Science.gov

Sample records for light transport-heat diffusion

  1. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    SciTech Connect

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-03-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered.

  2. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  3. Imaging complex structures with diffuse light

    PubMed Central

    Konecky, Soren D.; Panasyuk, George Y.; Lee, Kijoon; Markel, Vadim; Yodh, Arjun G.; Schotland, John C.

    2008-01-01

    We use diffuse optical tomography to quantitatively reconstruct images of complex phantoms with millimeter sized features located centimeters deep within a highly-scattering medium. A non-contact instrument was employed to collect large data sets consisting of greater than 107 source-detector pairs. Images were reconstructed using a fast image reconstruction algorithm based on an analytic solution to the inverse scattering problem for diffuse light. PMID:18542605

  4. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  5. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  6. Human vision is attuned to the diffuseness of natural light

    PubMed Central

    Morgenstern, Yaniv; Geisler, Wilson S.; Murray, Richard F.

    2014-01-01

    All images are highly ambiguous, and to perceive 3-D scenes, the human visual system relies on assumptions about what lighting conditions are most probable. Here we show that human observers' assumptions about lighting diffuseness are well matched to the diffuseness of lighting in real-world scenes. We use a novel multidirectional photometer to measure lighting in hundreds of environments, and we find that the diffuseness of natural lighting falls in the same range as previous psychophysical estimates of the visual system's assumptions about diffuseness. We also find that natural lighting is typically directional enough to override human observers' assumption that light comes from above. Furthermore, we find that, although human performance on some tasks is worse in diffuse light, this can be largely accounted for by intrinsic task difficulty. These findings suggest that human vision is attuned to the diffuseness levels of natural lighting conditions. PMID:25139864

  7. Quasiparticle Diffusion in CRESST Light Detectors

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Bauer, P.; Ferreiro, N.; Hauff, D.; Tanzke, A.; Strauss, R.; Kiefer, M.; Petricia, F.; Reindl, F.; Seidel, W.; Pröbst, F.; Wüstrich, M.

    2016-07-01

    CRESST-II is a direct dark matter experiment that uses scintillating calorimeters to detect WIMP-induced nuclear scatter processes. Heat and light signals are read out with tungsten transition edge sensors (TESs) that are optimized toward their sensitivity to non-thermal phonons. The usage of superconducting thin film structures (e.g., aluminum) serving as phonon collectors to increase the collection area for this signal component is an approach to improve the sensitivity of the TES. The performance of the phonon collectors depends on the material properties and the quality achieved in the production process. We optimized the size of the phonon collectors for the given quality of CRESST-II light detectors. The diffusion lengths measured in this work are mathcal {O}(1 mm) and show a strong correlation to the Residual Resistivity Ratio of the respective films. First tests of CRESST-II light detectors with larger as well as thicker phonon collectors individually show improvements in the measured pulse height of 30 %.

  8. Quasiparticle Diffusion in CRESST Light Detectors

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Bauer, P.; Ferreiro, N.; Hauff, D.; Tanzke, A.; Strauss, R.; Kiefer, M.; Petricia, F.; Reindl, F.; Seidel, W.; Pröbst, F.; Wüstrich, M.

    2016-02-01

    CRESST-II is a direct dark matter experiment that uses scintillating calorimeters to detect WIMP-induced nuclear scatter processes. Heat and light signals are read out with tungsten transition edge sensors (TESs) that are optimized toward their sensitivity to non-thermal phonons. The usage of superconducting thin film structures (e.g., aluminum) serving as phonon collectors to increase the collection area for this signal component is an approach to improve the sensitivity of the TES. The performance of the phonon collectors depends on the material properties and the quality achieved in the production process. We optimized the size of the phonon collectors for the given quality of CRESST-II light detectors. The diffusion lengths measured in this work are {O} (1 mm) and show a strong correlation to the Residual Resistivity Ratio of the respective films. First tests of CRESST-II light detectors with larger as well as thicker phonon collectors individually show improvements in the measured pulse height of 30 %.

  9. Quasiparticle Diffusion in CRESST Light Detectors

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Bauer, P.; Ferreiro, N.; Hauff, D.; Tanzke, A.; Strauss, R.; Kiefer, M.; Petricia, F.; Reindl, F.; Seidel, W.; Pröbst, F.; Wüstrich, M.

    2016-07-01

    CRESST-II is a direct dark matter experiment that uses scintillating calorimeters to detect WIMP-induced nuclear scatter processes. Heat and light signals are read out with tungsten transition edge sensors (TESs) that are optimized toward their sensitivity to non-thermal phonons. The usage of superconducting thin film structures (e.g., aluminum) serving as phonon collectors to increase the collection area for this signal component is an approach to improve the sensitivity of the TES. The performance of the phonon collectors depends on the material properties and the quality achieved in the production process. We optimized the size of the phonon collectors for the given quality of CRESST-II light detectors. The diffusion lengths measured in this work are {O}(1 mm) and show a strong correlation to the Residual Resistivity Ratio of the respective films. First tests of CRESST-II light detectors with larger as well as thicker phonon collectors individually show improvements in the measured pulse height of 30 %.

  10. Do epidermal lens cells facilitate the absorptance of diffuse light?

    PubMed

    Brodersen, Craig R; Vogelmann, Thomas C

    2007-07-01

    Many understory plants rely on diffuse light for photosynthesis because direct light is usually scattered by upper canopy layers before it strikes the forest floor. There is a considerable gap in the literature concerning the interaction of direct and diffuse light with leaves. Some understory plants have well-developed lens-shaped epidermal cells, which have long been thought to increase the absorption of diffuse light. To assess the role of epidermal cell shape in capturing direct vs. diffuse light, we measured leaf reflectance and transmittance with an integrating sphere system using leaves with flat (Begonia erythrophylla, Citrus reticulata, and Ficus benjamina) and lens-shaped epidermal cells (B. bowerae, Colocasia esculenta, and Impatiens velvetea). In all species examined, more light was absorbed when leaves were irradiated with direct as opposed to diffuse light. When leaves were irradiated with diffuse light, more light was transmitted and more was reflected in both leaf types, resulting in absorptance values 2-3% lower than in leaves irradiated with direct light. These data suggest that lens-shaped epidermal cells do not aid the capture of diffuse light. Palisade and mesophyll cell anatomy and leaf thickness appear to have more influence in the capture and absorption of light than does epidermal cell shape. PMID:21636475

  11. Use of diffusive optical fibers for plant lighting

    NASA Technical Reports Server (NTRS)

    Kozai, T.; Kitaya, Y.; Fujiwara, K.; Kino, S.; Kinowaki, M.

    1994-01-01

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in a reduced space with the sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and the advantages and disadvantages are discussed.

  12. Diffuse Reflection of Laser Light From Clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Davis, A.; McGill, M.

    1999-01-01

    Laser light reflected from an aqueous suspension of particles or "cloud" with known thickness and particle size distribution defines the "cloud radiative Green's function", G. G is sensitive to cloud thickness, allowing retrieval of that important quantity. We describe a laboratory simulation of G, useful in design of an offbeam Lidar instrument for remote sensing of cloud thickness. Clouds of polystyrene microspheres suspended in water are analogous to real clouds of water droplets suspended in air. The size distribution extends from 0.5 microns to 25 microns, roughly lognormal, similar to real clouds. Density of suspended spheres is adjusted so photon mean-free-path is about 10 cm, 1000 times smaller than in real clouds. The light source is a Nd:YAG laser at 530 nm. Detectors are flux and photon-counting PMTs, with a glass probe for precise positioning. A Labview 5 VI controls position and data acquisition, via an NI Motion Control board connected to a stepper motor driving an Edmund linear slider,and a 16-channel 16-bit NI-DAQ board. The stepper motor is accurate to 10 microns. Step size is selectable. Far from the beam, the rate of exponential increase in the beam direction scales as expected from diffusion theory, linearly with cloud thickness, and inversely as the square root of the reduced optical thickness, independent of particle size. Nearer the beam the signal increases faster than exponential and depends on particle size. Results verify 3D Monte Carlo simulations that demonstrate detectability of remotely sensed offbeam returns, without filters at night, with narrow bandpass filter in day.

  13. The faint galaxy contribution to the diffuse extragalactic background light

    NASA Technical Reports Server (NTRS)

    Cole, Shaun; Treyer, Marie-Agnes; Silk, Joseph

    1992-01-01

    Models of the faint galaxy contribution to the diffuse extragalactic background light are presented, which are consistent with current data on faint galaxy number counts and redshifts. The autocorrelation function of surface brightness fluctuations in the extragalactic diffuse light is predicted, and the way in which these predictions depend on the cosmological model and assumptions of biasing is determined. It is confirmed that the recent deep infrared number counts are most compatible with a high density universe (Omega-0 is approximately equal to 1) and that the steep blue counts then require an extra population of rapidly evolving blue galaxies. The faintest presently detectable galaxies produce an interesting contribution to the extragalactic diffuse light, and still fainter galaxies may also produce a significant contribution. These faint galaxies still only produce a small fraction of the total optical diffuse background light, but on scales of a few arcminutes to a few degrees, they produce a substantial fraction of the fluctuations in the diffuse light.

  14. Invisibility cloaking in the diffusive-light limit (presentation video)

    NASA Astrophysics Data System (ADS)

    Schittny, Robert; Kadic, Muamer; Wegener, Martin

    2014-09-01

    Albert Einstein's theory of relativity imposes stringent limitations to making macroscopic objects invisible with respect to electromagnetic light waves propagating in vacuum. These limitations are not relevant though for propagation of light in diffusive media like fog or milk because the effective energy speed is significantly lower than in vacuum due to multiple scattering events. Here, by exploiting the close mathematical analogy between the electrostatic or near-field limit of optics on the one hand and light diffusion on the other hand, we design, fabricate, and characterize simple core-shell cloaking structures for diffusive light propagation in cylindrical and spherical geometry.

  15. Diffusion filter eliminates fringe effects of coherent laser light source

    NASA Technical Reports Server (NTRS)

    Olsasky, M. J.

    1970-01-01

    Diffusion filter comprised of small particles in colloidal suspension reduces the coherence of a laser beam used as a photographic light source. Interference patterns which obscure details in photographic film are eliminated, the intensity and collimation are moderately affected.

  16. Control of light diffusion in a disordered photonic waveguide

    SciTech Connect

    Sarma, Raktim; Cao, Hui; Golubev, Timofey; Yamilov, Alexey

    2014-07-28

    We control the diffusion of light in a disordered photonic waveguide by modulating the waveguide geometry. In a single waveguide of varying cross-section, the diffusion coefficient changes spatially in two dimensions due to localization effects. The intensity distribution inside the waveguide agrees with the prediction of the self-consistent theory of localization. Our work shows that wave diffusion can be efficiently manipulated without modifying the structural disorder.

  17. Light shaping diffusers{trademark} improve aircraft inspection

    SciTech Connect

    Shagam, R.N.; Shie, R.; Lerner, J.

    1994-11-01

    Physical Optical Corporation has introduced a Light Shaping Diffuser{trademark} (LSD) for the specialized illumination requirements of aircraft inspection. Attached to a handheld, battery-powered flashlight, this light-weight, holographic diffuser element provides bright, even illumination as aircraft inspectors perform the important task of visually examining aircraft for possible structural defects. Field trials conducted by the Aging Aircraft Program at Sandia National Laboratories confirm that the LSD-equipped flashlights are preferred by visual inspectors over stock flashlights.

  18. Cathode diffusion and degradation mechanism of polymeric light emitting devices

    NASA Astrophysics Data System (ADS)

    Suh, Min Chul; Chung, Ho Kyoon; Kim, Sang-Yeol; Kwon, Jang Hyuk; Chin, Byung Doo

    2005-09-01

    Rutherford backscattering spectroscopy was applied to investigate the diffusion of metals into polymeric light emitting layer by a continuous device operation. The change of substrate (indium/tin) signal as well as calcium penetration after device operation was conspicuous using pristine light emitting polymer, whereas annealed device above polymer's glass transition temperature indicated almost no migration of calcium. This can be a direct evidence of the molecular conformation and rigidity change of light emitting polymer, which affects the degradation behavior by the metal diffusion into organic thin film.

  19. Polarization behavior of paints doped with silicone light diffusion agent

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Xie, Wei; Guo, Honggui; Wu, Jianye

    2016-02-01

    We report on the polarization behavior of painted samples doped with a silicone light diffusion agent and illuminated by linearly polarized laser light centered at 532 and 650 nm. Reflection spectra of the painted samples with dopant concentration of 0 and 12.2 wt.% were examined. The degree of depolarization increases from 0.35 to 0.8 under laser illumination at 650 nm and from 0.5 to 0.94 under laser illumination at 532 nm with an increasing concentration of light diffusion agent. The polarization behavior of painted samples was described, taking into account contribution of both surface scattering and volume scattering.

  20. Metamaterials. Invisibility cloaking in a diffusive light scattering medium.

    PubMed

    Schittny, Robert; Kadic, Muamer; Bückmann, Tiemo; Wegener, Martin

    2014-07-25

    In vacuum, air, and other surroundings that support ballistic light propagation according to Maxwell's equations, invisibility cloaks that are macroscopic, three-dimensional, broadband, passive, and that work for all directions and polarizations of light are not consistent with the laws of physics. We show that the situation is different for surroundings leading to multiple light scattering, according to Fick's diffusion equation. We have fabricated cylindrical and spherical invisibility cloaks made of thin shells of polydimethylsiloxane doped with melamine-resin microparticles. The shells surround a diffusively reflecting hollow core, in which arbitrary objects can be hidden. We find good cloaking performance in a water-based diffusive surrounding throughout the entire visible spectrum and for all illumination conditions and incident polarizations of light. PMID:24903561

  1. System for diffusing light from an optical fiber or light guide

    DOEpatents

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  2. Novel light diffusing fiber for use in medical applications

    NASA Astrophysics Data System (ADS)

    Klubben, W. Spencer; Logunov, Stephan L.; Fewkes, Edward J.; Mooney, Jeff; Then, Paul M.; Wigley, Peter G.; Schreiber, Horst; Matias, Kaitlyn; Wilson, Cynthia J.; Ocampo, Manuela

    2016-03-01

    Fiber-based cylindrical light diffusers are often used in photodynamic therapy to illuminate a luminal organ, such as the esophagus. The diffusers are often made of plastic and suffer from short diffusion lengths and low transmission efficiencies over a broad spectrum. We have developed FibranceTM, a glass-based fiber optic cylindrical diffuser which can illuminate a fiber from 0.5 cm to 10 meters over a broad wavelength range. With these longer illumination lengths, a variety of other medical applications are possible beyond photodynamic therapy. We present a number of applications for Fibrance ranging from in situ controllable illumination for Photodynamic Therapy to light guided anatomy highlighting for minimally invasive surgery to mitigating hospital acquired infections and more.

  3. Crossover from superdiffusive to diffusive dynamics in fluctuating light fields

    NASA Astrophysics Data System (ADS)

    Marqués, Manuel I.

    2016-06-01

    The expressions for the optical drag force, the equilibrium kinetic energy, and the diffusion constant of an electric dipole in a light field consisting of electromagnetic plane waves with polarizations randomly distributed and fluctuating phases are obtained. The drag force is proportional to the extinction cross section of the dipole and to the intensity. The diffusion constant does not depend on the amplitude of the electromagnetic field and is proportional to the time interval between fluctuations. Numerical simulations for the dynamics of a resonant dipole, initially at rest, show the crossover between the superdiffusive and the diffusive regimes theoretically predicted.

  4. LLNL SMP Light Diffuser Fabrication and Preliminary Data

    SciTech Connect

    Small IV, W

    2006-06-02

    We are developing a cylindrical light diffuser using shape memory polymer (SMP) whose diameter, length, stiffness, and diffusion profile can be tailored to suit a particular application. The cylindrical SMP diffuser is made by casting SMP around the end of a glass optical fiber using a teflon tube as the casting mold, and abrading the cured SMP surface to cause the light to leak radially outward. The inner diameter of the casting tube is slightly larger than the fiber diameter. A smaller teflon tube is positioned over the fiber (between the fiber and the casting tube) to approximately center the fiber tip in the casting tube. As the SMP cures, it bonds with the optical fiber, creating a strong joint without the need for additional adhesives or mechanical fixtures. A close-up of the SMP-fiber joint and the finished SMP diffuser are shown in Fig.1. The SMP formulation (developed in-house) was specifically designed to be optically transparent in the visible and near-infrared regions; the spectral absorption of the SMP is shown in Fig. 2. The low absorption is important because (1) it allows the light to travel the length of the diffuser without suffering excessive loss due to absorption and (2) it permits delivery of up to 7 W (300 {micro}m SMP rod on 100 {micro}m core multimode fiber) of laser power into the diffuser without damaging the diffuser. SMP is a good wave guiding material with a refractive index of approximately 1.5. Also, the SMP stiffness can be tailored from stiff (e.g. acrylic, Ea {approx} 10{sup 9} Pa) to very flexible (e.g. silicon rubber, Ea {approx} 10{sup 6} Pa). Finally, since SMP can self-actuate, the SMP diffuser could be designed to actuate into a shape other than a straight rod (e.g. 2D or 3D coil).

  5. Sol-Gel Glass Holographic Light-Shaping Diffusers

    NASA Technical Reports Server (NTRS)

    Yu, Kevin; Lee, Kang; Savant, Gajendra; Yin, Khin Swe (Lillian)

    2005-01-01

    Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.

  6. Diffusion of interacting particles: light scattering study of microemulsions

    SciTech Connect

    Cazabat, A.M.; Langevin, D.

    1981-03-15

    The diffusion coefficient data obtained from light scattering experiments on water-in-oil microemulsions have been compared with existing theoretical treatments involving the interaction potential. The observed behavior deviates largely from hard sphere systems and independent information was obtained about the interaction potential to check the theories. This was achieved by measuring simultaneously the intensity and the correlation function of the scattered light. The intensity has been analyzed with a very simple model for interaction forces involving only 2 parameters: a hard sphere radius and the amplitude of a small perturbation added to hard sphere potential. This model allows for the variation of the diffusion coefficient at small volume fractions. Light scattering techniques are a very useful method for obtaining information about sizes and interactions in microemulsions. Some general conclusions have been made: droplet sizes depend mostly on the ratio of water to soap, and interactions on continuous phase polarity and alcohol chain length.

  7. Light scattering and optical diffusion from willemite spherulites

    NASA Astrophysics Data System (ADS)

    Knowles, Kevin M.; Butt, Haider; Batal, Afif; Sabouri, Aydin; Anthony, Carl J.

    2016-02-01

    Willemite is a zinc silicate mineral used in modern day pottery as a decorative feature within glazes. It is produced by controlled heat treatment of zinc oxide-containing ceramic glazes. The heat-treated glazes devitrify, producing thin nanoscale needle-like willemite crystals growing in spherulitic morphologies through branching of the needles. We show here that this resulting morphology of willemite crystals in an inorganic glass matrix has a previously unreported strong interaction with light, displaying remarkable optical diffraction patterns. Thin sections of such spherulites act as optical diffusers, enabling light beams to be spread up to 160° in width. Analysis of the interaction between the willemite spherulites and light suggests that the high density of willemite crystals in the spherulites and the length scales associated with both the thickness of the needles and the spacings between branches are together responsible for this optical diffusion behaviour.

  8. Light reflection visualization to determine solute diffusion into clays

    NASA Astrophysics Data System (ADS)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2014-06-01

    Light reflection visualization (LRV) experiments were performed to investigate solute diffusion in low-permeability porous media using a well-controlled two-dimensional flow chamber with a domain composed of two layers (one sand and one clay). Two different dye tracers (Brilliant Blue FCF and Ponceau 4R) and clay domains (kaolinite and montmorillonite) were used. The images obtained through the LRV technique were processed to monitor two-dimensional concentration distributions in the low-permeability zone by applying calibration curves that related light intensity to equilibrium concentrations for each dye tracer in the clay. One dimensional experimentally-measured LRV concentration profiles in the clay were found to be in very good agreement with those predicted from a one-dimensional analytical solution, with coefficient of efficiency values that exceeded 0.97. The retardation factors (R) for both dyes were relatively large, leading to slow diffusive penetration into the clays. At a relative concentration C/C0 = 0.1, Brilliant Blue FCF in kaolinite (R = 11) diffused approximately 10 mm after 21 days of source loading, and Ponceau 4R in montmorillonite (R = 7) diffused approximately 12 mm after 23 days of source loading. The LRV experimentally-measured two-dimensional concentration profiles in the clay were also well described by a simple analytical solution. The results from this study demonstrate that the LRV approach is an attractive non-invasive tool to investigate the concentration distribution of dye tracers in clays in laboratory experiments.

  9. Light reflection visualization to determine solute diffusion into clays.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2014-06-01

    Light reflection visualization (LRV) experiments were performed to investigate solute diffusion in low-permeability porous media using a well-controlled two-dimensional flow chamber with a domain composed of two layers (one sand and one clay). Two different dye tracers (Brilliant Blue FCF and Ponceau 4R) and clay domains (kaolinite and montmorillonite) were used. The images obtained through the LRV technique were processed to monitor two-dimensional concentration distributions in the low-permeability zone by applying calibration curves that related light intensity to equilibrium concentrations for each dye tracer in the clay. One dimensional experimentally-measured LRV concentration profiles in the clay were found to be in very good agreement with those predicted from a one-dimensional analytical solution, with coefficient of efficiency values that exceeded 0.97. The retardation factors (R) for both dyes were relatively large, leading to slow diffusive penetration into the clays. At a relative concentration C/C0=0.1, Brilliant Blue FCF in kaolinite (R=11) diffused approximately 10 mm after 21 days of source loading, and Ponceau 4R in montmorillonite (R=7) diffused approximately 12 mm after 23 days of source loading. The LRV experimentally-measured two-dimensional concentration profiles in the clay were also well described by a simple analytical solution. The results from this study demonstrate that the LRV approach is an attractive non-invasive tool to investigate the concentration distribution of dye tracers in clays in laboratory experiments. PMID:24657742

  10. Morphologic tomography of nonspherical particles using multispectral diffusing light measurements

    PubMed Central

    Hajihashemi, Mohammad Reza; Li, Xiaoqi; Jiang, Huabei

    2011-01-01

    A series of phantom experiments are conducted to demonstrate the ability of a T-matrix–based inverse algorithm for tomographic recovery of morphologic characteristics of nonspherical particles embedded in heterogeneous turbid media. Diffusely scattered light at several wavelengths along the boundary of the phantom are collected and analyzed to allow for simultaneous extraction of the size, concentration, and aspect ratio of the spheroidal particles. PMID:22112119

  11. Diffuse-light all-solid-state invisibility cloak.

    PubMed

    Schittny, Robert; Niemeyer, Andreas; Kadic, Muamer; Bückmann, Tiemo; Naber, Andreas; Wegener, Martin

    2015-09-15

    An ideal invisibility cloak makes arbitrary macroscopic objects within the cloak indistinguishable from its surrounding—for all directions, illumination patterns, polarizations, and colors of visible light. Recently, we have approached such an ideal cloak for the diffusive regime of light propagation using a core-shell geometry and a mixture of water and white wall paint as the surrounding. Here, we present an all-solid-state version based on polydimethylsiloxane doped with titania nanoparticles for the surrounding/shell and on a high-reflectivity microporous ceramic for the core. By virtue of reduced effects of absorption, especially from the core, the cloaking performance and the overall light throughput are improved significantly. PMID:26371896

  12. Light Diffusion in the Tropical Dry Forest of Costa Rica

    NASA Astrophysics Data System (ADS)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  13. Diffuse optical imaging of the breast using structured-light

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Cho, Jaedu; Zheng, Jie; Li, Yifan; Chen, Jeon-hor; Su, Min-Ying; Gulsen, Gultekin

    2015-03-01

    Diffuse optical imaging with structured-light illumination and detection can provide rapid, wide-field anatomical and functional imaging of the breast with an application for breast cancer screening. Our aims for this study were to test the feasibility of structured-light, test our pattern set, and develop and optimize our image reconstruction algorithm. For our phantom studies, we created an agar phantom with dimensions similar to a compressed breast. A cubic inclusion of 30mm by 30mm by 25mm with twice the amount of absorption contrast than the background was placed at the center. Near-infrared light of eleven patterns including a full illumination and single stripes was illuminated onto the breast phantom and detected with a CCD camera, with integration of the signals according to the patterns performed post-data acquisition, with a total of 121 measurements. These measurements were then used in our reconstruction algorithm that iteratively minimized the difference between the collected data and the estimation from our FEM-based forward model of photon diffusion to calculate the absorption values. Reconstructions of the 3D absorption maps detect an inclusion at the center and indicate that our selected set of patterns may be sufficient for structured-light imaging. We are currently improving our instrumentation and testing with additional phantom studies, while also performing simulations of numerical breast phantoms created from MR images to test structured-light's ability to image complex and realistic breast tissue composition. We hope to use this technique as optical method to image molecular markers, such as hemoglobin, water and lipid, within the breast.

  14. Specular, diffuse, and polarized light scattered by two wheat canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.; Biehl, L. L.; Robinson, B. F.

    1985-01-01

    Using polarization measurements, the reflectance factor of two wheat canopies is divided into components due to specularly and diffusely reflected light. The data show that two key angles may be predicted, the angle of the polarizer for minimum flux and the angle of incidence of sunlight specularly reflected by a leaf to a sensor. The results show that specular reflection is a key aspect to radiation transfer by two canopies. Results suggest that the advent of heading in wheat may be remotely sensed from polarization measurements of the canopy reflectance.

  15. Double-layer anisotropic light diffusion films fabricated using a two-step UV curing technique

    NASA Astrophysics Data System (ADS)

    Kusama, Kentaro; Ishinabe, Takahiro; Katagiri, Baku; Orui, Tomoo; Shoshi, Satoru; Fujikake, Hideo

    2016-04-01

    We developed a novel light diffusion film with a double diffusion layer structure for high reflectivity and a wide diffusion angle range. We demonstrated that the internal layer structure of the light diffusion film is controlled by the diffusion angle of the ultraviolet (UV) light used for photopolymerization. We successfully fabricated two different diffusion layers in a single polymer film using a two-step UV curing process and achieved a wide diffusion angle range and high reflectivity normal to the film surface. Our light diffusion film can control the distribution of diffused light, and should contribute to the development of future low-power reflective displays with high reflectivity similar to the white paper.

  16. Diffuse light tomography to detect blood vessels using Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Kazanci, Huseyin O.; Jacques, Steven L.

    2016-04-01

    Detection of blood vessels within light-scattering tissues involves detection of subtle shadows as blood absorbs light. These shadows are diffuse but measurable by a set of source-detector pairs in a spatial array of sources and detectors on the tissue surface. The measured shadows can reconstruct the internal position(s) of blood vessels. The tomographic method involves a set of Ns sources and Nd detectors such that Nsd = Ns x Nd source-detector pairs produce Nsd measurements, each interrogating the tissue with a unique perspective, i.e., a unique region of sensitivity to voxels within the tissue. This tutorial report describes the reconstruction of the image of a blood vessel within a soft tissue based on such source-detector measurements, by solving a matrix equation using Tikhonov regularization. This is not a novel contribution, but rather a simple introduction to a well-known method, demonstrating its use in mapping blood perfusion.

  17. The Photosynthetic Trade-off Between Direct and Diffuse Light, the Problem with Diffuse Fraction and a Proposed Solution.

    NASA Astrophysics Data System (ADS)

    Stine, A.; Swann, A. L. S.; Huybers, P. J.

    2014-12-01

    Increases in atmospheric scatterers change the light environment at the surface both by decreasing total solar illumination and by converting direct radiation to diffuse radiation. In general, diffuse light is more efficient at driving photosynthesis than direct light, leading to disagreements in the net effect of changes in scattering on terrestrial photosynthesis, particularly in the context of large explosive volcanic eruptions. Standard analytical approaches for treating the trade-off between direct and diffuse radiation compare the changes in light against the fraction of light which is diffuse. Here we show that use of diffuse fraction as the independent variable in light trade-off calculations leads to results that are generally biased because the dependent variable (be it direct, diffuse or total radiation) functionally covaries with the independent variable, irrespective of the physical relationship between direct and diffuse radiation. This bias appears to dominate the results of published calculations. We develop a new method for quantifying the trade-off between direct and diffuse radiation on photosynthesis that is not subject to this artifact and demonstrate its use at four Atmospheric Radiation Measurement (ARM) sites.

  18. Advantages of diffuse light for horticultural production and perspectives for further research

    PubMed Central

    Li, Tao; Yang, Qichang

    2015-01-01

    Plants use diffuse light more efficiently than direct light, which is well established due to diffuse light penetrates deeper into the canopy and photosynthetic rate of a single leaf shows a non-linear response to the light flux density. Diffuse light also results in a more even horizontal and temporal light distribution in the canopy, which plays substantial role for crop photosynthesis enhancement as well as production improvement. Here we show some of the recent findings about the effect of diffuse light on light distribution over the canopy and its direct and indirect effects on crop photosynthesis and plant growth, and suggest some perspectives for further research which could strengthen the scientific understanding of diffuse light modulate plant processes and its application in horticultural production. PMID:26388890

  19. Transforming a spatially coherent light beam into a diffused beam of small diffusion angle using suitable surface scattering

    NASA Astrophysics Data System (ADS)

    Dashtdar, M.; Tavassoly, M. T.

    2013-11-01

    Imposing a phase random distribution in an interval larger than 2π on a spatially coherent light beam transforms the beam into a diffuse one. However, if the required random phase distribution is imposed by a rough transparent plate immersed in a transparent liquid or covered by another transparent material of refractive index close to that of the plate, the diffused light is confined in a small cone around the light incident angle. This renders to fabricate diffusers with high transmission efficiency that has applications in computer displays, bar code scanners, and image forming systems including conventional optical microscopes.

  20. Diffuse optical imaging using spatially and temporally modulated light

    PubMed Central

    O’Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.

    2012-01-01

    Abstract. The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology. PMID:22894472

  1. Portable multichannel multiwavelength near-infrared diffusive light imager

    NASA Astrophysics Data System (ADS)

    Chen, Nan Guang; Xia, Hongjun; Piao, Daqing; Zhu, Quing

    2003-07-01

    We have developed a near infrared optical tomography system features fast optical switching, three-wavelength excitations, and avalanche photodiode (APD) detectors with a high dynamic range. Pigtailed laser diodes at 660, 780, and 830 nm are used as light sources and their outputs are distributed sequentially to one of nine source fibers. The crosstalk between source channels is around 65 dB, equivalent to 130 dB in opto-electrical signals. 10 Silicon APD"s detect diffusive photon density waves simultaneously. The dynamic range of an APD is several orders higher than that of a photomultiplier tube (PMT), which eliminates the need of multi-step system gain control. However, the internal gain of the APD we are using is about 3 orders lower than an ordinary PMT. Efforts have been made to suppress the feed through interferences from the transmission part to the reception part so as to reduce the errors in amplitude and phase measurements.

  2. Diffusing light photography of solitons and capillary-wave turbulence

    SciTech Connect

    Wright, W.; Budak, R.; Putterman, S. )

    1994-11-01

    The attenuation of light propagating through a slab of water (containing a dilute concentration of polyballs) is approximately proportional to its thickness. Application of this insight to the local elevation of a fluid surface has enabled us to use photography to determine the instantaneous global topography of the surface of a fluid in motion. Use of diffusing light enables us to obtain images that are free of the caustics which plague shadowgraphs. Applications include breather solitons and wave turbulence which results from the nonlinear interaction of a broadband spectrum of high amplitude surface ripples. Measurements indicate that as the amplitude of excitation of the surface of water is increased the wave number of the capillary motion displays a transition to a broadband spectrum. The temporal response of a single pixel yields the power spectrum of the surface height as a function of frequency [ital f].'' The numerous harmonics which can be seen at low amplitude merge at high amplitude into a broadband spectrum which goes as 1/[ital f][sup 3]. This technique should permit the measurement of turbulent parameters which go beyond the purported range of current theories. [Work supported by US DOE Division of Engineering and Geophysics and NASA Microgravity.

  3. The contribution of the diffuse light component to the topographic effect on remotely sensed data

    NASA Technical Reports Server (NTRS)

    Justice, C.; Holben, B.

    1980-01-01

    The topographic effect is measured by the difference between the global radiance from inclined surfaces as a function of their orientation relative to the sensor position and light source. The short wave radiant energy incident on a surface is composed of direct sunlight, scattered skylight, and light reflected from surrounding terrain. The latter two components are commonly known as the diffuse component. The contribution of the diffuse light component to the topographic effect was examined and the significance of this diffuse component with respect to two direct radiance models was assessed. Diffuse and global spectral radiances were measured for a series of slopes and aspects of a uniform and surface in the red and photographic infrared parts of the spectrum, using a nadir pointing two channel handheld radiometer. The diffuse light was found to produce a topographic effect which varied from the topographic effect for direct light. The topographic effect caused by diffuse light was found to increase slightly with solar elevation and wavelength for the channels examined. The correlations between data derived from two simple direct radiance simulation models and the field data were not significantly affected when the diffuse component was removed from the radiances. Radiances from a 60 percent reflective surface, assuming no atmospheric path radiance, the diffuse light topographic effect contributed a maximum range of 3 pixel values in simulated LANDSAT data from all aspects with slopes up to 30 degrees.

  4. THE SPECTRUM OF THE DIFFUSE GALACTIC LIGHT: THE MILKY WAY IN SCATTERED LIGHT

    SciTech Connect

    Brandt, Timothy D.; Draine, B. T.

    2012-01-10

    We measure the optical spectrum of the diffuse Galactic light (DGL)-the local Milky Way in reflection-using 92,000 blank sky spectra from the Sloan Digital Sky Survey (SDSS). We correlate the SDSS optical intensity in regions of blank sky against 100 {mu}m intensity independently measured by the Cosmic Background Explorer and Infrared Astronomy satellites, which provides a measure of the dust column density times the intensity of illuminating starlight. The spectrum of scattered light is very blue and shows a clear 4000 A break and broad Mg b absorption. This is consistent with scattered starlight, and the continuum of the DGL is well reproduced by a simple radiative transfer model of the Galaxy. We also detect line emission in H{alpha}, H{beta}, [N II], and [S II], consistent with scattered light from the local interstellar medium. The strength of [N II] and [S II], combined with upper limits on [O III] and He I, indicates a relatively soft ionizing spectrum. We find that our measurements of the DGL can constrain dust models, favoring a grain size distribution with relatively few large grains. We also estimate the fraction of high-latitude H{alpha} which is scattered to be 19% {+-} 4%.

  5. Light diffusing effects of nano and micro-structures on OLED with microcavity.

    PubMed

    Cho, Doo-Hee; Shin, Jin-Wook; Joo, Chul Woong; Lee, Jonghee; Park, Seung Koo; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2014-10-20

    We examined the light diffusing effects of nano and micro-structures on microcavity designed OLEDs. The results of FDTD simulations and experiments showed that the pillar shaped nano-structure was more effective than the concave micro-structure for light diffusing of microcavity OLEDs. The sharp luminance distribution of the microcavity OLED was changed to near Lambertian luminance distribution by the nano-structure, and light diffusing effects increased with the height of the nano-structure. Furthermore, the nano-structure has advantages including light extraction of the substrate mode, reproducibility of manufacturing process, and minimizing pixel blur problems in an OLED display panel. The nano-structure is a promising candidate for a light diffuser, resolving the viewing angle problems in microcavity OLEDs. PMID:25607307

  6. Modelling the effect of diffuse light on canopy photosynthesis in controlled environments

    NASA Technical Reports Server (NTRS)

    Cavazzoni, James; Volk, Tyler; Tubiello, Francesco; Monje, Oscar; Janes, H. W. (Principal Investigator)

    2002-01-01

    A layered canopy model was used to analyze the effects of diffuse light on canopy gross photosynthesis in controlled environment plant growth chambers, where, in contrast to the field, highly diffuse light can occur at high irradiance. The model suggests that high diffuse light fractions (approximately 0.7) and irradiance (1400 micromoles m-2 s-1) may enhance crop life-cycle canopy gross photosynthesis for hydroponic wheat by about 20% compared to direct light at the same irradiance. Our simulations suggest that high accuracy is not needed in specifying diffuse light fractions in chambers between approximately 0.7 and 1, because simulated photosynthesis for closed canopies plateau in this range. We also examined the effect of leaf angle distribution on canopy photosynthesis under growth chamber conditions, as these distributions determine canopy extinction coefficients for direct and diffuse light. We show that the spherical leaf angle distribution is not suitable for modeling photosynthesis of planophile canopies (e.g., soybean and peanut) in growth chambers. Also, the absorption of the light reflected from the surface below the canopy should generally be included in model simulations, as the corresponding albedo values in the photosynthetically active range may be quite high in growth chambers (e.g., approximately 0.5). In addition to the modeling implications, our results suggest that diffuse light conditions should be considered when drawing conclusions from experiments in controlled environments.

  7. Modelling the effect of diffuse light on canopy photosynthesis in controlled environments.

    PubMed

    Cavazzoni, James; Volk, Tyler; Tubiello, Francesco; Monje, Oscar

    2002-01-01

    A layered canopy model was used to analyze the effects of diffuse light on canopy gross photosynthesis in controlled environment plant growth chambers, where, in contrast to the field, highly diffuse light can occur at high irradiance. The model suggests that high diffuse light fractions (approximately 0.7) and irradiance (1400 micromoles m-2 s-1) may enhance crop life-cycle canopy gross photosynthesis for hydroponic wheat by about 20% compared to direct light at the same irradiance. Our simulations suggest that high accuracy is not needed in specifying diffuse light fractions in chambers between approximately 0.7 and 1, because simulated photosynthesis for closed canopies plateau in this range. We also examined the effect of leaf angle distribution on canopy photosynthesis under growth chamber conditions, as these distributions determine canopy extinction coefficients for direct and diffuse light. We show that the spherical leaf angle distribution is not suitable for modeling photosynthesis of planophile canopies (e.g., soybean and peanut) in growth chambers. Also, the absorption of the light reflected from the surface below the canopy should generally be included in model simulations, as the corresponding albedo values in the photosynthetically active range may be quite high in growth chambers (e.g., approximately 0.5). In addition to the modeling implications, our results suggest that diffuse light conditions should be considered when drawing conclusions from experiments in controlled environments. PMID:12882223

  8. Light-element diffusion in Mg using first-principles calculations: Anisotropy and elastodiffusion

    NASA Astrophysics Data System (ADS)

    Agarwal, Ravi; Trinkle, Dallas R.

    2016-08-01

    The light-elemental solutes B, C, N, and O can penetrate the surface of Mg alloys and diffuse during heat treatment or high temperature application, forming undesirable compounds. We investigate the diffusion of these solutes by determining their stable interstitial sites and the interpenetrating network formed by these sites. We use density functional theory (DFT) to calculate the site energies, migration barriers, and attempt frequencies for these networks to inform our analytical model for bulk diffusion. Due to the nature of the networks, O diffuses isotropically, while B, C, and N diffuse anisotropically. We compute the elastodiffusion tensor which quantifies changes in diffusivity due to small strains that perturb the diffusion network geometry and the migration barriers. The DFT-computed elastic dipole tensor which quantifies the change in site energies and migration barriers due to small strains is used as an input to determine the elastodiffusion tensor. We employ the elastodiffusion tensor to determine the effect of thermal strains on interstitial diffusion and find that B, C, and N diffusivity increases on crystal expansion, while O diffusivity decreases. From the elastodiffusion and compliance tensors we calculate the activation volume of diffusion and find that it is positive and anisotropic for B, C, and N diffusion, whereas it is negative and isotropic for O diffusion.

  9. Stray light analysis of the Diffuse Infrared Background Experiment (DIRBE)

    NASA Technical Reports Server (NTRS)

    Breault, R. P.

    1984-01-01

    The straylight analysis of the diffuse infrared background experiment (DIRBE) on the cosmic background explorer (COBE) mission is discussed. From the statement of work (SOW), the purpose of DIRBE is to measure, or set upper limits on, the spectral and spatial character of the diffuse extra galactic infrared radiation. Diffuse infrared sources within our own galaxy are measured. The required reduction of the unwanted radiation imposes severe design and operating restrictions on the DIRBE instrument. To accomplish its missions, it will operate at a multitude of wavelengths ranging from 1.25 um out to 200 to 300 microns. The operating bands and the required point source normalized irradiance transmittance (PSNIT) are shown. The important straylight concepts in the DIRBE design are reviewed. The model and assumptions used in APART analysis are explained. The limitations due to the scalar theory used in the analysis are outlined.

  10. Fabrication and Characterization of Cylindrical Light Diffusers Comprised of Shape Memory Polymer

    SciTech Connect

    Small IV, W; Buckley, P R; Wilson, T S; Loge, J M; Maitland, K D; Maitland, D J

    2007-01-29

    We have developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. Devices were fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity were characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers were generally strongly forward-directed and consistently withstood over 8 W of incident infrared laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications.

  11. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements

    EPA Science Inventory

    Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...

  12. Photosensitizer and light diffusion through dentin in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Nogueira, Ana C.; Graciano, Ariane X.; Nagata, Juliana Y.; Fujimaki, Mitsue; Terada, Raquel S. S.; Bento, Antonio C.; Astrath, Nelson G. C.; Baesso, Mauro L.

    2013-05-01

    Photodynamic therapy has been considered a potential antimicrobial modality against oral infections, including dental caries. A model to estimate the penetration of both photosensitizers and light through human dentin, a factor of interest in photodynamic therapy, is proposed. The photoacoustic spectroscopy technique was used to evaluate in vitro dentin permeability of three different photosensitizers. Using the dentin optical absorption and scattering coefficients, it was possible to propose a semi-quantitative model predicting both photosensitizer and light doses within dentin. The graphic illustrations obtained provided guidelines that may be useful in photodynamic therapy protocols used as antimicrobial tools in caries lesions.

  13. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber

    PubMed Central

    Cenis, Jose Luis; Aznar-Cervantes, Salvador D.; Lozano-Pérez, Antonio Abel; Rojo, Marta; Muñoz, Juan; Meseguer-Olmo, Luis; Arenas, Aurelio

    2016-01-01

    This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs) of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF) mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm) as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells. PMID:27438824

  14. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber.

    PubMed

    Cenis, Jose Luis; Aznar-Cervantes, Salvador D; Lozano-Pérez, Antonio Abel; Rojo, Marta; Muñoz, Juan; Meseguer-Olmo, Luis; Arenas, Aurelio

    2016-01-01

    This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs) of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF) mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm) as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells. PMID:27438824

  15. Searching for diffuse light in the M96 galaxy group

    SciTech Connect

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.

    2014-08-10

    We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of μ{sub B} = 30.1 and μ{sub V} = 29.5, we find no diffuse, large-scale optical counterpart to the 'Leo Ring', an extended H I ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface brightness (μ{sub B} ≳ 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition, we present detailed surface photometry of each of the group's most massive members—M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351)—out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the H I ring, in agreement with H I data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo H I Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent.

  16. Anomalous behavior of the coherent light diffusion by a tilted translucent rough surface: part I

    NASA Astrophysics Data System (ADS)

    Rebollo, M. A.; Perez Quintian, F.; Hogert, Elsa N.; Landau, Monica R.; Gaggioli, Nestor G.

    1996-02-01

    When a translucent rough surface is illuminated, light is diffused in different directions. The envelope the intensity distribution is called diffusion curve. As the diffuser is rotated with respect to the incident beam, the diffuser curve changes its appearance: the maximum suffers a displacement and changes its shape. Some authors have studied this phenomenon, but none of them explained it properly. In this work we make an additional contribution to address the problem, showing experimentally that the maximum displacement depends on the incident angle and the diffuser ratio T/(sigma) . We compare our experimental results with those that can be calculated with the reformulated Beckmann's theory. We could observe important agreements and differences. For example, Beckmann's theory predicts that the diffusion results are asymmetric, while our measured results are indefectibly symmetric.

  17. Volume imaging with diffuse light: method, device, and clinical application

    NASA Astrophysics Data System (ADS)

    Hampel, Uwe; Schleicher, Eckhard; Freyer, Richard

    2000-11-01

    Diffuse optical imaging and tomography is of some interest in the diagnosis of testicular pathologies. For a clinical evaluation of 3D optical tomography a special laser scanning device as well as dedicated tomography algorithms have been developed. With the device we are able to obtain continuous- wave tomographic scans from an object under investigation using different laser wavelengths. Tomographic image reconstruction is based on the solution of the linearized inverse problem of optical absorption imaging for a three- dimensional volume. Priority is given to a spatial resolution adapted volume discretization and an efficient matrix solution algorithm based on singular value decomposition.

  18. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    PubMed Central

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-01-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems. PMID:26687289

  19. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    NASA Astrophysics Data System (ADS)

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He-Hau, Jr.; Ooi, Boon; Denbaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-12-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10-3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.

  20. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication.

    PubMed

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon; DenBaars, Steven P; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-01-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120(o) with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10(-3) over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems. PMID:26687289

  1. Influence of cloud optical thickness on surface diffuse light and carbon uptake in forests and croplands

    NASA Astrophysics Data System (ADS)

    Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.

    2014-12-01

    Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.

  2. Nanocellulose-based Translucent Diffuser for Optoelectronic Device Applications with Dramatic Improvement of Light Coupling.

    PubMed

    Wu, Wei; Tassi, Nancy G; Zhu, Hongli; Fang, Zhiqiang; Hu, Liangbing

    2015-12-01

    Nanocellulose is a biogenerated and biorenewable organic material. Using a process based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/NaClO/NaBr system, a highly translucent and light-diffusive film consisting of many layers of nanocellulose fibers and wood pulp microfibers was made. The film demonstrates a combination of large optical transmittance of ∼90% and tunable diffuse transmission of up to ∼78% across the visible and near-infrared spectra. The detailed characterizations of the film indicate the combination of high optical transmittance and haze is due to the film's large packing density and microstructured surface. The superior optical properties make the film a translucent light diffuser and applicable for improving the efficiencies of optoelectronic devices such as thin-film silicon solar cells and organic light-emitting devices. PMID:26572592

  3. Measuring tissue blood flow using ultrasound modulated diffused light

    NASA Astrophysics Data System (ADS)

    Ron, A.; Racheli, N.; Breskin, I.; Metzger, Y.; Silman, Z.; Kamar, M.; Nini, A.; Shechter, R.; Balberg, M.

    2012-02-01

    We demonstrate the ability of a novel device employing ultrasound modulation of near infrared light (referred as "Ultrasound tagged light" or UTL) to perform non-invasive monitoring of blood flow in the microvascular level in tissue. Monitoring microcirculatory blood flow is critical in clinical situations affecting flow to different organs, such as the brain or the limbs. . However, currently there are no non-invasive devices that measure microcirculatory blood flow in deep tissue continuously. Our prototype device (Ornim Medical, Israel) was used to monitor tissue blood flow on anesthetized swine during controlled manipulations of increased and decreased blood flow. Measurements were done on the calf muscle and forehead of the animal and compared with Laser Doppler (LD). ROC analysis of the sensitivity and specificity for detecting an increase in blood flow on the calf muscle, demonstrated AUC = 0.951 for 23 systemic manipulations of cardiac output by Epinephrine injection, which is comparable to AUC = 0.943 using laser Doppler. Some examples of cerebral blood flow monitoring are presented, along with their individual ROC curves. UTL flowmetry is shown to be effective in detecting changes in cerebral and muscle blood flow in swine, and has merit in clinical applications.

  4. First derivative of NIR light diffuse reflectance spectra as an approach to analyze muscle tissue chromophores and light pathlength

    NASA Astrophysics Data System (ADS)

    Gussakovsky, Eugene

    2009-02-01

    Diffuse reflectance was applied to the biomedical studies (muscles, cardiac tissues etc.) in a form of either a direct pseudo-optical spectrum or its second derivative. The first derivative adopts advantages of both direct spectrum (high signal-to-noise ratio) and its second derivative (simplifying the consideration of light scattering contribution, S). In contrast to spectrophotometry of solutions, diffuse reflectance application to the analysis of turbid medium chromophores leads to non-trivial problems of contribution of light scattering, the choice of reference, and light pathlength. Under certain conditions, the first approximation of the Taylor series of S results in the known linear dependence of S on wavelength in the 650-1050 nm wavelength range. Then the light scattering contribution to the first derivative becomes a wavelength-independent offset. In contrast to the second derivative, the information on light scattering inside the tissue is not lost. Effect of reference on the measured spectra becomes negligible. Application of the first derivative allowed (i) determination of NIR light pathlength in muscle tissue, and (ii) quantification of hemoglobin + myoglobin absolute concentration (in mM) in cardiac tissue during open-heart surgery. The first derivative approach may in general be applied to any chromophores in turbid (biological) media.

  5. Improving the light quantification of near infrared (NIR) diffused light optical tomography with ultrasound localization

    NASA Astrophysics Data System (ADS)

    Ardeshirpour, Yasaman

    According to the statistics published by the American Cancer Society, currently breast cancer is the second most common cancer after skin cancer and the second cause of cancer death after lung cancer in the female population. Diffuse optical tomography (DOT) using near-infrared (NIR) light, guided by ultrasound localization, has shown great promise in distinguishing benign from malignant breast tumors and in assessing the response of breast cancer to chemotherapy. Our ultrasound-guided DOT system is based on reflection geometry, with patients scanned in supine position using a hand-held probe. For patients with chest-wall located at a depth shallower than 1 to 2cm, as in about 10% of our clinical cases, the semi-infinite imaging medium is not a valid assumption and the chest-wall effect needs to be considered in the imaging reconstruction procedure. In this dissertation, co-registered ultrasound images were used to model the breast-tissue and chest-wall as a two-layer medium. The effect of the chest wall on breast lesion reconstruction was systematically investigated. The performance of the two-layer model-based reconstruction, using the Finite Element Method, was evaluated by simulation, phantom experiments and clinical studies. The results show that the two-layer model can improve the accuracy of estimated background optical properties, the reconstructed absorption map and the total hemoglobin concentration of the lesion. For patients' data affected by chest wall, the perturbation, which is the difference between measurements obtained at lesion and normal reference sites, may include the information of background mismatch between these two sites. Because the imaging reconstruction is based on the perturbation approach, the effect of this mismatch between the optical properties at the two sites on reconstructed optical absorption was studied and a guideline for imaging procedure was developed to reduce these effects during data capturing. To reduce the artifacts

  6. Sensing and enumerating rare circulating cells with diffuse light

    NASA Astrophysics Data System (ADS)

    Zettergren, Eric; Vickers, Dwayne; Niedre, Mark

    2011-02-01

    Detection and quantification of circulating cells in live animals is a challenging and important problem in many areas of biomedical research. Current methods involve extraction of blood samples and counting of cells ex-vivo. Since only small blood volumes are analyzed at specific time points, monitoring of changes in cell populations over time is difficult and rare cells often escape detection. The goal of this research is to develop a method for enumerating very rare circulating cells in the bloodstream non-invasively. This would have many applications in biomedical research, including monitoring of cancer metastasis and tracking of hematopoietic stem cells. In this work we describe the optical configuration of our instrument which allows fluorescence detection of single cells in diffusive media at the mesoscopic scale. Our instrument design consists of two continuous wave laser diode sources and an 8-channel fiber coupled multi-anode photon counting PMT. Fluorescence detector fibers were arranged circularly around the target in a miniaturized ring configuration. Cell-simulating fluorescent microspheres and fluorescently-labeled cells were passed through a limb mimicking phantom with similar optical properties and background fluorescence as a limb of a mouse. Our data shows that we are able to successfully detect and count these with high quantitative accuracy. Future work includes characterization of our instrument using fluorescently labeled cells in-vivo. If successful, this technique would allow several orders of magnitude in vivo detection sensitivity improvement versus current approaches.

  7. Effect of diffusion of light on thin-film photovoltaic laminates

    NASA Astrophysics Data System (ADS)

    Mohanty, Lipi; Wittkopf, Stephen K.

    A large fraction of the daylight incident on building-integrated photovoltaic (BIPV) laminates is diffuse irradiance. In this study, fabrics of various weaves were used to simulate combinations of direct and diffuse irradiance on façade-mounted PV. The scattering of light achieved with the fabrics at varying angles of incidence was measured with a goniophotometer. The transmittance distribution was used to quantify the percentage of diffusion created by the fabrics. A photovoltaic (PV) laminate was shaded with the fabrics to simulate diffuse irradiance and the short circuit current of the module was measured. The experimental results indicate fabrics of different porosity can be used to simulate various combinations of direct and diffuse irradiance. However, these fabrics can affect the module output. Preliminary results show that the proximity of the fabric to the thin-film PV laminate during the test skews the measured electrical parameters.

  8. Reflection of diffuse light from dielectric one-dimensional rough surfaces.

    PubMed

    González-Alcalde, Alma K; Méndez, Eugenio R; Terán, Emiliano; Cuppo, Fabio L S; Olivares, J A; García-Valenzuela, Augusto

    2016-03-01

    We study the reflection of diffuse light from 1D randomly rough dielectric interfaces. Results for the reflectance under diffuse illumination are obtained by rigorous numerical simulations and then contrasted with those obtained for flat surfaces. We also explore the possibility of using perturbation theories and conclude that they are limited for this type of study. Numerical techniques based on Kirchhoff approximation and reduced Rayleigh equations yield better results. We find that, depending on the refractive index contrast and nature of the irregularities, the roughness can increase or decrease the diffuse reflectance of the surface. PMID:26974906

  9. METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT

    DOEpatents

    Dole, M.

    1959-09-22

    An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.

  10. Fiberoptic Microneedles: Novel Optical Diffusers for Interstitial Delivery of Therapeutic Light

    PubMed Central

    Kosoglu, Mehmet A.; Hood, Robert L.; Rossmeisl, John H.; Grant, David C.; Xu, Yong; Robertson, John L.; Rylander, M. Nichole; Rylander, Christopher G.

    2012-01-01

    Background and Objectives Photothermal therapies have limited efficacy and application due to the poor penetration depth of light inside tissue. In earlier work, we described the development of novel fiberoptic microneedles to provide a means to mechanically penetrate dermal tissue and deliver light directly into a localized target area. This paper presents an alternate fiberoptic microneedle design with the capability of delivering more diffuse, but therapeutically useful photothermal energy. Laser lipolysis is envisioned as a future clinical application for this design. Materials and Methods A novel fiberoptic microneedle was developed using hydrofluoric acid etching of optical fiber to permit diffuse optical delivery. Microneedles etched for 10, 30, and 50 minutes, and an optical fiber control were compared with three techniques. First, red light delivery from the microneedles was evaluated by imaging the reflectance of the light from a white paper. Second, spatial temperature distribution of the paper in response to near-IR light (1064 nm, 1 W CW) was recorded using infrared thermography. Third, ex vivo adipose tissue response during 1064 nm, (5 W CW) irradiation was recorded with bright field microscopy. Results The acid etching exposed a 3 mm length of the fiber core, allowing circumferential delivery of light along this length. Increasing etching time decreased microneedle diameter, resulting in increased uniformity of red and 1064 nm light delivery along the microneedle axis. For equivalent total energy delivery, thinner microneedles reduced carbonization in the adipose tissue experiments. Conclusions We developed novel microscale optical diffusers that provided a more homogeneous light distribution from their surfaces, and compared performance to a flat-cleaved fiber, a device currently utilized in clinical practice. These fiberoptic microneedles can potentially enhance clinical laser procedures by providing direct delivery of diffuse light to target

  11. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect

    Riuttanen, L. Nykänen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M.; Kivisaari, P.; Oksanen, J.; Tulkki, J.

    2014-02-24

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  12. Aquatic vision and the modulation transfer properties of unlighted and diffusely lighted natural waters.

    PubMed

    Jagger, W S; Muntz, W R

    1993-09-01

    The modulation transfer function (MTF) of well-mixed unlighted and diffusely lighted samples of clear natural waters for path lengths up to 4 m was measured. The measuring conditions simulated the situation for horizontal aquatic vision. In unlighted water, the MTF decreased relatively slowly with increasing path length and spatial frequency up to 150 c/deg. We interpret this as the result of low-angle forward scattering of light from the target. For diffusely lighted water, the MTF fell much more rapidly with path length, but was nearly independent of spatial frequency. Here, scattering of ambient light into the light path contributes an additional veiling glare or path radiance, which is independent of spatial frequency but degrades the MTF strongly with increasing path length. These scattering processes are independent of wavelength in the visible spectrum. The modulation transfer properties of these waters do not preclude high aquatic visual acuity. However, the useful range of high acuity vision in diffusely lighted water is much less than for unlighted water. This places special requirements upon the design of high-acuity aquatic eyes. PMID:8266631

  13. Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity

    PubMed Central

    Li, Tao; Kromdijk, Johannes; Heuvelink, Ep; van Noort, F. R.; Kaiser, Elias; Marcelis, Leo F. M.

    2016-01-01

    The stimulating effect of diffuse light on radiation use efficiency (RUE) of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD). Two Anthurium andreanum cultivars (‘Pink Champion’ and ‘Royal Champion’) were grown in two glasshouses covered by clear (control) and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (gs) varied strongly in response to transient PPFD in ‘Royal Champion,’ whereas it remained relatively constant in ‘Pink Champion.’ Instantaneous net leaf photosynthesis (Pn) in both cultivars approached steady state Pn in diffuse light treatment. In control treatment this only occurred in ‘Pink Champion.’ These cultivar differences were reflected by a higher RUE (8%) in ‘Royal Champion’ in diffuse light treatment compared with control, whereas no effect on RUE was observed in ‘Pink Champion.’ We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent. PMID:26870071

  14. Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity.

    PubMed

    Li, Tao; Kromdijk, Johannes; Heuvelink, Ep; van Noort, F R; Kaiser, Elias; Marcelis, Leo F M

    2016-01-01

    The stimulating effect of diffuse light on radiation use efficiency (RUE) of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD). Two Anthurium andreanum cultivars ('Pink Champion' and 'Royal Champion') were grown in two glasshouses covered by clear (control) and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (g s) varied strongly in response to transient PPFD in 'Royal Champion,' whereas it remained relatively constant in 'Pink Champion.' Instantaneous net leaf photosynthesis (P n) in both cultivars approached steady state P n in diffuse light treatment. In control treatment this only occurred in 'Pink Champion.' These cultivar differences were reflected by a higher RUE (8%) in 'Royal Champion' in diffuse light treatment compared with control, whereas no effect on RUE was observed in 'Pink Champion.' We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent. PMID:26870071

  15. Using diffuse near-infrared light to characterize tissue optical and physiologic properties for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Pham, Tuan Hoai

    2001-05-01

    Methods based on near-infrared (NIR) diffuse reflectance offer novel and functional approaches to medical diagnostics. NIR diffuse reflectance techniques are well suited for non-invasive, quantitative characterization of tissue optical properties, namely macroscopic absorption (μa) and reduced scattering (μs') coefficient. Tissue optical properties, in turn, provide unique and clinically relevant functional and structural information about tissues. Needless to say, understanding light- tissue interactions and light transport in multiply scattering (turbid) media is essential in order to fully capitalize on the useful features of NIR diffuse reflectance spectroscopy. This thesis addresses the practical and, to a limited extent, the theoretical issues of NIR diffuse light spectroscopy. The goals of the thesis are two folds: (1)to investigate, from an instrumental and analytical perspectives, the accuracy and limitation of the various diffuse reflectance techniques in quantifying the optical properties of homogenous and layered turbid media, and (2)to evaluate the feasibility and applicability of using NIR diffuse reflectance spectroscopy to quantify in vivo tissue optical and physiologic properties during pathophysiologic processes. With respect to the first objective, we conducted validation studies to assess the accuracy of the frequency-domain and spatially-resolved techniques in quantifying μa and μs' of homogenous turbid media. Similarly, frequency-domain and time-domain approaches were used to characterize the optical properties and thickness of two-layered turbid media. For the second objective, frequency-domain system was used to quantify the changes in the in vivo optical and physiologic properties secondary to cancerous transformation, cardiovascular dysfunction, and photodynamic therapy of tumors. In summary, studies results clearly indicate that NIR diffuse reflectance techniques accurately quantify the in vivo tissue optical and physiologic

  16. Induced dipole-dipole interactions in light diffusion from point dipoles

    NASA Astrophysics Data System (ADS)

    Cherroret, Nicolas; Delande, Dominique; van Tiggelen, Bart A.

    2016-07-01

    We develop a perturbative treatment of induced dipole-dipole interactions in the diffusive transport of electromagnetic waves through disordered atomic clouds. The approach is exact at order 2 in the atomic density and accounts for the vector character of light. It is applied to the calculations of the electromagnetic energy stored in the atomic cloud, which modifies the energy transport velocity, and of the light scattering and transport mean free paths. Results are compared to those obtained from a purely scalar model for light.

  17. Intrauterine device for laser light diffusion and method of using the same

    DOEpatents

    Tadir, Yona; Berns, Michael W.; Svaasand, Lars O.; Tromberg, Bruce J.

    1995-01-01

    An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls.

  18. Intrauterine device for laser light diffusion and method of using the same

    DOEpatents

    Tadir, Y.; Berns, M.W.; Svaasand, L.O.; Tromberg, B.J.

    1995-12-26

    An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls. 5 figs.

  19. Study of CCT varying by volume scattering diffuser with moving and rotating white light LED

    NASA Astrophysics Data System (ADS)

    Ma, Shih-Hsin; Chen, Liang-Shiun; Huang, Wen-Chao

    2014-09-01

    In this study, the corrected color temperature (CCT) of white light, which originates from a white light LED (WLLED) and passes through a volume-scattering diffuser (VSD), is investigated. The VSD with thickness of 2mm is fabricated by mixing the 2um-sized PMMA scattering particles and the epoxy glue with different concentration values. Moreover, in order to understand the influences of the illuminated area and the scattering path of VSD on CCT values, the bulletheaded and lambertian-type WLLEDs are assembled for different positions and distinct orientations along the optical axis in a black cavity. A detailed comparison between results regarding the white light with and without passing through the VSD is offered. The results of this research will help to improve the colorful consistency of the LED lamps which use diffusers.

  20. Predicting diffuse light-enhancement of GPP from plant functional traits: A multi-site synthesis

    NASA Astrophysics Data System (ADS)

    O'Halloran, T. L.; Barr, J. G.; Cook, B.; Goeckede, M.; Law, B. E.; Kueppers, L. M.; Riley, W. J.

    2013-12-01

    Diffuse light enhances canopy-scale photosynthesis because isotropic diffuse light penetrates deeper into the canopy, involves more leaf area in photosynthesis, and prevents the top of the canopy from becoming light saturated. However, the observational and modeling communities still have little understanding of how the 'Diffuse light Enhancement Effect' (DEE) varies across plant functional types or is constrained by factors such as nitrogen availability and plant structure. So far, variability in the strength of DEE across plant functional types (PFTs) remains poorly constrained, but canopy models indicate leaf area index (LAI) is a primary controller. While the very few existing multi-site, measurement-based syntheses of the DEE have provided valuable information on the variability of the DEE across a few plant functional types, no study has correlated measured metrics of DEE magnitude with direct measurements of canopy physical traits across a wide range of plant functional types. Here we report a new metric that is suitable for quantifying the DEE in both flux measurements and land surface models. We also present, for the first time, an examination of the relationship between the DEE metric and plant functional traits. Results from our 70+ site AmeriFlux and FLUXNET synthesis indicate that LAI is the strongest controller of the DEE across sites and PFTs, with less significant influences from foliar nitrogen, canopy height, and mean annual precipitation. Our results will enable direct evaluation and improvement of remote sensing algorithms and light use efficiency models (e.g. MODIS GPP), which to this point regard diffuse light fraction as a source of noise. Additionally, improving resolution of the DEE in prognostic land surface models, such as the Community Land Model (CLM), will greatly improve our ability to forecast future feedbacks to terrestrial carbon sequestration from changes in cloudiness and aerosol amount.

  1. Coupling of light into the fundamental diffusion mode of a scattering medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ojambati, Oluwafemi S.; Yılmaz, Hasan; Lagendijk, Ad; Mosk, Allard P.; Vos, Willem L.

    2016-03-01

    Diffusion equation describes the energy density inside a scattering medium such as biological tissues and paint [1]. The solution of the diffusion equation is a sum over a complete set of eigensolutions that shows a characteristic linear decrease with depth in the medium. It is of particular interest if one could launch energy in the fundamental eigensolution, as this opens the opportunity to achieve a much greater internal energy density. For applications in optics, an enhanced energy density is vital for solid-state lighting, light harvesting in solar cells, low-threshold random lasers, and biomedical optics. Here we demonstrate the first ever selective coupling of optical energy into a diffusion eigensolution of a scattering medium of zinc oxide (ZnO) paint. To this end, we exploit wavefront shaping to selectively couple energy into the fundamental diffusion mode, employing fluorescence of nanoparticles randomly positioned inside the medium as a probe of the energy density. We observe an enhanced fluorescence in case of optimized incident wavefronts, and the enhancement increases with sample thickness, a typical mesoscopic control parameter. We interpret successfully our result by invoking the fundamental eigensolution of the diffusion equation, and we obtain excellent agreement with our observations, even in absence of adjustable parameters [2]. References [1] R. Pierrat, P. Ambichl, S. Gigan, A. Haber, R. Carminati, and R. Rotter, Proc. Natl. Acad. Sci. U.S.A. 111, 17765 (2014). [2] O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, arXiv:1505.08103.

  2. Predictions of solar radiation distribution: Global, direct and diffuse light on horizontal surface

    NASA Astrophysics Data System (ADS)

    Chabane, Foued; Moummi, Noureddine; Brima, Abdelhafid

    2016-04-01

    Solar radiation models for predicting the average daily and hourly global radiation, direct and diffuse radiation are discussed in this paper. The average daily global radiation in Ghardaia (32.38 N latitude, 3.82 E longitude) is predicted. Estimations of monthly average hourly global radiation are considered. We have developed this correlation using the sunlight and global radiation data from one year location around the weather station in Ghardaia. Two predictions of solar radiation distribution: direct and diffuse light on a horizontal area models, are reviewed to predict the hourly irradiation of Ghardaia utilizing the approach such as regression models. Comparisons between model predictions with measured data are made.

  3. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    DOEpatents

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  4. Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues.

    PubMed

    Chen, Xueli; Sun, Fangfang; Yang, Defu; Ren, Shenghan; Zhang, Qian; Liang, Jimin

    2015-08-21

    Aiming at the limitations of the simplified spherical harmonics approximation (SPN) and diffusion equation (DE) in describing the light propagation in tissues, a hybrid simplified spherical harmonics with diffusion equation (HSDE) based diffuse light transport model is proposed. In the HSDE model, the living body is first segmented into several major organs, and then the organs are divided into high scattering tissues and other tissues. DE and SPN are employed to describe the light propagation in these two kinds of tissues respectively, which are finally coupled using the established boundary coupling condition. The HSDE model makes full use of the advantages of SPN and DE, and abandons their disadvantages, so that it can provide a perfect balance between accuracy and computation time. Using the finite element method, the HSDE is solved for light flux density map on body surface. The accuracy and efficiency of the HSDE are validated with both regular geometries and digital mouse model based simulations. Corresponding results reveal that a comparable accuracy and much less computation time are achieved compared with the SPN model as well as a much better accuracy compared with the DE one. PMID:26237074

  5. Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension

    NASA Astrophysics Data System (ADS)

    Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.

    2016-06-01

    A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.

  6. Diffuse light scattering from a dense and cold microscopic 87Rb sample

    NASA Astrophysics Data System (ADS)

    Kemp, Kasie; Roof, S. J.; Havey, M. D.; Sokolov, I. M.; Kupriyanov, D. V.

    2015-05-01

    We report investigation of near-resonance light scattering from a cold atomic sample of 87Rb. Measurements are made on the F = 2 -->F' = 3 nearly closed hyperfine transition for atomic densities ranging from ~1010 to ~1013 atoms/cm3. The sample, initially prepared in a magneto-optical trap, is loaded into a far-off-resonance trap (FORT) in which the ensemble has a temperature ~100 μK and initial Gaussian radii of ~3 μm and ~280 μm in the transverse and longitudinal directions, respectively. The experimental geometry consists of projecting a near-resonance collimated laser beam onto the entire volume of the FORT and detecting the diffusely scattered light. The measured scattered light intensity as a function of detuning, atomic density, and sample size suggests that collective light scattering plays an important role in the experimental results. This research is supported by the National Science Foundation (Grant No. NSF-PHY-1068159).

  7. Diffusely scattered femtosecond white-light examination of breast tissue in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    af Klinteberg, Claes; Berg, Roger; Lindquist, Charlotta; Andersson-Engels, Stefan; Svanberg, Sune

    1995-12-01

    Multispectral studies of light propagation in female breast tissue have been performed. Short pulses of white light were generated by using self-phase modulation of a high-power laser pulse focused into a cuvette filled with water. The white light pulses illuminated the tissue and the scattered light was recorded with time- and wavelength dispersion by a streak camera. Measurements were performed on breast mastectomies in vitro and measurements on healthy breast tissue in vivo. The reduced scattering coefficient and the absorption coefficient of breast tissue were obtained in different wavelength regions by fitting solutions of the diffusion equation to the experimental data. Significant variations in the magnitude of the optical properties could be seen between the different individuals. No characteristic spectral discrepancy for tumor tissue was found.

  8. Spectroscopy of diffuse light in dust clouds. Scattered light and the solar neighbourhood radiation field

    NASA Astrophysics Data System (ADS)

    Lehtinen, K.; Mattila, K.

    2013-01-01

    Context. The optical surface brightness of dark nebulae is mainly due to scattering of integrated starlight by classical dust grains. It contains information on the impinging interstellar radiation field, cloud structure, and grain scattering properties. We have obtained spectra of the scattered light from 3500 to 9000 Å in two globules, the Thumbprint Nebula and DC 303.8-14.2. Aims. We use observations of the scattered light to study the impinging integrated starlight spectrum as well as the scattered Hα and other line emissions from all over the sky. We search also for the presence of other than scattered light in the two globules. Methods. We obtained long-slit spectra encompassing the whole globule plus adjacent sky in a one-slit setting, thus enabling efficient elimination of airglow and other foreground sky components. We calculated synthetic integrated starlight spectra for the solar neighbourhood using HIPPARCOS-based stellar distributions and the spectral library of Pickles. Results. Spectra are presented separately for the bright rims and dark cores of the globules. The continuum spectral energy distributions and absorption line spectra can be well modelled with the synthetic integrated starlight spectra. Emission lines of Hα +[N II], Hβ, and [S II] are detected and are interpreted in terms of scattered light plus an in situ warm ionized medium component behind the globules. We detected an excess of emission over the wavelength range 5200-8000 Å in DC 303.8-14.2 but the nature of this emission remains open. Based on observations collected at the European Southern Observatory, Chile, under programme ESO No. 073.C-0239(A). Appendix A is available in electronic form at http://www.aanda.org.

  9. Brownian motion in a speckle light field: tunable anomalous diffusion and selective optical manipulation.

    PubMed

    Volpe, Giorgio; Volpe, Giovanni; Gigan, Sylvain

    2014-01-01

    The motion of particles in random potentials occurs in several natural phenomena ranging from the mobility of organelles within a biological cell to the diffusion of stars within a galaxy. A Brownian particle moving in the random optical potential associated to a speckle pattern, i.e., a complex interference pattern generated by the scattering of coherent light by a random medium, provides an ideal model system to study such phenomena. Here, we derive a theory for the motion of a Brownian particle in a speckle field and, in particular, we identify its universal characteristic timescale. Based on this theoretical insight, we show how speckle light fields can be used to control the anomalous diffusion of a Brownian particle and to perform some basic optical manipulation tasks such as guiding and sorting. Our results might broaden the perspectives of optical manipulation for real-life applications. PMID:24496461

  10. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    PubMed

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  11. Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation

    NASA Astrophysics Data System (ADS)

    Volpe, Giorgio; Volpe, Giovanni; Gigan, Sylvain

    2014-02-01

    The motion of particles in random potentials occurs in several natural phenomena ranging from the mobility of organelles within a biological cell to the diffusion of stars within a galaxy. A Brownian particle moving in the random optical potential associated to a speckle pattern, i.e., a complex interference pattern generated by the scattering of coherent light by a random medium, provides an ideal model system to study such phenomena. Here, we derive a theory for the motion of a Brownian particle in a speckle field and, in particular, we identify its universal characteristic timescale. Based on this theoretical insight, we show how speckle light fields can be used to control the anomalous diffusion of a Brownian particle and to perform some basic optical manipulation tasks such as guiding and sorting. Our results might broaden the perspectives of optical manipulation for real-life applications.

  12. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    PubMed Central

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  13. Diffusion barriers for achieving controlled concentrations of luminescent dopants via diffusion for mask-less RGB color patterning of organic light emitting devices.

    PubMed

    Kajiyama, Yoshitaka; Kajiyama, Koichi; Aziz, Hany

    2015-11-30

    Using molecular diffusion as an approach to introduce organic luminescent dopants for making organic light emitting devices (OLEDs) of different colors on one substrate has the potential to overcome the yield and resolution limitations of the current OLED display technology. In this work, diffusion barriers made of MoO3 and a hole transport material mixture are introduced. The barriers effectively confine the diffusion of the dopants to only the desired depths. With the use of these barriers, OLEDs with highly controlled doping concentrations and performance are fabricated. The barriers thus allow utilizing simple diffusion methods for RGB patterning in OLEDs. PMID:26698710

  14. Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements.

    PubMed

    Thomson, Kevin A; Johnson, Matthew R; Snelling, David R; Smallwood, Gregory J

    2008-02-10

    A technique of diffuse-light two-dimensional line-of-sight attenuation (diffuse 2D-LOSA) is described and demonstrated that achieves very high levels of sensitivity in transmissivity measurements (optical thicknesses down to 0.001) while effectively mitigating interferences due to beam steering. An optical system is described in which an arc lamp coupled with an integrating sphere is used as a source of diffuse light that is imaged to the center of the particulate laden medium. The center of the medium is then imaged onto a CCD detector with 1:1 magnification. Comparative measurements with collimated 2D-LOSA in nonpremixed flames demonstrate the accuracy and improved optical noise rejection of the technique. Tests in weakly sooting, nonpremixed methane-air flames, and in high pressure methane-air flames, reveal the excellent sensitivity of diffuse 2D-LOSA, which is primarily limited by the shot noise of the lamp and CCD detector. PMID:18268781

  15. Highly transparent sapphire micro-grating structures with large diffuse light scattering

    NASA Astrophysics Data System (ADS)

    Ko, Yeong Hwan; Yu, Jae Su

    2011-08-01

    The highly transparent micro-grating structures (MGSs) of sapphire substrate with large diffuse light scattering were theoretically and experimentally studied. From the finite difference time domain simulation, it was found that the degree of diffuse light scattering is strongly dependent on the size of grating structures. For a highly transparent property, the sapphire MGSs were optimally designed by the theoretical calculations using the rigorous coupled wave analysis method. The order of taper, geometry (i.e., width and height), and pitch length of MGSs were optimized to maximize their average total transmittance over a wide wavelength range of 300-1800 nm. Additionally, the influence of the deposition of low-refractive index material such as SiO2 onto sapphire MGSs on the transmittance characteristics was investigated. To verify experimentally the feasibility, the sapphire MGSs were fabricated by the conventional lithography and dry etching processes. The SiO2 deposited sapphire MGS exhibited a further increase in the total transmittance due to its relatively more graded refractive index profile while maintaining a significantly enhanced diffuse light scattering. The experimental data were in a reasonable agreement with the theoretical results.

  16. Study of microparticles' anomalous diffusion in active bath using speckle light fields (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pince, Ercag; Sabareesh, Sabareesh K. P.; Volpe, Giorgio; Gigan, Sylvain; Volpe, Giovanni S.

    2015-08-01

    Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomenon. Examples can be given from organelles as molecular machines of cells performing physical tasks in a populated cytoplasm to human mobility in patchy environment at larger scales. Our recent results showed that it is possible to use the disordered landscape generated by speckle light fields to perform advanced manipulation tasks at the microscale. Here, we use speckle light fields to study the anomalous diffusion of micron size silica particles (5 μm) in the presence of active microswimmers. The microswimmers we used in the experiments are motile bacteria, Escherichia coli (E.coli). They constitute an active background constantly agitating passive silica particles within complex optical potentials. The speckle fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power (maximum power = 12 μW/μm2) is needed to obtain an effective random landscape pattern for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the anomalous diffusion of silica particles undergoing collisions with swimming bacteria. We observed an enhanced diffusion of particles interacting with the active bath of E.coli inside speckle light fields: this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interests.

  17. The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses.

    PubMed

    Raišys, Steponas; Kazlauskas, Karolis; Juršėnas, Saulius; Simon, Yoan C

    2016-06-22

    Light upconversion (UC) via triplet-triplet annihilation (TTA) by using noncoherent photoexcitation at subsolar irradiance power densities is extremely attractive, particularly for enhanced solar energy harvesting. Unfortunately, practical TTA-UC application is hampered by low UC efficiency of upconverting polymer glasses, which is commonly attributed to poor exciton diffusion of the triplet excitons across emitter molecules. The present study addresses this issue by systematically evaluating triplet exciton diffusion coefficients and diffusion lengths (LD) in a UC model system based on platinum-octaethylporphyrin-sensitized poly(methyl methacrylate)/diphenylanthracene (emitter) films as a function of emitter concentration (15-40 wt %). For this evaluation time-resolved photoluminescence bulk-quenching technique followed by Stern-Volmer-type quenching analysis of experimental data was employed. The key finding is that although increasing emitter concentration in the disordered PMMA/DPA/PtOEP films improves triplet exciton diffusion, and thus LD, this does not result in enhanced UC quantum yield. Conversely, improved LD accompanied by the accelerated decay of UC intensity on millisecond time scale degrades TTA-UC performance at high emitter loadings (>25 wt %) and suggests that diffusion-enhanced nonradiative decay of triplet excitons is the major limiting factor. PMID:27219281

  18. A facile fabrication of light diffusing film with LDP/polyacrylates composites coating for anti-glare LED application

    NASA Astrophysics Data System (ADS)

    Song, Shisen; Sun, Yaojie; Lin, Yandan; You, Bo

    2013-05-01

    In this paper, we present a facile coating technique to fabricate the light diffusing film with hemispherical surface convex micro-structure. The coating was prepared by different ratio of light-diffusing particles (LDP)/polyacrylates composites via in situ radical polymerization, with the H2SO4 and vinyl triethoxysilane (A-151) pretreatment made the LDP better dispersed and incorporated with polyacrylate polymer chains. When the mass ratio (LDP/polyacrylate) was 0.5, the film obtained the highest light-diffusing effect and more than 90% transmittance due to the formation of hemispherical surface convex micro-structure. The light diffusing films have excellent anti-glare property if applied to LED light system.

  19. A diffusion approximation model of light transport in multilayered skin tissue

    NASA Astrophysics Data System (ADS)

    Makropoulou, M.; Kaselouris, E.; Drakaki, E.; Serafetinides, A. A.; Sianoudis, J. A.

    2007-07-01

    In dermatology, biophotonic methods offer high sensitivity and non-invasive measurements of skin tissue optical properties, in various physiological and pathological conditions. There are numerous skin processes, which can be examined and characterized using diagnostic optical spectroscopy, as the monitoring of skin aging, diagnosis of benign and malignant cutaneous lesions, dosimetry in photodynamic therapy (PDT), etc. Several mathematical models have been used to calculate the tissue optical properties from experimental measurements and to predict the light propagation in soft tissues, like skin, based on transport theory or Monte Carlo modeling. This work analyses the phenomena which are observed experimentally during the irradiation of skin, such as the absorption, reflectance, scattering, fluorescence and transmission of laser light. The study was carried out on animal skin samples, extracted post-mortem. In this work we also tried to evaluate the utility of diffusion approximation modeling for measuring the light intensity distribution in the skin samples with cw visible laser beam (λ=632.8 nm). The diffusion theory model was tested for the simulation results of the spatial light distribution within a five-layer model of animal skin tissue. We have studied the dependence towards the depth and the radial distance of the photon density of the incident radiation.

  20. Mechanisms of ultrasonic modulation of multiply scattered incoherent light based on diffusion theory

    NASA Astrophysics Data System (ADS)

    Zhu, Li-Li; Li, Hui

    2015-01-01

    An analytic equation interpreting the intensity of ultrasound-modulated scattering light is derived, based on diffusion theory and previous explanations of the intensity modulation mechanism. Furthermore, an experiment of ultrasonic modulation of incoherent light in a scattering medium is developed. This analytical model agrees well with experimental results, which confirms the validity of the proposed intensity modulation mechanism. The model supplements the existing research on the ultrasonic modulation mechanism of scattering light. Project supported by the National Natural Science Foundation of China (Grant No. 61178089), the Key Program of Science and Technology of Fujian Province, China (Grant No. 2011Y0019), and the Educational Department of Fujian Province, China (Grant No. JA13074).

  1. Development of image reconstruction algorithms for fluorescence diffuse optical tomography using total light approach

    NASA Astrophysics Data System (ADS)

    Okawa, S.; Yamamoto, H.; Miwa, Y.; Yamada, Y.

    2011-07-01

    Fluorescence diffuse optical tomography (FDOT) based on the total light approach is developed. The continuous wave light is used for excitation in this system. The reconstruction algorithm is based on the total light approach that reconstructs the absorption coefficients increased by the fluorophore. Additionally we propose noise reduction using the algebraic reconstruction technique (ART) incorporating the truncated singular value decomposition (TSVD). Numerical and phantom experiments show that the developed system successfully reconstructs the fluorophore concentration in the biological media, and the ART with TSVD alleviates the influence of noises. In vivo experiment demonstrated that the developed FDOT system localized the fluorescent agent which was concentrated in the cancer transplanted into a kidney in a mouse.

  2. Telecentric suppression of diffuse light in imaging of highly anisotropic scattering media.

    PubMed

    Visbal Onufrak, Michelle A; Konger, Raymond L; Kim, Young L

    2016-01-01

    The telecentric lens, which was originally used in the machine vision industry, has often been utilized in biomedical imaging systems due to its commonly known properties, such as large transverse field of view, constant magnification, and long working distance. However, its potential advantages in optical imaging of biological tissue, which is highly diffusive, have not been fully explored. We revisit the idea that a telecentric lens system can bring an alternative yet simple method for reducing unwanted scattering or diffuse light in biological tissue, owing to its highly anisotropic scattering properties. Using biological tissue and tissue phantoms, we demonstrate advantages attributed to the use of telecentric lens in tissue imaging compared with imaging using conventional nontelecentric optics. Directional or angular gating (or filtering) using a telecentric lens is beneficial for removing a portion of diffuse light in highly anisotropic scattering media with high values of the scattering anisotropy factor. We envision that a telecentric lens could be potentially incorporated into an instrument of modest design and cost, increasing rapid practical adoption. PMID:26696179

  3. Enhanced modulation rate in platinum-diffused resonant-cavity light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chang, L. B.; Yeh, D. H.; Hsieh, L. Z.; Zeng, S. H.

    2005-11-01

    This study is focused on the modulation response of resonant-cavity light-emitting diodes (RCLEDs). Platinum (Pt) atoms are diffused into the 660 nm RCLED epitaxial layers to increase the concentration of recombination centers and to improve the modulation speed. The RCLED has an AlInGaP multi-quantum-well active layer which was embedded into AlGaAs-distributed Bragg reflectors to form a one-wavelength (1-λ) optical resonator. Afterwards, the deep-level Pt impurity was diffused into the RCLED and an improved average rise time, from 18.07 to 12.21 ns, was obtained. The corresponding modulation frequency can be increased from 19.54 to 30.21 MHz.

  4. GPU-Accelerated Finite Element Method for Modelling Light Transport in Diffuse Optical Tomography

    PubMed Central

    Schweiger, Martin

    2011-01-01

    We introduce a GPU-accelerated finite element forward solver for the computation of light transport in scattering media. The forward model is the computationally most expensive component of iterative methods for image reconstruction in diffuse optical tomography, and performance optimisation of the forward solver is therefore crucial for improving the efficiency of the solution of the inverse problem. The GPU forward solver uses a CUDA implementation that evaluates on the graphics hardware the sparse linear system arising in the finite element formulation of the diffusion equation. We present solutions for both time-domain and frequency-domain problems. A comparison with a CPU-based implementation shows significant performance gains of the graphics accelerated solution, with improvements of approximately a factor of 10 for double-precision computations, and factors beyond 20 for single-precision computations. The gains are also shown to be dependent on the mesh complexity, where the largest gains are achieved for high mesh resolutions. PMID:22013431

  5. Diffuse light and building history of the galaxy cluster Abell 2667

    NASA Astrophysics Data System (ADS)

    Covone, G.; Adami, C.; Durret, F.; Kneib, J.-P.; Lima Neto, G. B.; Slezak, E.

    2006-12-01

    Aims.We searched for diffuse intracluster light in the galaxy cluster Abell 2667 (z=0.233) from HST images in three broad band-filters. Methods: .We applied an iterative multi-scale wavelet analysis and reconstruction technique to these images, which allows to subtract stars and galaxies from the original images. Results: .We detect a zone of diffuse emission southwest of the cluster center (DS1) and a second faint object (ComDif) within DS1. Another diffuse source (DS2) may be detected at lower confidence level northeast of the center. These sources of diffuse light contribute to 10-15% of the total visible light in the cluster. Whether they are independent entities or part of the very elliptical external envelope of the central galaxy remains unclear. Deep VLT VIMOS integral field spectroscopy reveals a faint continuum at the positions of DS1 and ComDif but do not allow a redshift to be computed, so we conclude if these sources are part of the central galaxy or not. A hierarchical substructure detection method reveals the presence of several galaxy pairs and groups defining a similar direction to the one drawn by the DS1 - central galaxy - DS2 axis. The analysis of archive XMM-Newton and Chandra observations shows X-ray emission elongated in the same direction. The X-ray temperature map shows the presence of a cool core, a broad cool zone stretching from north to south, and hotter regions towards the northeast, southwest, and northwest. This might suggest shock fronts along these directions produced by infalling material, even if uncertainties remain quite large on the temperature determination far from the center. Conclusions: .These various data are consistent with a picture in which diffuse sources are concentrations of tidal debris and harassed matter expelled from infalling galaxies by tidal stripping and undergoing an accretion process onto the central cluster galaxy; as such, they are expected to be found along the main infall directions. Note, however

  6. Light scattering by a rough surface of human skin. 2. Diffuse reflectance

    SciTech Connect

    Barun, V V; Ivanov, A P

    2013-10-31

    Based on the previously calculated luminance factors, we have investigated the integral characteristics of light reflection from a rough surface of the skin with large-scale inhomogeneities under various conditions of the skin illumination. Shadowing of incident and scattered beams by relief elements is taken into account. Diffuse reflectances by the Gaussian and the quasi-periodic surfaces are compared and, in general, both these roughness models are shown to give similar results. We have studied the effect of the angular structure of radiation multiply scattered deep in the tissue and the refraction of rays as they propagate from the dermis to the surface of the stratum corneum on the reflection characteristics of the skin surface. The importance of these factors is demonstrated. The algorithms constructed can be included in the schemes of calculation of the light fields inside and outside the medium in solving various direct and inverse problems of optics of biological tissues. (biophotonics)

  7. Light scattering by a rough surface of human skin. 2. Diffuse reflectance

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2013-10-01

    Based on the previously calculated luminance factors, we have investigated the integral characteristics of light reflection from a rough surface of the skin with large-scale inhomogeneities under various conditions of the skin illumination. Shadowing of incident and scattered beams by relief elements is taken into account. Diffuse reflectances by the Gaussian and the quasi-periodic surfaces are compared and, in general, both these roughness models are shown to give similar results. We have studied the effect of the angular structure of radiation multiply scattered deep in the tissue and the refraction of rays as they propagate from the dermis to the surface of the stratum corneum on the reflection characteristics of the skin surface. The importance of these factors is demonstrated. The algorithms constructed can be included in the schemes of calculation of the light fields inside and outside the medium in solving various direct and inverse problems of optics of biological tissues.

  8. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound

    PubMed Central

    Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing

    2014-01-01

    Abstract. Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884

  9. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound.

    PubMed

    Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing

    2014-12-01

    Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884

  10. Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroyuki; Okawa, Shinpei; Yamada, Yukio; Hoshi, Yoko

    2014-11-01

    Numerical modeling of light propagation in random media has been an important issue for biomedical imaging, including diffuse optical tomography (DOT). For high resolution DOT, accurate and fast computation of light propagation in biological tissue is desirable. This paper proposes a space-time hybrid model for numerical modeling based on the radiative transfer and diffusion equations (RTE and DE, respectively) in random media under refractive-index mismatching. In the proposed model, the RTE and DE regions are separated into space and time by using a crossover length and the time from the ballistic regime to the diffusive regime, ρDA~10/μt‧ and tDA~20/vμt‧ where μt‧ and v represent a reduced transport coefficient and light velocity, respectively. The present model succeeds in describing light propagation accurately and reduces computational load by a quarter compared with full computation of the RTE.

  11. Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria.

    PubMed

    Kotlarchyk, M; Chen, S H; Asano, S

    1979-07-15

    The quasi-elastic light scattering has become an established technique for a rapid and quantitative characterization of an average motility pattern of motile bacteria in suspensions. Essentially all interpretations of the measured light scattering intensities and spectra so far are based on the Rayleigh-Gans-Debye (RGD) approximation. Since the range of sizes of bacteria of interest is generally larger than the wavelength of light used in the measurement, one is not certain of the justification for the use of the RGD approximation. In this paper we formulate a method by which both the scattering intensity and the quasi-elastic light scattering spectra can be calculated from a rigorous scattering theory. For a specific application we study the case of bacteria Escherichia coli (about 1 microm in size) by using numerical solutions of the scattering field amplitudes from a prolate spheroid, which is known to simulate optical properties of the bacteria well. We have computed (1) polarized scattered light intensity vs scattering angle for a randomly oriented bacteria population; (2) polarized scattered field correlation functions for both a freely diffusing bacterium and for a bacterium undergoing a straight line motion in random directions and with a Maxwellian speed distribution; and (3) the corresponding depolarized scattered intensity and field correlation functions. In each case sensitivity of the result to variations of the index of refraction and size of the bacterium is investigated. The conclusion is that within a reasonable range of parameters applicable to E. coli, the accuracy of the RGD is good to within 10% at all angles for the properties (1) and (2), and the depolarized contributions in (3) are generally very small. PMID:20212685

  12. DIFFUSE GALACTIC LIGHT IN THE FIELD OF THE TRANSLUCENT HIGH GALACTIC LATITUDE CLOUD MBM32

    SciTech Connect

    Ienaka, N.; Kawara, K.; Matsuoka, Y.; Oyabu, S.; Sameshima, H.; Tsujimoto, T.; Peterson, B. A.

    2013-04-10

    We have conducted B-, g-, V-, and R-band imaging in a 45' Multiplication-Sign 40' field containing part of the high Galactic latitude translucent cloud MBM32, and correlated the intensity of diffuse optical light S{sub {nu}}({lambda}) with that of 100 {mu}m emission S{sub {nu}}(100 {mu}m). A {chi}{sup 2} minimum analysis is applied to fit a linear function to the measured correlation and derive the slope parameter b({lambda}) = {Delta}S{sub {nu}}({lambda})/{Delta}S{sub {nu}}(100 {mu}m) of the best-fit linear function. Compiling a sample by combining our b({lambda}) and published ones, we show that the b({lambda}) strength varies from cloud to cloud by a factor of four. Finding that b({lambda}) decreases as S{sub {nu}}(100 {mu}m) increases in the sample, we suggest that a nonlinear correlation including a quadratic term of S{sub {nu}}(100 {mu}m){sup 2} should be fitted to the measured correlation. The variation of optical depth, which is A{sub V} = 0.16-2.0 in the sample, can change b({lambda}) by a factor of 2-3. There would be some contribution to the large b({lambda}) variation from the forward-scattering characteristic of dust grains which is coupled to the non-isotropic interstellar radiation field (ISRF). Models of the scattering of diffuse Galactic light (DGL) underestimate the b({lambda}) values by a factor of two. This could be reconciled by deficiency in UV photons in the ISRF or by a moderate increase in dust albedo. Our b({lambda}) spectrum favors a contribution from extended red emission (ERE) to the diffuse optical light; b({lambda}) rises from B to V faster than the models, seems to peak around 6000 A and decreases toward long wavelengths. Such a characteristic is expected from the models in which the DGL is combined with ERE.

  13. Light-Modulated Intermittent Wave Groups in a Diffusively Fed Reactive Gel.

    PubMed

    Luo, Hainan; Wang, Chenlong; Ren, Lin; Gao, Qingyu; Pan, Changwei; Epstein, Irving R

    2016-04-11

    Inspired by the biological growth that takes place in time-varying external fields such as light or temperature, we design an open reaction-diffusion system in order to investigate growth dynamics. The system is composed of the Belousov-Zhabotinsky (BZ) oscillatory reaction coupled with a copolymer gel consisting of NIPAAm and a photosensitive ruthenium catalyst. When subject to a unidirectional flow of the BZ reactants, the system displays groups of chemical waves whose structure depends upon the period and amplitude of illumination. Simulations of a modified six-variable Oregonator model exhibit all the complex wave groups found in our experiments. Studying this growth structure may aid in understanding the influence of periodic environmental variation on complex growth processes in living systems. PMID:27079819

  14. Numerical optix: A time-domain simulator of fluorescent light diffusion in turbid medium

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Delorme, Jean-François; Guilman, Olga; Leblond, Frédéric; Khayat, Mario

    2007-02-01

    The interest in fluorescence imaging has increased steadily in the last decade. Using fluorescence techniques, it is feasible to visualize and quantify the function of genes and the expression of enzymes and proteins deep inside tissues. When applied to small animal research, optical imaging based on fluorescent marker probes can provide valuable information on the specificity and efficacy of drugs at reduced cost and with greater efficiency. Meanwhile, fluorescence techniques represent an important class of optical methods being applied to in vitro and in vivo biomedical diagnostics, towards noninvasive clinical applications, such as detecting and monitoring specific pathological and physiological processes. ART has developed a time domain in vivo small animal fluorescence imaging system, eXplore Optix. Using the measured time-resolved fluorescence signal, fluorophore location and concentration can be quickly estimated. Furthermore, the 3D distribution of fluorophore can be obtained by fluorescent diffusion tomography. To accurately analyze and interpret the measured fluorescent signals from tissue, complex theoretical models and algorithms are employed. We present here a numerical simulator of eXplore Optix. It generates virtual data under well-controlled conditions that enable us to test, verify, and improve our models and algorithms piecewise separately. The theoretical frame of the simulator is an analytical solution of the fluorescence diffusion equation. Compared to existing models, the coupling of fluorophores with finite volume size is taken into consideration. Also, the influences of fluorescent inclusions to excitation and emission light are both accounted for. The output results are compared to Monte-Carlo simulations.

  15. Instrument for fluorescence sensing of circulating cells with diffuse light in mice in vivo

    NASA Astrophysics Data System (ADS)

    Zettergren, Eric; Vickers, Dwayne; Runnels, Judith; Murthy, Shashi K.; Lin, Charles P.; Niedre, Mark

    2012-03-01

    Accurate quantification of circulating cell populations in mice is important in many areas of preclinical biomedical research. Normally, this is done either by extraction and analysis of small blood samples or, more recently, by using microscopy-based in vivo fluorescence flow cytometry. We describe a new technological approach to this problem using detection of diffuse fluorescent light from relatively large blood vessels in vivo. The diffuse fluorescence flow cytometer (DFFC) uses a laser to illuminate a mouse limb and an array of optical fibers coupled to a high-sensitivity photomultiplier tube array operating in photon counting mode to detect weak fluorescence signals from cells. We first demonstrate that the DFFC instrument is capable of detecting fluorescent microspheres and Vybrant-DiD-labeled cells in a custom-made optical flow phantom with similar size, optical properties, linear flow rates, and autofluorescence as a mouse limb. We also present preliminary data demonstrating that the DFFC is capable of detecting circulating cells in nude mice in vivo. In principle, this device would allow interrogation of the whole blood volume of a mouse in minutes, with sensitivity improvement by several orders of magnitude compared to current approaches.

  16. Sunlight Transmission through Desert Dust and Marine Aerosols: Diffuse Light Corrections to Sun Photometry and Pyrheliometry

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Dubovik, O.; Ramirez, S. A.; Wang, J.; Redemann, J.; Schmid, B.; Box, M.; Holben, B. N.

    2003-01-01

    Desert dust and marine aerosols are receiving increased scientific attention because of their prevalence on intercontinental scales and their potentially large effects on Earth radiation and climate, as well as on other aerosols, clouds, and precipitation. The relatively large size of desert dust and marine aerosols produces scattering phase functions that are strongly forward- peaked. Hence, Sun photometry and pyrheliometry of these aerosols are more subject to diffuse-light errors than is the case for smaller aerosols. Here we quantify these diffuse-light effects for common Sun photometer and pyrheliometer fields of view (FOV), using a data base on dust and marine aerosols derived from (1) AERONET measurements of sky radiance and solar beam transmission and (2) in situ measurements of aerosol layer size distribution and chemical composition. Accounting for particle non-sphericity is important when deriving dust size distribution from both AERONET and in situ aerodynamic measurements. We express our results in terms of correction factors that can be applied to Sun photometer and pyrheliometer measurements of aerosol optical depth (AOD). We find that the corrections are negligible (less than approximately 1% of AOD) for Sun photometers with narrow FOV (half-angle eta less than degree), but that they can be as large as 10% of AOD at 354 nm wavelength for Sun photometers with eta = 1.85 degrees. For pyrheliometers (which can have eta up to approximately 2.8 degrees), corrections can be as large as 16% at 354 nm. We find that AOD correction factors are well correlated with AOD wavelength dependence (hence Angstrom exponent). We provide best-fit equations for determining correction factors from Angstrom exponents of uncorrected AOD spectra, and we demonstrate their application to vertical profiles of multiwavelength AOD.

  17. Determination of polymer size distribution by combination of quasielastic light scattering and band transport: evaluation of the effect of diffusion.

    PubMed

    Wei, G J; Bloomfield, V A

    1979-01-01

    In this paper we report a computer simulation study of the effect of diffusion on the size distribution obtained by combining light scattering with isokinetic band sedimentation or electrophoresis. We find that, under typical experimental conditions, the method yields reasonably accurate size distributions for samples of particles greater than 10 nm radius. However, caution should be exercised in interpreting the results for smaller particles, for which the distortion due to diffusion can be considerable. PMID:16997189

  18. Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  19. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region.

    PubMed

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method. PMID:12790437

  20. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    NASA Astrophysics Data System (ADS)

    Judkewitz, Benjamin; Wang, Ying Min; Horstmeyer, Roarke; Mathy, Alexandre; Yang, Changhuei

    2013-04-01

    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm.

  1. Extraction of quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium by polarization modulation

    NASA Astrophysics Data System (ADS)

    Horinaka, Hiromichi; Hashimoto, Koji; Wada, Kenji; Cho, Yoshio; Osawa, Masahiko

    1995-07-01

    The utilization of light polarization is proposed to extract quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium under continuously operating conditions. Removal of a floor level normally appearing on the dynamic range over which the extraction capability is maintained is demonstrated. By use of pulse-based observations this cw scheme of extraction of quasi-straightforward-propagating photons is directly shown to be equivalent to the use of a temporal gate in the pulse-based operation.

  2. Light-induced autofluorescence and diffuse reflectance spectroscopy in clinical diagnosis of skin cancer

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Pavlova, E.; Kundurjiev, T.; Troyanova, P.; Genova, Ts.; Avramov, L.

    2014-05-01

    We investigated more than 500 clinical cases to receive the spectral properties of basal cell (136 patients) and squamous cell carcinoma (28), malignant melanoma (41) and different cutaneous dysplastic and benign cutaneous lesions. Excitation at 365, 385 and 405 nm using LEDs sources is applied to obtain autofluorescence spectra, and broad-band illumination in the region of 400-900 nm is used to detect diffuse reflectance spectra of all pathologies investigated. USB4000 microspectrometer (Ocean Optics Inc, USA) is applied as a detector and fiber-optic probe is used for delivery of the light. In the case of in vivo tumor measurements spectral shape and intensity changes are observed that are specific for a given type of lesion. Autofluorescence origins of the signals coming from skin tissues are mainly due to proteins, such as collagen, elastin, keratin, their cross-links, co-enzimes - NADH and flavins and endogenous porphyrins. Spectral features significant into diffuse spectroscopy diagnosis are related to the effects of re-absorption of hemoglobin and its forms, as well as melanin and its concentration in different pathologies. We developed significant database and revealed specific features for a large class of cutaneous neoplasia, using about 30 different spectral peculiarities to differentiate cutaneous tumors. Sensitivity and specificity obtained exceed 90%, which make optical biopsy very useful tool for clinical practice. These results are obtained in the frames of clinical investigations for development of significant "spectral features" database for the most common cutaneous malignant, dysplastic and benign lesions. In the forthcoming plans, our group tries to optimize the existing experimental system for optical biopsy of skin, and to introduce it and the diagnostic algorithms developed into clinical practice, based on the high diagnostic accuracy achieved.

  3. Sub-diffuse structured light imaging provides macroscopic maps of microscopic tissue structure (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kanick, Stephen C.

    2016-03-01

    The onset and progression of cancer introduces changes to the intra-cellular ultrastructural components and to the morphology of the extracellular matrix. While previous work has shown that localized scatter imaging is sensitive to pathology-induced differences in these aspects of tissue microstructure, wide adaptation this knowledge for surgical guidance is limited by two factors. First, the time required to image with confocal-level localization of the remission signal can be substantial. Second, localized (i.e. sub-diffuse) scatter remission intensity is influenced interchangeably by parameters that define scattering frequency and anisotropy. This similarity relationship must be carefully considered in order to obtain unique estimates of biomarkers that define either the scatter density or features that describe the distribution (e.g. shape, size, and orientation) of scatterers. This study presents a novel approach that uses structured light imaging to address both of these limitations. Monte Carlo data were used to model the reflectance intensity over a wide range of spatial frequencies, reduced scattering coefficients, absorption coefficients, and a metric of the scattering phase function that directly maps to the fractal dimension of scatter sizes. The approach is validated in tissue-simulating phantoms constructed with user-tuned scattering phase functions. The validation analysis shows that the phase function can be described in the presence of different scatter densities or background absorptions. Preliminary data from clinical tissue specimens show quantitative images of both the scatter density and the tissue fractal dimension for various tissue types and pathologies. These data represent a novel wide-field quantitative approach to mapping microscopic structural biomarkers that cannot be obtained with standard diffuse imaging. Implications for the use of this approach to assess surgical margins will be discussed.

  4. Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields.

    PubMed

    Shibukawa, Atsushi; Okamoto, Atsushi; Takabayashi, Masanori; Tomita, Akihisa

    2014-02-24

    We propose a spatial cross modulation method using a random diffuser and a phase-only spatial light modulator (SLM), by which arbitrary complex-amplitude fields can be generated with higher spatial resolution and diffraction efficiency than off-axis and double-phase computer-generated holograms. Our method encodes the original complex object as a phase-only diffusion image by scattering the complex object using a random diffuser. In addition, all incoming light to the SLM is consumed for a single diffraction order, making a diffraction efficiency of more than 90% possible. This method can be applied for holographic data storage, three-dimensional displays, and other such applications. PMID:24663718

  5. Diffuse optical tomography with structured-light patterns to quantify breast density

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Cho, Jaedu; Zheng, Jie; Li, Yifan; Chen, Jeon-hor; Su, Min-Ying; Gulsen, Gultekin

    2016-02-01

    Breast density is an independent risk factor for breast cancer, where women with denser breasts are more likely to develop cancer. By identifying women at higher risk, healthcare providers can suggest screening at a younger age to effectively diagnose and treat breast cancer in its earlier stages. Clinical risk assessment models currently do not incorporate breast density, despite its strong correlation with breast cancer. Current methods to measure breast density rely on mammography and MRI, both of which may be difficult to use as a routine risk assessment tool. We propose to use diffuse optical tomography with structured-light to measure the dense, fibroglandular (FGT) tissue volume, which has a different chromophore signature than the surrounding adipose tissue. To test the ability of this technique, we performed simulations by creating numerical breast phantoms from segmented breast MR images. We looked at two different cases, one with a centralized FGT distribution and one with a dispersed distribution. As expected, the water and lipid volumes segmented at half-maximum were overestimated for the dispersed case. However, it was noticed that the recovered water and lipid concentrations were lower and higher, respectively, than the centralized case. This information may provide insight into the morphological distribution of the FGT and can be a correction in estimating the breast density.

  6. Investigation of calcium aluminates by IR spectroscopy in diffusely scattered light

    SciTech Connect

    Medin, A.S.; Borovkov, V.Yu.; Nissenbaum, V.D.; Yakerson, V.I.; Kazanskii, V.B.

    1989-01-01

    The hydroxyl covering and the adsorption sites for CO and H/sub 2/O on aluminum-calcium catalysts and supports with developed surfaces have been studied by IR spectroscopy in diffusely scattered light. The presence of several types of surface OH groups, viz., terminal groups bonded to calcium ions with different types of coordination, bridging OH groups, and groups appearing in (CaOH)/sup +/ groupings, which perform the role of compensating cations in the zeolite-like structure of calcium aluminates, has been established. The shifts of the bands of the OH groups upon the adsorption of C/sub 6/H/sub 6/ and cyclo-C/sub 6/H/sub 12/ point out their weakly acidic or basic character. When calcium aluminates are dehydroxylated, aprotic sites appear on their surfaces, and the rehydration of such surfaces is accompanied by the formation of OH groups and the weakening of the Al-O-M bonds (M = Al, Ca) with the appearance of additional sites for the strong adsorption of water.

  7. Light polarization measurements - A method to determine the specular and diffuse light-scattering properties of both leaves and plant canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1984-01-01

    The contributions of diffuse and specular reflection to the total canopy reflection of sunlight are determined experimentally for wheat at two stages of development using spectroradiometer measurements obtained at 13 wavelengths in the 480-720-nm range with a polarizing film in maximum and minimum signal-amplitude positions. The data and computation techniques are presented in tables, diagrams, and graphs, and the need to take specular reflection into account in constructing models of light/canopy interaction is stressed.

  8. Investigation of clusters of galaxies. I - Explanation of photometric scale errors by light diffusion in a photographic emulsion

    NASA Astrophysics Data System (ADS)

    Baier, F. W.; Ziener, R.

    The present paper is concerned with photometry studies in B and V for 326 galaxies in the central field of the Coma cluster. The results are employed as a basis for a reinvestigation of a controversy regarding the scale of different authors. An explanation is found for the systematic deviation between the results obtained by Rood and Baum (1968) and Godwin and Peach (1977) in the V pass band, taking into account a diffusion of light in the emulsion. It is concluded that the photometry provided by Rood and Baum is correct. The results reported by Fong et al. (1984) can also be explained on the basis of diffusion effects.

  9. Diffusivity measurement using compact low cost field portable device based on light deflection

    NASA Astrophysics Data System (ADS)

    Chhaniwal, Vani; Mahajan, Swapnil; Trivedi, Vismay; Anand, Arun

    2015-05-01

    Imaging and measurement of diffusion process in liquid solutions is a challenging and interesting problem. Especially the mixing of binary liquid solutions in real-time provides an insight into the physics of diffusion as well as leads to measurement of diffusion coefficient, which is the most important parameter of a diffusing liquid solution. Accurate measurement of diffusion coefficient is important in areas ranging from oil extraction to pollution control. Interferometric methods provides very accurate measurement of diffusion coefficients albeit they impose very stringent optical conditions. Here we describe the development of a compact, easy to implement, easy to use and inexpensive device for imaging and quantification of the diffusion process. This technique does not require the stringent optical conditions of interferometric techniques. It computes the diffusivity values by measuring the amount of deflection happening to a line pattern printed on a paper and projected through the sample cell. The measured diffusivity values varied by less than 1%, with the values of diffusivities reported in literature.

  10. Monte-Carlo Radiative Transfer Model of the Diffuse Galactic Light

    NASA Astrophysics Data System (ADS)

    Seon, Kwang-Il

    2015-02-01

    Monte-Carlo radiative models of the diffuse Galactic light (DGL) in our Galaxy are calcu-lated using the dust radiative transfer code MoCafe, which is three-dimensional and takes full account of multiple scattering. The code is recently updated to use a fast voxel traversal algorithm, which has dramatically increased the computing speed. The radiative transfer models are calculated with the gen-erally accepted dust scale-height of 0.1 kpc. The stellar scale-heights are assumed to be 0.1 or 0.35 kpc, appropriate for far-ultraviolet (FUV) and optical wavelengths, respectively. The face-on optical depth, measured perpendicular to the Galactic plane, is also varied from 0.2 to 0.6, suitable to the optical to FUV wavelengths, respectively. We find that the DGL at high Galactic latitudes is mostly due to backward or large-angle scattering of starlight originating from the local stars within a radial distance of r < 0.5 kpc from the Earth. On the other hand, the DGL measured in the Galactic plane is mostly due to stars at a distance range that corresponds to an optical depth of -1 measured from the Earth. Therefore, the low-latitude DGL at the FUV wavelength band would be mostly caused by the stars located at a distance of r . 0.5 kpc and the optical DGL near the Galactic plane mainly originates from stars within a distance range of 1 . r . 2 kpc. We also calculate the radiative transfer models in a clumpy two-phase medium. The clumpy two-phase models provide lower intensities at high Galactic latitudes compared to the uniform density models, because of the lower effective optical depth in clumpy media. However, no significant difference in the intensity at the Galactic plane is found.

  11. Monitoring and Scoring Counter-Diffusion Protein Crystallization Experiments in Capillaries by in situ Dynamic Light Scattering

    PubMed Central

    Oberthuer, Dominik; Melero-García, Emilio; Dierks, Karsten; Meyer, Arne; Betzel, Christian; Garcia-Caballero, Alfonso; Gavira, Jose A.

    2012-01-01

    In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS) to monitor counter-diffusion crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a counter-diffusion crystallization experiment of glucose isomerase in capillaries of different diameters (0.1, 0.2 and 0.3 mm) in order to follow the temporal evolution of protein supersaturation. Finally, we have compared DLS data with optical recordings of the progression of the crystallization front and with a simulation model of counter-diffusion in 1D. PMID:22675464

  12. Diffuse-light absorption spectroscopy by fiber optics for detecting and quantifying the adulteration of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-09-01

    A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.

  13. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle

    PubMed Central

    Hong, Feng; Brizendine, Richard K.; Carter, Michael S.; Alcala, Diego B.; Brown, Avery E.; Chattin, Amy M.; Haldeman, Brian D.; Walsh, Michael P.; Facemyer, Kevin C.; Baker, Josh E.

    2015-01-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot–labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto–myosin and MLCK–myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting “stuck” on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. PMID:26415568

  14. Enhanced blue light shielding property of light-diffusion polycarbonate composites by CeO2-coated silicate microspheres

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Shi, Liyi; Tang, Anjie; Song, Na; Tang, Shengfu; Ding, Peng

    2015-07-01

    The CeO2 coated silicate microspheres (SMSs) core-shell particles (SMS-CeO2) were synthesized for enhancing blue light shielding property of polycarbonate (PC) composites. The structure analysis showed that CeO2 particles were homogenously coated on SMS by Ce-O-Si bonds. The optical analysis indicated that the transmittance of PC/SMS-CeO2 composites were enhanced to 63.2% from 42.9% for PC/SMS/CeO2 composites when 0.6 wt.% fillers were loaded, while there was no obvious influence on the haze of the composites. UV-Vis analysis showed that the absorbance at 450-nm wavelength of blue-light increased from 24% of PC/SMS to 50% of PC/SMS-CeO2 composites, while the absorbance at 650-nm wavelength of red-light was unchanged. These results indicated that the PC/SMS-CeO2 composites had blue light shielding property and better performance on transmitting other visible lights.

  15. A compact, multi-wavelength, and high frequency response light source for diffuse optical spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Park, Kyoungsu; Lee, Minseok; Lee, Seung-ha; Cerussi, Albert E.; Chung, Phil-sang; Kim, Sehwan

    2015-03-01

    Many biomedical applications require an efficient combination and localization of multiple discrete light sources. In this paper, we present a compact six-channel combiner of optical sub-assembly type that couples the output of independent solid-state light sources into a single 400 μm diameter optical fiber. It is equipped with six discrete laser diodes, 658, 690, 705, 785, 830, and 850 nm for the measurement of the tissue optical properties from optical spectroscopy and imaging. We demonstrate coupling efficiencies ≥ 77% and output optical power ≥ 20 mW for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity modulated laser diodes (with bandwidth ≥ 3 GHz). The developed light source could be used to construct custom multi-wavelength sources for tissue oximeters, diffuse optical imaging, and molecular imaging technologies.

  16. Spectral shape of a signal in light-induced diffusive pulling (pushing) of particles into a light beam

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, A. M.

    2015-02-01

    We study theoretically how the dependences of transport collision frequencies νi, collision broadening γ and collision shift Δ of the levels on the velocity v of resonant particles influence lightinduced diffusive pulling (pushing) (LDP) effects in the framework of a generalised model of strong collisions in the case of velocitydependent collision rates (so-called kangaroo model). It is found that allowance for the dependences νi(v), γ(v) and Δ(v) does not change the spectral shape of an LDP signal. In particular, in the case of low-intensity radiation, the spectral dependence of the LDP signal coincides with the absorption line shape. It is shown that the magnitude of the LDP effect is proportional to the difference between the diffusion coefficients of particles in the excited and ground states. It is found that the spectral anomalies previously predicted in the LDP effect [Gel'mukhanov F.Kh. JETP Lett., 55, 214 (1992)] for an idealised model of the Lorentz gas (the limiting case of heavy buffer particles), which arise due to the dependences νi(v), γ(v) and Δ(v), are typical only for this gas. At a realistic ratio of the masses of absorbing and buffer particles, spectral anomalies do not occur in the LDP effect.

  17. A new approach to evaluating the effects of pharmacologic vitreolysis on vitreous diffusion coefficients using dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Sebag, J.

    2006-02-01

    PURPOSE: Pharmacologic vitreolysis is a new approach to improve vitreo-retinal surgery. Ultimately, the development of drugs to liquefy and detach vitreous from retina should prevent disease by mitigating the contribution of vitreous to retinopathy and eliminate the need for surgery. However, the mechanism of action of pharmacologic vitreolysis remains unclear. The technique of Dynamic light scattering (DLS) was used to evaluate the effects of microplasmin by following the diffusion coefficients of spherical polystyrene nano-particles injected with microplasmin into the vitreous. METHODS: Diffusion coefficients in dissected (n=9) porcine eyes were measured in vitro. DLS was performed on all specimens at 37°C as often as every 10 minutes for up to 6 hours following injections of human recombinant microplasmin at doses ranging from 0.125 mg to 0.8 mg, with 20 nm diameter tracer nanospheres. RESULTS: DLS findings in untreated porcine vitreous were similar to the previously described findings in bovine and human vitreous, demonstrating a fast (early) component, resulting from the flexible hyaluronan molecules, and a slow (late) component, resulting form the stiff collagen molecules. Microplasmin increased porcine vitreous diffusion coefficients. A new approach was developed to use DLS measurements of vitreous diffusion coefficients to evaluate the effects of microplasmin in intact eyes. CONCLUSIONS: Pharmacologic vitreolysis with human recombinant microplasmin increases vitreous diffusion coefficients in vitro. The results of these studies indicate that this new approach using DLS to measure vitreous diffusion coefficients can be used to study the effects of pharmacologic vitreolysis using microplasmin and other agents in intact eyes and ultimately in vivo.

  18. Impacts of Diffuse Radiation on Light Use Efficiency across Terrestrial Ecosystems Based on Eddy Covariance Observation in China

    PubMed Central

    Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili

    2014-01-01

    Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24≤R2≤0.85), especially at the Changbaishan temperate forest ecosystem (R2 = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction. PMID:25393629

  19. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    DOEpatents

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  20. Enhanced intensity variation for multiple-plane phase retrieval using a spatial light modulator as a convenient tunable diffuser.

    PubMed

    Almoro, Percival F; Pham, Quang Duc; Serrano-Garcia, David Ignacio; Hasegawa, Satoshi; Hayasaki, Yoshio; Takeda, Mitsuo; Yatagai, Toyohiko

    2016-05-15

    In the multiple-plane phase retrieval method, a tedious-to-fabricate phase diffuser plate is used to increase the axial intensity variation for a nonstagnating iterative reconstruction of a smooth object wavefront. Here we show that a spatial light modulator (SLM) can be used as an easily controllable diffuser for phase retrieval. The polarization modulation at the SLM facilitates independent formation of orthogonally polarized scattered and specularly reflected beams. Through an analyzer, the polarization states are filtered enabling beam interference, thereby efficiently encoding the phase information in the axially diverse speckle intensity measurements. The technique is described using wave propagation and Jones calculus, and demonstrated experimentally on technical and biological samples. PMID:27176952

  1. Light propagation through weakly scattering media: a study of Monte Carlo vs. diffusion theory with application to neuroimaging

    NASA Astrophysics Data System (ADS)

    Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis

    2015-07-01

    One of the major challenges within Optical Imaging, photon propagation through clear layers embedded between scattering tissues, can be now efficiently modelled in real-time thanks to the Monte Carlo approach based on GPU. Because of its nature, the photon propagation problem can be very easily parallelized and ran on low cost hardware, avoiding the need for expensive Super Computers. A comparison between Diffusion and MC photon propagation theory is presented in this work with application to neuroimaging, investigating low scattering regions in a mouse-like phantom. Regions such as the Cerebral Spinal Fluid, are currently not taken into account in the classical computational models because of the impossibility to accurately simulate light propagation using fast Diffusive Equation approaches, leading to inaccuracies during the reconstruction process. The goal of the study presented here, is to reduce and further improve the computation accuracy of the reconstructed solution in a highly realistic scenario in the case of neuroimaging in preclinical mouse models.

  2. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  3. Measurement of nano-particle diffusion in the simulated dynamic light scattering by contrast of dynamic images

    NASA Astrophysics Data System (ADS)

    Wu, Xiaobin; Qiu, Jian; Luo, Kaiqing; Han, Peng

    2015-08-01

    Dynamic Light Scattering is used for measuring particle size distribution of nano-particle under Brownian motion. Signal is detected through a photomultiplier and processed by correlation analysis, and results are inverted at last. Method by using CCD camera can record the procedure of motion. However, there are several weaknesses such as low refresh speed and noise from CCD camera, and this method depends on particle size and detecting angle. A simulation of nano-particle under Brownian motion is proposed to record dynamic images, studies contrast of dynamic images which can represent speed of diffusion, and its characteristic under different conditions. The results show that through contrast of dynamic images diffusion coefficient can be obtained, which is independent on density of scattering volume.

  4. Revealing the ultrafast light-to-matter energy conversion before heat diffusion in a layered Dirac semimetal

    NASA Astrophysics Data System (ADS)

    Ishida, Y.; Masuda, H.; Sakai, H.; Ishiwata, S.; Shin, S.

    2016-03-01

    There is still no general consensus on how one can describe the out-of-equilibrium phenomena in matter induced by an ultrashort light pulse. We investigate the pulse-induced dynamics in a layered Dirac semimetal SrMnBi2 by pump-and-probe photoemission spectroscopy. At ≲1 ps, the electronic recovery slowed upon increasing the pump power. Such a bottleneck-type slowing is expected in a two-temperature model (TTM) scheme, although opposite trends have been observed to date in graphite and in cuprates. Subsequently, an unconventional power-law cooling took place at ˜100 ps, indicating that spatial heat diffusion is still ill defined at ˜100 ps . We identify that the successive dynamics before the emergence of heat diffusion is a canonical realization of a TTM scheme. Criteria for the applicability of the scheme is also provided.

  5. Improved optical properties of silica/UV-cured polymer composite films made of hollow silica nanoparticles with a hierarchical structure for light diffuser film applications.

    PubMed

    Suthabanditpong, W; Takai, C; Fuji, M; Buntem, R; Shirai, T

    2016-06-28

    This study successfully improved the optical properties of silica/UV-cured polymer composite films made of hollow silica nanoparticles having a hierarchical structure. The particles were synthesized by an inorganic particle method, which involves two steps of sol-gel silica coating around the template and acid dissolution removal of the template. The pH of the acid was varied to achieve different hierarchical structures of the particles. The morphologies and surface properties of the obtained particles were characterized before dispersing in a UV-curable acrylate monomer solution to prepare dispersions for fabricating light diffuser films. The optical properties and the light diffusing ability of the fabricated films were studied. The results revealed that the increased pH of the acid provides the particles with a thinner shell, a larger hollow interior and a higher specific surface area. Moreover, the films with these particles exhibit a better light diffusing ability and a higher diffuse transmittance value when compared to those without particles. Therefore, the composite films can be used as light diffuser films, which is an essential part of optical diffusers in the back-light unit of LCDs. In addition, utilizing the hierarchical particles probably reduces the number of back-light units in the LCDs leading to energy-savings and subsequently lightweight LCDs. PMID:27254769

  6. Selective mode excitation in finite size plasma crystals by diffusely reflected laser light

    SciTech Connect

    Schablinski, Jan; Block, Dietmar

    2015-02-15

    The possibility to use diffuse reflections of a laser beam to exert a force on levitating dust particles is studied experimentally. Measurements and theoretical predictions are found to be in good agreement. Further, the method is applied to test the selective excitation of breathing-like modes in finite dust clusters.

  7. Highly energy-efficient agricultural lighting by B+R LEDs with beam shaping using micro-lens diffuser

    NASA Astrophysics Data System (ADS)

    Lee, Xuan-Hao; Chang, Yu-Yu; Sun, Ching-Cherng

    2013-03-01

    This paper presents a high-performance LED agricultural luminaire that uses a beam-shaping diffuser to achieve high optical efficiency and energy saving. The agricultural luminaire performs an optical efficiency as high as 84.2%. The beam shaping effect also obtains irradiance uniformity of 1/2.56 and excellent spatial color uniformity. The enhancement ratio of optical utilization factor in the proposed agricultural luminaire is 360% in comparison with traditional lighting. Under the designed case, the total utilization factor, including optical utilization factor and spectral utilization factor, of the B+R LED lamp can save 86.1% of power consumption in comparison with compact fluorescent bulbs.

  8. Artificial Lighting as a Vector Attractant and Cause of Disease Diffusion

    PubMed Central

    Barghini, Alessandro; de Medeiros, Bruno A. S.

    2010-01-01

    Background Traditionally, epidemiologists have considered electrification to be a positive factor. In fact, electrification and plumbing are typical initiatives that represent the integration of an isolated population into modern society, ensuring the control of pathogens and promoting public health. Nonetheless, electrification is always accompanied by night lighting that attracts insect vectors and changes people’s behavior. Although this may lead to new modes of infection and increased transmission of insect-borne diseases, epidemiologists rarely consider the role of night lighting in their surveys. Objective We reviewed the epidemiological evidence concerning the role of lighting in the spread of vector-borne diseases to encourage other researchers to consider it in future studies. Discussion We present three infectious vector-borne diseases—Chagas, leishmaniasis, and malaria—and discuss evidence that suggests that the use of artificial lighting results in behavioral changes among human populations and changes in the prevalence of vector species and in the modes of transmission. Conclusion Despite a surprising lack of studies, existing evidence supports our hypothesis that artificial lighting leads to a higher risk of infection from vector-borne diseases. We believe that this is related not only to the simple attraction of traditional vectors to light sources but also to changes in the behavior of both humans and insects that result in new modes of disease transmission. Considering the ongoing expansion of night lighting in developing countries, additional research on this subject is urgently needed. PMID:20675268

  9. Diffuse reflection of light by cellulose pulp and optical absorption of aqueous residual lignin solutions

    NASA Astrophysics Data System (ADS)

    Belov, N. P.; Sherstobitova, A. S.; Yaskov, A. D.

    2011-03-01

    Within Kubelka-Munk theory using the Lorenz relations, we have determined the correlation between the optical diffuse reflectance spectra R(λ) of cellulose pulp in the visible range (380-760 nm) and ultraviolet absorption (λ = 200-400 nm) of aqueous solutions containing residual lignins. The data obtained can be used to monitor and predict the results of digestion and bleach plants in the paper and pulp industry.

  10. Anisotropic diffusion of concentrated hard-sphere colloids near a hard wall studied by evanescent wave dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Michailidou, V. N.; Swan, J. W.; Brady, J. F.; Petekidis, G.

    2013-10-01

    Evanescent wave dynamic light scattering and Stokesian dynamics simulations were employed to study the dynamics of hard-sphere colloidal particles near a hard wall in concentrated suspensions. The evanescent wave averaged short-time diffusion coefficients were determined from experimental correlation functions over a range of scattering wave vectors and penetration depths. Stokesian dynamics simulations performed for similar conditions allow a direct comparison of both the short-time self- and collective diffusivity. As seen earlier [V. N. Michailidou, G. Petekidis, J. W. Swan, and J. F. Brady, Phys. Rev. Lett. 102, 068302 (2009)] while the near wall dynamics in the dilute regime slow down compared to the free bulk diffusion, the reduction is negligible at higher volume fractions due to an interplay between the particle-wall and particle-particle hydrodynamic interactions. Here, we provide a comprehensive comparison between experiments and simulations and discuss the interplay of particle-wall and particle-particle hydrodynamics in the self- and cooperative dynamics determined at different scattering wave vectors and penetration depths.

  11. Size and diffusion phenomena of AOT/alcohol/water system in the presence of morin by dynamic light scattering.

    PubMed

    Bhattarai, Ajaya; Wilczura-Wachnik, Hanna

    2015-01-30

    Presented paper is a continuation of our studies on morin interaction with AOT (sodium bis(2-ethylhexyl) sulfosuccinate) reversed micelles solutions in two solvents: ethanol and n-decanol. Now we focused on morin influence on size and diffusion phenomena in the system morin/solvent/AOT/water. In this paper precise measurements of dynamic light scattering (DLS) of the effects of temperature, solvents (alcohols), water on the size and diffusion of AOT reversed micelles in the morin/AOT/alcohol/water system are reported. The concentrations of AOT were varied from 0.51 to 0.78mol/L. Morin concentration in during auto-correlation function registration was not the same in each solvent because of its different solubility depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=(H2O)/(AOT) and was equal 0 and 30 in ethanol, and 0 in n-decanol. DLS measurements were done at 298.15 and 308.15K. DLS experiment involved on detection two relaxation modes (fast and slow) in the systems containing AOT reversed micelles, water, morin and solvents (ethanol and n-decanol). The DLS data clearly show the solvent influence as well as morin presence on AOT reversed micelles size and consequently their diffusion coefficients. Contrary to n-decanol strong competition between morin and ethanol molecules in AOT reversed micelles palisade layer has been found. It suggests that morin molecules replaced ethanol in AOT reversed micelles and locate in their palisade layer strongly increasing AOT reversed micelles size. Furthermore, it was found a sharp increase in correlation radii of slow modes of AOT reversed micelles containing morin molecules and their diffusion coefficients diminishing. PMID:25448557

  12. Monte Carlo Simulation of Visible Light Diffuse Reflection in Neonatal Skin

    NASA Astrophysics Data System (ADS)

    Atencio, J. A. Delgado; Rodríguez, E. E.; Rodríguez, A. Cornejo; Rivas-Silva, J. F.

    2008-04-01

    Neonatal jaundice is a medical condition that happens commonly in newborns as result of desbalance between the production and the elimination of the bilirubin. Around 50% of newborns in term and something more of 60% of the near-term becomes jaundiced in the first week of life. This excess of bilirubin in the blood is exhibited in the skin, the sclera of the eyes and the mucous of mouth like a characteristic yellow coloration. In this work we make several numerical simulations of the spectral diffuse reflection for the skin of newborns that present different values of the biological parameters (bilirubin content, grade of pigmentation and content of blood) that characterize it. These simulations will allow us to evaluate the influence of these parameters on the experimental determination of bilirubin by noninvasive optical methods. The simulations are made in the spectral range of 400-700 nm using the Monte Carlo code MCML and two programs developed in LabVIEW by the authors. We simulated the diffuse reflection spectrum of neonatal skin for concentrations of bilirubin in skin that covers an ample range: from physiological to harmful numbers. We considered the influence of factors such as grade of pigmentation and content of blood.

  13. Holographic diffusers

    NASA Astrophysics Data System (ADS)

    Wadle, Stephen; Wuest, Daniel; Cantalupo, John; Lakes, Roderic S.

    1994-01-01

    Holographic diffusers are prepared using silver halide (Agfa 8E75 and Kodak 649F) and photopolymer (Polaroid DMP 128 and DuPont 600, 705, and 150 series) media. It is possible to control the diffusion angle in three ways: by selection of the properties of the source diffuser, by control of its subtended angle, and by selection of the holographic medium. Several conventional diffusers based on refraction or scattering of light are examined for comparison.

  14. Non-Markovian Quantum State Diffusion for temperature-dependent linear spectra of light harvesting aggregates

    SciTech Connect

    Ritschel, Gerhard; Möbius, Sebastian; Eisfeld, Alexander; Suess, Daniel; Strunz, Walter T.

    2015-01-21

    Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an efficient method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the coupling of electronic transitions to vibrational modes of the chromophores. NMQSD is an open quantum system approach that incorporates environmental degrees of freedom (the vibrations in our case) in a stochastic way. We show in this paper that for linear optical spectra (absorption, circular dichroism), no stochastics is needed, even for finite temperatures. Thus, the spectra can be obtained by propagating a single trajectory. To this end, we map a finite temperature environment to the zero temperature case using the so-called thermofield method. The resulting equations can then be solved efficiently by standard integrators.

  15. Validation of a Device for Fluorescence Sensing of Rare Circulating Cells with Diffusive Light in an Optical Flow Phantom Model

    PubMed Central

    Zettergren, Eric; Vickers, Dwayne; Runnels, Judith; Lin, Charles P.; Niedre, Mark J.

    2013-01-01

    Detection and quantification of rare circulating cells in biological tissues is an important problem and has many applications in biomedical research. Current methods normally involve extraction of blood samples and counting of cells ex vivo, or the use of microscopy-based fluorescence in vivo flow cytometry. The goal of this work is to develop an instrument for non-invasively enumerating very rare circulating cells in small animals with diffuse light with several orders of magnitude sensitivity improvement versus current approaches. In this work, we describe the design of our system and show that single, fluorescent microspheres can be detected in limb-mimicking optical flow phantoms with varying optical properties chosen to simulate in vivo conditions. Further, we demonstrate single cell counting capabilities using fluorescently (Vybrant-DiD) labeled Jurkat and Multiple Myeloma cells. Ongoing work includes in vivo testing and characterization of our system in mice. PMID:22254354

  16. Quantitative full-colour transmitted light microscopy and dyes for concentration mapping and measurement of diffusion coefficients in microfluidic architectures.

    PubMed

    Werts, Martinus H V; Raimbault, Vincent; Texier-Picard, Rozenn; Poizat, Rémi; Français, Olivier; Griscom, Laurent; Navarro, Julien R G

    2012-02-21

    A simple and versatile methodology has been developed for the simultaneous measurement of multiple concentration profiles of colourants in transparent microfluidic systems, using a conventional transmitted light microscope, a digital colour (RGB) camera and numerical image processing combined with multicomponent analysis. Rigorous application of the Beer-Lambert law would require monochromatic probe conditions, but in spite of the broad spectral bandwidths of the three colour channels of the camera, a linear relation between the measured optical density and dye concentration is established under certain conditions. An optimised collection of dye solutions for the quantitative optical microscopic characterisation of microfluidic devices is proposed. Using the methodology for optical concentration measurement we then implement and validate a simplified and robust method for the microfluidic measurement of diffusion coefficients using an H-filter architecture. It consists of measuring the ratio of the concentrations of the two output channels of the H-filter. It enables facile determination of the diffusion coefficient, even for non-fluorescent molecules and nanoparticles, and is compatible with non-optical detection of the analyte. PMID:22228225

  17. Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging

    PubMed Central

    Kanick, Stephen Chad; McClatchy, David M.; Krishnaswamy, Venkataramanan; Elliott, Jonathan T.; Paulsen, Keith D.; Pogue, Brian W.

    2014-01-01

    This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns (fx) can be used to quantitatively map the anisotropic scattering phase function distribution (P(θs)) in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance (Rd) in terms of dimensionless scattering (μs′fx−1) and γ, a metric of the first two moments of the P(θs) distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of Rd spectra sampled at multiple fx in the frequency range [0.05-0.5] mm−1 allowed accurate estimation of both μs′(λ) in the relevant tissue range [0.4-1.8] mm−1, and γ(λ) in the range [1.4-1.75]. Pilot measurements of a healthy volunteer exhibited γ-based contrast between scar tissue and surrounding normal skin, which was not as apparent in wide field diffuse imaging. These results represent the first wide-field maps to quantify sub-diffuse scattering parameters, which are sensitive to sub-microscopic tissue structures and composition, and therefore, offer potential for fast diagnostic imaging of ultrastructure on a size scale that is relevant to surgical applications. PMID:25360357

  18. How diffusivity, thermocline and incident light intensity modulate the dynamics of deep chlorophyll maximum in Tyrrhenian Sea.

    PubMed

    Valenti, Davide; Denaro, Giovanni; Spagnolo, Bernardo; Conversano, Fabio; Brunet, Christophe

    2015-01-01

    During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time-dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environmental variables, such as light intensity, thickness of upper mixed layer and profiles of vertical turbulent diffusivity, obtained starting from experimental findings. Theoretical distributions of phytoplankton cell concentration was converted in chlorophyll concentration, and compared with the experimental profiles measured in a site of the Tyrrhenian Sea at four different times (seasons) of the year, during four different oceanographic cruises. As a result we find a good agreement between theoretical and experimental distributions of chlorophyll concentration. In particular, theoretical results reveal that the seasonal changes of environmental variables play a key role in the phytoplankton distribution and determine the properties of the deep chlorophyll maximum. This study could be extended to other marine ecosystems to predict future changes in the phytoplankton biomass due to global warming, in view of devising strategies to prevent the decline of the primary production and the consequent decrease of fish species. PMID:25629963

  19. How Diffusivity, Thermocline and Incident Light Intensity Modulate the Dynamics of Deep Chlorophyll Maximum in Tyrrhenian Sea

    PubMed Central

    Valenti, Davide; Denaro, Giovanni; Spagnolo, Bernardo; Conversano, Fabio; Brunet, Christophe

    2015-01-01

    During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time-dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environmental variables, such as light intensity, thickness of upper mixed layer and profiles of vertical turbulent diffusivity, obtained starting from experimental findings. Theoretical distributions of phytoplankton cell concentration was converted in chlorophyll concentration, and compared with the experimental profiles measured in a site of the Tyrrhenian Sea at four different times (seasons) of the year, during four different oceanographic cruises. As a result we find a good agreement between theoretical and experimental distributions of chlorophyll concentration. In particular, theoretical results reveal that the seasonal changes of environmental variables play a key role in the phytoplankton distribution and determine the properties of the deep chlorophyll maximum. This study could be extended to other marine ecosystems to predict future changes in the phytoplankton biomass due to global warming, in view of devising strategies to prevent the decline of the primary production and the consequent decrease of fish species. PMID:25629963

  20. Near-infrared background anisotropies from diffuse intrahalo light of galaxies.

    PubMed

    Cooray, Asantha; Smidt, Joseph; De Bernardis, Francesco; Gong, Yan; Stern, Daniel; Ashby, Matthew L N; Eisenhardt, Peter R; Frazer, Christopher C; Gonzalez, Anthony H; Kochanek, Christopher S; Kozłowski, Szymon; Wright, Edward L

    2012-10-25

    Unresolved anisotropies of the cosmic near-infrared background radiation are expected to have contributions from the earliest galaxies during the epoch of reionization and from faint, dwarf galaxies at intermediate redshifts. Previous measurements were unable to pinpoint conclusively the dominant origin because they did not sample spatial scales that were sufficiently large to distinguish between these two possibilities. Here we report a measurement of the anisotropy power spectrum from subarcminute to one-degree angular scales, and find the clustering amplitude to be larger than predicted by the models based on the two existing explanations. As the shot-noise level of the power spectrum is consistent with that expected from faint galaxies, a new source population on the sky is not necessary to explain the observations. However, a physical mechanism that increases the clustering amplitude is needed. Motivated by recent results related to the extended stellar light profile in dark-matter haloes, we consider the possibility that the fluctuations originate from intrahalo stars of all galaxies. We find that the measured power spectrum can be explained by an intrahalo light fraction of 0.07 to 0.2 per cent relative to the total luminosity in dark-matter haloes of 10(9) to 10(12) solar masses at redshifts of about 1 to 4. PMID:23099405

  1. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  2. Implementation of cost-effective diffuse light source mechanism to reduce specular reflection and halo effects for resistor-image processing

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Sheng; Wang, Jeng-Yau

    2015-09-01

    Light source plays a significant role to acquire a qualified image from objects for facilitating the image processing and pattern recognition. For objects possessing specular surface, the phenomena of reflection and halo appearing in the acquired image will increase the difficulty of information processing. Such a situation may be improved by the assistance of valuable diffuse light source. Consider reading resistor via computer vision, due to the resistor's specular reflective surface it will face with a severe non-uniform luminous intensity on image yielding a higher error rate in recognition without a well-controlled light source. A measurement system including mainly a digital microscope embedded in a replaceable diffuse cover, a ring-type LED embedded onto a small pad carrying a resistor for evaluation, and Arduino microcontrollers connected with PC, is presented in this paper. Several replaceable cost-effective diffuse covers made by paper bowl, cup and box inside pasted with white paper are presented for reducing specular reflection and halo effects and compared with a commercial diffuse some. The ring-type LED can be flexibly configured to be a full or partial lighting based on the application. For each self-made diffuse cover, a set of resistors with 4 or 5 color bands are captured via digital microscope for experiments. The signal-to-noise ratio from the segmented resistor-image is used for performance evaluation. The detected principal axis of resistor body is used for the partial LED configuration to further improve the lighting condition. Experimental results confirm that the proposed mechanism can not only evaluate the cost-effective diffuse light source but also be extended as an automatic recognition system for resistor reading.

  3. Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques

    NASA Astrophysics Data System (ADS)

    Bermúdez, Vicente; Pastor, José V.; López, J. Javier; Campos, Daniel

    2014-06-01

    A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement settings in steady-state operating conditions; evaluation of the proposed setting under the New European Driving Cycle; and a study of correlations for different measurement techniques. These correlations provide a reliable tool for estimating soot emission from light extinction measurement or from accumulation particle mode concentration. There are several methods and correlations to estimate soot concentration in the literature but most of them were assessed for steady-state operating points. In this case, the correlations are obtained by more than 4000 points measured in transient conditions. The results of the new two correlations, with less than 4% deviation from the reference measurement, are presented in this paper.

  4. Mutual and Self-Diffusivities in Binary Mixtures of [EMIM][B(CN)4] with Dissolved Gases by Using Dynamic Light Scattering and Molecular Dynamics Simulations.

    PubMed

    Koller, Thomas M; Heller, Andreas; Rausch, Michael H; Wasserscheid, Peter; Economou, Ioannis G; Fröba, Andreas P

    2015-07-01

    Ionic liquids (ILs) are possible working fluids for the separation of carbon dioxide (CO2) from flue gases. For evaluating their performance in such processes, reliable mutual-diffusivity data are required for mixtures of ILs with relevant flue gas components. In the present study, dynamic light scattering (DLS) and molecular dynamics (MD) simulations were used for the investigation of the molecular diffusion in binary mixtures of the IL 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][B(CN)4]) with the dissolved gases carbon dioxide, nitrogen, carbon monoxide, hydrogen, methane, oxygen, and hydrogen sulfide at temperatures from 298.15 to 363.15 K and pressures up to 63 bar. At conditions approaching infinite dilution of a gas, the Fick mutual diffusivity of the mixture measured by DLS and the self-diffusivity of the corresponding gas calculated by MD simulations match, which could be generally found within combined uncertainties. The obtained diffusivities are in agreement with literature data for the same or comparable systems as well as with the general trend of increasing diffusivities for decreasing IL viscosities. The DLS and MD results reveal distinctly larger molecular diffusivities for [EMIM][B(CN)4]-hydrogen mixtures compared to mixtures with all other gases. This behavior results in the failure of an empirical correlation with the molar volumes of the gases at their normal boiling points. The DLS experiments also showed that there is no noticeable influence of the dissolved gas and temperature on the thermal diffusivity of the studied systems. PMID:26075680

  5. Design and implementation of ultra-high resolution, large bandwidth, and compact diffuse light spectrometers

    NASA Astrophysics Data System (ADS)

    Badieirostami, Majid

    such as finite difference time-domain or the finite element techniques is not possible due to the excessive requirement of memory and simulation time. Added to the complexity of the problem is the diffuse (or spatially incoherent) nature of the optical beams in the state-of-the-art spectroscopy applications. In my Ph.D. research, I developed new approximate modeling tools for both the modeling of incoherent sources in nanophotonics, and for the propagation of such optical beams inside the 3D nanophotonic structures of interest with several orders of magnitude improvement in the simulation speed for practical size devices without sacrificing accuracy. I believe the tools developed in my research enable us to look into new structures and functionalities that we were not able to analyze simply before. To enable new dispersive properties using a single nanophotonic structure, I have focused in my Ph.D. research into polymer-based 3D photonic crystals, which can be engineered using their geometrical features to demonstrate unique dispersive properties in three dimensions that cannot be matched by any bulk material even with orders of magnitude larger sizes. I have demonstrated the possibilities of using a very compact structure for wavelength demultiplexing and also for spectroscopy without adding any other device. The range of applications that can be enabled by having a material system with a wide range of 3D dispersive properties is very wide covering spectroscopy and sensing, dispersion management, diffraction compensation, pulse shaping, and many others. I am very interested in using this material platform and extend my current research into 3D heterostructures in which each portion of the structure is engineered to optimize a subset of optical functionalities. The simplest version of such heterostructures is the integration of interferometry and spectroscopy in a single structure. The most general view of such engineered nanostructures is to consider them as a 3D

  6. Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory.

    PubMed

    Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji

    2005-04-10

    A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm(-1). Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm(-1), it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method. PMID:15835358

  7. Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory

    NASA Astrophysics Data System (ADS)

    Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji

    2005-04-01

    A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm^-1. Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm^-1, it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.

  8. Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering

    PubMed Central

    Turzhitsky, Vladimir; Rogers, Jeremy D.; Mutyal, Nikhil N.; Roy, Hemant K.; Backman, Vadim

    2009-01-01

    Low-coherence enhanced backscattering (LEBS) is a technique that has recently shown promise for tissue characterization and the detection of early pre-cancer. Although several Monte Carlo models of LEBS have been described, these models have not been accurate enough to predict all of the experimentally observed LEBS features. We present an appropriate Monte Carlo model to simulate LEBS peak properties from polystyrene microsphere suspensions in water. Results show that the choice of the phase function greatly impacts the accuracy of the simulation when the transport mean free path (ls*) is much greater than the spatial coherence length (LSC). When ls* < LSC, a diffusion approximation based model of LEBS is sufficiently accurate. We also use the Monte Carlo model to validate that LEBS can be used to measure the radial scattering probability distribution (radial point spread function), p(r), at small length scales and demonstrate LEBS measurements of p(r) from biological tissue. In particular, we show that pre-cancerous and benign mucosal tissues have different small length scale light transport properties. PMID:21037980

  9. Active optical remote sensing of dense clouds with diffusing light : Early results, present implementations, and the challenges ahead

    SciTech Connect

    Davis, A. B.; Cahalan, R. F.; Winker, D. M.

    2002-01-01

    We survey the rapid progress of 'off-beam' cloud lidar, from inception to validation via laboratory-scale simulations. Cloud observations from ground, aircraft and even space are covered. Finally, we describe future work in this instrument development effort born out of pure theory in the mid-1990s. We foresee a bright future for off-beam lidar which is, in essence, an atmospheric application of the general principles of optical diffuse-light tomography. The physical cloud-boundary information it delivers is, in principle, the same as given from ground or space (upcoming CloudSat mission) obtained by mm-radar. And mm-radar gives some information about internal variability. However, radar reflectivities quite often disagree with optical estimates of cloud base and optical thickness for well-understood reasons. So optical and microwave cloud probes are now considered as complimentary rather then competitive in our efforts to better understand cloud radiative properties in the context of climate research. We are confident that off-beam lidar will be a valuable and, ultimately, cost-effective source of information about cloud processes. In this, we include direct insight into the present issues in large-scale short-wave absorption based on unambiguous geometrical pathlength statistics, a unique capability of off-beam cloud lidar.

  10. Simple fabrication of a three-dimensional porous polymer film as a diffuser for organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lim, Byung Wan; Suh, Min Chul

    2014-11-01

    We have investigated a simple and cost-effective fabrication method for a porous polymer film employing the spin-coating process during continuous supply of water droplets by an ultrasonic humidifier. The resulting porous polymer film showed ~40% optical haze, and this film could be used as a diffuser film for strong microcavity OLEDs. Specifically, we focused on controlling the surface morphology to give a three-dimensional (3D) multi-stacked nanocave structure because we had already learnt that two-dimensional nanoporous structures showed serious loss of luminance in the forward direction. As a result, we found that a 3D-ordered multi-stacked nanocave structure with a relatively small diameter and a distribution range of 300-500 nm can be obtained by precise control of the elastic bouncing behaviour of the supplied water droplets. Using this approach, we found that the 3D nanoporous polymer film can effectively reduce the viewing angle dependency of strong microcavity OLEDs without any considerable decrease in the total intensity of the out-coupled light.

  11. Theoretical and experimental study of the diffuse transmission of light through highly concentrated absorbing and scattering materials. Part I: Monte-Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bressel, L.; Reich, O.

    2014-10-01

    In many technical materials and commercial products like sunscreen or paint high particle and absorber concentrations are present. An important parameter for slabs of these materials is the diffuse transmission of light, which quantifies the total amount of directly and diffusely transmitted light. Due to the high content of scattering particles not only multiple scattering but also additional dependent scattering occurs. Hence, simple analytical models cannot be applied to calculate the diffuse transmission. In this work a Monte-Carlo program for the calculation of the diffuse transmission of light through dispersions in slab-like geometry containing high concentrations of scattering particles and absorbers is presented and discussed in detail. Mie theory is applied for the calculation of the scattering properties of the samples. Additionally, dependent scattering is considered in two different models, the well-known hard sphere model in the Percus-Yevick approximation (HSPYA) and the Yukawa model in the Mean Spherical Approximation (YMSA). Comparative experiments will show the accurateness of the program as well as its applicability to real samples [1].

  12. Hazard analysis of long term viewing of visible laser light off of fluorescent diffuse reflective surfaces (post-it).

    SciTech Connect

    Augustoni, Arnold L.

    2006-10-01

    A laser hazard analysis is performed to evaluate if the use of fluorescent diffuse reflectors to view incident laser beams (Coherent Verdi 10W) present a hazard based on the ANSI Standard Z136.1-2000, American National Standard for the Safe Use of Lasers. The use of fluorescent diffuse reflectors in the alignment process does not pose an increased hazard because of the fluorescence at a different wavelength than that of the incident laser.

  13. Fine particulate chemical composition and light extinction at Canyonlands National Park using organic particulate material concentrations obtained with a multisystem, multichannel diffusion denuder sampler

    NASA Astrophysics Data System (ADS)

    Eatough, Delbert J.; Eatough, David A.; Lewis, Laura; Lewis, Edwin A.

    1996-08-01

    The concentration of fine particulate carbonaceous material has been measured over a 1-year period at the Interagency Monitoring of Protected Visual Environments (IMPROVE) Canyonlands National Park, Utah sampling site using a Brigham Young University organic sampling system (BOSS) multisystem, multichannel diffusion denuder sampler. Samples were collected on the IMPROVE schedule of a 24-hour sample every Wednesday and Saturday. The concentrations of particulate C, determined using only a quartz filter pack sampling system, were low by an average of 39%, as a result of the loss of semi-volatile organic compounds from the particles collected on quartz filters during sampling. The loss was higher during the summer than during the winter sampling periods. The BOSS and IMPROVE quartz filter carbon measurements were in agreement except for a few samples collected during the summer. The fine particulate carbonaceous material concentrations determined using the BOSS have been combined with concentrations of particulate elemental C (soot), sulfate, nitrate, crustal material, and fine and coarse particulate mass from the IMPROVE sampling system, as well as relative humidity, light absorption, and transmissometer measurements of light extinction from IMPROVE. Extinction budgets have been calculated using multilinear regression analyses of the data set. Literature data were used to estimate the change in the mass extinction coefficients for the measured species as a function of relative humidity. The results show carbonaceous material to be the principal contributor to light extinction due to particles during the study period, with the major contributor to light extinction being light-absorbing carbonaceous material. However, the periods of maximum light extinction are associated with high humidity and the associated increased scattering of light due to particulate sulfate during the winter. The effect of particulate organic compounds on light extinction is greatest in the

  14. Origin of Enhanced Hole Injection in Organic Light-Emitting Diodes with an Electron-Acceptor Doping Layer: p-Type Doping or Interfacial Diffusion?

    PubMed

    Zhang, Lei; Zu, Feng-Shuo; Deng, Ya-Li; Igbari, Femi; Wang, Zhao-Kui; Liao, Liang-Sheng

    2015-06-10

    The electrical doping nature of a strong electron acceptor, 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN), is investigated by doping it in a typical hole-transport material, N,N'-bis(naphthalen-1-yl)-N,N'-diphenylbenzidine (NPB). A better device performance of organic light-emitting diodes (OLEDs) was achieved by doping NPB with HATCN. The improved performance could, in principle, arise from a p-type doping effect in the codeposited thin films. However, physical characteristics evaluations including UV-vis absorption, Fourier transform infrared absorption, and X-ray photoelectron spectroscopy demonstrated that there was no obvious evidence of charge transfer in the NPB:HATCN composite. The performance improvement in NPB:HATCN-based OLEDs is mainly attributed to an interfacial modification effect owing to the diffusion of HATCN small molecules. The interfacial diffusion effect of the HATCN molecules was verified by the in situ ultraviolet photoelectron spectroscopy evaluations. PMID:25970499

  15. Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)

    DOE PAGESBeta

    Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.; Jacobsen, Douglas W.; Petersen, Mark R.

    2015-08-01

    Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon modelmore » resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(105) m2 s–1 in the region of western boundary current separation to O(103) m2 s–1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.« less

  16. Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)

    SciTech Connect

    Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.; Jacobsen, Douglas W.; Petersen, Mark R.

    2015-08-01

    Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon model resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(105) m2 s–1 in the region of western boundary current separation to O(103) m2 s–1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.

  17. Maskless direct laser writing with visible light: Breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion

    SciTech Connect

    Wei, Jingsong; Wang, Rui

    2014-03-28

    In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thin film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650 nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100 nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.

  18. A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure

    NASA Astrophysics Data System (ADS)

    Pyo, Beom; Joo, Chul Woong; Kim, Hyung Suk; Kwon, Byoung-Hwa; Lee, Jeong-Ik; Lee, Jonghee; Suh, Min Chul

    2016-04-01

    To improve the viewing angle characteristic as well as the light extraction effect of strong microcavity devices, we fabricated a nanoporous polymer film (NPF) as a scattering medium as well as a light extraction component. We designed two types of organic light emitting diodes (OLEDs) with a strong microcavity effect by changing the thickness of the hole transport layer (HTL; e.g. 30 nm and 60 nm) to investigate two different scattering effects of the NPF. Very interestingly, we could observe a significant enhancement of the external quantum efficiency (EQE) for each device (30 nm thick HTL: 18.0%, 60 nm thick HTL: 31.6%) when we attached a NPF formed on a 125 μm thick PET film coated with the NPF. Furthermore, the NPF successfully suppressed the viewing angle dependence to realize ideal angular emission even in the two extreme microcavity conditions although they are still different from that of a Lambertian distribution.To improve the viewing angle characteristic as well as the light extraction effect of strong microcavity devices, we fabricated a nanoporous polymer film (NPF) as a scattering medium as well as a light extraction component. We designed two types of organic light emitting diodes (OLEDs) with a strong microcavity effect by changing the thickness of the hole transport layer (HTL; e.g. 30 nm and 60 nm) to investigate two different scattering effects of the NPF. Very interestingly, we could observe a significant enhancement of the external quantum efficiency (EQE) for each device (30 nm thick HTL: 18.0%, 60 nm thick HTL: 31.6%) when we attached a NPF formed on a 125 μm thick PET film coated with the NPF. Furthermore, the NPF successfully suppressed the viewing angle dependence to realize ideal angular emission even in the two extreme microcavity conditions although they are still different from that of a Lambertian distribution. Electronic supplementary information (ESI) available: The theoretical backgrounds associated with designing of microcavity

  19. Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria. [Rayleigh-Gans-Debye

    NASA Technical Reports Server (NTRS)

    Kottarchyk, M.; Chen, S.-H.; Asano, S.

    1979-01-01

    The study tests the accuracy of the Rayleigh-Gans-Debye (RGD) approximation against a rigorous scattering theory calculation for a simplified model of E. coli (about 1 micron in size) - a solid spheroid. A general procedure is formulated whereby the scattered field amplitude correlation function, for both polarized and depolarized contributions, can be computed for a collection of particles. An explicit formula is presented for the scattered intensity, both polarized and depolarized, for a collection of randomly diffusing or moving particles. Two specific cases for the intermediate scattering functions are considered: diffusing particles and freely moving particles with a Maxwellian speed distribution. The formalism is applied to microorganisms suspended in a liquid medium. Sensitivity studies revealed that for values of the relative index of refraction greater than 1.03, RGD could be in serious error in computing the intensity as well as correlation functions.

  20. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  1. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  2. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source.

    PubMed

    Granton, Patrick V; Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light's spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans. PMID:26988028

  3. Bone Fragment Detection in Chicken Breast Fillets using Diffuse Scattering Patterns of Back-Illuminated Structured Light

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper is concerned with the detection of bone fragments embedded in de-boned skinless chicken breast fillets by modeling images made by back-lighting and embedded bone fragments. Imaging of chicken fillets is often dominated by strongly multiple scattering properties of the fillets. Thus, res...

  4. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    NASA Astrophysics Data System (ADS)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  5. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light.

    PubMed

    Zhu, Haiyong; Duan, Yanmin; Zhang, Ge; Huang, Chenghui; Wei, Yong; Shen, Hongyuan; Zheng, Yiqun; Huang, Lingxiong; Chen, Zhenqiang

    2009-11-23

    A high power and efficient 588 nm yellow light is demonstrated through intracavity frequency doubling of an acousto-optic Q-switched self-frequency Raman laser. A 30-mm-length double-end diffusion-bonded Nd:YVO(4) crystal was utilized for efficient self-Raman laser operation by reducing the thermal effects and increasing the interaction length for the stimulated Raman scattering. A 15-mm-length LBO with non-critical phase matching (theta = 90 degrees, phi = 0 degrees) cut was adopted for efficient second-harmonic generation. The focus position of incident pump light and both the repetition rate and the duty cycle of the Q-switch have been optimized. At a repetition rate of 110 kHz and a duty cycle of 5%, the average power of 588 nm light is up to 7.93 W while the incident pump power is 26.5 W, corresponding to an overall diode-yellow conversion efficiency of 30% and a slope efficiency of 43%. PMID:19997395

  6. LIGHT SCATTERING: Axial and diffusion models of the laser pulse propagation in a highly-scattering medium

    NASA Astrophysics Data System (ADS)

    Tereshchenko, Sergei A.; Danilov, Arsenii A.; Podgaetskii, Vitalii M.; Vorob'ev, Nikolai S.

    2004-06-01

    The propagation of laser radiation through a layer of a highly-scattering medium (HSM) is considered on the basis of two theoretical models: a nonstationary axial (two-flux) model and a nonstationary diffusion model. Analytic expressions for the temporal distributions of the photons of an ultrashort laser pulse transmitted through the HSM are presented. Experimental temporal distributions are used to obtain the parameters of models corresponding to an HSM, to determine the theoretical temporal distributions, and to compare them with the experimental curves. These two theoretical models are compared quantitatively for the first time. Their advantages and drawbacks that must be considered in the development of HSM transmission optical tomography are pointed out.

  7. Random media characterization using the analysis of diffusing light data on the basis of an effective medium model.

    PubMed

    Zimnyakov, Dmitry A; Pravdin, Alexander B; Kuznetsova, Liana V; Kochubey, Vyacheslav I; Tuchin, Valery V; Wang, Ruikang K; Ushakova, Olga V

    2007-03-01

    The transport properties of dense random media such as rutile powder layers and polyball suspensions are analyzed in visible and near infrared on the basis of experimental data on coherent backscattering, diffuse transmittance, and low-coherence interferometry. The developed technique of retrieval of the transport parameters of examined scattering media allows the evaluation of the transport mean free path l* and the effective refractive index n(ef) of the medium without a priori knowledge of the optical properties of the scattering particles. It is found that with decreasing wavelength lambda(0) the value of localization parameter 2pin(ef)l*/lambda(0) of the studied rutile samples abruptly drops and approaches approximately 2.6 at 473 nm. This peculiarity is caused by the very large scattering efficiency of scatterers in the vicinity of the first Mie resonance. PMID:17301861

  8. Museum lighting for golden artifacts, with low correlated color temperature, high color uniformity and high color rendering index, using diffusing color mixing of red, cyan, and white-light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Thorseth, Anders; Corell, Dennis D.; Poulsen, Peter B.; Hansen, Søren S.; Dam-Hansen, Carsten

    2012-03-01

    Museum lighting present challenges due to the demand for a high color rendering index (CRI), color uniformity and the damaging effects of both visible and invisible radiation. Golden objects are furthermore normally displayed with illumination which has a correlated color temperature (CCT) of 2200 K, a CCT that is not commercially available from single LEDs. An LED system that conforms with these requirements has been developed and implemented at The Royal Danish Collection at Rosenborg Castle. Color mixing of commercial LEDs (red, cyan, and white) was employed to achieve the spectral power distribution needed for the CCT and a CRI above 90, for all CRI test color samples. Replacing the traditional low voltage incandescent lighting has shown energy saving above 70 %. Harmful IR radiation was reduced by 99 %. Temperature fluctuations in the display cases were reduced from several degrees Celsius to below one, despite the fact that the lighting units were placed within the display case. Spatial color uniformity of the illumination and uniformly colored shadows was achieved by use of a highly diffusing reflector dish which avoids direct illumination from the LEDs.

  9. Specific features of diffuse reflection of human face skin for laser and non-laser sources of visible and near-IR light

    SciTech Connect

    Dolotov, L E; Sinichkin, Yu P; Tuchin, Valerii V; Al'tshuler, G B; Yaroslavskii, I V

    2011-04-30

    The specific features of diffuse reflection from different areas of human face skin for laser and non-laser sources of visible and near-IR light have been investigated to localise the closed-eye (eyelid) region. In the visible spectral range the reflection from the eyelid skin surface can be differentiated by measuring the slope of the spectral dependence of the effective optical density of skin in the wavelength range from 650 to 700nm. In the near-IR spectral range the reflectances of the skin surface at certain wavelengths, normalised to the forehead skin reflectance, can be used as a criterion for differentiating the eyelid skin. In this case, a maximum discrimination is obtained when measuring the skin reflectances at laser wavelengths of 1310 and 1470nm, which correspond to the spectral ranges of maximum and minimum water absorption. (optical technologies in biophysics and medicine)

  10. The Impact of Diffuse Sunlight and Shortwave Dimming on Canopy Light-use Efficiency and net Carbon Exchange in 3 Forest Biomes.

    NASA Astrophysics Data System (ADS)

    Alton, P.; North, P.; Los, S.

    2006-05-01

    The latter half of the 20th century has seen a 5-10% fall in mean global insolation with reductions of up to 20% regionally (Stanhill & Cohen 2001). Anthropogenic aerosols, by their propensity to increase the optical depth of clouds, are cited as the major factor in this trend (Liepert 2002). By evaluating observed carbon flow, we estimate the impact of reduced downwelling shortwave radiation (SW) on 3 forest biomes (sparse Boreal needleleaf, temperate deciduous broadleaf and dense tropical broadleaf). We are careful to account for the increased proportion of diffuse sky radiation that accompanies obscuration by cloud (Roderick et al 2001). We find that canopy light-use efficiency (LUE) is enhanced at all 3 study sites when diffuse rather than direct sunlight predominates. The increase spans 6-33%. Intepretation with the land-surface model JULES, modified to take account of sunfleck penetration, indicates that increased sharing of the radiation-load across the foliage is the primary factor responsible for this LUE-enhancement. The increase in LUE, however, is insufficient to offset the reduction in GPP associated with attenuated SW. Greatest sensitivity is exhibited by the Boreal site, Zotino, where net ecosystem exchange (NEE) falls by 12±6% for a reduction of 20% in SW. (Part of this work has just appeared in JGR (110, D23209) and was accorded very favourable reviews.)

  11. Non-invasive measurements of hemoglobin + myoglobin, their oxygenation and NIR light pathlength in heart in vivo by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gussakovsky, Eugene; Jilkina, Olga; Yang, Yanmin; Kupriyanov, Valery

    2009-02-01

    The existing non-invasive optical methods of the hemoglobin (Hb) and myoglobin (Mb) estimation in cardiac tissues imply knowledge of the light pathlength (L) when various modifications of Lambert-Beer law for either spectrophotometry or light diffuse reflectance is applied. For Hb and/or Mb quantification in tissue, a few invasive (biochemical) approaches were applied. For L (differential pathlength factor; DPF) determination in tissue, special optical methods were used. No approaches have been proposed to simultaneously and non-invasively determine Hb/Mb and L in cardiac or other muscle tissues. In the present study, the first derivative of the NIR diffuse reflectance spectrum is shown to be effective in simultaneous determination of Hb+Mb concentration (in mM) and L (in mm) in cardiac tissue in vivo. The results showed that measured in a few minutes in a normal pig heart in vivo the total Hb+Mb concentration was 0.9-1.2 mM of heme, tissue oxygen saturation parameter (OSP) was approximately 65%, and DPF at 700-965 nm was of 2.7-2.8. At the experimental ischemia, total [Hb+Mb] decreased by 25%, OSP reduced to zero, while DPF did not change. These results correlated with the previously published. The method may be applied during open-heart surgery, heart studies ex vivo or to any muscle tissue to continuously and non-invasively monitor the [Hb+Mb] content and oxygenation as well as L, which may reflect the changes in tissue structure.

  12. Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using x-ray reflectivity investigations

    SciTech Connect

    Singh, Aarti Schröder, Uwe; Klumbies, Hannes; Müller-Meskamp, Lars; Leo, Karl; Geidel, Marion; Knaut, Martin; Hoßbach, Christoph; Albert, Matthias; Mikolajick, Thomas

    2013-12-02

    The importance of O{sub 3} pulse duration for encapsulation of organic light emitting diodes (OLEDs) with ultra thin inorganic atomic layer deposited Al{sub 2}O{sub 3} layers is demonstrated for deposition temperatures of 50 °C. X-ray reflectivity (XRR) measurements show that O{sub 3} pulse durations longer than 15 s produce dense and thin Al{sub 2}O{sub 3} layers. Correspondingly, black spot growth is not observed in OLEDs encapsulated with such layers during 91 days of aging under ambient conditions. This implies that XRR can be used as a tool for process optimization of OLED encapsulation layers leading to devices with long lifetimes.

  13. Evaluation of light scattering properties and chromophore concentrations in skin tissue based on diffuse reflectance signals at isosbestic wavelengths of hemoglobin

    NASA Astrophysics Data System (ADS)

    Yokokawa, Takumi; Nishidate, Izumi

    2016-04-01

    We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.

  14. Quantificaion of ion diffusion in gallium arsenide-based spintronic Light-Emitting Diode devices using time-of-flight secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cogswell, Jeffrey Ryan

    Depth profiling using Secondary Ion Mass Spectrometry (SIMS) is a direct method to measure diffusion of atomic or molecular species that have migrated distances of nanometers/micrometers in a specific material. For this research, the diffusion of Mn, sequentially Ga ions, in Gallium Arsenide (GaAs)-based spin Light Emitting Diode (LED) devices is studied by quantitative Time-of-Flight (ToF) SIMS. The goal is to prove conclusively the driving force and mechanism behind Mn diffusion in GaAs by quantifying the diffusion of these ions in each device. Previous work has identified two competing processes for the movement of Mn in GaAs: diffusion and phase separation. The process is dependent on the temperature the sample is exposed to, either by post-annealing, or during the molecular beam epitaxy (MBE) growth process. The hypothesis is that Manganese Arsenide (MnAs) is thermodynamically more stable than randomly distributed Mn ions in GaAs, and that by annealing at a certain temperature, a pure MnAs layer can be produced from a GaMnAs layer in a working spin LED device. Secondly, the spin efficiencies will be measured and the difference will be related to the formation of a pure MnAs layer. The first chapter of this dissertation discusses the history of spintronic devices, including details on the established methods for characterization, the importance for potential application to the semiconductor industry, and the requirements for the full implementation of spintronic devices in modern-day computers. MnAs and GaMnAs devices are studied, their preparation and properties are described, and the study's experimental design is covered in the latter part of Chapter 1. Chapter 2 includes a review of diffusion in semiconductors, including the types of diffusion, mechanisms they follow, and the different established experimental methods for studying diffusion. The later sections include summaries of Mn diffusion and previous studies investigating Mn diffusion in different

  15. Diffusion behavior of lysozyme in aqueous ammonium sulfate solutions under varying solution conditions as determined by dynamic light scattering

    SciTech Connect

    Fornefeld, U.M.; Kuehner, D.E.; Blanch, H.W.; Prausnitz, J.M. . Dept. of Chemical Engineering Lawrence Berkeley Lab., CA . Chemical Sciences Div.)

    1994-12-01

    As proteins gain significance in commercial applications such as pharmaceuticals, detergents, organic waste management and cosmetics, efficient and economical recovery of these valuable biomolecules is of increasing importance. the salting-out process has found widespread application in the area of protein separations. To date, salt-induced precipitation of proteins from complex aqueous solutions remains largely an empirical process; no comprehensive model exists to predict salting-out phase equilibria in protein solutions. Rational predictive models for salt-induced precipitation will therefore be of great value in protein purification, both on the preparative and the analytical scale. Any attempt to model theoretically salt-induced protein precipitation must include the known physics of protein interactions in aqueous solution. With this in mind, it is crucial to acknowledge that protein precipitation is fundamentally an aggregation process. In order to incorporate aggregation effects into ongoing efforts to model salting out of proteins, it is necessary to quantify the degree of aggregation as a function of solution conditions. Therefore, dynamic light scattering measurements were performed with a well-studied protein, hen-egg-white lysozyme, under several solution conditions.

  16. Structure and phase diagram of an adhesive colloidal dispersion under high pressure: A small angle neutron scattering, diffusing wave spectroscopy, and light scattering study

    NASA Astrophysics Data System (ADS)

    Vavrin, R.; Kohlbrecher, J.; Wilk, A.; Ratajczyk, M.; Lettinga, M. P.; Buitenhuis, J.; Meier, G.

    2009-04-01

    We have applied small angle neutron scattering (SANS), diffusing wave spectroscopy (DWS), and dynamic light scattering (DLS) to investigate the phase diagram of a sterically stabilized colloidal system consisting of octadecyl grafted silica particles dispersed in toluene. This system is known to exhibit gas-liquid phase separation and percolation, depending on temperature T, pressure P, and concentration φ. We have determined by DLS the pressure dependence of the coexistence temperature and the spinodal temperature to be dP /dT=77 bar/K. The gel line or percolation limit was measured by DWS under high pressure using the condition that the system became nonergodic when crossing it and we determined the coexistence line at higher volume fractions from the DWS limit of turbid samples. From SANS measurements we determined the stickiness parameter τB(P,T,φ) of the Baxter model, characterizing a polydisperse adhesive hard sphere, using a global fit routine on all curves in the homogenous regime at various temperatures, pressures, and concentrations. The phase coexistence and percolation line as predicted from τB(P,T,φ) correspond with the determinations by DWS and were used to construct an experimental phase diagram for a polydisperse sticky hard sphere model system. A comparison with theory shows good agreement especially concerning the predictions for the percolation threshold. From the analysis of the forward scattering we find a critical scaling law for the susceptibility corresponding to mean field behavior. This finding is also supported by the critical scaling properties of the collective diffusion.

  17. The edge of the M 87 halo and the kinematics of the diffuse light in the Virgo cluster core

    NASA Astrophysics Data System (ADS)

    Doherty, M.; Arnaboldi, M.; Das, P.; Gerhard, O.; Aguerri, J. A. L.; Ciardullo, R.; Feldmeier, J. J.; Freeman, K. C.; Jacoby, G. H.; Murante, G.

    2009-08-01

    Aims: We study the kinematics and dynamics of the extreme outer halo of M 87, the central galaxy in the Virgo cluster, and its transition to the intracluster light (ICL). Methods: We present high resolution FLAMES/VLT spectroscopy of intracluster planetary nebula (PN) candidates, targeting three new fields in the Virgo cluster core with surface brightness down to μB = 28.5. Based on the projected phase space information (sky positions and line-of-sight velocities) we separate galaxy and cluster components in the confirmed PN sample. We then use the spherical Jeans equation and the total gravitational potential as traced by the X-ray emission to derive the orbital distribution in the outer stellar halo of M 87. We determine the luminosity-specific PN number for the M 87 halo and the ICL from the photometric PN catalogs and sampled luminosities, and discuss the origin of the ICL in Virgo based on its measured PN velocities. Results: We confirm a further 12 PNs in Virgo, five of which are bound to the halo of M 87, and the remainder are true intracluster planetary nebulas (ICPNs). The M 87 PNs are confined to the extended stellar envelope of M 87, within a projected radius of ~160 kpc, while the ICPNs are scattered across the whole surveyed region between M 87 and M 86, supporting a truncation of M 87's luminous outer halo at a 2σ level. The line-of-sight velocity distribution of the M 87 PNs at projected radii of 60 kpc and 144 kpc shows (i) no evidence for rotation of the halo along the photometric major axis; and (ii) that the velocity dispersion decreases in the outer halo, down to σ_last = 78±25 km s-1 at 144 kpc. The Jeans model for the M 87 halo stars fits the observed line-of-sight velocity dispersion profile only if the stellar orbits are strongly radially anisotropic (β ≃ 0.4 at r ≃ 10 kpc increasing to 0.8 at the outer edge), and if additionally the stellar halo is truncated at ≃ 150 kpc average elliptical radius. The α-parameters for the M 87

  18. Low-Resolution Spectrum of the Diffuse Galactic Light and 3.3 μm PAH Emission with the AKARI InfraRed Camera

    NASA Astrophysics Data System (ADS)

    Tsumura, Kohji; Matsumoto, Toshio; Matsuura, Shuji; Sakon, Itsuki; Tanaka, Masahiro; Wada, Takehiko

    2013-12-01

    We first obtained the spectrum of the diffuse Galactic light (DGL) at general interstellar space in the 1.8-5.3μm wavelength region with the low-resolution prism spectroscopy mode of the AKARI Infra-Red Camera (IRC) NIR channel. The 3.3μm m PAH band is detected in the DGL spectrum at Galactic latitude |b| < 15˚, and its correlations with the Galactic dust and gas are confirmed. The correlation between the 3.3μm PAH band and the thermal emission from the Galactic dust is expressed not by a simple linear correlation, but by a relation with extinction. Using this correlation, the spectral shape of DGL at an optically thin region (5˚ < |b| < 15˚) was derived as a template spectrum. Assuming that the spectral shape of this template spectrum is uniform at any position, the DGL spectrum can be estimated by scaling this template spectrum using the correlation between the 3.3μm PAH band and the thermal emission from the Galactic dust.

  19. Instrumentation in Diffuse Optical Imaging

    PubMed Central

    Zhang, Xiaofeng

    2014-01-01

    Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast. PMID:24860804

  20. Diffuse Optical Intracluster Light as a Measure of Stellar Tidal Stripping: The Cluster CL0024+17 at z ~ 0.4 Observed at the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Giallongo, E.; Menci, N.; Grazian, A.; Gallozzi, S.; Castellano, M.; Fiore, F.; Fontana, A.; Pentericci, L.; Boutsia, K.; Paris, D.; Speziali, R.; Testa, V.

    2014-01-01

    We have evaluated the diffuse intracluster light (ICL) in the central core of the galaxy cluster CL0024+17 at z ~ 0.4 observed with the prime focus camera (Large Binocular Camera) at the Large Binocular Telescope. The measure required an accurate removal of the galaxies' light within ~200 kpc from the center. The residual background intensity has then been integrated in circular apertures to derive the average ICL intensity profile. The latter shows an approximate exponential decline as expected from theoretical cold dark matter models where the ICL is due to the integrated contribution of light from stars that are tidally stripped from the halo of their host galaxies due to encounters with other galaxies in the cluster cold dark matter (CDM) potential. The radial profile of the ICL over the galaxies intensity ratio (ICL fraction) is increasing with decreasing radius, but near the cluster center it starts to bend and then decreases where the overlap of the halos of the brightest cluster galaxies becomes dominant. Theoretical expectations in a simplified CDM scenario show that the ICL fraction profile can be estimated from the stripped over galaxy stellar mass ratio in the cluster. It is possible to show that the latter quantity is almost independent of the properties of the individual host galaxies but mainly depends on the average cluster properties. The predicted ICL fraction profile is thus very sensitive to the assumed CDM profile, total mass, and concentration parameter of the cluster. Adopting values very similar to those derived from the most recent lensing analysis in CL0024+17, we find a good agreement with the observed ICL fraction profile. The galaxy counts in the cluster core have then been compared with that derived from composite cluster samples in larger volumes, up to the clusters virial radius. The galaxy counts in the CL0024+17 core appear flatter and the amount of bending with respect to the average cluster galaxy counts imply a loss of total

  1. Monoclonal and polyclonal gammopathy measured by serum free light chain and immunofixation subdivide the clinical outcomes of diffuse large B-cell lymphoma according to molecular classification.

    PubMed

    Kim, Yu Ri; Kim, Soo-Jeong; Cheong, June-Won; Kim, Yundeok; Jang, Ji Eun; Lee, Jung Yeon; Min, Yoo Hong; Song, Jae-Woo; Yang, Woo Ick; Kim, Jin Seok

    2014-11-01

    Elevated serum free light chain (FLC) is known to be an adverse prognostic factor for diffuse large B-cell lymphoma (DLBCL). We hypothesized that monoclonal gammopathy (MG; elevated kappa [κ] or lambda [λ] FLC with an abnormal κ/λ ratio or a positive IF [immunofixation]) and polyclonal gammopathy (PG; elevated κ and/or λ FLC with a normal κ/λ ratio and a negative IF) would have different clinical outcome according to the molecular classification of DLBCL. In addition, MG would be a poor prognostic factor in patients with activated B-cell like type of DLBCL. Molecular classification of DLBCL, such as germinal center B-cell (GCB) type and non-GCB type, was performed according to the Hans algorithm. Among 175 newly diagnosed DLBCL patients, 96 (54.9 %) patients had an elevated FLC. MG and PG were observed in 34 and 68 patients, respectively. The 2-year overall survival (OS) and event-free survival (EFS) rates were 79.0 % and 71.6 %, respectively. In multivariate analysis, high-intermediate/high International Prognostic Index score and elevated FLC were significant for the OS (P = 0.002, P = 0.005, respectively) and EFS (P < 0.002, P = 0.010, respectively). MG and PG were also associated with inferior OS (P = 0.002, P = 0.011, respectively) and EFS (P = 0.002, P = 0.013, respectively). Ninety-six patients from a total 133 evaluable patients were classified to the non-GCB type. Patients with PG showed inferior clinical outcome for OS and EFS in patients with the GCB type (P = 0.006, P = 0.035, respectively). MG was a significant poor prognostic factor for OS and EFS in patients with the non-GCB type (P = 0.017, P = 0.004, respectively). MG was a poor prognostic maker in patients with the non-GCB type and PG was a poor prognostic indicator for the GCB type of DLBCL who were treated with R-CHOP. PMID:24947797

  2. An analysis of diffuse light attenuation in the northern Gulf of Mexico hypoxic zone using the SeaWiFS satellite data record

    EPA Science Inventory

    The water column diffuse attenuation coefficient (Kd) of the Louisiana Continental Shelf (LCS) was examined during ten years to characterize the spatial and temporal variations on monthly scales from 1998 to 2007. This region is well-known for summer hypoxia (dissolved oxygen < 2...

  3. Diffusion-Barrier Contacts For Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Pool, Frederick S.; Nicolet, Marc; Iles, Peter A.

    1996-01-01

    Electrically conductive diffusion barriers of TaSiN prevent diffusion of metal from overlying metal contacts into underlying silicon during processing at high temperature, improving performance during subsequent use in low-intensity light at low temperature.

  4. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  5. Designing Au Surface-Modified Nanoporous-Single-Crystalline SrTiO3 to Optimize Diffusion of Surface Plasmon Resonance-Induce Photoelectron toward Enhanced Visible-Light Photoactivity.

    PubMed

    Lu, Da; Ouyang, Shuxin; Xu, Hua; Li, Dewang; Zhang, Xueliang; Li, Yunxiang; Ye, Jinhua

    2016-04-13

    Nanoporous single-crystalline SrTiO3 is fabricated at a low temperature of 60 °C via a novel approach of sol-gel alkali-dissolution-exothermal reaction. The plasmon-active metal Au is loaded on the nanoporous single-crystalline SrTiO3 material to construct a new kind of plasmonic photocatalyst. Due to the single-crystalline nature and the space confinement effect of pores for Au growing, not only the promoted diffusion efficiency of surface plasmon resonance (SPR)-induce photoelectron is achieved, but also the diffusion region are well optimized via changing the loading amount of Au. Therefore, an optimal sample with 4.8 wt % Au loading exhibits a more than 40-fold photoactivity enhancement under visible-light irradiation compared to the common nanosized SrTiO3 (a commercially available sample) loaded with 5.3 wt % Au which was prepared under the same condition. Furthermore, combining the special nanostructure of Au surface-modified nanoporous-single-crystalline SrTiO3 with photocatalytic properties, estimation of the diffusion mean free path of SPR-induce photoelectron can be achieved. This study proposes an alternative approach to enhance the photoactivity of plasmonic photocatalyst via fine designing the semiconductor substrate. PMID:27007490

  6. Diffusion of polyelectrolytes in polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Rahalkar, Anand; Muthukumar, Murugappan

    2015-03-01

    Using dynamic light scattering, we have investigated the diffusion coefficient of sodium poly(styrene sulfonate) in a matrix of poly(acrylamide-co-acrylate) gels. The diffusion coefficient of the probe polyelectrolyte exhibits a crossover behavior from a particle-diffusion to entropic-barrier dominated diffusion, as the molecular weight is increased. The effect of electrostatics, by varying the charge density of the matrix, on probe diffusion constant will be presented.

  7. Combination Light

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Rayovac TANDEM is an advanced technology combination work light and general purpose flashlight that incorporates several NASA technologies. The TANDEM functions as two lights in one. It features a long range spotlight and wide angle floodlight; simple one-hand electrical switching changes the beam from spot to flood. TANDEM developers made particular use of NASA's extensive research in ergonomics in the TANDEM's angled handle, convenient shape and different orientations. The shatterproof, water resistant plastic casing also draws on NASA technology, as does the shape and beam distance of the square diffused flood. TANDEM's heavy duty magnet that permits the light to be affixed to any metal object borrows from NASA research on rare earth magnets that combine strong magnetic capability with low cost. Developers used a NASA-developed ultrasonic welding technique in the light's interior.

  8. Light-Induced Increase of Electron Diffusion Length in a p-n Junction Type CH3NH3PbBr3 Perovskite Solar Cell.

    PubMed

    Kedem, Nir; Brenner, Thomas M; Kulbak, Michael; Schaefer, Norbert; Levcenko, Sergiu; Levine, Igal; Abou-Ras, Daniel; Hodes, Gary; Cahen, David

    2015-07-01

    High band gap, high open-circuit voltage solar cells with methylammonium lead tribromide (MAPbBr3) perovskite absorbers are of interest for spectral splitting and photoelectrochemical applications, because of their good performance and ease of processing. The physical origin of high performance in these and similar perovskite-based devices remains only partially understood. Using cross-sectional electron-beam-induced current (EBIC) measurements, we find an increase in carrier diffusion length in MAPbBr3(Cl)-based solar cells upon low intensity (a few percent of 1 sun intensity) blue laser illumination. Comparing dark and illuminated conditions, the minority carrier (electron) diffusion length increases about 3.5 times from Ln = 100 ± 50 nm to 360 ± 22 nm. The EBIC cross section profile indicates a p-n structure between the n-FTO/TiO2 and p-perovskite, rather than the p-i-n structure, reported for the iodide derivative. On the basis of the variation in space-charge region width with varying bias, measured by EBIC and capacitance-voltage measurements, we estimate the net-doping concentration in MAPbBr3(Cl) to be 3-6 × 10(17) cm(-3). PMID:26266721

  9. An Eddy-Diffusivity/Mass-Flux Turbulence Parameterization: Application to Dust Convection on Mars

    NASA Astrophysics Data System (ADS)

    Witek, M. L.; Teixeira, J.; Richardson, M. I.; Mischna, M. A.

    2014-12-01

    The Eddy-diffusivity/Mass-flux (EDMF) parameterization has been extremely successful in simulating the evolution of terrestrial atmospheric boundary layers. It is particularly suited for representing strong and moderate convection, where turbulence organizes in coherent structures and transports heat, humidity and pollution throughout the extent of the boundary layer. The EDMF's ability to explicitly represent turbulent updrafts and associated fluxes is key to a proper depiction of the thermodynamic structure of the atmosphere. It is the most appropriate tool currently available to address the outstanding issues in the Mars atmosphere and dust modeling on a global and regional scale. Dust is one of the most important moderators of the Martian climate. Basic theoretical arguments and observations such as high-altitude dust maxima, dust layering, and transport in plumes during dust storm onset—none of which are currently captured in general circulation models (GCMs)—all demonstrate the vital importance of representing dust vertical mixing by plumes. Most GCMs, however, only consider local, Mellor-Yamada-type diffusion, which is insufficient to capture the evolving dust distribution and hence the Martian climate system correctly. Here, we developed an EDMF parameterization for the Martian convective boundary layer. We report on details of the parameterization and its performance as compared against large-eddy simulations. We investigate a downdraft contribution to turbulent fluxes and the importance of mass-flux transport of TKE. Furthermore, we investigate the role of plume heating—through absorption of solar radiation by uplifted dust particles—on the plume evolution (a mechanisms that could act as a surrogate of the latent heat release in terrestrial clouds). Our results shed light on the reasons behind the presence of elevated dust layers in the Martian atmosphere.

  10. Determining Photosynthetic Parameters from Leaf CO2 Exchange and Chlorophyll Fluorescence (Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Specificity Factor, Dark Respiration in the Light, Excitation Distribution between Photosystems, Alternative Electron Transport Rate, and Mesophyll Diffusion Resistance.

    PubMed

    Laisk, A.; Loreto, F.

    1996-03-01

    Using simultaneous measurements of leaf gas exchange and chlorophyll fluorescence, we determined the excitation partitioning to photosystem II (PSII), the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase, the dark respiration in the light, and the alternative electron transport rate to acceptors other than bisphosphoglycerate, and the transport resistance for CO2 in the mesophyll cells for individual leaves of herbaceous and tree species. The specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase for CO2 was determined from the slope of the O2 dependence of the CO2 compensation point between 1.5 and 21% O2. Its value, on the basis of dissolved CO2 and O2 concentrations at 25.5[deg]C, varied between 86 and 89. Dark respiration in the light, estimated from the difference between the CO2 compensation point and the CO2 photocompensation point, was about 20 to 50% of the respiration rate in the dark. The excitation distribution to PSII was estimated from the extrapolation of the dependence of the PSII quantum yield on F/Fm to F = 0, where F is steady-state and Fm is pulse-satuarated fluorescence, and varied between 0.45 and 0.6. The alternative electron transport rate was found as the difference between the electron transport rates calculated from fluorescence and from gas exchange, and at low CO2 concentrations and 10 to 21% O2, it was 25 to 30% of the maximum electron transport. The calculated mesophyll diffusion resistance accounted for about 20 to 30% of the total mesophyll resistance, which also includes carboxylation resistance. Whole-leaf photosynthesis is limited by gas phase, mesophyll diffusion, and carboxylation resistances in nearly the same proportion in both herbaceous species and trees. PMID:12226229

  11. Diffuse Optics for Tissue Monitoring and Tomography

    PubMed Central

    Durduran, T; Choe, R; Baker, W B; Yodh, A G

    2015-01-01

    This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics. PMID:26120204

  12. Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Nishidate, Izumi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ashida, Hiroshi; Sato, Shunichi

    2013-01-01

    Brain tissue is highly vulnerable to ischemia/hypoxia, and real-time monitoring of its viability is important. By fiber-based measurements for rat brain, we previously observed a unique triphasic reflectance change (TRC) after a certain period of time after hypoxia. After TRC, rats could not be rescued, suggesting that TRC can be used as an indicator of loss of brain tissue viability. In this study, we investigated this diffuse-reflectance change due to hypoxia in three parts. First, we developed and validated a theoretical method to quantify changes in the absorption and reduced scattering coefficients involved in TRC. Second, we performed charge-coupled-device-based reflectance imaging of the rat brain during hypoxia followed by reoxygenation to examine spatiotemporal characteristics of the reflectance and its correlation with reversibility of brain tissue damage. Third, we made simultaneous imaging and fiber-based measurement of the reflectance for the rat to compare signals obtained by these two modalities. We observed a nontriphasic reflectance change by the imaging, and it was associated with brain tissue viability. We found that TRC measured by the fibers preceded the reflectance-signal change captured by the imaging. This time difference is attributable to the different observation depths in the brain with these two methods.

  13. Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement.

    PubMed

    Kawauchi, Satoko; Nishidate, Izumi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ashida, Hiroshi; Sato, Shunichi

    2013-01-01

    Brain tissue is highly vulnerable to ischemia/hypoxia, and real-time monitoring of its viability is important. By fiber-based measurements for rat brain, we previously observed a unique triphasic reflectance change (TRC) after a certain period of time after hypoxia. After TRC, rats could not be rescued, suggesting that TRC can be used as an indicator of loss of brain tissue viability. In this study, we investigated this diffuse-reflectance change due to hypoxia in three parts. First, we developed and validated a theoretical method to quantify changes in the absorption and reduced scattering coefficients involved in TRC. Second, we performed charge-coupled-device-based reflectance imaging of the rat brain during hypoxia followed by reoxygenation to examine spatiotemporal characteristics of the reflectance and its correlation with reversibility of brain tissue damage. Third, we made simultaneous imaging and fiber-based measurement of the reflectance for the rat to compare signals obtained by these two modalities. We observed a nontriphasic reflectance change by the imaging, and it was associated with brain tissue viability. We found that TRC measured by the fibers preceded the reflectance-signal change captured by the imaging. This time difference is attributable to the different observation depths in the brain with these two methods. PMID:23291715

  14. Devitrite-based optical diffusers.

    PubMed

    Butt, Haider; Knowles, Kevin M; Montelongo, Yunuen; Amaratunga, Gehan A J; Wilkinson, Timothy D

    2014-03-25

    Devitrite is a novel material produced by heat treatment of commercial soda-lime-silica glass. It consists of fans of needle-like crystals which can extend up to several millimeters and have interspacings of up to a few hundred nanometers. To date, only the material properties of devitrite have been reported, and there has been a distinct lack of research on using it for optical applications. In this study, we demonstrate that randomly oriented fans of devitrite crystals can act as highly efficient diffusers for visible light. Devitrite crystals produce phase modulation of light because of their relatively high anisotropy. The nanoscale spacings between these needles enable light to be diffused to large scattering angles. Experimentally measured results suggest that light diffusion patterns with beam widths of up to 120° are produced. Since devitrite is an inexpensive material to produce, it has the potential to be used in a variety of commercial applications. PMID:24559189

  15. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.; Pontius, Rex B.

    1976-08-10

    1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.

  16. Vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Senoo, Y.

    The influence of vaneless diffusers on flow in centrifugal compressors, particularly on surge, is discussed. A vaneless diffuser can demonstrate stable operation in a wide flow range only if it is installed with a backward leaning blade impeller. The circumferential distortion of flow in the impeller disappears quickly in the vaneless diffuser. The axial distortion of flow at the diffuser inlet does not decay easily. In large specific speed compressors, flow out of the impeller is distorted axially. Pressure recovery of diffusers at distorted inlet flow is considerably improved by half guide vanes. The best height of the vanes is a little 1/2 diffuser width. In small specific speed compressors, flow out of the impeller is not much distorted and pressure recovery can be predicted with one-dimensional flow analysis. Wall friction loss is significant in narrow diffusers. The large pressure drop at a small flow rate can cause the positive gradient of the pressure-flow rate characteristic curve, which may cause surging.

  17. Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shochat, Ariel; Mathews, Marlon S.

    2013-04-01

    The authors' aim is to assess and quantitatively measure brain hemodynamic and morphological variations during closed-head injury (CHI) in mice using orthogonal diffuse near-infrared reflectance spectroscopy (o-DRS). CHI is a type of injury to the head that does not penetrate the skull. Usually, it is caused by mechanical blows to the head and frequently occurs in traffic accidents, falls, and assaults. Measurements of brain optical properties, namely absorption and reduced scattering coefficients in the wavelength range from 650 to 1000 nm were carried out by employing different source-detector distance and locations to provide depth sensitivity on an intact scalp over the duration of the whole experiment. Furthermore, alteration in both cortical hemodynamics and morphologic markers, i.e., scattering power and amplitude properties were derived. CHI was induced in anesthetized male mice by a weight-drop model using ˜50 g cylindrical metal falling from a height of 90 cm onto the intact scalp producing an impact of 4500 g cm. With respect to baseline, difference in brain physiological properties was observed following injury up to 1 h post-trauma. Additionally, the reduced scattering spectral shapes followed Mie scattering theory was quantified and clearly shows changes in both scattering amplitude and power from baseline indicating structural variations likely from evolving cerebral edema during CHI. We further demonstrate high correlation between scattering amplitude and scattering power, with more than 20% difference in slope in comparison to preinjury. This result indicates the possibility of using the slope also as a marker for detection of structural changes. Finally, experiments investigating brain function during the first 20 min postinjury were conducted and changes in chromophore concentrations and scattering were observed. Overall, our experiments demonstrate the potential of using the proposed technique as a valuable quantitative noninvasive tool for

  18. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  19. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  20. Fetomaternal attachment and anchorage in the early diffuse epitheliochorial placenta of the camel (Camelus dromedarius). Light, transmission, and scanning electron microscopic study.

    PubMed

    Abd-Elnaeim, M M; Pfarrer, C; Saber, A S; Abou-Elmagd, A; Jones, C J; Leiser, R

    1999-01-01

    Placentae of 22 one-humped camel concepti with crown-rump lengths (CRL) ranging from 2.5 to 26 cm were studied. The placentae were processed for light, transmission and scanning electron microscopy of exposed surfaces and microvascular corrosion casts. In very early stages of pregnancy (2.5-4.5 cm CRL) three froms of fetomaternal interrelationship are described. (1) Precontact, where the mononuclear trophoblast cells are still separated from the uterine epithelium by a gap containing interareolar histotroph. Both fetal and maternal epithelia develop apical ectoplasmic pads in this location. (2) Apposition, where microvilli of the apical cell membrane of the trophoblast contact the uterine epithelium focally. Multinuclear trophoblast giant cells develop beside the population of already present mononuclear trophoblast cells. Uterine ectoplasmic pads can be observed. (3) Adhesion occurs when apical cell membranes of fetal and maternal epithelia adhere to each other closely, thus forming a 'normal' intercellular space of 20 nm width, without any intervening uterine luminal space. Microvillous interdigitation in this location varies from a non-microvillous 'smooth adhesion', to a distinctly villiform 'rough adhesion', and a 'semismooth adhesion' is achieved when trophoblastic microvilli make intimate contact with the non-microvillous uterine apical cell membranes of ectoplasmic pads. This fetomaternal attachment process is sufficient until the conceptus reaches approximately 9 cm CRL. Then, from 10 to 13 cm CRL, additional anchorage of the placenta to the endometrium is accomplished by the growth of temporary grooves and ridges of the allantochorion and the endometrium, which indent each other in a complementary fashion. The height of these groove-ridge structures increases gradually in 14 to 18 cm CRL fetuses, and they also widen at about 25 cm CRL, thus forming globular fetal troughs and irregular, thick maternal ridges. These together create units responsible for

  1. DiffuseModel: Modeling the diffuse ultraviolet background

    NASA Astrophysics Data System (ADS)

    Murthy, Jayant

    2015-12-01

    DiffuseModel calculates the scattered radiation from dust scattering in the Milky Way based on stars from the Hipparcos catalog. It uses Monte Carlo to implement multiple scattering and assumes a user-supplied grid for the dust distribution. The output is a FITS file with the diffuse light over the Galaxy. It is intended for use in the UV (900 - 3000 A) but may be modified for use in other wavelengths and galaxies.

  2. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  3. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  4. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  5. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed. PMID:19391727

  6. Diffuse optical intracluster light as a measure of stellar tidal stripping: The cluster CL0024+17 at z ∼ 0.4 observed at the large binocular telescope

    SciTech Connect

    Giallongo, E.; Menci, N.; Grazian, A.; Gallozzi, S.; Castellano, M.; Fiore, F.; Fontana, A.; Pentericci, L.; Boutsia, K.; Paris, D.; Speziali, R.; Testa, V.

    2014-01-20

    We have evaluated the diffuse intracluster light (ICL) in the central core of the galaxy cluster CL0024+17 at z ∼ 0.4 observed with the prime focus camera (Large Binocular Camera) at the Large Binocular Telescope. The measure required an accurate removal of the galaxies' light within ∼200 kpc from the center. The residual background intensity has then been integrated in circular apertures to derive the average ICL intensity profile. The latter shows an approximate exponential decline as expected from theoretical cold dark matter models where the ICL is due to the integrated contribution of light from stars that are tidally stripped from the halo of their host galaxies due to encounters with other galaxies in the cluster cold dark matter (CDM) potential. The radial profile of the ICL over the galaxies intensity ratio (ICL fraction) is increasing with decreasing radius, but near the cluster center it starts to bend and then decreases where the overlap of the halos of the brightest cluster galaxies becomes dominant. Theoretical expectations in a simplified CDM scenario show that the ICL fraction profile can be estimated from the stripped over galaxy stellar mass ratio in the cluster. It is possible to show that the latter quantity is almost independent of the properties of the individual host galaxies but mainly depends on the average cluster properties. The predicted ICL fraction profile is thus very sensitive to the assumed CDM profile, total mass, and concentration parameter of the cluster. Adopting values very similar to those derived from the most recent lensing analysis in CL0024+17, we find a good agreement with the observed ICL fraction profile. The galaxy counts in the cluster core have then been compared with that derived from composite cluster samples in larger volumes, up to the clusters virial radius. The galaxy counts in the CL0024+17 core appear flatter and the amount of bending with respect to the average cluster galaxy counts imply a loss of total

  7. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  8. 46 CFR 129.410 - Lighting fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lighting fixtures. 129.410 Section 129.410 Shipping... INSTALLATIONS Lighting Systems § 129.410 Lighting fixtures. (a) Each globe, lens, or diffuser of a lighting... lighting fixture may be used as a connection box for a circuit other than the branch circuit supplying...

  9. 46 CFR 129.410 - Lighting fixtures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lighting fixtures. 129.410 Section 129.410 Shipping... INSTALLATIONS Lighting Systems § 129.410 Lighting fixtures. (a) Each globe, lens, or diffuser of a lighting... lighting fixture may be used as a connection box for a circuit other than the branch circuit supplying...

  10. 46 CFR 129.410 - Lighting fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Lighting fixtures. 129.410 Section 129.410 Shipping... INSTALLATIONS Lighting Systems § 129.410 Lighting fixtures. (a) Each globe, lens, or diffuser of a lighting... lighting fixture may be used as a connection box for a circuit other than the branch circuit supplying...

  11. 46 CFR 129.410 - Lighting fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lighting fixtures. 129.410 Section 129.410 Shipping... INSTALLATIONS Lighting Systems § 129.410 Lighting fixtures. (a) Each globe, lens, or diffuser of a lighting... lighting fixture may be used as a connection box for a circuit other than the branch circuit supplying...

  12. 46 CFR 129.410 - Lighting fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lighting fixtures. 129.410 Section 129.410 Shipping... INSTALLATIONS Lighting Systems § 129.410 Lighting fixtures. (a) Each globe, lens, or diffuser of a lighting... lighting fixture may be used as a connection box for a circuit other than the branch circuit supplying...

  13. Flexible textile light diffuser for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Selm, Barbel; Camenzind, Martin

    2005-03-01

    In this article a new medical application is introduced using textile production techniques to deliver a defined radiation dose. The advantage for photodynamic therapy (PDT) is that a flat luminous textile structure can homogeneously illuminate unequal body surfaces. The optical properties of this two-dimensional luminous pad are characterized with a set of bench-scale tests. In vitro investigations on petri dishes with cultivated cells and first clinical tests on animal patients are promising. In addition first measurement results are presented together with an outlook to future developments.

  14. Modeling of hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Isaac, K. M.

    1988-01-01

    Work performed during the first six months of the project duration for NASA Grant (NAG-1-861) is reported. An analytical and computational study of opposed jet diffusion flame for the purpose of understanding the effects of contaminants in the reactants and thermal diffusion of light species on extinction and reignition of diffusion flames is in progress. The methodologies attempted so far are described.

  15. Bili lights

    MedlinePlus

    Phototherapy for jaundice; Bilirubin - bili lights; Neonatal care - bili lights; Newborn care - bili lights ... Phototherapy involves shining fluorescent light from the bili lights on bare skin. A specific wavelength of light can break down bilirubin into a form that ...

  16. Quantum diffusion

    SciTech Connect

    Habib, S.

    1994-10-01

    We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ``quantum diffusion`` terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source.

  17. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  18. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOEpatents

    Antoniadis; Homer , Krummacher; Benjamin Claus

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  19. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOEpatents

    Krummacher, Benjamin Claus; Antoniadis, Homer

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  20. How to distinguish elastically scattered light from Stokes shifted light for solid-state lighting?

    NASA Astrophysics Data System (ADS)

    Meretska, M. L.; Lagendijk, A.; Thyrrestrup, H.; Mosk, A. P.; IJzerman, W. L.; Vos, W. L.

    2016-03-01

    We have studied the transport of light through phosphor diffuser plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain YAG:Ce+3 phosphor particles that both elastically scatter and Stokes shift light in the visible wavelength range (400-700 nm). We excite the phosphor with a narrowband light source and measure spectra of the outgoing light. The Stokes shifted light is spectrally separated from the elastically scattered light in the measured spectra, and using this technique, we isolate the elastic transmission of the plates. This result allows us to extract the transport mean free path ltr over the full wavelength range by employing diffusion theory. Simultaneously, we determine the absorption mean free path labs in the wavelength range 400 to 530 nm where YAG:Ce+3 absorbs. The diffuse absorption (μa=1/labs ) spectrum is qualitatively similar to the absorption coefficient of YAG:Ce+3 in powder, with the diffuse spectrum being wider than the absorption coefficient. We propose a design rule for the solid-state lighting diffuser plates.

  1. Perturbative thermal diffusivity from partial sawtooth crashes in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Creely, A. J.; White, A. E.; Edlund, E. M.; Howard, N. T.; Hubbard, A. E.

    2016-03-01

    Perturbative thermal diffusivity has been measured on Alcator C-Mod via the use of the extended-time-to-peak method on heat pulses generated by partial sawtooth crashes. Perturbative thermal diffusivity governs the propagation of heat pulses through a plasma. It differs from power balance thermal diffusivity, which governs steady state thermal transport. Heat pulses generated by sawtooth crashes have been used extensively in the past to study heat pulse thermal diffusivity (Lopes Cardozo 1995 Plasma Phys. Control. Fusion 37 799), but the details of the sawtooth event typically lead to non-diffusive ‘ballistic’ transport, making them an unreliable measure of perturbative diffusivity on many tokamaks (Fredrickson et al 2000 Phys. Plasmas 7 5051). Partial sawteeth are common on numerous tokamaks, and generate a heat pulse without the ‘ballistic’ transport that often accompanies full sawteeth (Fredrickson et al 2000 Phys. Plasmas 7 5051). This is the first application of the extended-time-to-peak method of diffusivity calculation (Tubbing et al 1987 Nucl. Fusion 27 1843) to partial sawtooth crashes. This analysis was applied to over 50 C-Mod shots containing both L- and I-Mode. Results indicate correlations between perturbative diffusivity and confinement regime (L- versus I-mode), as well as correlations with local temperature, density, the associated gradients, and gradient scale lengths (a/L Te and a/L n ). In addition, diffusivities calculated from partial sawteeth are compared to perturbative diffusivities calculated with the nonlinear gyrokinetic code GYRO. We find that standard ion-scale simulations (ITG/TEM turbulence) under-predict the perturbative thermal diffusivity, but new multi-scale (ITG/TEM coupled with ETG) simulations can match the experimental perturbative diffusivity within error bars for an Alcator C-Mod L-mode plasma. Perturbative diffusivities extracted from heat pulses due to partial sawteeth provide a new constraint that can be used to

  2. 46 CFR 120.410 - Lighting fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lighting fixtures. 120.410 Section 120.410 Shipping... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Lighting Systems § 120.410 Lighting fixtures. (a) Each lighting fixture globe, lens, or diffuser must have a...

  3. 46 CFR 120.410 - Lighting fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lighting fixtures. 120.410 Section 120.410 Shipping... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Lighting Systems § 120.410 Lighting fixtures. (a) Each lighting fixture globe, lens, or diffuser must have a...

  4. 46 CFR 120.410 - Lighting fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Lighting fixtures. 120.410 Section 120.410 Shipping... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Lighting Systems § 120.410 Lighting fixtures. (a) Each lighting fixture globe, lens, or diffuser must have a...

  5. 46 CFR 120.410 - Lighting fixtures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lighting fixtures. 120.410 Section 120.410 Shipping... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Lighting Systems § 120.410 Lighting fixtures. (a) Each lighting fixture globe, lens, or diffuser must have a...

  6. 46 CFR 120.410 - Lighting fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lighting fixtures. 120.410 Section 120.410 Shipping... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Lighting Systems § 120.410 Lighting fixtures. (a) Each lighting fixture globe, lens, or diffuser must have a...

  7. Lighting: Green Light.

    ERIC Educational Resources Information Center

    Maniccia, Dorine

    2003-01-01

    Explains that by using sustainable (green) building practices, schools and universities can make their lighting systems more efficient, noting that embracing green design principles can help schools attract students. Discusses lighting-control technologies (occupancy sensing technology, daylighting technology, and scheduling based technologies),…

  8. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L.

    1996-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

  9. A fluorescent laser-diffuser arrangement for uniform backlighting

    NASA Astrophysics Data System (ADS)

    Jain, Saransh; Somasundaram, S.; Anand, T. N. C.

    2016-02-01

    Laser-light diffusers are used in conjunction with pulsed lasers to generate bright, spatially uniform background illumination for imaging and particle sizing applications. The present paper describes a cost effective way of fabricating a fluorescent laser-light diffuser. The procedure to obtain a uniform background using laser illumination is explained. To characterize the diffuser, images are acquired using a CCD camera with the illumination provided using the diffuser and the variations of pixel intensity values along the centerline of the images are plotted. It is observed that the standard deviation of pixel intensity values is fairly small. Hence, these diffusers are suitable for experiments that need a uniform background.

  10. Absorption effects in diffusing wave spectroscopy.

    PubMed

    Sarmiento-Gomez, Erick; Morales-Cruzado, Beatriz; Castillo, Rolando

    2014-07-20

    The effect of absorption in diffusing wave spectroscopy (DWS) was studied using an absorption-dependent diffusive equation for describing the light propagation within a turbid liquid where dielectric microspheres have been embedded. Here, we propose an expression for the time-averaged light intensity autocorrelation function that correctly describes the time fluctuations for the scattered light, in the regime where the diffusion approximation accurately describes the light propagation. This correction was suspected previously, but it was not formally derived from a light diffusive equation. As in the case of no absorption, we obtained that time fluctuations of the scattered light can be related to the mean square displacement of the embedded particles. However, if a correction for absorption is not taken into account, the colloidal dynamics can be misinterpreted. Experimental results show that this new formulation correctly describes the time fluctuations of scattered light. This new procedure extends the applicability of DWS, and it opens the possibility of doing microrheology with this optical method in systems where absorption cannot be avoided. PMID:25090203

  11. Laser activated diffuse discharge switch

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1988-01-01

    The invention is a gas mixture for a diffuse discharge switch which is capable of changing from a conducting state to an insulating state in the presence of electrons upon the introduction of laser light. The mixture is composed of a buffer gas such as nitrogen or argon and an electron attaching gas such as C.sub.6 H.sub.5 SH, C.sub.6 H.sub.5 SCH.sub.3, CH.sub.3 CHO and CF.sub.3 CHO wherein the electron attachment is brought on by indirect excitation of molecules to long-lived states by exposure to laser light.

  12. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  13. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  14. NIST Diffusion Data Center

    National Institute of Standards and Technology Data Gateway

    NIST Diffusion Data Center (Web, free access)   The NIST Diffusion Data Center is a collection of over 14,100 international papers, theses, and government reports on diffusion published before 1980.

  15. FRACTIONAL PEARSON DIFFUSIONS

    PubMed Central

    Leonenko, Nikolai N.; Meerschaert, Mark M.

    2013-01-01

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change. PMID:23626377

  16. Handheld Diffusion Test Cells

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photo shows an individual cell from the Handheld Diffusion Test Cell (HH-DTC) apparatus flown on the Space Shuttle. Similar cells will be used in the Observable Protein Crystal Growth Apparatus (OPCGA) to be operated aboard the International Space Station (ISS). The principal investigator is Dr. Alex McPherson of the University of California, Irvine. Each individual cell comprises two sample chambers with a rotating center section that isolates the two from each other until the start of the experiment and after it is completed. The cells are made from optical-quality quartz glass to allow photography and interferometric observations. Each cell has a small light-emitting diode and lens to back-light the solution. In protein crystal growth experiments, a precipitating agent such as a salt solution is used to absorb and hold water but repel the protein molecules. This increases the concentration of protein until the molecules nucleate to form crystals. This cell is one of 96 that make up the experiment module portion of the OPCGA.

  17. Handheld Diffusion Test Cells

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photo shows the Handheld Diffusion Test Cell (HH-DTC) apparatus flown on the Space Shuttle. Similar cells (inside the plastic box) will be used in the Observable Protein Crystal Growth Apparatus (OPCGA) to be operated aboard the International Space Station (ISS). The principal investigator is Dr. Alex McPherson of the University of California, Irvine. Each individual cell comprises two sample chambers with a rotating center section that isolates the two from each other until the start of the experiment and after it is completed. The cells are made from optical-quality quartz glass to allow photography and interferometric observations. Each cell has a small light-emitting diode and lens to back-light the solution. In protein crystal growth experiments, a precipitating agent such as a salt solution is used to absorb and hold water but repel the protein molecules. This increases the concentration of protein until the molecules nucleate to form crystals. This cell is one of 96 that make up the experiment module portion of the OPCGA.

  18. Diffusing-wave polarimetry for tissue diagnostics

    NASA Astrophysics Data System (ADS)

    Macdonald, Callum; Doronin, Alexander; Peña, Adrian F.; Eccles, Michael; Meglinski, Igor

    2014-03-01

    We exploit the directional awareness of circularly and/or elliptically polarized light propagating within media which exhibit high numbers of scattering events. By tracking the Stokes vector of the detected light on the Poincaŕe sphere, we demonstrate its applicability for characterization of anisotropy of scattering. A phenomenological model is shown to have an excellent agreement with the experimental data and with the results obtained by the polarization tracking Monte Carlo model, developed in house. By analogy to diffusing-wave spectroscopy we call this approach diffusing-wave polarimetry, and illustrate its utility in probing cancerous and non-cancerous tissue samplesin vitro for diagnostic purposes.

  19. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

  20. Light Pollution

    ERIC Educational Resources Information Center

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  1. Light Duty.

    ERIC Educational Resources Information Center

    Rogers, Jeff

    1996-01-01

    Discusses multipurpose athletic-field lighting specifications to enhance lighting quality and reduce costs. Topics discussed include lamp choice, lighting spillover and glare prevention, luminary assemblies and poles, and the electrical dimming and switching systems. (GR)

  2. Shaping light with MOEMS

    NASA Astrophysics Data System (ADS)

    Noell, W.; Weber, S.; Masson, J.; Extermann, J.; Bonacina, L.; Bich, A.; Bitterli, R.; Herzig, H. P.; Kiselev, D.; Scharf, T.; Voelkel, R.; Weible, K. J.; Wolf, J.-P.; de Rooij, N. F.

    2011-03-01

    Shaping light with microtechnology components has been possible for many years. The Texas Instruments digital micromirror device (DMD) and all types of adaptive optics systems are very sophisticated tools, well established and widely used. Here we present, however, two very dedicated systems, where one is an extremely simple MEMS-based tunable diffuser, while the second device is complex micromirror array with new capabilities for femtosecond laser pulse shaping. Showing the two systems right next to each other demonstrates the vast options and versatility of MOEMS for shaping light in the space and time domain.

  3. Microfabricated diffusion source

    DOEpatents

    Oborny, Michael C.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  4. Improved Thermal-Diffusivity-Measuring Apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Zoltan, A.

    1985-01-01

    Accuracy at high temperature improved. Furnace heats specimen to experimental temperature, and flash tube raises specimen temperature by small amount and for short time so diffusivity (composite property of heat capacity and conductivity) determined. Specimen mount ensures minimum heat loss during temperature-rise measurement. Measurement temperatures up to 1,000 degrees C realized with fused-quartz light pipe and up to 1,600 degrees C with sapphire light pipe.

  5. Diffusion on spatial network

    NASA Astrophysics Data System (ADS)

    Hui, Zi; Tang, Xiaoyue; Li, Wei; Greneche, Jean-Marc; Wang, Qiuping A.

    2015-04-01

    In this work, we study the problem of diffusing a product (idea, opinion, disease etc.) among agents on spatial network. The network is constructed by random addition of nodes on the planar. The probability for a previous node to be connected to the new one is inversely proportional to their spatial distance to the power of α. The diffusion rate between two connected nodes is inversely proportional to their spatial distance to the power of β as well. Inspired from the Fick's first law, we introduce the diffusion coefficient to measure the diffusion ability of the spatial network. Using both theoretical analysis and Monte Carlo simulation, we get the fact that the diffusion coefficient always decreases with the increasing of parameter α and β, and the diffusion sub-coefficient follows the power-law of the spatial distance with exponent equals to -α-β+2. Since both short-range diffusion and long-range diffusion exist, we use anomalous diffusion method in diffusion process. We get the fact that the slope index δ in anomalous diffusion is always smaller that 1. The diffusion process in our model is sub-diffusion.

  6. A Guide to the Librarian's Responsibility in Achieving Quality in Lighting and Ventilation.

    ERIC Educational Resources Information Center

    Mason, Ellsworth

    1967-01-01

    Quality, not intensity, is the keystone to good library lighting. The single most important problem in lighting is glare caused by extremely intense centers of light. Multiple interfiling of light rays is a factor required in library lighting. A fixture that diffuses light well is basic when light emerges from the fixture. It scatters widely,…

  7. UPDATING APPLIED DIFFUSION MODELS

    EPA Science Inventory

    Most diffusion models currently used in air quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Socie...

  8. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  9. Diffusing Wave Spectroscopy Used to Study Foams

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Durian, Douglas J.

    2000-01-01

    The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.

  10. Handbook on atmospheric diffusion

    SciTech Connect

    Hanna, S.R.; Briggs, G.A.; Hosker, R.P. Jr.

    1982-01-01

    Basic meteorological concepts are covered as well as plume rise, source effects, and diffusion models. Chapters are included on cooling tower plumes and urban diffusion. Suggestions are given for calculating diffusion in special situations, such as for instantaneous releases over complex terrain, over long distances, and during times when chemical reactions or dry or wet deposition are important. (PSB)

  11. Reduce Confusion about Diffusion.

    ERIC Educational Resources Information Center

    Hebrank, Mary R.

    1997-01-01

    Presents activities that allow students to explore the fundamental but poorly understood concept of diffusion by appealing to their kinesthetic senses first, then challenging their analytical skills as they try to deduce the mathematical principle involved. Presents a computer simulation of diffusion and discusses diffusion's limitations and…

  12. Diffusion of uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of uranium hexafluoride

  13. Diffusion Strategy Guide.

    ERIC Educational Resources Information Center

    McCutcheon, James R.; Sanders, John R.

    A methodology is presented for planning and managing the spread of educational innovations. The first portion of the guide develops a theoretical framework for diffusion which summarizes and capitalizes on the latest marketing and on the latest marketing and diffusion research findings. Major stages in the diffusion paradigm discussed include…

  14. Simple high-temperature thermal diffusivity apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Zoltan, A.

    1984-01-01

    A simple and inexpensive thermal diffusivity apparatus is described for measurement up to 1600 K. The novel features of apparatus include a light pipe, a long furnace, and a differential thermocouple. A low heat-load sample holder for clamping the sample in a vertical position is also described. The results of measurements on AXM-5Q graphite are reported.

  15. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  16. Diffusion of excitons in materials for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Singh, Jai; Narayan, Monishka Rita; Ompong, David

    2015-06-01

    The diffusion of singlet excitonsis known to occur through the Förster resonance energy transfer (FRET) mechanism and that of singlet and triplet excitonscan occur through the Dexter carrier transfer mechanism. It is shown here that if a material possesses the strong exciton-spin-orbit-photon interaction then triplet excitonscan also be transported /diffused through a mechanism like FRET. The theory is applicable to the diffusion of excitonsin optoelectronic devices like organic solar cells, organic light emitting devices and inorganic scintillators.

  17. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, B.L.

    1996-11-19

    An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

  18. Light emitting ceramic device

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  19. SIRTF stray light analysis

    NASA Technical Reports Server (NTRS)

    Elliott, David G.; Dinger, Ann S.

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) is a 1-meter cryogenic infrared telescope. Stray light is kept below the natural background by restrictions on sun, Earth, and moon off-axis angles; by conservative baffle design; by the use of advanced diffuse black coatings; and by superfluid helium cooling. The aperture stop is located at the primary mirror rather than at the secondary mirror to increase the aperture and reduce the central obscuration. Stray light from off-axis sources is greater with the aperture stop at the primary than with the aperture stop at the secondary, but the modulation of the signal produced by tilting of the secondary mirror for chopping is less. Stray light from telescope thermal emission is lower with the aperture stop at the primary.

  20. Mapping Spatio-Temporal Diffusion inside the Human Brain Using a Numerical Solution of the Diffusion Equation

    PubMed Central

    Zhan, Wang; Jiang, Li; Loew, Murray; Yang, Yihong

    2008-01-01

    Diffusion is an important mechanism for molecular transport in living biological tissues. Diffusion magnetic resonance imaging (dMRI) provides a unique probe to examine microscopic structures of the tissues in vivo, but current dMRI techniques usually ignore the spatio-temporal evolution process of the diffusive medium. In the present study, we demonstrate the feasibility to reveal the spatio-temporal diffusion process inside the human brain based on a numerical solution of the diffusion equation. Normal human subjects were scanned with a diffusion tensor imaging (DTI) technique on a 3-Tesla MRI scanner, and the diffusion tensor in each voxel was calculated from the DTI data. The diffusion equation, a partial-derivative description of Fick’s Law for the diffusion process, was discretized into equivalent algebraic equations. A finite-difference method was employed to obtain the numerical solution of the diffusion equation with a Crank-Nicholson iteration scheme to enhance the numerical stability. By specifying boundary and initial conditions, the spatio-temporal evolution of the diffusion process inside the brain can be virtually reconstructed. Our results exhibit similar medium profiles and diffusion coefficients as those of light fluorescence dextrans measured in integrative optical imaging experiments. The proposed method highlights the feasibility to non-invasively estimate the macroscopic diffusive transport time for a molecule in a given region of the brain. PMID:18440744

  1. Light Visor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Seasonal Affective Disorder is a form of depression brought on by reduced light. For some people, this can lead to clinical depression. NASA has conducted research in light therapy and employs it to help astronauts adjust internal rhythms during orbital flight. Dr. George Brainard, a medical researcher and NASA consultant, has developed a portable light therapy device, which is commercially available. The Light Visor allows continuous light therapy and can be powered by either batteries or electricity. Dr. Brainard continues to research various aspects of light therapy.

  2. Scalar Potential Model of light

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2008-04-01

    Some observations of light are inconsistent with a wave--like model. Other observations of light are inconsistent with a particle--like model. A model of light is proposed wherein Newton's and Democritus's speculations are combined with the cosmological scalar potential model (SPM). The SPM was tested by confrontation with observations of galaxy HI rotation curves (RCs), asymmetric RCs, redshift, discrete redshift, galaxy central mass, and central velocity dispersion; and with observations of the Pioneer Anomaly. The resulting model of light will be tested by numerical simulation of a photon behaving in a wave-like manner such as diffusion, interference, reflection, spectrography, and the Afshar experiment. Although the SPM light model requires more work, early results are beginning to emerge that suggest possible tests because a few predictions are inconsistent with both the current particle and wave models of light and that suggest a re-interpretation of the equations of quantum mechanics.

  3. Light Motives.

    ERIC Educational Resources Information Center

    Filler, Martin

    1979-01-01

    The new energy consciousness has led to a thorough reevaluation of how artificial lighting can be used wisely, while other researchers have explored the potential of daylighting as an alternative interior light source. (Author/MLF)

  4. Light Reflector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Ultra Sales, Inc.'s fluorescent lighting fixture gets a boost in reflectivity through installation of Lightdriver, a thin tough thermoplastic film plated with aluminum, capable of reflecting 95 percent of visible light striking it. Lightdriver increases brightness without adding bulbs, and allows energy savings by removing some bulbs because the mirrorlike surface cuts light loss generally occasioned by conventional low reflectivity white painted surface above the bulbs in many fluorescent fixtures. Forty-five percent reduction in lighting electricity is attainable.

  5. Lighting Utilization.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with lighting utilization. Its objective is for the student to be able to outline the development of lighting use and conservation and identify major types and operating characteristics of lamps used in electric lighting. Some topics…

  6. A universal, easy-to-apply light-quality index based on natural light spectrum resemblance

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Chou, Kun-Yi; Yang, Fu-Chin; Agrawal, Abhishek; Chen, Sun-Zen; Tseng, Jing-Ru; Lin, Ching-Chiao; Chen, Po-Wei; Wong, Ken-Tsung; Chi, Yun

    2014-05-01

    Light-quality is extremely crucial for any light source to be used for illumination. However, a proper light-quality index is still missing although numerous electricity-driven lighting measures have been introduced since past 150 yr. We present in this communication a universal and easy-to-apply index for quantifying the quality of any given lighting source, which is based on direct comparison of its lumen spectrum with the natural light counterpart having the same color temperature. A general principle for creating high quality pseudo-natural light is accordingly derived. By using organic light-emitting diode technology, for example, daylight-style emission with a 96% natural light resemblance is obtained as a high number of organic emitters with diffused colors spanning throughout the entire visible range are employed. The same principle can be extended to other lighting technology such as light-emitting diode to generate natural light-style emission.

  7. Diffusion in disordered media

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo; Ben-Avraham, Daniel

    2002-01-01

    Diffusion in disordered systems does not follow the classical laws which describe transport in ordered crystalline media, and this leads to many anomalous physical properties. Since the application of percolation theory, the main advances in the understanding of these processes have come from fractal theory. Scaling theories and numerical simulations are important tools to describe diffusion processes (random walks: the 'ant in the labyrinth') on percolation systems and fractals. Different types of disordered systems exhibiting anomalous diffusion are presented (the incipient infinite percolation cluster, diffusion-limited aggregation clusters, lattice animals, and random combs), and scaling theories as well as numerical simulations of greater sophistication are described. Also, diffusion in the presence of singular distributions of transition rates is discussed and related to anomalous diffusion on disordered structures.

  8. Hereditary Diffuse Infiltrating Retinoblastoma.

    PubMed

    Schedler, Katharina J E; Traine, Peter G; Lohmann, Dietmar R; Haritoglou, Christos; Metz, Klaus A; Rodrigues, Eduardo B

    2016-03-01

    Retinoblastoma is one of the most common childhood cancers. The diffuse infiltrating retinoblastoma is a rare subtype of this neoplasm. The majority of cases of diffuse infiltrating retinoblastoma are unilateral and occur sporadically. Herein we report on a family with three children affected by retinoblastoma, among them one girl with diffuse infiltrating retinoblastoma. This girl was diagnosed at the age of 8 years with a unilateral diffuse infiltrating retinoblastoma. By contrast, the two brothers became clinically apparent in the first 2 years of life with bilateral retinoblastoma. The parents were clinically unremarkable. Genetic analysis of RB1 gene was performed. The girl with diffuse infiltrating RB was found to be heterozygous for an oncogenic mutation in the RB1 gene that was also carried by both brothers and the father of the family. These results show that diffuse infiltrating retinoblastoma can develop on the background of a hereditary predisposition to retinoblastoma. PMID:24892564

  9. Multinomial diffusion equation

    NASA Astrophysics Data System (ADS)

    Balter, Ariel; Tartakovsky, Alexandre M.

    2011-06-01

    We describe a new, microscopic model for diffusion that captures diffusion induced fluctuations at scales where the concept of concentration gives way to discrete particles. We show that in the limit as the number of particles N→∞, our model is equivalent to the classical stochastic diffusion equation (SDE). We test our new model and the SDE against Langevin dynamics in numerical simulations, and show that our model successfully reproduces the correct ensemble statistics, while the classical model fails.

  10. Multinomial diffusion equation

    SciTech Connect

    Balter, Ariel I.; Tartakovsky, Alexandre M.

    2011-06-24

    We describe a new, microscopic model for diffusion that captures diffusion induced uctuations at scales where the concept of concentration gives way to discrete par- ticles. We show that in the limit as the number of particles N ! 1, our model is equivalent to the classical stochastic diffusion equation (SDE). We test our new model and the SDE against Langevin dynamics in numerical simulations, and show that our model successfully reproduces the correct ensemble statistics, while the classical model fails.

  11. Gaseous diffusion system

    DOEpatents

    Garrett, George A.; Shacter, John

    1978-01-01

    1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.

  12. Light Source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.

  13. Inpainting using airy diffusion

    NASA Astrophysics Data System (ADS)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  14. Intragroup and Intracluster Light

    NASA Astrophysics Data System (ADS)

    Mihos, J. Christopher

    2016-08-01

    The largest stellar halos in the universe are found in massive galaxy clusters, where interactions and mergers of galaxies, along with the cluster tidal field, all act to strip stars from their host galaxies and feed the diffuse intracluster light (ICL) and extended halos of brightest cluster galaxies (BCGs). Studies of the nearby Virgo Cluster reveal a variety of accretion signatures imprinted in the morphology and stellar populations of its ICL. While simulations suggest the ICL should grow with time, attempts to track this evolution across clusters spanning a range of mass and redshift have proved difficult due to a variety of observational and definitional issues. Meanwhile, studies of nearby galaxy groups reveal the earliest stages of ICL formation: the extremely diffuse tidal streams formed during interactions in the group environment.

  15. Experimental study of vortex diffusers

    SciTech Connect

    Shakerin, S.; Miller, P.L.

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  16. Diffuse interstellar bands in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.

    1994-01-01

    A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.

  17. Microlens diffusers for efficient laser speckle generation.

    PubMed

    Ducharme, Alfred D

    2007-10-29

    Laser Speckle is the optical phenomena resulting from the random interference of coherent light. This phenomenon can be utilized to measure the Modulation Transfer Function (MTF) of detector arrays. Common devices used for speckle generation, such as integrating spheres and ground glass, suffer from low efficiencies less than 20%. Microlens diffusers are shown to be more efficient alternatives for speckle generation. An analysis of the statistical behavior of microlens diffusers is presented with emphasis on their application to MTF testing of detector arrays in the visible spectrum. PMID:19550737

  18. Sunlight Diffusing Tent for Lunar Worksite

    NASA Technical Reports Server (NTRS)

    Burleson, Blair; Clark, Todd; Deese, Todd; Gentry, Ernest; Samad, Abdul

    1990-01-01

    The purpose is to provide a solution to problems astronauts encounter with sunlight on the lunar surface. Due to the absence of an atmosphere the Moon is subjected to intense sunlight creating problems with color and contrast. This problem can be overcome by providing a way to reduce intensity and diffuse the light in a working environment. The solution to the problem utilizes an umbrella, tent-like structure covered with a diffusing material. The design takes into account structural materials, stresses, fabrics, and deployment.

  19. Thermal diffusivity measured using a single plasmonic nanoparticle.

    PubMed

    Heber, André; Selmke, Markus; Cichos, Frank

    2015-08-28

    A method to measure thermal diffusivity around a single heated gold nanoparticle is presented. It is based on photothermal single particle microscopy and employs the phase delay of temperature modulation due to finite thermal diffusivity. The phase delay is detected optically averaging over the focal volume of a diffraction limited beam of light. Thermal diffusivity is extracted by comparison to electromagnetic scattering calculations of the photothermal signal. Measurements in the solid (polymer) and liquid (water) are presented and compare well with literature data. The method paves the way for extended measurements of non-diffusive and heterogeneous heat transport in complex media. PMID:26214156

  20. Enhancement of diffuse reflectance using air tunnel structure.

    PubMed

    Jang, Jae Eun; Lee, Gae Hwang; Song, Byoung Gwon; Cha, Seung Nam; Jung, Jae Eun

    2013-02-01

    Submicrometer air gap structure has formed on diffuse reflection structure to improve light reflectance. Covering polymer or liquid on a diffuse reflector to make optical components induces the severe decrease of the total reflectance, since the diffuse reflected angle of some light rays is larger than the critical angle and the rays travel to the medium until meeting a proper small incident angle. The reflectance drops to 68% of the original value with just a polymer coating on the diffuse reflector. The formation of an air tunnel structure between the polymer layer and the diffuse reflector makes a symmetrical reflective index matching state and recovers 95% of the original reflectance. Due to the simple fabrication process and the chemical stability, the structure can be applied to various optical components and reflective display devices. PMID:23381414

  1. Study of a simple model for the transition between the ballistic and the diffusive regimes in diffusive media

    NASA Astrophysics Data System (ADS)

    Ben, Igor; Layosh, Yonatan Y.; Granot, Er'el

    2016-06-01

    A Monte Carlo simulation was utilized to investigate a simple model for the transition between the ballistic and the diffusive regimes in diffusive media. The simulation focuses on the propagation of visible and near-infrared light in biological tissues. This research has mainly two findings: (1) the transition can be described, as was found experimentally, with good accuracy by only two terms (ballistic and diffusive). (2) The model can be utilized for cases where the absorption coefficient is not negligible compared to the scattering coefficient by adding a power-law prefactor to the diffusive term.

  2. Galactic Diffuse Emissions

    SciTech Connect

    Digel, Seth W.; /SLAC

    2007-10-25

    Interactions of cosmic rays with interstellar nucleons and photons make the Milky Way a bright, diffuse source of high-energy {gamma}-rays. Observationally, the results from EGRET, COMPTEL, and OSSE have now been extended to higher energies by ground-based experiments, with detections of diffuse emission in the Galactic center reported by H.E.S.S. in the range above 100 GeV and of diffuse emission in Cygnus by MILAGRO in the TeV range. In the range above 100 keV, INTEGRAL SPI has found that diffuse emission remains after point sources are accounted for. I will summarize current knowledge of diffuse {gamma}-ray emission from the Milky Way and review some open issues related to the diffuse emission -- some old, like the distribution of cosmic-ray sources and the origin of the 'excess' of GeV emission observed by EGRET, and some recently recognized, like the amount and distribution of molecular hydrogen not traced by CO emission -- and anticipate some of the advances that will be possible with the Large Area Telescope on GLAST. We plan to develop an accurate physical model for the diffuse emission, which will be useful for detecting and accurately characterizing emission from Galactic point sources as well as any Galactic diffuse emission from exotic processes, and for studying the unresolved extragalactic emission.

  3. The Diffusion of Innovation

    NASA Technical Reports Server (NTRS)

    Earabino, Gerard J.; Heyl, G. Christopher; Percorini, Thomas J.

    1987-01-01

    New ideas encounter obstacles on way to becoming products. Report examines process by which new ideas become products, processes, or accepted standards. Sequence of events called "the diffusion of innovation." Focuses on development of material processing in low gravity as case study in diffusion of innovation.

  4. Investigating Diffusion with Technology

    ERIC Educational Resources Information Center

    Miller, Jon S.; Windelborn, Augden F.

    2013-01-01

    The activities described here allow students to explore the concept of diffusion with the use of common equipment such as computers, webcams and analysis software. The procedure includes taking a series of digital pictures of a container of water with a webcam as a dye slowly diffuses. At known time points, measurements of the pixel densities…

  5. Anatomy of Particle Diffusion

    ERIC Educational Resources Information Center

    Bringuier, E.

    2009-01-01

    The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact…

  6. Cosmology with matter diffusion

    SciTech Connect

    Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br

    2013-11-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field φ which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter σ. The standard ΛCDM model can be recovered by setting σ = 0. If diffusion takes place (σ > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.

  7. Innovation Diffusion Model in Higher Education: Case Study of E-Learning Diffusion

    ERIC Educational Resources Information Center

    Buc, Sanjana; Divjak, Blaženka

    2015-01-01

    The diffusion of innovation (DOI) is critical for any organization and especially nowadays for higher education institutions (HEIs) in the light of vast pressure of emerging educational technologies as well as of the demand of economy and society. DOI takes into account the initial and the implementation phase. The conceptual model of DOI in…

  8. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316

  9. Combustor diffuser interaction program

    NASA Technical Reports Server (NTRS)

    Srinivasan, Ram; Thorp, Daniel

    1986-01-01

    Advances in gas turbine engine performance are achieved by using compressor systems with high stage loading and low part count, which result in high exit Mach numbers. The diffuser and combustor systems in such engines should be optimized to reduce system pressure loss and to maximize the engine thrust-to-weight ratio and minimize length. The state-of-the-art combustor-diffuser systems do not meet these requirements. Detailed understanding of the combustor-diffuser flow field interaction is required for designing advanced gas turbine engines. An experimental study of the combustor-diffuser interaction (CDI) is being conducted to obtain data for the evaluation and improvement of analytical models applicable to a wide variety of diffuser designs. The CDI program consists of four technical phases: Literature Search; Baseline Configuration; Parametric Configurations; and Performance Configurations. Phase 2 of the program is in progress.

  10. Diffusion on strained surfaces

    NASA Astrophysics Data System (ADS)

    Schroeder, M.; Wolf, D. E.

    1997-03-01

    The change of diffusion kinetics when elastic fields are present is discussed for diffusion on (001) surfaces of simple cubic, fcc and bcc lattices. All particles interact pairwise with a Lennard-Jones potential. The simple cubic lattice was stabilized by an anisotropic prefactor. It is found that generically compressive strain enhances diffusion whereas tensile strain increases the activation barrier. An approximately linear dependence of the barrier in a wide range of misfits is found. In heteroepitaxy, diffusion on top of large clusters is inhomogeneous and anisotropic. The kinetics close to edges and centers of islands are remarkably different. In many cases changes of binding energies are small compared to those of saddle point energies. Thermodynamic arguments (minimization of free energy) are not appropriate to describe diffusion on strained surfaces in these cases.

  11. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    PubMed

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter. PMID:27335889

  12. HD/H{sub 2} AS A PROBE OF THE ROLES OF GAS, DUST, LIGHT, METALLICITY, AND COSMIC RAYS IN PROMOTING THE GROWTH OF MOLECULAR HYDROGEN IN THE DIFFUSE INTERSTELLAR MEDIUM

    SciTech Connect

    Liszt, H. S.

    2015-01-20

    We modeled recent observations of UV absorption of HD and H{sub 2} in the Milky Way and toward damped/subdamped Lyα systems at z = 0.18 and z >1.7. N(HD)/N(H{sub 2}) ratios reflect the separate self-shieldings of HD and H{sub 2} and the coupling introduced by deuteration chemistry. Locally, observations are explained by diffuse molecular gas with 16 cm{sup –3} ≲ n(H) ≲ 128 cm{sup –3} if the cosmic-ray ionization rate per H nucleus ζ {sub H} =2 × 10{sup –16} s{sup –1}, as inferred from H{sub 3} {sup +} and OH{sup +}. The dominant influence on N(HD)/N(H{sub 2}) is the cosmic-ray ionization rate with a much weaker downward dependence on n(H) at solar metallicity, but dust extinction can drive N(HD) higher as with N(H{sub 2}). At z > 1.7, N(HD) is comparable to the Galaxy but with 10 times smaller N(H{sub 2}) and somewhat smaller N(H{sub 2})/N(H I). Comparison of our Galaxy with the Magellanic Clouds shows that smaller H{sub 2}/H is expected at subsolar metallicity, and we show by modeling that HD/H{sub 2} increases with density at low metallicity, opposite to the Milky Way. Observations of HD would be explained with higher n(H) at low metallicity, but high-z systems have high HD/H{sub 2} at metallicity 0.04 ≲ Z ≲ 2 solar. In parallel, we trace dust extinction and self-shielding effects. The abrupt H{sub 2} transition to H{sub 2}/H ≈ 1%-10% occurs mostly from self-shielding, although it is assisted by extinction for n(H) ≲ 16 cm{sup –3}. Interior H{sub 2} fractions are substantially increased by dust extinction below ≲ 32 cm{sup –3}. At smaller n(H), ζ {sub H}, small increases in H{sub 2} triggered by dust extinction can trigger abrupt increases in N(HD)

  13. Emergency Lighting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A lighting system originally developed for NASA's Apollo and Skylab manned spacecraft resulted in a industrial spinoff and creation of a whole new company to produce and market the product line. The company is UDEC Corp., Waltham, Mass. UDEC's "Multi-Mode" electronic lighting systems are designed for plant emergency and supplemental use, such as night lighting, "always-on" stairwell lights and illuminated exit signs. Their advantages stem from the qualities demanded for spacecraft installation: extremely high fight output with very low energy drain, compactness, light weight, and high reliability. The Multi-Mode system includes long-life fluorescent lamps operated by electronic circuitry, a sealed battery that needs no maintenance for 10 years, and a solid-state battery charger. A typical emergency installation consists of a master module with battery and an eight watt lamp, together with four remote "Satellight" modules powered by the master's battery. As a night lighting system for maintenance or I security, UDEC fixtures can bypass the battery and 1 operate on normal current at a fraction of the energy 1 demand of conventional night lighting. Industrial customers have realized savings of better than ninety percent with UDEC night lights. UDEC started as a basement industry in 1972 but the company has already sold more than 1,000 lighting systems to building operators.

  14. Light Controller

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Artificial lighting is designed to provide the light intensity necessary if there were no other source of illumination. But many rooms, particularly those in large-windowed office buildings, get a substantial amount of sunlight during the day. An automatic system which considers available sunlight and adjusts the artificial lighting level accordingly can trim energy costs appreciably. Such a system was developed by NASA's Kennedy Space Center. International Technology Corporation, Satellite Beach, Florida, obtained a NASA patent license for the technology, refined the design, and is now producing commercially an improved version known as the Automatic Lighting Controller.

  15. Back diffusion from thin low permeability zones.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2015-01-01

    Aquitards can serve as long-term contaminant sources to aquifers when contaminant mass diffuses from the aquitard following aquifer source mass depletion. This study describes analytical and experimental approaches to understand reactive and nonreactive solute transport in a thin aquitard bounded by an adjacent aquifer. A series of well-controlled laboratory experiments were conducted in a two-dimensional flow chamber to quantify solute diffusion from a high-permeability sand into and subsequently out of kaolinite clay layers of vertical thickness 15 mm, 20 mm, and 60 mm. One-dimensional analytical solutions were developed for diffusion in a finite aquitard with mass exchange with an adjacent aquifer using the method of images. The analytical solutions showed very good agreement with measured breakthrough curves and aquitard concentration distributions measured in situ by light reflection visualization. Solutes with low retardation accumulated more stored mass with greater penetration distance in the aquitard compared to high-retardation solutes. However, because the duration of aquitard mass release was much longer, high-retardation solutes have a greater long-term back diffusion risk. The error associated with applying a semi-infinite domain analytical solution to a finite diffusion domain increases as a function of the system relative diffusion length scale, suggesting that the solutions using image sources should be applied in cases with rapid solute diffusion and/or thin clay layers. The solutions presented here can be extended to multilayer aquifer/low-permeability systems to assess the significance of back diffusion from thin layers. PMID:25478850

  16. Thorium Diffusion in Monazite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2006-05-01

    Diffusion of thorium has been characterized in synthetic monazite under dry conditions. The synthetic monazites (either pure CePO4, NdPO4, or a mixed LREE phosphate containing Ce, Nd, and Sm) were grown via a Na2CO3-MoO3 flux method. The source of diffusant for the experiments were either synthesized ThSiO4 or CaTh(PO4)2 powders. Experiments were performed by placing source and monazite in Pt capsules and annealing capsules in 1 atm furnaces for times ranging from 10 days to a few hours, at temperatures from 1400 to 1550C. The Th distributions in the monazite were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation was obtained for diffusion in monazite: DSm = 7.2x103 exp(-814 kJ mol-1/RT) m2sec-1 The diffusivity of Th was similar for monazites containing a single REE and the mixed LREE phosphates. Th diffusion was also similar for experiments run using the Th silicate and Ca-Th phosphate sources, suggesting that the substitutional mechanism for Th in monazite, i.e, Th+4 + Si+4 for REE+3 + P+5 with the ThSiO4 source, and Th+4 + Ca+2 for 2REE+3 with the CaTh(PO4)2 source, does not significantly affect Th diffusivities, and that Th is likely the rate-limiting species. Th diffusion in monazite is about 4 orders of magnitude slower than Pb diffusion (Cherniak et al., 2004). This contrasts with findings of Gardes et al. (2005) who determined that Pb, Th and REE diffusivities in monazite are similar. Th diffusion in zircon (Cherniak et al., 1997) is about an order of magnitude slower than in monazite, but with similar activation energy for diffusion. The smaller diffusivities in zircon may be a consequence of the larger disparity in size between Th and the Zr site in zircon as compared with Th and the REE site in monazite. Nonetheless, Th is essentially immobile in monazite with respect to exchange by volume diffusion under most geologic conditions; these findings may have implications for containment of high- level actinide

  17. Diffusion model of the non-stoichiometric uranium dioxide

    NASA Astrophysics Data System (ADS)

    Moore, Emily; Guéneau, Christine; Crocombette, Jean-Paul

    2013-07-01

    Uranium dioxide (UO2), which is used in light water reactors, exhibits a large range of non-stoichiometry over a wide temperature scale up to 2000 K. Understanding diffusion behavior of uranium oxides under such conditions is essential to ensure safe reactor operation. The current understanding of diffusion properties is largely limited by the stoichiometric deviations inherent to the fuel. The present DICTRA-based model considers diffusion across non-stoichiometric ranges described by experimentally available data. A vacancy and interstitial model of diffusion is applied to the U-O system as a function of its defect structure derived from CALPHAD-type thermodynamic descriptions. Oxygen and uranium self and tracer diffusion coefficients are assessed for the construction of a mobility database. Chemical diffusion coefficients of oxygen are derived with respect to the Darken relation and migration energies of defects are evaluated as a function of stoichiometric deviation.

  18. Temperature Diffusion Waves in Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Reynolds, M. A.; Morales, G. J.; Maggs, J. E.

    2002-11-01

    Fluctuations of localized heat sources manifest themselves as temperature diffusion waves throughout the plasma surrounding the source, with anisotropic propagation characteristics due to the anisotropic nature of the thermal conductivity. In fact, fluctuations in electron temperature have been observed experimentally in studies of heat transport in magnetized temperature filaments (Burke et al., Phys. Plasmas, 7, 1397, 2000) where the anisotropic nature was of paramount interest. Here, the theory of temperature diffusion waves in a magnetized plasma is presented, and the properties of these waves are investigated both analytically and numerically. Results from the one-dimensional (parallel), linear theory of diffusion waves are used to shed light on the results obtained by a two-dimensional (parallel and perpendicular) transport code. Features that are investigated include the spatial structure of wave amplitude and phase, the effect that the size of the source region has on the spatial structure (i.e., radial localization), and the strongly nonlinear (large amplitude source fluctuations) limit.

  19. Tungsten diffusion in silicon

    SciTech Connect

    De Luca, A.; Texier, M.; Burle, N.; Oison, V.; Pichaud, B.; Portavoce, A.; Grosjean, C.

    2014-01-07

    Two doses (10{sup 13} and 10{sup 15} cm{sup −2}) of tungsten (W) atoms were implanted in different Si(001) wafers in order to study W diffusion in Si. The samples were annealed or oxidized at temperatures between 776 and 960 °C. The diffusion profiles were measured by secondary ion mass spectrometry, and defect formation was studied by transmission electron microscopy and atom probe tomography. W is shown to reduce Si recrystallization after implantation and to exhibit, in the temperature range investigated, a solubility limit close to 0.15%–0.2%, which is higher than the solubility limit of usual metallic impurities in Si. W diffusion exhibits unusual linear diffusion profiles with a maximum concentration always located at the Si surface, slower kinetics than other metals in Si, and promotes vacancy accumulation close to the Si surface, with the formation of hollow cavities in the case of the higher W dose. In addition, Si self-interstitial injection during oxidation is shown to promote W-Si clustering. Taking into account these observations, a diffusion model based on the simultaneous diffusion of interstitial W atoms and W-Si atomic pairs is proposed since usual models used to model diffusion of metallic impurities and dopants in Si cannot reproduce experimental observations.

  20. Tungsten diffusion in olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Van Orman, J. A.

    2014-03-01

    Diffusion of tungsten has been characterized in synthetic forsterite and natural olivine (Fo90) under dry conditions. The source of diffusant was a mixture of magnesium tungstate and olivine powders. Experiments were prepared by sealing the source material and polished olivine under vacuum in silica glass ampoules with solid buffers to buffer at NNO or IW. Prepared capsules were annealed in 1 atm furnaces for times ranging from 45 min to several weeks, at temperatures from 1050 to 1450 °C. Tungsten distributions in the olivine were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for W diffusion in forsterite: D=1.0×10-8exp(-365±28 kJ mol/RT) m s Diffusivities for the synthetic forsterite and natural Fe-bearing olivine are similar, and tungsten diffusion in olivine shows little dependence on crystallographic orientation or oxygen fugacity. The slow diffusivities measured for W in olivine indicate that Hf-W ages in olivine-metal systems will close to diffusive exchange at higher temperatures than other chronometers commonly used in cosmochronology, and that tungsten isotopic signatures will be less likely to be reset by subsequent thermal events.

  1. Library Lighting.

    ERIC Educational Resources Information Center

    Metcalf, Keyes D.

    Chapter I provides a background and explains pertinent library lighting problems such as quality, function, aesthetics, intensity, and costs. Emphasis is on the quality and function of lighting for library users. Chapter II deals with the comments and answers to questions by persons who have a special interest and competence in the field of…

  2. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  3. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  4. Coherent random lasing in diffusive resonant media

    SciTech Connect

    Uppu, Ravitej; Tiwari, Anjani Kumar; Mujumdar, Sushil

    2011-10-03

    We investigate diffusive propagation of light and consequent random lasing in a medium comprising resonant spherical scatterers. A Monte-Carlo calculation based on photon propagation via three-dimensional random walks is employed to obtain the dwell-times of light in the system. We compare the inter-scatterer and intra-scatterer dwell-times for representative resonant and non-resonant wavelengths. Our results show that more efficient random lasing, with intense coherent modes, is obtained when the gain is present inside the scatterers. Further, a larger reduction in frequency fluctuations is achieved by the system with intra-scatterer gain.

  5. Diffuse-Illumination Systems for Growing Plants

    NASA Technical Reports Server (NTRS)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  6. Experimental investigation of top lighting and side lighting solar light pipes under sunny conditions in winter in Beijing

    NASA Astrophysics Data System (ADS)

    Wu, Yanpeng; Jin, Rendong; Li, Deying; Zhang, Wenming; Ma, Chongfang

    2008-12-01

    Natural light is very important element in the quality of vision. Solar light pipes are effective method to induce sunlight into the room need to be illuminated especially for corridor, some places natural sunlight cannot arrive. Solar light pipes are also effective ways to reduce electricity consumption for lighting; it can transmit sunlight from outdoor to the room without generating excessive heat. The performance of two top lighting solar light pipes and one side lighting solar light pipe were investigated at the same time under sunny conditions in winter in Beijing. The results showed that side lighting solar light pipes have better performance than that of top lighting one. Side lighting light pipe has better performance than top lighting light pipe if there are no shelters around the top dome under sunny conditions in winter in Beijing. Solar altitude is the main reason to give an effect on the performance of light pipes. The experimental results also showed that top lighting solar light pipes with "snow type" diffuser has better performance compare with the "diamond type" one. Solar azimuth can also affect the illuminance for whole day to all solar light pipes. So if the sunlight collector can following with the sun, this problem can be resolved, that is, automatic sun trackers are needed, but the cost will become too much at the same time. Different regions and different seasons had to select different types of solar light pipes to achieve maximum output of illuminance in the room. Design of the solar light pipes must adjust measures to local conditions. Solar light pipes will be popularized in the near future in China because have many advantages to improve energy efficiency in buildings.

  7. EDITORIAL: Slow light Slow light

    NASA Astrophysics Data System (ADS)

    Boyd, Robert; Hess, Ortwin; Denz, Cornelia; Paspalakis, Emmanuel

    2010-10-01

    Research into slow light began theoretically in 1880 with the paper [1] of H A Lorentz, who is best known for his work on relativity and the speed of light. Experimental work started some 60 years later with the work of S L McCall and E L Hahn [2] who explored non-linear self-induced transparency in ruby. This field of research has burgeoned in the last 10 years, starting with the work of L Vestergaard Hau and coworkers on slow light via electromagnetically induced transparency in a Bose-Einstein condensate [3]. Many groups are now able to slow light down to a few metres per second or even stop the motion of light entirely [4]. Today, slow light - or more often `slow and fast light' - has become its own vibrant field with a strongly increasing number of publications. In broad scope, slow light research can be categorized in terms of the sort of physical mechanism used to slow down the light. One sort of slow light makes use of material dispersion. This dispersion can be the natural dispersion of the ordinary refractive index or can be the frequency dependence of some nonlinear optical process, such as electromagnetically induced transparency, coherent population oscillations, stimulated light scattering, or four-wave mixing processes. The second sort of slow light makes use of the wavelength dependence of artificially structured materials, such as photonic crystals, optical waveguides, and collections of microresonators. Material systems in which slow light has been observed include metal vapours, rare-earth-doped materials, Raman and Brillioun gain media, photonic crystals, microresonators and, more recently, metamaterials. A common feature of all of these schemes is the presence of a sharp single resonance or multiple resonances produced by an atomic transition, a resonance in a photonic structure, or in a nonlinear optical process. Current applications of slow light include a series of attractive topics in optical information processing, such as optical data

  8. Hereditary Diffuse Gastric Cancer

    MedlinePlus

    ... with the syndrome is recommended. What are the estimated cancer risks associated with HDGC? Not everyone who ... the lifetime risk for diffuse gastric cancer is estimated to be 70% to 80% for men and ...

  9. Multinomial Diffusion Equation

    SciTech Connect

    Balter, Ariel I.; Tartakovsky, Alexandre M.

    2011-06-01

    We have developed a novel stochastic, space/time discrete representation of particle diffusion (e.g. Brownian motion) based on discrete probability distributions. We show that in the limit of both very small time step and large concentration, our description is equivalent to the space/time continuous stochastic diffusion equation. Being discrete in both time and space, our model can be used as an extremely accurate, efficient, and stable stochastic finite-difference diffusion algorithm when concentrations are so small that computationally expensive particle-based methods are usually needed. Through numerical simulations, we show that our method can generate realizations that capture the statistical properties of particle simulations. While our method converges converges to both the correct ensemble mean and ensemble variance very quickly with decreasing time step, but for small concentration, the stochastic diffusion PDE does not, even for very small time steps.

  10. Investigating diffusion with technology

    NASA Astrophysics Data System (ADS)

    Miller, Jon S.; Windelborn, Augden F.

    2013-07-01

    The activities described here allow students to explore the concept of diffusion with the use of common equipment such as computers, webcams and analysis software. The procedure includes taking a series of digital pictures of a container of water with a webcam as a dye slowly diffuses. At known time points, measurements of the pixel densities (darkness) of the digital pictures are recorded and then plotted on a graph. The resulting graph of darkness versus time allows students to see the results of diffusion of the dye over time. Through modification of the basic lesson plan, students are able to investigate the influence of a variety of variables on diffusion. Furthermore, students are able to expand the boundaries of their thinking by formulating hypotheses and testing their hypotheses through experimentation. As a result, students acquire a relevant science experience through taking measurements, organizing data into tables, analysing data and drawing conclusions.

  11. Mastocytosis, diffuse cutaneous (image)

    MedlinePlus

    This is a picture of diffuse, cutaneous mastocytosis. Abnormal collections of cells in the skin (mast cells) produce this rash. Unlike bullous mastocytosis, rubbing will not lead to formation of blisters ( ...

  12. Lung diffusion testing

    MedlinePlus

    Lung diffusion testing measures how well the lungs exchange gases. This is an important part of lung testing , because ... Gender Height Hemoglobin (the protein in red blood cells that carries oxygen) level

  13. A Simple Single Step diffusion and Emitter Etching Process for High Efficiency Gallium Antimonide Thermophotovoltaic Devices

    SciTech Connect

    G. Rajagopalan; N.S. Reddy; E. Ehsani; I.B. Bhat; P.S. Dutta; R.J. Gutmann; G. Nichols; G.W. Charache; O. Sulima

    2003-08-29

    A single step diffusion followed by precise etching of the diffused layer has been developed to obtain a diffusion profile appropriate for high efficiency GaSb thermophotovoltaic cells. The junction depth was controlled through monitoring of light current-voltage (I-V) curves (photovoltaic response) during the post diffusion emitter etching process. The measured photoresponses (prior to device fabrication) have been correlated with the quantum efficiencies and the open circuit voltages in the fabricated devices. An optimum junction depth for obtaining highest quantum efficiency and open circuit voltage is presented based on diffusion lengths (or monitoring carrier lifetimes), carrier mobility and typical diffused impurity profile in GaSb.

  14. Hydrogen Diffusion in Forsterite

    NASA Astrophysics Data System (ADS)

    Demouchy, S.; Mackwell, S.

    2002-12-01

    Physical and chemical properties of Earth's mantle are readily modified by interaction with volatiles, such as water. Thus, characterization of solubility and kinetics of incorporation for water in nominally anhydrous minerals is important in order to understand the behavior of Earth's interior under hydrous conditions. Experimental studies on the olivine-water system indicate that significant amounts of OH can dissolve within olivine as point defects (Bell and Rossman, 1992; Kohlstedt et al. 1996). Extending Kohlstedt and Mackwell's (1998) work, our study concerns the kinetics of hydrogen transport in the iron-free olivine-water system. This study is based on hydrogenation of forsterite samples during piston-cylinder and TZM cold-seal vessel experiments. We use infrared analyses in order to constrain the speciation of the mobile water-derived defects in forsterite single-crystal sample, and the rates of diffusion of such species under uppermost mantle conditions (0.2 to 1.5 GPa, 900 to 1100° C). Hydrogen defect transport in single crystals of forsterite is investigated for diffusion parallel to each crystallographic axis. Defect diffusivities are obtained by fitting a diffusion law to the OH content as a function of position in the sample. Our current results indicate that incorporation of hydroxyl species into iron-free olivine is a one-stage process with hydrogen diffusion linked to magnesium vacancy self-diffusion DV, such that DV = D~/3 = 10-12 m2/s at 1000° C parallel to [001], where D~ represents the chemical diffusivity. Those diffusion rates are slightly lower than in iron-bearing olivine for the same incorporation mechanism. The different concentration profiles show a clear anisotropy of diffusion, with fastest diffusion parallel to [001] as in iron-bearing olivine. Thus, while hydrogen solubilities are dependent on iron content, the rate of incorporation of water-derived species in olivine is not strongly coupled to the concentration of iron. This

  15. Nodal Diffusion & Transport Theory

    Energy Science and Technology Software Center (ESTSC)

    1992-02-19

    DIF3D solves multigroup diffusion theory eigenvalue, adjoint, fixed source, and criticality (concentration, buckling, and dimension search) problems in 1, 2, and 3-space dimensions for orthogonal (rectangular or cylindrical), triangular, and hexagonal geometries. Anisotropic diffusion theory coefficients are permitted. Flux and power density maps by mesh cell and regionwise balance integrals are provided. Although primarily designed for fast reactor problems, upscattering and internal black boundary conditions are also treated.

  16. Light-induced atomic desorption: recent developments

    NASA Astrophysics Data System (ADS)

    Mariotti, E.; Atutov, S. N.; Biancalana, Valerio; Bocci, S.; Burchianti, A.; Marinelli, C.; Nasyrov, K. A.; Pieragnoli, B.; Moi, L.

    2001-04-01

    Light induced atomic desorption (LIAD) is an impressive manifestation of a new class of phenomena involving alkali atoms, dielectric films and light. LIAD consists of a huge emission of alkali atoms (experimentally proved for sodium, potassium, rubidium and cesium) from siloxane films when illuminated by laser or ordinary light. Most of the experiments have been performed in glass cells suitably coated by a thin film (of the order of 10 micrometer) either of poly - (dimethylsiloxane) (PDMS), a polymer, or of octamethylcyclotetrasiloxane (OCT), a crown molecule. LIAD is a combination of two processes: direct photo-desorption from the surface and diffusion within the siloxane layer. The photo-desorbed atoms are replaced by fresh atoms diffusing to the surface. Moreover, from the experimental data it comes out that the desorbing light increases atomic diffusion and hence the diffusion coefficient. To our knowledge this is the first time that such an effect is clearly observed, measured and discussed: LIAD represents a new class of photo-effects characterized by two simultaneous phenomena due to the light: surface desorption and fastened bulk diffusion.

  17. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  18. Imaging cell size and permeability in biological tissue using the diffusion-time dependence of the apparent diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Dietrich, Olaf; Hubert, Alexander; Heiland, Sabine

    2014-06-01

    The purpose of this study was to analyze and evaluate a model of restricted water diffusion between equidistant permeable membranes for cell-size and permeability measurements in biological tissue. Based on the known probability distribution of diffusion distances after the diffusion time τ in a system of permeable membranes characterized by three parameters (membrane permeability P, membrane distance L, and free diffusivity D0), an equivalent dimensionless model was derived with a probability distribution characterized by only a single (dimensionless) tissue parameter \\tilde{P}. Evaluating this proposed model function, the dimensionless diffusion coefficient \\tilde{D}_{eff}(\\tilde{\\tau };\\,\\tilde{P}) was numerically calculated for 60 values of the dimensionless diffusion time \\tilde{\\tau } and 35 values of \\tilde{P}. Diffusion coefficients were measured in a carrot by diffusion-weighted magnetic resonance imaging (MRI) at 18 diffusion times between 9.9 and 1022.7 ms and fitted to the simulation results \\tilde{D}_{eff}(\\tilde{\\tau };\\,\\tilde{P}) to determine L, P, and D0. The measured diffusivities followed the simulated dependence of \\tilde{D}_{eff}(\\tilde{\\tau };\\tilde{P}). Determined cell sizes varied from 21 to 76 μm, permeabilities from 0.007 to 0.039 μm-1, and the free diffusivities from 1354 to 1713 μm2 s-1. In conclusion, the proposed dimensionless tissue model can be used to determine tissue parameters (D0, L, P) based on diffusion MRI with multiple diffusion times. Measurements in a carrot showed a good agreement of the cell diameter, L, determined by diffusion MRI and by light microscopy.

  19. Measuring the diffusion of linguistic change

    PubMed Central

    Nerbonne, John

    2010-01-01

    We examine situations in which linguistic changes have probably been propagated via normal contact as opposed to via conquest, recent settlement and large-scale migration. We proceed then from two simplifying assumptions: first, that all linguistic variation is the result of either diffusion or independent innovation, and, second, that we may operationalize social contact as geographical distance. It is clear that both of these assumptions are imperfect, but they allow us to examine diffusion via the distribution of linguistic variation as a function of geographical distance. Several studies in quantitative linguistics have examined this relation, starting with Séguy (Séguy 1971 Rev. Linguist. Romane 35, 335–357), and virtually all report a sublinear growth in aggregate linguistic variation as a function of geographical distance. The literature from dialectology and historical linguistics has mostly traced the diffusion of individual features, however, so that it is sensible to ask what sort of dynamic in the diffusion of individual features is compatible with Séguy's curve. We examine some simulations of diffusion in an effort to shed light on this question. PMID:21041207

  20. Light Learning.

    ERIC Educational Resources Information Center

    Cutshall, Sandy

    2002-01-01

    Describes a career and technical education program on photonics, the study, research, and development of equipment and concepts used in the transmission of information through light, including fiber optics and experimental laser technologies. (JOW)

  1. Permanganate diffusion and reaction in sedimentary rocks.

    PubMed

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. PMID:24566296

  2. Water vapor diffusion in Mars subsurface environments

    NASA Astrophysics Data System (ADS)

    Hudson, Troy L.; Aharonson, Oded; Schorghofer, Norbert; Farmer, Crofton B.; Hecht, Michael H.; Bridges, Nathan T.

    2007-05-01

    The diffusion coefficient of water vapor in unconsolidated porous media is measured for various soil simulants at Mars-like pressures and subzero temperatures. An experimental chamber which simultaneously reproduces a low-pressure, low-temperature, and low-humidity environment is used to monitor water flux from an ice source through a porous diffusion barrier. Experiments are performed on four types of simulants: 40-70 μm glass beads, sintered glass filter disks, 1-3 μm dust (both loose and packed), and JSC Mars-1. A theoretical framework is presented that applies to environments that are not necessarily isothermal or isobaric. For most of our samples, we find diffusion coefficients in the range of 2.8 to 5.4 cm2 s-1 at 600 Pascal and 260 K. This range becomes 1.9-4.7 cm2 s-1 when extrapolated to a Mars-like temperature of 200 K. Our preferred value for JSC Mars-1 at 600 Pa and 200 K is 3.7 +/- 0.5 cm2 s-1. The tortuosities of the glass beads is about 1.8. Packed dust displays a lower mean diffusion coefficient of 0.38 +/- 0.26 cm2 s-1, which can be attributed to transition to the Knudsen regime where molecular collisions with the pore walls dominate. Values for the diffusion coefficient and the variation of the diffusion coefficient with pressure are well matched by existing models. The survival of shallow subsurface ice on Mars and the providence of diffusion barriers are considered in light of these measurements.

  3. Light's twist

    PubMed Central

    Padgett, Miles

    2014-01-01

    That light travels in straight lines is a statement of the obvious. However, the energy and momentum flow within light beams can twist to form vortices such as eddies in a stream. These twists carry angular momentum, which can make microscopic objects spin, be used to encode extra information in communication systems, enable the design of novel imaging systems and allow new tests of quantum mechanics. PMID:25484612

  4. Controlling Light Harvesting with Light.

    PubMed

    Gwizdala, Michal; Berera, Rudi; Kirilovsky, Diana; van Grondelle, Rienk; Krüger, Tjaart P J

    2016-09-14

    When exposed to intense sunlight, all organisms performing oxygenic photosynthesis implement various photoprotective strategies to prevent potentially lethal photodamage. The rapidly responding photoprotective mechanisms, occurring in the light-harvesting pigment-protein antennae, take effect within tens of seconds, while the dramatic and potentially harmful light intensity fluctuations manifest also on shorter time scales. Here we show that, upon illumination, individual phycobilisomes from Synechocystis PCC 6803, which, in vivo under low-light conditions, harvest solar energy, and have the built-in capacity to switch rapidly and reversibly into light-activated energy-dissipating states. Simultaneously measured fluorescence intensity, lifetime, and spectra, compared with a multicompartmental kinetic model, revealed that essentially any subunit of a phycobilisome can be quenched, and that the core complexes were targeted most frequently. Our results provide the first evidence for fluorescence blinking from a biologically active system at physiological light intensities and suggest that the light-controlled switches to intrinsically available energy-dissipating states are responsible for a novel type of photoprotection in cyanobacteria. We anticipate other photosynthetic organisms to employ similar strategies to respond instantly to rapid solar light intensity fluctuations. A detailed understanding of the photophysics of photosynthetic antenna complexes is of great interest for bioinspired solar energy technologies. PMID:27546794

  5. Beam splitter for squeezed light

    NASA Astrophysics Data System (ADS)

    Qu, Weizhi; Sun, Jian; Mikhailov, Eugeniy; Novikova, Irina; Shen, Heng; Xiao, Yanhong

    2016-05-01

    A conventional beam splitter can split classical light beams, but when used for squeezed light, the non-classical property is often lost at the beam splitter output. Here, we demonstrate a beam splitter made of moving atoms that can split squeezed light. Squeezed vacuum is generated by a degenerate four-wave-mixing (FWM) process in one location (Ch1) of a wall-coated Rb vapor cell, and then due to coherent diffusion of ground state coherence of the atoms within the cell, squeezed vacuum can be generated in a different location (Ch2) of the cell where no squeezing would exist without the presence of the Ch1, because of a relatively weak laser input. We attribute the phenomenon to FWM enhanced by coherence transfer. This effectively forms a beam splitter for squeezed light. We built a simple model that produces results in qualitative agreement with our experimental observations.

  6. Cation Diffusion in Xenotime

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2004-05-01

    Xenotime is an important mineral in metamorphic paragenesis, and useful in isotopic dating, garnet-xenotime thermometry, and monazite-xenotime thermometry, so diffusion data for xenotime of cations of geochronological and geochemical importance are of some interest. We report here on diffusion of the rare earth elements Sm, Dy and Yb in synthetic xenotime under dry conditions. The synthetic xenotime was grown via a Na2}CO{3}-MoO_{3 flux method. The source of diffusant for the experiments were REE phosphate powders, with experiments run with sources containing a single REE. Experiments were performed by placing source and xenotime in Pt capsules, and annealing capsules in 1 atm furnaces for times ranging from thirty minutes to a month, at temperatures from 1000 to 1400C. The REE distributions in the xenotime were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relations are obtained for diffusion in xenotime, normal to (101): DSm = 1.7x10-4 exp(-442 kJ mol-1/RT) m2}sec{-1 DDy = 3.5x10-7 exp(-365 kJ mol-1/RT) m2}sec{-1 DYb = 7.4x10-7 exp(-371 kJ mol-1/RT) m2}sec{-1. Diffusivities of these REE do not differ greatly in xenotime, in contrast to the findings noted for the REE in zircon (Cherniak et al., 1997), where the LREE diffuse more slowly, and with higher activation energies for diffusion, than the heavier rare earths. In zircon, these differences among diffusion of the rare earths are attributed to the relatively large size of the REE with respect to Zr, for which they substitute in the zircon lattice. With the systematic increase in ionic radius from the heavy to lighter REE, this size mismatch becomes more pronounced and diffusivities of the LREE are as consequence slower. Although xenotime is isostructural with zircon, the REE are more closely matched in size to Y, so in xenotime this effect appears much smaller and the REE diffuse at similar rates. In addition, the process of diffusion in xenotime likely involves simple REE+3

  7. Ti Diffusion in Pyroxene

    NASA Astrophysics Data System (ADS)

    Cherniak, D.; Liang, Y.

    2008-12-01

    Diffusion of titanium has been characterized in natural enstatite and diopside under buffered conditions and in air. The sources of diffusant for the enstatite experiments were mixtures of Mg, Si and Ti oxide powders, which were combined and heated at 1300°C overnight, and then thoroughly mixed with synthesized enstatite powder and heated for an additional day at 1300°C. Sources for diopside experiments were prepared similarly, using Ca, Mg, Si, and Ti oxide powders combined with synthesized diopside powder, with heating of source materials at 1200°C. Buffered experiments were prepared by enclosing source material and pyroxene (polished and pre-annealed under conditions comparable to those to be experienced in the experiment) in AgPd or platinum capsules, placing the metal capsule in a silica glass capsule with a solid buffer (to buffer at NNO or IW) and sealing the assembly under vacuum. Some experiments on enstatite were run in air; sample and source were placed in Pt capsules and crimped shut. Prepared capsules were then annealed in 1 atm furnaces for times ranging from 8 hours to a few months, at temperatures from 950 to 1200°C. The Ti distributions in the pyroxene were profiled with Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for Ti diffusion in a natural enstatite, for diffusion normal to the (210) cleavage face (950 - 1150°C, experiments run in air): DTi = 1.9×10-10 exp(-300 ± 44 kJ mol-1/RT) m2 sec-1. Diffusion under NNO and IW-buffered conditions is similar to that for experiments run in air, suggesting little dependence of Ti diffusion on oxygen fugacity. There is also little evidence of anisotropy, as diffusion normal to (001) does not differ significantly from diffusion for the other orientation. Preliminary findings for Ti diffusion in diopside suggest diffusivities similar to those for enstatite. Ti diffusivities in enstatite are similar to those of the trivalent REEs (Cherniak and Liang, 2007

  8. Improved Optics For Quasi-Elastic Light Scattering

    NASA Technical Reports Server (NTRS)

    Cheung, Harry Michael

    1995-01-01

    Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.

  9. Stray light of Suzaku XRT from Crab offset observations

    NASA Astrophysics Data System (ADS)

    Takei, Yoh; Akamatsu, Hiroki; Hiyama, Yuichi; Maeda, Yoshitomo; Ishida, Manabu; Mori, Hideyuki; Ishisaki, Yoshitaka; Hoshino, Akio

    2012-03-01

    The stray light is one of the systematic uncertainties in the analysis of faint diffuse objects, such as outskirts of clusters of galaxies. The stray light had been modeled so that researchers can estimate it by xissim. The model prediction sometimes differs from the observation by factors. We summarize characteristics of stray lights obtained from Crab offset observations.

  10. Microperforations Significantly Enhance Diffusion Across Round Window Membrane

    PubMed Central

    Kelso, Catherine M.; Watanabe, Hirobumi; Wazen, Joseph M.; Bucher, Tizian; Qian, Zhen J.; Olson, Elizabeth S.; Kysar, Jeffrey W.; Lalwani, Anil K.

    2014-01-01

    Hypothesis Introduction of microperforations in round window membrane (RWM) will allow reliable and predictable intracochlear delivery of pharmaceutical, molecular or cellular therapeutic agents. Background Reliable delivery of medications into the inner ear remains a formidable challenge. The RWM is an attractive target for intracochlear delivery. However, simple diffusion across intact RWM is limited by what material can be delivered, size of material to be delivered, difficulty with precise dosing, timing, and precision of delivery over time. Further, absence of reliable methods for measuring diffusion across RWM in vitro is a significant experimental impediment. Methods A novel model for measuring diffusion across guinea pig RWM, with and without microperforation, was developed and tested: cochleae, sparing the RWM, were embedded in 3D-printed acrylic holders using hybrid dental composite and light cured to adapt the round window niche to 3ml Franz diffusion cells. Perforations were created with 12.5μm diameter needles and examined with light microscopy. Diffusion of 1mM Rhodamine B across RWM in static diffusion cells was measured via fluorescence microscopy. Results The diffusion cell apparatus provided reliable and replicable measurements of diffusion across RWM. The permeability of Rhodamine B across intact RWM was 5.1 × 10-9 m/s. Manual application of microperforation with a 12.5μm diameter tip produced an elliptical tear removing 0.22±0.07% of the membrane and was associated with a 35x enhancement in diffusion (p<0.05). Conclusion Diffusion cells can be applied to the study of RWM permeability in vitro. Microperforation in RWM is an effective means of increasing diffusion across the RWM. PMID:25310125

  11. One dimensional speckle fields generated by three phase level diffusers

    NASA Astrophysics Data System (ADS)

    Cabezas, L.; Amaya, D.; Bolognini, N.; Lencina, A.

    2015-02-01

    Speckle patterns have usually been obtained by using ground glass as random diffusers. Liquid-crystal spatial light modulators have opened the possibility of engineering tailored speckle fields obtained from designed diffusers. In this work, one-dimensional Gaussian speckle fields with fully controllable features are generated. By employing a low-cost liquid-crystal spatial light modulator, one-dimensional three phase level diffusers are implemented. These diffusers make it possible to control average intensity distribution and statistical independence among the generated patterns. The average speckle size is governed by an external slit pupil. A theoretical model to describe the generated speckle patterns is developed. Experimental and theoretical results confirming the generation of one-dimensional speckle fields are presented. Some possible applications of these speckles, such as atom trapping and super-resolution imaging, are briefly envisaged.

  12. Counterion Diffusion in Ionomers

    NASA Astrophysics Data System (ADS)

    Walter, Russell; Winey, Karen; Kim, Joon-Seop; Composto, Russell

    2004-03-01

    Diffusion of Cs counterions to the air/ionomer film interface is followed using Rutherford backscattering spectrometry and results compared with the "sticky reptation" model[1]. The ionomer system is poly(styrene-ran-methacrylic acid) (Cs-SMAA) neutralized at 100% by Cs. The concentration profiles exhibit a surface excess, z*, of Cs followed by a depletion of Cs. The z* and depletion layer thickness grow as t1/2, consistent with diffusion limited growth. Annealing studies at 130 °C, 145 °C and 208 °C were used to extract the diffusion coefficient, D. In all cases, D is greater than that of the matrix chains. These results suggest that the diffusion rate is controlled by the fraction of counterions that disassociate from the acid groups and migrate through the matrix. Moreover, the "sticky reptation" model doesn't appear to predict the diffusion behavior in the Cs-SMAA system. [1] Leibler, L, Ludwick, L., Rubinstein, M., Colby, R.H., Macromolecules 24 (1991) 4701.

  13. Diffusing-wave spectroscopy of nonergodic media

    SciTech Connect

    Scheffold, F.; Skipetrov, S. E.; Romer, S.; Schurtenberger, P.

    2001-06-01

    We introduce an elegant method that allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solidlike samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called {open_quotes}multiplication rule,{close_quotes} which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique.

  14. Diffusing-wave spectroscopy of nonergodic media.

    PubMed

    Scheffold, F; Skipetrov, S E; Romer, S; Schurtenberger, P

    2001-06-01

    We introduce an elegant method that allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solidlike samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called "multiplication rule," which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique. PMID:11415101

  15. Cesium diffusion in graphite

    SciTech Connect

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  16. Light's Darkness

    ScienceCinema

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  17. Lighting installations

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    Model computations that give the lay-out of a lighting installation have to be implemented in the real world. There, deviations from the ideal performance of just about every element of the installation will be felt. A list of possible sources of non-ideal behavior, based on practical experience, are: lamps, ballasts, reflectors, mounting position, sagging of lamps, and soiling. It is clear that with all possible deviations from the ideal the homogeneity of a real lighting installation can never be as good as the one computed. The only way to make sure it is nearly as good is by measurement of the actual light distribution. Then, an occasional adjustment or replacement may often yield a satisfactory result. This measurement should really be part of the installation contract.

  18. Diffusion imaging concepts for clinicians.

    PubMed

    Neil, Jeffrey J

    2008-01-01

    This review covers the fundamentals of diffusion tensor imaging. It is written with the clinician in mind and assumes the reader has a passing familiarity with magnetic resonance imaging (MRI). Topics covered include comparison of diffusion MRI with conventional MRI, water apparent diffusion coefficient (ADC), diffusion anisotropy, tract tracing, and changes of water apparent diffusion in response to injury. The discussion centers primarily on applications to the central nervous system, but examples from other tissues are included. PMID:18050325

  19. Hydrogen diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH‑ = U4+ + O2‑ + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  20. Radon diffusion modelling.

    PubMed

    Wilkinson, P; Dimbylow, P J

    1985-10-01

    A mathematical model has been developed that examines the ingress of radon into houses, through a vertical crack in an otherwise impervious concrete floor. Initially, the model considered the diffusive flow of radon from its soil source and this simulation has highlighted the dependency of the flux of radon into the house on the magnitude of various parameters, such as the diffusion coefficient of radon in soil. A preliminary investigation of the modelling of pressure-driven flow into a building is presented, and the potential of this type of analysis is discussed. PMID:4081719

  1. Evolution of error diffusion

    NASA Astrophysics Data System (ADS)

    Knox, Keith T.

    1999-10-01

    As we approach the new millennium, error diffusion is approaching the 25th anniversary of its invention. Because of its exceptionally high image quality, it continues to be a popular choice among digital halftoning algorithms. Over the last 24 years, many attempts have been made to modify and improve the algorithm--to eliminate unwanted textures and to extend it to printing media and color. Some of these modifications have been very successful and are in use today. This paper will review the history of the algorithm and its modifications. Three watershed events in the development of error diffusion will be described, together with the lessons learned along the way.

  2. Evolution of error diffusion

    NASA Astrophysics Data System (ADS)

    Knox, Keith T.

    1998-12-01

    As we approach the new millennium, error diffusion is approaching the 25th anniversary of its invention. Because of its exceptionally high image quality, it continues to be a popular choice among digital halftoning algorithms. Over the last 24 years, many attempts have been made to modify and improve the algorithm - to eliminate unwanted textures and to extend it to printing media and color. Some of these modifications have been very successful and are in use today. This paper will review the history of the algorithm and its modifications. Three watershed events in the development of error diffusion will be described, together with the lesions learned along the way.

  3. Mass diffusion in liquids

    NASA Astrophysics Data System (ADS)

    Walter, H. U.

    Dimensionless number analysis indicates that diffusion-controlled conditions with liquid samples having characteristic dimensions larger than one millimetre can only be established under microgravity conditions.Consequently, heat and mass transport properties of fluids can only be quantitatively investigated in space.Results obtained from experiments on selfdiffusion, interdiffusion and thermodiffusion carried out during the SL-1 and D-1 Spacelab missions clearly demonstrate the potential of space platforms to determine such properties with a precision unattainable on earth. These results imply also that crystal growth from solutions, vapours and melts in the diffusive regime can be realised in space only.

  4. Detection of a diffusive cloak via second-order statistics

    NASA Astrophysics Data System (ADS)

    Koirala, Milan; Yamilov, Alexey

    2016-08-01

    We propose a scheme to detect the diffusive cloak proposed by Schittny et al [Science 345, 427 (2014)]. We exploit the fact that diffusion of light is an approximation that disregards wave interference. The long-range contribution to intensity correlation is sensitive to locations of paths crossings and the interference inside the medium, allowing one to detect the size and position, including the depth, of the diffusive cloak. Our results also suggest that it is possible to separately manipulate the first- and the second-order statistics of wave propagation in turbid media.

  5. Detection of a diffusive cloak via second-order statistics.

    PubMed

    Koirala, Milan; Yamilov, Alexey

    2016-08-15

    We propose a scheme to detect the diffusive cloak proposed by Schittny et al. [Science345, 427 (2014).SCIEAS0036-807510.1126/science.1254524]. We exploit the fact that diffusion of light is an approximation that disregards wave interference. The long-range contribution to intensity correlation is sensitive to the locations of path crossings and the interference inside the medium, allowing one to detect the size and position, including the depth, of the diffusive cloak. Our results also suggest that it is possible to separately manipulate the first- and the second-order statistics of wave propagation in turbid media. PMID:27519108

  6. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A

  7. Irradiance calibration with solar diffuser

    NASA Technical Reports Server (NTRS)

    Haring, Robert E. (Inventor); Roeder, Herbert A. (Inventor); Hartmann, Ulli G. (Inventor)

    1993-01-01

    The sun's energy is used in combination of movable and fixed diffuser plates, windows and apertures which are positioned in a series of test sequences (modes) for reflectance monitoring and calibration without the use of man-made sources. There are three embodiments, or implementations, of the invention--one embodiment uses two diffusers--a working diffuser and a secondary diffuser--the second embodiment uses three diffusers, a working diffuser, a secondary diffuser and a reference diffuser--and the third embodiment uses two diffusers--a working diffuser and a secondary diffuser, the latter also functioning as a cover for the working diffuser. The movable diffusers are mounted on rotatable cones and, in all embodiments, the sun is blocked from reaching the diffusers when not in use. Thus, the sun is used as a stable source for calibration and monitoring and the sun/diffuser combination is used in such a way that the response of all elements of the optical subsystem of the TOMS can be unambiguously and efficiently characterized with high accuracy and precision.

  8. Computational analysis of endometrial photocoagulation with diffusing optical device

    PubMed Central

    Kwon, Jinhee; Lee, Chang-Yong; Oh, Junghwan; Kang, Hyun Wook

    2013-01-01

    A balloon-catheter optical diffuser for endometrial treatment was evaluated with computational thermal analysis. Various catheter materials and dimensions were implemented to identify the optimal design for the device. Spatial and temporal development of temperature during 30-sec irradiation of 532-nm light demonstrated thermal insulation effects of polyurethane on temperature increase up to 384 K, facilitating the irreversible denaturation. The current model revealed the degree of thermal coagulation 13% thicker than experimental results possibly due to lack of tissue dynamics and light intensity distribution. In combination with photon distribution, the analytical simulation can be a feasible tool to optimize the new optical diffuser for efficient and safe endometrial treatment. PMID:24298406

  9. Thermal diffusivity measurement by lock-in photothermal shadowgraph method

    NASA Astrophysics Data System (ADS)

    Cifuentes, A.; Alvarado, S.; Cabrera, H.; Calderón, A.; Marín, E.

    2016-04-01

    Here, we present a novel application of the shadowgraph technique for obtaining the thermal diffusivity of an opaque solid sample, inspired by the orthogonal skimming photothermal beam deflection technique. This new variant utilizes the shadow projected by the sample when put against a collimated light source. The sample is then heated periodically by another light beam, giving rise to thermal waves, which propagate across it and through its surroundings. Changes in the refractive index of the surrounding media due to the heating distort the shadow. This phenomenon is recorded and lock-in amplified in order to determine the sample's thermal diffusivity.

  10. Light source design for machine vision

    NASA Astrophysics Data System (ADS)

    Sieczka, Eric J.; Harding, Kevin G.

    1992-03-01

    There is a lack of commercially available white light sources for machine vision applications. Current commercial sources are typically expensive and primarily designed for workbench use. Because of their benchtop design, these light sources cannot be easily integrated into the inspection system. In most cases a light source must be custom designed and built to suit the needs of the particular machine vision application. The materials being inspected can vary from highly specular to highly diffuse, thus requiring a broad range of illumination levels. Other issues important in machine vision light sources include efficiency, light divergence, spectral content, source size, and packaging. This paper discusses the issues that must be overcome when designing a light source for machine vision applications, and describes the work done by ITI to produce an efficient white light source with computer controlled illumination level.

  11. An automatic light scattering CCN counter

    NASA Technical Reports Server (NTRS)

    Lala, G. G.

    1981-01-01

    The counter is a static thermal diffusion chamber which has been modified to include an optical system for the determination of droplet concentration by the measurement of scattered light. The determination of concentration is made by measurement of the peak scattered light signal from the cloud of growing droplets which is a function of both the droplet concentration and chamber supersaturation. Because the formation of the peak is related to the rate of growth of the droplets and sedimentation, both of which are determined by supersaturation, the system calibration can be uniquely determined by comparison with an absolute counter such as a static diffusion chamber with a photographic recording system.

  12. An automatic light scattering CCN counter

    NASA Astrophysics Data System (ADS)

    Lala, G. G.

    1981-11-01

    The counter is a static thermal diffusion chamber which has been modified to include an optical system for the determination of droplet concentration by the measurement of scattered light. The determination of concentration is made by measurement of the peak scattered light signal from the cloud of growing droplets which is a function of both the droplet concentration and chamber supersaturation. Because the formation of the peak is related to the rate of growth of the droplets and sedimentation, both of which are determined by supersaturation, the system calibration can be uniquely determined by comparison with an absolute counter such as a static diffusion chamber with a photographic recording system.

  13. A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS

    SciTech Connect

    Medin, Zach; Cumming, Andrew E-mail: cumming@physics.mcgill.ca

    2014-03-01

    We show that convection driven by chemical separation can significantly affect the cooling light curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  14. Multicomponent diffusion in molten salt NaF-ZrF4: Dynamical correlations and Maxwell-Stefan diffusivities

    NASA Astrophysics Data System (ADS)

    Baig, Mohammad Saad; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2016-05-01

    NaF-ZrF4 is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF4 system were studied along with Onsagercoefficients and Maxwell-Stefan (MS) Diffusivities applying Green-Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity ĐNa-F shows interesting behavior with the increase in concentration of ZrF4. This is because of network formation in NaF-ZrF4. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.

  15. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  16. School Lighting.

    ERIC Educational Resources Information Center

    Rennhackkamp, W. M. H.

    Research gathered by the Functional Efficiency Division of the National Building Research Institute, South Africa, is aimed at providing lighting conditions under which the school child can produce his maximum effort with the least strain and fatigue. These favorable conditions are outlined along with specific examples of their realization in…

  17. Dissecting Light.

    ERIC Educational Resources Information Center

    Proto, Christopher; Marek, Edmund A.

    2000-01-01

    Describes how to teach the light spectrum to students using hands-on activities in a physical science class at the middle school level. Explains how to build a spectroscope and lists required materials. Provides an internet address for sciLinks. (YDS)

  18. Diffusion in random networks

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Zhang, Duan Z.

    2015-11-01

    The ensemble phase averaging technique is applied to model mass transport in a porous medium. The porous material is idealized as an ensemble of random networks, where each network consists of a set of junction points representing the pores and tortuous channels connecting them. Inside a channel, fluid transport is assumed to be governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. Instead of attempting to solve this equation, and equivalent set of partial differential equations is derived whose solution is sought numerically. As a test problem, we consider the one-dimensional diffusion of a substance from one end to the other in a bounded domain. For a statistically homogeneous and isotropic material, results show that for relatively large times the pore mass density evolution from the new theory is significantly delayed in comparison with the solution from the classical diffusion equation. In the short-time case, when the solution evolves with time as if the domain were semi-infinite, numerical results indicate that the pore mass density becomes a function of the similarity variable xt- 1 / 4 rather than xt- 1 / 2 characteristic of classical diffusion. This result was verified analytically. Possible applications of this framework include flow in gas shales. Work supported by LDRD project of LANL.

  19. Osmosis and Diffusion

    ERIC Educational Resources Information Center

    Sack, Jeff

    2005-01-01

    OsmoBeaker is a CD-ROM designed to enhance the learning of diffusion and osmosis by presenting interactive experimentation to the student. The software provides several computer simulations that take the student through different scenarios with cells, having different concentrations of solutes in them.

  20. Thermodynamics of diffusion

    NASA Astrophysics Data System (ADS)

    Matuszak, Daniel

    Diffusion is the migration of molecules in the reference frame of a system's center of mass and it is a physical process that occurs in all chemical and biological systems. Diffusion generally involves intermolecular interactions that lead to clustering, adsorption, and phase transitions; as such, it is difficult to describe theoretically on a molecular level in systems containing both intermolecular repulsions and attractions. This work describes a simple thermodynamic approach that accounts for intermolecular attractions and repulsions (much like how the van der Waals equation does) to model and help provide an understanding of diffusion. The approach is an extension of the equilibrium Lattice Density Functional Theory of Aranovich and Donohue; it was developed with Mason and Lonsdale's guidelines on how to construct and test a transport theory. In the framework of lattice fluids, this new approach gives (a) correct equilibrium limits, (b) Fickian behavior for non-interacting systems, (c) correct departures from Fickian behavior in non-ideal systems, (d) the correct Maxwell-Stefan formulation, (e) symmetry behavior upon re-labeling species, (f) reasonable non-equilibrium phase behavior, (g) agreement with Molecular Dynamics simulations, (h) agreement with the theory of non-equilibrium thermodynamics, (i) a vanishing diffusive flux at the critical point, and (j) other qualitatively-correct behaviors when applied to problems in porous membranes and in packed beds.

  1. Diffuse sorption modeling.

    PubMed

    Pivovarov, Sergey

    2009-04-01

    This work presents a simple solution for the diffuse double layer model, applicable to calculation of surface speciation as well as to simulation of ionic adsorption within the diffuse layer of solution in arbitrary salt media. Based on Poisson-Boltzmann equation, the Gaines-Thomas selectivity coefficient for uni-bivalent exchange on clay, K(GT)(Me(2+)/M(+))=(Q(Me)(0.5)/Q(M)){M(+)}/{Me(2+)}(0.5), (Q is the equivalent fraction of cation in the exchange capacity, and {M(+)} and {Me(2+)} are the ionic activities in solution) may be calculated as [surface charge, mueq/m(2)]/0.61. The obtained solution of the Poisson-Boltzmann equation was applied to calculation of ionic exchange on clays and to simulation of the surface charge of ferrihydrite in 0.01-6 M NaCl solutions. In addition, a new model of acid-base properties was developed. This model is based on assumption that the net proton charge is not located on the mathematical surface plane but diffusely distributed within the subsurface layer of the lattice. It is shown that the obtained solution of the Poisson-Boltzmann equation makes such calculations possible, and that this approach is more efficient than the original diffuse double layer model. PMID:19159896

  2. Diffusion welding tool

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1973-01-01

    Tool allows flat plate diffusion welding to be done in standard brazing furnace. Weld is achieved using high water pressure applied by hand-operated positive-displacement pump. Good welds have been obtained between nickel and nickel-base alloy plates at temperature of 1200 K and water pressure of 13.8 million N/sq m.

  3. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  4. Ti Diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2006-12-01

    Diffusion of Ti under anhydrous conditions at 1 atmosphere and under fluid-present conditions at 1.1-1.2 GPa has been measured in natural zircon. The source of diffusant for 1-atm experiments was a ZrO2- TiO2-ZrSiO4 mixture, with experiments run in Pt capsules. Diffusion experiments conducted in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source of ground TiO2, ZrSiO4 and SiO2, with oxalic acid added to produce H2O-CO2 vapor and partially melt the solid source material, yielding an assemblage of rutile + zircon + melt + vapor. Resonant nuclear reaction analysis (NRA) with the nuclear reaction ^{48}Ti(p,Γ)^{49}V was used to measure diffusion profiles for both sets of experiments. The following Arrhenius relation was obtained for Ti diffusion normal to c over the temperature range 1350-1550C at one atmosphere: DTi = 3.3x102 exp(-754 ± 56 kJ mol-1 /RT) m2sec-1 Ti diffusivities were found to be similar for experiments run under fluid-present conditions. A fit to all of the data yields the Arrhenius relation D = 1.3x103 exp(-741 ± 46 kJ mol-1 /RT) m2sec-1. These data suggest that zircon should be extremely retentive of Ti chemical signatures, indicating that the recently developed Ti-in-zircon crystallization geothermometer (Watson and Harrison, 2005; Watson et al., 2006) will be quite robust in preserving temperatures of zircon crystallization. Titanium diffuses somewhat faster in zircon than larger tetravalent cations U, Th, and Hf, but considerably more slowly than Pb, the REE, and oxygen; hence Ti crystallization temperatures may be retained under circumstances when radiometric ages or other types of geochemical information are lost. Watson EB, Harrison TM (2005) Science 308, 841-844. Watson EB, Wark DA, Thomas JB (2006) CMP(in press).

  5. Direct visualization of surface-plasmon bandgaps in the diffuse background of metallic gratings.

    PubMed

    Depine, Ricardo A; Ledesma, Silvia

    2004-10-01

    When a surface plasmon propagates along a microrough grating, it interacts with the periodic plus the random roughness and emits light into the diffuse background, which can present intensity maxima called diffuse light bands. We reexamine previous studies on these bands within the framework of recent studies on photonic surfaces and show that the phenomenon of diffuse light provides an experimental technique for directly imaging the dispersion relation of surface plasmons, including the gap that, under appropriate circumstances, opens in the reciprocal grating space. PMID:15524359

  6. Photovoltaic structures having a light scattering interface layer and methods of making the same

    SciTech Connect

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  7. Diffusion on Cu surfaces

    NASA Technical Reports Server (NTRS)

    Karimi, Majid

    1993-01-01

    Understanding surface diffusion is essential in understanding surface phenomena, such as crystal growth, thin film growth, corrosion, physisorption, and chemisorption. Because of its importance, various experimental and theoretical efforts have been directed to understand this phenomena. The Field Ion Microscope (FIM) has been the major experimental tool for studying surface diffusion. FIM have been employed by various research groups to study surface diffusion of adatoms. Because of limitations of the FIM, such studies are only limited to a few surfaces: nickel, platinum, aluminum, iridium, tungsten, and rhodium. From the theoretical standpoint, various atomistic simulations are performed to study surface diffusion. In most of these calculations the Embedded Atom Method (EAM) along with the molecular static (MS) simulation are utilized. The EAM is a semi-empirical approach for modeling the interatomic interactions. The MS simulation is a technique for minimizing the total energy of a system of particles with respect to the positions of its particles. One of the objectives of this work is to develop the EAM functions for Cu and use them in conjunction with the molecular static (MS) simulation to study diffusion of a Cu atom on a perfect as well as stepped Cu(100) surfaces. This will provide a test of the validity of the EAM functions on Cu(100) surface and near the stepped environments. In particular, we construct a terrace-ledge-kink (TLK) model and calculate the migration energies of an atom on a terrace, near a ledge site, near a kink site, and going over a descending step. We have also calculated formation energies of an atom on the bare surface, a vacancy in the surface, a stepped surface, and a stepped-kink surface. Our results are compared with the available experimental and theoretical results.

  8. Nitride quantum light sources

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Oliver, R. A.

    2016-02-01

    Prototype nitride quantum light sources, particularly single-photon emitters, have been successfully demonstrated, despite the challenges inherent in this complex materials system. The large band offsets available between different nitride alloys have allowed device operation at easily accessible temperatures. A wide range of approaches has been explored: not only self-assembled quantum dot growth but also lithographic methods for site-controlled nanostructure formation. All these approaches face common challenges, particularly strong background signals which contaminate the single-photon stream and excessive spectral diffusion of the quantum dot emission wavelength. If these challenges can be successfully overcome, then ongoing rapid progress in the conventional III-V semiconductors provides a roadmap for future progress in the nitrides.

  9. Numerical modelling and image reconstruction in diffuse optical tomography

    PubMed Central

    Dehghani, Hamid; Srinivasan, Subhadra; Pogue, Brian W.; Gibson, Adam

    2009-01-01

    The development of diffuse optical tomography as a functional imaging modality has relied largely on the use of model-based image reconstruction. The recovery of optical parameters from boundary measurements of light propagation within tissue is inherently a difficult one, because the problem is nonlinear, ill-posed and ill-conditioned. Additionally, although the measured near-infrared signals of light transmission through tissue provide high imaging contrast, the reconstructed images suffer from poor spatial resolution due to the diffuse propagation of light in biological tissue. The application of model-based image reconstruction is reviewed in this paper, together with a numerical modelling approach to light propagation in tissue as well as generalized image reconstruction using boundary data. A comprehensive review and details of the basis for using spatial and structural prior information are also discussed, whereby the use of spectral and dual-modality systems can improve contrast and spatial resolution. PMID:19581256

  10. Light collection device for flame emission detectors

    DOEpatents

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  11. Erbium diffusion in silicon dioxide

    SciTech Connect

    Lu Yingwei; Julsgaard, B.; Petersen, M. Christian; Jensen, R. V. Skougaard; Pedersen, T. Garm; Pedersen, K.; Larsen, A. Nylandsted

    2010-10-04

    Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.

  12. High Brightness GaN-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Lee, Ya-Ju; Lu, Tien-Chang; Kuo, Hao-Chung; Wang, Shing-Chung

    2007-06-01

    This paper reviews our recent progress of GaN-based high brightness light-emitting diodes (LEDs). Firstly, by adopting chemical wet etching patterned sapphire substrates in GaN-based LEDs, not only could increase the extraction quantum efficiency, but also improve the internal quantum efficiency. Secondly, we present a high light-extraction 465-nm GaN-based vertical light-emitting diode structure with double diffuse surfaces. The external quantum efficiency was demonstrated to be about 40%. The high performance LED was achieved mainly due to the strong guided-light scattering efficiency while employing double diffuse surfaces.

  13. No-Light Light Bulbs

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    A thumbnail sketch of some of the light bulbs manufactured for a purpose other than seeing. These "dark" lamps perform varied tasks including keeping food fresh, detecting and preventing disease, spurring plant growth, heating, and copying printed material. (Author/MLF)

  14. High-Speed Three-Dimensional Nodal Diffusion Code System.

    Energy Science and Technology Software Center (ESTSC)

    2001-03-21

    Version 00 MOSRA-Light is a three-dimensional diffusion calculation code for X-Y-Z geometry. It can be used in: validation of discontinuity factor for adjoint problem; benchmark on discontinuity factor (forward & adjoint cal.); DVP BWR Benchmark (2D,2G calculation); and void reactivity effect benchmark; etc. A utility code called More-MOSRA provides many useful functions with the file produced by MOSRA-Light.

  15. Light Sources and Lighting Circuits

    NASA Astrophysics Data System (ADS)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  16. Diffuse reflectance spectroscopy of liver tissue

    NASA Astrophysics Data System (ADS)

    Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan

    2015-06-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.

  17. Diffuse Cystic Lung Diseases: Diagnostic Considerations.

    PubMed

    Xu, Kai-Feng; Feng, Ruie; Cui, Han; Tian, Xinlun; Wang, Hanping; Zhao, Jing; Huang, Hui; Zhang, Weihong; Lo, Bee Hong

    2016-06-01

    Diffuse cystic lung disease (DCLD) is a group of heterogeneous diseases that present as diffuse cystic changes in the lung on computed tomography of the chest. Most DCLD diseases are rare, although they might resemble common diseases such as emphysema and bronchiectasis. Main causes of DCLD include lymphangioleiomyomatosis, Birt-Hogg-Dubé syndrome, pulmonary Langerhans cell histiocytosis, lymphoid interstitial pneumonia, amyloidosis, light-chain deposition disease, Sjögren syndrome, and primary or metastatic neoplasm. We discuss clinical factors that are helpful in the differential diagnosis of DCLDsuch as sex and age, symptoms and signs, extrapulmonary presentations, cigarette smoking, and family history. Investigations for DCLD include high-resolution computed tomography, biochemical and histopathological studies, genetic tests, pulmonary function tests, and bronchoscopic and video-assisted thoracoscopic biopsies. A proposed diagnostic algorithm would enhance ease of diagnosing most cases of DCLD. PMID:27231867

  18. Diffuse Cystic Lung Disease. Part II.

    PubMed

    Gupta, Nishant; Vassallo, Robert; Wikenheiser-Brokamp, Kathryn A; McCormack, Francis X

    2015-07-01

    The diffuse cystic lung diseases have a broad differential diagnosis. A wide variety of pathophysiological processes spanning the spectrum from airway obstruction to lung remodeling can lead to multifocal cyst development in the lung. Although lymphangioleiomyomatosis and pulmonary Langerhans cell histiocytosis are perhaps more frequently seen in the clinic, disorders such as Birt-Hogg-Dubé syndrome, lymphocytic interstitial pneumonia, follicular bronchiolitis, and light-chain deposition disease are increasingly being recognized. Obtaining an accurate diagnosis can be challenging, and management approaches are highly disease dependent. Unique imaging features, genetic tests, serum studies, and clinical features provide invaluable clues that help clinicians distinguish among the various etiologies, but biopsy is often required for definitive diagnosis. In part II of this review, we present an overview of the diffuse cystic lung diseases caused by lymphoproliferative disorders, genetic mutations, or aberrant lung development and provide an approach to aid in their diagnosis and management. PMID:25906201

  19. EDITORIAL: Controlling light with light

    NASA Astrophysics Data System (ADS)

    Hesselink, Lambertus; Feinberg, Jack; Roosen, Gerald

    2008-11-01

    The field of photorefractive physics and optics is mature and, although there is no significant commercial activity using photorefractive media, researchers in the field have had an extraordinary impact on many related areas of research and development. For example, in the late 1990s many of the telecom innovations and products were based on the interaction between light and matter. Examples include optical switches, filters, gratings, routers and light sources. The theory of multiple interacting beams of light inside a photosensitive medium, many of which were developed or further explored in photorefractive media, has found application in medicine, engineering, communication systems, displays and other photonics devices. On the occasions of the 30th anniversary of the theory of coupled wave analysis and the 10th anniversary of the meetings on Photorefractive Effects and Devices, it seemed appropriate to the meeting organizers of PR'07 to broaden the scope to include other related fields. The name of the meeting was changed to Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More to attract a larger audience than traditionally would attend the more narrowly focused photorefractive meeting. To further disseminate the results of the 2007 meeting, Gerald Roosen proposed a special publication of original full research articles arising from key presentations at the meeting. The selection of papers in this Cluster Issue of Journal of Physics D: Applied Physics is the result of that initiative. We would like to thank all the authors for their contributions, the committee members for their valuable insight and efforts in helping to organize the meeting, and the Optical Society of America for their professional assistance throughout the preparation period of the meeting as well as during the three beautiful days in Lake Tahoe, CA.

  20. Numerical investigations of gaseous spherical diffusion flames

    NASA Astrophysics Data System (ADS)

    Lecoustre, Vivien R.

    Spherical diffusion flames have several unique characteristics that make them attractive from experimental and theoretical perspectives. They can be modeled with one spatial dimension, which frees computational resources for detailed chemistry, transport, and radiative loss models. This dissertation is a numerical study of two classes of spherical diffusion flames: hydrogen micro-diffusion flames, emphasizing kinetic extinction, and ethylene diffusion flames, emphasizing sooting limits. The flames were modeled using a one-dimensional, time-accurate diffusion flame code with detailed chemistry and transport. Radiative losses from products were modeled using a detailed absorption/emission statistical narrow band model and the discrete ordinates method. During this work the code has been enhanced by the implementation of a soot formation/oxidation model using the method of moments. Hydrogen micro-diffusion flames were studied experimentally and numerically. The experiments involved gas jets of hydrogen. At their quenching limits, these flames had heat release rates of 0.46 and 0.25 W in air and in oxygen, respectively. These are the weakest flames ever observed. The modeling results confirmed the quenching limits and revealed high rates of reactant leakage near the limits. The effects of the burner size and mass flow rate were predicted to have a significant impact on the flame chemistry and species distribution profiles, favoring kinetic extinction. Spherical ethylene diffusion flames at their sooting limits were also examined. Seventeen normal and inverse spherical flames were considered. Initially sooty, these flames were experimentally observed to reach their sooting limits 2 s after ignition. Structure of the flames at 2 s was considered, with an emphasis on the relationships among local temperature, carbon to oxygen atom ratio (C/O), and scalar dissipation rate. A critical C/O ratio was identified, along with two different sooting limit regimes. Diffusion flames

  1. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    SciTech Connect

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  2. [Diffuse Pulmonary Ossification].

    PubMed

    Avsar, K; Behr, J; Morresi-Hauf, A

    2016-04-01

    Diffuse pulmonary ossification (DPO) represents an uncommon condition usually associated with different underlying pulmonary and extrapulmonary diseases. In this work, we discuss eleven patients of our clinic with the diagnosis of a diffuse pulmonary ossification. We focus on histological changes in the surrounding lung tissue. Clinical and radiological findings were analysed. The aim of the study is to collect data for a better understanding of this condition, especially in association with interstitial lung disease.Three patients with interstitial lung disease had histological findings of UIP. The follow-up data of these patients showed a benign course of the disease.The analysis of the clinical data yielded a very heterogenous group. Regarding these fact we assume, that DPO is not an own entity, but a pathological epiphenomenon in the context of different conditions, possibly with pathogenetic overlap. PMID:26829606

  3. Diffusion dans les liquides

    NASA Astrophysics Data System (ADS)

    Dianoux, A. J.

    2003-09-01

    Après une brève introduction qui rappelle les concepts détaillés dans le cours de M. Bée, nous présentons un aperçu de trois de nos travaux sur l'étude de la diffusion. Tout d'abord la dynamique de l'eau, dans son état normal ou surfondu, révèle la complexité apportée par le réseau de liaisons hydrogène. Ensuite l'effet du confinement sur la dynamique de l'eau sera étudié dans le cas de la membrane Nafion. Enfin la diffusion dans les phases nématique et smectique A d'un cristal liquide permet d'obtenir la valeur du potentiel qui maintient les couches dans la phase smectique.

  4. Galactic Diffuse Polarized Emission

    NASA Astrophysics Data System (ADS)

    Carretti, Ettore

    2011-12-01

    Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission and its use to investigate magnetic fields will be reviewed along with our current understanding of the galactic magnetic field and the data sets available. We will then focus on the future perspective discussing RM-synthesis - the new powerful instrument devised to unlock the information encoded in such an emission - and the surveys currently in progress like S-PASS and GMIMS.

  5. Thermal diffusivity imaging

    NASA Astrophysics Data System (ADS)

    Gfroerer, Tim; Phillips, Ryan; Rossi, Peter

    2015-11-01

    The tip of a rod is heated with a torch and brought into contact with the center of a metal sheet. A thermal camera is then used to image the temperature profile of the surface as a function of time. The infrared camera is capable of recording radiometric data with 1 mK resolution in nearly 105 pixels, so thermal diffusion can be monitored with unprecedented precision. With a frame rate of approximately 10 Hz, the pace of the data acquisition minimizes the loss of accuracy due to inevitable cooling mechanisms. We report diffusivity constants equal to 1.23 ± 0.06 cm2/s in copper and 0.70 ± 0.05 cm2/s in aluminum. The behavior is modeled with a straightforward but oddly under-utilized one-dimensional finite difference method.

  6. Nonlocal electrical diffusion equation

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.

    2016-07-01

    In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.

  7. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  8. Turbo fluid machinery and diffusers

    NASA Technical Reports Server (NTRS)

    Sakurai, T.

    1984-01-01

    The general theory behind turbo devices and diffusers is explained. Problems and the state of research on basic equations of flow and experimental and measuring methods are discussed. Conventional centrifugation-type compressor and fan diffusers are considered in detail.

  9. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  10. Peridynamic thermal diffusion

    NASA Astrophysics Data System (ADS)

    Oterkus, Selda; Madenci, Erdogan; Agwai, Abigail

    2014-05-01

    This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.

  11. Peridynamic thermal diffusion

    SciTech Connect

    Oterkus, Selda; Madenci, Erdogan; Agwai, Abigail

    2014-05-15

    This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.

  12. Mass transport by diffusion

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1987-01-01

    For the purpose of determining diffusion coefficients as required for electrodeposition studies and other applications, a diaphragm cell and an isothermal water bath were constructed. the calibration of the system is discussed. On the basis of three calibration runs on the diaphram cell, researchers concluded that the cell constant beta equals 0.12 cm -2 . Other calibration runs in progress should permit the cell constant to be determined with an accuracy of one percent.

  13. [Diffuse Lewy body disease].

    PubMed

    Kosaka, K

    1995-12-01

    Diffuse Lewy body disease (DLBD), which we have proposed since 1976, has received great attention among both researchers and clinicians. Recently, it was reported by some English and American research groups that DLBD is the second most frequent dementing illness in the elderly, following Alzheimer-type dementia (ATD). Our recent research of 79 autopsied dementia cases in a hospital disclosed that DLBD (15.4%) was the second most common degenerative dementia, following ATD (43.6%). In 1980 we proposed Lewy body disease, and classified it into three types: brain stem type, transitional type, and diffuse type. Diffuse type of LBD is now called DLBD. In 1990 we divided DLBD into two forms: common form and pure form. The common form of DLBD has more or less Alzheimer pathology, and pure form has none. Very recently, we proposed the cerebral type of LBD, in which numerous Lewy bodies are found in the cerebral cortex and amygdala, but no PD pathology is present in the brain stem. Therefore, LBD is now classified as follows: [table: see text] PMID:8752428

  14. Solute diffusion in liquid metals

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  15. An active lighting module with natural light guiding system and solid state source for indoor illumination

    NASA Astrophysics Data System (ADS)

    Chen, Chi-An; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2009-08-01

    Recently, many researches focus on healthy lighting with sunlight. A Natural Light Guiding System includes collecting, transmitting, and lighting parts. In general, the lighting module of the Natural Light Guiding System only uses scattering element, such as diffuser, to achieve uniform illumination. With the passive lighting module, the application of the Natural Light Guiding System is limited because sunlight is dynamic source. When the sunlight is weak at morning, at evening, or on cloudy day, the illumination system is fail. In this paper, we provide an active lighting module that includes the lighting part of Natural Light Guiding System, LED auxiliary sources, optical elements, and optical detector. We use optical simulation tool to design and simulate the efficiency of the active module. The optical element can redistribute the sunlight only, LED light only, or sunlight with LED light to achieve uniform illumination. With the feedback of the detector, the active lighting module will adjust the intensity of LED to provide a steady illumination. Moreover, the module could replace the backlight module of LCD TV when the house has Natural Light Guiding System for saving energy and higher performance of image.

  16. Elastomeric Photopolymers: Shaping Polymer Gels with Light

    NASA Astrophysics Data System (ADS)

    Kornfield, Julia

    2008-03-01

    Polymer gels that possess a latent ability to change shape, which can be triggered in a spatially resolved manner using light---``elastomeric photopolymers''---have been developed to meet the need for materials that can be reshaped without direct contact, e.g., to non-invasively adjust an implanted lens in the human eye. The physics of diffusion and swelling in elastomers are applied to create a transparent silicone suitable for making a foldable intraocular lens that can be reshaped using near ultraviolet light. A crosslinked silicone matrix dictates the initial shape of the lens, while ``macromers''--short silicone chains with polymerizable end groups—and photoinitiator enable shape adjustment using light: polymerization of the macromer in the irradiated regions, followed by diffusion of free macromer causes local swelling. To predict shape change directly from irradiation profile, a theoretical treatment is presented that captures 1. shape change with no external forces, 2. coupling between diffusion and deformation, and 3. connection between thermodynamics, constitutive equations and equations of motion. Using continuum mechanics complemented with thermodynamics within the auspices of the finite element method, we develop a steady-state model which successfully captures the coupling between diffusion and deformation. Parameter values are drawn from our prior experimental studies of the mechanical properties, equilibrium swelling, penetrant diffusivities and interaction parameters in systematically varied polydimethylsiloxane (PDMS) networks and acrylate endcapped PDMS macromers. Preliminary computational studies show qualitative agreement with experimentally observed phenomena.

  17. Percolation of interaction diffusing particles

    NASA Technical Reports Server (NTRS)

    Selinger, Robin Blumberg; Stanley, H. Eugene

    1990-01-01

    The connectivity properties of systems of diffusing interacting particles with the blind and myopic diffusion rules are studied. It is found that the blind rule case is equivalent to the lattice gas with J = 0 in all dimensions. The connectivity properties of blind rule diffusion are described by random site percolation due to the fact that the density on neighboring sites is uncorrelated.

  18. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  19. Analysis and optimization of several designs of the light source in spectrophotometer

    NASA Astrophysics Data System (ADS)

    Gao, Shi-zhi; Jin, Shang-zhong; Yuan, Kun; Wang, Cong

    2012-10-01

    The light source in spectrophotometer must contain all spectral lines of visible light and have strong enough power in entire visible light spectrum range, so it calls for composition of several light sources. In order to reduce light source error and improve test accuracy, the light source was divided into reference light and test light. The reference light goes into inference path directly to get electrical signals; the test light falls on testing sample after perfect diffuse reflected by integrating sphere, then carries information of testing sample ,and passes through emitting hole, falls on photovoltaic cell to get corresponding electrical signals. Several projects of realizing perfect diffuse reflection of test light from both light source design and structure design are put forward in the essay, and simulated by Tracepro and other optical software. Then analyze and evaluate these several projects to get optimization design.

  20. Surface modification by subsurface pressure induced diffusion

    SciTech Connect

    Zimmermann, Claus G.

    2012-01-23

    Polycrystalline Ag, covered with a nm thin siloxane layer, was irradiated with ultraviolet light in vacuum at 500 K. Ag particles of different aspect ratios, 50-1000 nm in size, formed on the surface, including a small fraction of nanorods. Pressurized water vapor bubbles are created in the subsurface region by hydrogen radicals photo-chemically released by the siloxane layer. They provide the driving force for a diffusive material flux along grain boundaries to the surface. This mechanism was modeled and found to agree with the experimental timescale: approximately 300 h are required for a 1000 nm particle to form.

  1. Estimating soil quality indicators with diffuse reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid estimation of soil quality is needed for determining and mapping soil variability in site-specific management. One technology that can fulfill this need is diffuse reflectance spectroscopy, which measures light reflected from the soil in the visible and near infrared wavelength bands. Reflecta...

  2. Quantum Phase Diffusion of a Bose-Einstein Condensate

    SciTech Connect

    Lewenstein, M.; You, L.

    1996-10-01

    We discuss the quantum properties of the Bose-Einstein condensate of a dilute gas of atoms in a trap. We show that the phase of the condensate undergoes quantum diffusion which can be detected in far off-resonant light scattering experiments. {copyright} {ital 1996 The American Physical Society.}

  3. The Diffusion of Innovations in Intensive ESL Programs.

    ERIC Educational Resources Information Center

    Stoller, Fredricka L.

    1994-01-01

    Research is reported on the growing English Language Teaching (ELT) literature that sheds new light on components of the diffusion process in one ELT context: the U.S. intensive English program. Findings highlight a new set of perspectives on the role of perceived attributes of ELT innovations. (42 references) (Author/LB)

  4. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver

    SciTech Connect

    Yang, T B

    2007-08-06

    Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirable to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.

  5. Light fantastic

    NASA Astrophysics Data System (ADS)

    2010-05-01

    The laser has become so ubiquitous that it would be impossible to acknowledge everyone who has played a role in its success. As Roy Glauber said at the 2005 Nobel-prize banquet, when it comes to lasers, "many hands make light work". And he should know: the prize Glauber shared with fellow optics pioneers John Hall and Theodore Hänsch is one of more than 10 Nobels awarded (so far!) for laser-related research. This timeline marking 50 years of the laser contains Physics World's pick of events from laser history, including prizes (gold text), applications (green) and "firsts" (blue).

  6. Apparatus and method for a light direction sensor

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2011-01-01

    The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.

  7. Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail

    PubMed Central

    Deheyn, Dimitri D.; Wilson, Nerida G.

    2011-01-01

    Some living organisms produce visible light (bioluminescence) for intra- or interspecific visual communication. Here, we describe a remarkable bioluminescent adaptation in the marine snail Hinea brasiliana. This species produces a luminous display in response to mechanical stimulation caused by encounters with other motile organisms. The light is produced from discrete areas on the snail's body beneath the snail's shell, and must thus overcome this structural barrier to be viewed by an external receiver. The diffusion and transmission efficiency of the shell is greater than a commercial diffuser reference material. Most strikingly, the shell, although opaque and pigmented, selectively diffuses the blue-green wavelength of the species bioluminescence. This diffusion generates a luminous display that is enlarged relative to the original light source. This unusual shell thus allows spatially amplified outward transmission of light communication signals from the snail, while allowing the animal to remain safely inside its hard protective shell. PMID:21159673

  8. Anisotropic fractional diffusion tensor imaging

    PubMed Central

    Meerschaert, Mark M; Magin, Richard L; Ye, Allen Q

    2015-01-01

    Traditional diffusion tensor imaging (DTI) maps brain structure by fitting a diffusion model to the magnitude of the electrical signal acquired in magnetic resonance imaging (MRI). Fractional DTI employs anomalous diffusion models to obtain a better fit to real MRI data, which can exhibit anomalous diffusion in both time and space. In this paper, we describe the challenge of developing and employing anisotropic fractional diffusion models for DTI. Since anisotropy is clearly present in the three-dimensional MRI signal response, such models hold great promise for improving brain imaging. We then propose some candidate models, based on stochastic theory.

  9. Fabrication and characterization of linear diffusers based on concave micro lens arrays.

    PubMed

    Bitterli, Roland; Scharf, Toralf; Herzig, Hans-Peter; Noell, Wilfried; de Rooij, Nico; Bich, Andreas; Roth, Sylvain; Weible, Kenneth J; Voelkel, Reinhard; Zimmermann, Maik; Schmidt, Michael

    2010-06-21

    We present a new approach of beam homogenizing elements based on a statistical array of concave cylindrical microlens arrays. Those elements are used to diffuse light in only one direction and can be employed together with fly's eye condensers to generate a uniform flat top line for high power coherent light sources. Conception, fabrication and characterization for such 1D diffusers are presented in this paper. PMID:20588560

  10. Diffusion lengths of silicon solar cells from luminescence images

    SciTech Connect

    Wuerfel, P.; Trupke, T.; Puzzer, T.; Schaeffer, E.; Warta, W.; Glunz, S. W.

    2007-06-15

    A method for spatially resolved measurement of the minority carrier diffusion length in silicon wafers and in silicon solar cells is introduced. The method, which is based on measuring the ratio of two luminescence images taken with two different spectral filters, is applicable, in principle, to both photoluminescence and electroluminescence measurements and is demonstrated experimentally by electroluminescence measurements on a multicrystalline silicon solar cell. Good agreement is observed with the diffusion length distribution obtained from a spectrally resolved light beam induced current map. In contrast to the determination of diffusion lengths from one single luminescence image, the method proposed here gives absolute values of the diffusion length and, in comparison, it is much less sensitive to lateral voltage variations across the cell area as caused by local variations of the series resistance. It is also shown that measuring the ratio of two luminescence images allows distinguishing shunts or surface defects from bulk defects.

  11. LED luminaire with controlled light distribution

    NASA Astrophysics Data System (ADS)

    Schertler, Donald J.; Sales, Tasso R. M.; Chakmakjian, Stephen; Morris, G. Michael

    2006-08-01

    Unless coupled with some collimating optics, LED sources generally scatter with wide-angle Lambertian intensity profiles. The luminous output of such sources is not amenable to control and redistribution in an efficient manner. In this work we present the design and manufacturing of structures that are able to collect virtually all light from Lambertian LED sources and direct it towards diffusers engineered to illuminate specific regions of space in a controlled fashion. The resulting "engineered luminaire" is thus capable of highly efficient light control and can be applied to a wide variety of illumination situations such as general and architectural lighting.

  12. Accelerated stochastic diffusion processes

    NASA Astrophysics Data System (ADS)

    Garbaczewski, Piotr

    1990-07-01

    We give a purely probabilistic demonstration that all effects of non-random (external, conservative) forces on the diffusion process can be encoded in the Nelson ansatz for the second Newton law. Each random path of the process together with a probabilistic weight carries a phase accumulation (complex valued) weight. Random path summation (integration) of these weights leads to the transition probability density and transition amplitude respectively between two spatial points in a given time interval. The Bohm-Vigier, Fenyes-Nelson-Guerra and Feynman descriptions of the quantum particle behaviours are in fact equivalent.

  13. Diffusion in silicon isotope heterostructures

    SciTech Connect

    Silvestri, Hughes Howland

    2004-05-14

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P

  14. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  15. Impact of osmotic stress on protein diffusion in Lactococcus lactis.

    PubMed

    Mika, Jacek T; Schavemaker, Paul E; Krasnikov, Victor; Poolman, Bert

    2014-11-01

    We measured translational diffusion of proteins in the cytoplasm and plasma membrane of the Gram-positive bacterium Lactococcus lactis and probed the effect of osmotic upshift. For cells in standard growth medium the diffusion coefficients for cytosolic proteins (27 and 582 kDa) and 12-transmembrane helix membrane proteins are similar to those in Escherichia coli. The translational diffusion of GFP in L. lactis drops by two orders of magnitude when the medium osmolality is increased by ∼ 1.9 Osm, and the decrease in mobility is partly reversed in the presence of osmoprotectants. We find a large spread in diffusion coefficients over the full population of cells but a smaller spread if only sister cells are compared. While in general the diffusion coefficients we measure under normal osmotic conditions in L. lactis are similar to those reported in E. coli, the decrease in translational diffusion upon osmotic challenge in L. lactis is smaller than in E. coli. An even more striking difference is that in L. lactis the GFP diffusion coefficient drops much more rapidly with volume than in E. coli. We discuss these findings in the light of differences in turgor, cell volume, crowding and cytoplasmic structure of Gram-positive and Gram-negative bacteria. PMID:25244659

  16. A light blanket for intraoperative photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Hu, Yida; Wang, Ken; Zhu, Timothy C.

    2009-06-01

    A novel light source - light blanket composed of a series of parallel cylindrical diffusing fibers (CDF) is designed to substitute the hand-held point source in the PDT treatment of the malignant pleural or intraperitoneal diseases. It achieves more uniform light delivery and less operation time in operating room. The preliminary experiment was performed for a 9cmx9cm light blanket composed of 8 9-cm CDFs. The linear diffusers were placed in parallel fingerlike pockets. The blanket is filled with 0.2 % intralipid scattering medium to improve the uniformity of light distribution. 0.3-mm aluminum foil is used to shield and reflect the light transmission. The full width of the profile of light distribution at half maximum along the perpendicular direction is 7.9cm and 8.1cm with no intralipid and with intralipid. The peak value of the light fluence rate profiles per input power is 11.7mW/cm2/W and 8.6mW/cm2/W respectively. The distribution of light field is scanned using the isotropic detector and the motorized platform. The average fluence rate per input power is 8.6 mW/cm2/W and the standard deviation is 1.6 mW/cm2/W for the scan in air, 7.4 mW/cm2/W and 1.1 mW/cm2/W for the scan with the intralipid layer. The average fluence rate per input power and the standard deviation are 20.0 mW/cm2/W and 2.6 mW/cm2/W respectively in the tissue mimic phantom test. The light blanket design produces a reasonably uniform field for effective light coverage and is flexible to confirm to anatomic structures in intraoperative PDT. It also has great potential value for superficial PDT treatment in clinical application.

  17. Effect of thermal noise on random lasers in diffusion regime

    NASA Astrophysics Data System (ADS)

    Zarei, Mohammad Ali; Hosseini-Farzad, Mahmood; Montakhab, Afshin

    2015-09-01

    In this paper, we study the effects of thermal noise on the time evolution of a weak light pulse (probe) in the presence of a strong light pulse (pump) within a gain medium which includes random scatterer particles. Suitable thermal noise term is added to a set of four coupled equations including three diffusion equations for energy densities and a rate equation for the upper level population in a four-level gain medium. These equations have been solved simultaneously by Crank-Nicholson numerical method. The main result is that the back-scattered output probe light is increased as the thermal noise strength is increased and simultaneously, with the same rate, the amplified spontaneous emission is decreased. Therefore, the amplified response of the random laser in diffusion regime for the input probe pulse is enhanced due to effect of the thermal noise.

  18. A simple flow analysis of diffuser-getter-diffuser systems

    SciTech Connect

    Klein, J. E.; Howard, D. W.

    2008-07-15

    Tritium clean-up systems typically deploy gas processing technologies between stages of palladium-silver (Pd/Ag) diffusers/permeators. The number of diffusers positioned before and after a gas clean-up process to obtain optimal system performance will vary with feed gas inert composition. A simple method to analyze optimal diffuser configuration is presented. The method assumes equilibrium across the Pd/Ag tubes and system flows are limited by diffuser vacuum pump speeds preceding or following the clean-up process. A plot of system feed as a function of inert feed gas composition for various diffuser configuration allows selection of a diffuser configuration for maximum throughput based on feed gas composition. (authors)

  19. FLOW ANALYSIS OF DIFFUSER-GETTER-DIFFUSER SYSTEMS

    SciTech Connect

    Klein, J; Dave W. Howard, D

    2007-07-24

    Tritium clean-up systems typically deploy gas processing technologies between stages of palladium-silver (Pd/Ag) diffusers/permeators. The number of diffusers positioned before and after a gas clean-up process to obtain optimal system performance will vary with feed gas inert composition. A simple method to analyze optimal diffuser configuration is presented. The method assumes equilibrium across the Pd/Ag tubes and system flows are limited by diffuser vacuum pump speeds preceding or following the clean-up process. A plot of system feed as a function of inert feed gas composition for various diffuser configuration allows selection of a diffuser configuration for maximum throughput based on feed gas composition.

  20. Light and Life in Baltimore—and Beyond

    PubMed Central

    Edidin, Michael

    2015-01-01

    Baltimore has been the home of numerous biophysical studies using light to probe cells. One such study, quantitative measurement of lateral diffusion of rhodopsin, set the standard for experiments in which recovery after photobleaching is used to measure lateral diffusion. Development of this method from specialized microscopes to commercial scanning confocal microscopes has led to widespread use of the technique to measure lateral diffusion of membrane proteins and lipids, and as well diffusion and binding interactions in cell organelles and cytoplasm. Perturbation of equilibrium distributions by photobleaching has also been developed into a robust method to image molecular proximity in terms of fluorescence resonance energy transfer between donor and acceptor fluorophores. PMID:25650914

  1. Sampling diffusive transition paths

    SciTech Connect

    F. Miller III, Thomas; Predescu, Cristian

    2006-10-12

    We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.

  2. Sampling diffusive transition paths.

    PubMed

    Miller, Thomas F; Predescu, Cristian

    2007-04-14

    The authors address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with the sampling of infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with the sampling of the coarse features of long paths. The fine-feature sampling stiffness is eliminated with the use of the fast sampling algorithm, and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. The authors use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature. PMID:17444696

  3. Anisotropic Thermal Diffusion

    NASA Astrophysics Data System (ADS)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  4. The diffusion of microfinance.

    PubMed

    Banerjee, Abhijit; Chandrasekhar, Arun G; Duflo, Esther; Jackson, Matthew O

    2013-07-26

    To study the impact of the choice of injection points in the diffusion of a new product in a society, we developed a model of word-of-mouth diffusion and then applied it to data on social networks and participation in a newly available microfinance loan program in 43 Indian villages. Our model allows us to distinguish information passing among neighbors from direct influence of neighbors' participation decisions, as well as information passing by participants versus nonparticipants. The model estimates suggest that participants are seven times as likely to pass information compared to informed nonparticipants, but information passed by nonparticipants still accounts for roughly one-third of eventual participation. An informed household is not more likely to participate if its informed friends participate. We then propose two new measures of how effective a given household would be as an injection point. We show that the centrality of the injection points according to these measures constitutes a strong and significant predictor of eventual village-level participation. PMID:23888042

  5. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  6. Contrast Enhancement by Nonlinear Diffusion Filtering.

    PubMed

    Liang, Zhetong; Liu, Weijian; Yao, Ruohe

    2016-02-01

    To enhance the visual quality of an image that is degraded by uneven light, an effective method is to estimate the illumination component and compress it. Some previous methods have either defects of halo artifacts or contrast loss in the enhanced image due to incorrect estimation. In this paper, we discuss this problem and propose a novel method to estimate the illumination. The illumination is obtained by iteratively solving a nonlinear diffusion equation. During the diffusion process, surround suppression is embedded in the conductance function to specially enhance the diffusive strength in textural areas of the image. The proposed estimation method has the following two merits: 1) the boundary areas are preserved in the illumination, and thus halo artifacts are prevented and 2) the textural details are preserved in the reflectance to not suffer from illumination compression, which contributes to the contrast enhancement in the result. Experimental results show that the proposed algorithm achieves excellent performance in artifact removal and local contrast enhancement. PMID:26685234

  7. High Efficiency Diffusion Molecular Retention Tumor Targeting

    PubMed Central

    Guo, Yanyan; Yuan, Hushan; Cho, Hoonsung; Kuruppu, Darshini; Jokivarsi, Kimmo; Agarwal, Aayush; Shah, Khalid; Josephson, Lee

    2013-01-01

    Here we introduce diffusion molecular retention (DMR) tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT) injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding) and RAD (control) probes were synthesized bearing DOTA (for 111 In3+), a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or IV methods was assessed by surface fluorescence, biodistribution of [111In] RGD and [111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by IV). The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide), which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters) for radiotherapy, or the delivery of photosensitizers to tumors accessible to light. PMID:23505478

  8. Sucrose diffusion in aqueous solution.

    PubMed

    Price, Hannah C; Mattsson, Johan; Murray, Benjamin J

    2016-07-28

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes-Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  9. Diffusion length in nanoporous TiO{sub 2} films under above-band-gap illumination

    SciTech Connect

    Park, J. D.; Son, B. H.; Park, J. K.; Kim, Sang Yong; Park, Ji-Yong; Lee, Soonil; Ahn, Y. H.

    2014-06-15

    We determined the carrier diffusion lengths in TiO{sub 2} nanoporous layers of dye-sensitized solar cells by using scanning photocurrent microscopy using an ultraviolet laser. Here, we excited the carrier directly in the nanoporous layers where the diffusion lengths were found to 140 μm as compared to that of visible illumination measured at 90 μm. The diffusion length decreased with increasing laser modulation frequency, in which we determined the electron lifetimes and the diffusion coefficients for both visible and UV illuminations. The diffusion lengths have been studied in terms of the sintering temperatures for both cells with and without binding molecules. We found a strong correlation between the diffusion length and the overall light-to-current conversion efficiency, proving that improving the diffusion length and hence the interparticle connections, is key to improving cell efficiency.

  10. Diffusion limited aggregation. The role of surface diffusion

    NASA Astrophysics Data System (ADS)

    García-Ruiz, Juan M.; Otálora, Fermín

    1991-11-01

    We present a growth model in which the hitting particles are able to diffuse to more stable growth sites in the perimeter of a cluster growing by diffusion limited aggregation. By tuning the diffusion path Ls, the morphological output - from disordered fractal to perfect single crystals - can be controlled. Instabilities appear when the mean length of the crystal faces Lf are greater than 2 Ls.

  11. Resonance running hologram velocity nonlinearity dependence upon light intensity in photorefractive crystals

    NASA Astrophysics Data System (ADS)

    de Oliveira, Ivan; Carvalho, Jesiel F.; Frejlich, Jaime

    2013-06-01

    We report on the nonlinear relation between the resonance hologram velocity and the recording light irradiance in fringe-locked running hologram experiments carried out on a nominally undoped photorefractive Bi12TiO20 crystal using 532 nm wavelength laser light. Such nonlinearity is due to the dependence of the material diffusion length on the light irradiance. Experimental data show a good agreement with the theoretical equations thus supporting the mathematical model here reported and allowing to compute the quantum efficiency for photoelectron generation, the dependence of the diffusion length upon the recorded light irradiance, and the far from saturation diffusion length.

  12. Diffuse radiation increases global ecosystem-level water-use efficiency

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  13. The Harrison Diffusion Kinetics Regimes in Solute Grain Boundary Diffusion

    SciTech Connect

    Belova, Irina; Fiedler, T; Kulkarni, Nagraj S; Murch, Prof. Graeme

    2012-01-01

    Knowledge of the limits of the principal Harrison kinetics regimes (Type-A, B and C) for grain boundary diffusion is very important for the correct analysis of the depth profiles in a tracer diffusion experiment. These regimes for self-diffusion have been extensively studied in the past by making use of the phenomenological Lattice Monte Carlo (LMC) method with the result that the limits are now well established. The relationship of those self-diffusion limits to the corresponding ones for solute diffusion in the presence of solute segregation to the grain boundaries remains unclear. In the present study, the influence of solute segregation on the limits is investigated with the LMC method for the well-known parallel grain boundary slab model by showing the equivalence of two diffusion models. It is shown which diffusion parameters are useful for identifying the limits of the Harrison kinetics regimes for solute grain boundary diffusion. It is also shown how the measured segregation factor from the diffusion experiment in the Harrison Type-B kinetics regime may differ from the global segregation factor.

  14. Lighting the Learning Environment.

    ERIC Educational Resources Information Center

    Fielding, Randall

    2000-01-01

    Explores the benefits and pitfalls of day lighting, indirect light, and full-spectrum lamps for general illumination and accent lighting in classrooms. Discussions include lighting considerations in areas where computers are used and fixture cost factors versus efficiency. (GR)

  15. The global structure of the visual light field and its relation to the physical light field.

    PubMed

    Kartashova, Tatiana; Sekulovski, Dragan; de Ridder, Huib; Pas, Susan F Te; Pont, Sylvia C

    2016-08-01

    Human observers have been demonstrated to be sensitive to the local (physical) light field, or more precisely, to the primary direction, intensity, and diffuseness of the light at a point in a space. In the present study we focused on the question of whether it is possible to reconstruct the global visual light field, based on observers' inferences of the local light properties. Observers adjusted the illumination on a probe in order to visually fit it in three diversely lit scenes. For each scene they made 36 settings on a regular grid. The global structure of the first order properties of the light field could then indeed be reconstructed by interpolation of light vectors coefficients representing the local settings. We demonstrate that the resulting visual light fields (individual and averaged) can be visualized and we show how they can be compared to physical measurements in the same scenes. Our findings suggest that human observers have a robust impression of the light field that is simplified with respect to the physical light field. In particular, the subtle spatial variations of the physical light fields are largely neglected and the visual light fields were more similar to simple diverging fields than to the actual physical light fields. PMID:27548087

  16. Apoplastic Diffusion Barriers in Arabidopsis

    PubMed Central

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  17. Traffic Lights: Red Light Spells Danger.

    ERIC Educational Resources Information Center

    Reed, Chris

    2001-01-01

    A "traffic light" model provides youth groups with a means to evaluate the risk level of specific behaviors and agree upon the management of such behaviors. Designed for outdoor pursuits, the model may be used in other environments. Suggestions for ways to discuss red-light, yellow-light, and green-light behaviors are included. (SV)

  18. Multilane driven diffusive systems

    NASA Astrophysics Data System (ADS)

    Curatolo, A. I.; Evans, M. R.; Kafri, Y.; Tailleur, J.

    2016-03-01

    We consider networks made of parallel lanes along which particles hop according to driven diffusive dynamics. The particles also hop transversely from lane to lane, hence indirectly coupling their longitudinal dynamics. We present a general method for constructing the phase diagram of these systems which reveals that in many cases their physics reduce to that of single-lane systems. The reduction to an effective single-lane description legitimizes, for instance, the use of a single TASEP to model the hopping of molecular motors along the many tracks of a single microtubule. Then, we show how, in quasi-2D settings, new phenomena emerge due to the presence of non-zero transverse currents, leading, for instance, to strong ‘shear localization’ along the network.

  19. Light and Libraries.

    ERIC Educational Resources Information Center

    Scherer, Jeffrey

    1999-01-01

    Addresses how to integrate various types of light within the context of library design. Discusses light basics; the light spectrum; light measurement; reflectance; glare and brightness ratio; daylighting; electric lighting; and computer screens and lighting. Includes a checklist for plan review. (Author/LRW)

  20. Enthalpy Diffusion in Multicomponent Flows

    SciTech Connect

    Cook, A W

    2009-01-20

    The conclusions of this paper are: (1) Enthalpy diffusion preserves the second law. (2) Euler solvers will not produce correct temperatures in mixing regions. (3) Navier-Stokes solvers will only produce correct temperatures if q{sub d} is included. (4) Errors from neglecting enthalpy diffusion are most severe when differences in molecular weights are large. (5) In addition to temperature, enthalpy diffusion affects density, dilatation and other fields in subtle ways. (6) Reacting flow simulations that neglect the term are a dubious proposition. (7) Turbulence models for RANS and LES closures should preserve consistency between energy and species diffusion.

  1. Lateral Diffusion in an Archipelago

    PubMed Central

    Saxton, Michael J.

    1982-01-01

    Lateral diffusion of molecules in lipid bilayer membranes can be hindered by the presence of impermeable domains of gel-phase lipid or of proteins. Effective-medium theory and percolation theory are used to evaluate the effective lateral diffusion constant as a function of the area fraction of fluid-phase lipid and the permeability of the obstructions to the diffusing species. Applications include the estimation of the minimum fraction of fluid lipid needed for bacterial growth, and the enhancement of diffusion-controlled reactions by the channeling effect of solid patches of lipid. PMID:7052153

  2. Solvent diffusion into fluoropolymer membranes

    SciTech Connect

    Aminabhavi, T.M.; Munnolli, R.S.

    1993-12-31

    Solvent diffusion in polymers is important to the physical properties of the material from processing to end-use and shelf-life. Many aspects of diffusion in polymers have been studied using indirect and direct methods. Du Pont`s fluoropolymers are known for their excellent resistance to a variety of organic solvents. This paper describes the measurement of diffusion coefficients and the derived thermodynamic quantities on four different fluoropolymer membranes with several esters. This information is interpreted in terms of the molecular organization and phase structure. Diffusion coefficients are sensitive to structural changes as well as binding and association phenomena.

  3. Calcium diffusion coefficient in rod photoreceptor outer segments.

    PubMed Central

    Nakatani, Kei; Chen, Chunhe; Koutalos, Yiannis

    2002-01-01

    Calcium (Ca(2+)) modulates several of the enzymatic pathways that mediate phototransduction in the outer segments of vertebrate rod photoreceptors. Ca(2+) enters the rod outer segment through cationic channels kept open by cyclic GMP (cGMP) and is pumped out by a Na(+)/Ca(2+),K(+) exchanger. Light initiates a biochemical cascade, which leads to closure of the cGMP-gated channels, and a concomitant decline in the concentration of Ca(2+). This decline mediates the recovery from stimulation by light and underlies the adaptation of the cell to background light. The speed with which the decline in the Ca(2+) concentration propagates through the rod outer segment depends on the Ca(2+) diffusion coefficient. We have used the fluorescent Ca(2+) indicator fluo-3 and confocal microscopy to measure the profile of the Ca(2+) concentration after stimulation of the rod photoreceptor by light. From these measurements, we have obtained a value of 15 +/- 1 microm(2)s(-1) for the radial Ca(2+) diffusion coefficient. This value is consistent with the effect of a low-affinity, immobile buffer reported to be present in the rod outer segment (L.Lagnado, L. Cervetto, and P.A. McNaughton, 1992, J. Physiol. 455:111-142) and with a buffering capacity of approximately 20 for rods in darkness(S. Nikonov, N. Engheta, and E.N. Pugh, Jr., 1998, J. Gen. Physiol. 111:7-37). This value suggests that diffusion provides a significant delay for the radial propagation of the decline in the concentration of Ca(2+). Also, because of baffling by the disks, the longitudinal Ca(2+) diffusion coefficient will be in the order of 2 microm(2)s(-1), which is much smaller than the longitudinal cGMP diffusion coefficient (30-60 microm(2)s(-1); ). Therefore, the longitudinal decline of Ca(2+) lags behind the longitudinal spread of excitation by cGMP. PMID:11806915

  4. Cost effective flat plate photovoltaic modules using light trapping

    NASA Technical Reports Server (NTRS)

    Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.

    1981-01-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  5. Green Functions for Diffuse Photon-Density Waves Generated by a Line Source in Two Nonabsorbing Turbid Media in Contact

    NASA Astrophysics Data System (ADS)

    Shendeleva, Margarita L.

    2004-03-01

    Diffuse photon-density waves generated by an instantaneous line source that is parallel to the interface between two semi-infinite turbid media are studied by use of the diffusion approximation. For two nonabsorbing media the Green functions for diffuse light are obtained based on the Green functions for temperature fields that were derived with the Cagniard-de Hoop method. The boundary conditions for diffuse light take into account the discontinuity in the specific intensity at the interface between two media with different refractive indices. The results of the calculations of the specific intensities and the gradient lines for different sets of parameters are presented.

  6. FAR-ULTRAVIOLET DIFFUSE EMISSION FROM THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Pradhan, Ananta C.; Pathak, Amit; Murthy, Jayant

    2010-08-01

    We present the first observations of diffuse radiation in the far-ultraviolet (FUV; 1000-1150 A) from the Large Magellanic Cloud based on observations made with the Far Ultraviolet Spectroscopic Explorer. The fraction of the total radiation in the field emitted as diffuse radiation is typically 5%-20% with a high of 45% near N70 where there are few exciting stars, indicating that much of the emission is not due to nearby stars. Much less light is scattered in the FUV than at longer wavelengths, with the stellar radiation going into heating the interstellar dust.

  7. Anomalous diffusion of erythrocytes in the presence of polyvinylpyrrolidone.

    PubMed Central

    Fritz, O G

    1984-01-01

    The diffusion coefficient of erythrocytes was measured using quasi-elastic light-scattering (QELS) techniques. The cells were suspended in phosphate-buffered saline solutions with and without a macromolecule, polyvinylpyrrolidone (PVP[360]). In the presence of the PVP(360) an anomalously high diffusion coefficient was measured for metabolizing cells with a normal transmembrane potential. The results are in agreement with experiments on rouleau formation by red blood cells and are supportive of the hypothesis of a long-range coherent interaction between metabolically active biological cells. Images FIGURE 8 FIGURE 9 FIGURE 10 PMID:6478035

  8. A microscale turbine driven by diffusive mass flux.

    PubMed

    Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke

    2015-10-01

    An external diffusive mass flux is shown to be able to generate a mechanical torque on a microscale object based on anisotropic diffusiophoresis. In light of this finding, we propose a theoretical prototype micro-turbine driven purely by diffusive mass flux, which is in strong contrast to conventional turbines driven by convective mass flows. The rotational velocity of the proposed turbine is determined by the external concentration gradient, the geometry and the diffusiophoretic properties of the turbine. This scenario is validated by performing computer simulations. Our finding thus provides a new type of chemo-mechanical response which could be used to exploit existing chemical energies at small scales. PMID:26288078

  9. Al and Zn Impurity Diffusion in Binary and Ternary Magnesium Solid-Solutions

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2014-01-01

    Magnesium alloys are considered for implementation into structural components where energy-efficiency and light-weighting are important. Two of the most common alloying elements in magnesium alloys are Aluminum and Zinc. The present work examines impurity diffusion coefficients of Al and Zn in Mg(Zn) and Mg(Al) binary solid solutions, respectively. Experimental investigation is carried out with ternary diffusion couples with polycrystalline alloys. Concentration profiles were measured by electron microprobe micro-analysis and the impurity diffusion coefficients were determined by the Hall Method. Results of Al and Zn impurity diffusion in Mg solid solutions are reported, and examined as a function of composition of Mg solid solution.

  10. Multiple-source optical diffusion approximation for a multilayer scattering medium.

    PubMed

    Hollmann, Joseph L; Wang, Lihong V

    2007-08-10

    A method for improving the accuracy of the optical diffusion theory for a multilayer scattering medium is presented. An infinitesimally narrow incident light beam is replaced by multiple isotropic point sources of different strengths that are placed in the scattering medium along the incident beam. The multiple sources are then used to develop a multilayer diffusion theory. Diffuse reflectance is then computed using the multilayer diffusion theory and compared with accurate data computed by the Monte Carlo method. This multisource method is found to be significantly more accurate than the previous single-source method. PMID:17694156

  11. Multiple Light Scattering Probes of Soft Materials

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2007-02-01

    I will discuss both static and dynamic properties of diffuse waves. In practical applications the optical properties of colloidal systems play an important role, for example in commercial products such as sunscreen lotions, food (drinks), coatings but also in medicine for example in cataract formation (eye lens turbidity). It is thus of importance to know the key parameters governing optical turbidity from the single to the multiple scattering regime. Temporal fluctuations of multiply scattered light are studied with photon correlation spectroscopy (Diffusing Wave Spectroscopy). This DWS method and its various implementations will be treated.

  12. A study of the characteristics of scintillation detectors with a diffuse reflector

    NASA Astrophysics Data System (ADS)

    Baranov, V. A.; Filchenkov, V. V.; Konin, A. D.; Zhuk, V. V.

    1996-02-01

    The process of light collection in a scintillation counter with a diffuse reflector is studied using the Monte-Carlo codes "PHOTON" and "LIGHT". The results obtained are compared with the simple model estimations and employed to describe the time shape of the signal for several different detectors including the full absorption neutron spectrometer, and reanalyze the previous NE-213 transparency measurements.

  13. Fractional diffusion on bounded domains

    DOE PAGESBeta

    Defterli, Ozlem; D'Elia, Marta; Du, Qiang; Gunzburger, Max Donald; Lehoucq, Richard B.; Meerschaert, Mark M.

    2015-03-13

    We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

  14. Teaching Diffusion with a Coin

    ERIC Educational Resources Information Center

    Haddad, Hamilton; Baldo, Marcus Vinicius Chrysostomo

    2010-01-01

    In this article, the authors describe an inexpensive and simple way to make students intuitively experience the probabilistic nature and nonorientated motion of diffusing particles. This understanding allows students to realize why diffusion works so well over short distances and becomes increasingly and rapidly less effective as the distances…

  15. Demonstrating Diffusion: Why the Confusion?

    ERIC Educational Resources Information Center

    Panizzon, Debra Lee

    1998-01-01

    Examines the principles of diffusion and how it may be confused with convection. Suggests that educators may be misleading students and clouding their understanding of the process. Provides two contemporary examples to explain the process of diffusion and how it differs from convection. (Author/CCM)

  16. Osmosis and Diffusion Conceptual Assessment

    ERIC Educational Resources Information Center

    Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts

    2011-01-01

    Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified…

  17. The Diffusion of New Math.

    ERIC Educational Resources Information Center

    Ready, Patricia M.

    The life cycle of "new math" is fertile ground for the study of the diffusion of an innovation. New math arrived in 1958 to save the day for America after the Soviet Union launched Sputnik, the first successful space flight in 1957. In a period of 16 years an entire diffusion cycle was completed throughout the entire educational system of the…

  18. Assessing PDT response with diffuse optical spectroscopies

    NASA Astrophysics Data System (ADS)

    Rohrbach, Daniel J.

    Photodynamic therapy (PDT) is used to treat a variety of conditions including cancer. Effective PDT requires three components: a photosensitizer (PS), light of a specific wavelength to activate the PS and oxygen. When all three are present in a lesion it leads to cell death and vascular destruction. Optical techniques such as diffuse reflectance spectroscopy (DRS), diffuse fluorescence spectroscopy (DFS) and diffuse correlation spectroscopy (DCS) can be used to quantify vascular parameters and photosensitizer content before and after PDT, providing valuable information for assessing response. For the quantification of vascular parameters, a probe-specific empirical light transport model was developed. A look-up-table was constructed using tissue simulating phantoms made of Intralipid to control the scattering, India Ink to control the absorption and water. The empirical model allowed the quantification of optical properties as well as the vascular parameters blood volume fraction (BVf) and blood oxygen saturation (SO2) with DRS. Blood flow was measured using DCS. For the quantification of PS content two techniques were used. DRS was used to fit the absorption of the PS and DFS measured the fluorescence of the PS. For quantification of PS content from measured fluorescence, a correction factor was developed using Monte Carlo simulations to account for the optical properties at the excitation and emission wavelengths. The three techniques were used to assess PDT response in pre-clinical and clinical studies. For the preclinical study, mice were treated with HPPH-PDT and blood flow was measured continuously with DCS. Blood flow variables were compared to STAT3 crosslinking (a molecular marker for PDT photoreaction) and CD31 staining (to visualize intact endothelial cells after PDT). For the clinical study, patients in a clinical trial for HPPH-PDT were measured with DRS, DFS and DCS before and after treatment. Multiple parameters were compared to the clinical response

  19. Enthalpy Diffusion in Multicomponent Flows

    SciTech Connect

    Cook, A W

    2008-11-12

    The enthalpy diffusion flux in the multicomponent energy equation is a well known yet frequently neglected term. It accounts for energy changes, associated with compositional changes, resulting from species diffusion. Enthalpy diffusion is important in flows where significant mixing occurs between species of dissimilar molecular weight. The term plays a critical role in preventing local violations of the entropy condition. In simulations of nonpremixed combustion, omission of the enthalpy flux can lead to anomalous temperature gradients, which may cause mixing regions to exceed ignition conditions. The term can also play a role in generating acoustic noise in turbulent mixing layers. Euler solvers that rely on numerical diffusion to mix fluids cannot accurately predict the temperature in mixed regions. On the other hand, Navier-Stokes solvers that incorporate enthalpy diffusion can provide much more accurate results.

  20. Thermal diffusivity of diamond films

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Winfree, William P.; Crews, B. Scott

    1990-01-01

    A laser pulse technique to measure the thermal diffusivity of diamond films deposited on a silicon substrate is developed. The effective thermal diffusivity of diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by the laser pulses. An analytical model is developed to calculate the effective in-plane (face-parallel) diffusivity of a two layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film. Phase and amplitude measurements give similar results. The thermal conductivity of the films is found to be better than that of type 1a natural diamond.

  1. Ammonia diffusion through Nalophan™ bags.

    PubMed

    Sironi, Selena; Eusebio, Lidia; Dentoni, Licinia; Capelli, Laura; Del Rosso, Renato

    2014-01-01

    The aim of the work is to verify the diffusion rate of ammonia through the Nalophan™ film that constitutes the sampling bag, considering storage times ranging from 1 to 26 h. The ammonia decay over time was evaluated using gas-chromatography for the quantification of ammonia concentration inside the bag. The research assesses the roles of both of ammonia and water concentration gradients at the polymeric film interface on the diffusion process. The results show that both the ammonia concentration gradient and, in a less pronounced way, the water concentration gradient are the main 'engines' of ammonia diffusion. Double bags seem to represent a simple solution for preventing ammonia losses during storage. Another interesting result concerns the role of the bag surface on the ammonia diffusion rate: the higher the surface/volume (S/V) ratio, the higher the ammonia diffusion rate through the polymeric film. PMID:24552718

  2. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  3. Heat transfer, diffusion, and evaporation

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm

    1954-01-01

    Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.

  4. Diffusion in membranes: Toward a two-dimensional diffusion map

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Garcia-Sakai, Victoria; Bewley, Robert; Dalgliesh, Robert; Perring, Toby; Rheinstädter, Maikel C.

    2015-01-01

    For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  5. Diffuse Microwave Emission Survey

    NASA Astrophysics Data System (ADS)

    Shafer, R. A.; Mather, J.; Kogut, A.; Fixsen, D. J.; Seiffert, M.; Lubin, P. M.; Levin, S. M.

    1996-12-01

    The Diffuse Microwave Emission Survey (DIMES) is a mission concept selected by NASA in 1995 to answer fundamental questions about the content and history of the universe. DIMES will use a set of absolutely calibrated cryogenic radiometers from a space platform to measure the frequency spectrum of the cosmic microwave background (CMB) at wavelengths 15--0.3 cm (frequency 2--100 GHz) to precision 0.1 mK or better. Measurements at centimeter wavelengths probe different physical processes than the COBE-FIRAS spectra at shorter wavelengths, and complement the anisotropy measurements from DMR, balloon and ground-based instruments, and the planned MAP and COBRAS/SAMBA satellites. DIMES will observe the free-free signal from early photoionization to establish the precise epoch of structure formation, and will measure or limit energy release at redshift 10(4) < z < 10(7) by measuring the chemical potential distortion of the CMB spectrum. Both are likely under current cosmological theory and allowed by current measurement limits; even an upper limit at the expected sensitivity 10(-5) MJy/sr will place important constraints on the matter content, structure, and evolution of the universe. Detecting these distortions or showing that they do not exist constitutes the last frontier of CMB observations.

  6. Diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1977-01-01

    An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.

  7. Diffusion with optimal resetting

    NASA Astrophysics Data System (ADS)

    Evans, Martin R.; Majumdar, Satya N.

    2011-10-01

    We consider the mean time to absorption by an absorbing target of a diffusive particle with the addition of a process whereby the particle is reset to its initial position with rate r. We consider several generalizations of the model of Evans and Majumdar (2011 Phys. Rev. Lett.106 160601): (i) a space-dependent resetting rate r(x); (ii) resetting to a random position z drawn from a resetting distribution { P}(z); and (iii) a spatial distribution for the absorbing target PT(x). As an example of (i) we show that the introduction of a non-resetting window around the initial position can reduce the mean time to absorption provided that the initial position is sufficiently far from the target. We address the problem of optimal resetting, that is, minimizing the mean time to absorption for a given target distribution. For an exponentially decaying target distribution centred at the origin we show that a transition in the optimal resetting distribution occurs as the target distribution narrows.

  8. Multicomponent diffusion in molten salt LiF-BeF{sub 2}: Dynamical correlations and Maxwell–Stefan diffusivities

    SciTech Connect

    Chakraborty, Brahmananda Ramaniah, Lavanya M.

    2015-06-24

    Applying Green–Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell–Stefan (MS) Diffusivities of molten salt LiF-BeF{sub 2}, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity Đ{sub Li-F} and Đ{sub Be-F} decreases sharply for higher concentration of LiF and BeF{sub 2} respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except Đ{sub Be-F} at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.

  9. Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy.

    PubMed

    Iwai, Masakazu; Pack, Chan-Gi; Takenaka, Yoshiko; Sako, Yasushi; Nakano, Akihiko

    2013-01-01

    Flexibility of chloroplast thylakoid membrane proteins is essential for plant fitness and survival under fluctuating light environments. Phosphorylation of light-harvesting antenna complex II (LHCII) is known to induce dynamic protein reorganization that fine-tunes the rate of energy conversion in each photosystem. However, molecular details of how LHCII phosphorylation causes light energy redistribution throughout thylakoid membranes still remain unclear. By using fluorescence correlation spectroscopy, we here determined the LHCII phosphorylation-dependent protein diffusion in thylakoid membranes isolated from the green alga Chlamydomonas reinhardtii. As compared to the LHCII dephosphorylation-induced condition, the diffusion coefficient of LHCII increased nearly twofold under the LHCII phosphorylation-induced condition. We also verified the results by using the LHCII phosphorylation-deficient mutant. Our observation suggests that LHCII phosphorylation-dependent protein reorganization occurs along with the changes in the rate of protein diffusion, which would have an important role in mediating light energy redistribution throughout thylakoid membranes. PMID:24088948

  10. Transdermal diffusion of xenon in vitro using diffusion cells

    NASA Astrophysics Data System (ADS)

    Verkhovsky, A.; Petrov, E.

    2015-11-01

    The aim of this research was to study the diffusion rate of xenon through guinea pig skin and how viscosity of cosmetic component capryl/capric triglyceride (CCT) facilitates to deliver xenon to surface of skin patches. They were placed in Franz cell for 24 hours and diffusion rate and permeability of xenon were calculated. Thus diffusion rate was 0.031 mg/hour*cm2 and permeability was 0.003 cm/hour. Using Brookfield viscometer it was shown that viscosity of CCT decreased upon increasing xenon concentration. Obtained results can be utilized in developing of new xenon containing drugs for topical administration.

  11. Lighting Options for Homes.

    SciTech Connect

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  12. Acid diffusion through polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, P. Linda; Eckert, Andrew R.; Willson, C. Grant; Webber, Stephen E.; Byers, Jeffrey D.

    1997-07-01

    In order to perform 0.2 micrometer processes, one needs to study the diffusion of photoacid generators within the photoresist system, since diffusion during post exposure bake time has an influence on the critical dimension (CD). We have developed a new method to study the diffusion of photoacid generators within a polymer film. This new method is based on monitoring the change of the fluorescence intensity of a pH- sensitive fluorescent dye caused by the reaction with photoacid. A simplified version of this experiment has been conducted by introducing acid vapor to quench the fluorescence intensity of this pH sensor. A thin polymer film is spin cast onto the sensor to create a barrier to the acid diffusion process. During the acid diffusion process, the fluorescence intensity of this pH sensor is measured in situ, using excitation and emission wavelengths at 466 nm and 516 nm, respectively. Fluoresceinamine, the pH sensitive fluorescent dye, is covalently bonded onto the treated quartz substrate to form a single dye layer. Poly(hydroxystyrene) (Mn equals 13k, Tg equals 180 degrees Celsius) in PGMEA (5% - 18% by weight) is spin cast onto this quartz substrate to form films with varying thickness. The soft bake time is 60 seconds at 90 degrees Celsius and a typical film has a thickness of 1.4 micrometers. Trifluoroacetic acid is introduced into a small chamber while the fluorescence from this quartz window is observed. Our study focuses on finding the diffusion constant of the vaporized acid (trifluoroacetic acid) in the poly(hydroxystyrene) polymer film. By applying the Fick's second law, (It - Io)/(I(infinity ) - Io) equals erfc [L/(Dt)1/2] is obtained. The change of fluorescence intensity with respect to the diffusion time is monitored. The above equation is used for the data analysis, where L represents the film thickness and t represents the average time for the acid to diffuse through the film. The diffusion constant is calculated to be at the order of 10

  13. Diffusivity Measurements Made Instant and Easy

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser

    2001-01-01

    A compact common path interferometer (CPI) system has been developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. It uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. The molecular diffusion coefficient of liquids can be determined from the physical relations between changes in the optical path length and liquid phase properties. When the data obtained by using the CPI have been compared with similar results from other techniques, the instrument has been demonstrated to be far superior to other instruments for measuring the diffusivity of miscible liquids while staying very compact and robust (ref. 1). Because of its compactness and ease of use, the CPI has been adopted for use in studies of interface dynamics as well as other diffusion-controlled process applications (ref. 2). This progress will permit experiments in microgravity that can quantitatively answer basic science questions about mass and thermal diffusion and their effect in transport processes. This instrument is a spinoff of a diagnostic development for microgravity fluid physics experiments at the NASA Glenn Research Center that has used optics and electronics existing in the fluid physics laboratory for feasibility studies. Optical diagnostic techniques have become an integral part of many areas of measurement applications in industrial and research laboratories. Many types of interferometers and their phase-shifted versions have been used as instruments for measuring optical wave fronts for lens testing and combustion and fluid flow diagnostics. One of these, the point diffraction interferometer, is considered to be robust (see, for example, ref. 3) because it has a common-path design. The point diffraction interferometer is difficult to align and has a limited measurement range for liquid

  14. Light up My Life

    ERIC Educational Resources Information Center

    Kellett, Sarah

    2015-01-01

    Simply stated, light is nature's way of transferring energy through space. Discussions of light usually refer to visible light, which is perceived by the human eye and is responsible for the sense of sight. We see however, only a small part of the light spectrum. Light connects us as we sit and tell yarns around camp fires. Yet, one in every four…

  15. Mobile lighting apparatus

    DOEpatents

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  16. Enhanced diffusion of oxygen depending on Fermi level position in heavily boron-doped silicon

    SciTech Connect

    Torigoe, Kazuhisa Fujise, Jun; Ono, Toshiaki; Nakamura, Kozo

    2014-11-21

    The enhanced diffusivity of oxygen in heavily boron doped silicon was obtained by analyzing oxygen out-diffusion profile changes found at the interface between a lightly boron-doped silicon epitaxial layer and a heavily boron-doped silicon substrate by secondary ion mass spectrometry. It was found that the diffusivity is proportional to the square root of boron concentration in the range of 10{sup 18 }cm{sup −3}–10{sup 19 }cm{sup −3} at temperatures from 750 °C to 950 °C. The model based on the diffusion of oxygen dimers in double positive charge state could explain the enhanced diffusion. We have concluded that oxygen diffusion enhanced in heavily boron-doped silicon is attributed to oxygen dimers ionized depending on Fermi level position.

  17. Sulphur diffusion in β-NiAl and effect of Pt additive: an ab initio study

    NASA Astrophysics Data System (ADS)

    Chen, Kuiying

    2016-02-01

    Diffusivities of detrimental impurity sulfur (S) in stoichiometric and Pt doped β-NiAl were evaluated using density functional theory calculations. The apparent activation energy and the pre-exponential factor of diffusivity via the next nearest neighbour (NNN) and interstitial jumps were evaluated to identify possible preferred diffusion mechanism(s). By calculating the electron localization function (ELF), the bonding characteristics of S with its surrounding atoms were assessed for the diffusion process. By comparison with the experimental results, the S diffusion through the NNN vacancy-mediated mechanism is found to be favoured. Addition of Pt in β-NiAl was found to significantly reduce the S diffusivity, and an associated electronic effect was explored. The elucidation of the above mechanisms may shed light on the development of new Pt-modified doped β-NiAl bond coats that can extend the life of oxidation resistant and thermal barrier coatings.

  18. History of Diffuse Optical Spectroscopy of Human Tissue

    NASA Astrophysics Data System (ADS)

    Huppert, Theodore J.

    Diffuse optical spectroscopy is a noninvasive method that uses low levels of near-infrared light to measure blood oxygenation in the brain. Over the last 35 years, the number of diffuse optical studies and the range of clinical and research applications have grown steadily. Compared to other neuroimaging methods to measure cerebral blood oxygenation, such as magnetic resonance imaging or positron emission tomography, diffuse optical imaging (DOI) is more cost effective and often uses small portable instrumentation. Wireless and bedside optical systems are currently produced commercially. The portability of these instruments has extended the use of optical methods into several unique applications including brain imaging in infants and children, studies of the brain during ambulatory tasks such as walking or balance, and interoperative brain assessments. This chapter will introduce the history and basic principles of DOI including discussion of the factors contributing to the optical properties of tissue, instrumentation, and an overview of applications of the technology.

  19. Determination of eddy diffusivity in the lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Hegglin, M. I.; Brunner, D.; Peter, T.; Staehelin, J.; Wirth, V.; Hoor, P.; Fischer, H.

    2005-07-01

    We present a 2D-advection-diffusion model that simulates the main transport pathways influencing tracer distributions in the lowermost stratosphere (LMS). The model describes slow diabatic descent of aged stratospheric air, vertical (cross-isentropic) and horizontal (along isentropes) diffusion within the LMS and across the tropopause using equivalent latitude and potential temperature coordinates. Eddy diffusion coefficients parameterize the integral effect of dynamical processes leading to small scale turbulence and mixing. They were specified by matching model simulations to observed CO distributions. Interestingly, the model suggests mixing across isentropes to be more important than horizontal mixing across surfaces of constant equivalent latitude, shining new light on the interplay between various transport mechanisms in the LMS. The model achieves a good description of the small scale tracer features at the tropopause with squared correlation coefficients R2 = 0.72...0.94.

  20. Circularly symmetric light scattering from nanoplasmonic spirals.

    PubMed

    Trevino, Jacob; Cao, Hui; Dal Negro, Luca

    2011-05-11

    In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors. PMID:21466155