [by dielectric sphere

    NASA Technical Reports Server (NTRS)

    Saxon, D. S.

    1974-01-01

    The exact (Mie) theory for the scattering of a plane wave by a dielectric sphere is presented. Since this infinite series solution is computationally impractical for large spheres, another formulation is given in terms of an integral equation valid for a bounded, but otherwise general array of scatterers. This equation is applied to the scattering by a single sphere, and several methods are suggested for approximating the scattering cross section in closed form. A tensor scattering matrix is introduced, in terms of which some general scattering theorems are derived. The application of the formalism to multiple scattering is briefly considered.

  14. A short-pulse X-ray beamline for spectroscopy and scattering.

    PubMed

    Reininger, R; Dufresne, E M; Borland, M; Beno, M A; Young, L; Evans, P G

    2014-09-01

    Experimental facilities for picosecond X-ray spectroscopy and scattering based on RF deflection of stored electron beams face a series of optical design challenges. Beamlines designed around such a source enable time-resolved diffraction, spectroscopy and imaging studies in chemical, condensed matter and nanoscale materials science using few-picosecond-duration pulses possessing the stability, high repetition rate and spectral range of synchrotron light sources. The RF-deflected chirped electron beam produces a vertical fan of undulator radiation with a correlation between angle and time. The duration of the X-ray pulses delivered to experiments is selected by a vertical aperture. In addition to the radiation at the fundamental photon energy in the central cone, the undulator also emits the same photon energy in concentric rings around the central cone, which can potentially compromise the time resolution of experiments. A detailed analysis of this issue is presented for the proposed SPXSS beamline for the Advanced Photon Source. An optical design that minimizes the effects of off-axis radiation in lengthening the duration of pulses and provides variable X-ray pulse duration between 2.4 and 16 ps is presented. PMID:25178012

  15. Analyzing cell structure and dynamics with confocal light scattering and absorption spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Le; Vitkin, Edward; Fang, Hui; Zaman, Munir M.; Andersson, Charlotte; Salahuddin, Saira; Modell, Mark D.; Freedman, Steven D.; Hanlon, Eugene B.; Itzkan, Irving; Perelman, Lev T.

    2007-02-01

    We recently developed a new microscopic optical technique capable of noninvasive analysis of cell structure and cell dynamics on the submicron scale [1]. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light scattering spectroscopy (LSS) and is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales on the order of 100 nm. To test the ability of CLASS microscopy to monitor cellular dynamics in vivo we performed experiments with human bronchial epithelial cells treated with DHA and undergoing apoptosis. The treated and untreated cells show not only clear differences in organelle spatial distribution but time sequencing experiments on a single cell show disappearance of certain types of organelles and change of the nuclear shape and density with the progression of apoptosis. In summary, CLASS microscopy provides an insight into metabolic processes within the cell and opens doors for the noninvasive real-time assessment of cellular dynamics. Noninvasive monitoring of cellular dynamics with CLASS microscopy can be used for a real-time dosimetry in a wide variety of medical and environmental applications that have no immediate observable outcome, such as photodynamic therapy, drug screening, and monitoring of toxins.

  16. Light induced changes in Raman scattering of carotenoid molecules in Photosystem I particles

    NASA Astrophysics Data System (ADS)

    Andreeva, Atanaska; Abarova, Silviya; Stoitchkova, Katerina; Velitchkova, Maya

    2007-03-01

    The photosynthetic antenna systems are able to regulate the light energy harvesting under different light conditions by dynamic changes in their protein structure protecting the reaction center complexes. The changes modulate the electronic structure of the main antenna pigments (chlorophylls and carotenoids) and distort the characteristic planar structure of carotenoids, allowing their forbidden out of plane vibrations. Electronic absorption and low-temperature resonance Raman spectroscopy were used to study the changes in composition and spectral properties of the major carotenoids in spinach Photosystem I particles due to high light treatment. The duration of the applied intensity of the white light (1800 μE m -2 s -1) was 30, 60 and 120 minutes. We used Raman scattering in an attempt to recognize the type and conformation of photobleached carotenoid molecules. The resonance Raman spectra were measured at 488 and 514.5 nm, coinciding with the absorption maximum positions of the carotenoids neoxanthin and lutein, correspondingly. The results revealed nearly a full photobleaching of the long wavelength lutein molecules, whereas the bleaching of neoxantin molecules is negligible. The involvement of these changes in the photoprotection and photoinactivation of the Photosystem I particles was discussed.

  17. Focusing light through scattering media by full-polarization digital optical phase conjugation

    PubMed Central

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.

    2016-01-01

    Digital optical phase conjugation (DOPC) is an emerging technique for focusing light through or within scattering media such as biological tissue. Since DOPC systems are based on time reversal, they benefit from collecting as much information about the scattered light as possible. However, existing DOPC techniques record and subsequently phase-conjugate the scattered light in only a single polarization state, limited by the operating principle of spatial light modulators. Here, we develop the first full-polarization DOPC system which records and phase-conjugates scattered light along two orthogonal polarizations. When focusing light through thick scattering media, such as 2 mm and 4 mm thick chicken breast tissue, our full-polarization DOPC system on average doubles the focal peak-to-background ratio achieved by single-polarization DOPC systems and improves the phase conjugation fidelity. PMID:26977651

  18. Focusing light through scattering media by full-polarization digital optical phase conjugation.

    PubMed

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V

    2016-03-15

    Digital optical phase conjugation (DOPC) is an emerging technique for focusing light through or within scattering media such as biological tissue. Since DOPC systems are based on time reversal, they benefit from collecting as much information about the scattered light as possible. However, existing DOPC techniques record and subsequently phase-conjugate the scattered light in only a single-polarization state, limited by the operating principle of spatial light modulators. Here, we develop the first, to the best of our knowledge, full-polarization DOPC system that records and phase-conjugates scattered light along two orthogonal polarizations. When focusing light through thick scattering media, such as 2 mm and 4 mm-thick chicken breast tissue, our full-polarization DOPC system on average doubles the focal peak-to-background ratio achieved by single-polarization DOPC systems and improves the phase-conjugation fidelity. PMID:26977651

  19. Inelastic neutron scattering and raman light scattering from hydrogen-filled clathrates hydrates

    NASA Astrophysics Data System (ADS)

    Ulivi, L.; Celli, M.; Giannasi, A.; Ramirez-Cuesta, A. J.; Zoppi, M.

    2008-07-01

    Several samples of ternary tetrahydrofuran-H2O-H2 and binary H2O-H2 clathrate hydrates have been analysed by high-resolution inelastic neutron scattering and Raman light scattering. The neutron spectrum presents several intense bands due to H2 molecule excitations and in particular to rotational transitions, centre-of-mass translational transitions of either para-or ortho-H2, and to combinations of these. The H2 molecule behaves in the clathrate cage as an almost free rotor, and performs a translational motion (rattling), that is a paradigmatic example of the motion of a quantum particle in a non-harmonic three-dimensional potential well. Both the H2 rotational transition and the fundamental of the rattling transition split into triplets. Raman spectra show a similar splitting of the S0(0) rotational transition, due to a significant anisotropy of the potential with respect to the orientation of the molecule in the cage. The comparison of our experimental values for the transition frequencies to a recent quantum mechanical calculation is discussed.

  20. Scattered-field FDTD and PSTD algorithms with CPML absorbing boundary conditions for light scattering by aerosols

    NASA Astrophysics Data System (ADS)

    Sun, Wenbo; Videen, Gorden; Fu, Qiang; Hu, Yongxiang

    2013-12-01

    As fundamental parameters for polarized-radiative-transfer calculations, the single-scattering phase matrix of irregularly shaped aerosol particles must be accurately modeled. In this study, a scattered-field finite-difference time-domain (FDTD) model and a scattered-field pseudo-spectral time-domain (PSTD) model are developed for light scattering by arbitrarily shaped dielectric aerosols. The convolutional perfectly matched layer (CPML) absorbing boundary condition (ABC) is used to truncate the computational domain. It is found that the PSTD method is generally more accurate than the FDTD in calculation of the single-scattering properties given similar spatial cell sizes. Since the PSTD can use a coarser grid for large particles, it can lower the memory requirement in the calculation. However, the Fourier transformations in the PSTD need significantly more CPU time than simple subtractions in the FDTD, and the fast Fourier transform requires a power of 2 elements in calculations, thus using the PSTD could not significantly reduce the CPU time required in the numerical modeling. Furthermore, because the scattered-field FDTD/PSTD equations include incident-wave source terms, the FDTD/PSTD model allows for the inclusion of an arbitrarily incident wave source, including a plane parallel wave or a Gaussian beam like those emitted by lasers usually used in laboratory particle characterizations, etc. The scattered-field FDTD and PSTD light-scattering models can be used to calculate single-scattering properties of arbitrarily shaped aerosol particles over broad size and wavelength ranges.

  1. Elastic scattering spectroscopy in vivo: optical biopsies of cancers of the breast and GI tract

    NASA Astrophysics Data System (ADS)

    Pickard, David C. O.; Briggs, Gavin M.; Saunders, Christobel; Lakhani, Sunil; Ripley, Paul M.; Bigio, Irving J.; Bown, Stephen G.

    2000-04-01

    Elastic scattering or diffuse reflectance spectroscopy offers the possibility of distinguishing between normal and neoplastic tissue with a relatively simple optical measurement. The measurement of the reflection of light has previously been shown to be sensitive to the size and distribution of both intra and inter-cellular structures as well as absorption from chromatophores which are present in the tissue. By coupling a white light source and spectrometer to optic fibers it is possible to construct probes which can be inserted precutaneously or intra- operatively into breast tissue or which can pass down the channel of an endoscope and take in-vivo spectra of diseased and normal tissue in the Gastro-Intestinal tract. Spectra are reported from a large number of patients with a variety of benign, metaplastic, dysplastic and cancerous conditions. Some differences that have been observed in these spectra are discussed and the merits and disadvantages of 'optical biopsy' as an in-vivo diagnostic tool are examined. It is shown that to a relatively high degree of sensitivity and specificity it is possible to distinguish cancerous from normal tissue in a number of cases. The methods of distinguishing spectra and some possible modalities for their improvement are discussed.

  2. The numerical simulation and goniometric measurements of cells light scattering based on Mie theory

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Ye, Changbin; Zhu, Hao; Li, Wenchao; Wu, Jie

    2015-10-01

    Optical diagnostic technique, due to its rapid and non-invasive for the diagnosis diseases at the cellular level, can be performed in vivo and allow for real-time diagnosis. While light scattering method is capable of characterizing the structural properties of tissue at the cellular and subcellular scale. In this paper, the spherical models of cells light scattering were established based on Mie, and the distribution curves of scattering intensity in the range of 0~180 degrees were got to explore change rule of cells light scattering information at the molecular level. Also, a platform for experiments used to measure the light scattering information of cells was built to get the change rule of cells light scattering information in wide angular range. And the particle size distribution (PSD) of cells was got by the inversion algorithm. A comparative analysis between numerical simulation and goniometric measurements revealed that the forward-scattering and side-scattering were influenced by the particle size of cells and relative index of refraction between cells and surrounding media. It could also be concluded that it was necessary to get and analyze the light scattering information of larger scattering angle range, which may be related to the intracellular organelles and nucleus.

  3. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    NASA Astrophysics Data System (ADS)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-02-01

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.

  4. Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon

    NASA Astrophysics Data System (ADS)

    Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-03-01

    Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.

  5. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    SciTech Connect

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li E-mail: elaineli@physics.utexas.edu; Li, Xiaoqin E-mail: elaineli@physics.utexas.edu

    2015-02-02

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.

  6. In-situ light-scattering measurements during the CVD of polycrystalline silicon carbide

    SciTech Connect

    Sheldon, B.W. |; Reichle, P.A.; Besmann, T.M.

    1992-12-31

    Light-scattering was used to monitor the chemical vapor deposition of silicon carbide from methyltrichlorosilane. Nucleation and growth of SiC caused changes in surface topography that altered the angular scattering spectrum generated by a He-Ne laser. These scattering spectra were analyzed to obtain information about the occurring nucleation and growth processes.

  7. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    SciTech Connect

    Bunkin, N F; Shkirin, A V; Burkhanov, I S; Chaikov, L L; Lomkova, A K

    2014-11-30

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)

  8. Angular and spectrally resolved investigations of yeast cells by light scattering microscopy and goniometric measurements

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Müller, Dennis; Nothelfer, Steffen; Kienle, Alwin

    2015-07-01

    Spectrally and angular resolved light scattering from yeast cells was studied with a scattering microscope and a goniometer. Different cell models were investigated with help of analytical solutions of Maxwell's equations. It was found that extraction of precise morphological and optical cellular properties from the measured scattering patterns and phase functions requires more sophisticated cell models than standard Mie theory.

  9. Comparability between PM2.5 and particle light scattering measurements.

    PubMed

    Chow, Judith C; Watson, John G; Lowenthal, Douglas H; Richards, L Willard

    2002-10-01

    Particle light scattering and PM2.5 (particles with aerodynamic diameters less than 2.5 microm) concentration data from air quality studies conducted over the past ten years were examined. Fine particle scattering efficiencies were determined from statistical relationships among measured light scattering and fine and coarse mass concentrations. The resulting fine particle scattering efficiencies ranged from 1.7 m2 g(-1) at Meadview in the Grand Canyon to over 5 m2 g(-1) in Mexico City. Most of the derived line scattering efficiencies were centered around 2 m2 g(-1), which is considerably lower than most values reported from previous studies. PMID:12381021

  10. Scattering of guided light by a single hole in a dielectric slab.

    PubMed

    Mariani, F; van Exter, M P

    2015-06-29

    We study the scattering of waveguided light by a single hole in a dielectric slab with FDTD simulations and investigate two scattering processes: two dimensional (2D) scattering into slab modes and three-dimensional (3D) scattering into the surroundings. We find that 2D scattering typically dominates over the 3D losses. We find important quantitative differences between the single hole scattering and the case of scattering from an infinite Mie cylinder. Additionally, we find that a hole cannot be simply modelled as a dipolar object even in the limit of small scatterers (Rayleigh approximation). This is visible from the angular dependence of the 2D scattered intensity. We discuss the relevance of our findings in the modeling of two dimensional random scattering media. PMID:26191761

  11. Possibilities of implanted control in stimulated light scattering experiments

    NASA Astrophysics Data System (ADS)

    Lazarenko, Anatoliy G.; Andreev, Alexandr N.; Kanaev, Andrey V.

    2004-09-01

    Some possibilities of simple and thus reliable schemes of experiment "self-control" exploiting intrinsic features of studied non-linear phenomena like wave front reversal under stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS) rather than outer sensors and controls are described. The schemes discussed provide input signal dynamic region broadening in stimulated scattering converters and angle of synchronism self-tuning while two frequency pumping.

  12. Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension

    NASA Astrophysics Data System (ADS)

    Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.

    2016-06-01

    A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.

  13. Continuous-wave stimulated Brillouin spectroscopy in scattering media at 780 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Remer, Itay; Billenca, Alberto

    2016-03-01

    Quantitative probing of the mechanical properties of scattering media by Brillouin spectroscopy is an emerging field of research. At present, Brillouin spectrometers typically detect spontaneous Brillouin backscattered signals from the sample using setups that comprise virtually imaged phased arrays (VIPAs) cascaded in cross-axis configuration or heated molecular absorption cells prior to the VIPA. These experimental arrangements are necessary in order to significantly suppress the strong elastic scattering background from the medium. In this talk, we present a different approach for Brillouin spectroscopy of scattering matter based on stimulated Brillouin scattering (SBS) amplification. Unlike spontaneous Brillouin scattering, SBS amplification does not show elastic scattering background due to the resonant nature of the amplification process, thereby providing excellent spectral contrast. We demonstrate that the use of two continuous-wave distributed feedback lasers at 780 nm in a counter-propagating SBS amplifier geometry is useful for acquiring high signal-to-noise ratio SBS spectra of Intralipid solutions at concentrations that yield up to ~3 scattering events for photons propagating through the sample. Potential applications of SBS spectroscopy in mechanical characterization of thin tissue sections and biopolymers will be discussed.

  14. Characterization of Mixed Polypeptide Colloidal Particles by Light Scattering

    NASA Astrophysics Data System (ADS)

    Shuman, Hannah E.; Gaeckle, Grace K.; Gavin, John; Holland, Nolan B.; Streletzky, Kiril A.

    2014-03-01

    Temperature-dependent polymer surfactants have been developed by connecting three elastin-like polypeptide (ELP) chains to a charged protein domain (foldon), forming a three-armed star polymer. At low temperatures the polymer is soluble, while at higher temperatures it forms micelles. The behavior of mixtures of the three-armed star ELP (E20-Foldon) and H40-Linear ELP chains was analyzed under different salt and protein concentrations and various foldon to linear ELP ratio using Depolarized Dynamic Light Scattering. It was expected that under certain conditions the pure E20-Foldon would form spherical micelles, which upon adding the linear ELP would change in size and possibly shape. The pure E20-Foldon indeed formed largely spherical micelles with Rh of 10-20nm in solutions with 15-100mM salt and protein concentration between 10 μM and 100 μM. For the mixtures of 50 μM E20-Foldon and varying concentrations of H40-Linear in 25mM of salt, it was discovered that low and high H40-Linear concentration (4 μM and 50 μM) had only one transition. For the mixtures with of 10 and 25 μM of H40-Linear the two distinct transition temperatures were observed by spectrophotometry. The first transition corresponded to significantly elongated diffusive particles of apparent Rh of 30-50nm, while the second transition corresponded to slightly anisotropic diffusive particles with apparent Rh of about 20nm. At all H40-Linear concentrations studied, diffusive particles were seen above the second transition. Their radius and ability to depolarize light increased with the increase of H40-Linear concentration.

  15. Modulation of Light-Enhancement to Symbiotic Algae by Light-Scattering in Corals and Evolutionary Trends in Bleaching

    PubMed Central

    Marcelino, Luisa A.; Westneat, Mark W.; Stoyneva, Valentina; Henss, Jillian; Rogers, Jeremy D.; Radosevich, Andrew; Turzhitsky, Vladimir; Siple, Margaret; Fang, Andrew; Swain, Timothy D.; Fung, Jennifer; Backman, Vadim

    2013-01-01

    Calcium carbonate skeletons of scleractinian corals amplify light availability to their algal symbionts by diffuse scattering, optimizing photosynthetic energy acquisition. However, the mechanism of scattering and its role in coral evolution and dissolution of algal symbioses during “bleaching” events are largely unknown. Here we show that differences in skeletal fractal architecture at nano/micro-lengthscales within 96 coral taxa result in an 8-fold variation in light-scattering and considerably alter the algal light environment. We identified a continuum of properties that fall between two extremes: (1) corals with low skeletal fractality that are efficient at transporting and redistributing light throughout the colony with low scatter but are at higher risk of bleaching and (2) corals with high skeletal fractality that are inefficient at transporting and redistributing light with high scatter and are at lower risk of bleaching. While levels of excess light derived from the coral skeleton is similar in both groups, the low-scatter corals have a higher rate of light-amplification increase when symbiont concentration is reduced during bleaching, thus creating a positive feedback-loop between symbiont concentration and light-amplification that exposes the remaining symbionts to increasingly higher light intensities. By placing our findings in an evolutionary framework, in conjunction with a novel empirical index of coral bleaching susceptibility, we find significant correlations between bleaching susceptibility and light-scattering despite rich homoplasy in both characters; suggesting that the cost of enhancing light-amplification to the algae is revealed in decreased resilience of the partnership to stress. PMID:23630594

  16. Physiological and pathological clinical conditions and light scattering in brain.

    PubMed

    Kurata, Tsuyoshi; Iwata, Sachiko; Tsuda, Kennosuke; Kinoshita, Masahiro; Saikusa, Mamoru; Hara, Naoko; Oda, Motoki; Ohmae, Etsuko; Araki, Yuko; Sugioka, Takashi; Takashima, Sachio; Iwata, Osuke

    2016-01-01

    MRI of preterm infants at term commonly reveals subtle brain lesions such as diffuse white matter injury, which are linked with later cognitive impairments. The timing and mechanism of such injury remains unclear. The reduced scattering coefficient of near-infrared light (μs') has been shown to correlate linearly with gestational age in neonates. To identify clinical variables associated with brain μs', 60 preterm and full-term infants were studied within 7 days of birth. Dependence of μs' obtained from the frontal head on clinical variables was assessed. In the univariate analysis, smaller μs' was associated with antenatal glucocorticoid, emergency Caesarean section, requirement for mechanical ventilation, smaller gestational age, smaller body sizes, low 1- and 5-minute Apgar scores, higher cord blood pH and PO2, and higher blood HCO3(-) at the time of study. Multivariate analysis revealed that smaller gestational age, requirement for mechanical ventilation, and higher HCO3(-) at the time of study were correlated with smaller μs'. Brain μs' depended on variables associated with physiological maturation and pathological conditions of the brain. Further longitudinal studies may help identify pathological events and clinical conditions responsible for subtle brain injury and subsequent cognitive impairments following preterm birth. PMID:27511644

  17. An ultra-efficient energy transfer beyond plasmonic light scattering

    SciTech Connect

    Fu, Sze-Ming; Zhong, Yan-Kai; Lin, Albert

    2014-11-14

    The energy transfer between nano-particles is of great importance for, solar cells, light-emitting diodes, nano-particle waveguides, and other photonic devices. This study shows through novel design and algorithm optimization, the energy transfer efficiency between plasmonic and dielectric nano-particles can be greatly improved. Using versatile designs including core-shell wrapping, supercells and dielectric mediated plasmonic scattering, 0.05 dB/μm attenuation can be achieved, which is 20-fold reduction over the baseline plasmonic nano-particle chain, and 8-fold reduction over the baseline dielectric nano-particle chain. In addition, it is also found that the dielectric nano-particle chains can actually be more efficient than the plasmonic ones, at their respective optimized geometry. The underlying physics is that although plasmonic nano-particles provide stronger coupling and field emission, the effect of plasmonic absorption loss is actually more dominant resulting in high attenuation. Finally, the group velocity for all design schemes proposed in this work is shown to be maintained above 0.4c, and it is found that the geometry optimization for transmission also boosts the group velocity.

  18. Measurement of aggregates' size distribution by angular light scattering

    NASA Astrophysics Data System (ADS)

    Caumont-Prim, Chloé; Yon, Jérôme; Coppalle, Alexis; Ouf, François-Xavier; Fang Ren, Kuan

    2013-09-01

    A novel method is introduced for in situ determination of the size distribution of submicronic fractal aggregate particles by unique measurement of angular scattering of light. This method relies on the dependence of a new defined function Rg⋆ on the polydispersity of the aggregates' size distribution. The function Rg⋆ is then interpreted by the use of iso-level charts to determine the parameters of the log-normal soot size distribution. The main advantage of this method is its independence of the particle optical properties and primary sphere diameter. Moreover, except for the knowledge of fractal dimension, this method does not require any additional measurement. It is validated on monodisperse particles selected by a differential mobility analyzer and polydisperse soot from ethylene diffusion flame whose size distribution is independently determined by Transmission Electron Microscopy. Finally, the size distribution of soot generated by a commercial apparatus is measured by the proposed method and the comparison to that given by a commercial granulometer shows a good agreement.

  19. Dynamic light scattering of xanthan gum biopolymer in colloidal dispersion.

    PubMed

    Rahdar, Abbas; Almasi-Kashi, Mohammad

    2016-09-01

    The dynamical properties of nanogels of xanthan gum (XG) with hydrodynamic radius controlled in a size range from 5 nm to 35 nm, were studied at the different XG concentrations in water/sodium bis-2-ethylhexyl-sulfosuccinate (AOT)/decane reverse micelles (RMs) vs. mass fraction of nano-droplet (MFD) at W = 40, using dynamic light scattering (DLS). The diffusion study of nanometer-sized droplets by DLS technique indicated that enhancing concentration of the XG polysaccharide resulted in exchanging the attractive interaction between nano-gels to repulsive interaction, as the mass fraction of nano-droplets increased. The reorientation time (τr ) of water nanodroplets decreased with MFD for water-in-oil AOT micro-emulsion comprising high concentration (0.0000625) of XG. On the other hand, decreasing concentration of biopolymer led to increasing the rotational correlation time of water nanodroplets with MFD. In conclusion, a single relaxation curve was observed for AOT inverse microemulsions containing different XG concentrations. Furthermore, the interaction between nanogels was changed from attractive to repulsive versus concentration of XG in the AOT RMs. PMID:27489730

  20. Miniaturized dynamic light scattering instrumentation for use in microfluidic applications

    SciTech Connect

    Chastek, Thomas Q.; Beers, Kathryn L.; Amis, Eric J.

    2007-07-15

    Five designs for a miniaturized dynamic light scattering (DLS) instrument are described that incorporate microfluidic flow of the sample volume and fiber optic probes directly embedded into the sample. These instruments were demonstrated to accurately determine the size of 10-100 nm particles dispersed in organic and aqueous solvents with most sample sizes less than 150 {mu}l. Small stir bars were incorporated directly into the instruments, and enabled blending of different solutions immediately prior to DLS measurements. Demonstration of the instruments' capabilities include high throughput measurements of the micelle to unimer transition for poly(styrene-b-isoprene) in mixed toluene/hexadecane solvent, obtained by systematically blending toluene-rich and hexadecane-rich polymer solutions. The critical solvent composition was quickly identified with less than 20 mg of polymer. Further capabilities include temperature control, demonstrated by identification of a critical micelle temperature of poly(ethylene oxide-b-propylene oxide-b-ethylene oxide), as well as multiangle DLS measurements.

  1. Static and dynamic light scattering studies on dilute polyrotaxane solutions

    NASA Astrophysics Data System (ADS)

    Kume, Tetsuya; Araki, Jun; Sakai, Yasuhiro; Mayumi, Koichi; Kidowaki, Masatoshi; Yokoyama, Hideaki; Ito, Kohzo

    2009-08-01

    Static and dynamic light scattering measurements were performed for dilute polyrotaxane solutions in different types of solvent systems, i.e. dimethylacetamide (DMAc) or dimethylformamide (DMF) containing 1-6 wt% lithium chloride (LiCl), 1 M aqueous sodium hydroxide (NaOH) and dimethylsulfoxide (DMSO). No aggregation of the polyrotaxane in DMF/LiCl was confirmed in the present study. Radius of gyration of the dissolved polyrotaxane was largest in NaOHaq., followed by values in amide solvents/LiCl and that in DMSO, and was probably dominated not by Coulombic repulsion but by the mutual affinity between solvent and polyrotaxane. Ratio of radius of gyration to hydrodynamic radius suggested the flexible random-coiled conformation in DMSO and relatively more extended, semi-flexible ones in amide solvents/LiCl and NaOHaq. The obtained values of second virial coefficient and weight average molecular weight seemed to be affected by a potential change in differential refractive index increments, caused by selective macrocationization or ionization.

  2. Physiological and pathological clinical conditions and light scattering in brain

    PubMed Central

    Kurata, Tsuyoshi; Iwata, Sachiko; Tsuda, Kennosuke; Kinoshita, Masahiro; Saikusa, Mamoru; Hara, Naoko; Oda, Motoki; Ohmae, Etsuko; Araki, Yuko; Sugioka, Takashi; Takashima, Sachio; Iwata, Osuke

    2016-01-01

    MRI of preterm infants at term commonly reveals subtle brain lesions such as diffuse white matter injury, which are linked with later cognitive impairments. The timing and mechanism of such injury remains unclear. The reduced scattering coefficient of near-infrared light (μs’) has been shown to correlate linearly with gestational age in neonates. To identify clinical variables associated with brain μs’, 60 preterm and full-term infants were studied within 7 days of birth. Dependence of μs’ obtained from the frontal head on clinical variables was assessed. In the univariate analysis, smaller μs’ was associated with antenatal glucocorticoid, emergency Caesarean section, requirement for mechanical ventilation, smaller gestational age, smaller body sizes, low 1- and 5-minute Apgar scores, higher cord blood pH and PO2, and higher blood HCO3− at the time of study. Multivariate analysis revealed that smaller gestational age, requirement for mechanical ventilation, and higher HCO3− at the time of study were correlated with smaller μs’. Brain μs’ depended on variables associated with physiological maturation and pathological conditions of the brain. Further longitudinal studies may help identify pathological events and clinical conditions responsible for subtle brain injury and subsequent cognitive impairments following preterm birth. PMID:27511644

  3. Characterization of dental composite curing kinetics using dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Wells-Gray, Elaine M.; Kirkpatrick, Sean J.; Sakaguchi, Ron L.

    2009-02-01

    Polymer resin composites are a class of widely used restorative dental materials that undergo a complex polymerization curing process that has been the subject of substantial research. This study uses speckle correlation methods based on dynamic light scattering as a tool to monitor the rate and extent of dental composite polymerization during and after photo-curing. Thin disc-shaped samples (<2mm) were constructed using composite consisting of 50:50 BisGMA/TEGDMA resin, quartz silica filler particles, and camphorquinone as photo-initiator. A 633 nm HeNe laser beam was used to probe the top surface of the sample via a backscattered speckle pattern, while the bottom surface was illuminated with a halogen curing lamp (peak wavelength=470nm) to initiate the polymerization reaction. The speckle patterns were recorded with a CCD camera, and stored as a 'speckle cube' for post processing. Correlation values of the intensity fluctuation were calculated on a pixel-by-pixel basis for pairs of subsequent speckle images and then ensemble averaged. Results show a sharp decrease in correlation at the onset of curing, indicating a large amount of double bond conversion and movement within the composite. Correlation values then quickly increase, eventually reaching a plateau near unity, indicating cessation of molecular rearrangement. The kinetic behavior demonstrated by our correlation curves are in good agreement with curing data found in the literature, and demonstrate the usefulness of this technique for monitoring dental composite curing.

  4. Dynamic light-scattering monitoring of a transient biopolymer gel

    NASA Astrophysics Data System (ADS)

    Kostko, A. F.; Chen, T.; Payne, G. F.; Anisimov, M. A.

    2003-05-01

    We performed dynamic light-scattering (DLS) monitoring and a rheological study to characterize the formation and destruction of a transient (limited lifetime) gel formed from the biopolymers chitosan and gelatin. Gel formation, initiated by the enzyme tyrosinase, is followed by spontaneous gel breakage. Our DLS results demonstrate that this material passes through five stages in which the gel forms, consolidates, “lives”, softens, and eventually breaks. We speculate that the existence of the transient gel is caused by a competition between two processes: a fast-rate chemical reaction leading to formation of a branched-copolymer network and a slow-rate diffusion-like rearrangement of the gelatin branches resulting in eventual gel breakage. Despite a dramatic difference in the characteristic times of the gel formation ( tg) and gel breakage ( tb)-the ratio tb/ tg is of the order 10 3-DLS has revealed an intrinsic monitoring-time symmetry in the formation and destruction of the gel provided that a proper physical choice of the reduced temporal scale is used. In this scale the slow-mode relaxation time for both sides of the process, gel formation and gel destruction, exhibits a power law in the spirit of percolation theory.

  5. LIGHT BEAMS: Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media

    NASA Astrophysics Data System (ADS)

    Katsev, I. L.; Prikhach, A. S.; Kazak, N. S.; Kroening, M.

    2006-04-01

    Based on the relation between the theory of light field coherence and theory of radiation transfer in scattering media, a method is proposed for calculating the illumination distribution produced by coherent quasi-diffraction-free beams at different penetration depths of radiation into scattering media such as biological tissues. The method uses the optical transfer function or the point spread function (PSF) of the medium. A simple and convenient analytic PSF model is described. Examples of the illumination distribution produced by a Bessel light beam in a medium with optical parameters typical of real biological tissues are presented. It is shown that the half-width of the axial maximum of a Bessel light beam scattered due to scattering almost does not increase up to optical depths where the contribution of multiple scattering is already considerable.

  6. Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale

    NASA Astrophysics Data System (ADS)

    Sebastian, Thomas; Schultheiss, Katrin; Obry, Björn; Hillebrands, Burkard; Schultheiss, Helmut; Obry, Björn

    2015-06-01

    Spin waves constitute an important part of research in the field of magnetization dynamics. Spin waves are the elementary excitations of the spin system in a magnetically ordered material state and magnons are their quasi particles. In the following article, we will discuss the optical method of Brillouin light scattering (BLS) spectroscopy which is a now a well established tool for the characterization of spin waves. BLS is the inelastic scattering of light from spin waves and confers several benefits: the ability to map the spin wave intensity distribution with spatial resolution and high sensitivity as well as the potential to simultaneously measure the frequency and the wave vector and, therefore, the dispersion properties. For several decades, the field of spin waves gained huge interest by the scientific community due to its relevance regarding fundamental issues of spindynamics in the field of solid states physics. The ongoing research in recent years has put emphasis on the high potential of spin waves regarding information technology. In the emerging field of textit{magnonics}, several concepts for a spin-wave based logic have been proposed and realized. Opposed to charge-based schemes in conventional electronics and spintronics, magnons are charge-free currents of angular momentum, and, therefore, less subject to scattering processes that lead to heating and dissipation. This fact is highlighted by the possibility to utilize spin waves as information carriers in electrically insulating materials. These developments have propelled the quest for ways and mechanisms to guide and manipulate spin-wave transport. In particular, a lot of effort is put into the miniaturization of spin-wave waveguides and the excitation of spin waves in structures with sub-micrometer dimensions. For the further development of potential spin-wave-based devices, the ability to directly observe spin-wave propagation with spatial resolution is crucial. As an optical technique BLS do

  7. Effective phase function of light scattered at small angles by polydisperse particulate media

    NASA Astrophysics Data System (ADS)

    Turcu, I.

    2008-06-01

    Particles with typical dimensions higher than the light wavelength and relative refraction indexes close to one, scatter light mainly in the forward direction where the scattered light intensity has a narrow peak. For particulate media accomplishing these requirements the light scattered at small angles in a far-field detecting set-up can be described analytically by an effective phase function (EPF) even in the multiple scattering regime. The EPF model which was built for monodispersed systems has been extended to polydispersed media. The main ingredients consist in the replacement of the single particle phase function and of the optical thickness with their corresponding averaged values. Using a Gamma particle size distribution (PSD) as a testing model, the effect of polydispersity was systematically investigated. The increase of the average radius or/and of the PSD standard deviation leads to the decrease of the angular spreading of the small angle scattered light.

  8. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre.

    PubMed

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s(-1) and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  9. The polarization of light scattered by small particles: A personal review

    NASA Astrophysics Data System (ADS)

    Hovenier, J. W.

    2012-12-01

    A personal review of the author's field of research is presented at the occasion of his receipt of the first Van de Hulst Light-Scattering Award. Special attention is given to the relation between the author's work and the contributions of Professor H.C. van de Hulst to the field of light scattering by small particles. History, people and research are intertwined in this paper. The polarization of light scattered by particles is brought into focus. First, the interpretation of the polarization of Venus in terms of properties of its cloud particles is recorded, followed by a discussion of symmetry principles and their interrelationships. The structure of a variety of Mueller matrices is exposed. Experimental work on light scattering is also considered. Finally, the fast growth of knowledge over the past few decades pertaining to light scattering by non-spherical particles is indicated.

  10. Spectroscopy of strongly correlated systems: Resonant x-ray scattering without energy resolution in the scattered beam

    NASA Astrophysics Data System (ADS)

    Braicovich, L.; Tagliaferri, A.; Annese, E.; Ghiringhelli, G.; Dallera, C.; Fracassi, F.; Palenzona, A.; Brookes, N. B.

    2007-02-01

    The total emission of photons excited by x rays (90° between incident and detected photons) is measured vs the incident photon energy at the CeM4,5 edges in CeIn3 , CeSnIn2 , CeAl2 , CePd3 , and CeRh2 , and at the NiL2,3 edges in NiO. The results show the signature of a second-order process; these experiments must be interpreted as genuine resonant inelastic scattering (though without energy resolution of the emitted photons) and not as absorption spectroscopy measured by the total fluorescence yield. In Ce compounds, information on bulk hybridization can thus be obtained simply and with high sensitivity. The branching ratio between the different scattering channels is also measured. This approach opens innovative perspectives in resonant inelastic x-ray scattering.

  11. Background-free Brillouin spectroscopy in scattering media at 780  nm via stimulated Brillouin scattering.

    PubMed

    Remer, Itay; Bilenca, Alberto

    2016-03-01

    We demonstrate the effectiveness of stimulated Brillouin scattering for background-free Brillouin spectroscopy in scattering media within the biological spectral window. Using two nearly counter-propagating continuous-wave diode laser beams at 780 nm, we acquired transmission stimulated Brillouin point spectra in 10 mm and 500 μm thick Intralipid tissue phantoms with ∼100  μm and ∼16  μm diameter focal points, respectively. Stimulated gain spectra with high signal-to-noise ratio (8.7-30.7 dB) and frequency accuracy (6-72 MHz) were obtained at 20  MHz/10  ms and 20  MHz/100  ms through 0.24-3.36 mean-free paths of tissue phantoms. Our results suggest that stimulated Brillouin gain can be useful for imaging of Brillouin resonances in submillimeter-thick scattering samples. PMID:26974082

  12. Coherence effects in scattering order expansion of light by atomic clouds.

    PubMed

    Rouabah, Mohamed-Taha; Samoylova, Marina; Bachelard, Romain; Courteille, Philippe W; Kaiser, Robin; Piovella, Nicola

    2014-05-01

    We interpret cooperative scattering by a collection of cold atoms as a multiple-scattering process. Starting from microscopic equations describing the response of N atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple-scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double-scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering. PMID:24979635

  13. Acoustic swimbladder resonance spectroscopy: Fundamentals in scattering theory

    NASA Astrophysics Data System (ADS)

    Francis, David T. I.; Foote, Kenneth G.

    2003-04-01

    A history of the physics of acoustic resonance is given. The primary, low-frequency, resonant scattering model for air bubbles in water [Minnaert (1933)] is reviewed. Subsequent applications to swimbladdered fish, including models by Andreeva (1964), Love (1978), and Feuillade and Nero (1998), among others, are developed. Reference is made to exemplary measurements of backscattering by Holliday (1972) and Loevik and Hovem (1979), and of forward scattering, or absorption, by Weston (1967) and Diachok (2000), among others. High-frequency resonances are also described, with presentation of both analytical and numerical results for the immersed air bubble. Comparison of these validates the numerical, boundary-element method (BEM). The BEM allows high-frequency resonances to be studied for swimbladders of realistic shapes under pressure and for typical wave-number-swimbladder length products of order 10-40. Implications of high-frequency swimbladder resonance for auditory function in fish are mentioned. [Work supported by ONR.

  14. A voltage control unit for ion scattering spectroscopy analyzers

    NASA Astrophysics Data System (ADS)

    Roos, W. D.; Henson, R. P.; van Wyk, G. N.

    1993-04-01

    A voltage control unit for a spherical sector analyzer used in the energy analysis of scattered ions is described. Three modes of operation, namely, automatic, manual, and computer control is possible. The unit is directly calibrated in terms of the scattered energies which is displayed on a liquid crystal unit. The scanning time in the auto mode is adjustable from 1 to 999 s in 1-s steps for any selected energy range. A 0-10-V recorder output is available regardless of the energy window selected. The basic operation and the functioning of the various components are explained with the help of block diagrams and a final evaluation of the system is given. Complete circuit diagrams are available from the Physics Auxiliary Publication Service (PAPS) of the American Institute of Physics.

  15. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf

    1995-03-01

    The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).

  16. Light-scattering polarization measurements as a new parameter in flow cytometry

    SciTech Connect

    de Grooth, B.G.; Terstappen, L.W.; Puppels, G.J.; Greve, J.

    1987-11-01

    Polarization measurement of orthogonal light scattering is introduced as a new optical parameter in flow cytometry. In the experimental setup, the electrical field of the incident laser beam is polarized in the direction of the sample flow. The intensity of the orthogonal light scattering polarized along the direction of the incoming laser beam is called depolarized orthogonal light scattering. Theoretical analysis shows that for small values of the detection aperture, the measured depolarization is caused by anisotropic cell structures and multiple scattering processes inside the cell. Measurements of the orthogonal depolarized light scattering in combination with the normal orthogonal light scattering of human leucocytes revealed two populations of granulocytes. By means of cell sorting it was shown that the granulocytes with a relatively high depolarization are eosinophilic granulocytes. Similar experiments with human lymphocytes revealed a minor subpopulation of yet-unidentified lymphocytes with a relative large orthogonal light-scattering depolarization. The results were obtained with an argon ion laser tuned at different wavelengths as well as with a 630-nm helium neon laser. These results show that measurement of depolarized orthogonal light scattering is a useful new parameter for flow-cytometric cell differentiation.

  17. Polarized light imaging specifies the anisotropy of light scattering in the superficial layer of a tissue

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.; Roussel, Stéphane; Samatham, Ravikant

    2016-07-01

    This report describes how optical images acquired using linearly polarized light can specify the anisotropy of scattering (g) and the ratio of reduced scattering [μs‧=μs(1-g)] to absorption (μa), i.e., N‧=μs‧/μa. A camera acquired copolarized (HH) and crosspolarized (HV) reflectance images of a tissue (skin), which yielded images based on the intensity (I=HH+HV) and difference (Q=HH-HV) of reflectance images. Monte Carlo simulations generated an analysis grid (or lookup table), which mapped Q and I into a grid of g versus N‧, i.e., g(Q,I) and N‧(Q,I). The anisotropy g is interesting because it is sensitive to the submicrometer structure of biological tissues. Hence, polarized light imaging can monitor shifts in the submicrometer (50 to 1000 nm) structure of tissues. The Q values for forearm skin on two subjects (one Caucasian, one pigmented) were in the range of 0.046±0.007 (24), which is the mean±SD for 24 measurements on 8 skin sites×3 visible wavelengths, 470, 524, and 625 nm, which indicated g values of 0.67±0.07 (24).

  18. Fast, non-linear optical-scattering spectroscopy in shock-compressed organic liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Schiferl, D.; Shaner, J.W.

    1983-01-01

    Nanosecond stimulated Raman and coherent anti-Stokes Raman scattering spectroscopy have been used to determine molecular vibrational frequency shifts and changes of phase in shock-compressed organic liquids. Results of dynamic experiments are compared to static Raman scattering measurements of samples, compressed and heated in a diamond-anvil cell. Objectives of the experiments are to determine the molecular structure and ultimately the energy transfer mechanisms in shock-compressed condensed phase materials.

  19. Near-zone evanescent waves generated by weak scattering of light from a spatially deterministic medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2016-02-01

    It is commonly known that the far-zone spectrum of a scattered field can be utilized to measure the scattering potential of the medium. However, properties of evanescent fields scattered from the medium with the dielectric susceptibility being a deterministic function, to the best of our knowledge, have not been concerned so far. Assuming the scattering potential of a spatially deterministic medium suffices the Gaussian profile, integrations are derived for the near-zone evanescent field generated by the scattering of light from the medium. It is noticed that the spectral density of the scattered field decays exponentially as either the propagation distance of scattered waves or the effective radius of the scattering potential (ERSP) increases. These results are applicable to the near-field biomedical imaging where the considered tiny particles and molecules solely scatter evanescent waves in near-zone regions.

  20. Form fluctuations of polymer loaded spherical microemulsions studied by neutron scattering and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuttich, B.; Falus, P.; Grillo, I.; Stühn, B.

    2014-08-01

    We investigate the structure and shell dynamics of the droplet phase in water/AOT/octane microemulsions with polyethyleneglycol (MW = 1500) molecules loaded in the droplets. Size and polydispersity of the droplets is determined with small angle X-ray scattering and small angle neutron scattering experiments. Shell fluctuations are measured with neutron spin echo spectroscopy and related to the dynamic percolation seen in dielectric spectroscopy. Shell fluctuations are found to be well described by the bending modulus of the shell and the viscosities inside and outside the droplets. Addition of the polymer decreases the modulus for small droplets. For large droplets the opposite is found as percolation temperature shifts to higher values.

  1. Light scattering from human corneal grafts: Bulk and surface contribution

    NASA Astrophysics Data System (ADS)

    Latour, Gaël; Georges, Gaëlle; Lamoine, Laure Siozade; Deumié, Carole; Conrath, John; Hoffart, Louis

    2010-09-01

    The cornea is the only transparent tissue in the body. The transparency is the main characteristic of the corneal tissue, and depends not only on the transmission coefficient but also on the losses by scattering and absorption. The scattering properties of the cornea tissues become one of the most important parameters in the case of the corneal graft. These scattering properties are studied in this paper in the reflected half area, similar to the diagnosis configuration. We quantify the influence of the cornea thickness and of the epithelial layer on scattering level. The technique of ellipsometry on scattered field is also used to analyze the polarization properties in order to determine the origin of scattering (surface and/or bulk).

  2. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model

    PubMed Central

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077

  3. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    PubMed

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077

  4. Literature survey for suppression of scattered light in large space telescopes

    NASA Technical Reports Server (NTRS)

    Tifft, W. G.; Fannin, B. B.

    1973-01-01

    A literature survey is presented of articles dealing with all aspects of predicting, measuring, and controlling unwanted scattered (stray) light. The survey is divided into four broad classifications: (1) existing baffle/telescope designs; (2) computer programs for the analysis/design of light suppression systems; (3) the mechanism, measurement, and control of light scattering; and (4) the advantages and problems introduced by the space environment for the operation of diffraction-limited optical systems.

  5. Multibeam long-path differential optical absorption spectroscopy instrument: a device for simultaneous measurements along multiple light paths.

    PubMed

    Pundt, Irene; Mettendorf, Kai Uwe

    2005-08-10

    A novel long-path differential optical absorption spectroscopy (DOAS) apparatus for measuring tropospheric trace gases and the first results from its use are presented: We call it the multibeam instrument. It is the first active DOAS device that emits several light beams simultaneously through only one telescope and with only one lamp as a light source, allowing simultaneous measurement along multiple light paths. In contrast to conventional DOAS instruments, several small mirrors are positioned near the lamp, creating multiple virtual light sources that emit one light beam each in one specific direction. The possibility of error due to scattering between the light beams is negligible. The trace-gas detection limits of NO2, SO2, O3, and H2CO are similar to those of the traditional long-path DOAS instrument. PMID:16114540

  6. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Liu, Qian; Han, Junbo; Zhang, Zhenyu; Zhang, Xuan; Ding, Yayun; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-11-01

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√{E{(MeV)}} required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments.

  7. Computer simulation studies of the speckle correlations of light scattered from a random array of scatterers: Scalar wave approximation

    NASA Astrophysics Data System (ADS)

    McGurn, A. R.; Maradudin, A. A.

    2001-10-01

    Two computer simulation studies of the speckle correlations in the light scattered from a volume disordered dielectric medium consisting of a random array of dielectric spheres are made. In both studies light is treated in the scalar wave approximation, and the wavelength of the light is taken to be much greater than the radius of the dielectric spheres. In one study, the scattering medium is formed by placing dielectric spheres of radius R and dielectric constant ɛ randomly in space. The spheres occupy space uniformly, under the provision that no two spheres overlap. In a second study, the scattering medium is formed by placing dielectric spheres of radius R and dielectric constant ɛ randomly on the vertices of a simple cubic lattice so that a fixed fraction of the vertices is occupied by the spheres. The lattice constant of the simple cubic lattice is taken to be of the order of magnitude of the wavelength of light in vacuum. In both studies the the volume filling fraction is the same, and the region outside the spheres is vacuum. The field equations are integrated numerically to determine the scattered fields, and these fields are used to calculate the speckle correlation function defined by C(q-->,k-->\\|q',k')=<[I(q-->\\|k-->)-\\|k-->)>][I(q'\\|k')-. Here I(q-->\\|k-->) is proportional to the differential scattering coefficient for the elastic scattering of light of wave vector k--> into light of wave vector q-->, and < > indicates an average over an ensemble of random systems. Results are presented for C(q-->,k-->\\|q',k') with particular attention paid to regions of k--> space in which either the C(1) or C(10) contributions dominate the correlator.

  8. Experimental demonstration and modeling of the internal light scattering profile within solar cells due to random dielectric scatterers

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Munday, Jeremy N.

    2016-01-01

    Many photovoltaic technologies are shifting toward thin-film devices to simultaneously reduce costs and improve carrier collection efficiencies; however, the need for nearly complete light absorption within the semiconductor to achieve large short-circuit currents constrains this thickness reduction. Light trapping strategies can be employed to increase absorption in thinner devices. Random scattering coatings offer a simple, cost-effective way to increase solar cell absorption without the drawback of increased surface recombination or reduced bandwidth that occurs when using surface texturing or gratings. However, coatings that show excellent performance as scatterers in free space generally do not enhance device absorption as much as an ideal Lambertian scatterer. Here, we present an experimental technique and theoretical model that accurately describes the absorption improvement that is achievable with coatings based on random ensembles of dielectric scatterers. We find that the ideal Lambertian model substantially overestimates the experimental scattering results, but significant path length enhancements are still achievable. The experimental techniques presented here should enable the testing of various optical models that attempt to surpass the ray optics light trapping limit, which have in many cases been hindered by the experimental difficulty of coupling the incident light into the optical modes of the absorber.

  9. Seasonal variations in light scattering in the New York region and their relation to sources

    SciTech Connect

    Leaderer, B.P.; Tanner, R.L.; Lioy, P.J.; Stolwijk, J.A.J.

    1980-01-01

    Light scattering data collected during two periods of intensive sampling in New York City (one during summer months and one during winter months) are discussed and analyzed for diurnal patterns, their relationship to pollutant emission sources, meteorological parameters, and the size distribution and chemical composition of the ambient aerosol. The lack of a diurnal pattern for light scattering in summer in combination with a strong positive association with ozone and wind direction dependency suggests that in summer the transport of an aged aerosol in photochemically rich air masses rather than local emissions of primary pollutants is largely responsible for the observed levels of light scattering in New York City. Winter levels of light scattering observed in New York City, while approximately 50% lower than summer levels, were much less dependent on wind direction and closely related to pollutant emissions from local sources. This suggests that locally generated aerosol dominates light scattering in the winter. Particles 0.1..mu..m to 1.3..mu..m in diameter were strongly correlated with light scattering in New York City during both summer and winter periods. However, a given volume of aerosol between 0.1..mu..m and 1.3..mu..m scattered more light in summer than in winter, indicating the fresher nature of the winter aerosol. Variance in dry particulate light scattering was found to principally account for light extinction variance (calculated from airport visibility observations) in summer and winter. Sulfate aerosol was strongly correlated with light scattering during both summer and winter periods.

  10. Linear polarization of light scattered by cometary analogs: New samples

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.; Buch, A.; Carrasco, N.; Johnson, N.; Nuth, J.

    2014-07-01

    Mixtures of silicates (Mg and Fe) with carbonaceous compounds (carbon and/or organics) are currently proposed as cometary analogs. The particles are fluffy aggregates of submicron-sized constituent grains and compact grains (tens of micrometers), similar to those captured in the Earth's stratosphere (interplanetary dust particles or IDPs) and deduced from the Stardust results. They are lifted or in microgravity or levitated by an air-draught. The light source is unpolarized. The linear polarization of the scattered light floating in the beam is studied as a function of the phase angle. In previous experiments with the PROGRA2 instrument (Hadamcik et al., 2011), the general shape of the cometary polarimetric phase curves is reproduced with a shallow negative branch and a more developed positive branch (maximum polarization around 20--30 %) depending on the size distributions of the particles (compact and/or aggregates) and their constituent grains. To observe the increase of polarization with wavelength, the organic materials were necessary. When fluffy aggregates (silicates and carbon black mixtures) and compact silicate grains of tens of micrometers are present, the whole cometary coma polarization phase curve is well fitted by the phase curves obtained. The maximum polarization value decreases when the ratio of compact silicates to fluffy aggregates increases. The observed differences in polarization between different coma regions may be also simulated. When only fluffy aggregates are used, the maximum polarization corresponds to the polarization in jets of 'high polarization' active comets (Hadamcik and Levasseur-Regourd, 2003). A high polarization region may exist in some 'low polarization' comets, with large slowly moving particles; using the experimental results, we suggest the presence of dark relatively compact particles larger than 20 micrometers (Hadamcik et al., 2007; 2011). When not hidden by jets, a polarimetric halo is sometimes observed in the inner

  11. NEUTRON SPECTROSCOPY BY DOUBLE SCATTER AND ASSOCIATED PARTICLE TECHNIQUES.

    SciTech Connect

    DIOSZEGI,I.

    2007-10-28

    Multiple detectors can provide [1,2] both directional and spectroscopic information. Neutron spectra may be obtained by neutron double scatter (DSNS), or the spontaneous fission associated particle (AP) technique. Spontaneous fission results in the creation of fission fragments and the release of gamma rays and neutrons. As these occur at the same instant, they are correlated in time. Thus gamma ray detection can start a timing sequence relative to a neutron detector where the time difference is dominated by neutron time-of-flight. In this paper we describe these techniques and compare experimental results with Monte Carlo calculations.

  12. Spiral arms in scattered light images of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing

    2015-12-01

    In the past few years, resolved observations with high angular resolution have revealed rich structures in gaseous protoplanetary disks. Among all discoveries, one of the most prominent is the giant double-spiral structure, found in MWC 758, SAO 206462, and HD 100453. The NIR images of these disks taken by Subaru/HiCIAO, VLT/NACO, and VLT/SPHERE showed two spiral arms at tens of AU from the center. The arms are very open with large pitch angles, and are in a nearly m=2 rotational symmetry. Although planets are known to be able to excite density waves in protoplanetary disks, fitting observations with linear theory of the density wave demands unreasonably big scale height in the disk, thus temperature, in order to make the arms as open as observed (and no need to mention the coincidence that they all have two nearly m=2 arms). Using 3D hydro and radiative transfer simulations, we find that a massive perturber (giant planet, brown dwarf, or stellar mass companion) can excite multiple spiral arms in the density structure, and the arms inside the perturber's orbit are very prominent in NIR scattered light images, in striking similarity with observations. Very recently, the perturber was found for the first time in the HD 100453 disk, as a M dwarf companion. This gives us great confidence of our models, and suggests that the double spirals in the other two objects, MWC 758 and SAO 206462, are very likely to be excited in a similar way, by a currently unseen perturber outside the arms. In particular, by measuring the angular distance between the two arms and comparing it with our models, we determine that the perturber in SAO 206462 is about 6 Jupiter mass.

  13. Dynamic Light Scattering Based Microelectrophoresis: Main Prospects and Limitations

    PubMed Central

    Uskoković, Vuk

    2013-01-01

    Microelectrophoresis based on the dynamic light scattering (DLS) effect has been a major tool for assessing and controlling the conditions for stability of colloidal systems. However, both the DLS methods for characterization of the hydrodynamic size of dispersed submicron particles and the theory behind the electrokinetic phenomena are associated with fundamental and practical approximations that limit their sensitivity and information output. Some of these fundamental limitations, including the spherical approximation of DLS measurements and an inability of microelectrophoretic analyses of colloidal systems to detect discrete charges and differ between differently charged particle surfaces due to rotational diffusion and particle orientation averaging, are revisited in this work. Along with that, the main prospects of these two analytical methods are mentioned. A detailed review of the role of zeta potential in processes of biochemical nature is given too. It is argued that although zeta potential has been used as one of the main parameters in controlling the stability of colloidal dispersions, its application potentials are much broader. Manipulating surface charges of interacting species in designing complex soft matter morphologies using the concept of zeta potential, intensively investigated recently, is given as one of the examples. Branching out from the field of colloid chemistry, DLS and zeta potential analyses are now increasingly finding application in drug delivery, biotechnologies, physical chemistry of nanoscale phenomena and other research fields that stand on the frontier of the contemporary science. Coupling the DLS-based microelectrophoretic systems with complementary characterization methods is mentioned as one of the prosperous paths for increasing the information output of these two analytical techniques. PMID:23904690

  14. Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media

    SciTech Connect

    Katsev, I L; Prikhach, A S; Kazak, N S; Kroening, M

    2006-04-30

    Based on the relation between the theory of light field coherence and theory of radiation transfer in scattering media, a method is proposed for calculating the illumination distribution produced by coherent quasi-diffraction-free beams at different penetration depths of radiation into scattering media such as biological tissues. The method uses the optical transfer function or the point spread function (PSF) of the medium. A simple and convenient analytic PSF model is described. Examples of the illumination distribution produced by a Bessel light beam in a medium with optical parameters typical of real biological tissues are presented. It is shown that the half-width of the axial maximum of a Bessel light beam scattered due to scattering almost does not increase up to optical depths where the contribution of multiple scattering is already considerable. (light beams)

  15. Spectral polarimetric light-scattering by particulate media: 1. Theory of spectral Vector Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Ceolato, Romain; Riviere, Nicolas

    2016-07-01

    Spectral polarimetric light-scattering by particulate media has recently attracted growing interests for various applications due to the production of directional broadband light sources. Here the spectral polarimetric light-scattering signatures of particulate media are simulated using a numerical model based on the spectral Vector Radiative Transfer Equation (VRTE). A microphysical analysis is conducted to understand the dependence of the light-scattering signatures upon the microphysical parameters of particles. We reveal that depolarization from multiple scattering results in remarkable spectral and directional features, which are simulated by our model over a wide spectral range from visible to near-infrared. We propose to use these features to improve the inversion of the scattering problem in the fields of remote sensing, astrophysics, material science, or biomedical.

  16. Measuring the dynamics of structural changes in biological macromolecules from light scattering data

    NASA Technical Reports Server (NTRS)

    Johnson, Adriel D.

    1993-01-01

    Examining techniques to study the dynamics of structural changes in various molecules has been an ongoing goal of the space program. Knowing how these phenomena occur in biological systems is fundamental to understanding what is necessary for life to remain functional in the space environment. A hierarchy of biological organization is functionally described when cells join together small organic molecules to form larger and more complex molecules. Characterizing the architecture of a particular macromolecule helps determine how that molecule works in the living cell and is basic to the diversity of life. Understanding this arrangement involves the correlation of the structure of macromolecules with their functions. A light scattering photometer was developed for detecting continuous measurement of the angular spectrum of light scattered by dynamically changing systems. The analysis of light scattered by biological macromolecules can be used to determine concentration, size, shape, molecular weight, and structural changes of cells, such as erythrocytes. Some light scattering photometers can collect and store 120 angular scattering spectra per minute, with an angular resolution of 0.2 deg which can be displayed with computer graphics. The light scattering photometer does the following: functions to produce and detect scattered light; determines scatter angles; and collects, stores, and analyzes data.

  17. Spectroscopy of Light Nuclei with Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Dell'Aquila, D.; Vigilante, M.

    2016-07-01

    We discuss new results concerning the investigation of the 19F(p,α 0)16O and 10B(p,α 0)7Be reactions at low energies. Both reactions are important for the nuclear spectroscopy of the formed compound nucleus, i.e. 20Ne and 11C respectively, and play a role in nuclear astrophysics. For the 10B(p,α 0)7Be case, a comprehensive analysis of our reaction data and other scattering data points out the possible presence of an unreported state in 11C at Ex ≈ 9.36 MeV. For the 19F(p,α 0)16O case, the study of the low energy angular distributions testifies the role played by low energy resonances in the S-factor, leading to an enhanced reaction rate at stellar energies.

  18. Tomographic retrieval for scattered light limb measurements: multiple spectral fit windows to improve the spatial resolution

    NASA Astrophysics Data System (ADS)

    Pukite, Janis; Dörner, Steffen; Wagner, Thomas

    2015-04-01

    The Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on the ENVISAT satellite probed the atmosphere at the day side of Earth in alternating sequences of nadir and limb measurements from August 2002 to April 2012. Limb measurements allow the retrieval of stratospheric profiles of various trace gases on a global scale. It has been shown that combining measurements of the same air volume from different viewing positions along the orbit, 2D distribution fields of stratospheric trace gases can be acquired in one inversion step. Since the atmospheric scattering and absorption processes are wavelength dependent, the spatial sensitivity for limb observations also varies with wavelength. In general, for longer wavelengths, photons from more remote areas along the line of sight are contributing stronger to the measurement than for shorter wavelengths because of the lower probability of Rayleigh scattering. In addition, the radiative transfer is modified by the ozone absorption structures making longer light paths less probable within strong ozone absorption bands. In this study, additional information on the spatial distribution of NO2 is investigated by analysing results obtained by Differential Optical Absorption Spectroscopy (DOAS) in various spectral fit windows. Combing the fit results in one profile retrieval algorithm helps to improve the spatial sensitivity and resolution of the measurements. The largest improvements for the spatial resolution and sensitivity are expected for the upper troposphere/ lower stratosphere (UTLS) region where the variation of the spatial sensitivity with wavelength is strongest.

  19. Sensitive Determination of Proteins with Naphthol Green B by Resonance Light Scattering Technique

    NASA Astrophysics Data System (ADS)

    Gu, B.; Zhong, H.; Li, X.-M.; Wang, Y.-Z.; Ding, B.-C.; Cheng, Z.-P.; Zhang, L.-L.; Li, S.-P.; Yao, C.

    2013-09-01

    A new quantitative determination method for trace proteins using naphthol green B (NGB) by resonance light scattering (RLS) spectroscopy has been developed. The method is based on the interaction of protein and NGB at pH 3.00, which causes a substantial enhancement of the resonance scattering signal of NGB in the wavelength range 300-550 nm with the maximum RLS at 392.0 nm. Under optimum conditions, the linear range is 0.010-28.2 μg/ml for bovine serum albumin (BSA) and 0.010-31.3 μg/ml for human serum albumin (HSA). The detection limits (S/N=3) are 8.2 ng/ml for BSA and 7.9 ng/ml for HSA, respectively. There is little or no interference from amino acids, most of the metal ions, or other coexisting substances. The easy-to-use method, with high sensitivity and good reproducibility, was satisfactorily applied to the determination of total protein in human serum samples. The determination results for human serum samples are identical to those provided by clinical physicians.

  20. Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness.

    PubMed

    Grynko, Yevgen; Shkuratov, Yuriy; Förstner, Jens

    2016-08-01

    We simulate light scattering by random irregular particles that have dimensions much larger than the wavelength of incident light at the size parameter of X=200 using the discontinuous Galerkin time domain method. A comparison of the DGTD solution for smoothly faceted particles with that obtained with a geometric optics model shows good agreement for the scattering angle curves of intensity and polarization. If a wavelength-scale surface roughness is introduced, diffuse scattering at rough interface results in smooth and featureless curves for all scattering matrix elements which is consistent with the laboratory measurements of real samples. PMID:27472601

  1. Observation of H4Λ Hyperhydrogen by Decay-Pion Spectroscopy in Electron Scattering

    NASA Astrophysics Data System (ADS)

    Esser, A.; Nagao, S.; Schulz, F.; Achenbach, P.; Ayerbe Gayoso, C.; Böhm, R.; Borodina, O.; Bosnar, D.; Bozkurt, V.; Debenjak, L.; Distler, M. O.; Friščić, I.; Fujii, Y.; Gogami, T.; Hashimoto, O.; Hirose, S.; Kanda, H.; Kaneta, M.; Kim, E.; Kohl, Y.; Kusaka, J.; Margaryan, A.; Merkel, H.; Mihovilovič, M.; Müller, U.; Nakamura, S. N.; Pochodzalla, J.; Rappold, C.; Reinhold, J.; Saito, T. R.; Sanchez Lorente, A.; Sánchez Majos, S.; Schlimme, B. S.; Schoth, M.; Sfienti, C.; Širca, S.; Tang, L.; Thiel, M.; Tsukada, K.; Weber, A.; Yoshida, K.; A1 Collaboration

    2015-06-01

    At the Mainz Microtron MAMI, the first high-resolution pion spectroscopy from decays of strange systems was performed by electron scattering off a Be 9 target in order to study the Λ binding energy of light hypernuclei. Positively charged kaons were detected by a short-orbit spectrometer with a broad momentum acceptance at 0° forward angles with respect to the beam, efficiently tagging the production of strangeness in the target nucleus. Coincidentally, negatively charged decay pions were detected by two independent high-resolution spectrometers. About 103 pionic weak decays of hyperfragments and hyperons were observed. The pion momentum distribution shows a monochromatic peak at pπ≈133 MeV /c , corresponding to the unique signature for the two-body decay of hyperhydrogen H4Λ→He 4 +π- , stopped inside the target. Its Λ binding energy was determined to be BΛ=2.12 ±0.01 (stat)±0.09 (syst)MeV with respect to the H 3 +Λ mass.

  2. Observation of Λ(4)H Hyperhydrogen by Decay-Pion Spectroscopy in Electron Scattering.

    PubMed

    Esser, A; Nagao, S; Schulz, F; Achenbach, P; Ayerbe Gayoso, C; Böhm, R; Borodina, O; Bosnar, D; Bozkurt, V; Debenjak, L; Distler, M O; Friščić, I; Fujii, Y; Gogami, T; Hashimoto, O; Hirose, S; Kanda, H; Kaneta, M; Kim, E; Kohl, Y; Kusaka, J; Margaryan, A; Merkel, H; Mihovilovič, M; Müller, U; Nakamura, S N; Pochodzalla, J; Rappold, C; Reinhold, J; Saito, T R; Sanchez Lorente, A; Sánchez Majos, S; Schlimme, B S; Schoth, M; Sfienti, C; Širca, S; Tang, L; Thiel, M; Tsukada, K; Weber, A; Yoshida, K

    2015-06-12

    At the Mainz Microtron MAMI, the first high-resolution pion spectroscopy from decays of strange systems was performed by electron scattering off a (9)Be target in order to study the Λ binding energy of light hypernuclei. Positively charged kaons were detected by a short-orbit spectrometer with a broad momentum acceptance at 0° forward angles with respect to the beam, efficiently tagging the production of strangeness in the target nucleus. Coincidentally, negatively charged decay pions were detected by two independent high-resolution spectrometers. About 10(3) pionic weak decays of hyperfragments and hyperons were observed. The pion momentum distribution shows a monochromatic peak at pπ≈133  MeV/c, corresponding to the unique signature for the two-body decay of hyperhydrogen Λ(4)H→(4)He+π(-), stopped inside the target. Its Λ binding energy was determined to be BΛ=2.12±0.01  (stat)±0.09  (syst)MeV with respect to the (3)H+Λ mass. PMID:26196794

  3. Single Scattering Albedo of fresh biomass burning aerosols measured using cavity ring down spectroscopy and nephelometry

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon; Bililign Research Group Team

    An accurate measurement of optical properties of aerosols is critical for quantifying the effect of aerosols on climate. Uncertainties still persist and measurement results vary significantly. The factors that affect measurement accuracy and the resulting uncertainties of the extinction-minus-scattering method are evaluated using a combination of cavity ring-down spectroscopy (CRDS) and integrating nephelometry and applied to measure the optical properties of fresh soot (size 300 and 400 nm) produced from burning of pine, red oak and cedar. We have demonstrated a system that allows measurement of optical properties at a wide range of wavelengths, which can be extended over most of the solar spectrum to determine ``featured'' absorption cross sections as a function of wavelength. SSA values measured were nearly flat ranging from 0.45 to 0.6. The result also demonstrates that SSA of fresh soot is nearly independent of wavelength of light in the 500-680 wavelength range with a slight increase at longer wavelength. The values are within the range of measured values both in the laboratory and in field studies for fresh soot The work is supported by the Department of Defense Grant W911NF-11-1-0188.

  4. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering.

    PubMed

    Antoun, Ayman; Pavlov, Michael Y.; Tenson, Tanel; Ehrenberg M, M åNs

    2004-01-01

    Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix. PMID:15103398

  5. Retinal image degradation by optical aberrations and light scatter in normal and albino chick eyes

    NASA Astrophysics Data System (ADS)

    Tian, Yibin; Shieh, Kevin; Wildsoet, Christine F.

    2007-02-01

    Comprehensive evaluation of retinal image quality requires that light scatter as well as optical aberrations be considered. In investigating how retinal image degradation affects eye growth in the chick model of myopia, we developed a simple method based on Shack-Hartmann images for evaluating the effects of both monochromatic aberrations and light scatter on retinal image quality. We further evaluated our method in the current study by applying it to data collected from both normal chick eyes and albino eyes that were expected to show increased intraocular light scatter. To analyze light scatter in our method, each Shack-Hartmann dot is treated as a local point spread function (PSF) that is the convolution of a local scatter PSF and a lenslet diffraction PSF. The local scatter PSF is obtained by de-convolution, and is fitted with a circularly symmetric Gaussian function using nonlinear regressions. A whole-eye scatter PSF also can be derived from the local scatter PSFs for the analyzed pupil. Aberrations are analyzed using OSA standard Zernike polynomials, and aberration-related PSF calculated from reconstructed wavefront using fast Fourier transform. Modulation transfer functions (MTFs) are computed separately for aberration and scatter PSFs, and a whole-eye MTF is derived as the product of the two. This method was applied to 4 normal and 4 albino eyes. Compared to normal eyes, albino eyes were more aberrated and showed greater light scatter. As a result, overall retinal image degradation was much greater in albino eyes than in normal eyes, with the relative contribution to retinal image degradation of light scatter compared to aberrations also being greater for albino eyes.

  6. Far-ultraviolet and visible light scatter measurements for CVD SiC mirrors for SOHO

    NASA Astrophysics Data System (ADS)

    Leviton, Douglas B.; Saha, Timo T.; Gardner, Larry D.

    1998-12-01

    Chemically-vapor-deposited (CVD) silicon carbide (SiC) has become a popular mirror material for spaceborne solar instrumentation for the vacuum ultraviolet wavelength range due to its appreciable broadband reflectance and favorable thermal and opto-mechanical properties. Scatter from surfaces of mirrors operating in this wavelength range can destroy otherwise good image contrast especially for extended targets such as the sun. While valid far ultraviolet (FUV) scatter measurements are entirely non-trivial to conduct and so are rarely performed, visible light scatter measurements are comparatively easy. Unfortunately, it is not straightforward to predict FUV scatter performance based on visible light scatter measurements for mirrors made of CVD SiC. It is hoped that by carrying out scatter measurements in both wavelength regimes for the same CVD SiC mirror, that the ability to make such predictions may be enhanced. Visible light (633 nm) scatter measurements were performed at Goddard Space Flight Center (GSFC) by two different means on CVD SiC telescope mirrors (from the same process and same vendor) for two instruments on the Solar and Heliospheric Observatory (SOHO) - - the Ultraviolet Coronagraph Spectrometer (UVCS) and Solar Ultraviolet Measurement of Emitted Radiation (SUMER). Additionally, extensive FUV scatter measurements were made for SUMER telescope mirrors. In this paper, we correlate the results for those FUV and visible light scatter measurements for this important material.

  7. X-ray Photoelectron Spectroscopy (XPS), Rutherford Back Scattering (RBS) studies

    NASA Technical Reports Server (NTRS)

    Neely, W. C.; Bozak, M. J.; Williams, J. R.

    1993-01-01

    X-ray photoelectron spectroscopy (XPS), Rutherford Back Scattering (RBS) studies of each of sample received were completed. Since low angle X-ray could not be performed because of instrumentation problems, Auger spectrometry was employed instead. The results of these measurements for each of the samples is discussed in turn.

  8. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  9. Data fusion of visible/near-infrared spectroscopy and spectral scattering for apple quality assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible/near-infrared (VNIR) spectroscopy and spectral scattering are based on different sensing principles, and they have shown different abilities for predicting apple fruit firmness and soluble solids content (SSC). Hence the two techniques could work synergistically to improve the quality predic...

  10. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics

    PubMed Central

    Favre-Bulle, Itia A.; Preece, Daryl; Nieminen, Timo A.; Heap, Lucy A.; Scott, Ethan K.; Rubinsztein-Dunlop, Halina

    2015-01-01

    Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam’s degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz–Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics. PMID:26108566

  11. Differences in forward angular light scattering distributions between M1 and M2 macrophages.

    PubMed

    Halaney, David L; Zahedivash, Aydin; Phipps, Jennifer E; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E; Feldman, Marc D

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture. PMID:26538329

  12. A study of the polarization of light scattered by vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Woessner, P. N.

    1985-01-01

    This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. The intensity and polarization of light scattered by clover and grass in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of leaves were measured. The light transmitted through the leaves was found to be negatively polarized. The light scattered from the upper leaf surface was found to be positively polarized in a manner which could be accounted for qualitatively but not quantitatively by the Fresnel reflection coefficients modified by a shadowing function of the form cos sup2 (g/2), where g is the phase angle. Findings indicate that the polarization of light scattered by vegetation is a more complex process than previously thought, and that besides the surface-scattered component of light, the volume-scattered and multiply-scattered components also contribute significantly to the polarization.

  13. Polarized light scattering as a probe for changes in chromosome structure

    SciTech Connect

    Shapiro, D.B.

    1993-10-01

    Measurements and calculations of polarized light scattering are applied to chromosomes. Calculations of the Mueller matrix, which completely describes how the polarization state of light is altered upon scattering, are developed for helical structures related to that of chromosomes. Measurements of the Mueller matrix are presented for octopus sperm heads, and dinoflagellates. Comparisons of theory and experiment are made. A working theory of polarized light scattering from helices is developed. The use of the first Born approximation vs the coupled dipole approximation are investigated. A comparison of continuous, calculated in this work, and discrete models is also discussed. By comparing light scattering measurements with theoretical predictions the average orientation of DNA in an octopus sperm head is determined. Calculations are made for the Mueller matrix of DNA plectonemic helices at UV, visible and X-ray wavelengths. Finally evidence is presented that the chromosomes of dinoflagellates are responsible for observed differential scattering of circularly-polarized light. This differential scattering is found to vary in a manner that is possibly correlated to the cell cycle of the dinoflagellates. It is concluded that by properly choosing the wavelength probe polarized light scattering can provide a useful tool to study chromosome structure.

  14. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics.

    PubMed

    Favre-Bulle, Itia A; Preece, Daryl; Nieminen, Timo A; Heap, Lucy A; Scott, Ethan K; Rubinsztein-Dunlop, Halina

    2015-01-01

    Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam's degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz-Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics. PMID:26108566

  15. Differences in forward angular light scattering distributions between M1 and M2 macrophages

    NASA Astrophysics Data System (ADS)

    Halaney, David L.; Zahedivash, Aydin; Phipps, Jennifer E.; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E.; Feldman, Marc D.

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.

  16. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics

    NASA Astrophysics Data System (ADS)

    Favre-Bulle, Itia A.; Preece, Daryl; Nieminen, Timo A.; Heap, Lucy A.; Scott, Ethan K.; Rubinsztein-Dunlop, Halina

    2015-06-01

    Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam’s degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz-Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics.

  17. Dynamic Properties of Langmuir Films by Laser Light Scattering

    NASA Astrophysics Data System (ADS)

    Sanders, John Newell

    A technique and instrumentation for measuring visco-elastic properties of Langmuir film organic monolayers has been developed. This technique is used to characterize certain films used in the manufacture of Langmuir-Blodgett solid films. Furthermore a comparison of the dynamic viscous and elastic moduli determined by this technique is made with static values determined from the Pressure versus Area Isotherm. Briefly, a Langmuir film consists of amphiphilic organic molecules spread in a trough filled with pure water. The hydrophobic ends of the molecules trap them on the water surface. When spread at a dilute concentration the molecules exhibit two dimensional ideal gas behavior. By increasing the surface concentration one obtains two dimensional liquid and finally two dimensional solid behavior. The measurement is performed by electrodynamically driving the liquid surface with the electric field from a razor blade brought to within less than 1 mm of the surface. A sinusoidally varying electric field induces dipoles in the water subphase and generates waves at twice the driving frequency (Attractive dipoles are generated whether the field is positive or negative). The space propagation and damping of these waves is measured by laser light scattering. A focused laser beam incident on the surface is reflected at an angle due to the slope of the waves on the surface. By observing the movement of the beam the amplitude and phase of the oscillation with respect to the driving function may be determined (via a Lock-In amplifier) at various distances from the razor blade. One may directly profile the waves by translating the profiler, or one may observe the variation in amplitude and phase while scanning the frequency or surface pressure. In the latter cases one uses a known reference state to determine the wavelength and damping from the amplitude and phase change. This data is fit by a non-linear least squares curve fitting program to determine the wavelength and space

  18. Determination of elastic stiffness coefficients of lead zirconate single crystals in the cubic phase by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Ko, J. H.; Roleder, K.; Bussmann-Holder, A.

    2014-03-01

    The temperature dependence of the three independent elastic constants of antiferroelectric lead zirconate single crystals was determined in the cubic, paraelectric phase by Brillouin light scattering spectroscopy. Two longitudinal elastic moduli of C11 and (C11 + C12+2 C44)/2 showed softening upon cooling toward the phase transition temperature, indicating the coupling of the acoustic waves to the polarization fluctuations of the precursor polar clusters. Among the two transverse acoustic modes, C44 was almost constant while (C11-C12)/2 showed a noticeable softening in the paraelectric phase. This was attributed to the acoustic instability of lead zirconate toward the orthorhombic ground state.

  19. Measurement of the light scattering of single micrometer-sized particles captured with a microfluidic trap.

    PubMed

    Dai, Jie; Li, Wei; Gong, Baoyu; Wang, Huimin; Xia, Min; Yang, Kecheng

    2015-11-16

    Light scattering detection of a single particle is significant to both theoretical developments and application progresses of particle scattering. In this work, a new method employing the polydimethylsiloxane microfluidic catcher with self-regulation was developed to detect the light scattering of an individual micro particle (20.42, 23.75, and 31.10 μm) in a wide angular range. This system can rapidly (<2 min) immobilize single particles without aggregations and continuously analyze its light scattering ranging from 2° to 162°. The high success ratio of the capture, good agreement with the anticipation, and moderate time and cost make this method a promising candidate in single-particle-scattering applications. PMID:26698501

  20. Non-exponential Structural Relaxation, Anomalous Light Scattering, and Nanoscale Inhomogeneities in Glasses

    NASA Astrophysics Data System (ADS)

    Lee, M.; Moynihan, C. T.; Schroeder, J.

    1997-03-01

    Light scattering from glasses in the glass transition region exhibits an anomalous Rayleigh scattering. We observe a maximum in the scattering intensity versus temperature curves during heating. It is shown that this behavior is consistent with the presence of nanoscale inhomogeneities (density fluctions) which relax at different rates. Recent observations of anomalous light scattering were carried out on strong glass formers and fragile glass formers. In all cases a hysteresis effect is seen in the light scattering upon heating versus cooling each sample from room temperature through the glass transition region. From these measurements it is suggested that this could be the source of non-exponential structural relaxation kinetics. A model based upon the modified Tool-Narayanaswamy model is found to be in agreement with the calculations based on the experimental results.

  1. Surface enhanced Raman scattering of light by ZnO nanostructures

    SciTech Connect

    Milekhin, A. G. Yeryukov, N. A.; Sveshnikova, L. L.; Duda, T. A.; Zenkevich, E. I.; Kosolobov, S. S.; Latyshev, A. V.; Himcinski, C.; Surovtsev, N. V.; Adichtchev, S. V.; Feng, Zhe Chuan; Wu, Chia Cheng; Wuu, Dong Sing; Zahn, D. R. T.

    2011-12-15

    Raman scattering (including nonresonant, resonant, and surface enhanced scattering) of light by optical and surface phonons of ZnO nanocrystals and nanorods has been investigated. It has been found that the nonresonant and resonant Raman scattering spectra of the nanostructures exhibit typical vibrational modes, E{sub 2}(high) and A{sub 1}(LO), respectively, which are allowed by the selection rules. The deposition of silver nanoclusters on the surface of nanostructures leads either to an abrupt increase in the intensity (by a factor of 10{sup 3}) of Raman scattering of light by surface optical phonons or to the appearance of new surface modes, which indicates the observation of the phenomenon of surface enhanced Raman light scattering. It has been demonstrated that the frequencies of surface optical phonon modes of the studied nanostructures are in good agreement with the theoretical values obtained from calculations performed within the effective dielectric function model.

  2. Single-site surface-enhanced Raman scattering beyond spectroscopy

    NASA Astrophysics Data System (ADS)

    Takase, Mai; Yasuda, Satoshi; Murakoshi, Kei

    2016-04-01

    Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using multiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity measurement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful control of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.

  3. Effects of static magnetic fields on light scattering in red chromatophore of goldfish scale

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.

    2010-05-01

    Light scattering in a guanine crystal plate of goldfish scales was observed with and without static magnetic field exposure. Under a microscopic image with dark-field-illumination, the structural color of the scale by guanine plates was observed, and isolated chromatophores showed a twinkling which was the intermittent light scattering of the light from the side. The light scattering was quenched by static magnetic fields of more than 0.26 tesla (T). The quenching was reversibly occurred when the applied external magnetic fields were changed between ambient fields and 5 T. The quenched light scattering did not improve when the magnetic field was decreased from 5 to 0.3 T. It recovered to the original twinkling state about one minute after reaching an ambient geomagnetic field level. The mechanism of the quenched light scattering was speculated to be concerned with the possible magnetic orientation of guanine crystal plates, which were sustained by protein fibers in the red chromatophore. The diamagnetic complex of guanine crystal plates and protein fibers are the candidates for the nanosized light scattering controller based on the magnetic orientation mechanism.

  4. Evaluation of light scattering properties and chromophore concentrations in skin tissue based on diffuse reflectance signals at isosbestic wavelengths of hemoglobin

    NASA Astrophysics Data System (ADS)

    Yokokawa, Takumi; Nishidate, Izumi

    2016-04-01

    We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.

  5. Investigation of non-decorated glide dislocations by infra-red light scattering tomography

    NASA Astrophysics Data System (ADS)

    Monier, V.; Kononchuk, O.; Capello, L.; Pichaud, B.

    2011-02-01

    The laser scattering tomography technique enables the observation of non-decorated dislocations in Si crystals. In polarization and tomography measurements, changes in the dislocation scattering intensity are observed. A study of the light scattering by a dislocation was then developed and described in this paper. Based on theoretical results and experimental observations, slip system of a non-decorated mixed dislocation can be totally determined.

  6. Temporal intensity correlation of light scattered by a hot atomic vapor

    NASA Astrophysics Data System (ADS)

    Dussaux, A.; Passerat de Silans, T.; Guerin, W.; Alibart, O.; Tanzilli, S.; Vakili, F.; Kaiser, R.

    2016-04-01

    We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time scales (nanoseconds) imposed by the Doppler broadening of the hot vapor. Moreover, we demonstrate that relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements justify the interest in temporal intensity correlation to access nontrivial spectral features, with potential applications in astrophysics.

  7. Dynamic light scattering investigations of nanoparticle aggregation following a light-induced pH jump.

    PubMed

    Murphy, Ryan J; Pristinski, Denis; Migler, Kalman; Douglas, Jack F; Prabhu, Vivek M

    2010-05-21

    There are many important processes where the stability of nanoparticles can change due to changes in solution environment. These processes are often difficult to study under controlled changes to the solution conditions. Dynamic light scattering was used to measure the initial kinetics of aggregation of carboxylated polystyrene nanoparticles after well-defined pH jumps using aqueous solutions of photoacid generator (PAG). With this approach, the pH of the solution was controlled by exposure to ultraviolet (UV) light without the delays from mixing or stirring. The aggregation kinetics of the nanoparticles was extremely sensitive to the solution pH. The UV exposure dose is inversely correlated with the resulting surface charge of the nanoparticles. Decreasing pH decreases the electrostatic repulsion force between particles and leads to aggregation. The reaction-limited or diffusion-limited aggregation kinetics was sensitive to the pH quench depth, relative to the acid-equilibrium constant (pK(a)) of the surface carboxylic acid groups on the nanoparticles. Since numerous PAGs are commercially available, this approach provides a flexible method to study the aggregation of a variety of solvent-dispersed nanoparticle systems. PMID:20499988

  8. Spectrum of laser light scattered by nanoparticles in an ablation-induced cavitation bubble

    NASA Astrophysics Data System (ADS)

    Takeuchi, Masato; Sasaki, Koichi

    2016-04-01

    The spectrum of the laser light scattered by nanoparticles in a cavitation bubble, which was induced by laser ablation of a titanium target in water, was measured using a triple-grating spectrograph. The scattered laser light observed at 100 \\upmu s after laser ablation had no wavelength-shifted component, suggesting that nanoparticles at this delay time were metallic. The wavelength-shifted component was observed in the spectrum at a delay time of 200 \\upmu s, suggesting the formation of oxidized nanoparticles. However, we observed no peaks in the spectrum of the scattered laser light in the present in situ laser-light scattering experiment. On the other hand, we observed clear peaks in the Raman spectrum of synthesized nanoparticles. The experimental results suggest slow crystallization of nanoparticles in liquid in liquid-phase laser ablation.

  9. Brillouin-scattering-induced transparency and non-reciprocal light storage

    PubMed Central

    Dong, Chun-Hua; Shen, Zhen; Zou, Chang-Ling; Zhang, Yan-Lei; Fu, Wei; Guo, Guang-Can

    2015-01-01

    Stimulated Brillouin scattering is a fundamental interaction between light and travelling acoustic waves and arises primarily from electrostriction and photoelastic effects, with an interaction strength several orders of magnitude greater than that of other relevant non-linear optical processes. Here we report an experimental demonstration of Brillouin-scattering-induced transparency in a high-quality whispering-gallery-mode optical microresonantor. The triply resonant Stimulated Brillouin scattering process underlying the Brillouin-scattering-induced transparency greatly enhances the light–acoustic interaction, enabling the storage of light as a coherent, circulating acoustic wave with a lifetime up to 10 μs. Furthermore, because of the phase-matching requirement, a circulating acoustic wave can only couple to light with a given propagation direction, leading to non-reciprocal light storage and retrieval. These unique features establish a new avenue towards integrated all-optical switching with low-power consumption, optical isolators and circulators. PMID:25648234

  10. Coherent reflectometer with a two-fibre scattered-light interferometer

    SciTech Connect

    Vdovenko, V S; Gorshkov, B G; Zazirnyi, M V; Kulakov, A T; Kurkov, Andrei S; Paramonov, Vladimir M

    2011-02-28

    We have designed and implemented a new fibre-optic phase-sensitive coherent reflectometer configuration, which allows one to avoid signal fading owing to the use of a two-fibre scattered-light interferometer. (fiber optics)

  11. Light scattering of normal human lens I. Application of random density and orientation fluctuation theory.

    PubMed Central

    Bettelheim, F A; Paunovic, M

    1979-01-01

    Light-scattering intensities in the I parallel and I+ mode were obtained on thin sections of three human lenses. Random density and orientation fluctuation theory, without cross correlation, was employed to evaluate light-scattering parameters. Both the density correlation distances, as well as the orientation correlation distances, were related to structural elements in the lens fiber cell that have been observed by other investigators with different techniques. The magnitude of these fluctuations were evaluated, and it was demonstrated that the density fluctuations are the main contributors to light scattering in normal human lenses. Changes in the light-scattering parameters were evaluated as a function of position within the lens. The changes observed agree with the biochemical data in the literature that reflects that an aging process occurs when one proceeds from the periphery of the lens toward the center. PMID:262413

  12. Coherent Scattering of Near-Resonant Light by a Dense Microscopic Cold Atomic Cloud

    NASA Astrophysics Data System (ADS)

    Jennewein, S.; Besbes, M.; Schilder, N. J.; Jenkins, S. D.; Sauvan, C.; Ruostekoski, J.; Greffet, J.-J.; Sortais, Y. R. P.; Browaeys, A.

    2016-06-01

    We measure the coherent scattering of light by a cloud of laser-cooled atoms with a size comparable to the wavelength of light. By interfering a laser beam tuned near an atomic resonance with the field scattered by the atoms, we observe a resonance with a redshift, a broadening, and a saturation of the extinction for increasing atom numbers. We attribute these features to enhanced light-induced dipole-dipole interactions in a cold, dense atomic ensemble that result in a failure of standard predictions such as the "cooperative Lamb shift". The description of the atomic cloud by a mean-field model based on the Lorentz-Lorenz formula that ignores scattering events where light is scattered recurrently by the same atom and by a microscopic discrete dipole model that incorporates these effects lead to progressively closer agreement with the observations, despite remaining differences.

  13. Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein.

    PubMed

    Li, Chao; Ma, Jiehua; Fan, Qiongxuan; Tao, Yaqin; Li, Genxi

    2016-06-14

    A novel dynamic light scattering (DLS)-based immunoassay that utilizes manganese dioxide nanosheet-modified gold nanoparticles (MnO2-GNPs) as an activatable nanoprobe has been developed to detect tumor markers down to femtomolar levels. PMID:27247980

  14. Miniature Light Scattering Systems For On-Line Process Particle Size And Velocity Measurement

    NASA Astrophysics Data System (ADS)

    Brown, Robert G.; Burnett, J. G.; Chow, K.; Rarity, J. G.

    1989-03-01

    Light scattering techniques for velocity and particle size analysis are well established research and industrial tools. In general, light scattering instruments have been large and expensive, requiring skilled operation. We have constructed and tested a range of light scattering instruments in miniature form using the recently available range of new semiconductor laser diodes, avalanche and PIN photodiodes and optical fibres. Thus is has been possible to demonstrate laser Doppler and transit anemometers for turbulent flow analysis and dynamic light scattering instruments for particle size analysis all of which are small and cheap enough to be of value in on-line process monitoring and control. We describe the critically important features of the new technologies used, and how we have coupled new devices together into systems for industrial applications of importance eg biotechnology, pharmaceuticals, automobile, aerospace, chemicals, etc.

  15. Cancer detection using NIR elastic light scattering and tissue fluorescence imaging

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B; Gandour-Edwards, R; deVere White, R

    2000-12-04

    Near infrared imaging using elastic light scattering and tissue fluorescence under long-wavelength laser excitation are explored for cancer detection. Various types of normal and malignant human tissue samples were utilized in this investigation.

  16. In vivo measurement of mid-infrared light scattering from human skin

    PubMed Central

    Michel, Anna P. M.; Liakat, Sabbir; Bors, Kevin; Gmachl, Claire F.

    2013-01-01

    Two mid-infrared light sources, a broadband source from a Fourier Transform Infrared Spectrometer (FTIR) and a pulsed Quantum Cascade (QC) Laser, are used to measure angle-resolved backscattering in vivo from human skin across a broad spectral range. Scattering profiles measured using the FTIR suggest limited penetration of the light into the skin, with most of the light interacting with the stratum corneum layer of the epidermis. Scattering profiles from the QC laser show modulation patterns with angle suggesting interaction with scattering centers in the skin. The scattering is attributed to interaction of the laser light with components such as collagen fibers and capillaries in the dermis layer of the skin. PMID:23577287

  17. Discrete Sources Method for light scattering analysis of non-axisymmetric features of a substrate

    NASA Astrophysics Data System (ADS)

    Eremin, Yuri; Wriedt, Thomas

    2016-01-01

    The Discrete Sources Method (DSM) has been extended to analyze polarized light scattering by non-axial symmetric nano-sized features on a plane substrate. A detailed description of the corresponding numerical scheme is provided. Using a "fictitious" particle approach the new DSM model enables to consider scattering from such substrate defects as a line bump and a line pit. The developed computer model has been employed for demonstrating the ability to perform a comparative analysis of light scattering from such line features. Simulation results corresponding to the Differential Scattering Cross-Section (DSC) and the integral response for P/S polarized light are presented. It was found that the integral response can change by an order of magnitude depending on the orientation of the linear defect with respect to the direction of the incident laser light. In addition, it was shown that some defects can turn out to be "invisible" if an oblique angle of incidence is chosen.

  18. Coherent Scattering of Near-Resonant Light by a Dense Microscopic Cold Atomic Cloud.

    PubMed

    Jennewein, S; Besbes, M; Schilder, N J; Jenkins, S D; Sauvan, C; Ruostekoski, J; Greffet, J-J; Sortais, Y R P; Browaeys, A

    2016-06-10

    We measure the coherent scattering of light by a cloud of laser-cooled atoms with a size comparable to the wavelength of light. By interfering a laser beam tuned near an atomic resonance with the field scattered by the atoms, we observe a resonance with a redshift, a broadening, and a saturation of the extinction for increasing atom numbers. We attribute these features to enhanced light-induced dipole-dipole interactions in a cold, dense atomic ensemble that result in a failure of standard predictions such as the "cooperative Lamb shift". The description of the atomic cloud by a mean-field model based on the Lorentz-Lorenz formula that ignores scattering events where light is scattered recurrently by the same atom and by a microscopic discrete dipole model that incorporates these effects lead to progressively closer agreement with the observations, despite remaining differences. PMID:27341230

  19. Diffuse light scattering from a dense and cold microscopic 87Rb sample

    NASA Astrophysics Data System (ADS)

    Kemp, Kasie; Roof, S. J.; Havey, M. D.; Sokolov, I. M.; Kupriyanov, D. V.

    2015-05-01

    We report investigation of near-resonance light scattering from a cold atomic sample of 87Rb. Measurements are made on the F = 2 -->F' = 3 nearly closed hyperfine transition for atomic densities ranging from ~1010 to ~1013 atoms/cm3. The sample, initially prepared in a magneto-optical trap, is loaded into a far-off-resonance trap (FORT) in which the ensemble has a temperature ~100 μK and initial Gaussian radii of ~3 μm and ~280 μm in the transverse and longitudinal directions, respectively. The experimental geometry consists of projecting a near-resonance collimated laser beam onto the entire volume of the FORT and detecting the diffusely scattered light. The measured scattered light intensity as a function of detuning, atomic density, and sample size suggests that collective light scattering plays an important role in the experimental results. This research is supported by the National Science Foundation (Grant No. NSF-PHY-1068159).

  20. Measurement of defects by measuring of light scattering from surfaces using focused illumination

    NASA Astrophysics Data System (ADS)

    Rodríguez-Núñez, O.; Bruce, Neil C.

    2016-04-01

    Light scattering has been used as a method of characterizing material or surface roughness in different areas of the science and technology, usually the surface is illuminated with light and the pattern of scattering is measured above the surface. In the literature, the scattered light has been measured using an incident beam with a diameter on the order of a few cm for surfaces with roughness scales of the order of microns, mainly to avoid problems with the speckle pattern of light. However, this kind of measurement does not give information on local variations in roughness or defects present in the sample. Also, it has been reported in many studies that the polarization of the scattered light is affected by the surface material and roughness. In this paper we present a novel experimental device used to identify local defects on surfaces by the measurement of the scattered light pattern using laser light focused onto the surface. We present results of experimental measurements for two surfaces with roughness and defects of the order of 6 to 60 microns using sizes of incident beam of the same order and we compare the results of experimental cases with results of numerical calculation based on the Kirchhoff Approximation of light scattering by rough surfaces. We include preliminary results from the effect on the pattern of light scattering as a function of the polarization state by using focused light to illuminate the surface, we calculate the Mueller matrix for the equivalent period of the surface micro-manufactured experimentally. Finally we conclude about the validity of the method.