Science.gov

Sample records for light-emitting diode technology space

  1. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    SciTech Connect

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  2. Medical applications of space light-emitting diode technology-space station and beyond

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Donohoe, Deborah L.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W.; Weyenberg, George T.; Larson, David L.; Meyer, Glenn A.; Caviness, James A.

    1999-01-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  3. Benzoporphyrin derivative and light-emitting diode for use in photodynamic therapy: Applications of space light-emitting diode technology

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W.; Meyer, Glenn A.

    1998-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality that recently has been applied as adjuvant therapy for brain tumors. PDT consists of intravenously injecting a photosensitizer, which preferentially accumulates in tumor cells, into a patient and then activating the photosensitizer with a light source. This results in free radical generation followed by cell death. The development of more effective light sources for PDT of brain tumors has been facilitated by applications of space light-emitting diode array technology; thus permitting deeper tumor penetration of light and use of better photosensitizers. Currently, the most commonly used photosensitizer for brain tumor PDT is Photofrin®. Photofrin® is a heterogeneous mixture of compounds derived from hematoporphyrin. Photofrin® is activated with a 630 nm laser light and does destroy tumor cells in animal models and humans. However, treatment failure does occur using this method. Most investigators attribute this failure to the limited penetration of brain tissue by a 630 nm laser light and to the fact that Photofrin® has only a minor absorption peak at 630 nm, meaning that only a small fraction of the chemical is activated. Benzoporphyrin Derivative Monoacid Ring A (BPD) is a new, second generation photosensitizer that can potentially improve PDT for brain tumors. BPD has a major absorption peak at 690 nm, which gives it two distinct advantages over Photofrin®. First, longer wavelengths of light penetrate brain tissue more easily so that larger tumors could be treated, and second, the major absorption peak means that a larger fraction of the drug is activated upon exposure to light. In the first part of this project we have studied the tumoricidal effects of BPD in vitro using 2A9 canine glioma and U373 human glioblastoma cell cultures. Using light emitting diodes (LED) with a peak emission of 688 nm as a light source, cell kill of up to 86 percent was measured in these cell lines by tumor DNA synthesis

  4. Analysis of Light Emitting Diode Technology for Aerospace Suitability in Human Space Flight Applications

    NASA Astrophysics Data System (ADS)

    Treichel, Todd H.

    Commercial space designers are required to manage space flight designs in accordance with parts selections made from qualified parts listings approved by Department of Defense and NASA agencies for reliability and safety. The research problem was a government and private aerospace industry problem involving how LEDs cannot replace existing fluorescent lighting in manned space flight vehicles until such technology meets DOD and NASA requirements for reliability and safety, and effects on astronaut cognition and health. The purpose of this quantitative experimental study was to determine to what extent commercial LEDs can suitably meet NASA requirements for manufacturer reliability, color reliability, robustness to environmental test requirements, and degradation effects from operational power, while providing comfortable ambient light free of eyestrain to astronauts in lieu of current fluorescent lighting. A fractional factorial experiment tested white and blue LEDs for NASA required space flight environmental stress testing and applied operating current. The second phase of the study used a randomized block design, to test human factor effects of LEDs and a qualified ISS fluorescent for retinal fatigue and eye strain. Eighteen human subjects were recruited from university student members of the American Institute of Aeronautics and Astronautics. Findings for Phase 1 testing showed that commercial LEDs met all DOD and NASA requirements for manufacturer reliability, color reliability, robustness to environmental requirements, and degradation effects from operational power. Findings showed statistical significance for LED color and operational power variables but degraded light output levels did not fall below the industry recognized <70%. Findings from Phase 2 human factors testing showed no statistically significant evidence that the NASA approved ISS fluorescent lights or blue or white LEDs caused fatigue, eye strain and/or headache, when study participants perform

  5. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  6. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  7. Light-emitting Diodes

    PubMed Central

    Opel, Daniel R.; Hagstrom, Erika; Pace, Aaron K.; Sisto, Krisanne; Hirano-Ali, Stefanie A.; Desai, Shraddha

    2015-01-01

    Background: In the early 1990s, the biological significance of light-emitting diodes was realized. Since this discovery, various light sources have been investigated for their cutaneous effects. Study design: A Medline search was performed on light-emitting diode lights and their therapeutic effects between 1996 and 2010. Additionally, an open-label, investigator-blinded study was performed using a yellow light-emitting diode device to treat acne, rosacea, photoaging, alopecia areata, and androgenetic alopecia. Results: The authors identified several case-based reports, small case series, and a few randomized controlled trials evaluating the use of four different wavelengths of light-emitting diodes. These devices were classified as red, blue, yellow, or infrared, and covered a wide range of clinical applications. The 21 patients the authors treated had mixed results regarding patient satisfaction and pre- and post-treatment evaluation of improvement in clinical appearance. Conclusion: Review of the literature revealed that differing wavelengths of light-emitting diode devices have many beneficial effects, including wound healing, acne treatment, sunburn prevention, phototherapy for facial rhytides, and skin rejuvenation. The authors’ clinical experience with a specific yellow light-emitting diode device was mixed, depending on the condition being treated, and was likely influenced by the device parameters. PMID:26155326

  8. [White organic light-emitting diodes applied for lighting technology].

    PubMed

    Huang, Qing-Yu; Zhao, Su-Ling; Xu, Zheng; Fan, Xing; Wang, Jian; Yang, Qian-Qian

    2014-01-01

    Lighting accounts for approximately 22 percent of the electricity consumed in buildings in the United States, with 40 percent of that amount consumed by inefficient incandescent lamps. This has generated increased interest in the use of white electroluminescent organic light-emitting devices (WOLEDS) as the next generation solid-state lighting source, owing to their potential for significantly improved efficiency over incandescent sources, combined with low-cost, high-throughput manufacturability. The research and application of the devices have witnessed great progress. WOLEDS have incomparable advantages for its special characteristics. This progress report sketched the principle of WOLEDS and provided some common structures, and further investigation of the mechanism of different structures was made. Meanwhile, the key technologies of WOLEDS were summarized. Finally, the latest research progress of WOLEDS was reviewed. PMID:24783527

  9. Active Matrix Organic light Emitting Diode Display Based on “Super Top Emission” Technology

    NASA Astrophysics Data System (ADS)

    Ishibashi, Tadashi; Yamada, Jiro; Hirano, Takashi; Iwase, Yuichi; Sato, Yukio; Nakagawa, Ryo; Sekiya, Mitsunobu; Sasaoka, Tatsuya; Urabe, Tetsuo

    2006-05-01

    We developed an original “Super Top Emission” technology, which enables us to optimize the distinctive features of an organic light emitting diode (OLED) display. With this technology, the following characteristics can be obtained: (1) high color reproduction of a 100% NTSC gamut ratio, (2) wide viewing angle, (3) high contrast of 1000:1 maintaining high luminous efficiency with a color filter, (4) original all-solid sealing structure. In addition, Super Top Emission technology was demonstrated by developing a 3.8-type size half video graphics array (HVGA) active matrix organic light emitting diode (AM-OLED) display by the shadow mask patterning process.

  10. White light emitting diodes

    NASA Astrophysics Data System (ADS)

    Baur, J.; Schlotter, P.; Schneider, J.

    Using blue-emitting GaN LEDs on SiC substrate chips as primary light sources, we have fabricated green, yellow, red and white light emitting diodes (LUCOLEDs). The generation of mixed colors, as turquoise and magenta, is also demonstrated. The underlying physical principle is that of luminescence downconversion (Stokes shift), as typical for organic dye molecules and many inorganic phosphors. For white light generation via the LUCOLED principle, the phosphor Y3Al5O12:Ce3+(4f1) is ideally suited. The optical characteristics of Ce3+(4f1) in Y3Al5O12(YAG) are discussed in detail. Possibilities to "tune" the white color by various substitutions in the garnet lattice are shortly outlined.

  11. Evaluation of light emitting diode characteristics for a space-based plant irradiation source.

    PubMed

    Barta, D J; Tibbitts, T W; Bula, R J; Morrow, R C

    1992-01-01

    Light emitting diodes (LEDs) are a promising irradiation source for plant growth in space. Improved semiconductor technology has yielded LED devices fabricated with gallium aluminum arsenide (GaAlAs) chips which have a high efficiency for converting electrical energy to photosynthetically active radiation. Specific GaAlAs LEDs are available that emit radiation with a peak wavelength near the spectral peak of maximum quantum action for photosynthesis. The electrical conversion efficiency of installed systems (micromole s-1 of photosynthetic photons per watt) of high output LEDs can be within 10% of that for high pressure sodium lamps. Output of individual LEDs were found to vary by as much as 55% from the average of the lot. LED ratings, in mcd (luminous intensity per solid angle), were found to be proportional to total photon output only for devices with the same dispersion angle and spectral peak. Increasing current through the LED increased output but also increased temperature with a consequent decrease in electrical conversion efficiency. A photosynthetic photon flux as high as 900 micromoles m-2 s-1 has been produced on surfaces using arrays with LEDs mounted 7.6 mm apart, operating as a current of 50 mA device-1 and at an installed density of approximately 17,200 lamps m-2 of irradiated area. Advantages of LEDs over other electric light sources for use in space systems include long life, minimal mass and volume and being a solid state device. PMID:11537060

  12. Interface modification and material synthesis of organic light-emitting diodes using plasma technology

    NASA Astrophysics Data System (ADS)

    Liang, Rongqing; Ou, Qiongrong; Yang, Cheng; He, Kongduo; Yang, Xilu; Zhong, Shaofeng; plasma application Team

    2015-09-01

    Organic light-emitting diodes (OLEDs), due to their unique properties of solution processability, compatibility with flexible substrates and with large-scale printing technology, attract huge interest in the field of lighting. The integration of plasma technology into OLEDs provides a new route to improve their performance. Here we demonstrate the modification of indium-tin-oxide (ITO) work function by plasma treatment, synthesis of thermally activated delayed fluorescence (TADF) materials using plasma grafting (polymerisation), and multi-layer solution processing achieved by plasma cross-linking.

  13. Light-emitting diode technology status and directions: Opportunities for horticultural lighting

    DOE PAGESBeta

    Tsao, Jeffrey Y.; Pattison, P. Morgan; Krames, Michael R.

    2016-01-01

    Here, light-emitting diode (LED) technology has advanced rapidly over the last decade, primarily driven by display and general illumination applications ("solid-state lighting (SSL) for humans"). These advancements have made LED lighting technically and economically advantageous not only for these applications, but also, as an indirect benefit, for adjacent applications such as horticultural lighting ("SSL for plants"). Moreover, LED technology has much room for continued improvement. In the near-term, these improvements will continue to be driven by SSL for humans (with indirect benefit to SSL for plants), the most important of which can be anticipated.

  14. Wheat Under LED's (Light Emitting Diodes)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  15. Technology of Wide Color Gamut Backlight with Light-Emitting Diode for Liquid Crystal Display Television

    NASA Astrophysics Data System (ADS)

    Kakinuma, Koichiro

    2006-05-01

    The development of light-emitting diode (LED) backlight a wide-color-gamut and mercury-free has become active in liquid crystal display (LCD) industry. Reports on the development of backlights, such as a direct illumination-type back-light and a guided light illumination-type LED backlight were published. The fabrication of an actual commercial product has been progressing under this active development. Sony Corporation launched an LED-backlit LCD television (TV) model, dubbed QUALIA 005, the world’s first home-use television featuring LED backlighting. This product offers a very wide color reproduction range, delivering a color gamut of 150% of that typically achieved by conventional televisions. In this paper, the background of the development of the LED backlight system “TriluminosTM” and the technologies used to realize the wide color gamut are discussed. The main issues to be solved for the commercialization were how to reduce the brightness/color non uniformity of the backlight and how to treat heat generation from the LED. The standardization of wide color space definition xvYCC and LED backlight LCD television combination is expected to result in a more vivid and correct color expression, and a forecast that extends to the market in the future.

  16. Proton degradation of light-emitting diodes

    SciTech Connect

    Johnston, A.H.; Rax, B.G.; Selva, L.E.; Barnes, C.E.

    1999-12-01

    Proton degradation is investigated for several types of light-emitting diodes with wavelengths in the near infrared region. Several basic light-emitting diode (LED) technologies are compared, including homojunction and double-heterojunction devices. Homojunction LEDs fabricated with amphoteric dopants are far more sensitive to displacement damage than double-heterojunction LEDs, and are strongly affected by injection-enhanced annealing. Unit-to-unit variability remains an important issue for all LED technologies. For some technologies, degradation of the forward voltage characteristics appears to be more significant than degradation of light output.

  17. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    NASA Astrophysics Data System (ADS)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  18. Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device

    NASA Astrophysics Data System (ADS)

    Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben

    2015-02-01

    The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.

  19. Broadband light-emitting diode

    DOEpatents

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  20. Broadband light-emitting diode

    DOEpatents

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  1. Proton Degradation of Light-Emitting Diodes

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Rax, B. G.; Selva, L. E.

    1997-01-01

    The severe degradation of optocouplers in space has been shown to be mainly due to proton displacement damage in the light-emitting diodes that are used within the optocouplers. However, a variety of LED technologies can be used in optocouplers and their sensitivity to proton displacement damage varies by about two orders of magnitude. Optocouplers are very simple hybrid devices, and the type of LED can be readily changed by the manufacturers with little cost impact. many optocoupler manufacturers purchase LEDs from outside sources with little knowledge or control of the manufacturing process used for the LED, leading to the possibility of very dramatic differences in radiation response (JPL has observed such differences for one type of optocoupler that is used in a hybrid power converter).

  2. Quantum Dot Light Emitting Diode

    SciTech Connect

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  3. Quantum Dot Light Emitting Diode

    SciTech Connect

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  4. Plant experiments with light-emitting diode module in Svet space greenhouse

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliyana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for SVET Space Greenhouse using Cree R XLamp R 7090 XR light-emitting diodes (LEDs) is developed. Three types of monochromic LEDs emitting in the red, green, and blue region of the spectrum are used. The new LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. DMX programming device controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 µmol.m-2 .s-1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with "salad-type" plants - lettuce and chicory were carried at 400 µmol.m-2 .s-1 PPFD (high light - HL) and 220 µmol.m-2 .s-1 PPFD (low light - LL) and composition 70% red, 20% green and 10% blue light. In vivo modulated chlorophyll fluorescence was measured by a PAM fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦP SII ) and non-photochemical quenching (NPQ) were calculated. Both lettuce and chicory plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by the actual PSII quantum yield, ΦP SII . The calculated steady state NPQ values did not differ significantly in lettuce and chicory. The rapid phase of the NPQ increase was accelerated in all studied LL leaves. In conclusion low light conditions ensured more effective functioning of PSII than HL when lettuce and chicory plants were grown at 70% red, 20% green and 10% blue light composition.

  5. Review paper: Recent developments in light extraction technologies of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hong, Kihyon; Lee, Jong-Lam

    2011-06-01

    Organic light emitting diodes (OLEDs) have rapidly progressed in recent years due to their potential applications in flat panel displays and solid-state lighting. In spite of the commercialization of OLEDs, they still have a low out-coupling efficiency of about 20% due to factors such as the total internal reflection, absorption, and surface plasmon coupling. This light out-coupling efficiency is a major limitation on the high efficiency levels of OLEDs. Hence, enhancing the light out-coupling efficiency of OLEDs offers the greatest potential for achieving a substantial increase in the external quantum efficiency and power efficiency of OLEDs. Accordingly, significant advancements in OLEDs have driven the development of light extraction technologies as well as highly transparent conducting electrode materials. Recent efforts to combine light extraction structures with the improved out-coupling efficiency of OLEDs have produced OLEDs with an efficiency level that matches the efficiency of a fluorescent tube (>100 lm/W). This paper reviews the technical issues and recent progress in light extraction technologies and discusses ways of enhancing the out-coupling efficiency of OLEDs.

  6. Proton displacement damage in light-emitting and laser diodes

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.

    2000-01-01

    The effects of proton displacement damage on light-emitting diodes and laser diodes are discussed, comparing the radiation sensitivity of current technology devices with older devices for which data exists in the literature.

  7. Plant experiments with light-emitting diode module in Svet space greenhouse

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    2010-10-01

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 μmol m -2 s -1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants - lettuce and radicchio were carried out at 400 μmol m -2 s -1 PPFD (high light - HL) and 220 μmol m -2 s -1 PPFD (low light - LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II ( ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H 2O 2) content. Accumulation of high levels of MDA and increased POX activity

  8. Light-emitting diodes as an illumination source for plants: a review of research at Kennedy Space Center.

    PubMed

    Kim, Hyeon-Hye; Wheeler, Raymond M; Sager, John C; Yorio, Neil C; Goins, Gregory D

    2005-01-01

    The provision of sufficient light is a fundamental requirement to support long-term plant growth in space. Several types of electric lamps have been tested to provide radiant energy for plants in this regard, including fluorescent, high-pressure sodium, and metal halide lamps. These lamps vary in terms of spectral quality, which can result in differences in plant growth and morphology. Current lighting research for space-based plant culture is focused on innovative lighting technologies that demonstrate high electrical efficiency and reduced mass and volume. Among the lighting technologies considered for space are light-emitting diodes (LEDs). The combination of red and blue LEDs has proven to be an effective lighting source for several crops, yet the appearance of plants under red and blue lighting is purplish gray, making visual assessment of plant health difficult. Additional green light would make the plant leaves appear green and normal, similar to a natural setting under white light, and may also offer psychological benefits for the crew. The addition of 24% green light (500-600 nm) to red and blue LEDs enhanced the growth of lettuce plants compared with plants grown under cool white fluorescent lamps. Coincidentally, these plants grown under additional green light would have the additional aesthetic appeal of a green appearance. PMID:15751143

  9. Light-emitting diodes as an illumination source for plants: a review of research at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Wheeler, Raymond M.; Sager, John C.; Yorio, Neil C.; Goins, Gregory D.

    2005-01-01

    The provision of sufficient light is a fundamental requirement to support long-term plant growth in space. Several types of electric lamps have been tested to provide radiant energy for plants in this regard, including fluorescent, high-pressure sodium, and metal halide lamps. These lamps vary in terms of spectral quality, which can result in differences in plant growth and morphology. Current lighting research for space-based plant culture is focused on innovative lighting technologies that demonstrate high electrical efficiency and reduced mass and volume. Among the lighting technologies considered for space are light-emitting diodes (LEDs). The combination of red and blue LEDs has proven to be an effective lighting source for several crops, yet the appearance of plants under red and blue lighting is purplish gray, making visual assessment of plant health difficult. Additional green light would make the plant leaves appear green and normal, similar to a natural setting under white light, and may also offer psychological benefits for the crew. The addition of 24% green light (500-600 nm) to red and blue LEDs enhanced the growth of lettuce plants compared with plants grown under cool white fluorescent lamps. Coincidentally, these plants grown under additional green light would have the additional aesthetic appeal of a green appearance.

  10. Photochemistry of Organic Light-Emitting Diodes

    SciTech Connect

    Ehara, Masahiro; Nakatsuji, Hiroshi

    2007-12-26

    The optical properties and excited-state geometries of some organic light-emitting diodes have been investigated by the SAC-CI method. The absorption and emission spectra have been predicted in high accuracy and the chain-length dependence of transition energies has been precisely reproduced. The present study provides the useful basis for the theoretical design predicting the photo-physical properties of the organic light-emitting diodes.

  11. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  12. Long Persistent Light Emitting Diode Indicators

    ERIC Educational Resources Information Center

    Jia, Dongdong; Ma, Yiwei; Hunter, D. N.

    2007-01-01

    An undergraduate laboratory was designed for undergraduate students to make long persistent light emitting diode (LED) indicators using phosphors. Blue LEDs, which emit at 465 nm, were characterized and used as an excitation source. Long persistent phosphors, SrAl[subscript 2]O[subscript 4]:Eu[superscript 2+],Dy[superscript 3+] (green) and…

  13. Phosphorescent Nanocluster Light-Emitting Diodes.

    PubMed

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    Devices utilizing an entirely new class of earth abundant, inexpensive phosphorescent emitters based on metal-halide nanoclusters are reported. Light-emitting diodes with tunable performance are demonstrated by varying cation substitution to these nanoclusters. Theoretical calculations provide insight about the nature of the phosphorescent emitting states, which involves a strong pseudo-Jahn-Teller distortion. PMID:26568044

  14. Light-Emitting Diodes: Solving Complex Problems

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…

  15. Light-Emitting Diodes: A Hidden Treasure

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  16. Light-Emitting Diodes: Learning New Physics

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  17. Afterglow Organic Light-Emitting Diode.

    PubMed

    Kabe, Ryota; Notsuka, Naoto; Yoshida, Kou; Adachi, Chihaya

    2016-01-27

    An afterglow organic light-emitting diode (OLED) that displays electroluminescence with long transient decay after it is turned off is demonstrated. This OLED exhibits blue and green dual emission originating from fluorescence and phosphorescence, respectively. A phosphorescence lifetime of 4.3 s is achieved. PMID:26599764

  18. A lighting assembly based on red and blue light-emitting diodes as a lighting source for space agriculture

    NASA Astrophysics Data System (ADS)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Ptushenko, Vasiliy; Erokhin, Alexei

    Light-emitting diodes (LEDs) are a promising lighting source for space agriculture due to their high efficiency, longevity, safety, and other factors. Assemblies based on red and blue LEDs have been recommended in literature, although not all plants show sufficient productivity in such lighting conditions. Adding of green LEDs proposed in some works was aimed at psychological support for the crew, and not at the improvement of plant growth. We studied the growth and the state of the photosynthetic apparatus in Chinese cabbage (Brassica chinensis L.) plants grown under red (650 nm) and blue (470 nm) light-emitting diodes (LEDs). Plants grown under a high-pressure sodium lamp (HPS lamp) were used as a control. The plants were illuminated with two photosynthetic photon flux levels: nearly 400 µE and about 100 µE. Plants grown under LEDs with 400 µE level, as compared to control plants, showed lower fresh weight, edible biomass, growth rate, and sugar content. The difference in fresh weight and edible biomass was even more pronounced in plants grown with 100 µE level; the data indicate that the adaptability of the test plants to insufficient lighting decreased. Under LEDs, we observed the decreasing of root growth and the absence of transition to the flowering stage, which points to a change in the hormonal balance in plants grown in such lighting conditions. We also found differences in the functioning of the photosynthetic apparatus and its reaction to a low lighting level. We have concluded that a lighting assembly with red and blue LEDs only is insufficient for the plant growth and productivity, and can bring about alterations in their adaptive and regulatory mechanisms. Further studies are needed to optimize the lighting spectrum for space agriculture, taking into account the photosynthetic, phototropic and regulatory roles of light. Using white LEDs or adding far-red and green LEDs might be a promising approach.

  19. The NASA light-emitting diode medical program-progress in space flight and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Whelan, Noel T.; Donohoe, Deborah L.; Cwiklinski, Joan; Schmidt, Meic H.; Gould, Lisa; Larson, David L.; Meyer, Glenn A.; Cevenini, Vita; Stinson, Helen

    2000-01-01

    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate cell growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long termspace flight. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. This LED-technology is also biologically optimal for photodynamic therapy of cancer. .

  20. NASA light emitting diode medical applications from deep space to deep sea

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Buchmann, Ellen V.; Whelan, Noel T.; Turner, Scott G.; Cevenini, Vita; Stinson, Helen; Ignatius, Ron; Martin, Todd; Cwiklinski, Joan; Meyer, Glenn A.; Hodgson, Brian; Gould, Lisa; Kane, Mary; Chen, Gina; Caviness, James

    2001-02-01

    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. We present the results of LED-treatment of cells grown in culture and the effects of LEDs on patients' chronic and acute wounds. LED-technology is also biologically optimal for photodynamic therapy of cancer and we discuss our successes using LEDs in conjunction with light-activated chemotherapeutic drugs. .

  1. Bioinspired Hybrid White Light-Emitting Diodes.

    PubMed

    Weber, Michael D; Niklaus, Lukas; Pröschel, Marlene; Coto, Pedro B; Sonnewald, Uwe; Costa, Rubén D

    2015-10-01

    The first bioinspired hybrid white-light-emitting diodes (bio-HLEDs) featuring protein cascade coatings are presented. For easy fabrication a new strategy to stabilize proteins in rubber-like material was developed. The synergy between the excellent features of fluorescent proteins and the easily processed rubber produces bio-HLEDs with less than 10% loss in luminous efficiency over 100 hours. PMID:26271025

  2. Use of space interlayer in phosphorescent organic light-emitting diodes to improve efficiency and reduce efficiency roll-off

    NASA Astrophysics Data System (ADS)

    Guo, Kunping; Chen, Changbo; Sun, Chang; Peng, Cuiyun; Yang, Lianqiao; Cai, Miao; Zhang, Xiaowen; Wei, Bin

    2016-06-01

    Typical phosphorescent organic light-emitting diodes (PhOLEDs) encounter efficiency roll-off problems and detrimentally degrades the device performance for practical applications particularity at high-brightness lightening. Here, we report high efficiency and reduced efficiency roll-off PhOLEDs by employing both 4,4‧,4″-tris-(N-carbazolyl)-triphenylamine (TCTA) and 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene (TPBi) as transporting, hosting and space interlayer (SIL) materials. The use of SIL blending TCTA into TPBi enables the current efficiency roll-up from 57.8 to 60.1 cd A‑1 with luminance increasing from 10.0 to 1143.0 cd m‑2. In particular, the current efficiency drops  <10% from 1143.0 to 5020.0 cd m‑2. In addition, the red-emitting sensitized dye further demonstrates that the SIL is dominant in expanding the dual exciton formation zone and suppressing efficiency roll-off. Also, the hole/electron balance can be manipulated by adjusting the doping ratio of the two materials in the SIL.

  3. Dr. Harry Whelan With the Light Emitting Diode Probe

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  4. Light-Emitting Diodes and Optical Fibers

    NASA Astrophysics Data System (ADS)

    Dow, J. D.

    Semiconductors have become highly relevant to modern electronics, first with the transistor (Ge), then with Si for efficient electronic conduction.With the discovery of GaAs as an infrared light-emitter, efforts to develop other III-V semiconductors were targeted for colored light-emitting diodes, such as GaAs1 - x P x . It is now possible to produce light-emitting visible semiconducting materials, including a variety of III-V materials. One now has various light-emitters throughout the visible region of the spectrum, with automobile tail-lights and traffic lights being red, yellow, or green found in a variety of optical devices. Now there are many different optical devices, with materials optimized for their color, and for various other properties.In addition to developing colored semiconductors, it is clear that devices are needed with no color, for transparent optical fibers. Such ultra-transparent optical fibers have been developed over the years.

  5. Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes

    SciTech Connect

    Gordon, Kelly L.; Gilbride, Theresa L.

    2008-05-22

    This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

  6. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  7. The Use of NASA Light-Emitting Diode Near-Infrared Technology for Biostimulation

    NASA Technical Reports Server (NTRS)

    Whelan, Harry T.

    2002-01-01

    Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long-term spaceflight. The application of light therapy with the use of NASA LEDs will significantly improve the medical care that is available to astronauts on long-term space missions. NASA LEDs stimulate the basic energy processes in the mitochondria (energy compartments) of each cell, particularly when near-infrared light is used to activate the color sensitive chemicals (chromophores, cytochrome systems) inside. Optimal LED wavelengths include 680, 730 and 880 nm and our laboratory has improved the healing of wounds in laboratory animals by using both NASA LED light and hyperbaric oxygen. Furthermore, DNA synthesis in fibroblasts and muscle cells has been quintupled using NASA LED light alone, in a single application combining 680, 730 and 880 nm each at 4 Joules per centimeter squared. Muscle and bone atrophy are well documented in astronauts, and various minor injuries occurring in space have been reported not to heal until landing on Earth. An LED blanket device may be used for the prevention of bone and muscle atrophy in astronauts. The depth of near-infrared light penetration into human tissue has been measured spectroscopically.

  8. Light-Emitting Diodes for Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K.

    2014-06-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  9. Light-Emitting Diodes: A Hidden Treasure

    NASA Astrophysics Data System (ADS)

    Planinšič, Gorazd; Etkina, Eugenia

    2014-02-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general physics course (and in many advanced courses) either (I) as "black boxes" that allow students to study certain properties of a system of interest, (II) as physical systems that allow students to learn an astonishing amount of physics that they usually do not encounter in a regular introductory physics course, and (III) as non-traditional devices that allow students to construct concepts that are traditionally a part of a general physics course.

  10. A single blue nanorod light emitting diode.

    PubMed

    Hou, Y; Bai, J; Smith, R; Wang, T

    2016-05-20

    We report a light emitting diode (LED) consisting of a single InGaN/GaN nanorod fabricated by a cost-effective top-down approach from a standard LED wafer. The device demonstrates high performance with a reduced quantum confined Stark effect compared with a standard planar counterpart fabricated from the same wafer, confirmed by optical and electrical characterization. Current density as high as 5414 A cm(-2) is achieved without significant damage to the device due to the high internal quantum efficiency. The efficiency droop is mainly ascribed to Auger recombination, which was studied by an ABC model. Our work provides a potential method for fabricating compact light sources for advanced photonic integrated circuits without involving expensive or time-consuming fabrication facilities. PMID:27070200

  11. A single blue nanorod light emitting diode

    NASA Astrophysics Data System (ADS)

    Hou, Y.; Bai, J.; Smith, R.; Wang, T.

    2016-05-01

    We report a light emitting diode (LED) consisting of a single InGaN/GaN nanorod fabricated by a cost-effective top-down approach from a standard LED wafer. The device demonstrates high performance with a reduced quantum confined Stark effect compared with a standard planar counterpart fabricated from the same wafer, confirmed by optical and electrical characterization. Current density as high as 5414 A cm‑2 is achieved without significant damage to the device due to the high internal quantum efficiency. The efficiency droop is mainly ascribed to Auger recombination, which was studied by an ABC model. Our work provides a potential method for fabricating compact light sources for advanced photonic integrated circuits without involving expensive or time-consuming fabrication facilities.

  12. An entangled-light-emitting diode.

    PubMed

    Salter, C L; Stevenson, R M; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2010-06-01

    An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications. PMID:20520709

  13. Light-Emitting Diodes: Phosphorescent Nanocluster Light-Emitting Diodes (Adv. Mater. 2/2016).

    PubMed

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    On page 320, R. R. Lunt and co-workers demonstrate electroluminescence from earth-abundant phosphorescent metal halide nanoclusters. These inorganic emitters, which exhibit rich photophysics combined with a high phosphorescence quantum yield, are employed in red and near-infrared light-emitting diodes, providing a new platform of phosphorescent emitters for low-cost and high-performance light-emission applications. PMID:26749470

  14. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  15. Biologically Inspired Organic Light-Emitting Diodes.

    PubMed

    Kim, Jae-Jun; Lee, Jaeho; Yang, Sung-Pyo; Kim, Ha Gon; Kweon, Hee-Seok; Yoo, Seunghyup; Jeong, Ki-Hun

    2016-05-11

    Many animal species employ highly conspicuous traits as courtship signals for successful mating. Fireflies utilize their bioluminescent light as visual courtship signals. In addition to efficient bioluminescent light emission, the structural components of the firefly lantern also contribute to the enhancement of conspicuous optical signaling. Recently, these firefly lantern ultrastructures have attracted much interest and inspired highly efficient light management approaches. Here we report on the unique optical function of the hierarchical ultrastructures found in a firefly (Pyrocoelia rufa) and their biological inspiration of highly efficient organic light-emitting diode (OLED) applications. The hierarchical structures are comprised of longitudinal nanostructures and asymmetric microstructures, which were successfully replicated using geometry-guided resist reflow, replica molding, and polydimethylsiloxane (PDMS) oxidation. The external quantum efficiency (EQE) of the bioinspired OLEDs was enhanced by up to 61%. The bioinspired OLEDs clearly showed side-enhanced super-Lambertian emission with a wide-viewing angle. The highly efficient light extraction and wide-angle illumination suggest how the hierarchical structures likely improve the recognition of firefly optical courtship signals over a wide-angle range. At the same time, the biologically inspired designs provide a new paradigm for designing functional optical surfaces for lighting or display applications. PMID:27014918

  16. Thermally enhanced blue light-emitting diode

    NASA Astrophysics Data System (ADS)

    Xue, Jin; Zhao, Yuji; Oh, Sang-Ho; Herrington, William F.; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji; Ram, Rajeev J.

    2015-09-01

    We investigate thermoelectric pumping in wide-bandgap GaN based light-emitting diodes (LEDs) to take advantage of high junction temperature rather than avoiding the problem of temperature-induced efficiency droop through external cooling. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with nearly no reduction in the wall-plug efficiency (i.e., electrical-optical energy conversion efficiency) at bias V <ℏω/q . The LED is shown to work in a mode similar to a thermodynamic heat engine operating with charged carriers pumped into the active region by a combination of electrical work and Peltier heat (phonons) drawn from the lattice. In this optimal operating regime at 615 K, the LED injection current (3.26 A/cm2) is of similar magnitude to the operating point of common high power GaN based LEDs (5-35 A/cm2). This result suggests the possibility of removing bulky heat sinks in current high power LED products thus realizing a significant cost reduction for solid-state lighting.

  17. Light-Emitting Diodes: Solving Complex Problems

    NASA Astrophysics Data System (ADS)

    Planinšič, Gorazd; Etkina, Eugenia

    2015-05-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper1 provided an overview of possible uses of LEDs in physics courses. The second paper2 discussed how one could help students learn the foundational aspects of LED physics through a scaf-folded inquiry approach, specifically the ISLE cycle. The third paper3 showed how the physics inherent in the functioning of LEDs could help students deepen their understanding of sources of electric power and the temperature dependence of resistivity, and explore the phenomenon of fluorescence also using the ISLE cycle.4 The goal of this fourth paper is to use LEDs as black boxes that allow students to study certain properties of a system of interest, specifically mechanical, electric, electromagnetic, and light properties. The term "black box" means that we use a device without knowing the mechanism behind its operation.

  18. Light-Emitting Diodes: Learning New Physics

    NASA Astrophysics Data System (ADS)

    Planinšič, Gorazd; Etkina, Eugenia

    2015-04-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published in the February 2014 issue of TPT,1 provided an overview of possible uses of LEDs in a physics course. The second paper2 discussed how one could help students learn the foundational aspects of LED physics through a scaffolded inquiry approach, specifically the ISLE cycle. The goals of this paper are to show how the activities described in our second paper help to deepen student understanding of physics and to broaden student knowledge by exploring new phenomena such as fluorescence. Activities described in this paper are suitable for advanced high school courses, introductory courses for physics and engineering majors, courses for prospective physics teachers, and professional development programs.

  19. A micrometer-size movable light emitting area in a resonant tunneling light emitting diode

    NASA Astrophysics Data System (ADS)

    Pettinari, G.; Balakrishnan, N.; Makarovsky, O.; Campion, R. P.; Polimeni, A.; Capizzi, M.; Patanè, A.

    2013-12-01

    We report on the fabrication of a micrometer-size movable light emitting area in a GaAs/AlAs quantum well resonant tunneling p-i-n diode. The spatial position of the micrometer-size light emitting area shifts linearly with increasing applied bias, up to 30 μm for a bias increment of 0.2 V. Also, the simultaneous resonant tunneling injection of both electrons and holes into the quantum well states is achieved at specific positions of the diode, thus resulting in a tenfold increase of the electroluminescence intensity.

  20. Advances and prospects in nitrides based light-emitting-diodes

    NASA Astrophysics Data System (ADS)

    Jinmin, Li; Zhe, Liu; Zhiqiang, Liu; Jianchang, Yan; Tongbo, Wei; Xiaoyan, Yi; Junxi, Wang

    2016-06-01

    Due to their low power consumption, long lifetime and high efficiency, nitrides based white light-emitting-diodes (LEDs) have long been considered to be a promising technology for next generation illumination. In this work, we provide a brief review of the development of GaN based LEDs. Some pioneering and significant experiment results of our group and the overview of the recent progress in this field are presented. We hope it can provide some meaningful information for the development of high efficiency GaN based LEDs and solid-state-lighting. Project supported by the National High Technology Research and Development Program of China (No. 2013AA03A101).

  1. Numerical model for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tutiš, E.; Bussac, M. N.; Masenelli, B.; Carrard, M.; Zuppiroli, L.

    2001-01-01

    An extensive numerical model recently developed for the multilayer organic light-emitting diode is described and applied to a set of real devices. The model contains a detailed description of electrical contacts including dipolar layer formation, thermionic and tunneling injection, space charge effects, field dependent mobilities and recombination processes. The model is applied to simulate several single layer devices and the family of bilayer devices made in our group. It provides insight into the energy level shifts, internal electric fields and charge distribution (and consequently recombination) throughout the device. Finally, the analysis is extended to the optimization of bilayer device.

  2. Determining Planck's Constant Using a Light-emitting Diode.

    ERIC Educational Resources Information Center

    Sievers, Dennis; Wilson, Alan

    1989-01-01

    Describes a method for making a simple, inexpensive apparatus which can be used to determine Planck's constant. Provides illustrations of a circuit diagram using one or more light-emitting diodes and a BASIC computer program for simplifying calculations. (RT)

  3. Plant Growth Under Light Emitting Diode Irradiation.

    NASA Astrophysics Data System (ADS)

    Tennessen, Daniel John

    Plant growth under light emitting diodes (LEDs) was investigated to determine if LEDs would be useful to provide radiant energy for two plant processes, photosynthesis and photomorphogenesis. Photosynthesis of tomato (Lycopersicon esculentum L.) and Kudzu (Pueraria lobata (Willd) Ohwi.) was measured using photons from LEDs to answer the following: (1) Are leaves able to use red LED light for photosynthesis? and (2) Is the efficiency of photosynthesis in pulsed light equal to that of continuous light? In 175 Pa CO _2, or in response to changes in CO _2,<=af photosynthesis and ATP status were the same in LED as in white xenon arc light. In 35 Pa CO_2, photosynthesis was 10% lower in LED than in xenon arc light due to lowered stomatal conductance. The quantum efficiency of photosynthesis in pulsed light was equal to continuous light, even when pulses were twice as bright as sunlight. Xanthophyll pigments were not affected by these bright pulses. Photomorphogenesis of tobacco (Nicotiana tabacum L.), tomato (Lycopersicon esculentum Mill.) and transformed tobacco and tomato (expressing oat phytochrome-A) was assessed by growing plants under red LED lamps in an attempt to answer the following: (1) What is the developmental response of non-transformed and transformed tobacco to red LED light? and (2) Can tomato plants that grow tall and spindly in red LED light be made to grow short by increasing the amount of phytochrome-A? The short phenotype of transformed tobacco was not evident when plants were grown in LED light. Addition of photons of far-red or blue light to red light resulted in short transformed tobacco. Tomato plants grew three times as tall and lacked leaf development in LED versus white light, but transformed tomato remained short and produced fruit under LED light. I have determined that the LED photons are useful for photosynthesis and that the photon efficiency of photosynthesis is the same in pulsed as in continuous light. From responses of tobacco, I

  4. Encapsulation of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Visweswaran, Bhadri

    Organic Light Emitting Diodes (OLEDs) are extremely attractive candidates for flexible display and lighting panels due to their high contrast ratio, light weight and flexible nature. However, the materials in an OLED get oxidized by extremely small quantities of atmospheric moisture and oxygen. To obtain a flexible OLED device, a flexible thin-film barrier encapsulation with low permeability for water is necessary. Water permeates through a thin-film barrier by 4 modes: microcracks, contaminant particles, along interfaces, and through the bulk of the material. We have developed a flexible barrier film made by Plasma Enhanced Chemical Vapor Deposition (PECVD) that is devoid of any microcracks. In this work we have systematically reduced the permeation from the other three modes to come up with a barrier film design for an operating lifetime of over 10 years. To provide quantitative feedback during barrier material development, techniques for measuring low diffusion coefficient and solubility of water in a barrier material have been developed. The mechanism of water diffusion in the barrier has been identified. From the measurements, we have created a model for predicting the operating lifetime from accelerated tests when the lifetime is limited by bulk diffusion. To prevent the particle induced water permeation, we have encapsulated artificial particles and have studied their cross section. A three layer thin-film that can coat a particle at thicknesses smaller than the particle diameter is identified. It is demonstrated to protect a bottom emission OLED device that was contaminated with standard sized glass beads. The photoresist and the organic layers below the barrier film causes sideways permeation that can reduce the lifetime set by permeation through the bulk of the barrier. To prevent the sideways permeation, an impermeable inorganic grid made of the same barrier material is designed. The reduction in sideways permeation due to the impermeable inorganic grid

  5. Light outcoupling enhanced flexible organic light-emitting diodes.

    PubMed

    Ou, Qing-Dong; Xu, Lu-Hai; Zhang, Wen-Yue; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Chen, Jing-De; Tang, Jian-Xin

    2016-03-21

    Flexible organic light-emitting diodes (OLEDs) are emerging as a leading technology for rollable and foldable display applications. For the development of high-performance flexible OLEDs on plastic substrate, we report a transparent nanocomposite electrode with superior mechanical, electrical, and optical properties, which is realized by integrating the nanoimprinted quasi-random photonic structures into the ultrathin metal/dielectric stack to collectively optimize the electrical conduction and light outcoupling capabilities. The resulting flexible OLEDs with green emission yield the enhanced device efficiency, reaching the maximum external quantum efficiency of 43.7% and luminous efficiency of 154.9 cd/A, respectively. PMID:27136885

  6. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  7. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. PMID:27214091

  8. Reshaping Light-Emitting Diodes To Increase External Efficiency

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Egalon, Claudio

    1995-01-01

    Light-emitting diodes (LEDs) reshaped, according to proposal, increasing amount of light emitted by decreasing fraction of light trapped via total internal reflection. Results in greater luminous output power for same electrical input power; greater external efficiency. Furthermore, light emitted by reshaped LEDs more nearly collimated (less diffuse). Concept potentially advantageous for conventional red-emitting LEDs. More advantageous for new "blue" LEDs, because luminous outputs and efficiencies of these devices very low. Another advantage, proposed conical shapes achieved relatively easily by chemical etching of semiconductor surfaces.

  9. All-solution processed polymer light-emitting diode displays

    NASA Astrophysics Data System (ADS)

    Zheng, Hua; Zheng, Yina; Liu, Nanliu; Ai, Na; Wang, Qing; Wu, Sha; Zhou, Junhong; Hu, Diangang; Yu, Shufu; Han, Shaohu; Xu, Wei; Luo, Chan; Meng, Yanhong; Jiang, Zhixiong; Chen, Yawen; Li, Dongyun; Huang, Fei; Wang, Jian; Peng, Junbiao; Cao, Yong

    2013-06-01

    Adopting the emerging technology of printed electronics in manufacturing novel ultrathin flat panel displays attracts both academic and industrial interests because of the challenge in the device physics and the potential of reducing production costs. Here we produce all-solution processed polymer light-emitting diode displays by solution-depositing the cathode and utilizing a multifunctional buffer layer between the cathode and the organic layers. The use of ink-jetted conducting nanoparticles as the cathode yields high-resolution cathode patterns without any mechanical stress on the organic layers. The buffer layer, which offers the functions of solvent-proof electron injection and proper affinity, is fabricated by mixing the water/alcohol-soluble polymer and a curable epoxy adhesive. Our 1.5-inch polymer light-emitting diode displays are fabricated without any dead pixels or dead lines. The all-solution process eliminates the need for high vacuum for thermal evaporation of the cathode, which paves the way to industrial roll-to-roll manufacturing of flat panel displays.

  10. All-solution processed polymer light-emitting diode displays.

    PubMed

    Zheng, Hua; Zheng, Yina; Liu, Nanliu; Ai, Na; Wang, Qing; Wu, Sha; Zhou, Junhong; Hu, Diangang; Yu, Shufu; Han, Shaohu; Xu, Wei; Luo, Chan; Meng, Yanhong; Jiang, Zhixiong; Chen, Yawen; Li, Dongyun; Huang, Fei; Wang, Jian; Peng, Junbiao; Cao, Yong

    2013-01-01

    Adopting the emerging technology of printed electronics in manufacturing novel ultrathin flat panel displays attracts both academic and industrial interests because of the challenge in the device physics and the potential of reducing production costs. Here we produce all-solution processed polymer light-emitting diode displays by solution-depositing the cathode and utilizing a multifunctional buffer layer between the cathode and the organic layers. The use of ink-jetted conducting nanoparticles as the cathode yields high-resolution cathode patterns without any mechanical stress on the organic layers. The buffer layer, which offers the functions of solvent-proof electron injection and proper affinity, is fabricated by mixing the water/alcohol-soluble polymer and a curable epoxy adhesive. Our 1.5-inch polymer light-emitting diode displays are fabricated without any dead pixels or dead lines. The all-solution process eliminates the need for high vacuum for thermal evaporation of the cathode, which paves the way to industrial roll-to-roll manufacturing of flat panel displays. PMID:23736123

  11. Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect

    NASA Astrophysics Data System (ADS)

    Fu, Houqiang; Lu, Zhijian; Zhao, Yuji

    2016-06-01

    We study the low efficiency droop characteristics of semipolar InGaN light-emitting diodes (LEDs) using modified rate equation incoporating the phase-space filling (PSF) effect where the results on c-plane LEDs are also obtained and compared. Internal quantum efficiency (IQE) of LEDs was simulated using a modified ABC model with different PSF filling (n0), Shockley-Read-Hall (A), radiative (B), Auger (C) coefficients and different active layer thickness (d), where the PSF effect showed a strong impact on the simulated LED efficiency results. A weaker PSF effect was found for low-droop semipolar LEDs possibly due to small quantum confined Stark effect, short carrier lifetime, and small average carrier density. A very good agreement between experimental data and the theoretical modeling was obtained for low-droop semipolar LEDs with weak PSF effect. These results suggest the low droop performance may be explained by different mechanisms for semipolar LEDs.

  12. Proceedings of the 5th International Symposium on Blue Laser and Light Emitting Diodes (ISBLLED-2004)

    NASA Astrophysics Data System (ADS)

    Suh, Eun-Kyung; Yoon, Euijoon; Lee, Hyung Jae

    2004-09-01

    The 5th International Symposium on Blue Laser and Light Emitting Diodes (ISBLLED-2004) was held in Gyeongju, Korea, 15-19 March 2004. The purpose of the symposium was to provide a forum for scientists and engineers to discuss recent progress and future trends in the rapidly advancing wide band gap semiconductor science and technologies and their applications in blue laser and light emitting diodes.

  13. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  14. Semiconductor Nanocrystals-Based White Light Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Hu, Michael Z.; Duty, Chad E

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

  15. High Brightness GaN-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Lee, Ya-Ju; Lu, Tien-Chang; Kuo, Hao-Chung; Wang, Shing-Chung

    2007-06-01

    This paper reviews our recent progress of GaN-based high brightness light-emitting diodes (LEDs). Firstly, by adopting chemical wet etching patterned sapphire substrates in GaN-based LEDs, not only could increase the extraction quantum efficiency, but also improve the internal quantum efficiency. Secondly, we present a high light-extraction 465-nm GaN-based vertical light-emitting diode structure with double diffuse surfaces. The external quantum efficiency was demonstrated to be about 40%. The high performance LED was achieved mainly due to the strong guided-light scattering efficiency while employing double diffuse surfaces.

  16. Carbon nanotube-based organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Bansal, Malti; Srivastava, Ritu; Lal, C.; Kamalasanan, M. N.; Tanwar, L. S.

    2009-11-01

    Carbon nanotubes; revolutionary and fascinating from the materials point of view and exceedingly sensational from a research point of view; are standing today at the threshold between inorganic electronics and organic electronics and posing a serious challenge to the big daddies of these two domains in electronics i.e., silicon and indium tin oxide (ITO). In the field of inorganic electronics, carbon nanotubes offer advantages such as high current carrying capacity, ballistic transport, absence of dangling bonds, etc. and on the other hand, in the field of organic electronics, carbon nanotubes offer advantages such as high conductivity, high carrier mobility, optical transparency (in visible and IR spectral ranges), flexibility, robustness, environmental resistance, etc. and hence, they are seriously being considered as contenders to silicon and ITO. This review traces the origin of carbon nanotubes in the field of organic electronics (with emphasis on organic light emitting diodes) and moves on to cover the latest advances in the field of carbon nanotube-based organic light emitting diodes. Topics that are covered within include applications of multi-wall nanotubes and single-wall nanotubes in organic light emitting diodes. Applications of carbon nanotubes as hole-transport layers, as electron-transport layers, as transparent electrodes, etc. in organic light emitting diodes are discussed and the daunting challenges facing this progressive field today are brought into the limelight.

  17. Atom probe tomography of a commercial light emitting diode

    NASA Astrophysics Data System (ADS)

    Larson, D. J.; Prosa, T. J.; Olson, D.; Lefebvre, W.; Lawrence, D.; Clifton, P. H.; Kelly, T. F.

    2013-11-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device.

  18. A multi-source portable light emitting diode spectrofluorometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A portable luminescence spectrofluorometer weighing only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed and evaluated. Excitation using a sequence of seven individual broad-band LED emission sources enabled the generation of excitation-emission spectra usi...

  19. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  20. The Light-Emitting Diode as a Light Detector

    ERIC Educational Resources Information Center

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  1. Singlet oxygen and organic light-emitting diodes

    SciTech Connect

    Jacobs, S.J.; Sinclair, M.B.; Valencia, V.S.; Kepler, R.G.; Clough, R.L.; Scurlock, R.D.; Ogilby, P.R.

    1995-07-01

    The preparation of light emitting diodes employing a new class of materials, 5,10-dihetera 5,10-dihydro-indeno[3,2b]indenes, as hole transport agents is described. These materials have been found to be more resistant to degradation by singlet oxygen than a poly(p-phenylene vinylene) (PPV) derivative.

  2. Naturally formed graded junction for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shao, Yan; Yang, Yang

    2003-09-01

    In this letter, we report naturally-formed graded junctions (NFGJ) for organic light-emitting diodes (OLEDs). These junctions are fabricated using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. Upon heating, materials sublimate sequentially according to their vaporizing temperatures forming the graded junction. Two kinds of graded structures, sharp and shallow graded junctions, can be formed based on the thermal properties of the selected materials. The NFGJ OLEDs have shown excellent performance in both brightness and lifetime compared with heterojunction devices.

  3. Design of vertically-stacked polychromatic light-emitting diodes.

    PubMed

    Hui, K N; Wang, X H; Li, Z L; Lai, P T; Choi, H W

    2009-06-01

    A new design for a polychromatic light-emitting diode (LED) is proposed and demonstrated. LED chips of the primary colors are physically stacked on top of each other. Light emitted from each layer of the stack passes through each other, and thus is mixed naturally without additional optics. As a color-tunable device, a wide range of colors can be generated, making it suitable for display purposes. As a phosphor-free white light LED, luminous efficacy of 30 lm/watt was achieved. PMID:19506637

  4. Measurement of the thermal characteristics of packaged double-heterostructure light emitting diodes for space applications using spontaneous optical spectrum properties

    NASA Astrophysics Data System (ADS)

    Bechou, L.; Rehioui, O.; Deshayes, Y.; Gilard, O.; Quadri, G.; Ousten, Y.

    2008-06-01

    In this paper, the thermal characteristics of packaged infrared double-heterostructure light emitting diode (DH-LED), used in space applications, are measured under conditions that reproduce space environments. The characterisation uses spontaneous optical spectrum characteristics, current-voltage curves and optical power measured under a primary vacuum (<10 -2 Torr) at temperatures between -30 and 100 °C. The investigations have been specifically oriented toward the extraction of junction temperature in the steady-state regime and junction-to-case thermal resistance. A specific model based on semiconductor theory for electrical transport has been used to calculate the shape of the spontaneous emission spectrum between the band-gap energy and higher energies and its change versus temperature. A linear relation between the junction temperature and the dissipated power has been found for various case temperatures appropriately controlled in a LN 2 cryostat. These results confirm that thermal behavior of DH-LEDs depends on both environment temperature and dissipated power level in the active zone and that the junction-to-case thermal resistance is not constant over a large range of temperatures, diminishing at higher currents as already reported by recent papers on high brightness DH-LED. Finally, this study could represent a practical non-destructive method providing qualitative information about variations of junction temperature and junction-to-case thermal resistance taking into account an industrial qualification framework approach based on electroluminescence analysis, frequently measured by manufacturers or end-users.

  5. A cylindrical salad growth facility with a light-emitting diodes unit as a component for biological life support system for space crews

    NASA Astrophysics Data System (ADS)

    Erokhin, A. N.; Berkovich, Yu. A.; Smolianina, S. O.; Krivobok, N. M.; Agureev, A. N.; Kalandarov, S. K.

    2006-01-01

    Efficiency of salad production under light-emitting diodes was tested with a prototype space plant growth facility "Phytocycle SD" with a 10-step crop conveyer. The system has a plant chamber in the form of a spiral cylinder. The planting unit inside the chamber is built of 10 root modules which provide a co-axial planting cylinder that rotates relative to the leaf chamber. Twelve panels of the lighting unit on the internal surfaces of the spiral cylinder carry 438 red (660 nm) and 88 blue (470 nm) light-emitting diodes producing average PPF equal 360 μmol m -2 s -1 4 cm below the light source, and 3 panels producing PPF equal 190 μmol m -2 s -1 at the initial steps of the plant conveyer. The system requires 0.44 kW and provides a plant chamber volume of 0.19 m 3, with 0.86 m 2 illuminated crop area. Productive efficiency of the facility was studied in a series of laboratory experiments with celery cabbage ( Brassica pekinensis) ( Lour) ( Rupr.) grown in the conveyer with a one-step period of 3 days. The crop grew in a fiber ion-exchange mineral-rich soil BIONA V3 under the 24-h light. Maximal productivity of the ripe (30-day-old) plants reached 700 g of the fresh edible biomass from one root module. There was a 30% greater biomass production and 3-5 times greater specific productivity per unit of expenditure of consumable resources over plants grown in a flat planting. This improved production was due to the extension of illuminated crop area for the final conveyor steps and concentration of photon flux toward center axis of cylindrical growth chamber. Biomass contents of ascorbic acid and carotene gathered from one root module per day ranged from 250 to 300 mg and 30 to 40 mg respectively. With this productivity, celery cabbage raised in "Phytocycle SD" potentially can satisfy the daily demands in vitamin C, vitamin A for a crew of three. Wider nutritional needs can be satisfied by planting mixed salad crops.

  6. Simulated evolution of fluorophores for light emitting diodes

    SciTech Connect

    Shu, Yinan; Levine, Benjamin G.

    2015-03-14

    Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the lowest lying singlet and triplet excited states and a large transition dipole moment for fluorescence. In this work, we demonstrate the use of a genetic algorithm to search a region of chemical space for molecules with these properties. This algorithm is based on a flexible and intuitive representation of the molecule as a tree data structure, in which the nodes correspond to molecular fragments. Our implementation takes advantage of hybrid parallel graphics processing unit accelerated computer clusters to allow efficient sampling while retaining a reasonably accurate description of the electronic structure (in this case, CAM-B3LYP/6-31G{sup ∗∗}). In total, we have identified 3792 promising candidate fluorophores from a chemical space containing 1.26 × 10{sup 6} molecules. This required performing electronic structure calculations on only 7518 molecules, a small fraction of the full space. Several novel classes of molecules which show promise as fluorophores are presented.

  7. Simulated evolution of fluorophores for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Shu, Yinan; Levine, Benjamin G.

    2015-03-01

    Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the lowest lying singlet and triplet excited states and a large transition dipole moment for fluorescence. In this work, we demonstrate the use of a genetic algorithm to search a region of chemical space for molecules with these properties. This algorithm is based on a flexible and intuitive representation of the molecule as a tree data structure, in which the nodes correspond to molecular fragments. Our implementation takes advantage of hybrid parallel graphics processing unit accelerated computer clusters to allow efficient sampling while retaining a reasonably accurate description of the electronic structure (in this case, CAM-B3LYP/6-31G∗∗). In total, we have identified 3792 promising candidate fluorophores from a chemical space containing 1.26 × 106 molecules. This required performing electronic structure calculations on only 7518 molecules, a small fraction of the full space. Several novel classes of molecules which show promise as fluorophores are presented.

  8. Simulated evolution of fluorophores for light emitting diodes.

    PubMed

    Shu, Yinan; Levine, Benjamin G

    2015-03-14

    Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the lowest lying singlet and triplet excited states and a large transition dipole moment for fluorescence. In this work, we demonstrate the use of a genetic algorithm to search a region of chemical space for molecules with these properties. This algorithm is based on a flexible and intuitive representation of the molecule as a tree data structure, in which the nodes correspond to molecular fragments. Our implementation takes advantage of hybrid parallel graphics processing unit accelerated computer clusters to allow efficient sampling while retaining a reasonably accurate description of the electronic structure (in this case, CAM-B3LYP/6-31G(∗∗)). In total, we have identified 3792 promising candidate fluorophores from a chemical space containing 1.26 × 10(6) molecules. This required performing electronic structure calculations on only 7518 molecules, a small fraction of the full space. Several novel classes of molecules which show promise as fluorophores are presented. PMID:25778905

  9. The improvement of GaN-based light-emitting diodes using nanopatterned sapphire substrate with small pattern spacing

    SciTech Connect

    Zhang, Yonghui; Wei, Tongbo Wang, Junxi; Chen, Yu; Hu, Qiang; Lu, Hongxi; Li, Jinmin; Lan, Ding

    2014-02-15

    Self-assembly SiO{sub 2} nanosphere monolayer template is utilized to fabricate nanopatterned sapphire substrates (NPSSs) with 0-nm, 50-nm, and 120-nm spacing, receptively. The GaN growth on top of NPSS with 0-nm spacing has the best crystal quality because of laterally epitaxial overgrowth. However, GaN growth from pattern top is more difficult to get smooth surface than from pattern bottom. The rougher surface may result in a higher work voltage. The stimulation results of finite-difference time-domain (FDTD) display that too large or too small spacing lead to the reduced light extracted efficiency (LEE) of LEDs. Under a driving current 350 mA, the external quantum efficiencies (EQE) of GaN-based LEDs grown on NPSSs with 0-nm, 50-nm, and 120-nm spacing increase by 43.3%, 50.6%, and 39.1%, respectively, compared to that on flat sapphire substrate (FSS). The optimized pattern spacing is 50 nm for the NPSS with 600-nm pattern period.

  10. Organic light-emitting diodes from homoleptic square planar complexes

    SciTech Connect

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  11. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes

    PubMed Central

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

    2015-01-01

    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  12. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  13. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  14. Silicon light-emitting diode antifuse: properties and devices

    NASA Astrophysics Data System (ADS)

    LeMinh, Phuong; Holleman, Jisk

    2006-09-01

    This paper reviews our research on the silicon light-emitting diode antifuse, a tiny source featuring a full white-light spectrum. Optical and electrical properties of the device are discussed together with the modelling of the spectral emission, explaining the emitting mechanism of the device. An estimation of the antifuse's internal power conversion efficiency reveals a reasonable value of at least 10-5. Photochemical effect on two types of photoresists were carried out showing a clear impact of the emitted photons in the near ultraviolet range. The two integrated device prototypes, namely the opto-isolator which communicates optically and the microscale opto-fluidic device which senses the difference in the refractive indices of liquids, indicate that the light-emitting diode antifuse has the potential for sensor and actuator applications.

  15. AC Impedance Studies of Polymer Light-emitting Electrochemical Cells and Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Yongfang; Gao, Jun; Heeger, Alan J.; Yu, Gang; Cao, Yong

    1998-03-01

    The alternating current (ac) impedance of polymer light-emitting electrochemical cells (LECs) is studied and compared with that of polymer light-emitting diodes(LEDs) in the frequency range from 100 Hz to 5 M Hz. The device capacitance, resistance and interface characteristics are analyzed using the frequency dependence of the impedance and plots of the imaginary component of the impedance (Z") vs. the real part (Z'). At low bias voltages, polymer LEDs behave as pure capacitors whereas the polymer blend in the LEC exhibits an ionic conductivity contribution to the impedance. With dc bias higher than the energy gap of the semiconducting polymer (eV > Eg), the Z" vs. Z' plot of the LEC is a flattened semicircle, while that of LED is a semicircle with a small tail at low frequencies. In the LED, the capacitance is independent of voltages, the film resistance decreases as the bias voltage is increased in forward bias due to charge injection at higher voltages. In the LEC, the capacitance increases at voltages sufficient to induce electrochemical redox and doping near the electrodes. From this increase, the thickness of the i-layer of the p-i-n junction is estimated to approximately 0.8 of the film thickness (at the bias voltage of 3 V). Thus, in the LEC under operating conditions, the crossover region from p-type occupies most of the film thickness.

  16. White Light Emitting Diode Development for General Illumination Applications

    SciTech Connect

    James Ibbetson

    2006-05-01

    This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

  17. Versatile multispectral microscope based on light emitting diodes

    NASA Astrophysics Data System (ADS)

    Brydegaard, Mikkel; Merdasa, Aboma; Jayaweera, Hiran; Ålebring, Jens; Svanberg, Sune

    2011-12-01

    We describe the development of a novel multispectral microscope, based on light-emitting diodes, capable of acquiring megapixel images in thirteen spectral bands from the ultraviolet to the near infrared. The system captures images and spectra in transmittance, reflectance, and scattering modes. We present as examples of applications ground truth measurements for remote sensing and parasitology diagnostics. The system is a general purpose scientific instrument that could be used to develop dedicated simplified instruments with optimal bands and mode selection.

  18. Surface-plasmon-enhanced microcavity organic light-emitting diodes.

    PubMed

    Zhang, Hongmei; Chen, Shufen; Zhao, Dewei

    2014-12-15

    Efficiency enhancement of organic light-emitting diodes (OLEDs) can be obtained by the combination of microcavity effect and Au nanoparticles based surface plasmons. Au nanoparticles are thermally deposited on distributed Bragg reflector (DBR)-coated glass substrate, leading to realization of microcavity effect and localized surface plasmon effect. Our results show the current efficiency of OLEDs with DBR/Au nanoparticles as anode is increased by 72% compared to that with ITO as anode. PMID:25607492

  19. Fast pulsed electroluminescence from polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sun, R. G.; Yu, G.; Heeger, A. J.

    2002-02-01

    Transient electroluminescence (EL) from polymer light emitting diodes is investigated by measurements of the response to short voltage pulses. The carrier mobility is derived from the delay time between the electrical pulse and the onset of EL, μ≈3×10-4 cm2/V s. Bilayer devices with a polyethylene-dioxythiophene (PEDOT), hole injection layer are also studied. The delay time between the electrical pulse and the onset of EL is independent of the thickness of the injection layer, implying that the conducting PEDOT functions as a part of the electrode. When a dc forward bias is applied to the device, the delay time decreases, probably as a result of the shift of the emission zone towards the anode. The EL turn-on depends on the amplitude of the voltage pulse. The data are modeled by an equivalent circuit with a fixed capacitance connected in parallel with a nonlinear resistance. The solution of the differential equation depends on the exact form of the device's I-V curve. Two analytical solutions are provided, and an analysis based on space-charge-limited current is presented. By applying a dc forward bias in advance to precharge the space-charge capacitance, the turn-on response time is reduced to 12 ns. The EL decay consists of two components with time constants of 15 ns and 1 μs. The decay does not depend on either the amplitude of the voltage pulse or the prebias.

  20. Semiconductor-nanocrystals-based white light-emitting diodes.

    PubMed

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z

    2010-08-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white light-emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed. PMID:20602425

  1. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current (AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For educational purposes, however, an LED-based rectifier is ideal because it allows students to literally see the rectifier operating. Here I'll discuss the practical aspects of building a full AC adapter incorporating an LED-based rectifier and ideas on how to use it in class.

  2. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  3. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOEpatents

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei; Barton, Thomas J.; Vardeny, Zeev V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  4. Poly (p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  5. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei

    1994-08-02

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  6. Device physics of single layer organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Crone, B. K.; Campbell, I. H.; Davids, P. S.; Smith, D. L.; Neef, C. J.; Ferraris, J. P.

    1999-11-01

    We present experimental and device model results for electron only, hole only, and bipolar organic light-emitting diodes fabricated using a soluble poly (p-phenylene vinylene) based polymer. Current-voltage (I-V) characteristics were measured for a series of electron only devices in which the polymer thickness was varied. The I-V curves were described using a device model from which the electron mobility parameters were extracted. Similarly, the hole mobility parameters were extracted using a device model description of I-V characteristics for a series of hole only devices where the barrier to hole injection was varied by appropriate choices of hole injecting electrode. The electron and hole mobilities extracted from the single carrier devices are then used, without additional adjustable parameters, to describe the measured current-voltage characteristics of a series of bipolar devices where both the device thickness and contacts were varied. The model successfully describes the I-V characteristics of single carrier and bipolar devices as a function of polymer thickness and for structures that are contact limited, space charge limited, and for cases in between. We find qualitative agreement between the device model and measured external luminance for a thickness series of devices. We investigate the sensitivity of the device model calculations to the magnitude of the bimolecular recombination rate prefactor.

  7. Near-field photometry for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Rui; Harikumar, Krishnan; Isphording, Alexandar; Venkataramanan, Venkat

    2013-03-01

    Organic Light Emitting Diode (OLED) technology is rapidly maturing to be ready for next generation of light source for general lighting. The current standard test methods for solid state lighting have evolved for semiconductor sources, with point-like emission characteristics. However, OLED devices are extended surface emitters, where spatial uniformity and angular variation of brightness and colour are important. This necessitates advanced test methods to obtain meaningful data for fundamental understanding, lighting product development and deployment. In this work, a near field imaging goniophotometer was used to characterize lighting-class white OLED devices, where luminance and colour information of the pixels on the light sources were measured at a near field distance for various angles. Analysis was performed to obtain angle dependent luminous intensity, CIE chromaticity coordinates and correlated colour temperature (CCT) in the far field. Furthermore, a complete ray set with chromaticity information was generated, so that illuminance at any distance and angle from the light source can be determined. The generated ray set is needed for optical modeling and design of OLED luminaires. Our results show that luminance non-uniformity could potentially affect the luminaire aesthetics and CCT can vary with angle by more than 2000K. This leads to the same source being perceived as warm or cool depending on the viewing angle. As OLEDs are becoming commercially available, this could be a major challenge for lighting designers. Near field measurement can provide detailed specifications and quantitative comparison between OLED products for performance improvement.

  8. Broadband Light-Emitting Diodes with One-Dimensional Photonic Crystal Layer

    NASA Astrophysics Data System (ADS)

    Chiang, Jung-Sheng; Tseng, Chun-Lung; Chung, Ken-Lin; Lin, Yen-Sheng; Sun, Nai-Hsiang

    2016-01-01

    In this article, a broadband gallium-nitride-based light-emitting diode with a one-dimensional photonic crystal layer is investigated. The broadband light-emitting diode using the proposed backside reflector has high reflectance (>95%) over a 270-nm bandwidth in visible light at an arbitrary incidence angle. A broadband light-emitting diode of high output power due to the high reflectivity is achieved. Also reported are the results for light-emitting diodes by the transistor outline can (TO-can) package. The proposed light-emitting diodes possess broadband high reflected spectra, high output power for light extraction, and a good view angle.

  9. All-solution processed transparent organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander

    2015-11-01

    In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device.

  10. All-solution processed transparent organic light emitting diodes.

    PubMed

    Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander

    2015-12-21

    In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device. PMID:26566172

  11. Bright light-emitting diodes based on organometal halide perovskite

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M.; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J.; Friend, Richard H.

    2014-09-01

    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI3-xClx perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9‧-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr-1 m-2 at a current density of 363 mA cm-2, with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m-2 at a current density of 123 mA cm-2, giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

  12. Performance improvement of indoor positioning using light-emitting diodes and an image sensor for light-emitting diode communication

    NASA Astrophysics Data System (ADS)

    Hossen, Md. Sazzad; Park, Youngil; Kim, Ki-Doo

    2015-03-01

    Light-emitting diodes (LEDs) are expected to replace existing lighting technologies in the near future because of the potential dual function of LED light (i.e., wireless communication and lighting) in the context of visible light communication (VLC). We propose a highly precise indoor positioning algorithm using lighting LEDs, an image sensor, and VLC. In the proposed algorithm, three LEDs transmit their three-dimensional coordinate information, which is received and demodulated by a single image sensor at an unknown position. The unknown position is then calculated from the geometrical relations of the LED images created on the image sensor plane. We describe the algorithm in detail. A simulation of the proposed algorithm is presented in this paper. We also compare the performance of this algorithm with that of our previously proposed algorithm. The comparison indicates significant improvement in positioning accuracy because of the simple algorithmic structure and low computational complexity. This technique does not require any angular measurement, which is needed in the contemporary positioning algorithms using LEDs and image sensor. The simulation results show that the proposed system can estimate the unknown position to an accuracy of 0.001 m inside the approximate positioning area when the pixel value is >3000.

  13. Performance improvement of indoor positioning using light-emitting diodes and an image sensor for light-emitting diode communication

    NASA Astrophysics Data System (ADS)

    Hossen, Md. Sazzad; Park, Youngil; Kim, Ki-Doo

    2015-04-01

    Light-emitting diodes (LEDs) are expected to replace existing lighting technologies in the near future because of the potential dual function of LED light (i.e., wireless communication and lighting) in the context of visible light communication (VLC). We propose a highly precise indoor positioning algorithm using lighting LEDs, an image sensor, and VLC. In the proposed algorithm, three LEDs transmit their three-dimensional coordinate information, which is received and demodulated by a single image sensor at an unknown position. The unknown position is then calculated from the geometrical relations of the LED images created on the image sensor plane. We describe the algorithm in detail. A simulation of the proposed algorithm is presented in this paper. We also compare the performance of this algorithm with that of our previously proposed algorithm. The comparison indicates significant improvement in positioning accuracy because of the simple algorithmic structure and low computational complexity. This technique does not require any angular measurement, which is needed in the contemporary positioning algorithms using LEDs and image sensor. The simulation results show that the proposed system can estimate the unknown position to an accuracy of 0.001 m inside the approximate positioning area when the pixel value is >3000.

  14. Multilayer light emitting diodes using a PPV based copolymer

    NASA Astrophysics Data System (ADS)

    Nguyen, T. P.; Chen, L. C.; Wang, X.; Huang, Z.

    1998-01-01

    We have investigated the electrical and optical properties of poly((2,5-(dimethoxy) p-phenylene vinylene)- p-phenylene vinylene) (PDMeOPV/PPV) copolymer used as an emitting layer in light emitting diodes. With p-phenylene vinylene (PPV) used as a hole transport layer and polyphenylquinoxaline (PPQ) as an electron transport layer, the emission intensity of the devices has substantially increased without alteration of the transport property. The different conduction mechanisms in the diodes were examined and discussed in terms of the energy band diagrams of the polymer layers. A balance of the injected charge carriers confined in the copolymer could explain the enhancement of the performance of the multilayer diodes.

  15. Performance and trends of high power light emitting diodes

    NASA Astrophysics Data System (ADS)

    Bierhuizen, Serge; Krames, Michael; Harbers, Gerard; Weijers, Gon

    2007-09-01

    We will discuss the performance, progress and trend of High Power Light Emitting Diodes (HP-LEDs), suitable for high luminance applications like micro-display projection, car headlamps, spot lamps, theatre lamps, etc. Key drivers for the high luminance applications are LED parameters such as internal quantum efficiency, extraction efficiency, drive current, operating temperature and optical coupling efficiency, which are important for most applications as they also enable higher lumen/$ ratios. Historical progress, prospects for improving these parameters and potential optical luminance enhancement methods to meet the demands for the various illumination applications are presented.

  16. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.

  17. Diverse Optimal Molecular Libraries for Organic Light-Emitting Diodes.

    PubMed

    Rupakheti, Chetan; Al-Saadon, Rachael; Zhang, Yuqi; Virshup, Aaron M; Zhang, Peng; Yang, Weitao; Beratan, David N

    2016-04-12

    Organic light-emitting diodes (OLEDs) have wide-ranging applications, from lighting to device displays. However, the repertoire of organic molecules with efficient blue emission is limited. To address this limitation, we have developed a strategy to design property-optimized, diversity-oriented libraries of structures with favorable fluorescence properties. This approach identifies novel diverse candidate organic molecules for blue emission with strong oscillator strengths and low singlet-triplet energy gaps that favor thermally activated delayed fluorescence (TADF) emission. PMID:26950518

  18. New materials for organic light-emitting diodes

    SciTech Connect

    Jacobs, S.J.; Pollagi, T.P.; Sinclair, M.B.; Scurlock, R.D.; Ogilby, P.R.

    1995-12-01

    We have investigated the performance of a class of heterocycles, 5, 10-dihetera-5,10-dihydroindeno[3,2b]indenes, as hole transport agents in simple double heterostructure organic light-emitting diodes with tris(8-hydroxyquinoline)aluminum (Alq). The best of these materials, 5,10-dihydroindolo[3,2b]indole, yields devices with luminance and lifetimes comparable to those obtained using N,N{prime}-di-(3-methylphenyl)-N,N{prime}diphenyl-4,4{prime}-diaminobiphenyl (TPD) as a hole transporting material.

  19. White Organic Light-Emitting Diode Using Blue-Light-Emitting Zn(HPB)2 Material

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Eun; Kim, Won-Sam; Lee, Burm-Jong; Kwon, Young-Soo

    2007-04-01

    A novel blue light emitter, zinc(II) [2-(2-hydroxyphenyl)benzoxazole] [Zn(HPB)2], has been synthesized and evaluated in organic light-emitting diodes (OLED). Hereby, an OLED with a white light emission and a high color stability using Zn(HPB)2 and a layer of tris(8-quinolinolato) aluminum (Alq3) doped with 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) (Alq3:DCJTB) as emitters has been demonstrated. The structure of this OLED is indium-tin-oxide (ITO)/N,N'-bis-(1-naphthl)-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB; 40 nm)/Zn(HPB)2 (40 nm)/Alq3:DCJTB (40 nm)/LiF/Al. The Commission Internationale de l’Eclairage (CIE) coordinates of the white emission are (0.32, 0.33) at an applied voltage of 14 V. The photoluminescence (PL) and electroluminescence (EL) spectra of Zn(HPB)2 showed emission peaks at a wavelength of 455 nm.

  20. Multicolor white light-emitting diodes for illumination applications

    NASA Astrophysics Data System (ADS)

    Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.

    2004-01-01

    Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.

  1. A novel yellow phosphor for white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; Li, Pan-Lai; Yang, Zhi-Ping; Guo, Qing-Lin; Li, Xu

    2010-01-01

    This paper reports that a novel yellow phosphor, LiSrBO3:Eu2+, was synthesized by the solid-state reaction. The excitation and emission spectra indicate that this phosphor can be effectively excited by ultraviolet (360 and 400 nm) and blue (425 and 460 nm) light, and exhibits a satisfactory yellow performance (565 nm). The role of concentration of Eu2+ on the emission intensity in LiSrBO3 is studied, and it is found that the critical concentration is 3 mol%, and the concentration self-quenching mechanism is the dipole-dipole interaction according to the Dexter theory. White light emitting diodes were generated by using an InGaN chip (460 nm or 400 nm) with LiSrBO3:Eu2+ phosphor, the CIE chromaticity is (x = 0.341, y = 0.321) and (x = 0.324, y = 0.318), respectively. Therefore, LiSrBO3:Eu2+ is a promising yellow phosphor for white light emitting diodes.

  2. Performance of light-emitting-diode based on quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Sungwoo; Im, Sang Hyuk; Kim, Sang-Wook

    2013-05-01

    Light-emitting diodes (LEDs) based on colloidal quantum dots (QDs) have attracted considerable attention due to their potential in applications such as color-saturated displays and white light with high color-rendering index. However, cadmium-based QD-LEDs are strictly regulated in industrial applications because of the high toxicity of cadmium. As an alternative, InP-based cadmium-free QDs are recommended owing to their wide emission range that is comparable to that of CdSe, and their environmentally friendly properties when applied to QD-LEDs and white QD-LEDs. This feature article provides an overview of QDs' merits in display and light-emitting applications as well as a discussion of their color tunability, photo-stability, and high luminescence efficiency. We will include optical down-conversion devices using various QDs, electroluminescent devices based on organic and inorganic charge-transporting layers, and printing methods using cadmium based and cadmium free QDs.

  3. Multilayer white lighting polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gong, Xiong; Wang, Shu; Heeger, Alan J.

    2006-08-01

    Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.

  4. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    SciTech Connect

    Guillermo Bazan; Alexander Mikhailovsky

    2008-08-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  5. Light-emitting diodes enhanced by localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Gu, Xuefeng; Qiu, Teng; Zhang, Wenjun; Chu, Paul K.

    2011-12-01

    Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

  6. Light-emitting diodes enhanced by localized surface plasmon resonance.

    PubMed

    Gu, Xuefeng; Qiu, Teng; Zhang, Wenjun; Chu, Paul K

    2011-01-01

    Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed. PMID:21711711

  7. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  8. Exciton dynamics in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kwangsik; Won, Taeyoung

    2012-11-01

    In this paper, we present a numerical simulation for the optoelectronic material and device characterization in organic light-emitting diodes (OLEDs). Our model includes a Gaussian density of states to account for the energetic disorder in the organic semiconductors and the Fermi-Dirac statistics to account for the charge-hopping process between uncorrelated sites. The motivation for this work is the extraction of the emission profile and the source spectrum of a given OLED structure. The physical model covers all the key physical processes in OLEDs: namely, charge injection, transport and recombination, exciton diffusion, transfer, and decay. The exciton model includes generation, diffusion, energy transfer, and annihilation. We assume that the light emission originates from an oscillation and is thus embodied as excitons and is embedded in a stack of multilayers. The outcoupled emission spectrum is numerically calculated as a function of viewing angle, polarization, and dipole orientation. We also present simulated current-voltage and transient results.

  9. Quantum key distribution with an entangled light emitting diode

    SciTech Connect

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  10. Quantum key distribution with an entangled light emitting diode

    NASA Astrophysics Data System (ADS)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2015-12-01

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  11. Light-emitting diodes enhanced by localized surface plasmon resonance

    PubMed Central

    2011-01-01

    Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed. PMID:21711711

  12. Light manipulation for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ou, Qing-Dong; Zhou, Lei; Li, Yan-Qing; Tang, Jian-Xin

    2014-10-01

    To realize high-efficiency organic light-emitting diodes (OLEDs), it is essential to boost out-coupling efficiency. Here we review our latest reports upon light manipulation for OLEDs by integrating a dual-side bio-inspired deterministic quasi-periodic moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A-1 without introducing spectral distortion and directionality. Theoretical calculations furthermore clarify that the improved device performance is primarily attributed to the effective extraction of the waveguide and surface plasmonic modes of the confined light over all the emission wavelengths and viewing-angles.

  13. Luminescence and squeezing of a superconducting light-emitting diode

    NASA Astrophysics Data System (ADS)

    Hlobil, Patrik; Orth, Peter P.

    2015-05-01

    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  14. Junction temperature measurement of light emitting diode by electroluminescence

    NASA Astrophysics Data System (ADS)

    He, S. M.; Luo, X. D.; Zhang, B.; Fu, L.; Cheng, L. W.; Wang, J. B.; Lu, W.

    2011-12-01

    Junction temperature (JT) is a key parameter of the performance and lifetime of light emitting diodes (LEDs). In this paper, a mobile instrument system has been developed for the non-contact measurement of JTs of LED under LabVIEW control. The electroluminescence (EL) peak shift of the LED is explored to measure the JT. Commercially available high power blue LEDs are measured. A linear relation between emission peak shift and JT is found. The accuracy of the JT is about 1 °C determined by the precision of the emission peak shift, ±0.03 nm, at 3σ standard deviation for blue LED. Using this system, on-line temperature rise curves of LED lamps are determined.

  15. Mid-ultraviolet light-emitting diode detects dipicolinic acid.

    SciTech Connect

    Bogart, Katherine Huderle Andersen; Lee, Stephen Roger; Temkin, Henryk; Crawford, Mary Hagerott; Dasgupta, Purnendu K.; Li, Qingyang; Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-06-01

    Dipicolinic acid (DPA, 2,6-pyridinedicarboxylic acid) is a substance uniquely present in bacterial spores such as that from anthrax (B. anthracis). It is known that DPA can be detected by the long-lived fluorescence of its terbium chelate; the best limit of detection (LOD) reported thus far using a large benchtop gated fluorescence instrument using a pulsed Xe lamp is 2 nM. We use a novel AlGaN light-emitting diode (LED) fabricated on a sapphire substrate that has peak emission at 291 nm. Although the overlap of the emission band of this LED with the absorption band of Tb-DPA ({lambda}{sub max} doublet: 273, 279 nm) is not ideal, we demonstrate that a compact detector based on this LED and an off-the-shelf gated photodetection module can provide an LOD of 0.4 nM, thus providing a basis for convenient early warning detectors.

  16. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    SciTech Connect

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.; Grassman, Tyler J.; McComb, David W.; Myers, Roberto C.

    2015-09-07

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junction within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.

  17. Electroluminescence property of organic light emitting diode (OLED)

    SciTech Connect

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. Pınar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay; Tekin, Emine; Pravadalı, Selin

    2013-12-16

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  18. Spectral conversion with fluorescent microspheres for light emitting diodes.

    PubMed

    Hui, K N; Lai, P T; Choi, H W

    2008-01-01

    An innovative spectral conversion scheme for light emitting diodes using fluorescent microspheres has been demonstrated. An optimally mixed proportion of green and red fluorescent microspheres were coated onto a high-extraction-efficiency GaN micro-LED with emission centred at 470 nm. The microspheres self-assemble into ordered hexagonally arrays, forming regular and uniform coating layers. Devices with cool and warm white emission were achieved. The bluish-white LED has a luminous efficacy of 27.3 lm/W (at 20 mA) with CIE coordinates of (0.26, 0.28) and 8500K CCT, while the yellowish-white LED has a luminous efficacy of 26.67 lm/W (at 20 mA) with CIE coordinates of (0.36, 0.43) and 13000K CCT. PMID:18521128

  19. Advances in Phosphors for Light-emitting Diodes.

    PubMed

    Lin, Chun Che; Liu, Ru-Shi

    2011-06-01

    Light-emitting diodes (LEDs) are excellent candidates for general lighting because of their rapidly improving efficiency, durability, and reliability, their usability in products of various sizes, and their environmentally friendly constituents. Effective lighting devices can be realized by combining one or more phosphor materials with chips. Accordingly, it is very important that the architecture of phosphors be developed. Although numerous phosphors have been proposed in the past several years, the range of phosphors that are suitable for LEDs is limited. This work describes recent progress in our understanding of the prescription, morphology, structure, spectrum, and packaging of such phosphors. It suggests avenues for further development and the scientific challenges that must be overcome before phosphors can be practically applied in LEDs. PMID:26295420

  20. High-performance applications of light-emitting diode displays

    NASA Astrophysics Data System (ADS)

    Saini, Gurdial S.; Hopper, Darrel G.

    1996-05-01

    A display is an electronic component or subsystem used to convert electrical signals into visual imagery in real time suitable for direct interpretation by a human observer. Until recently, the cathode ray tube (CRT) has been the main source of displays. During the last twenty years, it has been determined that alternatives to CRT displays need to be found. One of the alternatives was the introduction of flat-panel displays. The term 'flat-panel display' is more of a concept than a specific entity. It is a display which is flat and light and may not require a great deal of power. A flat-panel display is often defined in terms of the ideal display, that being: thin form, low volume, even surface, having high resolution, high contrast, sunlight readable, color, low power, and being solid-state and lightweight. This is easy to conceive but difficult to deliver. The objective is to develop displays with as many desirable characteristics as possible. Flat-panel displays are basically of two types: the light valve type (that needs an external source of light such as a backlight or arc-lamp) and the emissive type (that generate light at the display surface). The light emitting diode (LED) display is of the emissive type. The LED displays have been in use for more than 25 years in one form or the other. Because of certain limitations of inorganic materials (such as cost, power, and color), LED displays do not dominate the flat-panel display market. A recent discovery of polymer and organic materials may change LED prospects. It is now believed that it may become possible to make LED displays that are inexpensive, low-power, and at the same time provide full color. If present research objectives are met, LEDs, especially organic LEDs, may revolutionize the flat-panel display market. This paper addresses the various aspects of LED technology with particular reference to its useful characteristics, and the limitations that need to be overcome.

  1. Monolithic integration of OFETs driving organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Kröger, Michael; Becker, Eike; Schildknecht, Christian; Hartmann, Sören; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2005-08-01

    Organic field effect transistors are expected to be applicable for low-cost, large-area electronic applications, e.g. the incorporation as active-matrix into displays based on organic light emitting diodes (OLED). There are two major challenges which have to be tackled. As the low charge carrier mobility allows only for comparatively low saturation currents, the ratio of channel width and length has to increase by several orders of magnitude, compared to poly-Si-technology. Furthermore, as organic semiconductor devices usually degrade upon exposure to solvents, standard photolithography cannot be applied once the organic materials have been deposited. Therefore, the definition of single pixels has to occur before the deposition of organic materials. We prepared OFETs employing a bottom-Al-gate, an 50 nm thick anodized Al-oxide gate dielectric and a inter-digital drain-source-structure (Au), topped with 30 nm of pentacene as active layer. By applying an inter-digital structure we increased the W/L-ratio to 4340. For the given configuration, a saturation current of 4 mA could be observed at -20 V drain-source- and -20 V gate-source-voltage. The drain-source-contacts enclosed a predefined ITO-anode shorted to drain and acting as OLED-anode. For preventing shortcuts between the OLED-cathode and the OFET, poly-vinyl-alcohol (PVOH) was spin-coated from an aqueous solution and structurized by photolithography. When the OFET characteristics were measured afterwards the field-effect- mobility dropped by two orders of magnitude but recovered due to desorption of residual water. Afterwards, the organic layers and a Al/LiF-cathode were deposited. The area covered by the OLED was 1.33mm2. Applying an operating bias of 11 V between cathode and source, allows for switching of the OLED by changing the gate-source-voltage from +2.5 V to -5 V. The on-state-brightness is 850 cd/m2 and the on-off-ratio 950. Considering a realistic filling factor of 40% the values observed may be

  2. Light emitting fabric technologies for photodynamic therapy.

    PubMed

    Mordon, Serge; Cochrane, Cédric; Tylcz, Jean Baptiste; Betrouni, Nacim; Mortier, Laurent; Koncar, Vladan

    2015-03-01

    Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of optical fiber into flexible structures could offer an interesting alternative. This paper aims to describe different methods proposed to develop Side Emitting Optical Fibers (SEOF), and how these SEOF can be integrated in a flexible structure to improve light illumination of the skin during PDT. Four main techniques can be described: (i) light blanket integrating side-glowing optical fibers, (ii) light emitting panel composed of SEOF obtained by micro-perforations of the cladding, (iii) embroidery-based light emitting fabric, and (iv) woven-based light emitting fabric. Woven-based light emitting fabrics give the best performances: higher fluence rate, best homogeneity of light delivery, good flexibility. PMID:25481663

  3. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes.

    PubMed

    Kim, Mounggon; Jeon, Sang Kyu; Hwang, Seok-Ho; Lee, Jun Yeob

    2015-04-17

    High quantum efficiency above 18% and extended lifetime three times longer than that of phosphorescent organic light-emitting diodes (OLEDs) are demonstrated in blue thermally activated delayed fluorescent OLEDs. PMID:25757226

  4. Light emitting diodes as an excitation source for biomedical photoacoustics

    NASA Astrophysics Data System (ADS)

    Allen, T. J.; Beard, P. C.

    2013-03-01

    Semiconductor light sources, such as laser diodes or light emitting diodes (LEDs) could provide an inexpensive and compact alternative to traditional Q-switched lasers for photoacoustic imaging. So far, only laser diodes 1-3 operating in the 750 to 905nm wavelength range have been investigated for this purpose. However, operating in the visible wavelength range (400nm to 650nm) where blood is strongly absorbent (<10cm-1) and water absorption is weak (<0.01cm-1) could allow for high contrast photoacoustic images of the superficial vasculature to be achieved. High power laser diodes (<10Watt peak power) are however not available in this wavelength range. High power LEDs could be a potential alternative as they are widely available in the visible wavelength range (400nm to 632nm) and relatively cheap. High power LEDs are generally operated in continuous wave mode and provide average powers of several Watts. The possibility of over driving them by tens of times their rated current when driven at a low duty cycle (<1%), offers the prospect of achieving similar pulse energies (tens of μJ) to that provided by high peak power pulsed laser diodes. To demonstrate the possibility of using high power LEDs as an excitation source for biomedical applications, single point measurements were implemented in a realistic blood vessel phantom. A four colour device was also used to demonstrate the possibility of using LEDs for making spectroscopic measurements. It was shown that when driving all four wavelengths at once, the generated photoacoustic signal could be used to design a filter in order to improve the SNR of the photoacoustic signals generated at each individual wavelength. The possibility of acquiring multiwavelength data sets simultaneously when using Golay excitation methods was also demonstrated. This preliminary study demonstrated the potential for using high power LEDs as an inexpensive and compact excitation source for biomedical photoacoustics.

  5. The development of monolithic alternating current light-emitting diode

    NASA Astrophysics Data System (ADS)

    Yeh, Wen-Yung; Yen, Hsi-Hsuan; Chan, Yi-Jen

    2011-02-01

    The monolithic alternating current light emitting diode (ACLED) has been revealed for several years and was regarded as a potential device for solid state lighting. In this study, we will discuss the characteristics, development status, future challenges, and ITRI's development strategy about ACLED, especially focusing on the development progress of the monolithic GaN-based Schottky barrier diodes integrated ACLED (SBD-ACLED). The SBD-ACLED design can not only improve the chip area utilization ratio but also provide much higher reverse breakdown voltage by integrating four SBDs with the micro-LEDs array in a single chip, which was regarded as a good on-chip ACLED design. According to the experimental results, higher chip efficiency can be reached through SBD-ACLED design since the chip area utilization ratio was increased. Since the principle and the operation condition of ACLED is quite different from those of the typical DCLED, critical issues for ACLED like the current droops, the flicker phenomenon, the safety regulations, the measurement standards and the power fluctuation have been studied for getting a practical and reliable ACLED design. Besides, the "AC LED application and research alliance" (AARA) lead by ITRI in Taiwan for the commercialization works of ACLED has also been introduced.

  6. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    NASA Astrophysics Data System (ADS)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  7. Increased efficiency of silicon light-emitting diodes in a standard 1.2-um silicon complementary metal oxide semiconductor technology

    NASA Astrophysics Data System (ADS)

    Snyman, Lukas W.; Aharoni, Herzl; du Plessis, Monuko; Gouws, Rudolph B.

    1998-07-01

    Scaled versions of a variety of silicon light-emitting diode elements (Si LEDs) have been realized using a standard 1.2- micrometers , double-polysilicon, double-metal, n-well CMOS fabrication process. The devices operated with a n+p junction biased in the avalanche breakdown mode and were realized by using standard features of the ORBIT FORESIGHT design rules. The elements emit optical radiation in a broad band in the 450- to 850-nm range. An emitted intensity of up to 7.1 (mu) W/cm2 has been obtained with 5 mA of current at an operating voltage of 18.5 V. Excellent uniformity in emission intensity of better than 1 percent variation was obtained over areas as large as 100 X 500 micrometers . A best power conversion efficiency of 8.7 X 10-8 and a quantum efficiency of 7.8 X 10-7 were measured. All of these values are about one order of magnitude better than previously reported values for Si LED avalanche devices. Coupling between the elements as well as electro- optical coupling between an element and an optical fiber was realized.

  8. Light-emitting diodes as a radiation source for plants.

    PubMed

    Bula, R J; Morrow, R C; Tibbitts, T W; Barta, D J; Ignatius, R W; Martin, T S

    1991-02-01

    Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems. PMID:11537727

  9. White organic light-emitting diodes based on tandem structures

    NASA Astrophysics Data System (ADS)

    Guo, Fawen; Ma, Dongge

    2005-10-01

    White organic light-emitting diodes made of two electroluminescent (EL) units connected by a charge generation layer were fabricated. Thus, with a tandem structure of indium tin oxide/N ,N'-di(naphthalene-1-yl)-N ,N'-diphenyl-benzidine (NPB)/9,10-bis-(β-naphthyl)-anthrene (ADN)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/tris(8-hydroxyquinoline) aluminum (Alq3)/BCP:Li/V2O5/NPB/Alq3:4-(dicyanomethylene)-2-t-butyle-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB)/Alq3/LiF/Al, a stable white light with Commission Internationale De L'Eclairage chromaticity coordinates from (0.35, 0.32) at 18V to (0.36, 0.36) at 50V was generated. It was clearly seen that the EL spectra consist of red band at 600nm due to DCJTB, green band at 505nm due to Alq3, and blue band at 435nm due to ADN, and the current efficiency and brightness equal basically to the sum of the two EL units. As a result, the tandem devices showed white light emission with a maximum brightness of 10200cd /m2 at a bias of 40V and a maximum current efficiency of 10.7cd/A at a current density of 3.5mA/cm2.

  10. Flexible fluorescent white organic light emitting diodes with ALD encapsulation

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Sheng; Chittawanij, Apisit; Juang, Fuh-Shyang; Lin, Pen-Chu; Hong, Lin-Ann; Tsai, Feng-Yu; Tseng, Ming-Hong; Wang, Ching-Chiun; Chen, Chien-Chih; Lin, Kung-Liang; Chen, Szu-Hao

    2015-08-01

    In this paper, the flexible white organic light-emitting diodes (WOLED) was fabricated on polyethylene naphthalate (PEN) with structure of ITO/EHI608 (75 nm)/HTG-1 (10 nm)/3% EB502:0.8% EY53 (5 nm)/3% EB502 (35 nm)/Alq3 (10 nm)/LiF (0.8 nm)/Al (150 nm) and was compared with glass substrate the same structure. It was seen that the performances of flexible and glass substrate are almost the same. The luminance, current efficiency, and CIE coordinates of flexible device is 6351 cd/m2, 12.7 cd/A, and (0.31, 0.38) at 50 mA/cm2, respectively. Then, an Al2O3/HfO2 film on polyethylene terephthalate (PET) was deposited using atomic layer deposition (ALD) as a thin film encapsulation layer have been described and compared, such as the characteristics of water permeability and lifetime of flexible WOLED. The results show that the PET/ALD film low value of about 0.04 g/m2d, and the PET film shows WVTR of about 3.8 g/m2/d. The lifetimes of PET/ALD and PET encapsulations are 840 min and 140 min, respectively. Simultaneous deposition of ALD film on PET film gave the lifetime of flexible WOLED is six times longer than device without ALD encapsulation.

  11. High efficiency white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Dong, Weili; Gao, Hongyan; Tian, Xiaocui; Zhao, Lina; Jiang, Wenlong; Zhang, Xiyan

    2015-06-01

    The light emitting diodes with the structure of ITO/ m-MTDATA(20 nm)/NPB(10 nm)/CBP BCzVBi ( x, nm, 10%)/CBP(3 nm)/CBP: Ir(ppy)3: DCJTB(10 nm, 8 and 1%)/Bphen(30 nm)/Cs2CO3: Ag2O (2 nm, 20%)/Al (100 nm) employing phosphorescence sensitization and fluorescence doping, were manufactured. The performance of the devices was studied by adjusting the thickness of fluorescence dopant layer ( x = 15, 20, 25, and 30). The best performance was achieved when its thickness was 25 nm. The device has the maximum luminance of 20260 cd/m2 at applied voltage of 14 V and the maximum current efficiency of 11.70 cd/A at 7 V. The device displays a continuous change of color from yellow to white. The CIE coordinates change from (0.49, 0.48) to (0.32, 0.39) when the driving voltage is varied from 5 to 15 V.

  12. A multi-source portable light emitting diode spectrofluorometer.

    PubMed

    Obeidat, Safwan; Bai, Baolong; Rayson, Gary D; Anderson, Dean M; Puscheck, Adam D; Landau, Serge Y; Glasser, Tzach

    2008-03-01

    A portable luminescence spectrofluorometer weighing only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed and evaluated. Excitation using a sequence of seven individual broad-band LED emission sources enabled the generation of excitation-emission spectra using a light weight (<1.5 kg) spectrometer. Limits of detection for rhodamine 6G, rhodamine B, and fluorescein were 2.9, 3.2, and 11.0 nM, respectively. Generation of excitation-emission matrices (EEMs) enabled the analysis of samples containing mixtures of rhodamine B and fluorescein. Buffered saline plant and animal feed extracts were also analyzed using this instrument. These samples included the woody plants Pistacia lentiscus (Evergreen pistache or Mastic) and Philyria latifolia, and the herbaceous species Medicago sativa (alfalfa), Trifolium spp. (clover), and a feed concentrate. Application of multi-way principal component analysis (MPCA) to the resulting three-dimensional data sets enabled discernment among these various diet constituents. PMID:18339242

  13. Efficiency roll-off in organic light-emitting diodes.

    PubMed

    Murawski, Caroline; Leo, Karl; Gather, Malte C

    2013-12-17

    Organic light-emitting diodes (OLEDs) have attracted much attention in research and industry thanks to their capability to emit light with high efficiency and to deliver high-quality white light that provides good color rendering. OLEDs feature homogeneous large area emission and can be produced on flexible substrates. In terms of efficiency, OLEDs can compete with highly efficient conventional light sources but their efficiency typically decreases at high brightness levels, an effect known as efficiency roll-off. In recent years, much effort has been undertaken to understand the underlying processes and to develop methods that improve the high-brightness performance of OLEDs. In this review, we summarize the current knowledge and provide a detailed description of the relevant principles, both for phosphorescent and fluorescent emitter molecules. In particular, we focus on exciton-quenching mechanisms, such as triplet-triplet annihilation, quenching by polarons, or field-induced quenching, but also discuss mechanisms such as changes in charge carrier balance. We further review methods that may reduce the roll-off and thus enable OLEDs to be used in high-brightness applications. PMID:24019178

  14. Microtube Light-Emitting Diode Arrays with Metal Cores.

    PubMed

    Tchoe, Youngbin; Lee, Chul-Ho; Park, Jun Beom; Baek, Hyeonjun; Chung, Kunook; Jo, Janghyun; Kim, Miyoung; Yi, Gyu-Chul

    2016-03-22

    We report the fabrication and characteristics of vertical microtube light-emitting diode (LED) arrays with a metal core inside the devices. To make the LEDs, gallium nitride (GaN)/indium gallium nitride (In(x)Ga(1-x)N)/zinc oxide (ZnO) coaxial microtube LED arrays were grown on an n-GaN/c-aluminum oxide (Al2O3) substrate. The microtube LED arrays were then lifted-off the substrate by wet chemical etching of the sacrificial ZnO microtubes and the silicon dioxide (SiO2) layer. The chemically lifted-off LED layer was then transferred upside-down on other supporting substrates. To create the metal cores, titanium/gold and indium tin oxide were deposited on the inner shells of the microtubes, forming n-type electrodes inside the metal-cored LEDs. The characteristics of the resulting devices were determined by measuring electroluminescence and current-voltage characteristic curves. To gain insights into the current-spreading characteristics of the devices and understand how to make them more efficient, we modeled them computationally. PMID:26855251

  15. Magnetoresistance detected spin collectivity in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Malissa, Hans; Waters, David P.; Joshi, Gajadhar; Kavand, Marzieh; Limes, Mark E.; Burn, Paul L.; Lupton, John M.; Boehme, Christoph

    Organic magnetoresistance (OMAR) typically refers to the significant change in the conductivity of thin layers of organic semiconductors at low static magnetic fields (< 10 mT). When radio frequency (rf) radiation is applied to an organic semiconductor under bipolar injection, and in the presence of small magnetic fields B, magnetic resonance can occur, which is observed as a change of the OMAR effect [Baker et al., Nat. Commun. 3, 898 (2012)]. When B and the resonant driving field are stronger than local hyperfine fields, an ultrastrong coupling regime emerges, which is marked by collective spin effects analogous to the optical Dicke effect [Roundy and Raikh, Phys. Rev. B 88, 125206 (2013)]. Experimentally, this collective behavior of spins can be probed in the steady state OMAR of organic light-emitting diodes (OLEDs) at room temperature by observation of a sign reversal of the OMAR change under rf irradiation. Furthermore, in the presence of strong driving fields, an ac Zeeman effect can be observed through OMAR [Waters et al., Nat. Phys. 11, 910 (2015)], a unique window to observe room temperature macroscopic spin quantum coherence.

  16. Transparent white organic light emitting diodes with improved cathode transparency

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Ik; Lee, Jonghee; Lee, Joowon; Shin, Jae-Heon; Hwang, Chi-Sun; Chu, Hye Yong

    2009-08-01

    We have fabricated transparent white organic light emitting diode (WOLED) for lighting application based on a hybrid white OLED and a phosphorescence white OLED. For the hybrid WOLED, a blue fluorescence emitting layer (FLEML) and green and red phosphorescence emitting layers (PH-EMLs) have been used in the device structure of ITO/hole transporting layer (HTL)/PH-EMLs/interlayer/FL-EML/ETL/LiF/Al. The balanced emissions from the FLEML and the PH-EMLs have been obtained by using appropriate carrier (hole) trapping effects in the PH-EMLs, which resulted in external and power efficiencies of 15 % and 27 lm/W, respectively, at a luminance of 1000 cd/m2 without any out-coupling enhancement. The Commission Internationale de L'Eclairage (CIE) coordinates of this hybrid WOLED is (0.43,0.44) with color rendering index (CRI) of 80 and correlated color temperature (CCT) of 3200 K, respectively, in the bottom emission structure. Based on this hybrid WOLED, we established highly efficient transparent WOLED by introduction of a transparent cathode, and obtained over 19 lm/W of power efficiency at a total luminance of 1000 cd/m2 as well as over 60 % of transmittance at 550 nm with the conventional glass encapsulation. Moreover, when the phosphorescent white OLED was combined with a transparent cathode, the power efficiency was reached up to 24 lm/W of power efficiency at a total luminance of 1000 cd/m2.

  17. Carrier modulation layer-enhanced organic light-emitting diodes.

    PubMed

    Jou, Jwo-Huei; Kumar, Sudhir; Singh, Meenu; Chen, Yi-Hong; Chen, Chung-Chia; Lee, Meng-Ting

    2015-01-01

    Organic light-emitting diode (OLED)-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML), also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI) for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance. PMID:26193252

  18. Vegetable surface sterilization system using UVA light-emitting diodes.

    PubMed

    Aihara, Mutsumi; Lian, Xin; Shimohata, Takaaki; Uebanso, Takashi; Mawatari, Kazuaki; Harada, Yumi; Akutagawa, Masatake; Kinouchi, Yohsuke; Takahashi, Akira

    2014-01-01

    Surface sterilization of fresh produce has been needed in the food manufacturing/processing industry. Here we report a UVA-LED (Ultra Violet A-Light Emitting Diode) system for surface sterilization that is safe, efficacious, low cost, and apparently harmless to fresh produce. To test the system, Escherichia coli strain DH5α was spot-inoculated onto vegetable tissues, and treated under UVA-LED. Tissues were homogenized and bacteria quantified by colony-forming assay. Possible effects of UVA-LED on vegetable quality were evaluated by HPLC. Tissue weight changes were checked after treatment at 4℃, 15℃, and 30℃. Bacterial inactivation by UVA-LED radiation was observed after a 10 min treatment and increased with increasing time of irradiation. The log survival ratio reached -3.23 after a 90 min treatment. Bacterial cells surviving treatment grew slowly compared to non-irradiated control cells. Cabbage tissue lost weight over time after treatment, and weight loss increased with increasing incubation temperature, but there was no difference between losses by UVA-LED treated and control tissues at any temperature tested. In addition, no differences of Vitamin C content in cabbage tissue were detected by HPLC after UVA-LED treatment. These results suggest that UVA-LED treatment has great potential for vegetable surface sterilization in the food manufacturing/processing industry. PMID:25264046

  19. City of Phildelphia: Light emitting diodes for traffic signal displays

    SciTech Connect

    1995-12-01

    This project investigated the feasibility of using light emitting diodes (LEDs) for red traffic signals in a demonstration program at 27 signalized intersections in the City of Philadelphia. LED traffic signals have the potential to achieve significant savings over standard incandescent signals in terms of energy usage and costs, signal relamping costs, signal system maintenance costs, tort liability, and environmental impact. Based on successful experience with the demonstration program, the City of Philadelphia is currently developing funding for the conversion of all existing red incandescent traffic signals at approximately 2,700 intersections to LED signals. This program is expected to cost approximately $4.0 million and save about $850,000 annually in energy costs. During late 1993 and early 1994, 212 red LED traffic signals (134 8-inch signals and 78 12-inch signals) were installed at 27 intersections in Philadelphia. The first group of 93 signals were installed at 13 prototypical intersections throughout the City. The remaining group of signals were installed on a contiguous route in West Philadelphia consisting of standard incandescent signals and LED signals interspersed in a random pattern.

  20. Light-emitting diodes as a radiation source for plants

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Barta, D. J.; Ignatius, R. W.; Martin, T. S.

    1991-01-01

    Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems.

  1. Selective-area nanoheteroepitaxy for light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.

    Over 20% of the electricity in the United States is consumed for lighting, and the majority of this energy is wasted as heat during the lighting process. A solid-state (or light emitting diode (LED)-based) light source has the potential of saving the United States billions of dollars in electricity and reducing megatons of global CO2 emissions annually. While white light LEDs are currently on the market with efficiencies that are superior to incandescent and fluorescent light sources, their high up-front cost is inhibiting mass adoption. One reason for the high cost is the inefficiency of green and amber LEDs that can used to make white light. The inefficiency of green and amber LEDs results in more of these chips being required, and thus a higher cost. Improvements in the performance of green and amber LEDs is also required in order to realize the full potential of solid-state lighting. Nanoheteroepitaxy is an interesting route towards achieving efficient green and amber LEDs as it resolves major challenges that are currently plaguing III-nitride LEDs such as high dislocation densities and limited active region critical thicknesses. A method for fabricating III-nitride nanopyramid LEDs is presented that employs conventional processing used in industry. The present document begins with an overview of the current challenges in III-nitride LEDs and the benefits of nanoheteroepitaxy. A process for controlled selective-area growth of nanopyramid LEDs by organometallic vapor phase epitaxy has been developed throughout the course of this work. Dielectric templates used for the selective-area growth are patterned by two methods, namely porous anodic alumina and electron-beam lithography. The dielectric templates serve as efficient dislocation filters; however, planar defects are initiated during lower temperature growth on the nanopyramids. The quantum wells outline six semipolar planes that form each hexagonal pyramid. Quantum wells grown on these semipolar planes

  2. Ultra-High Efficiency White Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Narukawa, Yukio; Narita, Junya; Sakamoto, Takahiko; Deguchi, Kouichiro; Yamada, Takao; Mukai, Takashi

    2006-10-01

    We fabricated the high luminous efficiency white light emitting diode (LED) and the high power white LED by using the patterned sapphire substrates and an indium-tin oxide (ITO) contact as a p-type electrode. The high luminous efficiency white LED was the yellow YAG-phosphors-coated small-size (240 × 420 μm2) high efficiency blue LED with the quantum efficiency of 63.3% at a forward-bias current of 20 mA. The luminous flux (Φ), the forward-bias voltage (Vf), the correlated color temperature (Tcp), the luminous efficiency (ηL), and the wall-plug efficiency (WPE) of the high luminous efficiency white LED are 8.6 lm, 3.11 V, 5450 K, 138 lm/W, and 41.7%, respectively. The luminous efficiency is 1.5 times greater than that of a tri-phosphor fluorescent lamp (90 lm/W). The high power white LED was fabricated from the larger-size (1 × 1 mm2) blue LED with the output power of 458 mW at 350 mA. Φ, Vf, Tcp, ηL, and WPE of the high power white LED are 106 lm, 3.29 V, 5200 K, 91.7 lm/W, and 27.7%, respectively, at 350 mA. The WPE is greater than that of a fluorescent lamp (25%) in the visible region. Moreover, the luminous flux of the high power white LED reaches to 402 lm at 2 A, which is equivalent to the total flux of a 30 W incandescent lamp.

  3. White polymer light emitting diode using blend of fluorescent polymers

    NASA Astrophysics Data System (ADS)

    Prakash, Asit; Katiyar, Monica

    2012-10-01

    White polymer light emitting diodes (WPLEDs) are fabricated using poly(9,9-dioctylfluorene-2,7-diyl) (PFO) as host and poly [2-methoxy-5-(2'-ethyl-hexyloxy)]-1,4-phenylene vinylene (MEH-PPV) as guest material having structure ITO(150nm)/PEDOT:PSS(40nm)/PFO:MEH-PPV(75-90nm)/Ca(20nm)/Al(120nm). Photoluminescence spectra of blends with different MEH-PPV concentration reveal that at low doping level of MEH-PPV, blue emission from PFO and yellow emission from MEH-PPV co-exist due to incomplete energy transfer from PFO to MEH-PPV. Surface morphology of the spin coated blend films with different concentrations of MEH-PPV were studied using atomic force microscopy (AFM). It shows segregation/agglomeration of polymers at higher concentration of MEH-PPV (~2.0 wt %). Finally, WPLEDs, having MEH-PPV in the range of 0.8-2.0 wt%, were fabricated. We obtained best device at 0.8 wt% of MEH-PPV, it shows white light with Commission Internationale de l'Enclairage (CIE) coordinate of (0.30, 0.38). Electroluminescence turn-on voltage of the device was 4.0 V and maximum luminance reaches 1234 cd/m2 at 8.5 V. The luminous current and power efficiency at current density of 22 mA/cm2 were found to be 2.3 cd/A and 1.1 lm/W, respectively.

  4. The role of isoelectronic dopants in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Crone, B. K.; Campbell, I. H.; Smith, D. L.

    2007-09-01

    Power efficiency is an important parameter for all OLEDs, and is particularly critical for lighting applications. To maximize the power efficiency one must optimize charge injection, carrier transport, and radiative quantum efficiency, while minimizing energy losses. In this work we discuss how isoelectronic dopants can be used to address these problems. It can be difficult to produce efficient electrical contacts, particularly to large energy gap organic materials, and thus the contacts often limit the performance and stability of OLEDs . Recent results by several groups have attributed improved hole injection in poly (9,9' dioctylfluorene) [PFO] based LEDs to charge trapping, but the origin of the traps is unknown. In order to understand the role of traps in improving injection we studied poly[2-methoxy, 5-(2'- ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) devices with C 60 molecules at the anode to improve hole injection. Isoelectronic dopants are used widely as recombination centers in organic light emitting diodes (OLEDs). In these systems one wants to maximize quantum efficiency by effectively trapping charges on the emitting dopants, while at the same time maximizing power efficiency by maintaining good charge transport. An understanding of the influence of the depth of the dopant on charge capture, and charge transport will aid in optimizing doped organic LEDs. We have looked at the OLED system consisting of the polymer PFO, and the organometallic molecule PhqIr. We show that PhqIr acts as a shallow hole trap in PFO, and that the charge transport and luminescence properties of this system are described by quasi-equilibrium statistics.

  5. 3D printed quantum dot light-emitting diodes.

    PubMed

    Kong, Yong Lin; Tamargo, Ian A; Kim, Hyoungsoo; Johnson, Blake N; Gupta, Maneesh K; Koh, Tae-Wook; Chin, Huai-An; Steingart, Daniel A; Rand, Barry P; McAlpine, Michael C

    2014-12-10

    Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. Achieving seamless integration of diverse materials with 3D printing is a significant challenge that requires overcoming discrepancies in material properties in addition to ensuring that all the materials are compatible with the 3D printing process. To date, 3D printing has been limited to specific plastics, passive conductors, and a few biological materials. Here, we show that diverse classes of materials can be 3D printed and fully integrated into device components with active properties. Specifically, we demonstrate the seamless interweaving of five different materials, including (1) emissive semiconducting inorganic nanoparticles, (2) an elastomeric matrix, (3) organic polymers as charge transport layers, (4) solid and liquid metal leads, and (5) a UV-adhesive transparent substrate layer. As a proof of concept for demonstrating the integrated functionality of these materials, we 3D printed quantum dot-based light-emitting diodes (QD-LEDs) that exhibit pure and tunable color emission properties. By further incorporating the 3D scanning of surface topologies, we demonstrate the ability to conformally print devices onto curvilinear surfaces, such as contact lenses. Finally, we show that novel architectures that are not easily accessed using standard microfabrication techniques can be constructed, by 3D printing a 2 × 2 × 2 cube of encapsulated LEDs, in which every component of the cube and electronics are 3D printed. Overall, these results suggest that 3D printing is more versatile than has been demonstrated to date and is capable of integrating many distinct classes of materials. PMID:25360485

  6. Delayed recombination of detrapped space-charge carriers in poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene]-based light-emitting diode

    NASA Astrophysics Data System (ADS)

    Sinha, S.; Monkman, A. P.

    2005-06-01

    We report the observation of a spectroscopically resolved delayed electrofluorescence (DEF) in the time domain of nanosecond to microsecond (depending on temperature, in the range of 30-290 K, as well as bias) from light-emitting diodes based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene]. The decay kinetics of this DEF are always found to be biexponential in nature. The fast decaying component with a lifetime of ˜40ns is attributed to the back transfer of nonemissive (or very weakly emissive) interchain excited singlets (partially charge-transfer states) to emissive intrachain excited singlets (this component is called DEFCT). The relatively slower decaying component with a lifetime of ˜0.2-6.2μs (depending on temperature as well as bias) is attributed to the recombination of detrapped space-charge carriers at the polymer-electrode interfaces (this component is called DEFSC). The intensity of DEFSC increases as the temperature is increased from 30 to 290 K, although it is weak at low temperature (<100K). The temperature dependence of the recombination rate of the detrapped space-charge carriers yields two activation energies of 2.2 and 40 meV below and above ˜130K, respectively. The existence of these two activation energies is explained on the assumption of electrons being in shallow traps and holes in deep traps. Also, our data indicate that the space-charge carriers generally act as major quenching sites (especially at 290 K) for triplet excitons in polymer light-emitting diodes.

  7. Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback.

    PubMed

    Marino, F; Ciszak, M; Abdalah, S F; Al-Naimee, K; Meucci, R; Arecchi, F T

    2011-10-01

    Chaotically spiking attractors in semiconductor lasers with optoelectronic feedback have been recently observed to be the result of canard phenomena in three-dimensional phase space (incomplete homoclinic scenarios). Since light-emitting diodes display the same dynamics and are much more easily controllable, we use one of these systems to complete the attractor analysis demonstrating experimentally and theoretically the occurrence of complex sequences of periodic mixed-mode oscillations. In particular, we investigate the transition between periodic and chaotic mixed-mode states and analyze the effects of the unavoidable experimental noise on these transitions. PMID:22181318

  8. Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback

    NASA Astrophysics Data System (ADS)

    Marino, F.; Ciszak, M.; Abdalah, S. F.; Al-Naimee, K.; Meucci, R.; Arecchi, F. T.

    2011-10-01

    Chaotically spiking attractors in semiconductor lasers with optoelectronic feedback have been recently observed to be the result of canard phenomena in three-dimensional phase space (incomplete homoclinic scenarios). Since light-emitting diodes display the same dynamics and are much more easily controllable, we use one of these systems to complete the attractor analysis demonstrating experimentally and theoretically the occurrence of complex sequences of periodic mixed-mode oscillations. In particular, we investigate the transition between periodic and chaotic mixed-mode states and analyze the effects of the unavoidable experimental noise on these transitions.

  9. Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes

    SciTech Connect

    Tian, Pengfei; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Ferreira, Ricardo; Watson, Ian M.; Gu, Erdan Dawson, Martin D.; Watson, Scott; Kelly, Anthony E.

    2014-10-27

    Temperature-dependent trends in radiative and Auger recombination coefficients have been determined at different injection carrier concentrations using InGaN micro-light emitting diodes 40 μm in diameter. The differential lifetime was obtained first from the measured modulation bandwidth and was then employed to calculate the carrier concentration in the quantum well active region. When the temperature increases, the carrier concentration increases, but both the radiative and Auger recombination coefficients decrease. In addition, the temperature dependence of radiative and Auger recombination coefficients is weaker at a higher injection carrier concentration, which is strongly related to phase space filling.

  10. Effect of current waveform on the performance of phosphor converted nitride light emitting diodes

    SciTech Connect

    Ludwiczak, Bogna; Jantsch, Wolfgang

    2014-01-21

    We investigate the influence of the current waveform on the efficiency and the emission spectra of white, high power InGaN light emitting diodes. We consider rectangular and trapezoidal current pulses, adjusted to provide the same number of charge carriers in the space charge region. Our measurements confirm the theoretical expectation that flattening of the pulse flank increases the power efficiency. This effect is stronger according to the current amplitude. The emission blue peak at trapezoidal pulses is slightly red-shifted compared to that one at rectangular pulses. This indicates a stronger effect of the quantum confined Stark effect for trapezoidal pulse driving.

  11. Effects of hole carrier injection and transport in organic light-emitting diodes

    SciTech Connect

    Antoniadis, H.; Miller, J.N.; Roitman, D.B.; Campbell, I.H.

    1997-08-01

    In this paper, the authors examine the effects of hole carrier injection and mobility on both the electroluminescence (EL) quantum efficiency and the operating voltage of bilayer organic light-emitting diodes (OLED`s). They find that hole-injection is limited by the nature of the hole injecting interface and significantly affects the operating voltage, but not the quantum efficiency of the OLED. Hole mobility is found not to affect the device quantum efficiency. They demonstrate the characteristics of an ideal ohmic contact by measuring space-charge-limited currents in a trap-free hole transporting polymer layer.

  12. Host Engineering for High Quantum Efficiency Blue and White Fluorescent Organic Light-Emitting Diodes.

    PubMed

    Song, Wook; Lee, Inho; Lee, Jun Yeob

    2015-08-01

    High quantum efficiency in blue and white fluorescence organic light-emitting diodes is achieved by developing a novel device architecture with fluorescent emitters doped in a thermally activated delayed fluorescent emitter as a host material. PMID:26078193

  13. Comparative efficiency analysis of GaN-based light-emitting diodes and laser diodes

    NASA Astrophysics Data System (ADS)

    Piprek, Joachim

    2016-07-01

    Nobel laureate Shuji Nakamura predicted in 2014 that GaN-based laser diodes are the future of solid state lighting. However, blue GaN-lasers still exhibit less than 40% wall-plug efficiency, while some GaN-based blue light-emitting diodes exceed 80%. This paper investigates non-thermal reasons behind this difference. The inherently poor hole conductivity of the Mg-doped waveguide cladding layer of laser diodes is identified as main reason for their low electrical-to-optical energy conversion efficiency.

  14. Development of ultraviolet nitride-based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Katona, Thomas Matthew

    2003-10-01

    Deep ultraviolet light emitting diodes, with emission wavelengths shorter than 360 nm, have attracted interest due to their potential applications as replacement white light sources, in non-line of sight communication, for chemical and biological weapons detection, medical applications, water purification, and counterfeit detection. Light emitters in this wavelength range require AlGaN based active regions with increasing Al composition as the wavelength is decreased. High Al composition AlGaN based devices have been challenged by difficulty in growth, low electron and hole mobilities, and deep dopant levels resulting in low carrier concentrations. The combination of these factors has resulted in UV optoelectronic devices with quantum efficiency several orders of magnitude lower than their GaN/InGaN based visible counterparts. This work will details studies on alternative selective area growth techniques for dislocation reduction and the development of ultraviolet LEDs ranging from 292--340 nm. Lateral overgrowth of GaN on patterned Si (111) substrates was developed with the hope of developing seed material for bulk GaN growth. The effect of growth conditions on both the crystallographic wing tilt and crack density in the AlN/GaN films was studied. By controlling the lateral to vertical growth rate at the beginning of lateral overgrowth, the wing tilt can be effectively eliminated. We also demonstrate the first lateral overgrowth of AlN to create low threading dislocation density AlN template layers for optoelectronic device development. Deep UV quantum wells grown on this material were studied with cathodoluminescence to study the effect of dislocations on radiative recombination in deep UV devices. In addition to work on lateral overgrowth of GaN and AlN, 292, 340 nm LEDs were grown on AlN on sapphire and GaN on sapphire respectively. AlN strain relief interlayers were developed to prevent cracking of the 340 nm AlGaN based LEDs that were grown in tension on Ga

  15. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    SciTech Connect

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-06-25

    A fabrication process, compatible with an industrial bipolar+complementary metal{endash}oxide{endash}semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n{sup +}/p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. {copyright} 2001 American Institute of Physics.

  16. Studies of the productive efficiency of a cylindrical salad growth facility with a light-emitting diodes lighting unit as a component of the biological life support system for space crews

    NASA Astrophysics Data System (ADS)

    Erokhin, A. N.; Berkovich, Y. A.; Smolianina, S. O.; Krivobok, N. M.; Agureev, A. N.; Kalandarov, S. K.

    Efficiency of the green salad production under light-emitting diodes within space life support system was tested with a prototype of a 10-step cylindrical "Phytocycle-SD". The system has a plant chamber in the form of a spiral cylinder; a planting unit inside the plant chamber is built of 10 root modules which make a planting circular cylinder co-axial with and revolving relative to the leaf chamber. Twelve panels of the lighting unit on the internal surfaces of the spiral cylinder carry 438 red (660 nm) and 88 blue (470 nm) light-emitting diodes producing average PPF equal 360 mmol/(m^2\\cdots) 4 cm below the light source, and 3 panels producing PPF equal 190 mmol/(^2\\cdots) at the initial steps of the plant conveyer. The system demands 0.44 kW, the plant chamber is 0.2 m^3 large, and the total illuminated crop area is 0.8 m^2. Productive efficiency of the greenhouse was studied in a series of laboratory experiments with celery cabbage Brassica pekinensis (Lour) Rupr. grown in the conveyer with a one step period of 3 days. The crop grew in a fiber ion-exchange mineral-rich soil (FS) BIONA V-3 under the 24-hr light. Maximal productivity of the ripe (30-d old) plants reached 700 g of the fresh edible biomass from one root module; in this case, FS productivity amounted to 5.6 kg of the fresh biomass per one kg of dry FS. Biomass contents of ascorbic acid, carotinoids and cellulose gathered from one root module made up 70 mg, 13 mg and 50 g, respectively. Hence, celery cabbage crop raised in "Phytocycle-SD" can satisfy up to 8% of the daily dietary vitamin C, 24% of vitamin A and 22% of food fibers of 3 crew members. Vitamin production can be increased by planting multi-species salad crops.

  17. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  18. Light emitting diodes as a plant lighting source

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.

    1994-01-01

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.

  19. Effect of surface treatment of GaN based light emitting diode wafers on the leakage current of light emitting diode devices

    NASA Astrophysics Data System (ADS)

    Wang, Liang-Ji; Zhang, Shu-Ming; Zhu, Ji-Hong; Zhu, Jian-Jun; Zhao, De-Gang; Liu, Zong-Shun; Jiang, De-Sheng; Wang, Yu-Tian; Yang, Hui

    2010-01-01

    To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current-voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes.

  20. Method and apparatus for improving the performance of light emitting diodes

    DOEpatents

    Lowery, Christopher H.; McElfresh, David K.; Burchet, Steve; Adolf, Douglas B.; Martin, James

    1996-01-01

    A method for increasing the resistance of a light emitting diode and other semiconductor devices to extremes of temperature is disclosed. During the manufacture of the light emitting diode, a liquid coating is applied to the light emitting die after the die has been placed in its lead frame. After the liquid coating has been placed on the die and its lead frames, a thermosetting encapsulant material is placed over the coating. The operation that cures the thermosetting material leaves the coating liquid intact. As the die and the encapsulant expand and contract at different rates with respect to changes in temperature, and as in known light emitting diodes the encapsulating material adheres to the die and lead frames, this liquid coating reduces the stresses that these different rates of expansion and contraction normally cause by eliminating the adherence of the encapsulating material to the die and frame.

  1. Phosphorescent organic light emitting diodes with high efficiency and brightness

    SciTech Connect

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  2. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-01

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers.The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03034j

  3. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect

    Riuttanen, L. Nykänen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M.; Kivisaari, P.; Oksanen, J.; Tulkki, J.

    2014-02-24

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  4. Extracting and directing light out of organic light emitting diodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lemmer, Uli; Egel, Amos; Hecht, Matthias; Preinfalk, Jan B.; Gomard, Guillaume

    2015-10-01

    Light extraction from organic light emitting diodes (OLEDs) is attracting considerable interest as being crucial for enhancing the energy efficiency in lighting applications. Light extraction can be realized by lithographically defined internal diffraction gratings or stochastic scattering centers. The former approach needs in addition an external optical layer for scrambling the angularly dependent emission spectra in order to avoid color shifts [1]. Micro lens arrays cannot only be used for fulfilling this task but they can also be used for enhancing the luminosity into a specific direction. We demonstrate recent advances towards high efficiency OLEDs with high directionality. In addition to the relevant technologies we have also developed a comprehensive simulation software for the quantitative description of the light propagation inside the devices. Here, a particular challenging task is the description of multiple and coherent optical scattering. We have recently developed a software for the exact simulation based on a scattering matrix formalism [2]. [1] T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig and U. Lemmer, White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission Opt. Expr. 20, A932 (2012). [2] A. Egel, U. Lemmer, Dipole emission in stratified media with multiple spherical scatterers: Enhanced outcoupling from OLEDs, Journal of Quantitative Spectroscopy and Radiative Transfer 148, 165 (2014).

  5. Hierarchical growth of GaN nanowires for light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Raj, Rishabh; Ra, Yong-Ho; Lee, Cheul-Ro; Obheroi, Sonika; Navamathavan, R.

    2016-02-01

    Gallium nitride nanostructures have been receiving considerable attention as building blocks for nanophotonic technologies due to their unique high aspect ratios, promising the realization of photonic and biological nanodevices such as blue light emitting diodes (LEDs), short-wavelength ultraviolet nanolasers and nanofluidic biochemical sensors. In this study, we report on the hierarchical growth of GaN nanowires (NWs) by dynamically adjusting the growth parameters using pulsed flow metalorganic chemical vapor deposition (MOCVD) technique. We carried out two step growth processes to grow hierarchical GaN NWs. At the first step the GaN NWs were grown at 950°C and in the second stage, we suitably decreased the growth temperature to 710°C to grow the hierarchical structures. The surface morphology, structural and optical characterization of the grown hierarchical GaN NWs were studied by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and photoluminescence (PL) measurements, respectively. These kind of hierarchical NWs are promising to allow flat band quantum structures that are shown to improve the efficiency of light-emitting diodes.

  6. Semiconductor-Nanocrystals-Based White Light-Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z.

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

  7. High speed GaN micro-light-emitting diode arrays for data communications

    NASA Astrophysics Data System (ADS)

    Watson, Scott; McKendry, Jonathan J. D.; Zhang, Shuailong; Massoubre, David; Rae, Bruce R.; Green, Richard P.; Gu, Erdan; Henderson, Robert K.; Kelly, A. E.; Dawson, Martin D.

    2012-10-01

    Micro light-emitting diode (micro-LED) arrays based on an AlInGaN structure have attracted much interest recently as light sources for data communications. Visible light communication (VLC), over free space or plastic optical fibre (POF), has become a very important technique in the role of data transmission. The micro-LEDs which are reported here contain pixels ranging in diameter from 14 to 84μm and can be driven directly using a high speed probe or via complementary metal-oxide semiconductor (CMOS) technology. The CMOS arrays allow for easy, computer control of individual pixels within arrays containing up to 16×16 elements. The micro-LEDs best suited for data transmission have peak emissions of 450nm or 520nm, however various other wavelengths across the visible spectrum can also be used. Optical modulation bandwidths of over 400MHz have been achieved as well as error-free (defined as an error rate of <1x10-10) data transmission using on-off keying (OOK) non-return-to-zero (NRZ) modulation at data rates of over 500Mbit/s over free space. Also, as a step towards a more practical multi-emitter data transmitter, the frequency response of a micro-LED integrated with CMOS circuitry was measured and found to be up to 185MHz. Despite the reduction in bandwidth compared to the bare measurements using a high speed probe, a good compromise is achieved from the additional control available to select each pixel. It has been shown that modulating more than one pixel simultaneously can increase the data rate. As work continues in this area, the aim will be to further increase the data transmission rate by modulating more pixels on a single device to transmit multiple parallel data channels simultaneously.

  8. NASA sponsored Light Emitting Diode (LED) development helps in cancer treatment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    What started out as an attempt to develop a light which would allow for the growth of plants in space led to a remarkable discovery: The Light Emitting Diode (LED). This device through extensive study and experimentation has developed into a tool used by surgeons in the fight against brain cancer in children. Pictured is a mock-up of brain surgery being performed. By encapsulating the end of the LED with a balloon, light is diffused over a larger area of the brain allowing the surgeon a better view. This is one of many programs that begin as research for the space program, and through extensive study end up benefitting all of mankind.

  9. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles.

    PubMed

    Xing, Jun; Yan, Fei; Zhao, Yawen; Chen, Shi; Yu, Huakang; Zhang, Qing; Zeng, Rongguang; Demir, Hilmi Volkan; Sun, Xiaowei; Huan, Alfred; Xiong, Qihua

    2016-07-26

    Organometal halide perovskite has recently emerged as a very promising family of materials with augmented performance in electronic and optoelectronic applications including photovoltaic devices, photodetectors, and light-emitting diodes. Herein, we propose and demonstrate facile solution synthesis of a series of colloidal organometal halide perovskite CH3NH3PbX3 (X = halides) nanoparticles with amorphous structure, which exhibit high quantum yield and tunable emission from ultraviolet to near-infrared. The growth mechanism and photoluminescence properties of the perovskite amorphous nanoparticles were studied in detail. A high-efficiency green-light-emitting diode based on amorphous CH3NH3PbBr3 nanoparticles was demonstrated. The perovskite amorphous nanoparticle-based light-emitting diode shows a maximum luminous efficiency of 11.49 cd/A, a power efficiency of 7.84 lm/W, and an external quantum efficiency of 3.8%, which is 3.5 times higher than that of the best colloidal perovskite quantum-dot-based light-emitting diodes previously reported. Our findings indicate the great potential of colloidal perovskite amorphous nanoparticles in light-emitting devices. PMID:27284993

  10. Voltage reduction in organic light-emitting diodes

    SciTech Connect

    Hung, L. S.; Mason, M. G.

    2001-06-04

    For practical applications, it is important to operate organic light-emitting devices at low voltages and low power consumption. When both the cathode and anode are perfectly injecting, low electron mobility in electron-transport materials, such as tris-(8-hydroxyquinoline)aluminum (Alq), becomes a limiting factor on voltage reduction. In this letter copper phthalocyanine (CuPc) is replaced for Alq as an electron-transport layer, and interfacial modification is utilized to enhance electron injection from the CuPc electron-transport layer into the Alq emissive layer. The outcome of this structure significantly facilitates electron transport through the organic materials, thus resulting in substantial reduction in operating voltages and power consumption. {copyright} 2001 American Institute of Physics.

  11. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    SciTech Connect

    Hwang, Joohyun; Choi, Hong Kyw; Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo; Choi, Sung-Yool; Lee, Jeong-Ik; Chu, Hye Yong

    2012-10-15

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m{sup 2}. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  12. High-efficiency organic light-emitting diodes with fluorescent emitters

    NASA Astrophysics Data System (ADS)

    Nakanotani, Hajime; Higuchi, Takahiro; Furukawa, Taro; Masui, Kensuke; Morimoto, Kei; Numata, Masaki; Tanaka, Hiroyuki; Sagara, Yuta; Yasuda, Takuma; Adachi, Chihaya

    2014-05-01

    Fluorescence-based organic light-emitting diodes have continued to attract interest because of their long operational lifetimes, high colour purity of electroluminescence and potential to be manufactured at low cost in next-generation full-colour display and lighting applications. In fluorescent molecules, however, the exciton production efficiency is limited to 25% due to the deactivation of triplet excitons. Here we report fluorescence-based organic light-emitting diodes that realize external quantum efficiencies as high as 13.4-18% for blue, green, yellow and red emission, indicating that the exciton production efficiency reached nearly 100%. The high performance is enabled by utilization of thermally activated delayed fluorescence molecules as assistant dopants that permit efficient transfer of all electrically generated singlet and triplet excitons from the assistant dopants to the fluorescent emitters. Organic light-emitting diodes employing this exciton harvesting process provide freedom for the selection of emitters from a wide variety of conventional fluorescent molecules.

  13. ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes

    SciTech Connect

    David P. Norton; Stephen Pearton; Fan Ren

    2007-09-30

    By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light

  14. Development of high-efficiency and high-power vertical light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hahn, Berthold; Galler, Bastian; Engl, Karl

    2014-10-01

    We provide an overview of the vertical chip technology and discuss recent improvements that have enabled (AlGaIn)N-based light-emitting diodes to further extend the range of their applications. In particular, the excellent scalability of chip size and low electric losses make related devices predestinated for use in high-power and high-luminance tasks. The evolution from standard vertical chips to the advanced chip design is described from a conceptual as well as from a performance point of view. Excellent stability data under demanding conditions are shown, which are the basis for the operation of devices in automotive applications requiring high reliability at current densities exceeding 3 A/mm2. As the vertical chip technology is not directly dependent on the substrate owing to its removal in the chip process, it is highly flexible with respect to the change of substrate materials to the very promising (111) silicon, for example.

  15. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in <180 minutes of contact

  16. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  17. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOEpatents

    Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2014-10-21

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  18. Improving light-emitting diode performance through sapphire substrate double-side patterning

    NASA Astrophysics Data System (ADS)

    Ju Kang, Ho; Cho, Sang Uk; Kim, Eung Soo; Kim, Chang-Seok; Jeong, Myung Yung

    2013-02-01

    Here, we present a new double-side patterned sapphire substrate methodology that improves the efficiency of gallium nitride-light emitting diodes (GaN-LEDs). The light extraction efficiency of GaN-based LEDs was analyzed through the use of a ray-tracing simulation. The extraction efficiency was simulated using patterned sapphire substrate LEDs with a variety of shapes, depths, sizes, and spacing. Through the optimal patterning of the various factors, high extraction efficiency was realized and subsequently improved upon. The thermal LED characteristics were analyzed through the use of the COMSOL general heat transfer module. The LEDs patterned on the sapphire substrate were fabricated using nano imprint lithography. We found that the output power of the double-side patterned LED was 52% greater than that of a flat LED. The thermal resistance of the double side patterned LED was 9.5 K/W less than that found for the flat LED.

  19. Improved calibration technique of the infrared imaging bolometer using ultraviolet light-emitting diodes.

    PubMed

    Drapiko, E; Peterson, B; Alekseev, A; Seo, D C

    2010-10-01

    The technique used until recently utilizing the Ne-He laser for imaging bolometer foils calibration [B. J. Peterson et al., J. Plasma Fusion Res. 2, S1018 (2007)] has showed several issues. The method was based on irradiation of 1 cm spaced set of points on a foil by the laser beam moved by set of mirrors. Issues were the nonuniformity of laser power due to the vacuum window transmission nonuniformity and high reflection coefficient for the laser. Also, due to the limited infrared (IR) window size, it was very time consuming. The new methodology uses a compact ultraviolet (uv) light-emitting diodes installed inside the vacuum chamber in a fixed position and the foil itself will be moved in the XY directions by two vacuum feedthroughs. These will help to avoid the above mentioned issues due to lack of a vacuum window, fixed emitters, higher uv power absorption, and a fixed IR camera position. PMID:21033981

  20. GaInN-based light emitting diodes embedded with wire grid polarizers

    NASA Astrophysics Data System (ADS)

    Cho, Jaehee; Meyaard, David S.; Ma, Ming; Schubert, E. Fred

    2015-02-01

    The use of liquid crystal displays (LCDs) has become prevalent in our modern, technology driven society. We demonstrate a linearly polarized GaInN light-emitting diode (LED) embedded with a wire-grid polarizer (WGP). A derivation of rigorous coupled-wave analysis is given; starting from Maxwell’s equations and finishing by matching the boundary conditions in the grating and other regions of interest. Simulated results are shown for various grating parameters, including different metals used for the grating and the metal-line dimensions. An LED fabrication process is developed for demonstrating WGP-LEDs. A clear polarization preference for the light coming out of the WGP-LED is experimentally demonstrated with a polarization ratio over 0.90, which is in good agreement with simulation results.

  1. Optical design of a light-emitting diode lamp for a maritime lighthouse.

    PubMed

    Jafrancesco, D; Mercatelli, L; Sansoni, P; Fontani, D; Sani, E; Coraggia, S; Meucci, M; Francini, F

    2015-04-10

    Traffic signaling is an emerging field for light-emitting diode (LED) applications. This sustainable power-saving illumination technology can be used in maritime signaling thanks to the recently updated norms, where the possibility to utilize LED sources is explicitly cited, and to the availability of high-power white LEDs that, combined with suitable lenses, permit us to obtain well-collimated beams. This paper describes the optical design of a LED-based lamp that can replace a traditional lamp in an authentic marine lighthouse. This source recombines multiple separated LEDs realizing a quasi-punctual localized source. Advantages can be lower energy consumption, higher efficiency, longer life, fewer faults, slower aging, and minor maintenance costs. The proposed LED source allows us to keep and to utilize the old Fresnel lenses of the lighthouse, which very often have historical value. PMID:25967311

  2. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes.

    PubMed

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-28

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers. PMID:26214140

  3. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  4. Silicon carbide light-emitting diode as a prospective room temperature source for single photons

    PubMed Central

    Fuchs, F.; Soltamov, V. A.; Väth, S.; Baranov, P. G.; Mokhov, E. N.; Astakhov, G. V.; Dyakonov, V.

    2013-01-01

    Generation of single photons has been demonstrated in several systems. However, none of them satisfies all the conditions, e.g. room temperature functionality, telecom wavelength operation, high efficiency, as required for practical applications. Here, we report the fabrication of light-emitting diodes (LEDs) based on intrinsic defects in silicon carbide (SiC). To fabricate our devices we used a standard semiconductor manufacturing technology in combination with high-energy electron irradiation. The room temperature electroluminescence (EL) of our LEDs reveals two strong emission bands in the visible and near infrared (NIR) spectral ranges, associated with two different intrinsic defects. As these defects can potentially be generated at a low or even single defect level, our approach can be used to realize electrically driven single photon source for quantum telecommunication and information processing. PMID:23572127

  5. Sensor Fabrication Method for in Situ Temperature and Humidity Monitoring of Light Emitting Diodes

    PubMed Central

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Chan, Pin-Cheng; Lin, Chia-Hung

    2010-01-01

    In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06 ± 0.005 (Ω/°C) and 0.033 pF/%RH, respectively. PMID:22319303

  6. Evaluation of an LED (Light-Emitting Diode) high-mounted signal lamp

    NASA Astrophysics Data System (ADS)

    Olson, P. L.

    1987-02-01

    Two studies are described evaluating high-mounted stoplights using light-emitting diodes (LEDs) compared with conventional incandescent units. The first of these studies obtained ratings from subjects who drove one car and followed another car that was equipped with the test lamps. The results indicate that the subjects generally preferred the LEDs to the conventional lamp. The second study was a laboratory evaluation of the attention-getting capabilities of LED and incandescent stoplights. Under all conditions tested subjects responded faster to the LED units. The response time advantage for the LED units increased with more difficult viewing conditions, such as high levels of illumination and long viewing distance. The results of these investigations are discussed in terms of the applicability of the LED technology to high mounted stoplights on motor vehicles.

  7. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  8. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  9. Effective ionic charge polarization using typical supporting electrolyte and charge injection phenomena in molecularly doped polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Yamashita, Takanori; Miyairi, Keiichi

    2002-11-01

    An effective method of enhancing charge injection and electroluminescence efficiency of polymer-based light-emitting diodes is introduced. Spin-coated films of poly (N-vinylcarbazole) blended with electron-transport material (Bu-PBD), laser dye (Coumarin6), and the typical supporting electrolyte [tetraethylammonium perchlorate (TEAP)] were examined and it was found that the injection current and luminance of the light emitting diodes doped with TEAP were enhanced dramatically after heat treatment at 80 degC and appropriate biasing in an external electric field of 1.5 x108 V/m at this temperature. A charge injection model based on Fowler-Nordheim tunneling is proposed, taking into account electric field distortion due to the accumulation of ionic space charges at the electrode/film interface. The relaxation time of ionic polarization is found to be related to the cation size of the electrolyte.

  10. Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering

    NASA Astrophysics Data System (ADS)

    Žukauskas, A.; Vaicekauskas, R.; Ivanauskas, F.; Vaitkevičius, H.; Shur, M. S.

    2008-08-01

    We apply an optimization scheme based on rendering of all colors of the enhanced Munsell palette to phosphor-conversion (PC) light-emitting diodes (LEDs). This approach yields combinations of peak wavelengths and bandwidths for white PC LEDs with partial and complete conversion that enable lighting with better quality than that obtained using designs based on the standard color-rendering assessment procedure.

  11. Response of adult mosquitoes to light emitting diodes placed in resting boxes and in the field.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resting boxes are passive devices used to attract and capture mosquitoes seeking shelter. Increasing the attractiveness of these devices could improve their effectiveness. Light emitting diodes (LEDs) can be attractive to mosquitoes when used together with other trapping devices. Therefore restin...

  12. All-fibre sensing loop using pulse-modulated light-emitting diode

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.

    1985-01-01

    A sensing system is presented which includes a pulse-modulated light-emitting diode (LED) and an all-fibre-optic loop generating a reference signal in the time domain. The basic principle of operation and parameters are introduced, and some properties of such a system are experimentally examined using a microbend sensor.

  13. Optical Experiments Using Mini-Torches with Red, Green and Blue Light Emitting Diodes

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Matsunaga, Ai

    2007-01-01

    We have developed two kinds of optical experiments: color mixture and fluorescence, using mini-torches with light emitting diodes (LEDs) that emit three primary colors. Since the tools used in the experiments are simple and inexpensive, students can easily retry and develop the experiments by themselves. As well as giving an introduction to basic…

  14. Hand-Drawn Resistors and a Simple Tester Using a Light-Emitting Diode

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Abe, Mayumi

    2012-01-01

    A thick line drawn on a sheet of paper with a 6B pencil is electrically conductive and its resistance can be roughly estimated using a simple tester made of a light-emitting diode (LED) and a lithium coin-type cell. Using this hand-drawn resistor and the LED tester, we developed teaching materials that help students to understand how electrical…

  15. An evaluation of organic light emitting diode monitors for medical applications: Great timing, but luminance artifacts

    PubMed Central

    Elze, Tobias; Taylor, Christopher; Bex, Peter J.

    2013-01-01

    Purpose: In contrast to the dominant medical liquid crystal display (LCD) technology, organic light-emitting diode (OLED) monitors control the display luminance via separate light-emitting diodes for each pixel and are therefore supposed to overcome many previously documented temporal artifacts of medical LCDs. We assessed the temporal and luminance characteristics of the only currently available OLED monitor designed for use in the medical treatment field (SONY PVM2551MD) and checked the authors’ main findings with another SONY OLED device (PVM2541). Methods: Temporal properties of the photometric output were measured with an optical transient recorder. Luminances of the three color primaries and white for all 256 digital driving levels (DDLs) were measured with a spectroradiometer. Between the luminances of neighboring DDLs, just noticeable differences were calculated according to a perceptual model developed for medical displays. Luminances of full screen (FS) stimuli were compared to luminances of smaller stimuli with identical DDLs. Results: All measured luminance transition times were below 300 μs. Luminances were independent of the luminance in the preceding frame. However, for the single color primaries, up to 50.5% of the luminances of neighboring DDLs were not perceptually distinguishable. If two color primaries were active simultaneously, between 36.7% and 55.1% of neighboring luminances for increasing DDLs of the third primary were even decreasing. Moreover, luminance saturation effects were observed when too many pixels were active simultaneously. This effect was strongest for white; a small white patch was close to 400 cd/m2, but in FS the luminance of white saturated at 162 cd/m2. Due to different saturation levels, the luminance of FS green and FS yellow could exceed the luminance of FS white for identical DDLs. Conclusions: The OLED temporal characteristics are excellent and superior to those of LCDs. However, the OLEDs revealed severe

  16. 77 FR 75446 - Certain Light-Emitting Diodes and Products Containing the Same; Commission Determination To Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... (``the `090 patent''); 7,151,283 (``the `283 patent''); and 7,271,425 (``the `425 patent''). 76 FR 40746... COMMISSION Certain Light-Emitting Diodes and Products Containing the Same; Commission Determination To Grant... importation of certain light-emitting diodes and products containing same by reason of infringement of...

  17. 76 FR 67761 - Certain Light-Emitting Diodes and Products Containing Same Determination Not To Review an Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... (collectively, ``LG''). 76 FR 54254 (August 31, 2011). The complaint alleged violations of section 337 based... COMMISSION Certain Light-Emitting Diodes and Products Containing Same Determination Not To Review an Initial... States after importation of certain light emitting diodes and products containing same by reason...

  18. Organic Light-Emitting Diodes and Silicon Receivers for Monolithic Silicon Opto-Electronic Circuits.

    NASA Astrophysics Data System (ADS)

    Kim, Helen Haeran

    Power dissipation in electrical connections is an obstacle to achieving higher system performance; optical connections may be a solution. Our calculations highlight those situations where optical connections would be advantageous, compared to the electrical connections, based on the calculation of energy required to implement these connections. Based on today's technology, which unfortunately have a significant conversion loss between electronics and optics, optical connections have this advantage only over distances longer than {~}10 cm. Thus, optical connection may have near to middle term advantages for inter-chip connection. A highly desirable feature is to monolithically integrate opto-electronic components with chips in order to reduce both cost and energy dissipation. Because the overwhelming majority of very large scale integrated circuits are based on silicon (Si) technology, the transmitter and receiver should be process-compatible with Si technology. Unfortunately, Si is not an efficient light emitter. Because of their simple and ultimately inexpensive, Si-compatible processing, we selected semiconducting organic materials as light emitting materials. Based on our monolithically integrated Si receiver, we estimated the requirements of organic light emitting diodes (LEDs) for their efficiency and speed. Having learned the material properties of the organic materials and their device characteristics, we applied the organic LEDs on Si and enhanced the efficiency by using a silicon dioxide intermediate layer. This is the first report of organic LEDs fabricated on Si. In addition, the process is compatible with Si ICs. Although a large improvement has been made to achieve a higher LED efficiency, the speed of the organic LEDs is only in the MHz range. Much effort is needed to increase the mobility of these materials for their use in optical interconnects.

  19. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang; Zhou, Liya; Gong, Fuzhong

    2013-03-15

    Highlights: ► Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ► The fabricated white LEDs show good white balance. ► CdSe QDs present well green to yellow band luminescence. ► CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  20. Multilayered Organic Light Emitting Diodes Based on Polyfluorenes

    NASA Astrophysics Data System (ADS)

    Bozano, Luisa; Marsitzky, Dirk; Carter, Kenneth; Swanson, Sally; Lee, Victor; Salem, Jesse; Miller, Robert; Scott, Campbell; Carter, Sue

    2001-03-01

    The electroluminescence of polyfluorene homopolymers and various arylene copolymers is in the deep blue, with peak emission wavelengths as small as 420 nm. These materials are therefore of great interest for use in full-color OLED displays both as emitters for blue subpixels and as hosts for red and green emitting dopants or comonomers. In this work, we compare the properties of single and multilayer diode structures based on dihexyl and di(2-ethylexyl) substituted polyfluorenes. A cross-linkable polymeric arylamine hole transport polymer and/or a polyquinoline electron transport layer are introduced to better balance the charge injection from the electrodes and optimize the recombination in the fluorene emitter layer. External quantum efficiencies increase from about 0.1layer devices to well over 1The electrical and optical response is determined by steady state and transient measurements. The effects on efficiency, emission spectrum and electrical response resulting from the introduction of dopant dyes into the emitter layer are also presented.

  1. Red InGaP light-emitting diodes epitaxially grown on engineered Ge-on-Si substrates

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, Cong; Lee, Kwang Hong; Bao, Shuyu; Lee, Kenneth Eng Kian; Tan, Chuan Seng; Yoon, Soon Fatt; Fitzgerald, Eugene A.; Michel, Jurgen

    2016-03-01

    The integration of light emitting devices on silicon substrates has attracted intensive research for many years. In contrast to the InGaN light emitting diodes (LEDs) whose epitaxy technology on Si substrates is robust and mature, the epitaxy of other compound semiconductor light emitting materials covering the visible wavelength range on Si is still challenging. We have studied epitaxial growth of red InGaP light emitting materials on engineered Ge-on-Si substrates. Ge-on-Si was grown on 8'' Si substrates in a metal organic chemical vapour deposition (MOCVD) reactor using two- step growth and cycling annealing. Threading dislocation densities (TDDs) were controlled to as low as 106/cm2 by using As-doped Ge initiation. A GaAs buffer layer and lattice-matched InGaP LEDs were grown on the Ge-on-Si sequentially in the same MOCVD process and red LEDs are demonstrated. InGaP multiple-quantum-well LED structures were grown on full 8'' Ge-on-Si substrates and characterized.

  2. Biological Research in Canisters (BRIC) - Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Caron, Allison

    2016-01-01

    The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.

  3. CoPt ferromagnetic injector in light-emitting Schottky diodes based on InGaAs/GaAs nanostructures

    SciTech Connect

    Zdoroveyshchev, A. V. Dorokhin, M. V.; Demina, P. B.; Kudrin, A. V.; Vikhrova, O. V.; Ved’, M. V.; Danilov, Yu. A.; Erofeeva, I. V.; Krjukov, R. N.; Nikolichev, D. E.

    2015-12-15

    The possibility of fabricating a ferromagnetic injector based on a near-equiatomic CoPt alloy with pronounced perpendicular magnetization anisotropy in the InGaAs/GaAs spin light-emitting diode is shown. The physical properties of experimental spin light-emitting diode prototypes are comprehensively studied. Circularly polarized electroluminescence of fabricated diodes is obtained in zero magnetic field due to the remanent magnetization of CoPt layers.

  4. Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Nana; Cheng, Lu; Si, Junjie; Liang, Xiaoyong; Jin, Yizheng; Wang, Jianpu; Huang, Wei

    2016-04-01

    Amino acid self-assembled monolayers are used in the fabrication of light-emitting diodes based on organic-inorganic halide perovskites. The monolayers of amino acids provide modified interfaces by anchoring to the surfaces of ZnO charge-transporting layers using carboxyl groups, leaving the amino groups to facilitate the nucleation of MAPbBr3 perovskite films. This surface-modification strategy, together with chlorobenzene-assisted fast crystallization method, results in good surface coverage and reduced defect density of the perovskite films. These efforts lead to green perovskite light emitting diodes with a low turn-on voltage of 2 V and an external quantum efficiency of 0.43% at a brightness of ˜5000 cd m-2.

  5. Electrical and optical measurements of the bandgap energy of a light-emitting diode

    NASA Astrophysics Data System (ADS)

    Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Dumas, Philippe

    2016-03-01

    Semiconductor materials are at the core of electronics. Most electronic devices are made of semiconductors. The operation of these components is well described by quantum physics which is often a difficult concept for students to understand. One of the intrinsic parameters of semiconductors is their bandgap energy {{E}\\text{g}} . In the case of light-emitting diodes (LEDs) {{E}\\text{g}} fixes the colour of the light emitted by the diodes. In this article we propose an experiment to compare {{E}\\text{g}} of a green LED obtained by both electrical and optical measurements. The two slightly different results can be explained by the theoretical knowledge of students on solid physics and the internal structure of electronic devices.

  6. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  7. Broadband visible light source based on AllnGaN light emitting diodes

    DOEpatents

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  8. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry

  9. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias

    2013-04-15

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  10. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method.

    PubMed

    Li, Guangru; Rivarola, Florencia Wisnivesky Rocca; Davis, Nathaniel J L K; Bai, Sai; Jellicoe, Tom C; de la Peña, Francisco; Hou, Shaocong; Ducati, Caterina; Gao, Feng; Friend, Richard H; Greenham, Neil C; Tan, Zhi-Kuang

    2016-05-01

    The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%. PMID:26990965

  11. Simultaneous color and luminance control of organic light-emitting diodes for mood-lighting applications

    NASA Astrophysics Data System (ADS)

    Köhnen, Anne; Meerholz, Klaus; Hagemann, Malte; Brinkmann, Matthias; Sinzinger, Stefan

    2008-01-01

    Organic light-emitting diodes (OLEDs) using polymer blends as a single emissive layer often suffer from large color shifts with changing operational voltage. Until now, such devices cannot stand the critical demands of lighting industry. In this contribution, we introduce a pulse-width-modulation-based driver concept, enabling the user to simultaneously and independently adjust color and luminance of a single device with two contacts. This concept makes color-shifting OLEDs highly interesting for "mood-light" applications.

  12. Photo thermal efficacy of green light emitting diode and gold nano spheres for malignancy

    NASA Astrophysics Data System (ADS)

    Gananathan, Poorani; Prakasa Rao, Aruna; Ganesan, Singaravelu; Manickan, Elanchezhiyan

    2016-03-01

    The effect of 30nm Gold Nanoparticles (GNP) based on concentration and incubation time with respect to their cellular uptake kinetics was studied with Vero and HeLa cells . Photoirradiation effect of GNPs in combination with light emitting diode(LED) found to be remarkable and this work concentrates on optimizing concentration and light source. The effect of Gold nanoparticles alone and in combination with LED in malignant and normal cells lines were studied.

  13. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  14. Extracting the emitter orientation in organic light-emitting diodes from external quantum efficiency measurements

    SciTech Connect

    Schmidt, Tobias D. Reichardt, Lukas J.; Wehrmeister, Sebastian; Scholz, Bert J.; Mayr, Christian; Brütting, Wolfgang; Rausch, Andreas F.; Wehlus, Thomas; Reusch, Thilo C. G.; Ciarnáin, Rossá Mac; Danz, Norbert

    2014-07-28

    Emitter orientation will play a major role in future applications of organic light-emitting diodes due to its strong impact on the efficiency of the devices. Up to now, determining the orientation of transition dipole moments required elaborate angular-dependent measurements of the light emission pattern. In this paper, we present a simplified and straightforward method to extract the emitter orientation from external quantum efficiency measurements. We demonstrate the validity of the method on three different dye-doped emitting systems.

  15. Highly Efficient, Simplified, Solution-Processed Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Cho, Himchan; Jeong, Su-Hun; Lee, Tae-Woo

    2016-01-27

    Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes can be realized by using pure-organic thermally activated delayed fluorescence emitters and a multifunctional buffer hole-injection layer, in which high EQE (≈24%) and current efficiency (≈73 cd A(-1) ) are demonstrated. High-efficiency fluorescence red-emitting and blue-emitting devices can also be fabricated in this manner. PMID:26619309

  16. Temperature dependent electrical and optical characterization of polyfluorene based organic light-emitting-diodes

    NASA Astrophysics Data System (ADS)

    Arif, Mohammad; Guha, S.; Yun, M. S.; Gangopadhyay, S.

    2006-03-01

    Polyfluorene (PF) conjugated polymers have received widespread attention due to their strong blue emission, high charge mobility and excellent chemical and thermal stability which creates great prospect for optoelectronic device applications. Efficient and well balanced injection of charge carriers and transport capabilities are of paramount importance for high luminescence efficiency of organic light emitting diodes (OLEDs). The maximum current flowing through metal/semiconductor is limited by available space and trapped charges, barrier heights, applied electric field and mobility of the carriers. In this work we present detailed current- voltage (I-V) measurements as a function of temperature from 2- ethylhexyl substituted PF (PF2/6) based OLEDs. PF2/6 is characterized by Tg of 80 ^oC and a nematic liquid crystalline phase above 150 ^oC. Barrier heights for current injection were calculated as a function of thermal cycling. The characteristic I-V measurements were fitted with ideal space charge limited conduction (SCLC) with traps to calculate carrier mobilities and trap concentration. Preliminary studies of Raman scattering from these working devices will be discussed.

  17. Analytical devices based on light-emitting diodes--a review of the state-of-the-art.

    PubMed

    Bui, Duy Anh; Hauser, Peter C

    2015-01-01

    A general overview of the development of the uses of light-emitting diodes in analytical instrumentation is given. Fundamental aspects of light-emitting diodes, as far as relevant for this usage, are covered in the first part. The measurement of light intensity is also discussed, as this is an essential part of any device based on light-emitting diodes as well. In the second part, applications are discussed, which cover liquid and gas-phase absorbance measurements, flow-through detectors for chromatography and capillary electrophoresis, sensors, as well as some less often reported methods such as photoacoustic spectroscopy. PMID:25467449

  18. Organic light-emitting diode (OLED) and its application to lighting devices

    NASA Astrophysics Data System (ADS)

    Ide, Nobuhiro; Komoda, Takuya; Kido, Junji

    2006-08-01

    Organic Light Emitting Diode (OLED) is an emerging technology as one of the strong candidates for next generation solid state lighting with various advantages such as thin flat shape, no UV emission and environmental benefits. At this moment, OLED still has a lot of issues to be solved before widely used as lighting devices. Nonetheless, typical properties of OLED, such as efficiency and lifetime, have been recently made great progress. For example, a green phosphorescent OLED with over 100 lm/W and a red fluorescent OLED with an estimated half decay time of over 100,000 h at 1,000 cd/m2 were reported. Large area, white OLEDs with long lifetime were also demonstrated. In this way, some of the issues are going to be steadily overcome. In this publication, we will present a phosphorescent white OLED with a high luminous efficiency of 46 lm/W and an external quantum efficiency of 20.6 percent observed at 100 cd/m2. This device achieves a luminous efficiency of 62.8 lm/W with a light-outcoupling film attached on the glass substrate. This is one of the highest values so far reported for white OLEDs. And we will also show a color-tunable stacked OLED with improved emission characteristics. This device minimizes a viewing angle dependence of the emission spectra and has color tunability from white to reddish-white. These technologies will be applied to OLED lighting.

  19. Low cost batch fabrication of microdevices using ultraviolet light-emitting diode photolithography technique

    NASA Astrophysics Data System (ADS)

    Lee, Neam Heng; Swamy, Varghese; Ramakrishnan, Narayanan

    2016-01-01

    Solid-state technology has enabled the use of light-emitting diodes (LEDs) in lithography systems due to their low cost, low power requirement, and higher efficiency relative to the traditional mercury lamp. Uniform irradiance distribution is essential for photolithography to ensure the critical dimension (CD) of the feature fabricated. However, light illuminated from arrays of LEDs can have nonuniform irradiance distribution, which can be a problem when using LED arrays as a source to batch-fabricate multiple devices on a large wafer piece. In this study, the irradiance distribution of an UV LED array was analyzed, and the separation distance between light source and mask optimized to obtain maximum irradiance uniformity without the use of a complex lens. Further, employing a diffuser glass enhanced the fabrication process and the CD loss was minimized to an average of 300 nm. To assess the performance of the proposed technology, batch fabrication of surface acoustic wave devices on lithium niobate substrate was carried out, and all the devices exhibited identical insertion loss of -18 dB at a resonance frequency of 39.33 MHz. The proposed low-cost UV lithography setup can be adapted in academic laboratories for research and teaching on microdevices.

  20. A perspective perception on the applications of light-emitting diodes.

    PubMed

    Nair, Govind B; Dhoble, S J

    2015-12-01

    Light-emitting diodes (LEDs) continue to penetrate the global market; their pervasiveness clearly being felt in such diverse fields as technological, socio-economic and commercial interests. The multi-billion dollar LED market is shared by various segments, including office and household lighting, street lighting, the automobile industry, traffic signals, backlighting for hand-held devices, indoor and outdoor signs and indicators, medicine, communication systems, crop cultivation using artificial light and many more. The technological development of LEDs has undergone many phases in different parts of the world. From the early discovery of luminescence to the invention of highly efficient organic LEDs, researchers have worked with the prime purpose of improving the performance of luminaires. The need to infuse the market with more efficient and cheaper products has been prevalent from the start. LEDs are a result of this uncontrolled desire of researchers to develop superior products that would displace existing products in the market. To understand what led to the current prominence of LEDs, we give a brief historical overview of the field followed by a thorough discussion of the positive features of LEDs. This work includes the basic requirements, advantages and disadvantages of LEDs in a variety of applications. A brief description of the diverse applications of LED in fields such as lighting, indicators and displays, farming, medicine and communication is given. Considerable importance is placed on discussing the possible difficulties that must be overcome before using LEDs in commercial applications. PMID:26014269

  1. Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Fu, Yue; Zhang, Jialu; Wang, Chuan; Chen, Pochiang; Zhou, Chongwu

    2012-02-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Pre-separated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  2. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays.

    PubMed

    Zhang, Jialu; Fu, Yue; Wang, Chuan; Chen, Po-Chiang; Liu, Zhiwei; Wei, Wei; Wu, Chao; Thompson, Mark E; Zhou, Chongwu

    2011-11-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components, such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics. PMID:21942351

  3. Spectral matching research for light-emitting diode-based neonatal jaundice therapeutic device light source

    NASA Astrophysics Data System (ADS)

    Gan, Ruting; Guo, Zhenning; Lin, Jieben

    2015-09-01

    To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.

  4. Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate

    NASA Astrophysics Data System (ADS)

    Chang, Chiao; Li, Hui; Huang, Ssu-Hsuan; Lin, Li-Chien; Cheng, Hung-Hsiang

    2016-04-01

    The electroluminescence from a Ge/GeSn/Ge p-i-n light-emitting diode on Si was investigated under different temperatures ranging from 25 to 150 K. The diode was operated at a low injection current density of 13 A/cm2. We obtained no-phonon- and phonon-assisted replicas in emission spectra. Also, the relationship between indirect bandgap energy and temperature was investigated. The temperature-dependent bandgap energy followed Varshni’s empirical expression with α = 4.884 × 10-4 eV/K and β = 130 K.

  5. On the ideality factor of the radiative recombination current in semiconductor light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Gyeong Won; Shim, Jong-In; Shin, Dong-Soo

    2016-07-01

    While there have been many discussions on the standard Si pn-diodes, little attention has been paid and confusion still arises on the ideality factor of the radiative recombination current in semiconductor light-emitting diodes (LEDs). In this letter, we theoretically demonstrate and experimentally confirm by using blue and infrared semiconductor LEDs that the ideality factor of the radiative recombination current is unity especially for low-current-density ranges. We utilize the data of internal quantum efficiency measured by the temperature-dependent electroluminescence to separate the radiative current component from the total current.

  6. Hourglass-graded heterostructures as a possible route towards extremely efficient light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jamaux, Julien; Iqbal, Asif; Bevan, Kirk H.

    2015-08-01

    In this study a theoretical analysis of hourglass-graded light emitting diodes (LEDs) is provided. The term hourglass-grading refers to the placement of a wide band gap material at the diode contacts, smoothly tapering to a smaller band gap material in the active centre region. Utilizing AlGaN as our model system, we show that such a device can both effectively confine carrier recombination and mitigate overflow under high doping conditions. Moreover, by lowering the Auger coefficient of recombination in the active region, room temperature internal quantum efficiencies of 95% or more might be achieved in hourglass-graded LEDs at drive currents near 103 A cm-2.

  7. Optical characterization of nitride-based light-emitting diodes for solid-state lighting applications

    NASA Astrophysics Data System (ADS)

    Masui, Hisashi

    This dissertation describes research dedicated to the solid-state lighting technology based on III-nitride light-emitting diodes (LEDs). Nitride semiconductors are rather an immature material system compared to conventional III-V semiconductors. As the solid-state lighting technology based on nitride optoelectronic devices becomes widely accepted in the market, solid-state technology is required to compete with the conventional vacuum lighting technology, especially in energy efficiency. In addition to such energy-efficiency requirements, solid-state optoelectronic devices have the potential to explore new applications based on their unique properties. The research was conducted as a way of optical characterization of LEDs with a strong emphasis on electroluminescence. Device-packaging techniques were introduced in the early stage of the research to evaluate performances of discrete LEDs including phosphor-combined white-light emitting devices. Light extraction and white-LED fabrication were of direct interest in terms of solid-state lighting, which occupies a large part of the present dissertation. The suspended-LED technique was introduced to improve light extraction and the sphere package was invented as a result of the technique. A phosphor-combined sphere LED achieved as high as 117 lm/W of luminous efficacy. Low-temperature characterization is important to evaluate light-emission efficiency of LEDs, especially the internal quantum efficiency. It was a generally known problem that electroluminescence efficiency deteriorates drastically at low temperature where photoluminescence efficiency remains high. High-quality LEDs prepared on GaN bulk substrates that became available during the present project contributed to the low-temperature study, largely to address the problem. Electroluminescence is related to carrier generation processes via low-temperature measurements on such high-quality LEDs. This study produced a model to explain electroluminescence

  8. Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene

    NASA Astrophysics Data System (ADS)

    Zhu, Peifen

    2016-02-01

    The light extraction efficiency of top-emitting organic light-emitting diodes (OLEDs) is numerically investigated employing the finite-difference time-domain method. The periodic nanostructures formed by embedding the sphere arrays in polystyrene (PS) are placed on top of OLED to frustrate the total internal reflection at the interface between OLED and free space. These nanostructures serve as an intermediate medium to extract the light out of OLED devices. Efficiently coupling both evanescent waves and propagation waves into spheres and subsequently extracting these light waves out of the sphere is key to achieving high extraction efficiency. By tuning the thickness of PS layer, both of the in-coupling efficiency and out-coupling efficiency are optimized for achieving high light extraction efficiency. Thicker PS layer results in higher in-coupling efficiency in sphere while the thinner PS layer leads to higher out-coupling efficiency. Thus the maximum light extraction is a trade-off between the in-coupling efficiency and out-coupling efficiency. The study shows that light extraction efficiency of 89% can be achieved by embedding 0.90 μm TiO2 sphere in 0.30 μm PS layer with optimized in-coupling efficiency, out-coupling efficiency and cavity effect.

  9. Simulations of emission from microcavity tandem organic light-emitting diodes

    SciTech Connect

    Biswas, Rana; Xu, Chun; Zhao, Weijun; Liu, Rui; Shinar, Ruth; Shinar, Joseph

    2011-01-01

    Microcavity tandem organic light-emitting diodes (OLEDs) are simulated and compared to experimental results. The simulations are based on two complementary techniques: rigorous finite element solutions of Maxwell's equations and Fourier space scattering matrix solutions. A narrowing and blue shift of the emission spectrum relative to the noncavity single unit OLED is obtained both theoretically and experimentally. In the simulations, a distribution of emitting sources is placed near the interface of the electron transport layer tris(8-hydroxyquinoline) Al (Alq{sub 3}) and the hole transport layer (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine) ({alpha}-NPB). Far-field electric field intensities are simulated. The simulated widths of the emission peaks also agree with the experimental results. The simulations of the 2-unit tandem OLEDs shifted the emission to shorter wavelength, in agreement with experimental measurements. The emission spectra's dependence on individual layer thicknesses also agreed well with measurements. Approaches to simulate and improve the light emission intensity from these OLEDs, in particular for white OLEDs, are discussed.

  10. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.

    2004-01-01

    Plants will be an important component of future long-term space missions. Lighting systems for growing plants will need to be lightweight, reliable, and durable, and light-emitting diodes (LEDs) have these characteristics. Previous studies demonstrated that the combination of red and blue light was an effective light source for several crops. Yet the appearance of plants under red and blue lighting is purplish gray making visual assessment of any problems difficult. The addition of green light would make the plant leave appear green and normal similar to a natural setting under white light and may also offer a psychological benefit to the crew. Green supplemental lighting could also offer benefits, since green light can better penetrate the plant canopy and potentially increase plant growth by increasing photosynthesis from the leaves in the lower canopy. In this study, four light sources were tested: 1) red and blue LEDs (RB), 2) red and blue LEDs with green fluorescent lamps (RGB), 3) green fluorescent lamps (GF), and 4) cool-white fluorescent lamps (CWF), that provided 0%, 24%, 86%, and 51% of the total PPF in the green region of the spectrum, respectively. The addition of 24% green light (500 to 600 nm) to red and blue LEDs (RGB treatment) enhanced plant growth. The RGB treatment plants produced more biomass than the plants grown under the cool-white fluorescent lamps (CWF treatment), a commonly tested light source used as a broad-spectrum control.