Science.gov

Sample records for light-emitting diode treatment

  1. Light-emitting Diodes

    PubMed Central

    Opel, Daniel R.; Hagstrom, Erika; Pace, Aaron K.; Sisto, Krisanne; Hirano-Ali, Stefanie A.; Desai, Shraddha

    2015-01-01

    Background: In the early 1990s, the biological significance of light-emitting diodes was realized. Since this discovery, various light sources have been investigated for their cutaneous effects. Study design: A Medline search was performed on light-emitting diode lights and their therapeutic effects between 1996 and 2010. Additionally, an open-label, investigator-blinded study was performed using a yellow light-emitting diode device to treat acne, rosacea, photoaging, alopecia areata, and androgenetic alopecia. Results: The authors identified several case-based reports, small case series, and a few randomized controlled trials evaluating the use of four different wavelengths of light-emitting diodes. These devices were classified as red, blue, yellow, or infrared, and covered a wide range of clinical applications. The 21 patients the authors treated had mixed results regarding patient satisfaction and pre- and post-treatment evaluation of improvement in clinical appearance. Conclusion: Review of the literature revealed that differing wavelengths of light-emitting diode devices have many beneficial effects, including wound healing, acne treatment, sunburn prevention, phototherapy for facial rhytides, and skin rejuvenation. The authors’ clinical experience with a specific yellow light-emitting diode device was mixed, depending on the condition being treated, and was likely influenced by the device parameters. PMID:26155326

  2. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  3. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  4. White light emitting diodes

    NASA Astrophysics Data System (ADS)

    Baur, J.; Schlotter, P.; Schneider, J.

    Using blue-emitting GaN LEDs on SiC substrate chips as primary light sources, we have fabricated green, yellow, red and white light emitting diodes (LUCOLEDs). The generation of mixed colors, as turquoise and magenta, is also demonstrated. The underlying physical principle is that of luminescence downconversion (Stokes shift), as typical for organic dye molecules and many inorganic phosphors. For white light generation via the LUCOLED principle, the phosphor Y3Al5O12:Ce3+(4f1) is ideally suited. The optical characteristics of Ce3+(4f1) in Y3Al5O12(YAG) are discussed in detail. Possibilities to "tune" the white color by various substitutions in the garnet lattice are shortly outlined.

  5. Effect of surface treatment of GaN based light emitting diode wafers on the leakage current of light emitting diode devices

    NASA Astrophysics Data System (ADS)

    Wang, Liang-Ji; Zhang, Shu-Ming; Zhu, Ji-Hong; Zhu, Jian-Jun; Zhao, De-Gang; Liu, Zong-Shun; Jiang, De-Sheng; Wang, Yu-Tian; Yang, Hui

    2010-01-01

    To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current-voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes.

  6. Light-Emitting Diode Versus Sham in the Treatment of Plantar Fasciitis: A Randomized Trial

    PubMed Central

    Higgins, Paul E.; Hews, Katherine; Windon, Lowell; Chasse, Patrick

    2015-01-01

    Objective The purpose of this preliminary study was to compare the application of the light emitting diode (LED) to sham LED in the treatment of plantar fasciitis. Methods Eighteen subjects met the inclusion criteria and were randomly assigned into 2 groups: light emitting diode or sham LED. The subjects received either the LED at 12 J/cm2 or sham LED along 2 points of the plantar fascia. Subjects in both groups received a 10 minute transverse friction massage and participated in 4 plantar fascia stretching exercises. All subjects received a total of 6 treatments over 3 weeks. Progress was assessed using the lower extremity functional and analog pain scale. Results No significant difference was found between treatment groups (P = .845). There was a significant difference in pain and outcome scores over time within both groups (P < .35). Conclusion Among patients with plantar fasciitis, the use of LED did not result in greater improvement in function or pain compared with sham treatment. The findings suggest that manual intervention and passive stretching activities may have provided significant pain relief and improvement in functional outcome scores. PMID:26644784

  7. Light-Emitting Diodes: Solving Complex Problems

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…

  8. Light-Emitting Diodes: Learning New Physics

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  9. Broadband light-emitting diode

    DOEpatents

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  10. Broadband light-emitting diode

    DOEpatents

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  11. Quantum Dot Light Emitting Diode

    SciTech Connect

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  12. Quantum Dot Light Emitting Diode

    SciTech Connect

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  13. Optical fluence modelling for ultraviolet light emitting diode-based water treatment systems.

    PubMed

    Simons, R; Gabbai, U E; Moram, M A

    2014-12-01

    This work presents a validated optical fluence rate model optimised for ultraviolet light-emitting diodes (UV-LEDs), which allow a very wide range of emission wavelengths and source geometries to be used in water treatment units. The model is based on a Monte Carlo approach, in which an incremental ray-tracing algorithm is used to calculate the local volumetric rate of energy absorption and subsequently convert it to the local fluence rate distribution for an UV-LED water treatment chamber of arbitrary design. The model includes contributions from optical reflections and scattering by treatment chamber walls and from scattering due to particulates and/or microorganisms. The model successfully predicts optical fluence rates in point-of-use water treatment units, as verified using biodosimetry with MS-2 bacteriophage at a UV-LED emission wavelength of 254 nm. The effects of chamber geometry are also modelled effectively and are consistent with the inactivation data for E. coli at 254 nm. The data indicate that this model is suitable for application in the design and optimisation of UV-LED-based water treatment systems. PMID:25222335

  14. Electroluminescence dependence of the simplified green light organic light emitting diodes on in situ thermal treatment

    NASA Astrophysics Data System (ADS)

    Mu, Haichuan; Rao, Lu; Li, Weiling; Wei, Bin; Wang, Keke; Xie, Haifen

    2015-12-01

    Simplified multilayer green light phosphorescent organic light emitting diodes (PHOLED) with the structure of ITO/MoO3(1 nm)/CBP(20 nm)/CBP:Ir(ppy)3 (1 wt%) (15 nm)/TPBi(60 nm)/LiF(0.5 nm)/Al were fabricated via thermal evaporation and in situ thermal treatment (heating the OLED substrates to certain temperatures during the thermal evaporation of the organic materials) was performed. The effect of the in situ thermal treatment on the electroluminescence (EL) performance of the PHOLED was investigated. It was found that the OLED exhibited strong EL dependence on the thermal treatment temperatures, and their current efficiency was improved with the increasing temperature from room temperature (RT) to 69 °C and deteriorated with the further increasing temperature to 105 °C. At the brightness of 1000 cd/m2, over 80% improvement of the current efficiency at the optimal thermal treatment temperature of 69 °C (64 cd/A) was demonstrated compared to that at RT (35 cd/A). Meanwhile, the tremendous influences of the in situ thermal treatment on the morphology of the multilayer CBP/CBP:Ir(ppy)3/TPBi were also observed. At the optimal thermal treatment temperature of 69 °C, the improvement of the EL performance could be ascribed to the enhancement of the electron and hole transporting in the CBP:Ir(ppy)3 emitting layer, which suppressed the triplets self-quenching interactions and promoted the charge balance and excitons formation. The working mechanism responsible for such EL dependence was discussed in detail.

  15. Photochemistry of Organic Light-Emitting Diodes

    SciTech Connect

    Ehara, Masahiro; Nakatsuji, Hiroshi

    2007-12-26

    The optical properties and excited-state geometries of some organic light-emitting diodes have been investigated by the SAC-CI method. The absorption and emission spectra have been predicted in high accuracy and the chain-length dependence of transition energies has been precisely reproduced. The present study provides the useful basis for the theoretical design predicting the photo-physical properties of the organic light-emitting diodes.

  16. NASA sponsored Light Emitting Diode (LED) development helps in cancer treatment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    What started out as an attempt to develop a light which would allow for the growth of plants in space led to a remarkable discovery: The Light Emitting Diode (LED). This device through extensive study and experimentation has developed into a tool used by surgeons in the fight against brain cancer in children. Pictured is a mock-up of brain surgery being performed. By encapsulating the end of the LED with a balloon, light is diffused over a larger area of the brain allowing the surgeon a better view. This is one of many programs that begin as research for the space program, and through extensive study end up benefitting all of mankind.

  17. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  18. Anode modification of polymer light-emitting diode using graphene oxide interfacial layer: The role of ultraviolet-ozone treatment

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Chen; Li, Yan-Qing; Deng, Yan-Hong; Zhuo, Qi-Qi; Lee, Shuit-Tong; Tang, Jian-Xin

    2013-08-01

    A simple and efficient method has been developed to modify the anode interface of polymer light-emitting diode by incorporating solution-processable graphene oxide as hole transport layer. Interface engineering of ultraviolet-ozone treatment on graphene oxide is demonstrated to dramatically enhance the electrical properties, leading to 15% increase in efficiency compared to that with a traditionally used poly(styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene) layer. As determined by photoelectron spectroscopy and impedance spectroscopy, an optimized ultraviolet-ozone treatment results in a more favorable energy level alignment and a decrease in series resistance, which can subsequently facilitate charge injection at the anodic interface.

  19. Efficiency enhancement of organic light emitting diodes by NaOH surface treatment of the ITO anode

    NASA Astrophysics Data System (ADS)

    Cusumano, P.

    2009-09-01

    Organic light emitting diodes (OLEDs) based on tris-(8-idroxyquinoline)aluminum (Alq 3) with enhanced efficiency are reported here. This is obtained by improving the charge carrier balance, through a preliminary NaOH surface treatment of the indium tin oxide (ITO) anode, in order to decrease its work function and, consequently, reduce the hole injection. The obtained devices exhibit a 1.36% external quantum efficiency and a 1.2 lm/W power efficiency at a current density of 60 mA/cm 2. These values are more than double as compared with those of identical reference devices fabricated without the preliminary NaOH surface treatment.

  20. Proton degradation of light-emitting diodes

    SciTech Connect

    Johnston, A.H.; Rax, B.G.; Selva, L.E.; Barnes, C.E.

    1999-12-01

    Proton degradation is investigated for several types of light-emitting diodes with wavelengths in the near infrared region. Several basic light-emitting diode (LED) technologies are compared, including homojunction and double-heterojunction devices. Homojunction LEDs fabricated with amphoteric dopants are far more sensitive to displacement damage than double-heterojunction LEDs, and are strongly affected by injection-enhanced annealing. Unit-to-unit variability remains an important issue for all LED technologies. For some technologies, degradation of the forward voltage characteristics appears to be more significant than degradation of light output.

  1. Long Persistent Light Emitting Diode Indicators

    ERIC Educational Resources Information Center

    Jia, Dongdong; Ma, Yiwei; Hunter, D. N.

    2007-01-01

    An undergraduate laboratory was designed for undergraduate students to make long persistent light emitting diode (LED) indicators using phosphors. Blue LEDs, which emit at 465 nm, were characterized and used as an excitation source. Long persistent phosphors, SrAl[subscript 2]O[subscript 4]:Eu[superscript 2+],Dy[superscript 3+] (green) and…

  2. Light-Emitting Diodes: A Hidden Treasure

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  3. Afterglow Organic Light-Emitting Diode.

    PubMed

    Kabe, Ryota; Notsuka, Naoto; Yoshida, Kou; Adachi, Chihaya

    2016-01-27

    An afterglow organic light-emitting diode (OLED) that displays electroluminescence with long transient decay after it is turned off is demonstrated. This OLED exhibits blue and green dual emission originating from fluorescence and phosphorescence, respectively. A phosphorescence lifetime of 4.3 s is achieved. PMID:26599764

  4. Phosphorescent Nanocluster Light-Emitting Diodes.

    PubMed

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    Devices utilizing an entirely new class of earth abundant, inexpensive phosphorescent emitters based on metal-halide nanoclusters are reported. Light-emitting diodes with tunable performance are demonstrated by varying cation substitution to these nanoclusters. Theoretical calculations provide insight about the nature of the phosphorescent emitting states, which involves a strong pseudo-Jahn-Teller distortion. PMID:26568044

  5. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    SciTech Connect

    Hui Cheng, Chuan Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying; Tong Du, Guo

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup −} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2 eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91 cd/A, 102 lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  6. Bioinspired Hybrid White Light-Emitting Diodes.

    PubMed

    Weber, Michael D; Niklaus, Lukas; Pröschel, Marlene; Coto, Pedro B; Sonnewald, Uwe; Costa, Rubén D

    2015-10-01

    The first bioinspired hybrid white-light-emitting diodes (bio-HLEDs) featuring protein cascade coatings are presented. For easy fabrication a new strategy to stabilize proteins in rubber-like material was developed. The synergy between the excellent features of fluorescent proteins and the easily processed rubber produces bio-HLEDs with less than 10% loss in luminous efficiency over 100 hours. PMID:26271025

  7. Light-Emitting Diodes: Solving Complex Problems

    NASA Astrophysics Data System (ADS)

    Planinšič, Gorazd; Etkina, Eugenia

    2015-05-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper1 provided an overview of possible uses of LEDs in physics courses. The second paper2 discussed how one could help students learn the foundational aspects of LED physics through a scaf-folded inquiry approach, specifically the ISLE cycle. The third paper3 showed how the physics inherent in the functioning of LEDs could help students deepen their understanding of sources of electric power and the temperature dependence of resistivity, and explore the phenomenon of fluorescence also using the ISLE cycle.4 The goal of this fourth paper is to use LEDs as black boxes that allow students to study certain properties of a system of interest, specifically mechanical, electric, electromagnetic, and light properties. The term "black box" means that we use a device without knowing the mechanism behind its operation.

  8. Light-Emitting Diodes: Learning New Physics

    NASA Astrophysics Data System (ADS)

    Planinšič, Gorazd; Etkina, Eugenia

    2015-04-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published in the February 2014 issue of TPT,1 provided an overview of possible uses of LEDs in a physics course. The second paper2 discussed how one could help students learn the foundational aspects of LED physics through a scaffolded inquiry approach, specifically the ISLE cycle. The goals of this paper are to show how the activities described in our second paper help to deepen student understanding of physics and to broaden student knowledge by exploring new phenomena such as fluorescence. Activities described in this paper are suitable for advanced high school courses, introductory courses for physics and engineering majors, courses for prospective physics teachers, and professional development programs.

  9. Wheat Under LED's (Light Emitting Diodes)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  10. NEAR-INFRARED LIGHT VIA LIGHT-EMITTING DIODE TREATMENT IS THERAPEUTIC AGAINST ROTENONE- AND MPP+-INDUCED NEUROTOXICITY

    PubMed Central

    Liang, Huan Ling; Whelan, Harry T; Eells, Janis T; Wong-Riley, Margaret TT

    2008-01-01

    Parkinson's disease is a common progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Mitochondrial dysfunction has been strongly implicated in the pathogenesis of Parkinson’s disease. Thus, therapeutic approaches that improve mitochondrial function may prove to be beneficial. Previously, we have documented that near-infrared light via light-emitting diode (LED) treatment was therapeutic to neurons functionally inactivated by tetrodotoxin, potassium cyanide (KCN), or methanol intoxication, and LED pretreatment rescued neurons from KCN-induced apoptotic cell death. The current study tested our hypothesis that LED treatment can protect neurons from both rotenone- and MPP+-induced neurotoxicity. Primary cultures of postnatal rat striatal and cortical neurons served as models, and the optimal frequency of LED treatment per day was also determined. Results indicated that LED treatments twice a day significantly increased cellular ATP content, decreased the number of neurons undergoing cell death, and significantly reduced the expressions of reactive oxygen species and reactive nitrogen species in rotenone- or MPP+-exposed neurons as compared to untreated ones. These results strongly suggest that LED treatment may be therapeutic to neurons damaged by neurotoxins linked to Parkinson’s disease by energizing the cells and increasing their viability. PMID:18440709

  11. Color control of nanowire InGaN/GaN light emitting diodes by post-growth treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Hezhi; Jacopin, Gwénolé; Neplokh, Vladimir; Largeau, Ludovic; Julien, François H.; Kryliouk, Olga; Tchernycheva, Maria

    2015-11-01

    Core/shell InGaN/GaN nanowire light emitting diodes (LEDs) based on vertically standing single nanowires and nanowire arrays were fabricated and extensively characterized. The emission of single wire LEDs with the same conformal contact geometry as the array device exhibits the same broadening as the array LED electroluminescence, which proves an excellent wire-to-wire homogeneity. The electroluminescence spectra present two peaks corresponding to the m-plane InGaN quantum well (blue emission) and to an In-rich region at the m-plane-semipolar plane junction (green emission), in agreement with structural characterizations. Modification of the contact layout and a post-growth plasma treatment enable strongly suppressing the unwanted green electroluminescence while increasing the intensity in the blue spectral range for the same injected electrical power. Electron beam induced current mapping proves the inhibition of the electrical activity of the top part of the nanowire after plasma treatment. Inductively coupled plasma etching of the In-rich region permits one to completely remove the green emission for all injection currents, but loss of intensity in the blue spectral range is observed. Selectively contacting the m-plane and plasma treatment of the top part of the nanowire appear as a viable solution for controlling the color of core/shell nanowire LEDs with an inhomogeneous indium composition.

  12. Color control of nanowire InGaN/GaN light emitting diodes by post-growth treatment.

    PubMed

    Zhang, Hezhi; Jacopin, Gwénolé; Neplokh, Vladimir; Largeau, Ludovic; Julien, François H; Kryliouk, Olga; Tchernycheva, Maria

    2015-11-20

    Core/shell InGaN/GaN nanowire light emitting diodes (LEDs) based on vertically standing single nanowires and nanowire arrays were fabricated and extensively characterized. The emission of single wire LEDs with the same conformal contact geometry as the array device exhibits the same broadening as the array LED electroluminescence, which proves an excellent wire-to-wire homogeneity. The electroluminescence spectra present two peaks corresponding to the m-plane InGaN quantum well (blue emission) and to an In-rich region at the m-plane-semipolar plane junction (green emission), in agreement with structural characterizations. Modification of the contact layout and a post-growth plasma treatment enable strongly suppressing the unwanted green electroluminescence while increasing the intensity in the blue spectral range for the same injected electrical power. Electron beam induced current mapping proves the inhibition of the electrical activity of the top part of the nanowire after plasma treatment. Inductively coupled plasma etching of the In-rich region permits one to completely remove the green emission for all injection currents, but loss of intensity in the blue spectral range is observed. Selectively contacting the m-plane and plasma treatment of the top part of the nanowire appear as a viable solution for controlling the color of core/shell nanowire LEDs with an inhomogeneous indium composition. PMID:26508299

  13. Study on the O2 Plasma Treatment of Indium Tin Oxide for Organic Light Emitting Diodes Using Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Jeong, Chang Hyun; Lee, June Hee; Lim, Jong Hyeuk; Lim, Jong Tae; Yeom, Geun Young

    2006-04-01

    In this study, the effect of O2 inductively coupled plasma (ICP) conditions for the indium tin oxide (ITO) surface treatment on the organic light emitting diode (OLED) device performances were investigated. By the O2 plasma treatment of ITO glass, better OLED device performances such as a lower turn-on voltage, a higher luminescence, and a higher power efficiency could be obtained and the use of lower oxygen pressure and higher ICP power improved the device properties further. DC-biasing of the ITO glass substrate degraded the device properties. The use of lower oxygen pressure and higher ICP power increased the densities of O2+ and O* in the plasma, and the plasma-treated ITO surface showed a lower carbon, a higher O/(Sn+In), and a higher Sn4+/In for the condition of lower oxygen pressure and higher ICP power. The improved OLED device properties with the ITO treated at the higher ICP power and the lower pressure appear to be from the increased hole injection to the OLED materials by decreasing the resistance of ITO and by increasing the work function of the ITO.

  14. Improved Cognitive Function After Transcranial, Light-Emitting Diode Treatments in Chronic, Traumatic Brain Injury: Two Case Reports

    PubMed Central

    Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2011-01-01

    Abstract Objective: Two chronic, traumatic brain injury (TBI) cases, where cognition improved following treatment with red and near-infrared light-emitting diodes (LEDs), applied transcranially to forehead and scalp areas, are presented. Background: Significant benefits have been reported following application of transcranial, low-level laser therapy (LLLT) to humans with acute stroke and mice with acute TBI. These are the first case reports documenting improved cognitive function in chronic, TBI patients treated with transcranial LED. Methods: Treatments were applied bilaterally and to midline sagittal areas using LED cluster heads [2.1″ diameter, 61 diodes (9 × 633 nm, 52 × 870 nm); 12–15 mW per diode; total power: 500 mW; 22.2 mW/cm2; 13.3 J/cm2 at scalp (estimated 0.4 J/cm2 to cortex)]. Results: Seven years after closed-head TBI from a motor vehicle accident, Patient 1 began transcranial LED treatments. Pre-LED, her ability for sustained attention (computer work) lasted 20 min. After eight weekly LED treatments, her sustained attention time increased to 3 h. The patient performs nightly home treatments (5 years); if she stops treating for more than 2 weeks, she regresses. Patient 2 had a history of closed-head trauma (sports/military, and recent fall), and magnetic resonance imaging showed frontoparietal atrophy. Pre-LED, she was on medical disability for 5 months. After 4 months of nightly LED treatments at home, medical disability discontinued; she returned to working full-time as an executive consultant with an international technology consulting firm. Neuropsychological testing after 9 months of transcranial LED indicated significant improvement (+1, +2SD) in executive function (inhibition, inhibition accuracy) and memory, as well as reduction in post-traumatic stress disorder. If she stops treating for more than 1 week, she regresses. At the time of this report, both patients are continuing treatment. Conclusions: Transcranial

  15. Light-Emitting Diodes and Optical Fibers

    NASA Astrophysics Data System (ADS)

    Dow, J. D.

    Semiconductors have become highly relevant to modern electronics, first with the transistor (Ge), then with Si for efficient electronic conduction.With the discovery of GaAs as an infrared light-emitter, efforts to develop other III-V semiconductors were targeted for colored light-emitting diodes, such as GaAs1 - x P x . It is now possible to produce light-emitting visible semiconducting materials, including a variety of III-V materials. One now has various light-emitters throughout the visible region of the spectrum, with automobile tail-lights and traffic lights being red, yellow, or green found in a variety of optical devices. Now there are many different optical devices, with materials optimized for their color, and for various other properties.In addition to developing colored semiconductors, it is clear that devices are needed with no color, for transparent optical fibers. Such ultra-transparent optical fibers have been developed over the years.

  16. Light-Emitting Diodes: A Hidden Treasure

    NASA Astrophysics Data System (ADS)

    Planinšič, Gorazd; Etkina, Eugenia

    2014-02-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general physics course (and in many advanced courses) either (I) as "black boxes" that allow students to study certain properties of a system of interest, (II) as physical systems that allow students to learn an astonishing amount of physics that they usually do not encounter in a regular introductory physics course, and (III) as non-traditional devices that allow students to construct concepts that are traditionally a part of a general physics course.

  17. A single blue nanorod light emitting diode.

    PubMed

    Hou, Y; Bai, J; Smith, R; Wang, T

    2016-05-20

    We report a light emitting diode (LED) consisting of a single InGaN/GaN nanorod fabricated by a cost-effective top-down approach from a standard LED wafer. The device demonstrates high performance with a reduced quantum confined Stark effect compared with a standard planar counterpart fabricated from the same wafer, confirmed by optical and electrical characterization. Current density as high as 5414 A cm(-2) is achieved without significant damage to the device due to the high internal quantum efficiency. The efficiency droop is mainly ascribed to Auger recombination, which was studied by an ABC model. Our work provides a potential method for fabricating compact light sources for advanced photonic integrated circuits without involving expensive or time-consuming fabrication facilities. PMID:27070200

  18. A single blue nanorod light emitting diode

    NASA Astrophysics Data System (ADS)

    Hou, Y.; Bai, J.; Smith, R.; Wang, T.

    2016-05-01

    We report a light emitting diode (LED) consisting of a single InGaN/GaN nanorod fabricated by a cost-effective top-down approach from a standard LED wafer. The device demonstrates high performance with a reduced quantum confined Stark effect compared with a standard planar counterpart fabricated from the same wafer, confirmed by optical and electrical characterization. Current density as high as 5414 A cm‑2 is achieved without significant damage to the device due to the high internal quantum efficiency. The efficiency droop is mainly ascribed to Auger recombination, which was studied by an ABC model. Our work provides a potential method for fabricating compact light sources for advanced photonic integrated circuits without involving expensive or time-consuming fabrication facilities.

  19. Light-Emitting Diodes for Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K.

    2014-06-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  20. Proton Degradation of Light-Emitting Diodes

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Rax, B. G.; Selva, L. E.

    1997-01-01

    The severe degradation of optocouplers in space has been shown to be mainly due to proton displacement damage in the light-emitting diodes that are used within the optocouplers. However, a variety of LED technologies can be used in optocouplers and their sensitivity to proton displacement damage varies by about two orders of magnitude. Optocouplers are very simple hybrid devices, and the type of LED can be readily changed by the manufacturers with little cost impact. many optocoupler manufacturers purchase LEDs from outside sources with little knowledge or control of the manufacturing process used for the LED, leading to the possibility of very dramatic differences in radiation response (JPL has observed such differences for one type of optocoupler that is used in a hybrid power converter).

  1. An entangled-light-emitting diode.

    PubMed

    Salter, C L; Stevenson, R M; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2010-06-01

    An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications. PMID:20520709

  2. Light-Emitting Diodes: Phosphorescent Nanocluster Light-Emitting Diodes (Adv. Mater. 2/2016).

    PubMed

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    On page 320, R. R. Lunt and co-workers demonstrate electroluminescence from earth-abundant phosphorescent metal halide nanoclusters. These inorganic emitters, which exhibit rich photophysics combined with a high phosphorescence quantum yield, are employed in red and near-infrared light-emitting diodes, providing a new platform of phosphorescent emitters for low-cost and high-performance light-emission applications. PMID:26749470

  3. Proton displacement damage in light-emitting and laser diodes

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.

    2000-01-01

    The effects of proton displacement damage on light-emitting diodes and laser diodes are discussed, comparing the radiation sensitivity of current technology devices with older devices for which data exists in the literature.

  4. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  5. Biologically Inspired Organic Light-Emitting Diodes.

    PubMed

    Kim, Jae-Jun; Lee, Jaeho; Yang, Sung-Pyo; Kim, Ha Gon; Kweon, Hee-Seok; Yoo, Seunghyup; Jeong, Ki-Hun

    2016-05-11

    Many animal species employ highly conspicuous traits as courtship signals for successful mating. Fireflies utilize their bioluminescent light as visual courtship signals. In addition to efficient bioluminescent light emission, the structural components of the firefly lantern also contribute to the enhancement of conspicuous optical signaling. Recently, these firefly lantern ultrastructures have attracted much interest and inspired highly efficient light management approaches. Here we report on the unique optical function of the hierarchical ultrastructures found in a firefly (Pyrocoelia rufa) and their biological inspiration of highly efficient organic light-emitting diode (OLED) applications. The hierarchical structures are comprised of longitudinal nanostructures and asymmetric microstructures, which were successfully replicated using geometry-guided resist reflow, replica molding, and polydimethylsiloxane (PDMS) oxidation. The external quantum efficiency (EQE) of the bioinspired OLEDs was enhanced by up to 61%. The bioinspired OLEDs clearly showed side-enhanced super-Lambertian emission with a wide-viewing angle. The highly efficient light extraction and wide-angle illumination suggest how the hierarchical structures likely improve the recognition of firefly optical courtship signals over a wide-angle range. At the same time, the biologically inspired designs provide a new paradigm for designing functional optical surfaces for lighting or display applications. PMID:27014918

  6. Thermally enhanced blue light-emitting diode

    NASA Astrophysics Data System (ADS)

    Xue, Jin; Zhao, Yuji; Oh, Sang-Ho; Herrington, William F.; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji; Ram, Rajeev J.

    2015-09-01

    We investigate thermoelectric pumping in wide-bandgap GaN based light-emitting diodes (LEDs) to take advantage of high junction temperature rather than avoiding the problem of temperature-induced efficiency droop through external cooling. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with nearly no reduction in the wall-plug efficiency (i.e., electrical-optical energy conversion efficiency) at bias V <ℏω/q . The LED is shown to work in a mode similar to a thermodynamic heat engine operating with charged carriers pumped into the active region by a combination of electrical work and Peltier heat (phonons) drawn from the lattice. In this optimal operating regime at 615 K, the LED injection current (3.26 A/cm2) is of similar magnitude to the operating point of common high power GaN based LEDs (5-35 A/cm2). This result suggests the possibility of removing bulky heat sinks in current high power LED products thus realizing a significant cost reduction for solid-state lighting.

  7. A micrometer-size movable light emitting area in a resonant tunneling light emitting diode

    NASA Astrophysics Data System (ADS)

    Pettinari, G.; Balakrishnan, N.; Makarovsky, O.; Campion, R. P.; Polimeni, A.; Capizzi, M.; Patanè, A.

    2013-12-01

    We report on the fabrication of a micrometer-size movable light emitting area in a GaAs/AlAs quantum well resonant tunneling p-i-n diode. The spatial position of the micrometer-size light emitting area shifts linearly with increasing applied bias, up to 30 μm for a bias increment of 0.2 V. Also, the simultaneous resonant tunneling injection of both electrons and holes into the quantum well states is achieved at specific positions of the diode, thus resulting in a tenfold increase of the electroluminescence intensity.

  8. Determining Planck's Constant Using a Light-emitting Diode.

    ERIC Educational Resources Information Center

    Sievers, Dennis; Wilson, Alan

    1989-01-01

    Describes a method for making a simple, inexpensive apparatus which can be used to determine Planck's constant. Provides illustrations of a circuit diagram using one or more light-emitting diodes and a BASIC computer program for simplifying calculations. (RT)

  9. Plant Growth Under Light Emitting Diode Irradiation.

    NASA Astrophysics Data System (ADS)

    Tennessen, Daniel John

    Plant growth under light emitting diodes (LEDs) was investigated to determine if LEDs would be useful to provide radiant energy for two plant processes, photosynthesis and photomorphogenesis. Photosynthesis of tomato (Lycopersicon esculentum L.) and Kudzu (Pueraria lobata (Willd) Ohwi.) was measured using photons from LEDs to answer the following: (1) Are leaves able to use red LED light for photosynthesis? and (2) Is the efficiency of photosynthesis in pulsed light equal to that of continuous light? In 175 Pa CO _2, or in response to changes in CO _2,<=af photosynthesis and ATP status were the same in LED as in white xenon arc light. In 35 Pa CO_2, photosynthesis was 10% lower in LED than in xenon arc light due to lowered stomatal conductance. The quantum efficiency of photosynthesis in pulsed light was equal to continuous light, even when pulses were twice as bright as sunlight. Xanthophyll pigments were not affected by these bright pulses. Photomorphogenesis of tobacco (Nicotiana tabacum L.), tomato (Lycopersicon esculentum Mill.) and transformed tobacco and tomato (expressing oat phytochrome-A) was assessed by growing plants under red LED lamps in an attempt to answer the following: (1) What is the developmental response of non-transformed and transformed tobacco to red LED light? and (2) Can tomato plants that grow tall and spindly in red LED light be made to grow short by increasing the amount of phytochrome-A? The short phenotype of transformed tobacco was not evident when plants were grown in LED light. Addition of photons of far-red or blue light to red light resulted in short transformed tobacco. Tomato plants grew three times as tall and lacked leaf development in LED versus white light, but transformed tomato remained short and produced fruit under LED light. I have determined that the LED photons are useful for photosynthesis and that the photon efficiency of photosynthesis is the same in pulsed as in continuous light. From responses of tobacco, I

  10. Encapsulation of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Visweswaran, Bhadri

    Organic Light Emitting Diodes (OLEDs) are extremely attractive candidates for flexible display and lighting panels due to their high contrast ratio, light weight and flexible nature. However, the materials in an OLED get oxidized by extremely small quantities of atmospheric moisture and oxygen. To obtain a flexible OLED device, a flexible thin-film barrier encapsulation with low permeability for water is necessary. Water permeates through a thin-film barrier by 4 modes: microcracks, contaminant particles, along interfaces, and through the bulk of the material. We have developed a flexible barrier film made by Plasma Enhanced Chemical Vapor Deposition (PECVD) that is devoid of any microcracks. In this work we have systematically reduced the permeation from the other three modes to come up with a barrier film design for an operating lifetime of over 10 years. To provide quantitative feedback during barrier material development, techniques for measuring low diffusion coefficient and solubility of water in a barrier material have been developed. The mechanism of water diffusion in the barrier has been identified. From the measurements, we have created a model for predicting the operating lifetime from accelerated tests when the lifetime is limited by bulk diffusion. To prevent the particle induced water permeation, we have encapsulated artificial particles and have studied their cross section. A three layer thin-film that can coat a particle at thicknesses smaller than the particle diameter is identified. It is demonstrated to protect a bottom emission OLED device that was contaminated with standard sized glass beads. The photoresist and the organic layers below the barrier film causes sideways permeation that can reduce the lifetime set by permeation through the bulk of the barrier. To prevent the sideways permeation, an impermeable inorganic grid made of the same barrier material is designed. The reduction in sideways permeation due to the impermeable inorganic grid

  11. Film Properties and Polycrystallization of Organic Dyes on ITOs with Surface Treatment for Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Iwama, Yuki; Mori, Tatsuo; Mizutani, Teruyoshi

    ITO(Indium-Tin-Oxide) has been now widely used as the transparent anode for organic light-emitting devices(OLEDs). We used various methods of ITO surface treatment and examined the effects of them by measuring contact angle and calculating surface energy. We also prepared OLEDs with ITO treated by each method, and estimated their characteristics. The surface of ITO treated by UV-O3 or O2-plasma was more hydrophilic than that treated by only organic rinse or no treatment, and consequently the characteristic of the OLED was improved. We suppose these treatments affect the hole injection from ITO into organic layer, due to ionization potential or surface cleanness. We also investigated time degradation of NPD films on the ITO substrates. The films deposited with high deposition rate porycrystallized faster.

  12. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. PMID:27214091

  13. Reshaping Light-Emitting Diodes To Increase External Efficiency

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Egalon, Claudio

    1995-01-01

    Light-emitting diodes (LEDs) reshaped, according to proposal, increasing amount of light emitted by decreasing fraction of light trapped via total internal reflection. Results in greater luminous output power for same electrical input power; greater external efficiency. Furthermore, light emitted by reshaped LEDs more nearly collimated (less diffuse). Concept potentially advantageous for conventional red-emitting LEDs. More advantageous for new "blue" LEDs, because luminous outputs and efficiencies of these devices very low. Another advantage, proposed conical shapes achieved relatively easily by chemical etching of semiconductor surfaces.

  14. Adjunctive dental therapy via tooth plaque reduction and gingivitis treatment by blue light-emitting diodes tooth brushing.

    PubMed

    Genina, Elina A; Titorenko, Vladimir A; Belikov, Andrey V; Bashkatov, Alexey N; Tuchin, Valery V

    2015-12-01

    The efficacy of blue light-emitting toothbrushes (B-LETBs) (405 to 420 nm, power density 2  mW/cm(2)) for reduction of dental plaques and gingival inflammation has been evaluated. Microbiological study has shown the multifactor therapeutic action of the B-LETBs on oral pathological microflora: in addition to partial mechanical removal of bacteria, photodynamic action suppresses them up to 97.5%. In the pilot clinical studies, subjects with mild to moderate gingivitis have been randomly divided into two groups: a treatment group that used the B-LETBs and a control group that used standard toothbrushes. Indices of plaque, gingival bleeding, and inflammation have been evaluated. A significant improvement of all dental indices in comparison with the baseline (by 59%, 66%, and 82% for plaque, gingival bleeding, and inflammation, respectively) has been found. The treatment group has demonstrated up to 50% improvement relative to the control group. We have proposed the B-LETBs to serve for prevention of gingivitis or as an alternative to conventional antibiotic treatment of this disease due to their effectiveness and the absence of drug side effects and bacterial resistance. PMID:26720884

  15. Adjunctive dental therapy via tooth plaque reduction and gingivitis treatment by blue light-emitting diodes tooth brushing

    NASA Astrophysics Data System (ADS)

    Genina, Elina A.; Titorenko, Vladimir A.; Belikov, Andrey V.; Bashkatov, Alexey N.; Tuchin, Valery V.

    2015-12-01

    The efficacy of blue light-emitting toothbrushes (B-LETBs) (405 to 420 nm, power density 2 mW/cm2) for reduction of dental plaques and gingival inflammation has been evaluated. Microbiological study has shown the multifactor therapeutic action of the B-LETBs on oral pathological microflora: in addition to partial mechanical removal of bacteria, photodynamic action suppresses them up to 97.5%. In the pilot clinical studies, subjects with mild to moderate gingivitis have been randomly divided into two groups: a treatment group that used the B-LETBs and a control group that used standard toothbrushes. Indices of plaque, gingival bleeding, and inflammation have been evaluated. A significant improvement of all dental indices in comparison with the baseline (by 59%, 66%, and 82% for plaque, gingival bleeding, and inflammation, respectively) has been found. The treatment group has demonstrated up to 50% improvement relative to the control group. We have proposed the B-LETBs to serve for prevention of gingivitis or as an alternative to conventional antibiotic treatment of this disease due to their effectiveness and the absence of drug side effects and bacterial resistance.

  16. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  17. High Brightness GaN-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Lee, Ya-Ju; Lu, Tien-Chang; Kuo, Hao-Chung; Wang, Shing-Chung

    2007-06-01

    This paper reviews our recent progress of GaN-based high brightness light-emitting diodes (LEDs). Firstly, by adopting chemical wet etching patterned sapphire substrates in GaN-based LEDs, not only could increase the extraction quantum efficiency, but also improve the internal quantum efficiency. Secondly, we present a high light-extraction 465-nm GaN-based vertical light-emitting diode structure with double diffuse surfaces. The external quantum efficiency was demonstrated to be about 40%. The high performance LED was achieved mainly due to the strong guided-light scattering efficiency while employing double diffuse surfaces.

  18. Carbon nanotube-based organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Bansal, Malti; Srivastava, Ritu; Lal, C.; Kamalasanan, M. N.; Tanwar, L. S.

    2009-11-01

    Carbon nanotubes; revolutionary and fascinating from the materials point of view and exceedingly sensational from a research point of view; are standing today at the threshold between inorganic electronics and organic electronics and posing a serious challenge to the big daddies of these two domains in electronics i.e., silicon and indium tin oxide (ITO). In the field of inorganic electronics, carbon nanotubes offer advantages such as high current carrying capacity, ballistic transport, absence of dangling bonds, etc. and on the other hand, in the field of organic electronics, carbon nanotubes offer advantages such as high conductivity, high carrier mobility, optical transparency (in visible and IR spectral ranges), flexibility, robustness, environmental resistance, etc. and hence, they are seriously being considered as contenders to silicon and ITO. This review traces the origin of carbon nanotubes in the field of organic electronics (with emphasis on organic light emitting diodes) and moves on to cover the latest advances in the field of carbon nanotube-based organic light emitting diodes. Topics that are covered within include applications of multi-wall nanotubes and single-wall nanotubes in organic light emitting diodes. Applications of carbon nanotubes as hole-transport layers, as electron-transport layers, as transparent electrodes, etc. in organic light emitting diodes are discussed and the daunting challenges facing this progressive field today are brought into the limelight.

  19. The Light-Emitting Diode as a Light Detector

    ERIC Educational Resources Information Center

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  20. Singlet oxygen and organic light-emitting diodes

    SciTech Connect

    Jacobs, S.J.; Sinclair, M.B.; Valencia, V.S.; Kepler, R.G.; Clough, R.L.; Scurlock, R.D.; Ogilby, P.R.

    1995-07-01

    The preparation of light emitting diodes employing a new class of materials, 5,10-dihetera 5,10-dihydro-indeno[3,2b]indenes, as hole transport agents is described. These materials have been found to be more resistant to degradation by singlet oxygen than a poly(p-phenylene vinylene) (PPV) derivative.

  1. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  2. A multi-source portable light emitting diode spectrofluorometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A portable luminescence spectrofluorometer weighing only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed and evaluated. Excitation using a sequence of seven individual broad-band LED emission sources enabled the generation of excitation-emission spectra usi...

  3. Atom probe tomography of a commercial light emitting diode

    NASA Astrophysics Data System (ADS)

    Larson, D. J.; Prosa, T. J.; Olson, D.; Lefebvre, W.; Lawrence, D.; Clifton, P. H.; Kelly, T. F.

    2013-11-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device.

  4. Low-temperature treatment of semiconducting interlayers for high-efficiency light-emitting diodes based on a green-emitting polyfluorene derivative

    NASA Astrophysics Data System (ADS)

    Lazzerini, G. M.; Di Stasio, F.; Fléchon, C.; Caruana, D. J.; Cacialli, F.

    2011-12-01

    We investigate the scope for low-temperature treatment of exciton/electron blocking interlayers in light-emitting diodes based on poly(9,9'-dioctylfiuorene-alt-benzothiadiazole) (F8BT). We focus on poly(9,9'-dioctylfluorene-alt-N-(4-butylphenyl)-diphenylamine) (TFB) interlayers processed at temperatures up to 50 °C, i.e., far below the glass transition temperature of TFB (˜156 °C). Continuous-wave and time-resolved photoluminescence studies confirm the formation of both excitons and exciplex species, as a result of the F8BT/TFB intermixing. Interestingly, however, we can still increase the electroluminescence external quantum efficiency from 0.05% to 0.5% and 1% for progressively thicker TFB films. We propose that a degree of intermixing may become acceptable as a trade-off to achieve low-temperature processability.

  5. Improvement of device performance of polymer organic light-emitting diodes on smooth transparent sheet with graphene films synthesized by plasma treatment

    NASA Astrophysics Data System (ADS)

    Okigawa, Yuki; Mizutani, Wataru; Suzuki, Kenkichi; Ishihara, Masatou; Yamada, Takatoshi; Hasegawa, Masataka

    2015-09-01

    Because graphene films have one-atom thickness, the morphology of the transparent sheets could have a greater effect on the performance of organic light-emitting diode (OLED) devices with graphene films than on that with indium tin oxide (ITO). In this study, we have evaluated the polymer OLED devices with graphene films synthesized by plasma treatment on poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) sheets having high flatness. The results imply that the surface roughness of the transparent sheets predominantly affects the luminescence of polymer OLED devices with graphene films. The suppression of leakage current and a luminescence higher than 8000 cd/m2 at 15 V were attained for the devices on the transparent sheet with higher flatness in spite of the presence of large sharp spikes.

  6. Naturally formed graded junction for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shao, Yan; Yang, Yang

    2003-09-01

    In this letter, we report naturally-formed graded junctions (NFGJ) for organic light-emitting diodes (OLEDs). These junctions are fabricated using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. Upon heating, materials sublimate sequentially according to their vaporizing temperatures forming the graded junction. Two kinds of graded structures, sharp and shallow graded junctions, can be formed based on the thermal properties of the selected materials. The NFGJ OLEDs have shown excellent performance in both brightness and lifetime compared with heterojunction devices.

  7. Design of vertically-stacked polychromatic light-emitting diodes.

    PubMed

    Hui, K N; Wang, X H; Li, Z L; Lai, P T; Choi, H W

    2009-06-01

    A new design for a polychromatic light-emitting diode (LED) is proposed and demonstrated. LED chips of the primary colors are physically stacked on top of each other. Light emitted from each layer of the stack passes through each other, and thus is mixed naturally without additional optics. As a color-tunable device, a wide range of colors can be generated, making it suitable for display purposes. As a phosphor-free white light LED, luminous efficacy of 30 lm/watt was achieved. PMID:19506637

  8. Vegetable surface sterilization system using UVA light-emitting diodes.

    PubMed

    Aihara, Mutsumi; Lian, Xin; Shimohata, Takaaki; Uebanso, Takashi; Mawatari, Kazuaki; Harada, Yumi; Akutagawa, Masatake; Kinouchi, Yohsuke; Takahashi, Akira

    2014-01-01

    Surface sterilization of fresh produce has been needed in the food manufacturing/processing industry. Here we report a UVA-LED (Ultra Violet A-Light Emitting Diode) system for surface sterilization that is safe, efficacious, low cost, and apparently harmless to fresh produce. To test the system, Escherichia coli strain DH5α was spot-inoculated onto vegetable tissues, and treated under UVA-LED. Tissues were homogenized and bacteria quantified by colony-forming assay. Possible effects of UVA-LED on vegetable quality were evaluated by HPLC. Tissue weight changes were checked after treatment at 4℃, 15℃, and 30℃. Bacterial inactivation by UVA-LED radiation was observed after a 10 min treatment and increased with increasing time of irradiation. The log survival ratio reached -3.23 after a 90 min treatment. Bacterial cells surviving treatment grew slowly compared to non-irradiated control cells. Cabbage tissue lost weight over time after treatment, and weight loss increased with increasing incubation temperature, but there was no difference between losses by UVA-LED treated and control tissues at any temperature tested. In addition, no differences of Vitamin C content in cabbage tissue were detected by HPLC after UVA-LED treatment. These results suggest that UVA-LED treatment has great potential for vegetable surface sterilization in the food manufacturing/processing industry. PMID:25264046

  9. Characterization of an Optical Device with an Array of Blue Light Emitting Diodes LEDS for Treatment of Neonatal Jaundice.

    NASA Astrophysics Data System (ADS)

    Sebbe, Priscilla Fróes; Villaverde, Antonio G. J. Balbin; Nicolau, Renata Amadei; Barbosa, Ana Maria; Veissid, Nelson

    2008-04-01

    Phototherapy is a treatment that consists in irradiating a patient with light of high intensity, which promotes beneficial photochemical transformations in the irradiated area. The phototherapy for neonates is applied to break down the bilirubin, an organic pigment that is a sub product of the erythrocytes degradation, and to increase its excretion by the organism. Neonates should be irradiated with light of wavelength that the bilirubin can absorb, and with spectral irradiances between 4 and 16 μW/cm2/nm. The efficiency of the treatment depends on the irradiance and the area of the body that is irradiated. A convenient source of light for treatment of neonatal jaundice is the blue Light Emitter Diode (LED), emitting in the range of 400 to 500 nm, with power of the order of 10-150 mW. Some of the advantages for using LEDS are: low cost, operating long lifetime (over 100,000 hours), narrow emission linewith, low voltage power supply requirement and low heating. The aim of this work was to build and characterize a device for phototherapy treatment of neonatal jaundice. This consists of a blanket with 88 blue LEDs (emission peak at 472 nm), arranged in an 8×11 matrix, all connected in parallel and powered by a 5V-2A power supply. The device was characterized by using a spectroradiometer USB2000 (Ocean Optics Inc, USA), with a sensitivity range of 339-1019 nm. For determination of light spatial uniformity was used a calibrated photovoltaic sensor for measuring light intensity and mapping of the light intensity spatial distribution. Results indicate that our device shows a uniform spatial distribution for distances from the blanket larger than 10 cm, with a maximum of irradiance at such a distance. This device presenting a large and uniform area of irradiation, efficient wavelength emission and high irradiance seems to be promising for neonates' phototherapy treatment.

  10. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  11. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  12. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes

    PubMed Central

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

    2015-01-01

    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  13. Silicon light-emitting diode antifuse: properties and devices

    NASA Astrophysics Data System (ADS)

    LeMinh, Phuong; Holleman, Jisk

    2006-09-01

    This paper reviews our research on the silicon light-emitting diode antifuse, a tiny source featuring a full white-light spectrum. Optical and electrical properties of the device are discussed together with the modelling of the spectral emission, explaining the emitting mechanism of the device. An estimation of the antifuse's internal power conversion efficiency reveals a reasonable value of at least 10-5. Photochemical effect on two types of photoresists were carried out showing a clear impact of the emitted photons in the near ultraviolet range. The two integrated device prototypes, namely the opto-isolator which communicates optically and the microscale opto-fluidic device which senses the difference in the refractive indices of liquids, indicate that the light-emitting diode antifuse has the potential for sensor and actuator applications.

  14. Organic light-emitting diodes from homoleptic square planar complexes

    SciTech Connect

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  15. AC Impedance Studies of Polymer Light-emitting Electrochemical Cells and Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Yongfang; Gao, Jun; Heeger, Alan J.; Yu, Gang; Cao, Yong

    1998-03-01

    The alternating current (ac) impedance of polymer light-emitting electrochemical cells (LECs) is studied and compared with that of polymer light-emitting diodes(LEDs) in the frequency range from 100 Hz to 5 M Hz. The device capacitance, resistance and interface characteristics are analyzed using the frequency dependence of the impedance and plots of the imaginary component of the impedance (Z") vs. the real part (Z'). At low bias voltages, polymer LEDs behave as pure capacitors whereas the polymer blend in the LEC exhibits an ionic conductivity contribution to the impedance. With dc bias higher than the energy gap of the semiconducting polymer (eV > Eg), the Z" vs. Z' plot of the LEC is a flattened semicircle, while that of LED is a semicircle with a small tail at low frequencies. In the LED, the capacitance is independent of voltages, the film resistance decreases as the bias voltage is increased in forward bias due to charge injection at higher voltages. In the LEC, the capacitance increases at voltages sufficient to induce electrochemical redox and doping near the electrodes. From this increase, the thickness of the i-layer of the p-i-n junction is estimated to approximately 0.8 of the film thickness (at the bias voltage of 3 V). Thus, in the LEC under operating conditions, the crossover region from p-type occupies most of the film thickness.

  16. Versatile multispectral microscope based on light emitting diodes

    NASA Astrophysics Data System (ADS)

    Brydegaard, Mikkel; Merdasa, Aboma; Jayaweera, Hiran; Ålebring, Jens; Svanberg, Sune

    2011-12-01

    We describe the development of a novel multispectral microscope, based on light-emitting diodes, capable of acquiring megapixel images in thirteen spectral bands from the ultraviolet to the near infrared. The system captures images and spectra in transmittance, reflectance, and scattering modes. We present as examples of applications ground truth measurements for remote sensing and parasitology diagnostics. The system is a general purpose scientific instrument that could be used to develop dedicated simplified instruments with optimal bands and mode selection.

  17. Surface-plasmon-enhanced microcavity organic light-emitting diodes.

    PubMed

    Zhang, Hongmei; Chen, Shufen; Zhao, Dewei

    2014-12-15

    Efficiency enhancement of organic light-emitting diodes (OLEDs) can be obtained by the combination of microcavity effect and Au nanoparticles based surface plasmons. Au nanoparticles are thermally deposited on distributed Bragg reflector (DBR)-coated glass substrate, leading to realization of microcavity effect and localized surface plasmon effect. Our results show the current efficiency of OLEDs with DBR/Au nanoparticles as anode is increased by 72% compared to that with ITO as anode. PMID:25607492

  18. Do infrared light-emitting diodes have a stimulatory effect on wound healing? From an in-vitro trial to patient treatment

    NASA Astrophysics Data System (ADS)

    Vinck, Elke; Cagnie, B.; Cambier, D.; Cornelissen, M.

    2002-10-01

    Variable effects of different forms of light therapy on wound healing have been reported. This preliminary study covers the efficacy of infrared light emitting diodes (LED) in this domain. Cultured embryonic chicken fibroblasts were treated in a controlled, radomised manner. LED irradiation was performed three consecutive days with a wavelength of 950 nm and a power output of 160 mW, at 0,6 cm distance from the fibroblasts. Each treatment lasted 6 minutes, resulting in a surface energy denstiy of 3,2 J/cm2. The results indicated that LED treatment does not influence fibroblast proliferation at the applied energy density and irradiation frequency (p=0,474). Meanwhile the effects of LED on wound healing in vivo were studied by treating a surgical incision (6 cm) on the lateral side of the right foot in a male patient. The treatment started after 13 days, when initial stitches were being removed. The same parameters as in the in vitro study were used but the treatment was performed five times. The healing could only be evaluated clinically, the irradiated area (2,6 cm) showed a more appropriate contraction, less discoloration and a less hypertrophic scar than the control area (3,4 cm). The used parameters failed to demonstrate any biological effect of LED irradiation in vitro, although the case study on the other hand illustrated a beneficial effect.

  19. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current (AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For educational purposes, however, an LED-based rectifier is ideal because it allows students to literally see the rectifier operating. Here I'll discuss the practical aspects of building a full AC adapter incorporating an LED-based rectifier and ideas on how to use it in class.

  20. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  1. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOEpatents

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei; Barton, Thomas J.; Vardeny, Zeev V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  2. Poly (p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  3. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOEpatents

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei

    1994-08-02

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  4. Study of ethanolamine surface treatment on the metal-oxide electron transport layer in inverted InP quantum dot light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Jang, Ilwan; Kim, Jiwan; Park, Chang Jun; Ippen, Christian; Greco, Tonino; Oh, Min Suk; Lee, Jeongno; Kim, Won Keun; Wedel, Armin; Han, Chul Jong; Park, Sung Kyu

    2015-11-01

    The present work shows the effect of ethanolamine surface treatment on inverted InP quantum dot light-emitting diodes (QD-LEDs) with inorganic metal oxide layers. In the inverted structure of ITO/ZnO/InP QDs/CBP/MoO3/Al, a sol-gel derived ZnO film was used as an electron transport layer (ETL) and MoO3 was used as a hole injection layer (HIL). First, ethanolamine was treated as a surface modifier on top of the ZnO electron transport layer. The optical performance of the QD-LED device was improved by the ethanolamine surface treatment. Second, low temperature annealing (<200°C) was performed on the ZnO sol-gel electron transport layer, followed by an investigation of the effect of the ZnO annealing temperature. The efficiency of the inverted QD-LEDs was significantly enhanced (more than 3-fold) by optimization of the ZnO annealing temperature. [Figure not available: see fulltext.

  5. Broadband Light-Emitting Diodes with One-Dimensional Photonic Crystal Layer

    NASA Astrophysics Data System (ADS)

    Chiang, Jung-Sheng; Tseng, Chun-Lung; Chung, Ken-Lin; Lin, Yen-Sheng; Sun, Nai-Hsiang

    2016-01-01

    In this article, a broadband gallium-nitride-based light-emitting diode with a one-dimensional photonic crystal layer is investigated. The broadband light-emitting diode using the proposed backside reflector has high reflectance (>95%) over a 270-nm bandwidth in visible light at an arbitrary incidence angle. A broadband light-emitting diode of high output power due to the high reflectivity is achieved. Also reported are the results for light-emitting diodes by the transistor outline can (TO-can) package. The proposed light-emitting diodes possess broadband high reflected spectra, high output power for light extraction, and a good view angle.

  6. All-solution processed transparent organic light emitting diodes.

    PubMed

    Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander

    2015-12-21

    In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device. PMID:26566172

  7. All-solution processed transparent organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander

    2015-11-01

    In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device.

  8. Bright light-emitting diodes based on organometal halide perovskite

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M.; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J.; Friend, Richard H.

    2014-09-01

    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI3-xClx perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9‧-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr-1 m-2 at a current density of 363 mA cm-2, with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m-2 at a current density of 123 mA cm-2, giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

  9. Enhancing the electroluminescence efficiency of Si NC/SiO2 superlattice-based light-emitting diodes through hydrogen ion beam treatment.

    PubMed

    Fu, Sheng-Wen; Chen, Hui-Ju; Wu, Hsuan-Ta; Chen, Shao-Ping; Shih, Chuan-Feng

    2016-03-24

    This paper presents a novel method for enhancing the electroluminescence (EL) efficiency of ten-period silicon-rich oxide (SRO)/SiO2 superlattice-based light-emitting diodes (LEDs). A hydrogen ion beam (HIB) was used to irradiate each SRO layer of the superlattices to increase the interfacial roughness on the nanoscale and the density of the Si nanocrystals (Si NCs). Fowler-Nordheim (F-N) tunneling was the major mechanism for injecting the carriers into the Si NCs. The barrier height of the F-N tunneling was lowered by forming a nano-roughened interface and the nonradiative Pb centers were passivated through the HIB treatment. Additionally, the reflectance of the LEDs was lowered because of the nano-roughened interface. These factors considerably increased the slope efficiency of EL and the maximum output power of the LEDs. The lighting efficiency increased by an order of magnitude, and the turn-on voltage decreased considerably. This study established an efficient approach for obtaining bright Si NC/SiO2 superlattice-based LEDs. PMID:26965185

  10. Enhancing the electroluminescence efficiency of Si NC/SiO2 superlattice-based light-emitting diodes through hydrogen ion beam treatment

    NASA Astrophysics Data System (ADS)

    Fu, Sheng-Wen; Chen, Hui-Ju; Wu, Hsuan-Ta; Chen, Shao-Ping; Shih, Chuan-Feng

    2016-03-01

    This paper presents a novel method for enhancing the electroluminescence (EL) efficiency of ten-period silicon-rich oxide (SRO)/SiO2 superlattice-based light-emitting diodes (LEDs). A hydrogen ion beam (HIB) was used to irradiate each SRO layer of the superlattices to increase the interfacial roughness on the nanoscale and the density of the Si nanocrystals (Si NCs). Fowler-Nordheim (F-N) tunneling was the major mechanism for injecting the carriers into the Si NCs. The barrier height of the F-N tunneling was lowered by forming a nano-roughened interface and the nonradiative Pb centers were passivated through the HIB treatment. Additionally, the reflectance of the LEDs was lowered because of the nano-roughened interface. These factors considerably increased the slope efficiency of EL and the maximum output power of the LEDs. The lighting efficiency increased by an order of magnitude, and the turn-on voltage decreased considerably. This study established an efficient approach for obtaining bright Si NC/SiO2 superlattice-based LEDs.

  11. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    SciTech Connect

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  12. Medical applications of space light-emitting diode technology-space station and beyond

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Donohoe, Deborah L.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W.; Weyenberg, George T.; Larson, David L.; Meyer, Glenn A.; Caviness, James A.

    1999-01-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  13. Multilayer light emitting diodes using a PPV based copolymer

    NASA Astrophysics Data System (ADS)

    Nguyen, T. P.; Chen, L. C.; Wang, X.; Huang, Z.

    1998-01-01

    We have investigated the electrical and optical properties of poly((2,5-(dimethoxy) p-phenylene vinylene)- p-phenylene vinylene) (PDMeOPV/PPV) copolymer used as an emitting layer in light emitting diodes. With p-phenylene vinylene (PPV) used as a hole transport layer and polyphenylquinoxaline (PPQ) as an electron transport layer, the emission intensity of the devices has substantially increased without alteration of the transport property. The different conduction mechanisms in the diodes were examined and discussed in terms of the energy band diagrams of the polymer layers. A balance of the injected charge carriers confined in the copolymer could explain the enhancement of the performance of the multilayer diodes.

  14. Performance and trends of high power light emitting diodes

    NASA Astrophysics Data System (ADS)

    Bierhuizen, Serge; Krames, Michael; Harbers, Gerard; Weijers, Gon

    2007-09-01

    We will discuss the performance, progress and trend of High Power Light Emitting Diodes (HP-LEDs), suitable for high luminance applications like micro-display projection, car headlamps, spot lamps, theatre lamps, etc. Key drivers for the high luminance applications are LED parameters such as internal quantum efficiency, extraction efficiency, drive current, operating temperature and optical coupling efficiency, which are important for most applications as they also enable higher lumen/$ ratios. Historical progress, prospects for improving these parameters and potential optical luminance enhancement methods to meet the demands for the various illumination applications are presented.

  15. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.

  16. Numerical model for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tutiš, E.; Bussac, M. N.; Masenelli, B.; Carrard, M.; Zuppiroli, L.

    2001-01-01

    An extensive numerical model recently developed for the multilayer organic light-emitting diode is described and applied to a set of real devices. The model contains a detailed description of electrical contacts including dipolar layer formation, thermionic and tunneling injection, space charge effects, field dependent mobilities and recombination processes. The model is applied to simulate several single layer devices and the family of bilayer devices made in our group. It provides insight into the energy level shifts, internal electric fields and charge distribution (and consequently recombination) throughout the device. Finally, the analysis is extended to the optimization of bilayer device.

  17. Advances and prospects in nitrides based light-emitting-diodes

    NASA Astrophysics Data System (ADS)

    Jinmin, Li; Zhe, Liu; Zhiqiang, Liu; Jianchang, Yan; Tongbo, Wei; Xiaoyan, Yi; Junxi, Wang

    2016-06-01

    Due to their low power consumption, long lifetime and high efficiency, nitrides based white light-emitting-diodes (LEDs) have long been considered to be a promising technology for next generation illumination. In this work, we provide a brief review of the development of GaN based LEDs. Some pioneering and significant experiment results of our group and the overview of the recent progress in this field are presented. We hope it can provide some meaningful information for the development of high efficiency GaN based LEDs and solid-state-lighting. Project supported by the National High Technology Research and Development Program of China (No. 2013AA03A101).

  18. Light outcoupling enhanced flexible organic light-emitting diodes.

    PubMed

    Ou, Qing-Dong; Xu, Lu-Hai; Zhang, Wen-Yue; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Chen, Jing-De; Tang, Jian-Xin

    2016-03-21

    Flexible organic light-emitting diodes (OLEDs) are emerging as a leading technology for rollable and foldable display applications. For the development of high-performance flexible OLEDs on plastic substrate, we report a transparent nanocomposite electrode with superior mechanical, electrical, and optical properties, which is realized by integrating the nanoimprinted quasi-random photonic structures into the ultrathin metal/dielectric stack to collectively optimize the electrical conduction and light outcoupling capabilities. The resulting flexible OLEDs with green emission yield the enhanced device efficiency, reaching the maximum external quantum efficiency of 43.7% and luminous efficiency of 154.9 cd/A, respectively. PMID:27136885

  19. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  20. Diverse Optimal Molecular Libraries for Organic Light-Emitting Diodes.

    PubMed

    Rupakheti, Chetan; Al-Saadon, Rachael; Zhang, Yuqi; Virshup, Aaron M; Zhang, Peng; Yang, Weitao; Beratan, David N

    2016-04-12

    Organic light-emitting diodes (OLEDs) have wide-ranging applications, from lighting to device displays. However, the repertoire of organic molecules with efficient blue emission is limited. To address this limitation, we have developed a strategy to design property-optimized, diversity-oriented libraries of structures with favorable fluorescence properties. This approach identifies novel diverse candidate organic molecules for blue emission with strong oscillator strengths and low singlet-triplet energy gaps that favor thermally activated delayed fluorescence (TADF) emission. PMID:26950518

  1. New materials for organic light-emitting diodes

    SciTech Connect

    Jacobs, S.J.; Pollagi, T.P.; Sinclair, M.B.; Scurlock, R.D.; Ogilby, P.R.

    1995-12-01

    We have investigated the performance of a class of heterocycles, 5, 10-dihetera-5,10-dihydroindeno[3,2b]indenes, as hole transport agents in simple double heterostructure organic light-emitting diodes with tris(8-hydroxyquinoline)aluminum (Alq). The best of these materials, 5,10-dihydroindolo[3,2b]indole, yields devices with luminance and lifetimes comparable to those obtained using N,N{prime}-di-(3-methylphenyl)-N,N{prime}diphenyl-4,4{prime}-diaminobiphenyl (TPD) as a hole transporting material.

  2. Topical and Intradermal Efficacy of Photodynamic Therapy with Methylene Blue and Light-Emitting Diode in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania braziliensis

    PubMed Central

    Sbeghen, Mônica Raquel; Voltarelli, Evandra Maria; Campois, Tácito Graminha; Kimura, Elza; Aristides, Sandra Mara Alessi; Hernandes, Luzmarina; Caetano, Wilker; Hioka, Noboru; Lonardoni, Maria Valdrinez Campana; Silveira, Thaís Gomes Verzignassi

    2015-01-01

    Introduction: The topical and intradermal photodynamic therapy (PDT) effect of methylene blue (MB) using light-emitting diode (LED) as light source (MB/LED-PDT) in the treatment of lesions of American cutaneous leishmaniasis (ACL) caused by Leishmania braziliensis in hamsters were investigated. Methods: Hamsters were infected in the footpad with 4×107 promastigotes of L. braziliensis and divided in 4 groups: Control group was not treated, AmB group was treated with amphotericin B, MB-Id group received intradermal MB at the edge of the lesion and MB-Tp group received MB topic. After treatment with MB, the animals were illuminated using red LEDs at the 655 nm wavelength for 1 hour. The MB/LED-PDT was carried out three times a week for 12 weeks. Results: Animals of MB-Tp group presented lesion healing with significant diminution in extent of the lesion, and reduced parasite burden compared to control group; however, no significant difference was seen compared to the AmB group. MB-Tp group also showed reconstitution of the epithelium, the formation of collagen fibers, organization in the epidermis, a little disorganization and inflammation in the dermis. MB-Id was ineffective in all parameters evaluated, and it was comparable to the control group results. Conclusion: These data show that PDT with the use of MB-Tp and LED may be an alternative for the treatment of ACL. However, additional studies are being conducted to assess the potential of MB/LED-PDT, alone or in combination with conventional therapy, for the treatment of ACL. PMID:26464777

  3. White Organic Light-Emitting Diode Using Blue-Light-Emitting Zn(HPB)2 Material

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Eun; Kim, Won-Sam; Lee, Burm-Jong; Kwon, Young-Soo

    2007-04-01

    A novel blue light emitter, zinc(II) [2-(2-hydroxyphenyl)benzoxazole] [Zn(HPB)2], has been synthesized and evaluated in organic light-emitting diodes (OLED). Hereby, an OLED with a white light emission and a high color stability using Zn(HPB)2 and a layer of tris(8-quinolinolato) aluminum (Alq3) doped with 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) (Alq3:DCJTB) as emitters has been demonstrated. The structure of this OLED is indium-tin-oxide (ITO)/N,N'-bis-(1-naphthl)-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB; 40 nm)/Zn(HPB)2 (40 nm)/Alq3:DCJTB (40 nm)/LiF/Al. The Commission Internationale de l’Eclairage (CIE) coordinates of the white emission are (0.32, 0.33) at an applied voltage of 14 V. The photoluminescence (PL) and electroluminescence (EL) spectra of Zn(HPB)2 showed emission peaks at a wavelength of 455 nm.

  4. A novel yellow phosphor for white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; Li, Pan-Lai; Yang, Zhi-Ping; Guo, Qing-Lin; Li, Xu

    2010-01-01

    This paper reports that a novel yellow phosphor, LiSrBO3:Eu2+, was synthesized by the solid-state reaction. The excitation and emission spectra indicate that this phosphor can be effectively excited by ultraviolet (360 and 400 nm) and blue (425 and 460 nm) light, and exhibits a satisfactory yellow performance (565 nm). The role of concentration of Eu2+ on the emission intensity in LiSrBO3 is studied, and it is found that the critical concentration is 3 mol%, and the concentration self-quenching mechanism is the dipole-dipole interaction according to the Dexter theory. White light emitting diodes were generated by using an InGaN chip (460 nm or 400 nm) with LiSrBO3:Eu2+ phosphor, the CIE chromaticity is (x = 0.341, y = 0.321) and (x = 0.324, y = 0.318), respectively. Therefore, LiSrBO3:Eu2+ is a promising yellow phosphor for white light emitting diodes.

  5. All-solution processed polymer light-emitting diode displays

    NASA Astrophysics Data System (ADS)

    Zheng, Hua; Zheng, Yina; Liu, Nanliu; Ai, Na; Wang, Qing; Wu, Sha; Zhou, Junhong; Hu, Diangang; Yu, Shufu; Han, Shaohu; Xu, Wei; Luo, Chan; Meng, Yanhong; Jiang, Zhixiong; Chen, Yawen; Li, Dongyun; Huang, Fei; Wang, Jian; Peng, Junbiao; Cao, Yong

    2013-06-01

    Adopting the emerging technology of printed electronics in manufacturing novel ultrathin flat panel displays attracts both academic and industrial interests because of the challenge in the device physics and the potential of reducing production costs. Here we produce all-solution processed polymer light-emitting diode displays by solution-depositing the cathode and utilizing a multifunctional buffer layer between the cathode and the organic layers. The use of ink-jetted conducting nanoparticles as the cathode yields high-resolution cathode patterns without any mechanical stress on the organic layers. The buffer layer, which offers the functions of solvent-proof electron injection and proper affinity, is fabricated by mixing the water/alcohol-soluble polymer and a curable epoxy adhesive. Our 1.5-inch polymer light-emitting diode displays are fabricated without any dead pixels or dead lines. The all-solution process eliminates the need for high vacuum for thermal evaporation of the cathode, which paves the way to industrial roll-to-roll manufacturing of flat panel displays.

  6. All-solution processed polymer light-emitting diode displays.

    PubMed

    Zheng, Hua; Zheng, Yina; Liu, Nanliu; Ai, Na; Wang, Qing; Wu, Sha; Zhou, Junhong; Hu, Diangang; Yu, Shufu; Han, Shaohu; Xu, Wei; Luo, Chan; Meng, Yanhong; Jiang, Zhixiong; Chen, Yawen; Li, Dongyun; Huang, Fei; Wang, Jian; Peng, Junbiao; Cao, Yong

    2013-01-01

    Adopting the emerging technology of printed electronics in manufacturing novel ultrathin flat panel displays attracts both academic and industrial interests because of the challenge in the device physics and the potential of reducing production costs. Here we produce all-solution processed polymer light-emitting diode displays by solution-depositing the cathode and utilizing a multifunctional buffer layer between the cathode and the organic layers. The use of ink-jetted conducting nanoparticles as the cathode yields high-resolution cathode patterns without any mechanical stress on the organic layers. The buffer layer, which offers the functions of solvent-proof electron injection and proper affinity, is fabricated by mixing the water/alcohol-soluble polymer and a curable epoxy adhesive. Our 1.5-inch polymer light-emitting diode displays are fabricated without any dead pixels or dead lines. The all-solution process eliminates the need for high vacuum for thermal evaporation of the cathode, which paves the way to industrial roll-to-roll manufacturing of flat panel displays. PMID:23736123

  7. Benzoporphyrin derivative and light-emitting diode for use in photodynamic therapy: Applications of space light-emitting diode technology

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W.; Meyer, Glenn A.

    1998-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality that recently has been applied as adjuvant therapy for brain tumors. PDT consists of intravenously injecting a photosensitizer, which preferentially accumulates in tumor cells, into a patient and then activating the photosensitizer with a light source. This results in free radical generation followed by cell death. The development of more effective light sources for PDT of brain tumors has been facilitated by applications of space light-emitting diode array technology; thus permitting deeper tumor penetration of light and use of better photosensitizers. Currently, the most commonly used photosensitizer for brain tumor PDT is Photofrin®. Photofrin® is a heterogeneous mixture of compounds derived from hematoporphyrin. Photofrin® is activated with a 630 nm laser light and does destroy tumor cells in animal models and humans. However, treatment failure does occur using this method. Most investigators attribute this failure to the limited penetration of brain tissue by a 630 nm laser light and to the fact that Photofrin® has only a minor absorption peak at 630 nm, meaning that only a small fraction of the chemical is activated. Benzoporphyrin Derivative Monoacid Ring A (BPD) is a new, second generation photosensitizer that can potentially improve PDT for brain tumors. BPD has a major absorption peak at 690 nm, which gives it two distinct advantages over Photofrin®. First, longer wavelengths of light penetrate brain tissue more easily so that larger tumors could be treated, and second, the major absorption peak means that a larger fraction of the drug is activated upon exposure to light. In the first part of this project we have studied the tumoricidal effects of BPD in vitro using 2A9 canine glioma and U373 human glioblastoma cell cultures. Using light emitting diodes (LED) with a peak emission of 688 nm as a light source, cell kill of up to 86 percent was measured in these cell lines by tumor DNA synthesis

  8. Performance of light-emitting-diode based on quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Sungwoo; Im, Sang Hyuk; Kim, Sang-Wook

    2013-05-01

    Light-emitting diodes (LEDs) based on colloidal quantum dots (QDs) have attracted considerable attention due to their potential in applications such as color-saturated displays and white light with high color-rendering index. However, cadmium-based QD-LEDs are strictly regulated in industrial applications because of the high toxicity of cadmium. As an alternative, InP-based cadmium-free QDs are recommended owing to their wide emission range that is comparable to that of CdSe, and their environmentally friendly properties when applied to QD-LEDs and white QD-LEDs. This feature article provides an overview of QDs' merits in display and light-emitting applications as well as a discussion of their color tunability, photo-stability, and high luminescence efficiency. We will include optical down-conversion devices using various QDs, electroluminescent devices based on organic and inorganic charge-transporting layers, and printing methods using cadmium based and cadmium free QDs.

  9. Quantum key distribution with an entangled light emitting diode

    SciTech Connect

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  10. Quantum key distribution with an entangled light emitting diode

    NASA Astrophysics Data System (ADS)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2015-12-01

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  11. Light-emitting diodes enhanced by localized surface plasmon resonance

    PubMed Central

    2011-01-01

    Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed. PMID:21711711

  12. Light manipulation for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ou, Qing-Dong; Zhou, Lei; Li, Yan-Qing; Tang, Jian-Xin

    2014-10-01

    To realize high-efficiency organic light-emitting diodes (OLEDs), it is essential to boost out-coupling efficiency. Here we review our latest reports upon light manipulation for OLEDs by integrating a dual-side bio-inspired deterministic quasi-periodic moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A-1 without introducing spectral distortion and directionality. Theoretical calculations furthermore clarify that the improved device performance is primarily attributed to the effective extraction of the waveguide and surface plasmonic modes of the confined light over all the emission wavelengths and viewing-angles.

  13. Luminescence and squeezing of a superconducting light-emitting diode

    NASA Astrophysics Data System (ADS)

    Hlobil, Patrik; Orth, Peter P.

    2015-05-01

    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  14. Junction temperature measurement of light emitting diode by electroluminescence

    NASA Astrophysics Data System (ADS)

    He, S. M.; Luo, X. D.; Zhang, B.; Fu, L.; Cheng, L. W.; Wang, J. B.; Lu, W.

    2011-12-01

    Junction temperature (JT) is a key parameter of the performance and lifetime of light emitting diodes (LEDs). In this paper, a mobile instrument system has been developed for the non-contact measurement of JTs of LED under LabVIEW control. The electroluminescence (EL) peak shift of the LED is explored to measure the JT. Commercially available high power blue LEDs are measured. A linear relation between emission peak shift and JT is found. The accuracy of the JT is about 1 °C determined by the precision of the emission peak shift, ±0.03 nm, at 3σ standard deviation for blue LED. Using this system, on-line temperature rise curves of LED lamps are determined.

  15. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  16. Exciton dynamics in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kwangsik; Won, Taeyoung

    2012-11-01

    In this paper, we present a numerical simulation for the optoelectronic material and device characterization in organic light-emitting diodes (OLEDs). Our model includes a Gaussian density of states to account for the energetic disorder in the organic semiconductors and the Fermi-Dirac statistics to account for the charge-hopping process between uncorrelated sites. The motivation for this work is the extraction of the emission profile and the source spectrum of a given OLED structure. The physical model covers all the key physical processes in OLEDs: namely, charge injection, transport and recombination, exciton diffusion, transfer, and decay. The exciton model includes generation, diffusion, energy transfer, and annihilation. We assume that the light emission originates from an oscillation and is thus embodied as excitons and is embedded in a stack of multilayers. The outcoupled emission spectrum is numerically calculated as a function of viewing angle, polarization, and dipole orientation. We also present simulated current-voltage and transient results.

  17. Spectral conversion with fluorescent microspheres for light emitting diodes.

    PubMed

    Hui, K N; Lai, P T; Choi, H W

    2008-01-01

    An innovative spectral conversion scheme for light emitting diodes using fluorescent microspheres has been demonstrated. An optimally mixed proportion of green and red fluorescent microspheres were coated onto a high-extraction-efficiency GaN micro-LED with emission centred at 470 nm. The microspheres self-assemble into ordered hexagonally arrays, forming regular and uniform coating layers. Devices with cool and warm white emission were achieved. The bluish-white LED has a luminous efficacy of 27.3 lm/W (at 20 mA) with CIE coordinates of (0.26, 0.28) and 8500K CCT, while the yellowish-white LED has a luminous efficacy of 26.67 lm/W (at 20 mA) with CIE coordinates of (0.36, 0.43) and 13000K CCT. PMID:18521128

  18. Dr. Harry Whelan With the Light Emitting Diode Probe

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  19. Advances in Phosphors for Light-emitting Diodes.

    PubMed

    Lin, Chun Che; Liu, Ru-Shi

    2011-06-01

    Light-emitting diodes (LEDs) are excellent candidates for general lighting because of their rapidly improving efficiency, durability, and reliability, their usability in products of various sizes, and their environmentally friendly constituents. Effective lighting devices can be realized by combining one or more phosphor materials with chips. Accordingly, it is very important that the architecture of phosphors be developed. Although numerous phosphors have been proposed in the past several years, the range of phosphors that are suitable for LEDs is limited. This work describes recent progress in our understanding of the prescription, morphology, structure, spectrum, and packaging of such phosphors. It suggests avenues for further development and the scientific challenges that must be overcome before phosphors can be practically applied in LEDs. PMID:26295420

  20. Mid-ultraviolet light-emitting diode detects dipicolinic acid.

    SciTech Connect

    Bogart, Katherine Huderle Andersen; Lee, Stephen Roger; Temkin, Henryk; Crawford, Mary Hagerott; Dasgupta, Purnendu K.; Li, Qingyang; Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-06-01

    Dipicolinic acid (DPA, 2,6-pyridinedicarboxylic acid) is a substance uniquely present in bacterial spores such as that from anthrax (B. anthracis). It is known that DPA can be detected by the long-lived fluorescence of its terbium chelate; the best limit of detection (LOD) reported thus far using a large benchtop gated fluorescence instrument using a pulsed Xe lamp is 2 nM. We use a novel AlGaN light-emitting diode (LED) fabricated on a sapphire substrate that has peak emission at 291 nm. Although the overlap of the emission band of this LED with the absorption band of Tb-DPA ({lambda}{sub max} doublet: 273, 279 nm) is not ideal, we demonstrate that a compact detector based on this LED and an off-the-shelf gated photodetection module can provide an LOD of 0.4 nM, thus providing a basis for convenient early warning detectors.

  1. Electroluminescence property of organic light emitting diode (OLED)

    SciTech Connect

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. Pınar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay; Tekin, Emine; Pravadalı, Selin

    2013-12-16

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  2. Semiconductor Nanocrystals-Based White Light Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Hu, Michael Z.; Duty, Chad E

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

  3. Light-emitting diodes enhanced by localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Gu, Xuefeng; Qiu, Teng; Zhang, Wenjun; Chu, Paul K.

    2011-12-01

    Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed.

  4. Light-emitting diodes enhanced by localized surface plasmon resonance.

    PubMed

    Gu, Xuefeng; Qiu, Teng; Zhang, Wenjun; Chu, Paul K

    2011-01-01

    Light-emitting diodes [LEDs] are of particular interest recently as their performance is approaching fluorescent/incandescent tubes. Moreover, their energy-saving property is attracting many researchers because of the huge energy crisis we are facing. Among all methods intending to enhance the efficiency and intensity of a conventional LED, localized surface plasmon resonance is a promising way. The mechanism is based on the energy coupling effect between the emitted photons from the semiconductor and metallic nanoparticles fabricated by nanotechnology. In this review, we describe the mechanism of this coupling effect and summarize the common fabrication techniques. The prospect, including the potential to replace fluorescent/incandescent lighting devices as well as applications to flat panel displays and optoelectronics, and future challenges with regard to the design of metallic nanostructures and fabrication techniques are discussed. PMID:21711711

  5. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    SciTech Connect

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.; Grassman, Tyler J.; McComb, David W.; Myers, Roberto C.

    2015-09-07

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junction within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.

  6. Significant Improvements in Cognitive Performance Post-Transcranial, Red/Near-Infrared Light-Emitting Diode Treatments in Chronic, Mild Traumatic Brain Injury: Open-Protocol Study

    PubMed Central

    Zafonte, Ross; Krengel, Maxine H.; Martin, Paula I.; Frazier, Judith; Hamblin, Michael R.; Knight, Jeffrey A.; Meehan, William P.; Baker, Errol H.

    2014-01-01

    Abstract This pilot, open-protocol study examined whether scalp application of red and near-infrared (NIR) light-emitting diodes (LED) could improve cognition in patients with chronic, mild traumatic brain injury (mTBI). Application of red/NIR light improves mitochondrial function (especially in hypoxic/compromised cells) promoting increased adenosine triphosphate (ATP) important for cellular metabolism. Nitric oxide is released locally, increasing regional cerebral blood flow. LED therapy is noninvasive, painless, and non-thermal (cleared by the United States Food and Drug Administration [FDA], an insignificant risk device). Eleven chronic, mTBI participants (26–62 years of age, 6 males) with nonpenetrating brain injury and persistent cognitive dysfunction were treated for 18 outpatient sessions (Monday, Wednesday, Friday, for 6 weeks), starting at 10 months to 8 years post- mTBI (motor vehicle accident [MVA] or sports-related; and one participant, improvised explosive device [IED] blast injury). Four had a history of multiple concussions. Each LED cluster head (5.35 cm diameter, 500 mW, 22.2 mW/cm2) was applied for 10 min to each of 11 scalp placements (13 J/cm2). LEDs were placed on the midline from front-to-back hairline; and bilaterally on frontal, parietal, and temporal areas. Neuropsychological testing was performed pre-LED, and at 1 week, and 1 and 2 months after the 18th treatment. A significant linear trend was observed for the effect of LED treatment over time for the Stroop test for Executive Function, Trial 3 inhibition (p=0.004); Stroop, Trial 4 inhibition switching (p=0.003); California Verbal Learning Test (CVLT)-II, Total Trials 1–5 (p=0.003); and CVLT-II, Long Delay Free Recall (p=0.006). Participants reported improved sleep, and fewer post-traumatic stress disorder (PTSD) symptoms, if present. Participants and family reported better ability to perform social, interpersonal, and occupational functions. These open-protocol data suggest

  7. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study.

    PubMed

    Naeser, Margaret A; Zafonte, Ross; Krengel, Maxine H; Martin, Paula I; Frazier, Judith; Hamblin, Michael R; Knight, Jeffrey A; Meehan, William P; Baker, Errol H

    2014-06-01

    This pilot, open-protocol study examined whether scalp application of red and near-infrared (NIR) light-emitting diodes (LED) could improve cognition in patients with chronic, mild traumatic brain injury (mTBI). Application of red/NIR light improves mitochondrial function (especially in hypoxic/compromised cells) promoting increased adenosine triphosphate (ATP) important for cellular metabolism. Nitric oxide is released locally, increasing regional cerebral blood flow. LED therapy is noninvasive, painless, and non-thermal (cleared by the United States Food and Drug Administration [FDA], an insignificant risk device). Eleven chronic, mTBI participants (26-62 years of age, 6 males) with nonpenetrating brain injury and persistent cognitive dysfunction were treated for 18 outpatient sessions (Monday, Wednesday, Friday, for 6 weeks), starting at 10 months to 8 years post- mTBI (motor vehicle accident [MVA] or sports-related; and one participant, improvised explosive device [IED] blast injury). Four had a history of multiple concussions. Each LED cluster head (5.35 cm diameter, 500 mW, 22.2 mW/cm(2)) was applied for 10 min to each of 11 scalp placements (13 J/cm(2)). LEDs were placed on the midline from front-to-back hairline; and bilaterally on frontal, parietal, and temporal areas. Neuropsychological testing was performed pre-LED, and at 1 week, and 1 and 2 months after the 18th treatment. A significant linear trend was observed for the effect of LED treatment over time for the Stroop test for Executive Function, Trial 3 inhibition (p=0.004); Stroop, Trial 4 inhibition switching (p=0.003); California Verbal Learning Test (CVLT)-II, Total Trials 1-5 (p=0.003); and CVLT-II, Long Delay Free Recall (p=0.006). Participants reported improved sleep, and fewer post-traumatic stress disorder (PTSD) symptoms, if present. Participants and family reported better ability to perform social, interpersonal, and occupational functions. These open-protocol data suggest that placebo

  8. Light emitting diodes as an excitation source for biomedical photoacoustics

    NASA Astrophysics Data System (ADS)

    Allen, T. J.; Beard, P. C.

    2013-03-01

    Semiconductor light sources, such as laser diodes or light emitting diodes (LEDs) could provide an inexpensive and compact alternative to traditional Q-switched lasers for photoacoustic imaging. So far, only laser diodes 1-3 operating in the 750 to 905nm wavelength range have been investigated for this purpose. However, operating in the visible wavelength range (400nm to 650nm) where blood is strongly absorbent (<10cm-1) and water absorption is weak (<0.01cm-1) could allow for high contrast photoacoustic images of the superficial vasculature to be achieved. High power laser diodes (<10Watt peak power) are however not available in this wavelength range. High power LEDs could be a potential alternative as they are widely available in the visible wavelength range (400nm to 632nm) and relatively cheap. High power LEDs are generally operated in continuous wave mode and provide average powers of several Watts. The possibility of over driving them by tens of times their rated current when driven at a low duty cycle (<1%), offers the prospect of achieving similar pulse energies (tens of μJ) to that provided by high peak power pulsed laser diodes. To demonstrate the possibility of using high power LEDs as an excitation source for biomedical applications, single point measurements were implemented in a realistic blood vessel phantom. A four colour device was also used to demonstrate the possibility of using LEDs for making spectroscopic measurements. It was shown that when driving all four wavelengths at once, the generated photoacoustic signal could be used to design a filter in order to improve the SNR of the photoacoustic signals generated at each individual wavelength. The possibility of acquiring multiwavelength data sets simultaneously when using Golay excitation methods was also demonstrated. This preliminary study demonstrated the potential for using high power LEDs as an inexpensive and compact excitation source for biomedical photoacoustics.

  9. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes.

    PubMed

    Kim, Mounggon; Jeon, Sang Kyu; Hwang, Seok-Ho; Lee, Jun Yeob

    2015-04-17

    High quantum efficiency above 18% and extended lifetime three times longer than that of phosphorescent organic light-emitting diodes (OLEDs) are demonstrated in blue thermally activated delayed fluorescent OLEDs. PMID:25757226

  10. The development of monolithic alternating current light-emitting diode

    NASA Astrophysics Data System (ADS)

    Yeh, Wen-Yung; Yen, Hsi-Hsuan; Chan, Yi-Jen

    2011-02-01

    The monolithic alternating current light emitting diode (ACLED) has been revealed for several years and was regarded as a potential device for solid state lighting. In this study, we will discuss the characteristics, development status, future challenges, and ITRI's development strategy about ACLED, especially focusing on the development progress of the monolithic GaN-based Schottky barrier diodes integrated ACLED (SBD-ACLED). The SBD-ACLED design can not only improve the chip area utilization ratio but also provide much higher reverse breakdown voltage by integrating four SBDs with the micro-LEDs array in a single chip, which was regarded as a good on-chip ACLED design. According to the experimental results, higher chip efficiency can be reached through SBD-ACLED design since the chip area utilization ratio was increased. Since the principle and the operation condition of ACLED is quite different from those of the typical DCLED, critical issues for ACLED like the current droops, the flicker phenomenon, the safety regulations, the measurement standards and the power fluctuation have been studied for getting a practical and reliable ACLED design. Besides, the "AC LED application and research alliance" (AARA) lead by ITRI in Taiwan for the commercialization works of ACLED has also been introduced.

  11. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  12. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    NASA Astrophysics Data System (ADS)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  13. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    SciTech Connect

    Hwang, Joohyun; Choi, Hong Kyw; Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo; Choi, Sung-Yool; Lee, Jeong-Ik; Chu, Hye Yong

    2012-10-15

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m{sup 2}. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  14. Microtube Light-Emitting Diode Arrays with Metal Cores.

    PubMed

    Tchoe, Youngbin; Lee, Chul-Ho; Park, Jun Beom; Baek, Hyeonjun; Chung, Kunook; Jo, Janghyun; Kim, Miyoung; Yi, Gyu-Chul

    2016-03-22

    We report the fabrication and characteristics of vertical microtube light-emitting diode (LED) arrays with a metal core inside the devices. To make the LEDs, gallium nitride (GaN)/indium gallium nitride (In(x)Ga(1-x)N)/zinc oxide (ZnO) coaxial microtube LED arrays were grown on an n-GaN/c-aluminum oxide (Al2O3) substrate. The microtube LED arrays were then lifted-off the substrate by wet chemical etching of the sacrificial ZnO microtubes and the silicon dioxide (SiO2) layer. The chemically lifted-off LED layer was then transferred upside-down on other supporting substrates. To create the metal cores, titanium/gold and indium tin oxide were deposited on the inner shells of the microtubes, forming n-type electrodes inside the metal-cored LEDs. The characteristics of the resulting devices were determined by measuring electroluminescence and current-voltage characteristic curves. To gain insights into the current-spreading characteristics of the devices and understand how to make them more efficient, we modeled them computationally. PMID:26855251

  15. Magnetoresistance detected spin collectivity in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Malissa, Hans; Waters, David P.; Joshi, Gajadhar; Kavand, Marzieh; Limes, Mark E.; Burn, Paul L.; Lupton, John M.; Boehme, Christoph

    Organic magnetoresistance (OMAR) typically refers to the significant change in the conductivity of thin layers of organic semiconductors at low static magnetic fields (< 10 mT). When radio frequency (rf) radiation is applied to an organic semiconductor under bipolar injection, and in the presence of small magnetic fields B, magnetic resonance can occur, which is observed as a change of the OMAR effect [Baker et al., Nat. Commun. 3, 898 (2012)]. When B and the resonant driving field are stronger than local hyperfine fields, an ultrastrong coupling regime emerges, which is marked by collective spin effects analogous to the optical Dicke effect [Roundy and Raikh, Phys. Rev. B 88, 125206 (2013)]. Experimentally, this collective behavior of spins can be probed in the steady state OMAR of organic light-emitting diodes (OLEDs) at room temperature by observation of a sign reversal of the OMAR change under rf irradiation. Furthermore, in the presence of strong driving fields, an ac Zeeman effect can be observed through OMAR [Waters et al., Nat. Phys. 11, 910 (2015)], a unique window to observe room temperature macroscopic spin quantum coherence.

  16. Transparent white organic light emitting diodes with improved cathode transparency

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Ik; Lee, Jonghee; Lee, Joowon; Shin, Jae-Heon; Hwang, Chi-Sun; Chu, Hye Yong

    2009-08-01

    We have fabricated transparent white organic light emitting diode (WOLED) for lighting application based on a hybrid white OLED and a phosphorescence white OLED. For the hybrid WOLED, a blue fluorescence emitting layer (FLEML) and green and red phosphorescence emitting layers (PH-EMLs) have been used in the device structure of ITO/hole transporting layer (HTL)/PH-EMLs/interlayer/FL-EML/ETL/LiF/Al. The balanced emissions from the FLEML and the PH-EMLs have been obtained by using appropriate carrier (hole) trapping effects in the PH-EMLs, which resulted in external and power efficiencies of 15 % and 27 lm/W, respectively, at a luminance of 1000 cd/m2 without any out-coupling enhancement. The Commission Internationale de L'Eclairage (CIE) coordinates of this hybrid WOLED is (0.43,0.44) with color rendering index (CRI) of 80 and correlated color temperature (CCT) of 3200 K, respectively, in the bottom emission structure. Based on this hybrid WOLED, we established highly efficient transparent WOLED by introduction of a transparent cathode, and obtained over 19 lm/W of power efficiency at a total luminance of 1000 cd/m2 as well as over 60 % of transmittance at 550 nm with the conventional glass encapsulation. Moreover, when the phosphorescent white OLED was combined with a transparent cathode, the power efficiency was reached up to 24 lm/W of power efficiency at a total luminance of 1000 cd/m2.

  17. Carrier modulation layer-enhanced organic light-emitting diodes.

    PubMed

    Jou, Jwo-Huei; Kumar, Sudhir; Singh, Meenu; Chen, Yi-Hong; Chen, Chung-Chia; Lee, Meng-Ting

    2015-01-01

    Organic light-emitting diode (OLED)-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML), also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI) for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance. PMID:26193252

  18. Near-field photometry for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Rui; Harikumar, Krishnan; Isphording, Alexandar; Venkataramanan, Venkat

    2013-03-01

    Organic Light Emitting Diode (OLED) technology is rapidly maturing to be ready for next generation of light source for general lighting. The current standard test methods for solid state lighting have evolved for semiconductor sources, with point-like emission characteristics. However, OLED devices are extended surface emitters, where spatial uniformity and angular variation of brightness and colour are important. This necessitates advanced test methods to obtain meaningful data for fundamental understanding, lighting product development and deployment. In this work, a near field imaging goniophotometer was used to characterize lighting-class white OLED devices, where luminance and colour information of the pixels on the light sources were measured at a near field distance for various angles. Analysis was performed to obtain angle dependent luminous intensity, CIE chromaticity coordinates and correlated colour temperature (CCT) in the far field. Furthermore, a complete ray set with chromaticity information was generated, so that illuminance at any distance and angle from the light source can be determined. The generated ray set is needed for optical modeling and design of OLED luminaires. Our results show that luminance non-uniformity could potentially affect the luminaire aesthetics and CCT can vary with angle by more than 2000K. This leads to the same source being perceived as warm or cool depending on the viewing angle. As OLEDs are becoming commercially available, this could be a major challenge for lighting designers. Near field measurement can provide detailed specifications and quantitative comparison between OLED products for performance improvement.

  19. White organic light-emitting diodes based on tandem structures

    NASA Astrophysics Data System (ADS)

    Guo, Fawen; Ma, Dongge

    2005-10-01

    White organic light-emitting diodes made of two electroluminescent (EL) units connected by a charge generation layer were fabricated. Thus, with a tandem structure of indium tin oxide/N ,N'-di(naphthalene-1-yl)-N ,N'-diphenyl-benzidine (NPB)/9,10-bis-(β-naphthyl)-anthrene (ADN)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/tris(8-hydroxyquinoline) aluminum (Alq3)/BCP:Li/V2O5/NPB/Alq3:4-(dicyanomethylene)-2-t-butyle-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB)/Alq3/LiF/Al, a stable white light with Commission Internationale De L'Eclairage chromaticity coordinates from (0.35, 0.32) at 18V to (0.36, 0.36) at 50V was generated. It was clearly seen that the EL spectra consist of red band at 600nm due to DCJTB, green band at 505nm due to Alq3, and blue band at 435nm due to ADN, and the current efficiency and brightness equal basically to the sum of the two EL units. As a result, the tandem devices showed white light emission with a maximum brightness of 10200cd /m2 at a bias of 40V and a maximum current efficiency of 10.7cd/A at a current density of 3.5mA/cm2.

  20. Flexible fluorescent white organic light emitting diodes with ALD encapsulation

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Sheng; Chittawanij, Apisit; Juang, Fuh-Shyang; Lin, Pen-Chu; Hong, Lin-Ann; Tsai, Feng-Yu; Tseng, Ming-Hong; Wang, Ching-Chiun; Chen, Chien-Chih; Lin, Kung-Liang; Chen, Szu-Hao

    2015-08-01

    In this paper, the flexible white organic light-emitting diodes (WOLED) was fabricated on polyethylene naphthalate (PEN) with structure of ITO/EHI608 (75 nm)/HTG-1 (10 nm)/3% EB502:0.8% EY53 (5 nm)/3% EB502 (35 nm)/Alq3 (10 nm)/LiF (0.8 nm)/Al (150 nm) and was compared with glass substrate the same structure. It was seen that the performances of flexible and glass substrate are almost the same. The luminance, current efficiency, and CIE coordinates of flexible device is 6351 cd/m2, 12.7 cd/A, and (0.31, 0.38) at 50 mA/cm2, respectively. Then, an Al2O3/HfO2 film on polyethylene terephthalate (PET) was deposited using atomic layer deposition (ALD) as a thin film encapsulation layer have been described and compared, such as the characteristics of water permeability and lifetime of flexible WOLED. The results show that the PET/ALD film low value of about 0.04 g/m2d, and the PET film shows WVTR of about 3.8 g/m2/d. The lifetimes of PET/ALD and PET encapsulations are 840 min and 140 min, respectively. Simultaneous deposition of ALD film on PET film gave the lifetime of flexible WOLED is six times longer than device without ALD encapsulation.

  1. High efficiency white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Dong, Weili; Gao, Hongyan; Tian, Xiaocui; Zhao, Lina; Jiang, Wenlong; Zhang, Xiyan

    2015-06-01

    The light emitting diodes with the structure of ITO/ m-MTDATA(20 nm)/NPB(10 nm)/CBP BCzVBi ( x, nm, 10%)/CBP(3 nm)/CBP: Ir(ppy)3: DCJTB(10 nm, 8 and 1%)/Bphen(30 nm)/Cs2CO3: Ag2O (2 nm, 20%)/Al (100 nm) employing phosphorescence sensitization and fluorescence doping, were manufactured. The performance of the devices was studied by adjusting the thickness of fluorescence dopant layer ( x = 15, 20, 25, and 30). The best performance was achieved when its thickness was 25 nm. The device has the maximum luminance of 20260 cd/m2 at applied voltage of 14 V and the maximum current efficiency of 11.70 cd/A at 7 V. The device displays a continuous change of color from yellow to white. The CIE coordinates change from (0.49, 0.48) to (0.32, 0.39) when the driving voltage is varied from 5 to 15 V.

  2. A multi-source portable light emitting diode spectrofluorometer.

    PubMed

    Obeidat, Safwan; Bai, Baolong; Rayson, Gary D; Anderson, Dean M; Puscheck, Adam D; Landau, Serge Y; Glasser, Tzach

    2008-03-01

    A portable luminescence spectrofluorometer weighing only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed and evaluated. Excitation using a sequence of seven individual broad-band LED emission sources enabled the generation of excitation-emission spectra using a light weight (<1.5 kg) spectrometer. Limits of detection for rhodamine 6G, rhodamine B, and fluorescein were 2.9, 3.2, and 11.0 nM, respectively. Generation of excitation-emission matrices (EEMs) enabled the analysis of samples containing mixtures of rhodamine B and fluorescein. Buffered saline plant and animal feed extracts were also analyzed using this instrument. These samples included the woody plants Pistacia lentiscus (Evergreen pistache or Mastic) and Philyria latifolia, and the herbaceous species Medicago sativa (alfalfa), Trifolium spp. (clover), and a feed concentrate. Application of multi-way principal component analysis (MPCA) to the resulting three-dimensional data sets enabled discernment among these various diet constituents. PMID:18339242

  3. Efficiency roll-off in organic light-emitting diodes.

    PubMed

    Murawski, Caroline; Leo, Karl; Gather, Malte C

    2013-12-17

    Organic light-emitting diodes (OLEDs) have attracted much attention in research and industry thanks to their capability to emit light with high efficiency and to deliver high-quality white light that provides good color rendering. OLEDs feature homogeneous large area emission and can be produced on flexible substrates. In terms of efficiency, OLEDs can compete with highly efficient conventional light sources but their efficiency typically decreases at high brightness levels, an effect known as efficiency roll-off. In recent years, much effort has been undertaken to understand the underlying processes and to develop methods that improve the high-brightness performance of OLEDs. In this review, we summarize the current knowledge and provide a detailed description of the relevant principles, both for phosphorescent and fluorescent emitter molecules. In particular, we focus on exciton-quenching mechanisms, such as triplet-triplet annihilation, quenching by polarons, or field-induced quenching, but also discuss mechanisms such as changes in charge carrier balance. We further review methods that may reduce the roll-off and thus enable OLEDs to be used in high-brightness applications. PMID:24019178

  4. City of Phildelphia: Light emitting diodes for traffic signal displays

    SciTech Connect

    1995-12-01

    This project investigated the feasibility of using light emitting diodes (LEDs) for red traffic signals in a demonstration program at 27 signalized intersections in the City of Philadelphia. LED traffic signals have the potential to achieve significant savings over standard incandescent signals in terms of energy usage and costs, signal relamping costs, signal system maintenance costs, tort liability, and environmental impact. Based on successful experience with the demonstration program, the City of Philadelphia is currently developing funding for the conversion of all existing red incandescent traffic signals at approximately 2,700 intersections to LED signals. This program is expected to cost approximately $4.0 million and save about $850,000 annually in energy costs. During late 1993 and early 1994, 212 red LED traffic signals (134 8-inch signals and 78 12-inch signals) were installed at 27 intersections in Philadelphia. The first group of 93 signals were installed at 13 prototypical intersections throughout the City. The remaining group of signals were installed on a contiguous route in West Philadelphia consisting of standard incandescent signals and LED signals interspersed in a random pattern.

  5. White Light Emitting Diode Development for General Illumination Applications

    SciTech Connect

    James Ibbetson

    2006-05-01

    This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

  6. Simulated evolution of fluorophores for light emitting diodes

    SciTech Connect

    Shu, Yinan; Levine, Benjamin G.

    2015-03-14

    Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the lowest lying singlet and triplet excited states and a large transition dipole moment for fluorescence. In this work, we demonstrate the use of a genetic algorithm to search a region of chemical space for molecules with these properties. This algorithm is based on a flexible and intuitive representation of the molecule as a tree data structure, in which the nodes correspond to molecular fragments. Our implementation takes advantage of hybrid parallel graphics processing unit accelerated computer clusters to allow efficient sampling while retaining a reasonably accurate description of the electronic structure (in this case, CAM-B3LYP/6-31G{sup ∗∗}). In total, we have identified 3792 promising candidate fluorophores from a chemical space containing 1.26 × 10{sup 6} molecules. This required performing electronic structure calculations on only 7518 molecules, a small fraction of the full space. Several novel classes of molecules which show promise as fluorophores are presented.

  7. Light-emitting diodes as a radiation source for plants.

    PubMed

    Bula, R J; Morrow, R C; Tibbitts, T W; Barta, D J; Ignatius, R W; Martin, T S

    1991-02-01

    Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems. PMID:11537727

  8. Semiconductor-nanocrystals-based white light-emitting diodes.

    PubMed

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z

    2010-08-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white light-emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed. PMID:20602425

  9. Simulated evolution of fluorophores for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Shu, Yinan; Levine, Benjamin G.

    2015-03-01

    Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the lowest lying singlet and triplet excited states and a large transition dipole moment for fluorescence. In this work, we demonstrate the use of a genetic algorithm to search a region of chemical space for molecules with these properties. This algorithm is based on a flexible and intuitive representation of the molecule as a tree data structure, in which the nodes correspond to molecular fragments. Our implementation takes advantage of hybrid parallel graphics processing unit accelerated computer clusters to allow efficient sampling while retaining a reasonably accurate description of the electronic structure (in this case, CAM-B3LYP/6-31G∗∗). In total, we have identified 3792 promising candidate fluorophores from a chemical space containing 1.26 × 106 molecules. This required performing electronic structure calculations on only 7518 molecules, a small fraction of the full space. Several novel classes of molecules which show promise as fluorophores are presented.

  10. Simulated evolution of fluorophores for light emitting diodes.

    PubMed

    Shu, Yinan; Levine, Benjamin G

    2015-03-14

    Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the lowest lying singlet and triplet excited states and a large transition dipole moment for fluorescence. In this work, we demonstrate the use of a genetic algorithm to search a region of chemical space for molecules with these properties. This algorithm is based on a flexible and intuitive representation of the molecule as a tree data structure, in which the nodes correspond to molecular fragments. Our implementation takes advantage of hybrid parallel graphics processing unit accelerated computer clusters to allow efficient sampling while retaining a reasonably accurate description of the electronic structure (in this case, CAM-B3LYP/6-31G(∗∗)). In total, we have identified 3792 promising candidate fluorophores from a chemical space containing 1.26 × 10(6) molecules. This required performing electronic structure calculations on only 7518 molecules, a small fraction of the full space. Several novel classes of molecules which show promise as fluorophores are presented. PMID:25778905

  11. Device physics of single layer organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Crone, B. K.; Campbell, I. H.; Davids, P. S.; Smith, D. L.; Neef, C. J.; Ferraris, J. P.

    1999-11-01

    We present experimental and device model results for electron only, hole only, and bipolar organic light-emitting diodes fabricated using a soluble poly (p-phenylene vinylene) based polymer. Current-voltage (I-V) characteristics were measured for a series of electron only devices in which the polymer thickness was varied. The I-V curves were described using a device model from which the electron mobility parameters were extracted. Similarly, the hole mobility parameters were extracted using a device model description of I-V characteristics for a series of hole only devices where the barrier to hole injection was varied by appropriate choices of hole injecting electrode. The electron and hole mobilities extracted from the single carrier devices are then used, without additional adjustable parameters, to describe the measured current-voltage characteristics of a series of bipolar devices where both the device thickness and contacts were varied. The model successfully describes the I-V characteristics of single carrier and bipolar devices as a function of polymer thickness and for structures that are contact limited, space charge limited, and for cases in between. We find qualitative agreement between the device model and measured external luminance for a thickness series of devices. We investigate the sensitivity of the device model calculations to the magnitude of the bimolecular recombination rate prefactor.

  12. Fast pulsed electroluminescence from polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sun, R. G.; Yu, G.; Heeger, A. J.

    2002-02-01

    Transient electroluminescence (EL) from polymer light emitting diodes is investigated by measurements of the response to short voltage pulses. The carrier mobility is derived from the delay time between the electrical pulse and the onset of EL, μ≈3×10-4 cm2/V s. Bilayer devices with a polyethylene-dioxythiophene (PEDOT), hole injection layer are also studied. The delay time between the electrical pulse and the onset of EL is independent of the thickness of the injection layer, implying that the conducting PEDOT functions as a part of the electrode. When a dc forward bias is applied to the device, the delay time decreases, probably as a result of the shift of the emission zone towards the anode. The EL turn-on depends on the amplitude of the voltage pulse. The data are modeled by an equivalent circuit with a fixed capacitance connected in parallel with a nonlinear resistance. The solution of the differential equation depends on the exact form of the device's I-V curve. Two analytical solutions are provided, and an analysis based on space-charge-limited current is presented. By applying a dc forward bias in advance to precharge the space-charge capacitance, the turn-on response time is reduced to 12 ns. The EL decay consists of two components with time constants of 15 ns and 1 μs. The decay does not depend on either the amplitude of the voltage pulse or the prebias.

  13. Light-emitting diodes as a radiation source for plants

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Barta, D. J.; Ignatius, R. W.; Martin, T. S.

    1991-01-01

    Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems.

  14. Performance improvement of indoor positioning using light-emitting diodes and an image sensor for light-emitting diode communication

    NASA Astrophysics Data System (ADS)

    Hossen, Md. Sazzad; Park, Youngil; Kim, Ki-Doo

    2015-03-01

    Light-emitting diodes (LEDs) are expected to replace existing lighting technologies in the near future because of the potential dual function of LED light (i.e., wireless communication and lighting) in the context of visible light communication (VLC). We propose a highly precise indoor positioning algorithm using lighting LEDs, an image sensor, and VLC. In the proposed algorithm, three LEDs transmit their three-dimensional coordinate information, which is received and demodulated by a single image sensor at an unknown position. The unknown position is then calculated from the geometrical relations of the LED images created on the image sensor plane. We describe the algorithm in detail. A simulation of the proposed algorithm is presented in this paper. We also compare the performance of this algorithm with that of our previously proposed algorithm. The comparison indicates significant improvement in positioning accuracy because of the simple algorithmic structure and low computational complexity. This technique does not require any angular measurement, which is needed in the contemporary positioning algorithms using LEDs and image sensor. The simulation results show that the proposed system can estimate the unknown position to an accuracy of 0.001 m inside the approximate positioning area when the pixel value is >3000.

  15. Performance improvement of indoor positioning using light-emitting diodes and an image sensor for light-emitting diode communication

    NASA Astrophysics Data System (ADS)

    Hossen, Md. Sazzad; Park, Youngil; Kim, Ki-Doo

    2015-04-01

    Light-emitting diodes (LEDs) are expected to replace existing lighting technologies in the near future because of the potential dual function of LED light (i.e., wireless communication and lighting) in the context of visible light communication (VLC). We propose a highly precise indoor positioning algorithm using lighting LEDs, an image sensor, and VLC. In the proposed algorithm, three LEDs transmit their three-dimensional coordinate information, which is received and demodulated by a single image sensor at an unknown position. The unknown position is then calculated from the geometrical relations of the LED images created on the image sensor plane. We describe the algorithm in detail. A simulation of the proposed algorithm is presented in this paper. We also compare the performance of this algorithm with that of our previously proposed algorithm. The comparison indicates significant improvement in positioning accuracy because of the simple algorithmic structure and low computational complexity. This technique does not require any angular measurement, which is needed in the contemporary positioning algorithms using LEDs and image sensor. The simulation results show that the proposed system can estimate the unknown position to an accuracy of 0.001 m inside the approximate positioning area when the pixel value is >3000.

  16. Selective-area nanoheteroepitaxy for light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.

    Over 20% of the electricity in the United States is consumed for lighting, and the majority of this energy is wasted as heat during the lighting process. A solid-state (or light emitting diode (LED)-based) light source has the potential of saving the United States billions of dollars in electricity and reducing megatons of global CO2 emissions annually. While white light LEDs are currently on the market with efficiencies that are superior to incandescent and fluorescent light sources, their high up-front cost is inhibiting mass adoption. One reason for the high cost is the inefficiency of green and amber LEDs that can used to make white light. The inefficiency of green and amber LEDs results in more of these chips being required, and thus a higher cost. Improvements in the performance of green and amber LEDs is also required in order to realize the full potential of solid-state lighting. Nanoheteroepitaxy is an interesting route towards achieving efficient green and amber LEDs as it resolves major challenges that are currently plaguing III-nitride LEDs such as high dislocation densities and limited active region critical thicknesses. A method for fabricating III-nitride nanopyramid LEDs is presented that employs conventional processing used in industry. The present document begins with an overview of the current challenges in III-nitride LEDs and the benefits of nanoheteroepitaxy. A process for controlled selective-area growth of nanopyramid LEDs by organometallic vapor phase epitaxy has been developed throughout the course of this work. Dielectric templates used for the selective-area growth are patterned by two methods, namely porous anodic alumina and electron-beam lithography. The dielectric templates serve as efficient dislocation filters; however, planar defects are initiated during lower temperature growth on the nanopyramids. The quantum wells outline six semipolar planes that form each hexagonal pyramid. Quantum wells grown on these semipolar planes

  17. Multicolor white light-emitting diodes for illumination applications

    NASA Astrophysics Data System (ADS)

    Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.

    2004-01-01

    Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.

  18. White polymer light emitting diode using blend of fluorescent polymers

    NASA Astrophysics Data System (ADS)

    Prakash, Asit; Katiyar, Monica

    2012-10-01

    White polymer light emitting diodes (WPLEDs) are fabricated using poly(9,9-dioctylfluorene-2,7-diyl) (PFO) as host and poly [2-methoxy-5-(2'-ethyl-hexyloxy)]-1,4-phenylene vinylene (MEH-PPV) as guest material having structure ITO(150nm)/PEDOT:PSS(40nm)/PFO:MEH-PPV(75-90nm)/Ca(20nm)/Al(120nm). Photoluminescence spectra of blends with different MEH-PPV concentration reveal that at low doping level of MEH-PPV, blue emission from PFO and yellow emission from MEH-PPV co-exist due to incomplete energy transfer from PFO to MEH-PPV. Surface morphology of the spin coated blend films with different concentrations of MEH-PPV were studied using atomic force microscopy (AFM). It shows segregation/agglomeration of polymers at higher concentration of MEH-PPV (~2.0 wt %). Finally, WPLEDs, having MEH-PPV in the range of 0.8-2.0 wt%, were fabricated. We obtained best device at 0.8 wt% of MEH-PPV, it shows white light with Commission Internationale de l'Enclairage (CIE) coordinate of (0.30, 0.38). Electroluminescence turn-on voltage of the device was 4.0 V and maximum luminance reaches 1234 cd/m2 at 8.5 V. The luminous current and power efficiency at current density of 22 mA/cm2 were found to be 2.3 cd/A and 1.1 lm/W, respectively.

  19. The role of isoelectronic dopants in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Crone, B. K.; Campbell, I. H.; Smith, D. L.

    2007-09-01

    Power efficiency is an important parameter for all OLEDs, and is particularly critical for lighting applications. To maximize the power efficiency one must optimize charge injection, carrier transport, and radiative quantum efficiency, while minimizing energy losses. In this work we discuss how isoelectronic dopants can be used to address these problems. It can be difficult to produce efficient electrical contacts, particularly to large energy gap organic materials, and thus the contacts often limit the performance and stability of OLEDs . Recent results by several groups have attributed improved hole injection in poly (9,9' dioctylfluorene) [PFO] based LEDs to charge trapping, but the origin of the traps is unknown. In order to understand the role of traps in improving injection we studied poly[2-methoxy, 5-(2'- ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) devices with C 60 molecules at the anode to improve hole injection. Isoelectronic dopants are used widely as recombination centers in organic light emitting diodes (OLEDs). In these systems one wants to maximize quantum efficiency by effectively trapping charges on the emitting dopants, while at the same time maximizing power efficiency by maintaining good charge transport. An understanding of the influence of the depth of the dopant on charge capture, and charge transport will aid in optimizing doped organic LEDs. We have looked at the OLED system consisting of the polymer PFO, and the organometallic molecule PhqIr. We show that PhqIr acts as a shallow hole trap in PFO, and that the charge transport and luminescence properties of this system are described by quasi-equilibrium statistics.

  20. Ultra-High Efficiency White Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Narukawa, Yukio; Narita, Junya; Sakamoto, Takahiko; Deguchi, Kouichiro; Yamada, Takao; Mukai, Takashi

    2006-10-01

    We fabricated the high luminous efficiency white light emitting diode (LED) and the high power white LED by using the patterned sapphire substrates and an indium-tin oxide (ITO) contact as a p-type electrode. The high luminous efficiency white LED was the yellow YAG-phosphors-coated small-size (240 × 420 μm2) high efficiency blue LED with the quantum efficiency of 63.3% at a forward-bias current of 20 mA. The luminous flux (Φ), the forward-bias voltage (Vf), the correlated color temperature (Tcp), the luminous efficiency (ηL), and the wall-plug efficiency (WPE) of the high luminous efficiency white LED are 8.6 lm, 3.11 V, 5450 K, 138 lm/W, and 41.7%, respectively. The luminous efficiency is 1.5 times greater than that of a tri-phosphor fluorescent lamp (90 lm/W). The high power white LED was fabricated from the larger-size (1 × 1 mm2) blue LED with the output power of 458 mW at 350 mA. Φ, Vf, Tcp, ηL, and WPE of the high power white LED are 106 lm, 3.29 V, 5200 K, 91.7 lm/W, and 27.7%, respectively, at 350 mA. The WPE is greater than that of a fluorescent lamp (25%) in the visible region. Moreover, the luminous flux of the high power white LED reaches to 402 lm at 2 A, which is equivalent to the total flux of a 30 W incandescent lamp.

  1. 3D printed quantum dot light-emitting diodes.

    PubMed

    Kong, Yong Lin; Tamargo, Ian A; Kim, Hyoungsoo; Johnson, Blake N; Gupta, Maneesh K; Koh, Tae-Wook; Chin, Huai-An; Steingart, Daniel A; Rand, Barry P; McAlpine, Michael C

    2014-12-10

    Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. Achieving seamless integration of diverse materials with 3D printing is a significant challenge that requires overcoming discrepancies in material properties in addition to ensuring that all the materials are compatible with the 3D printing process. To date, 3D printing has been limited to specific plastics, passive conductors, and a few biological materials. Here, we show that diverse classes of materials can be 3D printed and fully integrated into device components with active properties. Specifically, we demonstrate the seamless interweaving of five different materials, including (1) emissive semiconducting inorganic nanoparticles, (2) an elastomeric matrix, (3) organic polymers as charge transport layers, (4) solid and liquid metal leads, and (5) a UV-adhesive transparent substrate layer. As a proof of concept for demonstrating the integrated functionality of these materials, we 3D printed quantum dot-based light-emitting diodes (QD-LEDs) that exhibit pure and tunable color emission properties. By further incorporating the 3D scanning of surface topologies, we demonstrate the ability to conformally print devices onto curvilinear surfaces, such as contact lenses. Finally, we show that novel architectures that are not easily accessed using standard microfabrication techniques can be constructed, by 3D printing a 2 × 2 × 2 cube of encapsulated LEDs, in which every component of the cube and electronics are 3D printed. Overall, these results suggest that 3D printing is more versatile than has been demonstrated to date and is capable of integrating many distinct classes of materials. PMID:25360485

  2. Host Engineering for High Quantum Efficiency Blue and White Fluorescent Organic Light-Emitting Diodes.

    PubMed

    Song, Wook; Lee, Inho; Lee, Jun Yeob

    2015-08-01

    High quantum efficiency in blue and white fluorescence organic light-emitting diodes is achieved by developing a novel device architecture with fluorescent emitters doped in a thermally activated delayed fluorescent emitter as a host material. PMID:26078193

  3. Comparative efficiency analysis of GaN-based light-emitting diodes and laser diodes

    NASA Astrophysics Data System (ADS)

    Piprek, Joachim

    2016-07-01

    Nobel laureate Shuji Nakamura predicted in 2014 that GaN-based laser diodes are the future of solid state lighting. However, blue GaN-lasers still exhibit less than 40% wall-plug efficiency, while some GaN-based blue light-emitting diodes exceed 80%. This paper investigates non-thermal reasons behind this difference. The inherently poor hole conductivity of the Mg-doped waveguide cladding layer of laser diodes is identified as main reason for their low electrical-to-optical energy conversion efficiency.

  4. Multilayer white lighting polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gong, Xiong; Wang, Shu; Heeger, Alan J.

    2006-08-01

    Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.

  5. High-performance applications of light-emitting diode displays

    NASA Astrophysics Data System (ADS)

    Saini, Gurdial S.; Hopper, Darrel G.

    1996-05-01

    A display is an electronic component or subsystem used to convert electrical signals into visual imagery in real time suitable for direct interpretation by a human observer. Until recently, the cathode ray tube (CRT) has been the main source of displays. During the last twenty years, it has been determined that alternatives to CRT displays need to be found. One of the alternatives was the introduction of flat-panel displays. The term 'flat-panel display' is more of a concept than a specific entity. It is a display which is flat and light and may not require a great deal of power. A flat-panel display is often defined in terms of the ideal display, that being: thin form, low volume, even surface, having high resolution, high contrast, sunlight readable, color, low power, and being solid-state and lightweight. This is easy to conceive but difficult to deliver. The objective is to develop displays with as many desirable characteristics as possible. Flat-panel displays are basically of two types: the light valve type (that needs an external source of light such as a backlight or arc-lamp) and the emissive type (that generate light at the display surface). The light emitting diode (LED) display is of the emissive type. The LED displays have been in use for more than 25 years in one form or the other. Because of certain limitations of inorganic materials (such as cost, power, and color), LED displays do not dominate the flat-panel display market. A recent discovery of polymer and organic materials may change LED prospects. It is now believed that it may become possible to make LED displays that are inexpensive, low-power, and at the same time provide full color. If present research objectives are met, LEDs, especially organic LEDs, may revolutionize the flat-panel display market. This paper addresses the various aspects of LED technology with particular reference to its useful characteristics, and the limitations that need to be overcome.

  6. Development of ultraviolet nitride-based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Katona, Thomas Matthew

    2003-10-01

    Deep ultraviolet light emitting diodes, with emission wavelengths shorter than 360 nm, have attracted interest due to their potential applications as replacement white light sources, in non-line of sight communication, for chemical and biological weapons detection, medical applications, water purification, and counterfeit detection. Light emitters in this wavelength range require AlGaN based active regions with increasing Al composition as the wavelength is decreased. High Al composition AlGaN based devices have been challenged by difficulty in growth, low electron and hole mobilities, and deep dopant levels resulting in low carrier concentrations. The combination of these factors has resulted in UV optoelectronic devices with quantum efficiency several orders of magnitude lower than their GaN/InGaN based visible counterparts. This work will details studies on alternative selective area growth techniques for dislocation reduction and the development of ultraviolet LEDs ranging from 292--340 nm. Lateral overgrowth of GaN on patterned Si (111) substrates was developed with the hope of developing seed material for bulk GaN growth. The effect of growth conditions on both the crystallographic wing tilt and crack density in the AlN/GaN films was studied. By controlling the lateral to vertical growth rate at the beginning of lateral overgrowth, the wing tilt can be effectively eliminated. We also demonstrate the first lateral overgrowth of AlN to create low threading dislocation density AlN template layers for optoelectronic device development. Deep UV quantum wells grown on this material were studied with cathodoluminescence to study the effect of dislocations on radiative recombination in deep UV devices. In addition to work on lateral overgrowth of GaN and AlN, 292, 340 nm LEDs were grown on AlN on sapphire and GaN on sapphire respectively. AlN strain relief interlayers were developed to prevent cracking of the 340 nm AlGaN based LEDs that were grown in tension on Ga

  7. Monolithic integration of OFETs driving organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Kröger, Michael; Becker, Eike; Schildknecht, Christian; Hartmann, Sören; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2005-08-01

    Organic field effect transistors are expected to be applicable for low-cost, large-area electronic applications, e.g. the incorporation as active-matrix into displays based on organic light emitting diodes (OLED). There are two major challenges which have to be tackled. As the low charge carrier mobility allows only for comparatively low saturation currents, the ratio of channel width and length has to increase by several orders of magnitude, compared to poly-Si-technology. Furthermore, as organic semiconductor devices usually degrade upon exposure to solvents, standard photolithography cannot be applied once the organic materials have been deposited. Therefore, the definition of single pixels has to occur before the deposition of organic materials. We prepared OFETs employing a bottom-Al-gate, an 50 nm thick anodized Al-oxide gate dielectric and a inter-digital drain-source-structure (Au), topped with 30 nm of pentacene as active layer. By applying an inter-digital structure we increased the W/L-ratio to 4340. For the given configuration, a saturation current of 4 mA could be observed at -20 V drain-source- and -20 V gate-source-voltage. The drain-source-contacts enclosed a predefined ITO-anode shorted to drain and acting as OLED-anode. For preventing shortcuts between the OLED-cathode and the OFET, poly-vinyl-alcohol (PVOH) was spin-coated from an aqueous solution and structurized by photolithography. When the OFET characteristics were measured afterwards the field-effect- mobility dropped by two orders of magnitude but recovered due to desorption of residual water. Afterwards, the organic layers and a Al/LiF-cathode were deposited. The area covered by the OLED was 1.33mm2. Applying an operating bias of 11 V between cathode and source, allows for switching of the OLED by changing the gate-source-voltage from +2.5 V to -5 V. The on-state-brightness is 850 cd/m2 and the on-off-ratio 950. Considering a realistic filling factor of 40% the values observed may be

  8. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    SciTech Connect

    Guillermo Bazan; Alexander Mikhailovsky

    2008-08-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  9. Proceedings of the 5th International Symposium on Blue Laser and Light Emitting Diodes (ISBLLED-2004)

    NASA Astrophysics Data System (ADS)

    Suh, Eun-Kyung; Yoon, Euijoon; Lee, Hyung Jae

    2004-09-01

    The 5th International Symposium on Blue Laser and Light Emitting Diodes (ISBLLED-2004) was held in Gyeongju, Korea, 15-19 March 2004. The purpose of the symposium was to provide a forum for scientists and engineers to discuss recent progress and future trends in the rapidly advancing wide band gap semiconductor science and technologies and their applications in blue laser and light emitting diodes.

  10. Light-emitting diode versus laser irradiation phototherapy with lutetium texaphyrin (PCI-0123)

    NASA Astrophysics Data System (ADS)

    Woodburn, Kathryn W.; Young, Stuart W.; Qing, Fan; Miles, Dale R.; Thiemann, Patricia A.

    1997-05-01

    Lutetium texaphyrin (PCI-0123) is presently in clinical trials for the treatment of neoplasms. An argon-pumped dye laser has mostly been used to generate light for PCI-0123 photoactivation. However, lasers are expensive and produce a limited area of illumination, so the efficacy of light emitting diodes (LEDs) was investigated. An LED array was developed so that the spectral emission matched the far red absorption spectrum of PCI-0123. A preclinical PDT efficacy study comparing the laser and the LED was undertaken using EMT6-bearing animals. The LED and laser light sources were statistically comparable in eradicating the murine mammary sarcomas using PCI-0123 as the photosensitizer.

  11. Interface modification and material synthesis of organic light-emitting diodes using plasma technology

    NASA Astrophysics Data System (ADS)

    Liang, Rongqing; Ou, Qiongrong; Yang, Cheng; He, Kongduo; Yang, Xilu; Zhong, Shaofeng; plasma application Team

    2015-09-01

    Organic light-emitting diodes (OLEDs), due to their unique properties of solution processability, compatibility with flexible substrates and with large-scale printing technology, attract huge interest in the field of lighting. The integration of plasma technology into OLEDs provides a new route to improve their performance. Here we demonstrate the modification of indium-tin-oxide (ITO) work function by plasma treatment, synthesis of thermally activated delayed fluorescence (TADF) materials using plasma grafting (polymerisation), and multi-layer solution processing achieved by plasma cross-linking.

  12. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  13. Method and apparatus for improving the performance of light emitting diodes

    DOEpatents

    Lowery, Christopher H.; McElfresh, David K.; Burchet, Steve; Adolf, Douglas B.; Martin, James

    1996-01-01

    A method for increasing the resistance of a light emitting diode and other semiconductor devices to extremes of temperature is disclosed. During the manufacture of the light emitting diode, a liquid coating is applied to the light emitting die after the die has been placed in its lead frame. After the liquid coating has been placed on the die and its lead frames, a thermosetting encapsulant material is placed over the coating. The operation that cures the thermosetting material leaves the coating liquid intact. As the die and the encapsulant expand and contract at different rates with respect to changes in temperature, and as in known light emitting diodes the encapsulating material adheres to the die and lead frames, this liquid coating reduces the stresses that these different rates of expansion and contraction normally cause by eliminating the adherence of the encapsulating material to the die and frame.

  14. Phosphorescent organic light emitting diodes with high efficiency and brightness

    SciTech Connect

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  15. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect

    Riuttanen, L. Nykänen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M.; Kivisaari, P.; Oksanen, J.; Tulkki, J.

    2014-02-24

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  16. Promotion of neural sprouting using low-level green light-emitting diode phototherapy

    NASA Astrophysics Data System (ADS)

    Alon, Noa; Duadi, Hamootal; Cohen, Ortal; Samet, Tamar; Zilony, Neta; Schori, Hadas; Shefi, Orit; Zalevsky, Zeev

    2015-02-01

    We irradiated neuroblastoma SH-SY5Y cell line with low-level light-emitting diode (LED) illumination at a visible wavelength of 520 nm (green) and intensity of 100 mW/cm2. We captured and analyzed the cell morphology before LED treatment, immediately after, and 12 and 24 h after treatment. Our study demonstrated that LED illumination increases the amount of sprouting dendrites in comparison to the control untreated cells. This treatment also resulted in more elongated cells after treatment in comparison to the control cells and higher levels of expression of a differentiation related gene. This result is a good indication that the proposed method could serve in phototherapy treatment for increasing sprouting and enhancing neural network formation.

  17. Voltage reduction in organic light-emitting diodes

    SciTech Connect

    Hung, L. S.; Mason, M. G.

    2001-06-04

    For practical applications, it is important to operate organic light-emitting devices at low voltages and low power consumption. When both the cathode and anode are perfectly injecting, low electron mobility in electron-transport materials, such as tris-(8-hydroxyquinoline)aluminum (Alq), becomes a limiting factor on voltage reduction. In this letter copper phthalocyanine (CuPc) is replaced for Alq as an electron-transport layer, and interfacial modification is utilized to enhance electron injection from the CuPc electron-transport layer into the Alq emissive layer. The outcome of this structure significantly facilitates electron transport through the organic materials, thus resulting in substantial reduction in operating voltages and power consumption. {copyright} 2001 American Institute of Physics.

  18. [White organic light-emitting diodes applied for lighting technology].

    PubMed

    Huang, Qing-Yu; Zhao, Su-Ling; Xu, Zheng; Fan, Xing; Wang, Jian; Yang, Qian-Qian

    2014-01-01

    Lighting accounts for approximately 22 percent of the electricity consumed in buildings in the United States, with 40 percent of that amount consumed by inefficient incandescent lamps. This has generated increased interest in the use of white electroluminescent organic light-emitting devices (WOLEDS) as the next generation solid-state lighting source, owing to their potential for significantly improved efficiency over incandescent sources, combined with low-cost, high-throughput manufacturability. The research and application of the devices have witnessed great progress. WOLEDS have incomparable advantages for its special characteristics. This progress report sketched the principle of WOLEDS and provided some common structures, and further investigation of the mechanism of different structures was made. Meanwhile, the key technologies of WOLEDS were summarized. Finally, the latest research progress of WOLEDS was reviewed. PMID:24783527

  19. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles.

    PubMed

    Xing, Jun; Yan, Fei; Zhao, Yawen; Chen, Shi; Yu, Huakang; Zhang, Qing; Zeng, Rongguang; Demir, Hilmi Volkan; Sun, Xiaowei; Huan, Alfred; Xiong, Qihua

    2016-07-26

    Organometal halide perovskite has recently emerged as a very promising family of materials with augmented performance in electronic and optoelectronic applications including photovoltaic devices, photodetectors, and light-emitting diodes. Herein, we propose and demonstrate facile solution synthesis of a series of colloidal organometal halide perovskite CH3NH3PbX3 (X = halides) nanoparticles with amorphous structure, which exhibit high quantum yield and tunable emission from ultraviolet to near-infrared. The growth mechanism and photoluminescence properties of the perovskite amorphous nanoparticles were studied in detail. A high-efficiency green-light-emitting diode based on amorphous CH3NH3PbBr3 nanoparticles was demonstrated. The perovskite amorphous nanoparticle-based light-emitting diode shows a maximum luminous efficiency of 11.49 cd/A, a power efficiency of 7.84 lm/W, and an external quantum efficiency of 3.8%, which is 3.5 times higher than that of the best colloidal perovskite quantum-dot-based light-emitting diodes previously reported. Our findings indicate the great potential of colloidal perovskite amorphous nanoparticles in light-emitting devices. PMID:27284993

  20. High-efficiency organic light-emitting diodes with fluorescent emitters

    NASA Astrophysics Data System (ADS)

    Nakanotani, Hajime; Higuchi, Takahiro; Furukawa, Taro; Masui, Kensuke; Morimoto, Kei; Numata, Masaki; Tanaka, Hiroyuki; Sagara, Yuta; Yasuda, Takuma; Adachi, Chihaya

    2014-05-01

    Fluorescence-based organic light-emitting diodes have continued to attract interest because of their long operational lifetimes, high colour purity of electroluminescence and potential to be manufactured at low cost in next-generation full-colour display and lighting applications. In fluorescent molecules, however, the exciton production efficiency is limited to 25% due to the deactivation of triplet excitons. Here we report fluorescence-based organic light-emitting diodes that realize external quantum efficiencies as high as 13.4-18% for blue, green, yellow and red emission, indicating that the exciton production efficiency reached nearly 100%. The high performance is enabled by utilization of thermally activated delayed fluorescence molecules as assistant dopants that permit efficient transfer of all electrically generated singlet and triplet excitons from the assistant dopants to the fluorescent emitters. Organic light-emitting diodes employing this exciton harvesting process provide freedom for the selection of emitters from a wide variety of conventional fluorescent molecules.

  1. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  2. Active Matrix Organic light Emitting Diode Display Based on “Super Top Emission” Technology

    NASA Astrophysics Data System (ADS)

    Ishibashi, Tadashi; Yamada, Jiro; Hirano, Takashi; Iwase, Yuichi; Sato, Yukio; Nakagawa, Ryo; Sekiya, Mitsunobu; Sasaoka, Tatsuya; Urabe, Tetsuo

    2006-05-01

    We developed an original “Super Top Emission” technology, which enables us to optimize the distinctive features of an organic light emitting diode (OLED) display. With this technology, the following characteristics can be obtained: (1) high color reproduction of a 100% NTSC gamut ratio, (2) wide viewing angle, (3) high contrast of 1000:1 maintaining high luminous efficiency with a color filter, (4) original all-solid sealing structure. In addition, Super Top Emission technology was demonstrated by developing a 3.8-type size half video graphics array (HVGA) active matrix organic light emitting diode (AM-OLED) display by the shadow mask patterning process.

  3. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOEpatents

    Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2014-10-21

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  4. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    NASA Astrophysics Data System (ADS)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  5. Modification of Conductive Polymer for Polymeric Anodes of Flexible Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Feng; Tao, Xiao-Ming; Xin, John H.; Fei, Bin

    2009-07-01

    A conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), was modified with dimethyl sulfoxide (DMSO) in solution state, together with sub-sequential thermal treatment of its spin-coated film. The electrical conductivity increased by more than three orders of magnitude improvement was achieved. The mechanism for the conductivity improvement was studied at nanoscale by particle size analysis, field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). Smaller particle size was observed, resulting in larger contact area and better electrical conductive connections. Connection of conductive PEDOT increased on the surface of the PEDOT:PSS particles, which promoted high conductivity. Flexible anodes based on the modified PEDOT:PSS were fabricated. Flexible organic light-emitting diodes (FOLED) based the polymeric anodes have a comparable performance to those on indium-tin-oxide (ITO) anodes.

  6. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    SciTech Connect

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying; You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian; Mohney, Suzanne E.

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  7. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    SciTech Connect

    Ding, Baofu Alameh, Kamal; Song, Qunliang

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150 mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  8. Light emitting diodes as a plant lighting source

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.

    1994-01-01

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.

  9. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  10. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  11. Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering

    NASA Astrophysics Data System (ADS)

    Žukauskas, A.; Vaicekauskas, R.; Ivanauskas, F.; Vaitkevičius, H.; Shur, M. S.

    2008-08-01

    We apply an optimization scheme based on rendering of all colors of the enhanced Munsell palette to phosphor-conversion (PC) light-emitting diodes (LEDs). This approach yields combinations of peak wavelengths and bandwidths for white PC LEDs with partial and complete conversion that enable lighting with better quality than that obtained using designs based on the standard color-rendering assessment procedure.

  12. Optical Experiments Using Mini-Torches with Red, Green and Blue Light Emitting Diodes

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Matsunaga, Ai

    2007-01-01

    We have developed two kinds of optical experiments: color mixture and fluorescence, using mini-torches with light emitting diodes (LEDs) that emit three primary colors. Since the tools used in the experiments are simple and inexpensive, students can easily retry and develop the experiments by themselves. As well as giving an introduction to basic…

  13. Hand-Drawn Resistors and a Simple Tester Using a Light-Emitting Diode

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Abe, Mayumi

    2012-01-01

    A thick line drawn on a sheet of paper with a 6B pencil is electrically conductive and its resistance can be roughly estimated using a simple tester made of a light-emitting diode (LED) and a lithium coin-type cell. Using this hand-drawn resistor and the LED tester, we developed teaching materials that help students to understand how electrical…

  14. All-fibre sensing loop using pulse-modulated light-emitting diode

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.

    1985-01-01

    A sensing system is presented which includes a pulse-modulated light-emitting diode (LED) and an all-fibre-optic loop generating a reference signal in the time domain. The basic principle of operation and parameters are introduced, and some properties of such a system are experimentally examined using a microbend sensor.

  15. Response of adult mosquitoes to light emitting diodes placed in resting boxes and in the field.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resting boxes are passive devices used to attract and capture mosquitoes seeking shelter. Increasing the attractiveness of these devices could improve their effectiveness. Light emitting diodes (LEDs) can be attractive to mosquitoes when used together with other trapping devices. Therefore restin...

  16. An evaluation of organic light emitting diode monitors for medical applications: Great timing, but luminance artifacts

    PubMed Central

    Elze, Tobias; Taylor, Christopher; Bex, Peter J.

    2013-01-01

    Purpose: In contrast to the dominant medical liquid crystal display (LCD) technology, organic light-emitting diode (OLED) monitors control the display luminance via separate light-emitting diodes for each pixel and are therefore supposed to overcome many previously documented temporal artifacts of medical LCDs. We assessed the temporal and luminance characteristics of the only currently available OLED monitor designed for use in the medical treatment field (SONY PVM2551MD) and checked the authors’ main findings with another SONY OLED device (PVM2541). Methods: Temporal properties of the photometric output were measured with an optical transient recorder. Luminances of the three color primaries and white for all 256 digital driving levels (DDLs) were measured with a spectroradiometer. Between the luminances of neighboring DDLs, just noticeable differences were calculated according to a perceptual model developed for medical displays. Luminances of full screen (FS) stimuli were compared to luminances of smaller stimuli with identical DDLs. Results: All measured luminance transition times were below 300 μs. Luminances were independent of the luminance in the preceding frame. However, for the single color primaries, up to 50.5% of the luminances of neighboring DDLs were not perceptually distinguishable. If two color primaries were active simultaneously, between 36.7% and 55.1% of neighboring luminances for increasing DDLs of the third primary were even decreasing. Moreover, luminance saturation effects were observed when too many pixels were active simultaneously. This effect was strongest for white; a small white patch was close to 400 cd/m2, but in FS the luminance of white saturated at 162 cd/m2. Due to different saturation levels, the luminance of FS green and FS yellow could exceed the luminance of FS white for identical DDLs. Conclusions: The OLED temporal characteristics are excellent and superior to those of LCDs. However, the OLEDs revealed severe

  17. 76 FR 67761 - Certain Light-Emitting Diodes and Products Containing Same Determination Not To Review an Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... (collectively, ``LG''). 76 FR 54254 (August 31, 2011). The complaint alleged violations of section 337 based... COMMISSION Certain Light-Emitting Diodes and Products Containing Same Determination Not To Review an Initial... States after importation of certain light emitting diodes and products containing same by reason...

  18. 77 FR 75446 - Certain Light-Emitting Diodes and Products Containing the Same; Commission Determination To Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... (``the `090 patent''); 7,151,283 (``the `283 patent''); and 7,271,425 (``the `425 patent''). 76 FR 40746... COMMISSION Certain Light-Emitting Diodes and Products Containing the Same; Commission Determination To Grant... importation of certain light-emitting diodes and products containing same by reason of infringement of...

  19. Effective ionic charge polarization using typical supporting electrolyte and charge injection phenomena in molecularly doped polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Yamashita, Takanori; Miyairi, Keiichi

    2002-11-01

    An effective method of enhancing charge injection and electroluminescence efficiency of polymer-based light-emitting diodes is introduced. Spin-coated films of poly (N-vinylcarbazole) blended with electron-transport material (Bu-PBD), laser dye (Coumarin6), and the typical supporting electrolyte [tetraethylammonium perchlorate (TEAP)] were examined and it was found that the injection current and luminance of the light emitting diodes doped with TEAP were enhanced dramatically after heat treatment at 80 degC and appropriate biasing in an external electric field of 1.5 x108 V/m at this temperature. A charge injection model based on Fowler-Nordheim tunneling is proposed, taking into account electric field distortion due to the accumulation of ionic space charges at the electrode/film interface. The relaxation time of ionic polarization is found to be related to the cation size of the electrolyte.

  20. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang; Zhou, Liya; Gong, Fuzhong

    2013-03-15

    Highlights: ► Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ► The fabricated white LEDs show good white balance. ► CdSe QDs present well green to yellow band luminescence. ► CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  1. Semiconductor-Nanocrystals-Based White Light-Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z.

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

  2. Effect of alcohol vapor treatment on electrical and optical properties of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) films for indium tin oxide-free organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Fallahzadeh, Ali; Saghaei, Jaber; Yousefi, Mohammad Hassan

    2014-11-01

    A simple alcohol vapor treatment (AVT) technique was proposed to improve the conductivity of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films. In this technique, various alcohols, i.e. methanol, ethanol, 2-propanol and ethylene glycol, were applied to treat the surface of the films formed and then they were annealed. The sheet resistance of PEDOT:PSS films was significantly reduced from 130 kΩ/sq to 60 Ω/sq when treated with methanol vapor. The investigation of the vertical resistance of the films showed that the sample treated with methanol vapor displayed the lowest resistance as well. The mechanism of conductivity enhancement of PEDOT:PSS films through AVT method was explained by surface phase images, UV and IR spectra of PEDOT:PSS films. Optical transmittance spectrum of treated films exhibited that AVT has even enhanced the optical transmittance slightly. Improvement in the morphology, electrical and optical properties of PEDOT:PSS films prompted their applications as a transparent anode in the fabrication of ITO-free organic light-emitting diodes (OLEDs). The OLED manufactured based on methanol-treated PEDOT:PSS films demonstrated the highest luminance.

  3. Multilayered Organic Light Emitting Diodes Based on Polyfluorenes

    NASA Astrophysics Data System (ADS)

    Bozano, Luisa; Marsitzky, Dirk; Carter, Kenneth; Swanson, Sally; Lee, Victor; Salem, Jesse; Miller, Robert; Scott, Campbell; Carter, Sue

    2001-03-01

    The electroluminescence of polyfluorene homopolymers and various arylene copolymers is in the deep blue, with peak emission wavelengths as small as 420 nm. These materials are therefore of great interest for use in full-color OLED displays both as emitters for blue subpixels and as hosts for red and green emitting dopants or comonomers. In this work, we compare the properties of single and multilayer diode structures based on dihexyl and di(2-ethylexyl) substituted polyfluorenes. A cross-linkable polymeric arylamine hole transport polymer and/or a polyquinoline electron transport layer are introduced to better balance the charge injection from the electrodes and optimize the recombination in the fluorene emitter layer. External quantum efficiencies increase from about 0.1layer devices to well over 1The electrical and optical response is determined by steady state and transient measurements. The effects on efficiency, emission spectrum and electrical response resulting from the introduction of dopant dyes into the emitter layer are also presented.

  4. Effect of light emitting diode (LED) therapy on the survival of photoreceptors following argon laser injury

    NASA Astrophysics Data System (ADS)

    DiCarlo, Cheryl D.; Brown, Jeremiah; Hacker, Henry D.; Cheramie, Rachel; Schuschereba, Steven; Valo, Lynn; Clarkson, Donna R.; Sankovich, James; Zwick, Harry; Lund, David J.; Stuck, Bruce E.

    2005-04-01

    Due to the increasing number of optic systems that military personnel are exposed, the development of countermeasures for laser eye injury is of significant concern. Recent reports in the literature suggest some benefit form the use of Light Emitting Diode (LED) therapy on the retina that received a toxic insult. The purpose of this study was to compare retinal cell survival and multifocal electroretinography (mfERG) in a laser retinal injury model following treatment with LED photoillumination. Control and LED array (670 nm) illuminated cynomolgus monkeys received macular Argon laser lesions (514 nm, 130 mW, 100 ms). LED array exposure was accomplished for 4 days for a total dose of 4 J/cm2 per day. Baseline and post-laser exposure mfERGs were performed on most of the subjects. Ocular tissues were collected from four animals at Day 4 poast laser exposure and from two animals at 4 months post laser exposure. The tissues were processed for plastic embedding. Retinal cell counts were performed on the lesion sections. Analysis of Variance (ANOVA) results yielded no significant difference in the sparing of photoreceptors, inner nuclear and ganglion cells between the control and LED illuminated subjects. Although pathology showed no significant support for diode therapy, our early mfERG observations previously reported suggested a more rapid functional recovery. Since there is still no uniform therapy for laser retinal injury, research is continuing to determine novel therapies that may provide retinal cell sparing and functional retinal return.

  5. CoPt ferromagnetic injector in light-emitting Schottky diodes based on InGaAs/GaAs nanostructures

    SciTech Connect

    Zdoroveyshchev, A. V. Dorokhin, M. V.; Demina, P. B.; Kudrin, A. V.; Vikhrova, O. V.; Ved’, M. V.; Danilov, Yu. A.; Erofeeva, I. V.; Krjukov, R. N.; Nikolichev, D. E.

    2015-12-15

    The possibility of fabricating a ferromagnetic injector based on a near-equiatomic CoPt alloy with pronounced perpendicular magnetization anisotropy in the InGaAs/GaAs spin light-emitting diode is shown. The physical properties of experimental spin light-emitting diode prototypes are comprehensively studied. Circularly polarized electroluminescence of fabricated diodes is obtained in zero magnetic field due to the remanent magnetization of CoPt layers.

  6. Electrical and optical measurements of the bandgap energy of a light-emitting diode

    NASA Astrophysics Data System (ADS)

    Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Dumas, Philippe

    2016-03-01

    Semiconductor materials are at the core of electronics. Most electronic devices are made of semiconductors. The operation of these components is well described by quantum physics which is often a difficult concept for students to understand. One of the intrinsic parameters of semiconductors is their bandgap energy {{E}\\text{g}} . In the case of light-emitting diodes (LEDs) {{E}\\text{g}} fixes the colour of the light emitted by the diodes. In this article we propose an experiment to compare {{E}\\text{g}} of a green LED obtained by both electrical and optical measurements. The two slightly different results can be explained by the theoretical knowledge of students on solid physics and the internal structure of electronic devices.

  7. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  8. Broadband visible light source based on AllnGaN light emitting diodes

    DOEpatents

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  9. Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Nana; Cheng, Lu; Si, Junjie; Liang, Xiaoyong; Jin, Yizheng; Wang, Jianpu; Huang, Wei

    2016-04-01

    Amino acid self-assembled monolayers are used in the fabrication of light-emitting diodes based on organic-inorganic halide perovskites. The monolayers of amino acids provide modified interfaces by anchoring to the surfaces of ZnO charge-transporting layers using carboxyl groups, leaving the amino groups to facilitate the nucleation of MAPbBr3 perovskite films. This surface-modification strategy, together with chlorobenzene-assisted fast crystallization method, results in good surface coverage and reduced defect density of the perovskite films. These efforts lead to green perovskite light emitting diodes with a low turn-on voltage of 2 V and an external quantum efficiency of 0.43% at a brightness of ˜5000 cd m-2.

  10. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  11. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method.

    PubMed

    Li, Guangru; Rivarola, Florencia Wisnivesky Rocca; Davis, Nathaniel J L K; Bai, Sai; Jellicoe, Tom C; de la Peña, Francisco; Hou, Shaocong; Ducati, Caterina; Gao, Feng; Friend, Richard H; Greenham, Neil C; Tan, Zhi-Kuang

    2016-05-01

    The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%. PMID:26990965

  12. Simultaneous color and luminance control of organic light-emitting diodes for mood-lighting applications

    NASA Astrophysics Data System (ADS)

    Köhnen, Anne; Meerholz, Klaus; Hagemann, Malte; Brinkmann, Matthias; Sinzinger, Stefan

    2008-01-01

    Organic light-emitting diodes (OLEDs) using polymer blends as a single emissive layer often suffer from large color shifts with changing operational voltage. Until now, such devices cannot stand the critical demands of lighting industry. In this contribution, we introduce a pulse-width-modulation-based driver concept, enabling the user to simultaneously and independently adjust color and luminance of a single device with two contacts. This concept makes color-shifting OLEDs highly interesting for "mood-light" applications.

  13. Photo thermal efficacy of green light emitting diode and gold nano spheres for malignancy

    NASA Astrophysics Data System (ADS)

    Gananathan, Poorani; Prakasa Rao, Aruna; Ganesan, Singaravelu; Manickan, Elanchezhiyan

    2016-03-01

    The effect of 30nm Gold Nanoparticles (GNP) based on concentration and incubation time with respect to their cellular uptake kinetics was studied with Vero and HeLa cells . Photoirradiation effect of GNPs in combination with light emitting diode(LED) found to be remarkable and this work concentrates on optimizing concentration and light source. The effect of Gold nanoparticles alone and in combination with LED in malignant and normal cells lines were studied.

  14. Extracting the emitter orientation in organic light-emitting diodes from external quantum efficiency measurements

    SciTech Connect

    Schmidt, Tobias D. Reichardt, Lukas J.; Wehrmeister, Sebastian; Scholz, Bert J.; Mayr, Christian; Brütting, Wolfgang; Rausch, Andreas F.; Wehlus, Thomas; Reusch, Thilo C. G.; Ciarnáin, Rossá Mac; Danz, Norbert

    2014-07-28

    Emitter orientation will play a major role in future applications of organic light-emitting diodes due to its strong impact on the efficiency of the devices. Up to now, determining the orientation of transition dipole moments required elaborate angular-dependent measurements of the light emission pattern. In this paper, we present a simplified and straightforward method to extract the emitter orientation from external quantum efficiency measurements. We demonstrate the validity of the method on three different dye-doped emitting systems.

  15. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias

    2013-04-15

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  16. Highly Efficient, Simplified, Solution-Processed Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Cho, Himchan; Jeong, Su-Hun; Lee, Tae-Woo

    2016-01-27

    Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes can be realized by using pure-organic thermally activated delayed fluorescence emitters and a multifunctional buffer hole-injection layer, in which high EQE (≈24%) and current efficiency (≈73 cd A(-1) ) are demonstrated. High-efficiency fluorescence red-emitting and blue-emitting devices can also be fabricated in this manner. PMID:26619309

  17. Analytical devices based on light-emitting diodes--a review of the state-of-the-art.

    PubMed

    Bui, Duy Anh; Hauser, Peter C

    2015-01-01

    A general overview of the development of the uses of light-emitting diodes in analytical instrumentation is given. Fundamental aspects of light-emitting diodes, as far as relevant for this usage, are covered in the first part. The measurement of light intensity is also discussed, as this is an essential part of any device based on light-emitting diodes as well. In the second part, applications are discussed, which cover liquid and gas-phase absorbance measurements, flow-through detectors for chromatography and capillary electrophoresis, sensors, as well as some less often reported methods such as photoacoustic spectroscopy. PMID:25467449

  18. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.

    2004-01-01

    Plants will be an important component of future long-term space missions. Lighting systems for growing plants will need to be lightweight, reliable, and durable, and light-emitting diodes (LEDs) have these characteristics. Previous studies demonstrated that the combination of red and blue light was an effective light source for several crops. Yet the appearance of plants under red and blue lighting is purplish gray making visual assessment of any problems difficult. The addition of green light would make the plant leave appear green and normal similar to a natural setting under white light and may also offer a psychological benefit to the crew. Green supplemental lighting could also offer benefits, since green light can better penetrate the plant canopy and potentially increase plant growth by increasing photosynthesis from the leaves in the lower canopy. In this study, four light sources were tested: 1) red and blue LEDs (RB), 2) red and blue LEDs with green fluorescent lamps (RGB), 3) green fluorescent lamps (GF), and 4) cool-white fluorescent lamps (CWF), that provided 0%, 24%, 86%, and 51% of the total PPF in the green region of the spectrum, respectively. The addition of 24% green light (500 to 600 nm) to red and blue LEDs (RGB treatment) enhanced plant growth. The RGB treatment plants produced more biomass than the plants grown under the cool-white fluorescent lamps (CWF treatment), a commonly tested light source used as a broad-spectrum control.

  19. Red/near-infrared light-emitting diode therapy for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Naeser, Margaret A.; Martin, Paula I.; Ho, Michael D.; Krengel, Maxine H.; Bogdanova, Yelena; Knight, Jeffrey A.; Yee, Megan K.; Zafonte, Ross; Frazier, Judith; Hamblin, Michael R.; Koo, Bang-Bon

    2015-05-01

    This invited paper reviews our research with scalp application of red/near-infrared (NIR) light-emitting diodes (LED) to improve cognition in chronic, traumatic brain injury 1. Application of red/NIR light improves mitochondrial function (especially hypoxic/compromised cells) promoting increased ATP, important for cellular metabolism. Nitric oxide is released locally, increasing regional cerebral blood flow. Eleven chronic, mTBI participants with closed-head injury and cognitive dysfunction received 18 outpatient treatments (MWF, 6 Wks) starting at 10 Mo. to 8 Yr. post-mTBI (MVA, sports-related, IED blast injury). LED therapy is non-invasive, painless, non-thermal (FDA-cleared, non-significant risk device). Each LED cluster head (2.1" diameter, 500mW, 22.2mW/cm2) was applied 10 min (13J/cm2) to 11 scalp placements: midline, from front-to-back hairline; and bilaterally on dorsolateral prefrontal cortex, temporal, and parietal areas. Testing performed pre- and post-LED (+1 Wk, 1 and 2 Mo post- 18th treatment) showed significant linear trend for LED effect over time, on improved executive function and verbal memory. Fewer PTSD symptoms were reported. New studies at VA Boston include TBI patients treated with transcranial LED (26J/cm2); or treated with only intranasal red, 633nm and NIR, 810nm diodes placed into the nostrils (25 min, 6.5mW, 11.4J/cm2). Intranasal LEDs are hypothesized to deliver photons to hippocampus. Results are similar to Naeser et al. (2014). Actigraphy sleep data show increased sleep time (average, +1 Hr/night) post-18th transcranial or intranasal LED treatment. LED treatments may be self-administered at home (Naeser et al., 2011). A shamcontrolled study with Gulf War Illness Veterans is underway.

  20. Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate

    NASA Astrophysics Data System (ADS)

    Chang, Chiao; Li, Hui; Huang, Ssu-Hsuan; Lin, Li-Chien; Cheng, Hung-Hsiang

    2016-04-01

    The electroluminescence from a Ge/GeSn/Ge p-i-n light-emitting diode on Si was investigated under different temperatures ranging from 25 to 150 K. The diode was operated at a low injection current density of 13 A/cm2. We obtained no-phonon- and phonon-assisted replicas in emission spectra. Also, the relationship between indirect bandgap energy and temperature was investigated. The temperature-dependent bandgap energy followed Varshni’s empirical expression with α = 4.884 × 10-4 eV/K and β = 130 K.

  1. Hourglass-graded heterostructures as a possible route towards extremely efficient light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jamaux, Julien; Iqbal, Asif; Bevan, Kirk H.

    2015-08-01

    In this study a theoretical analysis of hourglass-graded light emitting diodes (LEDs) is provided. The term hourglass-grading refers to the placement of a wide band gap material at the diode contacts, smoothly tapering to a smaller band gap material in the active centre region. Utilizing AlGaN as our model system, we show that such a device can both effectively confine carrier recombination and mitigate overflow under high doping conditions. Moreover, by lowering the Auger coefficient of recombination in the active region, room temperature internal quantum efficiencies of 95% or more might be achieved in hourglass-graded LEDs at drive currents near 103 A cm-2.

  2. On the ideality factor of the radiative recombination current in semiconductor light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Gyeong Won; Shim, Jong-In; Shin, Dong-Soo

    2016-07-01

    While there have been many discussions on the standard Si pn-diodes, little attention has been paid and confusion still arises on the ideality factor of the radiative recombination current in semiconductor light-emitting diodes (LEDs). In this letter, we theoretically demonstrate and experimentally confirm by using blue and infrared semiconductor LEDs that the ideality factor of the radiative recombination current is unity especially for low-current-density ranges. We utilize the data of internal quantum efficiency measured by the temperature-dependent electroluminescence to separate the radiative current component from the total current.

  3. Cuban experience for therapy in dentistry with light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Sopena, Esperanza P.; Serra, Mayra C.; Sopena, Maria d. l. A.; Lopez Silva, Sonnia M.

    1996-01-01

    Interest in the interaction of low power light with tissues has increased in the last few years. Very often, the stimulating effects of irradiation have been explained by the role of the coherence of laser radiation as it acts upon biological objects. This argument is not convincing and the purpose of the present report is to describe the experiences during two years working with infrared (IR) GaAs light emitting diodes (LED) as clinical light for the therapy of some dental diseases. Equipment was designed and built, FOTOTER, which was approved by the National Health Office (registration No. 7910B). The treatment was practiced on 360 patients. They presented pain on buccal or facial structures and disorders on buccal tissues. Pathologies, number of patients treated, application time in each trigger point, number of sessions, and the relief pain patients are summarized. We conclude that the therapy with IR LED has the same effects as the HeNe and GaAs laser therapy on the biological buccal tissues. We recommend LED therapy for the treatment of these dentistry diseases.

  4. Mild oxygen plasma treated PEDOT:PSS as anode buffer layer for vacuum deposited organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Yunfei; Yuan, Yongbo; Lian, Jiarong; Zhang, Jie; Pang, Hongqi; Cao, Lingfang; Zhou, Xiang

    2006-08-01

    The surface morphology of PEDOT:PSS after mild oxygen plasma treatment were investigated by scanning electron microscopy and atomic force microscopy. The nanometer-scale islands on the surface of treated PEDOT:PSS were observed. Vacuum deposited organic light-emitting diodes (OLEDs) with treated PEDOT:PSS as anode buffer layer had been fabricated. The OLEDs with an appropriately treated PEDOT:PSS as anode buffer layer exhibited significantly enhanced lifetime and decreased driving voltage. The results suggest that the appropriate mild oxygen plasma treatment of PEDOT:PSS layers may be useful for the improvement of the interface with the hole transport layer and enhanced device performance.

  5. Enhancement of electrical property by oxygen doping to copper phthalocyanine in inverted top emitting organic light emitting diodes

    SciTech Connect

    Hong, Kihyon; Kim, Kisoo; Lee, Jong-Lam

    2009-11-23

    We reported the evidence of oxygen doping to copper-phthalocyanine (CuPc) by O{sub 2}-plasma treatment to inverted top-emitting organic light-emitting diodes (ITOLEDs). In situ synchrotron-radiation photoelectron spectroscopy results showed that a new Cu-O bond appeared and the energy difference between the highest-occupied molecular orbital and E{sub F} is lowered by 0.15 eV after plasma treatment. The oxygen ions chemically interacted with Cu atoms and transferred charges to the CuPc. Thus the hole injection barrier was lowered, enhancing the electroluminescent property of ITOLEDs.

  6. Large magnetic field effects in electrochemically doped organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    van Reenen, S.; Kersten, S. P.; Wouters, S. H. W.; Cox, M.; Janssen, P.; Koopmans, B.; Bobbert, P. A.; Kemerink, M.

    2013-09-01

    Large negative magnetoconductance (MC) of ˜12% is observed in electrochemically doped polymer light-emitting diodes at sub-band-gap bias voltages (Vbias). Simultaneously, a positive magnetoefficiency (Mη) of 9% is observed at Vbias = 2 V. At higher bias voltages, both the MC and Mη diminish while a negative magnetoelectroluminescence (MEL) appears. The negative MEL effect is rationalized by triplet-triplet annihilation that leads to delayed fluorescence, whereas the positive Mη effect is related to competition between spin mixing and exciton formation leading to an enhanced singlet:triplet ratio at nonzero magnetic field. The resultant reduction in triplet exciton density is argued to reduce detrapping of polarons in the recombination zone at low-bias voltages, explaining the observed negative MC. Regarding organic magnetoresistance, this study provides experimental data to verify existing models describing magnetic field effects in organic semiconductors, which contribute to better understanding hereof. Furthermore, we present indications of strong magnetic field effects related to interactions between trapped carriers and excitons, which specifically can be studied in electrochemically doped organic light-emitting diodes (OLEDs). Regarding light-emitting electrochemical cells (LECs), this work shows that delayed fluorescence from triplet-triplet annihilation substantially contributes to the electroluminescence and the device efficiency.

  7. Electroluminescence spectra of ultraviolet light-emitting diodes based on p-n-heterostructures coated with phosphors

    SciTech Connect

    Gal'china, N. A.; Kogan, L. M.; Soshchin, N. P.; Shirokov, S. S.; Yunovich, A. E.

    2007-09-15

    The electroluminescence spectra of light-emitting diodes based on p-n heterostructures of the InGaN/AlGaN/GaN type are studied in the near-ultraviolet spectral region (360-405 nm). The spectra are peaked at the wavelengths 385 and 395 nm, and the intensity of emission falls exponentially with the photon energy in the shorter-wavelength and longer-wavelength regions. The emitters in the green and yellow spectral regions based on these light-emitting diodes coated with silicate phosphors are studied. The luminescence spectra of phosphors have the Gaussian shape and maximums in the range from 525 to 560 nm. The color characteristics of emitters depend on the ratios of intensities of the ultraviolet and yellow-green bands. The possibilities of fabrication of light-emitting diodes of visible luminescence based on ultraviolet light-emitting diodes that excite colored phosphors are discussed.

  8. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review.

    PubMed

    Song, Kai; Mohseni, Madjid; Taghipour, Fariborz

    2016-05-01

    Ultraviolet (UV) disinfection is an effective technology for the inactivation of pathogens in water and is of growing interest for industrial application. A new UV source - ultraviolet light-emitting diode (UV-LED) - has emerged in the past decade with a number of advantages compared to traditional UV mercury lamps. This promising alternative raises great interest in the research on application of UV-LEDs for water treatment. Studies on UV-LED water disinfection have increased during the past few years. This article presents a comprehensive review of recent studies on UV-LEDs with various wavelengths for the inactivation of different microorganisms. Many inconsistent and incomparable data were found from published studies, which underscores the importance of establishing a standard protocol for studying UV-LED inactivation of microorganisms. Different UV sensitivities to UV-LEDs and traditional UV lamps were observed in the literature for some microorganisms, which requires further investigation for a better understanding of microorganism response to UV-LEDs. The unique aspects of UV-LEDs improve inactivation effectiveness by applying LED special features, such as multiple wavelengths and pulsed illumination; however, more studies are needed to investigate the influencing factors and mechanisms. The special features of UV-LEDs offer the flexibility of novel reactor designs for a broad application of UV-LED reactors. PMID:26971809

  9. Short-circuit prevention strategies in organic light-emitting diodes and solar cells

    NASA Astrophysics Data System (ADS)

    Michels, Jasper J.; Jolt Oostra, A.; Blom, Paul W. M.

    2016-08-01

    Short-circuit prevention and repair strategies are essential to allow for upscaled production of organic electronic devices based on thin-film production technology. Occurrence of short circuits is a consequence of manufacturing imperfections and particle contamination. After giving a concise review of short-circuit prevention methods for organic thin-film devices in the open literature of the past decade, this overview article summarizes our recent work on short-circuit prevention in organic light-emitting diodes and organic solar cells by chemical oxidation methods. Our main strategy is based on self-aligned disruption of the conductivity of exposed areas of the typically applied hole transport material poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) by aqueous sodium hypochlorite, prior to cathode deposition. The ten orders of magnitude decrease in local conductivity obtained proves sufficient to let deliberately flawed devices operate at pristine performance levels. We next show that in the case of organic solar cells based on a lithium fluoride/aluminium cathode the shunting junctions can be made sufficiently resistive to allow for near unflawed operation, without applying wet treatment.

  10. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes.

    PubMed

    Jia, S; Sun, H D; Du, J H; Zhang, Z K; Zhang, D D; Ma, L P; Chen, J S; Ma, D G; Cheng, H M; Ren, W C

    2016-05-19

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A(-1) and 98.2 lm W(-1), respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability. PMID:27153523

  11. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy.

    PubMed

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L; Kobayashi, Hisataka

    2016-03-22

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688

  12. Comparison of light emitting diodes and semiconductor laser inducing photodynamic therapy of cancer cells in vitro

    NASA Astrophysics Data System (ADS)

    Macecek, Jaroslav; Kolarova, Hana; Bajgar, Robert; Strnad, Miroslav

    2007-03-01

    The goal of anticancer therapy is achievement of balance between destruction of tumour cells and tissues and conservation of physiological functions of noncancer cells. Photodynamic therapy (PDT) is one of novel alternative treatment modality of malignant neoplasms. This method is based on cytotoxic action of excited sensitizers in the oxygen-rich environment. Sensitizers bound to cells and are excited by light source identical to absorption maximum of sensitizer. Photodynamic reactions lead to production of reactive oxygen species (ROS), which cause necrosis or apoptosis of cancer cells. The objective of our work was to analyse of phototoxicity in the sense of DNA damage in cancer cells after PDT by single cell gell electrophoresis (SCGE, comet assay) using ZnTPPS4 (zinc(II)-5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrine and disulfonated chloraluminium phthalocyanine ClAlPcS II as sensitizers. Violet light emitting diodes (LEDs; 1.5 mJ.cm -2.s -1; 418 nm) and semiconductor laser (50mW; 675 nm) were used as sources of radiation. Level of DNA fragmentation was detected after application of different light doses.

  13. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy

    PubMed Central

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka

    2016-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688

  14. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Nicolai, H. T.; Blom, P. W. M.

    2014-12-01

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.

  15. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    SciTech Connect

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Nicolai, H. T.

    2014-12-14

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.

  16. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    SciTech Connect

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-28

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){sub 3} as phosphorescent red dopant in electron transport layer.

  17. [Comparison of the effects of laser and light-emitting diodes on lipid peroxidation in rat wound exudate].

    PubMed

    Klebanov, G I; Shuraeva, N Iu; Chichuk, T V; Osipov, A N; Vladimirov, Iu A

    2006-01-01

    The effect of laser and light-emitting diode radiation on lipid peroxidation in rat wound exudate was studied with the aim to compare the efficiency of coherent laser and incoherent light-emitting diode radiations. A model of aseptic wound in rat suggested by L.I. Slutskii was used. A He-Ne laser (632 nm) and a U-332B light-emitting diode were used in this study. The intensity of lipid peroxidation was estimated by the TBA assay. The antioxidative capacity of rat wound fluid was evaluated by means of chemiluminescent assays in two model systems: a) aqueous system with ABAP and luminol and b) in phospholipid liposome suspension with Fe2+ and cumarin. It was shown that exposure of rat wounds to both laser and light-emitting diode radiation decreased the concentration of TBA products and increased the antioxidative capacity of wound exudates, compared with the control group (without irradiation). The results obtained show that exposure of wounds to both laser and light-emitting diode irradiation causes a decrease in the oxidative stress in the rat wound fluid. No significant quantitative difference between the effects of laser and light-emitting diode irradiation was found. PMID:16637342

  18. AlGaInN-based light emitting diodes with a transparent p-contact based on thin ITO films

    SciTech Connect

    Smirnova, I. P. Markov, L. K.; Pavlyuchenko, A. S.; Kukushkin, M. V.

    2012-03-15

    A method for obtaining transparent conductive ITO (indium-tin oxide) films aimed for use in light emitting diodes of the blue spectral range is developed. The peak external quantum efficiency of light-emitting diodes with a p-contact based on the obtained films reaches 25%, while for similar light-emitting diodes with a standard semitransparent metal contact, it is <10%. An observed increase in the direct voltage drop from 3.15 to 3.37 V does not significantly affect the possibility of applying these films in light-emitting diodes since the optical power of light-emitting diodes with a transparent p-contact based on ITO films exceeds that of chips with metal semitransparent p-contacts with a working current of 20 mA by a factor of almost 2.5. Light-emitting diodes with p-contacts based on ITO films successfully withstand a pumping current that exceeds their calculated working current by a factor of 5 without the appearance of any signs of degradation.

  19. Enhancement of current injection in organic light emitting diodes with sputter treated molybdenum oxides as hole injection layers

    NASA Astrophysics Data System (ADS)

    Wang, Po-Sheng; Wu, I.-Wen; Tseng, Wei-Hsuan; Chen, Mei-Hsin; Wu, Chih-I.

    2011-04-01

    The enhancement of current density and luminance in organic light emitting diodes is achieved by treating molybdenum oxide (MoO3) hole-injection-layers with slight argon ion sputtering. The sputter treated MoO3 layers provide improvement in current injection efficiency, resulting in better current density which is about ten times higher than that of the reference devices. Photoemission spectroscopy shows that molybdenum in MoO3 is reduced to lower oxidation states after sputter treatment due to the removal of oxygen. As a result, gap states are formed to enhance metallic characteristics of the sputter treated MoO3 surface and facilitate better hole injection efficiency.

  20. Comparison between blue lasers and light-emitting diodes for future solid-state lighting: Comparison between blue lasers and light-emitting diodes

    SciTech Connect

    Wierer, Jonathan J.; Tsao, Jeffrey Y.; Sizov, Dmitry S.

    2013-08-01

    Solid-state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light-emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state-of-the-art input-power-density-dependent power-conversion efficiencies; potential improvements both in their peak power-conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.

  1. Efficient inverted organic light-emitting devices by amine-based solvent treatment (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Song, Myoung Hoon; Choi, Kyoung-Jin; Jung, Eui Dae

    2015-10-01

    The efficiency of inverted polymer light-emitting diodes (iPLEDs) were remarkably enhanced by introducing spontaneously formed ripple-shaped nanostructure of ZnO (ZnO-R) and amine-based polar solvent treatment using 2-methoxyethanol and ethanolamine (2-ME+EA) co-solvents on ZnO-R. The ripple-shape nanostructure of ZnO layer fabricated by solution process with optimal rate of annealing temperature improves the extraction of wave guide modes inside the device structure, and 2-ME+EA interlayer enhances the electron injection and hole blocking and reduces exciton quenching between polar solvent treated ZnO-R and emissive layer. As a result, our optimized iPLEDs show the luminous efficiency (LE) of 61.6 cd A-1, power efficiency (PE) of 19.4 lm W-1 and external quantum efficiency (EQE) of 17.8 %. This method provides a promising method, and opens new possibilities for not only organic light-emitting diodes (OLEDs) but also other organic optoelectronic devices such as organic photovoltaics, organic thin film transistors, and electrically driven organic diode laser.

  2. High-efficient and brightness white organic light-emitting diodes operated at low bias voltage

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yu, Junsheng; Yuan, Kai; Jian, Yadong

    2010-10-01

    White organic light-emitting diodes (OLEDs) used for display application and lighting need to possess high efficiency, high brightness, and low driving voltage. In this work, white OLEDs consisted of ambipolar 9,10-bis 2-naphthyl anthracene (ADN) as a host of blue light-emitting layer (EML) doped with tetrabutyleperlene (TBPe) and a thin codoped layer consisted of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) as a host of yellow light-emitting layer doped with 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were investigated. With appropriate tuning in the film thickness, position, and dopant concentration of the co-doped layer, a white OLED with a luminance yield of 10.02 cd/A with the CIE coordinates of (0.29, 0.33) has been achieved at a bias voltage of 9 V and a luminance level of over 10,000 cd/m2. By introducing the PIN structure with both HIL and bis(10- hydroxybenzo-quinolinato)-beryllium (BeBq2) ETL, the power efficiency of white OLED was improved.

  3. Frequency-Downconversion Stability of PMMA Coatings in Hybrid White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Caruso, Fulvio; Mosca, Mauro; Rinella, Salvatore; Macaluso, Roberto; Calì, Claudio; Saiano, Filippo; Feltin, Eric

    2016-01-01

    We report on the properties of a poly(methyl methacrylate)-based coating used as a host for an organic dye in hybrid white light-emitting diodes. The device is composed by a pump source, which is a standard inorganic GaN/InGaN blue light-emitting diode (LED) emitting at around 450 nm, and a spin-coated conversion layer making use of Lumogen® F Yellow 083. Under prolonged irradiation, the coating exhibits significant bleaching, thus degrading the color rendering performance of the LED. We present experimental results that confirm that the local temperature rise of the operating diode does not affect the conversion layer. It is also proven that, during the test, the photostability of the organic dye is compromised, resulting in a chromatic shift from Commission Internationale de l'Eclairage (CIE) ( x; y) coordinates (0.30;0.39) towards the color of the pump (0.15;0.04). Besides photodegradation of the dye, we address a phenomenon attributed to modification of the polymer matrix activated by the LED's blue light energy as confirmed by ultraviolet-visible and Fourier-transform infrared spectroscopic analyses. Three methods for improving the overall stability of the organic coating are presented.

  4. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  5. Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy.

    PubMed

    Yi, Hongming; Wu, Tao; Wang, Guishi; Zhao, Weixiong; Fertein, Eric; Coeur, Cécile; Gao, Xiaoming; Zhang, Weijun; Chen, Weidong

    2016-05-16

    We overview our recent progress in the developments and applications of light emitting diode-based incoherent broadband cavity enhanced absorption spectroscopy (LED-IBBCEAS) techniques for real-time optical sensing chemically reactive atmospheric species (HONO, NO3, NO2) in intensive campaigns and in atmospheric simulation chamber. New application of optical monitoring of NO3 concentration-time profile for study of the NO3-initiated oxidation process of isoprene in a smog chamber is reported. PMID:27409951

  6. Active display and encoding by integrated plasmonic polarizer on light-emitting-diode

    PubMed Central

    Wang, L.; Li, T.; Guo, R. Y.; Xia, W.; Xu, X. G.; Zhu, S. N.

    2013-01-01

    An electrical pumped microscopic active display with integration of plasmonic polarizer and light-emitting-diode is proposed. Thanks to the strong polarized emission through the rectangular nanoholes, well designed pixels with respect to different polarizations are engineered, which give rise to flexible and controllable active display. As results, polarization multiplexed letter encoding, single and double gray-scale images and animation movies are successfully realized. Our results demonstrate a new strategy in electro-optical integration and indicate potential applications in designing new type of microscopic electro-optical devices. PMID:24008314

  7. Thermal characterization of light-emitting diodes in the frequency domain

    NASA Astrophysics Data System (ADS)

    Vitta, P.; Žukauskas, A.

    2008-09-01

    We report on a method for the measurement of thermal relaxation time constants within light-emitting diodes (LEDs) in the frequency domain. The method is based on the phase shift of the forward voltage waveform with respect to that of the harmonically modulated forward current due to the sensitivity of the forward voltage to junction temperature. The phase shift was shown to exhibit dips at angular frequencies equal to inverse thermal time constants. Extraction of thermal time constants was demonstrated for common low-power and high-power LEDs. The measured thermal time constants (˜0.1-100 ms) were linked to heat flows between the LED components.

  8. Light-emitting diodes for solid-state lighting: searching room for improvements

    NASA Astrophysics Data System (ADS)

    Karpov, Sergey Y.

    2016-03-01

    State-of-the art light-emitting diodes (LEDs) for solid-state lighting (SSL) are reviewed with the focus on their efficiency and ways for its improvement. Mechanisms of the LED efficiency losses are considered on the heterostructure, chip, and device levels, including high-current efficiency droop, recombination losses, "green gap", current crowding, Stokes losses, etc. Materials factors capable of lowering the LED efficiency, like composition fluctuations in InGaN alloys and plastic stress relaxation in device heterostructures, are also considered. Possible room for the efficiency improvement is discussed along with advanced schemes of color mixing and LED parameters optimal for generation of high-quality white light.

  9. Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode

    NASA Astrophysics Data System (ADS)

    Zhu, X. L.; Sun, J. X.; Peng, H. J.; Meng, Z. G.; Wong, M.; Kwok, H. S.

    2005-08-01

    Polycrystalline silicon (p-Si) is a good material for the construction of thin-film transistors (TFT). It is used for fabricating active-matrix organic light-emitting diode (AMOLED) displays. In this letter, we propose and demonstrate the application of boron-doped p-Si as a semi-transparent anode in making different color OLEDs. Without removing the ultrathin native oxide on the p-Si surface and employing p-doped hole transport layer to enhance holes injection, these OLEDs show comparable or even better performance to conventional OLEDs which use ITO as anodes. The present technique has the advantage of less masking steps in making AMOLED.

  10. Spectral Imaging for Electroluminescence Characterization of a Polymer-Blend Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Takada, Noriyuki; Kamata, Toshihide

    2005-12-01

    Spectral imaging for electroluminescence (EL) characterization of a light-emitting diode based on blends of poly[2,7-(9,9-di-n-octylfluorene)] (PFO) and poly[2,7-(9,9-di-n-octylfluorene)-\\textit{alt}-(1,4-phenylene-((4-\\textit{sec}-butylphenyl)amino)-1,4-phenylene)] (TFB) was performed using a two-dimensional microspectroscopy imaging system. We found that EL spectral images changed markedly with increasing applied voltage. Such a variation is presumed to have originated from the transfer of emission sites in the polymer blend layer.

  11. Orthogonally Substituted Benzimidazole-Carbazole Benzene As Universal Hosts for Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Huang, Jau-Jiun; Hung, Yu-Hsiang; Ting, Pei-Ling; Tsai, Yu-Ning; Gao, Huan-Jie; Chiu, Tien-Lung; Lee, Jiun-Haw; Chen, Chi-Lin; Chou, Pi-Tai; Leung, Man-Kit

    2016-02-19

    The novel ambipolar hosts of o-CbzBz and o-DiCbzBz contain carbazole and benzimidazole through an ortho-connection. The orthogonal conformations cause the triplet state to be confined at the carbazole units to secure efficient energy transfer. The phosphorescent organic light-emitting diodes (PhOLEDs) show a high current efficiency, power efficiency, and low efficiency roll-off. o-DiCbzBz can be used as a host for sky-blue, green, and orange-red PhOLEDs, giving 57.5, 78.4, and 60.3 cd/A, respectively. PMID:26829339

  12. Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures

    SciTech Connect

    Zhang, Shuyu; Turnbull, Graham A. E-mail: idws@st-andrews.ac.uk; Samuel, Ifor D. W. E-mail: idws@st-andrews.ac.uk

    2013-11-18

    We report microstructured organic light-emitting diodes (OLEDs) with directional emission based on efficient solution-processable europium-OLEDs patterned by solvent assisted microcontact molding. The angle dependence of the light emission is characterized for OLEDs with square-array photonic crystals with periods between 275 nm and 335 nm. The microstructured devices have emission patterns strongly modified from the Lambertian emission of planar OLEDs and can approximately double the emitted power in a desired angle range in both s- and p-polarizations. The modified emission is attributed to light diffracted out of the waveguide modes of the OLEDs.

  13. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    SciTech Connect

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-06-25

    A fabrication process, compatible with an industrial bipolar+complementary metal{endash}oxide{endash}semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n{sup +}/p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. {copyright} 2001 American Institute of Physics.

  14. Light-emitting diode technology status and directions: Opportunities for horticultural lighting

    DOE PAGESBeta

    Tsao, Jeffrey Y.; Pattison, P. Morgan; Krames, Michael R.

    2016-01-01

    Here, light-emitting diode (LED) technology has advanced rapidly over the last decade, primarily driven by display and general illumination applications ("solid-state lighting (SSL) for humans"). These advancements have made LED lighting technically and economically advantageous not only for these applications, but also, as an indirect benefit, for adjacent applications such as horticultural lighting ("SSL for plants"). Moreover, LED technology has much room for continued improvement. In the near-term, these improvements will continue to be driven by SSL for humans (with indirect benefit to SSL for plants), the most important of which can be anticipated.

  15. A high quality liquid-type quantum dot white light-emitting diode.

    PubMed

    Sher, Chin-Wei; Lin, Chin-Hao; Lin, Huang-Yu; Lin, Chien-Chung; Huang, Che-Hsuan; Chen, Kuo-Ju; Li, Jie-Ru; Wang, Kuan-Yu; Tu, Hsien-Hao; Fu, Chien-Chung; Kuo, Hao-Chung

    2016-01-14

    This study demonstrates a novel package design to store colloidal quantum dots in liquid format and integrate them with a standard LED. The high efficiency and high quality color performance at a neutral white correlated color temperature is demonstrated. The experimental results indicate that the liquid-type quantum dot white light-emitting diode (LQD WLED) is highly efficient and reliable. The luminous efficiency and color rendering index (CRI) of the LQD WLED can reach 271 lm Wop(-1) and 95, respectively. Moreover, a glass box is employed to prevent humidity and oxygen erosion. With this encapsulation design, our quantum dot box can survive over 1000 hours of storage time. PMID:26666455

  16. Doped thin films of two organic molecules for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Giovanella, Umberto; Botta, Chiara; Pasini, Mariacecilia; Porzio, William; Destri, Silvia

    2003-11-01

    The photoluminescence and electroluminescence of doped organic materials are reported for thin films prepared by ultrahigh-vacuum coevaporation and by spin coating from solution of two emitting molecules. For both films, efficient energy transfer from the donor to the acceptor molecules is observed without relevant dopant segregation for molar concentrations up to 10%. In spin-coated films the energy transfer from the matrix to the dopant is due to purely resonant energy transfer processes while the cosublimated films show the presence of additional thermally activated hopping processes. Light-emitting diodes fabricated with coevaporated films yield electroluminescence with higher efficiency and stability.

  17. Effect of current waveform on the performance of phosphor converted nitride light emitting diodes

    SciTech Connect

    Ludwiczak, Bogna; Jantsch, Wolfgang

    2014-01-21

    We investigate the influence of the current waveform on the efficiency and the emission spectra of white, high power InGaN light emitting diodes. We consider rectangular and trapezoidal current pulses, adjusted to provide the same number of charge carriers in the space charge region. Our measurements confirm the theoretical expectation that flattening of the pulse flank increases the power efficiency. This effect is stronger according to the current amplitude. The emission blue peak at trapezoidal pulses is slightly red-shifted compared to that one at rectangular pulses. This indicates a stronger effect of the quantum confined Stark effect for trapezoidal pulse driving.

  18. Note: Measuring spectral response of photocells with light-emitting diodes.

    PubMed

    Tada, Kazuya; Tanaka, Hiroaki

    2015-12-01

    Although the spectral response is a key data for photocells, traditional measurement setup for it consists of expensive optical precision components including white-light source, collimator and monochromator, and has relatively large footprint. Here, it is demonstrated that a compact, portable, and low-cost device based on an array of light-emitting diodes can provide quantitatively reliable spectral response characterization of photocells. The device seems to be useful for the purpose of preliminary survey of the spectral response of novel material and/or materials system prior to precise measurement with the traditional equipment. PMID:26724087

  19. Note: Measuring spectral response of photocells with light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tada, Kazuya; Tanaka, Hiroaki

    2015-12-01

    Although the spectral response is a key data for photocells, traditional measurement setup for it consists of expensive optical precision components including white-light source, collimator and monochromator, and has relatively large footprint. Here, it is demonstrated that a compact, portable, and low-cost device based on an array of light-emitting diodes can provide quantitatively reliable spectral response characterization of photocells. The device seems to be useful for the purpose of preliminary survey of the spectral response of novel material and/or materials system prior to precise measurement with the traditional equipment.

  20. Compact light-emitting diode lighting ring for video-assisted thoracic surgery

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-10-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  1. Ultraviolet light-emitting diodes with polarization-doped p-type layer

    NASA Astrophysics Data System (ADS)

    Hu, Wenxiao; Qin, Ping; Song, Weidong; Zhang, Chongzhen; Wang, Rupeng; Zhao, Liangliang; Xia, Chao; Yuan, Songyang; Yin, Yian; Li, Shuti

    2016-09-01

    We report ultraviolet light emitting diode (LEDs) with polarization doped p-type layer. Fabricated LEDs with polarization doped p-type layer exhibited reduced forward voltage and enhanced light output power, compared to those with traditional p-type AlGaN layer. The improvement is attributed to improved hole concentration and the smooth valence band by the polarization enhanced p-type doping. Our simulated results reveal that this p-type layer can further enhance the performance of ultraviolet LEDs by removing the electron blocking layer (EBL).

  2. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-01

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated. PMID:19547474

  3. White organic light-emitting diodes with 9, 10-bis (2-naphthyl) anthracene

    NASA Astrophysics Data System (ADS)

    Guan, Yunxia; Niu, Lianbin

    2009-03-01

    White organic light-emitting diodes were fabricated by 9, 10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene with a structure of ITO/copper phthalocyanine (CuPc) / NPB /ADN: Rubrene /Alq3 /CsF/Mg:Ag/Ag. Multilayer organic devices using AND and Rubrene as an emitting layer produced white emissions with good chromaticity and luminous efficiency as high as 5.93 cd/A. This performance can be explained by Förster energy transfer from the blue-emitting host to the orange-emitting dopant.

  4. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  5. Collimated Light Source Using Patterned Organic Light-Emitting Diodes and Microlens

    NASA Astrophysics Data System (ADS)

    Sukekazu Aratani,; Masaya Adachi,; Masao Shimizu,; Tatsuya Sugita,; Toshinari Shibasaki,; Katsusuke Shimazaki,

    2010-04-01

    We developed for the first time a collimated organic light-emitting diode (OLED) light source using a patterned OLED and a microlens. The structure of the collimated OLED light source was designed by conventional ray-tracking simulation. We demonstrated that the collimated OLED light source enhanced the luminance of a liquid crystal display (LCD) with a low aperture ratio by a factor of more than two compared with a conventional OLED light source, which was not patterned. The collimated OLED light source with the patterned OLED and microlens is thus very effective for achieving a highly efficient LCD with OLED backlight.

  6. Electrically driven green, olivine, and amber color nanopyramid light emitting diodes.

    PubMed

    Chang, Shih-Pang; Chang, Jet-Rung; Sou, Kuok-Pan; Liu, Mei-Chun; Cheng, Yuh-Jen; Kuo, Hao-Chung; Chang, Chun-Yen

    2013-10-01

    We report the fabrication and studies of electrically driven green, olivine, and amber color nanopyramid GaN light emitting diodes (LEDs). InGaN/GaN multiple quantum wells (MQWs) were grown on the nanopyramid semipolar facets. Compared with the commonly used (0001) c-plane MQWs, the semipolar facet has lower piezoelectric field, resulting in much faster radiative recombination efficiency. This is important for high In content MQWs. The measured internal quantum efficiencies for green, olivine, and amber color LED are 30%, 25%, and 21%, respectively. The radiative and non-radiative lifetime of the semipolar MQWs are also investigated. PMID:24104218

  7. High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes

    SciTech Connect

    David, Aurelien Hurni, Christophe A.; Aldaz, Rafael I.; Cich, Michael J.; Ellis, Bryan; Huang, Kevin; Steranka, Frank M.; Krames, Michael R.

    2014-12-08

    We report on the light extraction efficiency of III-Nitride violet light-emitting diodes with a volumetric flip-chip architecture. We introduce an accurate optical model to account for light extraction. We fabricate a series of devices with varying optical configurations and fit their measured performance with our model. We show the importance of second-order optical effects like photon recycling and residual surface roughness to account for data. We conclude that our devices reach an extraction efficiency of 89%.

  8. Energy level alignment at the interfaces in a multilayer organic light-emitting diode structure

    NASA Astrophysics Data System (ADS)

    Olthof, S.; Meerheim, R.; Schober, M.; Leo, K.

    2009-06-01

    We use photoelectron spectroscopy to study the electronic structure and energy level alignment throughout an organic light-emitting diode. The structure under investigation is a state-of-the-art long-living red phosphorescent device composed of doped charge-injection layers, charge-blocking layers, and an emission layer. By consecutively building up the whole device, the key parameters of every interface are measured. Our results show that the doped layers have a significant influence on the device energetics, especially in controlling the built-in potential, and that there are mostly only small dipoles present at the interfaces of the intrinsic organic layers.

  9. Evaluation of light-emitting diodes as attractant for sandflies (Diptera: Psychodidae: Phlebotominae) in northeastern Brazil

    PubMed Central

    Silva, Francinaldo Soares; Brito, Jefferson Mesquita; Costa, Benedita Maria; Lobo, Shelre Emile Pereira Duarte

    2015-01-01

    Hoover Pugedo light traps were modified for use with green and blue-light-emitting diodes to trap phlebotomine sandflies in northeastern Brazil. A total of 2,267 specimens belonging to eight genera and 15 species were sampled. The predominant species were Nyssomyia whitmani(34.41%) and Micropygomyia echinatopharynx(17.25%).The green LED trap prevailed over the blue and control lights; however, no statistically significant difference could be detected among the three light sources. Even without statistical significance, we suggest using LEDs as an attractant for the capture of sandflies because of several advantages over the conventional method with incandescent lamps. PMID:26517661

  10. Charge injection and transport properties of an organic light-emitting diode

    PubMed Central

    Juhasz, Peter; Nevrela, Juraj; Micjan, Michal; Novota, Miroslav; Uhrik, Jan; Stuchlikova, Lubica; Jakabovic, Jan; Harmatha, Ladislav

    2016-01-01

    Summary The charge behavior of organic light emitting diode (OLED) is investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport. PMID:26925351

  11. Effects of polymer sidebranching in double- and single-layer polyfluorene light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nakazawa, Y. K.; Carter, S. A.; Nothofer, H.-G.; Scherf, U.; Lee, V. Y.; Miller, R. D.; Scott, J. C.

    2002-05-01

    We study how changes in sidebranching in electroluminescent polymers affect the performance of polyfluorene-based light-emitting diodes with and without additional hole transport materials. We observe that light emission and device efficiency are determined more by the position of the exciton recombination zone than by changes in the polymer morphology induced by sidebranching. Consequently, we find that sidebranching mainly controls the relative emission between vibrational energy levels and has a minimal effect on polymer charge transport properties. Light outputs of 10 000 cd/m2 and device efficiencies of 0.85 and 1.8 cd/A are obtained for single- and double-layer devices, respectively.

  12. Staining-free malaria diagnostics by multispectral and multimodality light-emitting-diode microscopy

    NASA Astrophysics Data System (ADS)

    Merdasa, Aboma; Brydegaard, Mikkel; Svanberg, Sune; Zoueu, Jeremie T.

    2013-03-01

    We report an accurate optical differentiation technique between healthy and malaria-infected erythrocytes by quasi-simultaneous measurements of transmittance, reflectance, and scattering properties of unstained blood smears using a multispectral and multimode light-emitting diode microscope. We propose a technique for automated imaging, identification, and counting of malaria-infected erythrocytes for real-time and cost-effective parasitaemia diagnosis as an effective alternative to the manual screening of stained blood smears, now considered to be the gold standard in malaria diagnosis. We evaluate the performance of our algorithm against manual estimations of an expert and show a spectrally resolved increased scattering from malaria-infected blood cells.

  13. AlGaInP visible resonant cavity light-emitting diodes

    SciTech Connect

    Lott, J.A.; Schneider, R.P. Jr.; Zolper, J.C. ); Malloy, K.J. . Center for High Technology Materials, and Dept. of Electrical and Computer Engineering)

    1993-06-01

    Visible (670 nm) resonant cavity light-emitting diodes (RCLED's) composed entirely of AlGaInP alloys are reported. The devices consist of a strained quantum well optical cavity active region surrounded by AlInP/(AlGa)InP distributed Bragg reflectors (DBR's). The bottom DBR is a 60.5 period high reflector while the top partial reflector, which determines the emission linewidth, is a five-period output coupling DBR with a reflectance of about 57%. The devices exhibit linewidths of 4.8 nm (13.3 meV) at 300 K and are promising for plastic fiber communication systems and monochromatic displays.

  14. Charge injection and transport properties of an organic light-emitting diode.

    PubMed

    Juhasz, Peter; Nevrela, Juraj; Micjan, Michal; Novota, Miroslav; Uhrik, Jan; Stuchlikova, Lubica; Jakabovic, Jan; Harmatha, Ladislav; Weis, Martin

    2016-01-01

    The charge behavior of organic light emitting diode (OLED) is investigated by steady-state current-voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport. PMID:26925351

  15. Effects of hole carrier injection and transport in organic light-emitting diodes

    SciTech Connect

    Antoniadis, H.; Miller, J.N.; Roitman, D.B.; Campbell, I.H.

    1997-08-01

    In this paper, the authors examine the effects of hole carrier injection and mobility on both the electroluminescence (EL) quantum efficiency and the operating voltage of bilayer organic light-emitting diodes (OLED`s). They find that hole-injection is limited by the nature of the hole injecting interface and significantly affects the operating voltage, but not the quantum efficiency of the OLED. Hole mobility is found not to affect the device quantum efficiency. They demonstrate the characteristics of an ideal ohmic contact by measuring space-charge-limited currents in a trap-free hole transporting polymer layer.

  16. Organic Light Emitting Diodes Using a Ga:ZnO Anode

    SciTech Connect

    Berry, J. J.; Ginley, D. S.; Burrows, Paul E.

    2008-05-12

    We report the application of gallium doped zinc oxide (GZO) films as anodes in organic light emitting diodes (OLEDs). Pulsed laser deposited GZO films of differing Ga composition are examined. Bilayer OLEDs using GZO and indium tin oxide (ITO) anodes are then compared. Relative to ITO, the GZO anodes have slightly better sheet resistance and transparency in the visible spectral region. Device data suggest GZO results in more effective hole injection into an aromatic triamine hole transporting layer. Indium free anodes are expected toimprove OLED stability while lowering the cost per unit area, crucial for OLED based lighting applications.

  17. Determining internal screening electric field of working polymer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Kanemoto, Katsuichi; Takahashi, Takahiro; Hashimoto, Hideki

    2016-07-01

    This study provides a method of determining the internal electric field of polymer light emitting diodes (LEDs) in the working condition. The method employs Stark signals induced by triangular shaped pulse biases and enables estimates of the internal field in a broad voltage region. The internal field under forward bias is shown to be determined by the screening effect caused by injected carriers. Spatial distribution calculated for the LED suggests the presence of strong electric field formed by accumulated carriers near the electrodes. The proposed method is applicable to a variety of devices and can promote understanding of veiled roles of internal fields on device operation.

  18. High-output-power deep ultraviolet light-emitting diode assembly using direct bonding

    NASA Astrophysics Data System (ADS)

    Ichikawa, Masatsugu; Fujioka, Akira; Kosugi, Takao; Endo, Shinya; Sagawa, Harunobu; Tamaki, Hiroto; Mukai, Takashi; Uomoto, Miyuki; Shimatsu, Takehito

    2016-07-01

    We fabricated high-output-power 255 and 280 nm light-emitting diodes (LEDs) using direct bonding. The LED chips were bonded to sapphire lenses at room temperature using either atomic diffusion bonding or surface-activated bonding. The LEDs with lenses had a higher light extraction efficiency than conventionally structured LEDs. As a result, at a forward current of 350 mA, the output power of the 255 nm LED increased by a factor of 2.8, reaching 73.6 mW, while that of the 280 nm LED increased by a factor of 2.3, reaching 153 mW.

  19. White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode

    SciTech Connect

    Xin, Yunzi; Nishio, Kazuyuki; Saitow, Ken-ichi

    2015-05-18

    A silicon (Si) quantum dot (QD)-based hybrid inorganic/organic light-emitting diode (LED) was fabricated via solution processing. This device exhibited white-blue electroluminescence at a low applied voltage of 6 V, with 78% of the effective emission obtained from the Si QDs. This hybrid LED produced current and optical power densities 280 and 350 times greater than those previously reported for such device. The superior performance of this hybrid device was obtained by both the prepared Si QDs and the optimized layer structure and thereby improving carrier migration through the hybrid LED and carrier recombination in the homogeneous Si QD layer.

  20. Natural substrate lift-off technique for vertical light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yu; Lan, Yu-Pin; Tu, Po-Min; Hsu, Shih-Chieh; Lin, Chien-Chung; Kuo, Hao-Chung; Chi, Gou-Chung; Chang, Chun-Yen

    2014-04-01

    Hexagonal inverted pyramid (HIP) structures and the natural substrate lift-off (NSLO) technique were demonstrated on a GaN-based vertical light-emitting diode (VLED). The HIP structures were formed at the interface between GaN and the sapphire substrate by molten KOH wet etching. The threading dislocation density (TDD) estimated by transmission electron microscopy (TEM) was reduced to 1 × 108 cm-2. Raman spectroscopy indicated that the compressive strain from the bottom GaN/sapphire was effectively released through the HIP structure. With the adoption of the HIP structure and NSLO, the light output power and yield performance of leakage current could be further improved.

  1. Evaluation of light-emitting diodes as attractant for sandflies (Diptera: Psychodidae: Phlebotominae) in northeastern Brazil.

    PubMed

    Silva, Francinaldo Soares; Brito, Jefferson Mesquita; Costa Neta, Benedita Maria; Lobo, Shelre Emile Pereira Duarte

    2015-09-01

    Hoover Pugedo light traps were modified for use with green and blue-light-emitting diodes to trap phlebotomine sandflies in northeastern Brazil. A total of 2,267 specimens belonging to eight genera and 15 species were sampled. The predominant species were Nyssomyia whitmani(34.41%) and Micropygomyia echinatopharynx(17.25%).The green LED trap prevailed over the blue and control lights; however, no statistically significant difference could be detected among the three light sources. Even without statistical significance, we suggest using LEDs as an attractant for the capture of sandflies because of several advantages over the conventional method with incandescent lamps. PMID:26517661

  2. Optical design of tunnel lighting with white light-emitting diodes.

    PubMed

    Tsai, Ming-Shiou; Lee, Xuan-Hao; Lo, Yi-Chien; Sun, Ching-Cherng

    2014-10-10

    This paper presents a tunnel lighting design consisting of a cluster light-emitting diode and a free-form lens. Most of the energy emitted from the proposed luminaire is transmitted onto the surface of the road in front of drivers, and the probability that that energy is emitted directly into drivers' eyes is low. Compared with traditional fluorescent lamps, the proposed luminaire, of which the optical utilization factor, optical efficiency, and uniformity are, respectively, 44%, 92.5%, and 0.72, exhibits favorable performance in energy saving, glare reduction, and traffic safety. PMID:25322407

  3. Low Level Light Therapy with Light-Emitting Diodes for the Aging Face.

    PubMed

    Calderhead, R Glen; Vasily, David B

    2016-07-01

    Low level light therapy (LLLT) with light-emitting diodes (LEDs) is emerging from the mists of black magic as a solid medico-scientific modality, with a substantial buildup of corroborative bodies of evidence for its efficacy and elucidation of the modes of action. Reports are appearing from many different specialties; however, of particular interest to plastic surgeons treating the aging face is the proven action of LED-LLLT on skin cells in both the epidermis and dermis and enhanced blood flow. Thus, LED-LLLT is a safe and effective stand-alone therapy for patients who are prepared to wait until the final effect is perceived. PMID:27363768

  4. Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback.

    PubMed

    Marino, F; Ciszak, M; Abdalah, S F; Al-Naimee, K; Meucci, R; Arecchi, F T

    2011-10-01

    Chaotically spiking attractors in semiconductor lasers with optoelectronic feedback have been recently observed to be the result of canard phenomena in three-dimensional phase space (incomplete homoclinic scenarios). Since light-emitting diodes display the same dynamics and are much more easily controllable, we use one of these systems to complete the attractor analysis demonstrating experimentally and theoretically the occurrence of complex sequences of periodic mixed-mode oscillations. In particular, we investigate the transition between periodic and chaotic mixed-mode states and analyze the effects of the unavoidable experimental noise on these transitions. PMID:22181318

  5. Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback

    NASA Astrophysics Data System (ADS)

    Marino, F.; Ciszak, M.; Abdalah, S. F.; Al-Naimee, K.; Meucci, R.; Arecchi, F. T.

    2011-10-01

    Chaotically spiking attractors in semiconductor lasers with optoelectronic feedback have been recently observed to be the result of canard phenomena in three-dimensional phase space (incomplete homoclinic scenarios). Since light-emitting diodes display the same dynamics and are much more easily controllable, we use one of these systems to complete the attractor analysis demonstrating experimentally and theoretically the occurrence of complex sequences of periodic mixed-mode oscillations. In particular, we investigate the transition between periodic and chaotic mixed-mode states and analyze the effects of the unavoidable experimental noise on these transitions.

  6. Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes

    SciTech Connect

    Tian, Pengfei; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Ferreira, Ricardo; Watson, Ian M.; Gu, Erdan Dawson, Martin D.; Watson, Scott; Kelly, Anthony E.

    2014-10-27

    Temperature-dependent trends in radiative and Auger recombination coefficients have been determined at different injection carrier concentrations using InGaN micro-light emitting diodes 40 μm in diameter. The differential lifetime was obtained first from the measured modulation bandwidth and was then employed to calculate the carrier concentration in the quantum well active region. When the temperature increases, the carrier concentration increases, but both the radiative and Auger recombination coefficients decrease. In addition, the temperature dependence of radiative and Auger recombination coefficients is weaker at a higher injection carrier concentration, which is strongly related to phase space filling.

  7. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Nishide, Jun-ichi; Nakanotani, Hajime; Hiraga, Yasuhide; Adachi, Chihaya

    2014-06-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  8. A high quality liquid-type quantum dot white light-emitting diode

    NASA Astrophysics Data System (ADS)

    Sher, Chin-Wei; Lin, Chin-Hao; Lin, Huang-Yu; Lin, Chien-Chung; Huang, Che-Hsuan; Chen, Kuo-Ju; Li, Jie-Ru; Wang, Kuan-Yu; Tu, Hsien-Hao; Fu, Chien-Chung; Kuo, Hao-Chung

    2015-12-01

    This study demonstrates a novel package design to store colloidal quantum dots in liquid format and integrate them with a standard LED. The high efficiency and high quality color performance at a neutral white correlated color temperature is demonstrated. The experimental results indicate that the liquid-type quantum dot white light-emitting diode (LQD WLED) is highly efficient and reliable. The luminous efficiency and color rendering index (CRI) of the LQD WLED can reach 271 lm Wop-1 and 95, respectively. Moreover, a glass box is employed to prevent humidity and oxygen erosion. With this encapsulation design, our quantum dot box can survive over 1000 hours of storage time.

  9. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.

    1992-01-01

    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  10. Efficiency and Color Coordinate Improvement Using Codopants in Blue Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Wang, Xiu Ru; Chen, Jiang Shan; You, Han; Ma, Dong Ge; Sun, Run Guang

    2005-12-01

    The codoping method is applied to fabricate efficient blue organic light-emitting diodes (OLEDs). With the same structure of indium-tin oxide (ITO)/N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine (NPB)(80 nm)/light-emitting layer (30 nm)/tris-(8-hydroxy-quinoline)aluminum (Alq3) (20 nm)/LiF (1 nm)/Al (120 nm), a set of three devices was manufactured for comparison. For Devices 1, 2, and 3, the light-emitting layers are 9,10-di(2-naphthyl)anthracene (ADN):4,4'-(1,4-phenylenedi-2,1-ethene diyl)bis[N,N-bis(4-methylphenyl)-benzenamine] (DPAVB) (1 wt %), ADN:2,5,8,11-tetra-(t-butyl)-perylene (TBPE) (1 wt %), and ADN:DPAVB (0.3 wt %):TBPE (0.7 wt %), respectively. It is found that the codoped Device 3 has the highest maximum luminance, Electroluminescence (EL) quantum efficiency and color saturation. Further study on the effect of the codopants was through a relative photoluminescence (PL) quantum efficiency measurement. The result shows that the relative PL efficiencies of Devices 1, 2, and 3 are 15.6, 19.3, and 24%, respectively, as determined using an integrating sphere system excited at 375 nm. The codoping method improves the EL efficiency intrinsically. Codopants of the heterogeneous light-emitting molecules may decrease the possibility of self-quenching from the interaction of the homogenous molecules at the same total doping concentration. Furthermore, the decrease in the interaction of homogenous molecules suppresses the light emission from the aggregations thus narrowing the emission spectrum, and results in saturated blue light emission.

  11. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in <180 minutes of contact

  12. Light-emitting diode therapy increases collagen deposition during the repair process of skeletal muscle.

    PubMed

    de Melo, Claudia Aparecida Viana; Alves, Agnelo Neves; Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Nunes, Fábio Daumas; da Silva, Daniela de Fátima Teixeira; Bussadori, Sandra Kalil; Deana, Alessandro Melo; Mesquita-Ferrari, Raquel Agnelli

    2016-04-01

    This study analyzed the effects of light-emitting diode (LED) therapy on the morphology of muscle tissue as well as collagen remodeling and matrix metalloproteinase 2 (MMP-2) activity in the skeletal muscle of rats following acute injury. Wistar rats were divided into four groups: (1) control, (2) sham, (3) untreated cryoinjury, and (4) cryoinjury treated with LED. Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior muscle. For treatment, the LED equipment (wavelength 850 nm, output power 30 mW, and total energy 3.2 J) was used daily. The study periods were 1, 3, and 7 days after cryoinjury. Morphological aspects were evaluated through hematoxylin-eosin staining. The amount of collagen fibers was evaluated using Picro Sirius Red staining under polarized light. The gelatinase activity of MMP-2 was evaluated using zymography. The results showed significant reductions in inflammatory infiltrate after 3 days and an increased number of immature muscle fibers after 7 days. Furthermore, treatment induced a reduction in the gelatinolytic activity of MMP-2 after 1, 3, and 7 days in comparison to the untreated injury groups and increased the collagen deposition after 3 and 7 days in the treated groups. LED therapy at 850 nm induced a significant reduction in inflammation, decreased MMP-2 activity, and increased the amount of immature muscle and collagen fibers during the muscle repair process following acute injury. PMID:26873500

  13. Proliferation of chicken fibroblasts induced by light-emitting diodes: a comparative trial for different wavelengths

    NASA Astrophysics Data System (ADS)

    Vinck, Elke; Cagnie, B.; Declercq, H.; Cornelissen, R.; Cambier, D.

    2003-12-01

    The effectiveness and applicability of a variety of light sources, in the treatment of wounds has thoroughly been investigated, in vitro as well as in vivo. The current commercial availability of Light Emitting Diode (LED) sources therefore also invites research to explore the effect of low power infrared, red and green light on wound healing, e.g. by means of fibroblast proliferation. Therefore a controlled and randomized study on cultured embryonic chicken fibroblasts was conducted. The fibroblasts were irradiated during three consecutive days, at several wavelengths (950 nm, 660 nm and 570 nm) and a respective power output of 160 mW, 80 mW or 10 mW. Treatment duration varied from 1 minute to 3 minutes to obtain a surface energy density of 0.9 J/cm2 (infrared and red light) or 0.2 J/cm2 (green light). Statistical analysis revealed that LED irradiation for all three wavelengths induced a higher rate of proliferation in comparison of the control group. This difference was statistically significant (p < .001). With regard to the amount of proliferation the green probe yielded a significantly higher number of cells, than the red (p < .001) an the infrared probe (p < .001). Furthermore, the red probe provided a higher increase (p < .001) than the IR probe. LED irradiation results in an increased fibroblast proliferation in vitro. This outcome postulates beneficial stimulatory effects of LED at the applied wavelength, energy density and power output on wound healing in vivo. Further investigation is necessary to examine this hypothesis.

  14. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.

    2016-05-01

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability

  15. Effects of light-emitting diode (LED) therapy on skeletal muscle ischemia reperfusion in rats.

    PubMed

    Takhtfooladi, Mohammad Ashrafzadeh; Shahzamani, Mehran; Takhtfooladi, Hamed Ashrafzadeh; Moayer, Fariborz; Allahverdi, Amin

    2015-01-01

    Low-level laser therapy has been shown to decrease ischemia-reperfusion injuries in the skeletal muscle by induction of synthesis of antioxidants and other cytoprotective proteins. Recently, the light-emitting diode (LED) has been used instead of laser for the treatment of various diseases because of its low operational cost compared to the use of a laser. The objective of this work was to analyze the effects of LED therapy at 904 nm on skeletal muscle ischemia-reperfusion injury in rats. Thirty healthy male Wistar rats were allocated into three groups of ten rats each as follows: normal (N), ischemia-reperfusion (IR), and ischemia-reperfusion + LED (IR + LED) therapy. Ischemia was induced by right femoral artery clipping for 2 h followed by 2 h of reperfusion. The IR + LED group received LED irradiation on the right gastrocnemius muscle (4 J/cm(2)) immediately and 1 h following blood supply occlusion for 10 min. At the end of trial, the animals were euthanized and the right gastrocnemius muscles were submitted to histological and histochemical analysis. The extent of muscle damage in the IR + LED group was significantly lower than that in the IR group (P < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in the IR group were significantly increased (P < 0.05). The muscle tissue glutathione (GSH), superoxide dismutases (SOD), and catalase (CAT) levels in the IR group were significantly lower than those in the subjects in other groups. From the histological and histochemical perspective, the LED therapy has alleviated the metabolic injuries in the skeletal muscle ischemia reperfusion in this experimental model. PMID:25274196

  16. Light-emitting diodes at 940nm attenuate colitis-induced inflammatory process in mice.

    PubMed

    Belém, Mônica O; de Andrade, Giovana M M; Carlos, Thalita M; Guazelli, Carla F S; Fattori, Victor; Toginho Filho, Dari O; Dias, Ivan F L; Verri, Waldiceu A; Araújo, Eduardo J A

    2016-09-01

    Inflammatory bowel disease (IBD) presents intense inflammatory infiltrate, crypt abscesses, ulceration and even loss of function. Despite the clinical relevance of IBD, its current therapy remains poorly effective. Infrared wavelength phototherapy shows therapeutic potential on inflammation. Our goal was to evaluate whether light-emitting diodes (LED) at 940nm are capable of mitigating the colitis-induced inflammatory process in mice. Forty male Swiss mice were assigned into five groups: control; control treated with LED therapy; colitis without treatment; colitis treated with LED therapy; colitis treated with Prednisolone. Experimental colitis was induced by acetic acid 7.5% (pH2.5) rectal administration. LED therapy was performed with light characterized by wavelength of 940nm, 45nm bandwidth, intensity of 4.05J/cm(2), total power of 270mW and total dose of 64.8J for 4min in a single application. Colitis-induced intestinal transit delay was inhibited by LED therapy. Colitis caused an increase of colon dimensions (length, diameter, total area) and colon weight (edema), which were inhibited by LED therapy. LED therapy also decreased colitis-induced tissue gross lesion, myeloperoxidase activity, microscopic tissue damage score and the presence of inflammatory infiltrate in all intestinal layers. Furthermore, LED therapy inhibited colitis-induced IL-1β, TNF-α, and IL-6 production. We conclude LED therapy at 940nm inhibited experimental colitis-induced colon inflammation in mice, therefore, rendering it a promising therapeutic approach that deserves further investigation. PMID:27424097

  17. Fabrication of white light-emitting diodes based on UV light-emitting diodes with conjugated polymers-(CdSe/ZnS) quantum dots as hybrid phosphors.

    PubMed

    Jung, Hyunchul; Chung, Wonkeun; Lee, Chang Hun; Kim, Sung Hyun

    2012-07-01

    White light-emitting diodes (LEDs) were fabricated using GaN-based 380-nm UV LEDs precoated with the composite of blue-emitting polymer (poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy)-1 ,4-phenylene)]), yellow green-emitting polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)]), and 605-nm red-emitting quantum dots (QDs). CdSe cores were obtained by solvothermal route using CdO, Se precursors and ZnS shells were synthesized by using diethylzinc, and hexamethyldisilathiane precursors. The optical properties of CdSe/ZnS QDs were characterized by UV-visible and photoluminescence (PL) spectra. The structural data and composition of the QDs were transmission electron microscopy (TEM), and EDX technique. The quantum yield and size of the QDs were 58.7% and about 6.7 nm, respectively. Three-band white light was generated by hybridizing blue (430 nm), green (535 nm), and red (605 nm) emission. The color-rendering index (CRI) of the device was extremely improved by introducing the QDs. The CIE-1931 chromaticity coordinate, color temperature, and CRI of a white LED at 20 mA were (0.379, 0.368), 3969 K, and 90, respectively. PMID:22966580

  18. Characterization of four-color multi-package white light-emitting diodes combined with various green monochromatic phosphor-converted light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Oh, Ji Hye; Lee, Keyong Nam; Do, Young Rag

    2012-03-01

    In this study, several combinations of multi-package white light-emitting diodes (LEDs), which combine an InGaN blue LED with green, amber, and red phosphor-converted LEDs (pc-LEDs), were characterized by changing the peak wavelength of green pc-LEDs between 515nm and 560nm (515, 521, 530, 540, 550, 560nm) in color temperature of 6,500K and 3,500K. Various green monochromatic pc-LEDs were fabricated by capping a long-wave pass-filter (LWPF) on top of pc-LEDs to improve luminous efficacy and color purity. LWPF-capped green monochromatic pc-LED can address the drawback of green semiconductor-type III-V LED, such as low luminous efficacy in the region of green gap wavelength. Luminous efficacy and color rendering index (CRI) of multi-package white LEDs are compared with changing the driving current of individual LED in various multi-package white LEDs. This study provides a best combination of four-color multi-package white LEDs which has high luminous efficacy and good CRI.

  19. Extracting and directing light out of organic light emitting diodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lemmer, Uli; Egel, Amos; Hecht, Matthias; Preinfalk, Jan B.; Gomard, Guillaume

    2015-10-01

    Light extraction from organic light emitting diodes (OLEDs) is attracting considerable interest as being crucial for enhancing the energy efficiency in lighting applications. Light extraction can be realized by lithographically defined internal diffraction gratings or stochastic scattering centers. The former approach needs in addition an external optical layer for scrambling the angularly dependent emission spectra in order to avoid color shifts [1]. Micro lens arrays cannot only be used for fulfilling this task but they can also be used for enhancing the luminosity into a specific direction. We demonstrate recent advances towards high efficiency OLEDs with high directionality. In addition to the relevant technologies we have also developed a comprehensive simulation software for the quantitative description of the light propagation inside the devices. Here, a particular challenging task is the description of multiple and coherent optical scattering. We have recently developed a software for the exact simulation based on a scattering matrix formalism [2]. [1] T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig and U. Lemmer, White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission Opt. Expr. 20, A932 (2012). [2] A. Egel, U. Lemmer, Dipole emission in stratified media with multiple spherical scatterers: Enhanced outcoupling from OLEDs, Journal of Quantitative Spectroscopy and Radiative Transfer 148, 165 (2014).

  20. Toward fully flexible multilayer moisture-barriers for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Seo, Seung-Woo; Jung, Eun; Joon Seo, Sang; Chae, Heeyeop; Kyoon Chung, Ho; Min Cho, Sung

    2013-10-01

    Flexible organic light-emitting diodes require flexible thin-film encapsulation to ensure both a long lifetime and flexibility of the device. Although an aluminum oxide layer grown by atomic layer deposition can protect the device from oxidative species, such as moisture, it does not provide sufficient flexibility for a flexible device. Thus, organic-inorganic multilayer structures were prepared and tested for both the moisture-barrier property and flexibility to achieve fully flexible thin-film encapsulation for organic light-emitting diodes. The flexible thin-film encapsulation developed in this study resulted in an initial water vapor transmission rate of 3 × 10-4 g/m2/day that decreased by only 10% even after a 10 000 severe bending cycles at a bending radius of 0.3 cm. This result was possible by reducing the thickness of the aluminum-oxide sub-layer as low as possible down to only 1 cycle of atomic layer deposition and placing it in a neutral stress plane. Theoretical estimations of tensile strain supported the experimental results.

  1. Light emitting diode package element with internal meniscus for bubble free lens placement

    DOEpatents

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen

    2010-09-28

    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  2. Hierarchical growth of GaN nanowires for light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Raj, Rishabh; Ra, Yong-Ho; Lee, Cheul-Ro; Obheroi, Sonika; Navamathavan, R.

    2016-02-01

    Gallium nitride nanostructures have been receiving considerable attention as building blocks for nanophotonic technologies due to their unique high aspect ratios, promising the realization of photonic and biological nanodevices such as blue light emitting diodes (LEDs), short-wavelength ultraviolet nanolasers and nanofluidic biochemical sensors. In this study, we report on the hierarchical growth of GaN nanowires (NWs) by dynamically adjusting the growth parameters using pulsed flow metalorganic chemical vapor deposition (MOCVD) technique. We carried out two step growth processes to grow hierarchical GaN NWs. At the first step the GaN NWs were grown at 950°C and in the second stage, we suitably decreased the growth temperature to 710°C to grow the hierarchical structures. The surface morphology, structural and optical characterization of the grown hierarchical GaN NWs were studied by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and photoluminescence (PL) measurements, respectively. These kind of hierarchical NWs are promising to allow flat band quantum structures that are shown to improve the efficiency of light-emitting diodes.

  3. Visible-light emission at room temperature in Mn-doped Si light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hai, Pham Nam; Maruo, Daiki; Anh, Le Duc; Tanaka, Masaaki

    2016-03-01

    We demonstrate Si-based light-emitting diodes that continuously emit reddish-yellow visible light at room temperature by utilizing optical transitions between the p-d hybrid orbitals of Mn atoms doped in Si. Our light-emitting diodes show clear visible-light electroluminescence with two peaks at E1=1.75 and E2=2.30 eV , corresponding to optical transitions between p-d hybrid orbitals of Mn atoms. The electrons at the p-d hybrid orbitals of Mn in Si are excited by hot holes that are accelerated by an intensive electric field in the depletion layer of reverse biased Si p -n junctions containing a Mn-doped Si (Si:Mn) layer. The observed two peaks at E1=1.75 and E2=2.30 eV are redshifted and blueshifted by 0.14 eV, respectively, from those of GaAs:Mn or ZnS:Mn. Our observations are consistent with the p -d hybridized electronic structure of Mn atoms doped in Si as predicted by first-principles calculations.

  4. External efficiency and thermal reliability enhanced multi-chip package design for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Tang, Meng-Han; Wu, Tsung-Han; Su, Guo-Dung J.

    2008-08-01

    With the power of light emitting diodes (LEDs) getting higher and higher, the issue of thermal management is getting much more important. In this paper, we discussed a new idea to get white light without using traditional phosphor and to enhance its extraction efficiency. Microlens is used for increasing external efficiency and shaping light pattern. The location of micro-lens is designed carefully by considering cup reflection. We also revealed that it is important to consider the angle of exit light from LEDs. The result shows our design is suitable for high color rendering index (CRI) application. At the same time, the uniform white light is approached as the light has been strongly diffused. Furthermore, we try to decrease the junction temperature as low as possible so as to increase stability and lifetime of LEDs. In order to maintain color mixing and dissipate heat, multi-chip or four pairs of electrodes which are electroplated with copper after bulk micromachining process within a silicon-based package are used. This novel packaging technique needs just a few processing steps and could be mass produced for nowadays high brightness light emitting diodes (HBLEDs).

  5. Efficiency optimization in ionically self-assembled thin film polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Marciu, Daniela; Miller, M.; Ritter, A. L.; Murray, M. A.; Neyman, Patrick J.; Graupner, Wilhelm; Heflin, James R.; Wang, Hong; Gibson, Harry W.; Davis, Rick M.

    2000-04-01

    We present detailed studies of polymer light emitting diodes fabricated from ionically self-assembled monolayer thin films. The ionically self-assembled monolayer (ISAM) films are created with a new thin film fabrication technique that allows detailed structural and thickness control at the molecular level. The ISAM fabrication method simply involves the dipping of a charged substrate alternately into polycationic and polyanionic aqueous solutions at room temperature. Importantly, the ISAM technique yields exceptionally homogeneous, large area films with excellent control of total film thickness. Our studies concentrate on improving the performance of ISAM light emitting diodes that include poly(para-phenylene vinylene) (PPV). The individual thickness of each monolayer and the interpenetration of adjacent layers can be precisely manipulated through the parameters of the electrolyte solutions. The effects of the pH and ionic strength of the immersion solutions, the total film thickness, and the PPV thermal conversion parameters on the photoluminescence and electroluminescence yields have been systematically studied. Through the ISAM process we can also deposit well-defined thicknesses of different polymers at the indium tin oxide and aluminum electrode interfaces. The interface layers are found to affect the electroluminescence efficiency.

  6. An Alkane-Soluble Dendrimer as Electron-Transport Layer in Polymer Light-Emitting Diodes.

    PubMed

    Zhong, Zhiming; Zhao, Sen; Pei, Jian; Wang, Jian; Ying, Lei; Peng, Junbiao; Cao, Yong

    2016-08-10

    Polymer light-emitting diodes (PLEDs) have attracted broad interest due to their solution-processable properties. It is well-known that to achieve better performance, organic light-emitting diodes require multilayer device structures. However, it is difficult to realize multilayer device structures by solution processing for PLEDs. Because most semiconducting polymers have similar solubility in common organic solvents, such as toluene, xylene, chloroform, and chlorobenzene, the deposition of multilayers can cause layers to mix together and damage each layer. Herein, a novel semiorthogonal solubility relationship was developed and demonstrated. For the first time, an alkane-soluble dendrimer is utilized as the electron-transport layer (ETL) in PLEDs via a solution-based process. With the dendrimer ETL, the external quantum efficiency increases more than threefold. This improvement in the device performance is attributed to better exciton confinement, improved exciton energy transfer, and better charge carrier balance. The semiorthogonal solubility provided by alkane offers another process dimension in PLEDs. By combining them with water/alcohol-soluble polyelectrolytes, more exquisite multilayer devices can be fabricated to achieve high device performance, and new device structures can be designed and realized. PMID:27435357

  7. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern

    NASA Astrophysics Data System (ADS)

    Han, Nam; Viet Cuong, Tran; Han, Min; Deul Ryu, Beo; Chandramohan, S.; Bae Park, Jong; Hye Kang, Ji; Park, Young-Jae; Bok Ko, Kang; Yun Kim, Hee; Kyu Kim, Hyun; Hyoung Ryu, Jae; Katharria, Y. S.; Choi, Chel-Jong; Hong, Chang-Hee

    2013-02-01

    The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.

  8. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions

    NASA Astrophysics Data System (ADS)

    Ross, Jason S.; Klement, Philip; Jones, Aaron M.; Ghimire, Nirmal J.; Yan, Jiaqiang; Mandrus, D. G.; Taniguchi, Takashi; Watanabe, Kenji; Kitamura, Kenji; Yao, Wang; Cobden, David H.; Xu, Xiaodong

    2014-04-01

    The development of light-emitting diodes with improved efficiency, spectral properties, compactness and integrability is important for lighting, display, optical interconnect, logic and sensor applications. Monolayer transition-metal dichalcogenides have recently emerged as interesting candidates for optoelectronic applications due to their unique optical properties. Electroluminescence has already been observed from monolayer MoS2 devices. However, the electroluminescence efficiency was low and the linewidth broad due both to the poor optical quality of the MoS2 and to ineffective contacts. Here, we report electroluminescence from lateral p-n junctions in monolayer WSe2 induced electrostatically using a thin boron nitride support as a dielectric layer with multiple metal gates beneath. This structure allows effective injection of electrons and holes, and, combined with the high optical quality of WSe2, yields bright electroluminescence with 1,000 times smaller injection current and 10 times smaller linewidth than in MoS2 (refs 17,18). Furthermore, by increasing the injection bias we can tune the electroluminescence between regimes of impurity-bound, charged and neutral excitons. This system has the required ingredients for new types of optoelectronic device, such as spin- and valley-polarized light-emitting diodes, on-chip lasers and two-dimensional electro-optic modulators.

  9. Size-Dependent Resonant Cavity Light-Emitting Diodes for Collimating Concerns

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Chien; Su, Yan-Kuin; Chao, Chia-Hsin; Yeh, Wen-Yung

    2013-01-01

    This paper presented the GaN-Based size-dependent ultrathin-film resonant cavity light-emitting diode (uT-RCLED) for highly collimation and light-collective efficiency. The cavity was bound by bottom silver mirror (˜97%) and top distributed Bragg reflector (DBR) with five pairs of SiO2/TiO2 (˜95%). The viewing angle of 50 µm (100 µm) uT-RCLED was near +/-51° (+/-47°) through the beam profiler and presented the best light-collective efficiency of 8.18% (9.73%) within +/-15° light extraction cone contrasted with regular non-DBR ultrathin-film light-emitting diodes (uT-LEDs) (6.57%). In addition, the absolute light output power of the 50 µm (100 µm) uT-RCLED was 95.26% (127.36%) much higher than the uT-LED. Besides, the micromation of RCLED influenced neither the resonant effect nor the collimating properties which opens a potential application for the LED microprojectors to meet the etendue limitation for maximum luminance output.

  10. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-01

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers.The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03034j

  11. New technical approach using light-emitting diodes (LED) in neonatal vascular transillumination

    NASA Astrophysics Data System (ADS)

    de Riese, Johannes; Perez-Benavides, Fortunato

    2005-04-01

    A challenging and frequent problem in premature neonates is vascular access because of their very small blood vessels. The use of small tourniquets and direct light has been the traditional technique, but its limitations are most apparent in the extremely small child. In the last three years we have been using Light Emitting Diodes (Red light) to transiluminate the vascular structures in arms and legs in these small patients, this has improved significantly the visualization and access of the vascular structures in our smallest patients. Light Emitting Diodes (LED) are small and inexpensive devices that emit powerful "Cold light" capable to transiluminate a portion of an infant's extremity without burning the area of contact. The individual working on the IV access virtually sees through the tissues to place a catheter at the precise location of the extremity. According to an extensive search of the available literature, this LED application for vascular access in small newborns has not been described. In our physician's and neonatal nurse's hands, it is a simple and very efficient procedure for vascular access in the smallest patients. This paper presents an overview of vascular access technique using LED in the premature infant.

  12. Amorphous silicon as electron transport layer for colloidal semiconductor nanocrystals light emitting diode

    SciTech Connect

    Song Tao; Shen Xiaojuan; Sun Baoquan; Zhang Fute; Zhang Xiaohong; Zhu Xiulin

    2009-12-07

    We demonstrate the fabrication of light-emitting diodes (LEDs) made from all-inorganic colloidal semiconducting nanocrystals (NCs). The diode utilizes a sandwich structure formed by placing CdSe/CdS NCs between two layers of Si and Ag{sub x}O, which act as electron- and hole-transporting materials, respectively. The photoluminescence properties of NCs are rendered less dependent upon surface chemistry and chemical environment by growing a thick CdS shell. It also enhances stability of the NCs during the process of magnetron sputtering for silicon deposition. The resulting LED device exhibits a low turn-on voltage of 2.5 V and the maximum external quantum efficiency of nearly 0.08%.

  13. Blue resonant-cavity light-emitting diode with half milliwatt output power

    NASA Astrophysics Data System (ADS)

    Yeh, Pinghui S.; Chang, Chi-Chieh; Chen, Yu-Ting; Lin, Da-Wei; Wu, Chun Chia; He, Jhao Hang; Kuo, Hao-Chung

    2016-03-01

    GaN-based resonant-cavity light-emitting diode (RCLED) has a circular output beam with superior directionality than conventional LED and has power scalability by using two-dimensional-array layout. In this work, blue RCLEDs with a top reflector of approximately 50% reflectance were fabricated and characterized. An output power of more than 0.5 mW per diode was achieved before packaging under room-temperature continuous-wave (CW) operation. The full width at half maximum (FWHM) of the emission spectrum was approximately 3.5 and 4.5 nm for 10- and 20-μm-diameter devices, respectively. And the peak wavelength as well as the FWHM remained stable at various currents and temperatures.

  14. A study of interfaces between organic and metal materials and their application in polymer light-emitting diodes and polymer photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Li, Juo-Hao

    2009-12-01

    In the past few decades, it attracts a lot of attention for the researches of organic semiconductor due to its new and interesting properties, compared with conventional soft material and inorganic semiconductor. Several kinds of electronic devices such as light emitting diodes, thin film transistors and photovoltaic solar cell based on these organic semiconductors are also proposed and studied. This dissertation will focus on interface between organic and metal, which is one of the mysteries and critical issues remaining in the material properties and limiting the device performance. In the first chapter, a brief review and introduction of the organic semiconductor and organic electronics will be described. The purpose is to introduce the research background, motivation and methodology. Chapter two demonstrates the concept of top-emitting light-emitting diodes and the research focus on the interfaces between the light-emitting polymer and electrodes. An interfacial layer is introduced to improve the hole-injection from the anode. Except for alternating the electrode architecture, surface treatment or modification also have significant influences on interfacial electronic structure. Chapter three describes the discovery of solvent treatment on top of the light-emitting polymer and its application on organic electrophosphorescent devices. To further study the interfaces in organic electronics, an interface layer of sol-gel processed titanium oxide is introduced into organic electronic devices. Chapter four describes the amorphous titanium oxide and its application on polymer light-emitting diodes, while Chapter five demonstrates nanocrystalline titanium dioxide and its application in both light-emitting devices and polymer photovoltaic solar cells.

  15. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    NASA Technical Reports Server (NTRS)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  16. Energetics of conjugated polymer and electrode interfaces in light emitting diode

    NASA Astrophysics Data System (ADS)

    Hwang, Jaehyung

    Recently, polymers have emerged as strong candidates for various semiconductor device applications. The physical and electrical properties of these polymer semiconductors are drastically different from those of inorganic semiconductors, and a solid understanding of these properties is necessary in order to further develop polymer electronics. This work concentrates on polymers for light emitting diode (LED) devices, which is the most promising application in polymer electronics. Understanding and control of charge injection from anode/cathode to active (light emitting) layer are crucial for high efficiency LED. To understand the charge injection efficiency, the energy band alignment and their impact on charge injection at polymer-electrode interfaces are investigated with a range of electron spectroscopies and electrical measurements. First, electronic structure of the best known hole injecting polymer (i.e., anode), poly(3,4-ethylene-dioxythiophene) -- poly(styrene-sulfonate) (PEDOT-PSS) is studied. We investigate the unique shell -- like structure of the PEDOT-PSS and its impact on the electrical properties. The role of PSS surface layer in enhancing the hole injection efficiency into the active layer is discussed. The electronic structures of two light emitting conjugated polymers, poly(9,9'-dioctylfluorene) (F8, also known as PFO) and poly(9,9'-dioctylfluorene- co-bis-N,N'-(4-butylphenyl) diphenylamine) (TFB), are also studied by various methods. The alignment of the energy levels at the anode and the cathode interfaces is investigated in detail. Different mechanisms seem to apply for the energy level alignment at the anode and the cathode. We discuss the difference in the light of different degrees of contamination at the interface which results from different processing conditions. Finally, a modification of energetics of polymer-anode interface by doping is discussed. We propose a co-solution doping method suitable for solution processed polymer material

  17. Blue/white organic light-emitting diodes and passive matrix display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Lin; Jiang, Xue-Yin; Zhu, Wen-Qing; Xu, Shao-Hong

    2005-01-01

    The blue organic light emitting diodes (OLED) based on anthracene derivatives (ADN) doped with distryrylarylene derivatives (BCzVB and DSA-ph) were presented. The device of ADN doped with BCzVb shows high color purity (x=0.146, y=0.162) with maximum luminance 11600 cd/m2 (15V), current efficiency 2.8 cd/A, while the device of ADN doped with DSA-ph exhibits a sky blue with as high as efficiency 8.29 cd/A, both have a flat efficiency vs current density responses. A typical blue device of ADN doped with TBPe is used for comparison, which gives greenish blue and a stronger current-induced flyorescence quenching. Three kinds of White organic light emitting devices (WOLED) with different dopants and doping sites were constructed. The cell with a single-doped red dye in the light emitting layer (EML)(single-doped) and the cell with both red and blue dyes doped in a single EML (double-doped as well as the cell with red and blue dyes doped in EML and a green dye in another layer (triple-doped). The triple-doped cell shows much higher performance than other two cells: maximum luminance 21200cd/m2, 1026 cd/m2 at driving current 20mA/cm2, efficiency 6cd/A and a half lifetime over 22245h were reached. A passive display features 102x64 pixels with pixel size of 0.25x0.25mm2 pixel pitch 0.08mm, luminance 100 cd/m2 at driving duty 1/64, and power consumption of 0.6W was constructed.

  18. ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes

    SciTech Connect

    David P. Norton; Stephen Pearton; Fan Ren

    2007-09-30

    By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light

  19. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  20. Tri-Metal Layered Semitransparent Electrode for Red Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Lee, Jae Woo; Lee, Ho Won; Lee, Song Eun; Yang, Hyung Jin; Lee, Sung Kyu; Hwang, Kyo Min; Park, Soo Na; Yoon, Seung Soo; Kim, Young Kwan

    2015-10-01

    In this paper, we fabricated tri-metal layered thin film semitransparent electrodes consisting of a thin conductive metal layer, sandwiched between two nickel layers. An equal red phosphorescent organic light-emitting diode (PHOLED) structure was deposited on the anodes of indium tin oxide (ITO) and three types of tri-metal layers (Ni/Al/Ni, Ni/Cu/Ni, and Ni/Ag/Ni, thickness of 3/7/3 nm in common) on a glass substrate. The optical and electrical performances of the device using Ni/Ag/Ni were improved more than the performances of the other devices due to the micro-cavity effect in accordance with the various electrode characteristics. Moreover, we fabricated the same red PHOLED structures on a flexible substrate, as a consequence, showed competitive emission characteristics compared to the devices fabricated on a glass substrate. Therefore, this study could succeed to additional research on flexible display panel and light-emitting devices with ITO-free electrodes. PMID:26726477

  1. Low temperature solution process-based defect-induced orange-red light emitting diode

    PubMed Central

    Biswas, Pranab; Baek, Sung-Doo; Hoon Lee, Sang; Park, Ji-Hyeon; Jeong Lee, Su; Il Lee, Tae; Myoung, Jae-Min

    2015-01-01

    We report low-temperature solution-processed p-CuO nanorods (NRs)/n-ZnO NRs heterojunction light emitting diode (LED), exploiting the native point defects of ZnO NRs. ZnO NRs were synthesized at 90 °C by using hydrothermal method while CuO NRs were synthesized at 100 °C by using microwave reaction system. The electrical properties of newly synthesized CuO NRs revealed a promising p-type nature with a hole concentration of 9.64 × 1018 cm−3. The current-voltage characteristic of the heterojunction showed a significantly high rectification ratio of 105 at 4 V with a stable current flow. A broad orange-red emission was obtained from the forward biased LED with a major peak at 610 nm which was attributed to the electron transition from interstitial zinc to interstitial oxygen point defects in ZnO. A minor shoulder peak was also observed at 710 nm, corresponding to red emission which was ascribed to the transition from conduction band of ZnO to oxygen vacancies in ZnO lattice. This study demonstrates a significant progress toward oxide materials based, defect-induced light emitting device with low-cost, low-temperature methods. PMID:26648420

  2. Colloidal electroluminescence: Novel routes to controlled emission of organic light emitting diode devices

    NASA Astrophysics Data System (ADS)

    Huebner, Christopher Fletcher

    In recent years the importance of the organic light emitting diode (OLED) has grown immensely, and the past two decades have seen ongoing and exhaustive research in organic routes to solid state lighting, wherein electricity is directly converted into emitted light through an excited state relaxation mechanism. The benefits of incorporating polymeric and small molecule materials into solid state lighting devices include high efficiences, low production costs, amenability to large-scale production and devices, reduced environmental impact and low energy consumption. Herein are presented novel routes to materials engineering and preparation, device fabrication and emission tailoring through the abilility to form a variety of polymeric and small molecule materials into aqueously dispersed semiconductive electroluminescent (EL) colloids. Compartmentalization of the emissive and semiconductive species into colloidal particles affords the ability to systematically control energy transfer processes that occur in light emitting devices. Energy transfer can occur through a Coulombic (Forster) or an electronic (Dexter) process, each needing several conditions to be met for the transfer to occur, however common to both are spectral and proximal characteristics. In this work, energy transfer will be simultaneously exploited and inhibited through the creation of EL colloidal particles which can be combined in a dispersion or thin layer in order to tailor the light emission for a variety of applications.

  3. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  4. Multilayer Transfer Printing for Pixelated, Multicolor Quantum Dot Light-Emitting Diodes.

    PubMed

    Kim, Bong Hoon; Nam, Sooji; Oh, Nuri; Cho, Seong-Yong; Yu, Ki Jun; Lee, Chi Hwan; Zhang, Jieqian; Deshpande, Kishori; Trefonas, Peter; Kim, Jae-Hwan; Lee, Jungyup; Shin, Jae Ho; Yu, Yongjoon; Lim, Jong Bin; Won, Sang M; Cho, Youn Kyoung; Kim, Nam Heon; Seo, Kyung Jin; Lee, Heenam; Kim, Tae-Il; Shim, Moonsub; Rogers, John A

    2016-05-24

    Here, we report multilayer stacking of films of quantum dots (QDs) for the purpose of tailoring the energy band alignment between charge transport layers and light emitting layers of different color in quantum dot light-emitting diodes (QD LED) for maximum efficiency in full color operation. The performance of QD LEDs formed by transfer printing compares favorably to that of conventional devices fabricated by spin-casting. Results indicate that zinc oxide (ZnO) and titanium dioxide (TiO2) can serve effectively as electron transport layers (ETLs) for red and green/blue QD LEDs, respectively. Optimized selections for each QD layer can be assembled at high yields by transfer printing with sacrificial fluoropolymer thin films to provide low energy surfaces for release, thereby allowing shared common layers for hole injection (HIL) and hole transport (HTL), along with customized ETLs. This strategy allows cointegration of devices with heterogeneous energy band diagrams, in a parallelized scheme that offers potential for high throughput and practical use. PMID:27078621

  5. Electron-hole capture in polymer heterojunction light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Greenham, Neil

    2005-03-01

    Polymer light-emitting diodes based on blends of polyfluorene derivatives show very high efficiencies and low drive voltages. Electron-hole capture in these devices directly produces long-lived exciplex states where the electron and hole are predominantly localized on opposite sides of the heterojunction. The exciplex may then be thermally excited to form an intra-chain exciton, which can itself either emit, or be recycled to reform the exciplex. I will review the physics of exciplex formation and emission in these devices, and will show that exciplex formation rates are consistent with low free charge densities at the heterojunction. I will present evidence that the rate of charge transfer at polyfluorene heterojunctions can be modulated with an applied electric field, leading in some cases to an increase in photoluminescence efficiency with applied field. I will also present recent results showing enhanced triplet exciton formation after photoexcitation in polyfluorene blends, and will discuss the implications of the results for polymer light-emitting and photovoltaic devices.

  6. Recoverable electroluminescence from a contaminated organic/organic interface in an organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Liao, L. S.; Klubek, K. P.; Madathil, J. K.; Tang, C. W.; Giesen, D. J.

    2010-01-01

    An organic/organic interface, like an electrode/organic interface in an organic light-emitting diode (OLED), can be severely affected by ambient contamination. However, we surprisingly found that the contaminated surface or interface can be "cured" by depositing a thin interfacial layer containing a strong reducing agent onto the contaminated surface before finishing the fabrication of the device. For example, in comparison with a regular OLED, an OLED having a 5-min ambient exposure to the light-emitting layer/electron-transporting layer interface drops its initial electroluminescence (EL) intensity by 50%. The decreased EL intensity due to the 5-min ambient exposure can be fully recovered and the improved operational stability can be realized after curing the contaminated interface using a thin Li interfacial layer. The experimental results provide a useful method to cope with the interfacial contamination in OLEDs during a manufacturing process. In addition, our results support the failure mechanism of an Alq-based OLED suggested by [Papadimitrakopoulos et al., Chem. Mater. 8, 1363 (1996)].

  7. Crystalline/amorphous Raman markers of hole-transport material NPD in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takuro; Furukawa, Yukio; Fujimura, Hidetoshi

    2005-04-01

    Raman marker bands characteristic of solid-state structure have been found for N, N'-di-1-naphthaleyl- N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD), which is used as a hole-transport material in organic light-emitting diodes. The widths of the marker bands observed for an amorphous state at 1607, 1290, and 1192 cm -1 are broader than those for the crystalline state observed at 1609, 1288, and 1198 cm -1. These Raman bands are found to be useful for detecting the crystallization, which may cause degradation of organic light emitting diodes, of amorphous NPD films.

  8. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    SciTech Connect

    Chang, Y. L. Gong, S. White, R.; Lu, Z. H.; Wang, X.; Wang, S.; Yang, C.

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  9. Optical design of adjustable light emitting diode for different lighting requirements

    NASA Astrophysics Data System (ADS)

    Lu, Jia-Ning; Yu, Jie; Tong, Yu-Zhen; Zhang, Guo-Yi

    2012-12-01

    Light emitting diode (LED) sources have been widely used for illumination. Optical design, especially freedom compact lens design is necessary to make LED sources applied in lighting industry, such as large-range interior lighting and small-range condensed lighting. For different lighting requirements, the size of target planes should be variable. In our paper we provide a method to design freedom lens according to the energy conservation law and Snell law through establishing energy mapping between the luminous flux emitted by a Lambertian LED source and a certain area of the target plane. The algorithm of our design can easily change the radius of each circular target plane, which makes the size of the target plane adjustable. Ray-tracing software Tracepro is used to validate the illuminance maps and polar-distribution maps. We design lenses for different sizes of target planes to meet specific lighting requirements.

  10. Horizontal molecular orientation in solution-processed organic light-emitting diodes

    SciTech Connect

    Zhao, L.; Inoue, M.; Komino, T.; Kim, J.-H.; Ribierre, J. C. E-mail: adachi@cstf.kyushu-u.ac.jp [Center for Organic Photonics and Electronics Research , Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395; Japan Science and Technology Agency , ERATO, Adachi Molecular Exciton Engineering Project, c and others

    2015-02-09

    Horizontal orientation of the emission transition dipole moments achieved in glassy vapor-deposited organic thin films leads to an enhancement of the light out-coupling efficiency in organic light-emitting diodes (OLEDs). Here, our combined study of variable angle spectroscopic ellipsometry and angle dependent photoluminescence demonstrates that such a horizontal orientation can be achieved in glassy spin-coated organic films based on a composite blend of a heptafluorene derivative as a dopant and a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl as a host. Solution-processed fluorescent OLEDs with horizontally oriented heptafluorene emitters were then fabricated and emitted deep blue electroluminescence with an external quantum efficiency as high as 5.3%.

  11. Progress in Emission Efficiency of Organic Light-Emitting Diodes: Basic Understanding and Its Technical Application

    NASA Astrophysics Data System (ADS)

    Tsutsui, Tetsuo; Takada, Noriyuki

    2013-11-01

    The technical history of when and how the basic understanding of the emission efficiency of organic light-emitting diodes (OLEDs) was established over the last 50 years is described. At first, our understanding of emission efficiency in single-crystal and thin-film electroluminescence (EL) devices in the early stages before the Eastman-Kodak breakthrough, that is, the introduction of the concept of multilayer structures, is examined. Then our contemplation travels from the Eastman-Kodak breakthrough towards the presently widely accepted concept of emission efficiency. The essential issues concerning the emission efficiency of OLEDs are summarized to help readers to obtain a common understanding of OLED efficiency problems, and detailed discussions on the primary factors that determine emission efficiency are given. Finally, some comments on remaining issues are presented.

  12. Improving light-emitting diode performance through sapphire substrate double-side patterning

    NASA Astrophysics Data System (ADS)

    Ju Kang, Ho; Cho, Sang Uk; Kim, Eung Soo; Kim, Chang-Seok; Jeong, Myung Yung

    2013-02-01

    Here, we present a new double-side patterned sapphire substrate methodology that improves the efficiency of gallium nitride-light emitting diodes (GaN-LEDs). The light extraction efficiency of GaN-based LEDs was analyzed through the use of a ray-tracing simulation. The extraction efficiency was simulated using patterned sapphire substrate LEDs with a variety of shapes, depths, sizes, and spacing. Through the optimal patterning of the various factors, high extraction efficiency was realized and subsequently improved upon. The thermal LED characteristics were analyzed through the use of the COMSOL general heat transfer module. The LEDs patterned on the sapphire substrate were fabricated using nano imprint lithography. We found that the output power of the double-side patterned LED was 52% greater than that of a flat LED. The thermal resistance of the double side patterned LED was 9.5 K/W less than that found for the flat LED.

  13. Enhanced quantum-dot light-emitting diodes using gold nanorods

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Kwang; Lee, Sang Moo; Song, Kigook; Kang, Seong Jun

    2015-11-01

    Plasmon-enhanced quantum-dot light-emitting diodes (QLEDs) were fabricated by inserting gold (Au) nanorods at the interface of the QLEDs. The length of the nanorods was 60 nm, which corresponds to the plasmonic absorption of wavelengths in the range of 630 to 670 nm. CdSe/ZnS quantum dots (QDs) were used as emission layers with additional hole injection, transport, and electron transport layers. The maximum emission was observed at 630 nm, which is in the range of the plasmon resonance of the Au nanorods. The QLEDs with Au nanorods showed enhanced electroluminescence properties compared to the devices without the plasmonic nano-structure. A 172% increase in electroluminescent intensity was observed due to the plasmon coupling effect. The results demonstrate a promising method for developing high-performance QLEDs.

  14. Fabrication of suspended light-emitting diode and waveguide on a single chip

    NASA Astrophysics Data System (ADS)

    Bai, Dan; Gao, Xumin; Cai, Wei; Yuan, Wei; Shi, Zheng; Li, Xin; Xu, Yin; Yuan, Jialei; Zhu, Guixia; Yang, Yongchao; Yang, Cheng; Cao, Xun; Zhu, Hongbo; Wang, Yongjin

    2016-05-01

    We attempt to integrate light-emitting diode (LED) and waveguide on the same GaN-on-silicon platform, which is fashioned with suspended p-n junction InGaN/GaN multiple quantum wells. Silicon substrate is removed to form highly confined waveguide structures and suspended LED. The light emission measurements experimentally demonstrate that part of the LED emission is coupled into suspended waveguide. The light is then guided in the waveguide and propagates along the waveguide structure, and is finally diffracted into the air at the waveguide output facet. The light spectra captured by a micro-transmittance setup confirm that the lateral light propagation inside the waveguide is electrically driven and power-dependent. These results indicate that the proposed integrated device is promising for the monolithic integration of LED with waveguide and photodetector toward next-generation photonic chips based on the GaN-on-silicon platform.

  15. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode

    PubMed Central

    Chang, Jung-Hung; Lin, Wei-Hsiang; Wang, Po-Chuan; Taur, Jieh-I; Ku, Ting-An; Chen, Wei-Ting; Yan, Shiang-Jiuan; Wu, Chih-I

    2015-01-01

    Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been lacking, which would limit the application of graphene in flexible electronics. In this paper, we demonstrate fully solution-processed OLEDs with n-type doped multilayer graphene as the top electrode. The work function and sheet resistance of graphene are modified by an aqueous process which can also transfer graphene on organic devices as the top electrodes. With n-doped graphene layers used as the top cathode, all-solution processed transparent OLEDs can be fabricated without any vacuum process. PMID:25892370

  16. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hao; Wu, Szu-Wei; Huang, Chih-Wei; Hsieh, Chung-Tsung; Lin, Sung-En; Chen, Nien-Po; Chang, Hsin-Hua

    2016-03-01

    Recently, exciplex had drawn attention because of its potential for efficient electroluminescence or for use as a host in organic light-emitting diodes (OLEDs). In this study, four kinds of hole transport material/electron transport material combinations were examined to verify the formation of exciplex and the corresponding energy bandgaps. We successfully demonstrated that the combination of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 3,5,3‧,5‧-tetra(m-pyrid-3-yl)phenyl[1,1‧]biphenyl (BP4mPy) could form a stable exciplex emission with an adequate energy gap. Using exciplex as a host in red, green, and blue phosphorescent OLEDs with an identical trilayer architecture enabled effective energy transfer from exciplex to emitters, achieving corresponding efficiencies of 8.8, 14.1, and 15.8%. A maximum efficiency of 11.3% and stable emission was obtained in white OLEDs.

  17. Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Pursiainen, Otto; Linder, Norbert; Jaeger, Arndt; Oberschmid, Raimund; Streubel, Klaus

    2001-10-01

    We report new methods of identifying the effects of aging on the light-current (L-I) and current-voltage (I-V) characteristics of AlInGaP light-emitting diodes (LEDs). We believe that these methods are also applicable to other III-V compound semiconductors. We observe a broadening of the nonlinear range of the L-I characteristic accompanied by a shift to higher currents in the I-V characteristic. These features can be attributed to an increase of nonradiative recombination processes in the active layer. A second process, however, can lead to an increase of the LED output power. We conclude from an analysis of the current dependence that this process is due to a different mechanism.

  18. High-power AlInGaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wierer, Jonathan J.; Bhat, Jerome C.; Chen, Chien-Hua; Christenson, G.; Cook, Lou W.; Craford, M. G.; Gardner, Nathan F.; Goetz, Werner K.; Kern, R. Scott; Khare, Reena; Kim, A.; Krames, Michael R.; Ludowise, Mike J.; Mann, Richard; Martin, Paul S.; Misra, Mira; O'Shea, J.; Shen, Yu-Chen; Steranka, Frank M.; Stockman, Steve A.; Subramanya, Sudhir G.; Rudaz, S. L.; Steigerwald, Dan A.; Yu, Jingxi

    2001-05-01

    High-power light-emitting diodes (LEDs) in both the AlInGaP (red to amber) and the AlGaInN (blue-green) material systems are now commercially available. These high-power LEDs enable applications wherein high flux is necessary, opening up new markets that previously required a large number of conventional LEDs. Data are presented on high-power AlGaInN LEDs utilizing flip-chip device structures. The high-power flip-chip LED is contained in a package that provides high current and temperature operation, high reliability, and optimized radiation patterns. These LEDs produce record powers of 350 mW (1A dc, 300 K) with low (<4V) forward voltages. The performance of these LEDs is demonstrated in terms of output power, efficiency, and electrical characteristics.

  19. Enhanced modulation rate in platinum-diffused resonant-cavity light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chang, L. B.; Yeh, D. H.; Hsieh, L. Z.; Zeng, S. H.

    2005-11-01

    This study is focused on the modulation response of resonant-cavity light-emitting diodes (RCLEDs). Platinum (Pt) atoms are diffused into the 660 nm RCLED epitaxial layers to increase the concentration of recombination centers and to improve the modulation speed. The RCLED has an AlInGaP multi-quantum-well active layer which was embedded into AlGaAs-distributed Bragg reflectors to form a one-wavelength (1-λ) optical resonator. Afterwards, the deep-level Pt impurity was diffused into the RCLED and an improved average rise time, from 18.07 to 12.21 ns, was obtained. The corresponding modulation frequency can be increased from 19.54 to 30.21 MHz.

  20. FAST TRACK COMMUNICATION Host-free, yellow phosphorescent material in white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng

    2010-11-01

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W-1 at a practical brightness of 1000 cd m-2 with Commission Internationale d'Echariage coordinates (CIEx,y) of (0.37, 0.47) was achieved.

  1. Enhanced electroluminescence from a free-standing tensilely strained germanium nanomembrane light-emitting diode

    NASA Astrophysics Data System (ADS)

    Jingming, Chen; Bin, Shu; Jibao, Wu; Linxi, Fan; Heming, Zhang; Huiyong, Hu; Rongxi, Xuan; Jianjun, Song

    2015-10-01

    Ge has become a promising material for Si-based optoelectronic integrated circuits (OEIC) due to its pseudo-direct bandgap. In this paper we achieved tensilely strained Ge free-standing nanomembrane (NM) light-emitting diode (LED), using silicon nitride thin film with high stress. The tensile stress in the Ge layer can be controlled by adjustable process parameters. An expected redshift of electroluminescence (EL) in Ge NM LED is observed at room temperature, which has been attributed to the shrinking of its direct bandgap relative to its indirect bandgap. An EL with dramatically increased intensity was observed around 1876 nm at a tensile strain of 1.92%, which demonstrates the direct-band recombination in tensilely strained Ge NM. Project supported by the Fundamental Research Funds for the Central University of China (No. 7214428001).

  2. InGaAs spin light emitting diodes measured in the Faraday and oblique Hanle geometries

    NASA Astrophysics Data System (ADS)

    Mansell, R.; Laloë, J.-B.; Holmes, S. N.; Petrou, A.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Barnes, C. H. W.

    2016-04-01

    InGaAs quantum well light emitting diodes (LED) with spin-injecting, epitaxial Fe contacts were fabricated using an in situ wafer transfer process where the semiconductor wafer was transferred under ultrahigh vacuum (UHV) conditions to a metals growth chamber to achieve a high quality interface between the two materials. The spin LED devices were measured optically with applied magnetic fields in either the Faraday or the oblique Hanle geometries in two experimental set-ups. Optical polarizations efficiencies of 4.5% in the Faraday geometry and 1.5% in the Hanle geometry are shown to be equivalent. The polarization efficiency of the electroluminescence is seen to decay as the temperature increases although the spin lifetime remains constant due to the influence of the D’yakonov–Perel’ spin scattering mechanism in the quantum well.

  3. Noninvasively probing the light-emitting diode temperature by magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Run; Du, Zhongzhou; Cheng, Ting; Huang, Zhixing; Liu, Wenzhong; Luo, Xiaobing

    2015-09-01

    The precise measurement of temperature information is of great importance in the thermal management of light-emitting diodes (LEDs). Hitherto, many methods have been proposed to measure the LED temperature, but none of them involve with magnetics. Herein, we developed a noninvasive and precise method to probe the LED temperatures based on magnetic nanoparticles (MNPs). Detailed measurement principle and experimental setup were introduced. Through this setup, the heating and cooling characteristics of LEDs were investigated with different voltage inputs. It is found that higher voltage input leads to higher LED temperature. When the input voltage is 5.2 V, the LED temperature is 326.8 K. The present noninvasive and precise method supplements the existing techniques of temperature measurement in terms of magnetics and opens up new avenues to measure the temperature information where conventional approaches may fail.

  4. Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels.

    PubMed

    Gong, Rui; Xu, Haisong; Tong, Qingfen

    2012-10-20

    The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well. PMID:23089779

  5. Quantum cascade light emitting diodes based on type-2 quantum wells

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Yang, R. Q.; Zhang, D.; Murry, S. J.; Pei, S. S.; Allerman, A. A.; Kurtz, S. R.

    1997-01-01

    The authors have demonstrated room-temperature CW operation of type-2 quantum cascade (QC) light emitting diodes at 4.2 (micro)m using InAs/InGaSb/InAlSb type-2 quantum wells. The type-2 QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-2 quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 (micro)W at 80 K, and 140 (micro)W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.

  6. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    SciTech Connect

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  7. Indium-zinc oxide transparent electrode for nitride-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mizutani, S.; Nakashima, S.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Kondo, T.; Teramae, F.; Suzuki, A.; Kitano, T.; Mori, M.; Matsubara, M.

    2013-03-01

    The basic properties of indium-zinc oxide (IZO) were investigated from the view point of the potential of light-emitting diodes (LEDs) for nanostructured transparent contact. The resistivity and contact resistance to p-GaN were obtained to be 2.5×10-4 Ωcm and 9.4×10-4 Ωcm2, respectively, which are comparable to those of indium-tin oxide (ITO). The light output of the LED with the moth-eye IZO was 10 % and 40 % higher than that of the LED with the moth-eye ITO and that of the LED without the moth-eye structure, respectively.

  8. White organic light-emitting diodes with 4 nm metal electrode

    SciTech Connect

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian; Gather, Malte C.

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  9. Quantum cascade light emitting diodes based on type-II quantum wells

    SciTech Connect

    Lin, C.H.; Yang, R.Q.; Zhang, D.; Murry, S.J.; Pei, S.S.; Allerman, A.A.; Kurtz, S.R.

    1997-01-21

    The authors have demonstrated room-temperature CW operation of type-II quantum cascade (QC) light emitting diodes at 4.2 {micro}m using InAs/InGaSb/InAlSb type-II quantum wells. The type-II QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-II quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 {micro}W at 80 K, and 140 {micro}W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.

  10. Glare-Tunable Transparent Electrochemical Smart Window Coupled with Transparent Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Uchida, Takayuki; Shibasaki, Masaaki; Matsuzaki, Tatsuya; Nagata, Yujiro

    2013-04-01

    We fabricated a novel device assembled by coupling a transparent organic light-emitting diode (TOLED) and a glare-tunable transparent electrochemical device. This device could be operated in six different states, namely, (1) transparent, (2) mirror, (3) black, (4) dual emission, (5) single-side emission with mirror, and (6) single-side emission with black. Switching between each of these states could be tuned by varying/selecting the applied DC bias voltage. The device showed 63.8% transmittance in the transparent state, and 42.1% reflectance in the mirror state at 700 nm. Transmittance in both the mirror and black states was less than 0.1% in the visible range.

  11. Extremely bendable thin-film encapsulation of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Seo, Seung-Woo; Chae, Heeyeop; Joon Seo, Sang; Kyoon Chung, Ho; Min Cho, Sung

    2013-04-01

    We report on an extremely bendable moisture barrier for the thin-film encapsulation of organic light-emitting diodes (OLEDs). Hybrid barriers with various dyads of alternating aluminum oxide (Al2O3) and plasma-polymerized layers, which are utilizable for the thin-film encapsulation of flexible OLEDs, were prepared by atomic layer deposition and plasma chemical vapor deposition, respectively. When the total thickness of Al2O3 was fixed at 20 nm, an ultimate 200-dyad multilayer barrier showed change of less than 20% in water vapor transmission rate from its initial value of the order of 10-4 g/m2/day, even after 10 000 times of bending with a bending radius of 5 mm.

  12. Solar-powered light emitting diode power line avoidance marker design

    NASA Astrophysics Data System (ADS)

    Snook, Ellen H.; Rash, Clarence E.; Martin, John S.; Levine, Richard R.; Johnson, Parley P.

    1992-12-01

    In-flight wire strikes are a constant threat to U.S. Army Aviation during all-weather, daytime and nighttime helicopter operations. Despite routine training on wire avoidance techniques, wire strikes continue to occur, with a majority of the mishaps historically occurring during training and maneuvering over familiar sites. In an effort to increase the conspicuity of suspended cables and wires, the aviation training community at Fort Rucker, Alabama, currently employs a passive wire marking system which consists of international-orange colored spheres suspended from cables and wires in heavily trafficked airspace. During a previous evaluation of wire marker visibility, a solar-powered wire marker design was developed. This new design incorporates retroreflective material and light emitting diodes (LED's) to provide greater range visibility and detectability during aided and unaided flight.

  13. Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20 .

    PubMed

    Suzuki, Katsuaki; Kubo, Shosei; Shizu, Katsuyuki; Fukushima, Tatsuya; Wakamiya, Atsushi; Murata, Yasujiro; Adachi, Chihaya; Kaji, Hironori

    2015-12-01

    Triarylboron compounds have attracted much attention, and found wide use as functional materials because of their electron-accepting properties arising from the vacant p orbitals on the boron atoms. In this study, we design and synthesize new donor-acceptor triarylboron emitters that show thermally activated delayed fluorescence. These emitters display sky-blue to green emission and high photoluminescence quantum yields of 87-100 % in host matrices. Organic light-emitting diodes using these emitting molecules as dopants exhibit high external quantum efficiencies of 14.0-22.8 %, which originate from efficient up-conversion from triplet to singlet states and subsequent efficient radiative decay from singlet to ground states. PMID:26563845

  14. Effect of hole transport on performance of infrared type-II superlattice light emitting diodes

    SciTech Connect

    Lin, Youxi; Suchalkin, Sergey; Kipshidze, Gela; Hosoda, Takashi; Westerfeld, David; Shterengas, Leon; Belenky, Gregory; Laikhtman, Boris

    2015-04-28

    The effect of hole transport on the performance of infrared light emitting diodes (LED) was investigated. The active area of the LEDs comprised two type-II superlattices with different periods and widths connected in series. Electroluminescence spectra of the devices with different positions of long wave and mid wave superlattice sections were mostly contributed by the superlattice closest to the p-contact. The experimental results indicate that due to suppressed vertical hole transport, the recombination of electrically injected electrons and holes in a type II superlattice LED active region takes place within a few superlattice periods near p-barrier. Possible reason for the effect is reduction of hole diffusion coefficient in an active area of a superlattice LED under bias.

  15. Broadband localized surface-plasmon-enhanced green light-emitting diodes by silver nanocone array

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Yufeng; Huang, Yaping; Wang, Shuai; Feng, Lungang; Gong, Zhina; Wang, Jiangteng; Ding, Wen; Zhang, Ye; Yun, Feng

    2015-12-01

    Green light-emitting diodes (LEDs) with silver nanocone-shaped structures embedded in p-GaN have been demonstrated with the surface plasmon (SP) enhancement effect. The resonance frequency has been broadened and the strength of coupling has been considerably enhanced. Compared with the LED without Ag nanocones, the integrated photoluminescence (PL) intensity of the SP-enhanced LED was improved by ∼275%, and the electroluminescence (EL) enhancement ratio at a different wavelength was evaluated at an injection current of 50 mA/mm2. At the same time, a reduction in the recombination lifetime indicated an increased internal quantum efficiency of LEDs. The results of simulation using nanocones as well as nanorods indicate good correlation with the experimental observation of the broadening effect. This structure is promising for converting incident photons into the localized surface plasmon (LSP) mode, to enhance the emission of LEDs within a broad wavelength range.

  16. Bilayer graphite-oxide anode for organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Wang, Po-Hsun; Huang, Yi-Chiang; Lee, Hsu-Feng; Lee, Chun-Che; Jung, Yi-Jiun; Chou, Yu-Hong; Huang, Wen-Yao

    2015-04-01

    A solution-processing method for obtaining graphite oxide (GO), which is used for the organic light-emitting diodes (OLEDs), is presented herein. The use of poly(arylene ether)s as the solid carbon source is demonstrated for the first time. Raman spectroscopy, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), luminance, and electroluminescence (EL) reveal the essential properties. The respective percentages of the peak areas of sp2 C and sp3 C in the GO are calculated to be 54.47 and 37.32%. The GO had a sheet resistance of 97 Ω/square determined by the four-probe method and a conductivity of 5.538 × 101 Ω-1 cm-1 determined by the Hall-effect method.

  17. High-resolution full-field optical coherence microscopy using a broadband light-emitting diode.

    PubMed

    Ogien, Jonas; Dubois, Arnaud

    2016-05-01

    High-resolution full-field optical coherence microscopy (FF-OCM) is demonstrated using a single broadband light-emitting diode (LED). The characteristics of the LED-illumination FF-OCM system are measured and compared to those obtained using a halogen lamp, the light source of reference in FF-OCM. Both light sources yield identical performance in terms of spatial resolution and detection sensitivity, using the same setup and camera. In particular, an axial resolution of 0.7 μm (in water) is reached. A Xenopus laevis tadpole and ex-vivo human skin have been imaged using both sources, resulting in similar images, showing for the first time that LEDs could favorably replace halogen lamps in high-resolution FF-OCM for biomedical imaging. PMID:27137603

  18. Portable and visual electrochemical sensor based on the bipolar light emitting diode electrode.

    PubMed

    Zhang, Xiaowei; Chen, Chaogui; Yin, Jianyuan; Han, Yanchao; Li, Jing; Wang, Erkang

    2015-01-01

    Here we report a novel sensing strategy based on the closed bipolar system, in which we utilize a light emitting diode (LED) to connect a split bipolar electrode (BPE) and generate the luminescent signal in the presence of the target. With this design, we have constructed a BPE array for the quick and high-throughput determination of various electroactive substances with naked eyes. Due to the ultrahigh current efficiency of the closed bipolar system, the sample concentration can be reported by the luminous intensity of the inserted LED without the expensive luminescent agent and instruments. Besides, the stability of the signal is improved because of the electroluminescent property of the LED. To demonstrate the promising applications of the bipolar LED electrode (BP-LED-E), the rapid quantification of four model targets (H2O2, ascorbic acid (AA), glucose, and blood sugar) has been achieved based on different principles. PMID:25873190

  19. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.

    PubMed

    de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H

    2016-03-01

    Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use. PMID:26960126

  20. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    NASA Astrophysics Data System (ADS)

    Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-04-01

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.

  1. Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture.

    PubMed

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander

    2015-04-22

    Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED. PMID:25832776

  2. A Hybrid Micro-Pixel Based Deep Ultraviolet Light-Emitting Diode Lamp

    NASA Astrophysics Data System (ADS)

    Hwang, Seongmo; Islam, Monirul; Zhang, Bin; Lachab, Mohamed; Dion, Joe; Heidari, Ahmad; Nazir, Haseeb; Adivarahan, Vinod; Khan, Asif

    2011-01-01

    We report on the room temperature electrical and optical characterization of a multichip light-emitting diode (LED) lamp with peak emission at 281 nm. Four pairs of micro-pixel LED arrays were connected in series to fabricate the lamp, which delivered a pulsed output power of 235 mW at 1.18 A (duty cycle ˜0.5%), and attained a high external quantum efficiency of 4.63%. Under dc operation, the maximum power achieved by this lamp was ˜20 mW at a drive current of 220 mA. The peak output power improved 1.62-fold after a thermoelectric cooler was added to the device packaging assembly.

  3. Color temperature tunable white light emitting diodes packaged with an omni-directional reflector.

    PubMed

    Su, Jung-Chieh; Lu, Chun-Lin

    2009-11-23

    This study proposed a correlated color temperature (CCT) tunable phosphor-converted white light emitting diode (LED) with an omni-directional reflector (ODR). Applying current to each individual InGaN based ultraviolet, purple and blue source LED chip of the white LED package, we can achieve the CCT tunability. The optimum color properties of the resulting white light are (0.3347, 0.3384), 5398 K, 81, 3137-8746 K for color coordinates, CCT, color rendering index (CRI) and CCT tuning range, respectively. Roughening the ODR substrate, we solve the non-uniformity color distribution caused by the reflectance of the ODR and positioning of source LED chips. PMID:19997380

  4. Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor

    NASA Astrophysics Data System (ADS)

    Yamada, Motokazu; Naitou, Takahiro; Izuno, Kunihiro; Tamaki, Hiroto; Murazaki, Yoshinori; Kameshima, Masatoshi; Mukai, Takashi

    2003-01-01

    We fabricated a high-color-rendering, red-enhanced white-light-emitting diode (LED) using a new red phosphor and a short-wavelength YAG phosphor. When the new white-LED was operated at a forward-bias current of 20 mA at room temperature (RT), color temperature (Tcp), the general color rendering index (Ra) and luminous efficiency were 4670 K, 87.7 and 25.5 lm/W, respectively. Most of the color-rendering indexes (CRIs) of the new white-LED were larger than those of current white-LEDs, in which only YAG is used. In particular, the CRI-No.9 value, which shows the color reproduction in the red region, is improved from -2.5 to 62.6.

  5. Very low color-temperature organic light-emitting diodes for lighting at night

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Shen, Shih-Ming; Chen, Chien-Chih; Wang, Ching-Chiun; Chen, Chien-Tien

    2011-12-01

    Light sources with low color temperature (CT) are essential for their markedly less suppression effect on the secretion of melatonin, and high power efficiency is crucial for energy-saving. To provide visual comfort, the light source should also have a reasonably high color rendering index (CRI). In this report, we demonstrate the design and fabrication of low CT and high efficiency organic light-emitting diodes. The best resultant device exhibits a CT of 1,880 K, much lower than that of incandescent bulbs (2,000-2,500 K) and even as low as that of candles, (1,800-2,000 K), a beyond theoretical limit external quantum efficiency 22.7 %, and 36.0 lm/W at 100 cd/m 2. The high efficiency of the proposed device may be attributed to its interlayer, which helps effectively distribute the entering carriers into the available recombination zones.

  6. Low Temperature Transient Performance of Polymer Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Burnett, Karl

    2009-11-01

    Polymer Organic Light-Emitting Diodes (p-OLEDs) are conjugated polymers that conduct electric charges, enabling their use as semiconductors. Typical applications for p-OLEDs include high-resolution, high-efficiency displays, and when printed onto plastic substrates, thin and flexible patterned light sources such as vehicle dashboard displays and telephone keypads. We are investigating turn-on and turn-off transient effects in p-OLEDs that vary with temperature and the electrical driver. We have found that the turn-on transient is thermally activated, that light output is immediately proportional to current flow into the device, and that light emission continues from the device even after bias is removed. When these phenomena are fully characterized, they may explain transient effects seen in previous work, help describe the activation energies and rate kinetics in the device, and broaden the range of environments in which p-OLED devices may be used.

  7. Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  8. Molecular assembled self-doped polyaniline interlayer for application in polymer light-emitting diode.

    PubMed

    Yang, Chien-Hsin; Chih, Yi-Kai

    2006-10-01

    Self-doped polyaniline (SPANI) ultrathin films were prepared by using a self-assembly process consisting of a self-doping monomer (o-aminobenzenesulfonic acid, SAN) and aniline (AN). SAN-AN copolymerization and film formation were simultaneously performed in aqueous solution. An immersing self-assembly method was developed to build up a SPANI nanofilm on an ITO glass, providing a hole injection layer in a double-layer electroluminescence (EL) device ITO/SPANI nanofilm//MEH-PV//Ca/Al. This device produces an orange EL as compared with a single-layer EL device of ITO//MEH-PV//Ca/Al. A double-layer device demonstrates that a SPANI film is capable of transporting holes in a polymer light-emitting diode (PLED). PMID:17004799

  9. Mask-less ultraviolet photolithography based on CMOS-driven micro-pixel light emitting diodes.

    PubMed

    Elfström, D; Guilhabert, B; McKendry, J; Poland, S; Gong, Z; Massoubre, D; Richardson, E; Rae, B R; Valentine, G; Blanco-Gomez, G; Gu, E; Cooper, J M; Henderson, R K; Dawson, M D

    2009-12-21

    We report on an approach to ultraviolet (UV) photolithography and direct writing where both the exposure pattern and dose are determined by a complementary metal oxide semiconductor (CMOS) controlled micro-pixellated light emitting diode array. The 370 nm UV light from a demonstrator 8 x 8 gallium nitride micro-pixel LED is projected onto photoresist covered substrates using two back-to-back microscope objectives, allowing controlled demagnification. In the present setup, the system is capable of delivering up to 8.8 W/cm2 per imaged pixel in circular spots of diameter approximately 8 microm. We show example structures written in positive as well as in negative photoresist. PMID:20052059

  10. Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays.

    PubMed

    Zarowna-Dabrowska, Alicja; Neale, Steven L; Massoubre, David; McKendry, Jonathan; Rae, Bruce R; Henderson, Robert K; Rose, Mervyn J; Yin, Huabing; Cooper, Jonathan M; Gu, Erdan; Dawson, Martin D

    2011-01-31

    A novel, miniaturized optoelectronic tweezers (OET) system has been developed using a CMOS-controlled GaN micro-pixelated light emitting diode (LED) array as an integrated micro-light source. The micro-LED array offers spatio-temporal and intensity control of the emission pattern, enabling the creation of reconfigurable virtual electrodes to achieve OET. In order to analyse the mechanism responsible for particle manipulation in this OET system, the average particle velocity, electrical field and forces applied to the particles were characterized and simulated. The capability of this miniaturized OET system for manipulating and trapping multiple particles including polystyrene beads and live cells has been successfully demonstrated. PMID:21369093

  11. Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Sankaranarayanan, S.; Khachariya, D.; Nadar, M. B.; Ganguly, S.; Saha, D.

    2016-07-01

    We demonstrate a method for nanowire formation by natural selection during wet anisotropic chemical etching in boiling phosphoric acid. Nanowires of sub-10 nm lateral dimensions and lengths of 700 nm or more are naturally formed during the wet etching due to the convergence of the nearby crystallographic hexagonal etch pits. These nanowires are site controlled when formed in augmentation with dry etching. Temperature and power dependent photoluminescence characterizations confirm excitonic transitions up to room temperature. The exciton confinement is enhanced by using two-dimensional confinement whereby enforcing greater overlap of the electron-hole wave-functions. The surviving nanowires have less defects and a small temperature variation of the output electroluminescent light. We have observed superluminescent behaviour of the light emitting diodes formed on these nanowires. There is no observable efficiency roll off for current densities up to 400 A/cm2.

  12. Operating organic light-emitting diodes imaged by super-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    King, John T.; Granick, Steve

    2016-06-01

    Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semiconducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50 nm spatial resolution. We find that brightest emission comes from regions with more densely packed chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. This points the way towards real-time analysis of materials design principles in devices as they actually operate.

  13. Emiflective Display with Integration of Reflective Liquid Crystal Display and Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Yang, Bo-Ru; Liu, Kang-Hung; Shieh, Han-Ping D.

    2007-01-01

    A novel emi-flective display which integrates a reflective liquid crystal display (R-LCD) and an organic light emitting diode (OLED) was demonstrated, whose OLED achieved a gain factor of 8 in contrast ratio (CR) compared with the conventional OLED. Under the high light ambience, the R-LCD is sustained with the CR of 10:1 at the viewing angle between ± 55°; while in the dim ambience, the OLED is operated with the CR of 5000:1 at ± 50°. By replacing the backlight system with OLED, emi-flective display has the benefits of lighter weight (<90%), thinner form factor (<40%), and lower power consumption (<2%, under sunlight) compared with the conventional LCD; therefore, to be very applicable for mobile products.

  14. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    PubMed

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display. PMID:18711500

  15. A randomly nano-structured scattering layer for transparent organic light emitting diodes.

    PubMed

    Huh, Jin Woo; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Park, Seung Koo; Hwang, Joohyun; Cho, Nam Sung; Lee, Jonghee; Han, Jun-Han; Chu, Hye Yong; Lee, Jeong-Ik

    2014-09-21

    A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs. PMID:25099663

  16. Characteristics of blue organic light emitting diodes with different thick emitting layers

    NASA Astrophysics Data System (ADS)

    Li, Chong; Tsuboi, Taiju; Huang, Wei

    2014-08-01

    We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.

  17. White organic light-emitting diodes based on incomplete energy transfer from perylene to rubrene

    NASA Astrophysics Data System (ADS)

    Ding, Bangdong; Zhu, Wenqing; Jiang, Xueyin; Zhang, Zhilin

    2008-11-01

    This paper presents organic light-emitting diodes which generate white emission based on both perylene and rubrene doped in 9,10-di(2-naphthyl)anthracene (ADN). In this doping system, the blue dopant perylene not only emitted but also assisted the energy transfer from ADN to rubrene, which contributes to a lower doping concentration of rubrene. The optimal configuration of the device is ITO/TPD(50 nm)/ADN:0.5 wt% perylene:0.006 wt% rubrene(40 nm)/Bphen(25 nm)/LiF(1 nm)/Al. The maximum luminance of 11 665 cd/m 2 at 14 V according to a luminance efficiency of 2.9 cd/A was obtained. A CIE color coordinate of (0.30, 0.37) at 4 mA/cm 2 was also achieved.

  18. Numerical study of light-emitting diode with injected current modulated by designed electrode

    NASA Astrophysics Data System (ADS)

    Nishidate, Yohei; Khmyrova, Irina; Kholopova, Julia; Polushkin, Evgeny; Shevchenko, Bogdan; Shapoval, Sergei

    2016-07-01

    Numerical model and procedure are developed to study the output optical performance of light-emitting diode (LED) in which injected current is spatially modulated by mesh-like top metal electrode. The mesh strips have rectangular crossection as in realistic LEDs. The finite element method is applied to obtain three-dimensional distributions of electric potential which are incorporated in the equations for total output power. The numerical procedure is applied to evaluate LED's total output optical power at different geometric parameters of the electrode: the mesh pitch, the width, and the height of the top mesh-like electrodes. Modeling results demonstrate the effect of mesh pitch variation on the output optical power. In particular, at a certain value of the mesh pitch maximum total output optical power is revealed. The presented approach can be used in the optimization of the LEDs with designed metal electrodes.

  19. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    NASA Astrophysics Data System (ADS)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob

    2015-07-01

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq)2(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq)2(acac). The lifetime of device (t95: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  20. Multilayer organic electrophosphorescent white light-emitting diodes without exciton-blocking layer

    NASA Astrophysics Data System (ADS)

    Lei, Gangtie; Wang, Liduo; Qiu, Yong

    2006-03-01

    We demonstrate high-efficiency white organic light-emitting diodes with two emissive layers, in which different hosts are employed. With the energy gap of the two hosts, there was no exciton-blocking layer between the emissive layers to confine the diffusion of excitons. The phosphorescent dye, bis[(4,6-difluorophenyl)-pyridinato-N, C2'] (picolinato) Ir(III) and bis (1-phenyl-isoquinoline) (acetylacetonate) iridium (III) [Ir(pic)2acac] were employed as guests, while N,N'-dicarbazolyl-1, 4-dimethene-benzene and 4, 4'-N, N'-dicarbazole-biphenyl were employed as hosts, respectively. The device exhibited white emission by controlling the thickness of the emissive layers and the maximum current efficiency and luminance were 10.5cd/A and 22000cd/m2, respectively.

  1. Visible-light electroluminescence in Mn-doped GaAs light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nam Hai, Pham; Maruo, Daiki; Tanaka, Masaaki

    2014-03-01

    We observed visible-light electroluminescence (EL) due to d-d transitions in light-emitting diodes with Mn-doped GaAs layers (here, referred to as GaAs:Mn). Besides the band-gap emission of GaAs, the EL spectra show two peaks at 1.89 eV and 2.16 eV, which are exactly the same as 4A2(4F) → 4T1(4G) and 4T1(4G) → 6A1(6S) transitions of Mn atoms doped in ZnS. The temperature dependence and the current-density dependence are consistent with the characteristics of d-d transitions. We explain the observed EL spectra by the p-d hybridized orbitals of the Mn d electrons in GaAs.

  2. Optical design of a light-emitting diode lamp for a maritime lighthouse.

    PubMed

    Jafrancesco, D; Mercatelli, L; Sansoni, P; Fontani, D; Sani, E; Coraggia, S; Meucci, M; Francini, F

    2015-04-10

    Traffic signaling is an emerging field for light-emitting diode (LED) applications. This sustainable power-saving illumination technology can be used in maritime signaling thanks to the recently updated norms, where the possibility to utilize LED sources is explicitly cited, and to the availability of high-power white LEDs that, combined with suitable lenses, permit us to obtain well-collimated beams. This paper describes the optical design of a LED-based lamp that can replace a traditional lamp in an authentic marine lighthouse. This source recombines multiple separated LEDs realizing a quasi-punctual localized source. Advantages can be lower energy consumption, higher efficiency, longer life, fewer faults, slower aging, and minor maintenance costs. The proposed LED source allows us to keep and to utilize the old Fresnel lenses of the lighthouse, which very often have historical value. PMID:25967311

  3. Front-Light Source Using Inverted Organic Light-Emitting Diodes with Microcathode Arrays

    NASA Astrophysics Data System (ADS)

    Urata, Kohei; Naka, Shigeki; Okada, Hiroyuki

    2010-04-01

    We have demonstrated an organic light-emitting diode (OLED) front-light source with a blinding microcathode array on a transparent electrode and a top-emission structure. Contrast ratio was improved by inserting MoO3 at the indium-tin-oxide (ITO)/Al interface. In a device of glass substrate/ITO/MoO3/meshed Al/lithium fluoride (LiF)/tris(8-hydroxyquinolinato) aluminum(III) (Alq3)/bis[N-(1-naphthyl)-N-phenyl] benzidine (α-NPD)/MoO3/semitransparent Au structure, the maximum luminance of top-side emission was 1,140 cd/m2, and the contrast ratio was 19:1. The transmittance was 44% at 555 nm.

  4. Evaluation of an organic light-emitting diode display for precise visual stimulation.

    PubMed

    Ito, Hiroyuki; Ogawa, Masaki; Sunaga, Shoji

    2013-01-01

    A new type of visual display for presentation of a visual stimulus with high quality was assessed. The characteristics of an organic light-emitting diode (OLED) display (Sony PVM-2541, 24.5 in.; Sony Corporation, Tokyo, Japan) were measured in detail from the viewpoint of its applicability to visual psychophysics. We found the new display to be superior to other display types in terms of spatial uniformity, color gamut, and contrast ratio. Changes in the intensity of luminance were sharper on the OLED display than those on a liquid crystal display. Therefore, such OLED displays could replace conventional cathode ray tube displays in vision research for high quality stimulus presentation. Benefits of using OLED displays in vision research were especially apparent in the fields of low-level vision, where precise control and description of the stimulus are needed, e.g., in mesopic or scotopic vision, color vision, and motion perception. PMID:23757510

  5. Small molecular phosphorescent organic light-emitting diodes using a spin-coated hole blocking layer

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Duan, Lian; Zhang, Deqiang; Hou, Liudong; Qiao, Juan; Wang, Liduo; Qiu, Yong

    2012-02-01

    Small molecular green phosphorescent organic light-emitting diodes (OLEDs) have been studied using a solution processed polyethyleneoxide (PEO) hole blocking layer (HBL) and a Cs2CO3/Al cathode. PEO is soluable in alcoholic solvents and allows the fabrication of multilayer OLEDs by successive spin-coating. The current efficiency of the optimized OLED with the PEO HBL increases from 18.8 cd/A to 32.1 cd/A, and the turn-on voltage reduces from 4.8 V to 3.4 V, compared with the device without the PEO HBL. Photovoltaic measurements indicate that the injection barrier for electron is reduced by inserting the PEO layer. X-ray photoelectron spectroscopy measurements further reveal that improvement in device performance is due to the partial penetration of Cs into the PEO layer.

  6. Optical detection of charge carriers in multilayer organic light-emitting diodes: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Book, K.; Nikitenko, V. R.; Bässler, H.; Elschner, A.

    2001-03-01

    We have investigated a multilayer organic light-emitting diode with 1,3,5-tris (N,N-bis-(4-methoxyphenyl)aminophenyl)-benzene acting as the hole transporting layer (HTL) and tris (8-hydroxy-quinolinolato) aluminum (Alq3) as the electron transporting layer. Positive charge carriers in the HTL were detected optically as a function of the applied bias. It was found that a hole injecting layer, consisting of 3,4 polyethylene-dioxy-thiophene doped with polystyrenesulfonate, forms an ohmic contact to the HTL by inducing a thin layer of holes in the interfacial region. An analytical model is developed to describe the observed carrier concentrations as well as the current-brightness-voltage characteristics quantitatively.

  7. Red-green-blue light-emitting diodes containing fluorene-based copolymers

    NASA Astrophysics Data System (ADS)

    Drolet, Nicolas; Beaupré, Serge; Morin, Jean-François; Tao, Ye.; Leclerc, Mario

    2002-11-01

    This paper reports the fabrication and evaluation of light-emitting diodes using polyfluorene derivatives as emitter, which cover the entire visible spectral range. Depending on the composition of the copolymers, red (emission peak at 656 nm), green (488 nm) and blue (428 nm) emission was obtained without any excimer formation. The optimization of the device performances has been realized using a multilayered configuration which involves a spin-coated poly(ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDT-PSS) thin film on the ITO anode and an ultrathin lithium fluoride layer next to the Al cathode. These two layers improve the efficiency of the charge injection. Combining this device configuration with some additional charge-transporting molecules, luminances in the range of 50-300 cd m-2 have been obtained.

  8. Efficient multilayer white polymer light-emitting diodes with aluminum cathodes

    NASA Astrophysics Data System (ADS)

    Niu, Xiaodi; Qin, Chuanjiang; Zhang, Baohua; Yang, Junwei; Xie, Zhiyuan; Cheng, Yanxiang; Wang, Lixiang

    2007-05-01

    Efficient multilayer white polymer light-emitting diodes (WPLEDs) with aluminum cathodes are fabricated. The multilayer structure is composed of a water soluble hole-injection layer, a toluene-soluble emissive layer, and an alcohol-soluble emissive layer. The polarity difference of the solvents used for spin coating these polymers allows for realization of the multilayer polymer structure. The recombination zone confined at the interface of the two emissive polymers avoids exciton quenching by electrodes, and white emission is realized by harvesting photons emitted from the two emissive polymers. A maximum luminous efficiency of 16.9cd/A and a power efficiency of 11.1lm/W are achieved for this WPLED.

  9. Effects of thermal annealing on the performance of polymer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Guo, Tzung-Fang; Yang, Yang

    2002-02-01

    Thermal annealing plays an important role in controlling morphologies of polymer thin films and consequently the device performance, such as emission spectra, turn-on voltages, quantum efficiency of photoluminescence (PL) and electroluminescence (EL). In thermal annealing there is a tradeoff between hole-injection efficiency and PL efficiency. Annealing at a temperature higher than the glass transition temperature can improve the efficiency of hole injection at the expense of the PL efficiency, and vice versa. Optimizing the annealing conditions can improve the overall EL efficiency. The high efficiency of poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene based polymer light-emitting diodes is demonstrated: 2.7 cd/A at a luminescence of 1000 cd/m2.

  10. The role of triplet states in the emission mechanism of polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Arif, M.; Mukhopadhyay, S.; Ramasesha, S.; Guha, S.

    2009-09-01

    The blue emission of polyfluorene (PF)-based light-emitting diodes (LEDs) is known to degrade due to a low-energy green emission, which hitherto has been attributed to oxidative defects. By studying the electroluminescence (EL) from ethyl-hexyl substituted PF LEDs in the presence of oxygen and in an inert atmosphere, and by using trace quantities of paramagnetic impurities (PM) in the polymer, we show that the triplet states play a major role in the low-energy emission mechanism. Our time-dependent many-body studies show a large cross-section for the triplet formation in the EL process in the presence of PM, primarily due to electron-hole recombination processes.

  11. High-Resolution Organic Light-Emitting Diodes Patterned via Contact Printing.

    PubMed

    Li, Jinhai; Xu, Lisong; Tang, Ching W; Shestopalov, Alexander A

    2016-07-01

    In this study, we report a contact printing technique that uses polyurethane-acrylate (PUA) polymers as the printing stamps to pattern electroluminescent layers of organic light emitting diodes (OLEDs). We demonstrate that electroluminescent thin films can be printed with high uniformity and resolution. We also show that the performance of the printed devices can be improved via postprinting thermal annealing, and that the external quantum efficiency of the printed devices is comparable with the efficiency of the vacuum-deposited OLEDs. Our results suggest that the PUA-based contact printing can be used as an alternative to the traditional shadow mask deposition, permitting manufacturing of OLED displays with the resolution up to the diffraction limit of visible-light emission. PMID:27302425

  12. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    SciTech Connect

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  13. Green semipolar III-nitride light-emitting diodes grown by limited area epitaxy

    NASA Astrophysics Data System (ADS)

    Pynn, C. D.; Kowsz, S. J.; Oh, S. H.; Gardner, H.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-07-01

    The performance of multiple quantum well green and yellow semipolar light-emitting diodes (LEDs) is limited by relaxation of highly strained InGaN-based active regions and the subsequent formation of nonradiative defects. Limited area epitaxy was used to block glide of substrate threading dislocations and to reduce the density of misfit dislocations (MDs) directly beneath the active region of (20 2 ¯ 1 ) LEDs. Devices were grown and fabricated on a 1D array of narrow substrate mesas to limit the MD run length. Reducing the mesa width from 20 μm to 5 μm lowered the density of basal plane and non-basal plane MDs on the mesas and limited the number of defect-generating dislocation intersections. This improvement in material quality yielded a 73% enhancement in peak external quantum efficiency for the devices with the narrowest mesas compared to the devices with the widest mesas.

  14. Effect of 670-nm Light-Emitting Diode Light On Neuronal Cultures

    NASA Technical Reports Server (NTRS)

    Wong-Riley, Margaret T. T.; Whelan, Harry T.

    2002-01-01

    Light close to and within the near infrared range has documented benefits for promoting wound healing in human and animal studies. Our preliminary results using light-emitting diodes (LEDs) in this range have also demonstrated two-to five-fold increases in growth-phase-specific DNA synthesis in normal fibroblasts, muscle cells, osteoblasts, and mucosal epithelial cells in tissue cultures. However, the mechanisms of action of such light on cells are poorly understood. We hypothesized that the therapeutic effects of such light result from the stimulation of cellular events associated with increases in cytochrome oxidase activity. As a first step in testing our hypothesis, we subjected primary neuronal cultures to impulse blockade by tetrodotoxin (TTX), a voltage-dependent sodium channel blocker, and applied LED light at 670 nm to determine if it could partially or fully reverse the reduction of cytochrome oxidase activity by TTX. The wavelength and parameters were previously tested to be beneficial for wound healing.

  15. Plasmonic phototherapy using gold nanospheres and gold nanorods irradiated with light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Poorani, Gananathan; Rao, Aruna Prakasa; Singaravelu, Ganesan; Manickam, Elanchezhiyan

    2016-04-01

    Gold nanoparticles (GNPs) provide different modes of therapeutic responses in cells depending on their size and shape. We have studied two modifications of GNPs exhibiting surface plasmon resonances (SPRs) with phototherapeutic effects in nonmalignant Vero and malignant HeLa cell lines. The cells were treated with 30-nm-size gold nanospheres (GNSs) (having SPR at a wavelength of 530 nm) and with gold nanorods (GNRs) (having SPR at 630 nm). The plasmonic phototherapy effect in cells was provided by irradiating them with green and red light-emitting diodes (LEDs). The cytotoxicities of GNPs were determined by MTT assay. Both the GNSs and GNRs were found to be biocompatible and have efficient phototherapeutic activity with LEDs.

  16. Degradation of Bilayer Organic Light-Emitting Diodes Studied by Impedance Spectroscopy.

    PubMed

    Sato, Shuri; Takata, Masashi; Takada, Makoto; Naito, Hiroyoshi

    2016-04-01

    The degradation of bilayer organic light-emitting diodes (OLEDs) with a device structure of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) (hole transport layer) and tris-(8-hydroxyquinolate)aluminum (Alq3) (emissive layer and electron transport layer) has been studied by impedance spectroscopy and device simulation. Two modulus peaks are found in the modulus spectra of the OLEDs below the electroluminescence threshold. After aging of the OLEDs, the intensity of electroluminescence is degraded and the modulus peak due to the Alq3 layer is shifted to lower frequency, indicating that the resistance of the Alq3 layer is increased. Device simulation reveals that the increase in the resistance of the Alq3 layer is due to the decrease in the electron mobility in the Alq3 layer. PMID:27451634

  17. Effect of junction temperature on heat dissipation of high power light emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Suk; Han, Bongtae

    2016-03-01

    The effect of junction temperature on heat dissipation of high power light emitting diodes (LEDs) is investigated. The theoretical aspect of junction temperature dependency of two major parameters—the forward voltage and the radiant flux—on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. The results show that (1) the effect of the junction temperature dependency on heat dissipation is governed largely by the LED power efficiency and (2) each parameter contributes to the total heat dissipation in an opposite way so that the absolute changes of the heat dissipation are not significant over a wide range of junction temperature. An empirical model of heat dissipation is proposed for applications in practice.

  18. A new switched-capacitor frequency modulated driver for light emitting diodes.

    PubMed

    Feng, Weifeng; Shi, Frank G

    2007-11-01

    A new type of drivers for light emitting diodes (LEDs) is introduced based on the switched-capacitor frequency modulation. In contrast to conventional constant dc current drivers, the current pulse is provided by this new switched-capacitor LED driver. In the present driver, the charging capacitor is charged and discharged through a LED and the current flow direction is controlled by a metal oxide semiconductor switch. The input current (and thus the LED brightness) is proportional to the switch clock frequency at relatively low frequencies and becomes saturated at relatively high frequencies. This new driver circuit is simple and robust and maintains high efficiency for a wide range of input powers. In addition, the dimming control is easily realized by modulating clock frequency. Finally, this LED driver consumes no dc current and thus provides inherent protection to LED in standby mode. PMID:18052494

  19. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence

    SciTech Connect

    Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia; Samuelson, Lars; Monemar, Bo

    2015-12-21

    Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increase of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.

  20. Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device

    NASA Astrophysics Data System (ADS)

    Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben

    2015-02-01

    The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.

  1. Regulation of lipid production by light-emitting diodes in human sebocytes.

    PubMed

    Jung, Yu Ra; Kim, Sue Jeong; Sohn, Kyung Cheol; Lee, Young; Seo, Young Joon; Lee, Young Ho; Whang, Kyu Uang; Kim, Chang Deok; Lee, Jeung Hoon; Im, Myung

    2015-04-01

    Light-emitting diodes (LED) have been used to treat acne vulgaris. However, the efficacy of LED on sebaceous lipid production in vitro has not been examined. This study investigated the efficacy of 415 nm blue light and 630 nm red light on lipid production in human sebocytes. When applied to human primary sebocytes, 415 nm blue light suppressed cell proliferation. Based on a lipogenesis study using Oil Red O, Nile red staining, and thin-layered chromatography, 630 nm red light strongly downregulated lipid production in sebocytes. These results suggest that 415 nm blue light and 630 nm red light influence lipid production in human sebocytes and have beneficial effects on acne by suppressing sebum production. PMID:25690162

  2. Sensor Fabrication Method for in Situ Temperature and Humidity Monitoring of Light Emitting Diodes

    PubMed Central

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Chan, Pin-Cheng; Lin, Chia-Hung

    2010-01-01

    In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06 ± 0.005 (Ω/°C) and 0.033 pF/%RH, respectively. PMID:22319303

  3. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    PubMed Central

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I

    2014-01-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436

  4. Analysis of visual perception of light emitting diode brightness in dense fog with various droplet sizes

    NASA Astrophysics Data System (ADS)

    Kurniawan, Bobsy Arief; Nakashima, Yoshio; Takamatsu, Mamoru

    2008-05-01

    Road signs must provide a conspicuous signal to a wide variety of drivers over a broad range of environmental and geometric conditions. Recently, there are an increasing number of applications in which light emitting diodes (LEDs) are used as the light source, including critical transportation signaling. In the presence of fog, the resulting visual signal is disturbed due to light scattering by airborne water droplets. By measuring LED brightness with human spectral sensitivity in various densities and various droplet sizes (10, 30, 50, and 100 μm), it is understood that the particle size distribution (fog droplet size) and density of fog does affect visibility in fog. The colored LEDs that contain a yellow component had high brightness evaluation, blue component had low brightness evaluation in all densities and different droplet sizes. The result in this paper can contribute to air and land traffic safety and the prevention of accidents.

  5. Evaluation of an LED (Light-Emitting Diode) high-mounted signal lamp

    NASA Astrophysics Data System (ADS)

    Olson, P. L.

    1987-02-01

    Two studies are described evaluating high-mounted stoplights using light-emitting diodes (LEDs) compared with conventional incandescent units. The first of these studies obtained ratings from subjects who drove one car and followed another car that was equipped with the test lamps. The results indicate that the subjects generally preferred the LEDs to the conventional lamp. The second study was a laboratory evaluation of the attention-getting capabilities of LED and incandescent stoplights. Under all conditions tested subjects responded faster to the LED units. The response time advantage for the LED units increased with more difficult viewing conditions, such as high levels of illumination and long viewing distance. The results of these investigations are discussed in terms of the applicability of the LED technology to high mounted stoplights on motor vehicles.

  6. Tuning the Microcavity of Organic Light Emitting Diodes by Solution Processable Polymer-Nanoparticle Composite Layers.

    PubMed

    Preinfalk, Jan B; Schackmar, Fabian R; Lampe, Thomas; Egel, Amos; Schmidt, Tobias D; Brütting, Wolfgang; Gomard, Guillaume; Lemmer, Uli

    2016-02-01

    In this study, we present a simple method to tune and take advantage of microcavity effects for an increased fraction of outcoupled light in solution-processed organic light emitting diodes. This is achieved by incorporating nonscattering polymer-nanoparticle composite layers. These tunable layers allow the optimization of the device architecture even for high film thicknesses on a single substrate by gradually altering the film thickness using a horizontal dipping technique. Moreover, it is shown that the optoelectronic device parameters are in good agreement with transfer matrix simulations of the corresponding layer stack, which offers the possibility to numerically design devices based on such composite layers. Lastly, it could be shown that the introduction of nanoparticles leads to an improved charge injection, which combined with an optimized microcavity resulted in a maximum luminous efficacy increase of 85% compared to a nanoparticle-free reference device. PMID:26744904

  7. Multi-spectral imaging with infrared sensitive organic light emitting diode.

    PubMed

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R; So, Franky

    2014-01-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589

  8. Multi-spectral imaging with infrared sensitive organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-08-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.

  9. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  10. A trichromatic phosphor-free white light-emitting diode by using adhesive bonding scheme

    NASA Astrophysics Data System (ADS)

    Chuai, D. X.; Guo, X.; Guan, B. L.; Zhang, J. L.; Shen, G. D.

    2009-11-01

    A trichromatic phosphor-free white light-emitting diode (LED) has been implemented by using adhesive bonding scheme. The device has been operated as a three-terminal device with independent electrical control of an AlGaInPbased red LED chip and a GaN-based dual-wavelength (blue and green) LED chip. As 25mA and 60mA was injected into the red and blue-green LED chips at room temperature respectively, white light emission could be observed with CIE chromaticity coordinates (0.3330,0.3241), correlated color temperature Tc=5467K and optical power Φe=2.223mW. The electroluminescence measurements also show that the emitted white light is composed of blue, green and red lights, centered at around 452nm, 517nm and 632nm. The fabrication and the electrical and optical performances of such white LED were described.

  11. Cold welding of organic light emitting diode: Interfacial and contact models

    NASA Astrophysics Data System (ADS)

    Asare, J.; Adeniji, S. A.; Oyewole, O. K.; Agyei-Tuffour, B.; Du, J.; Arthur, E.; Fashina, A. A.; Zebaze Kana, M. G.; Soboyejo, W. O.

    2016-06-01

    This paper presents the results of an analytical and computational study of the contacts and interfacial fracture associated with the cold welding of Organic Light Emitting diodes (OLEDs). The effects of impurities (within the possible interfaces) are explored for contacts and interfacial fracture between layers that are relevant to model OLEDs. The models are used to study the effects of adhesion, pressure, thin film layer thickness and dust particle modulus (between the contacting surfaces) on contact profiles around impurities between cold-welded thin films. The lift-off stage of thin films (during cold welding) is then modeled as an interfacial fracture process. A combination of adhesion and interfacial fracture theories is used to provide new insights for the design of improved contact and interfacial separation during cold welding. The implications of the results are discussed for the design and fabrication of cold welded OLED structures.

  12. Thermal-structural modeling of polymer Bragg grating waveguides illuminated by a light emitting diode.

    PubMed

    Joon Kim, Kyoung; Bar-Cohen, Avram; Han, Bongtae

    2012-02-20

    This study reports both analytical and numerical thermal-structural models of polymer Bragg grating (PBG) waveguides illuminated by a light emitting diode (LED). A polymethyl methacrylate (PMMA) Bragg grating (BG) waveguide is chosen as an analysis vehicle to explore parametric effects of incident optical powers and substrate materials on the thermal-structural behavior of the BG. Analytical models are verified by comparing analytically predicted average excess temperatures, and thermally induced axial strains and stresses with numerical predictions. A parametric study demonstrates that the PMMA substrate induces more adverse effects, such as higher excess temperatures, complex axial temperature profiles, and greater and more complicated thermally induced strains in the BG compared with the Si substrate. PMID:22358162

  13. Increased mycelial biomass production by Lentinula edodes intermittently illuminated by green light emitting diodes.

    PubMed

    Glukhova, Lubov B; Sokolyanskaya, Ludmila O; Plotnikov, Evgeny V; Gerasimchuk, Anna L; Karnachuk, Olga V; Solioz, Marc; Karnachuk, Raisa A

    2014-11-01

    Fungi possess a range of light receptors to regulate metabolism and differentiation. To study the effect of light on Lentinula edodes (the shiitake mushroom), mycelial cultures were exposed to blue, green, and red fluorescent lights and light-emitting diodes, as well as green laser light. Biomass production, morphology, and pigment production were evaluated. Exposure to green light at intervals of 1 min/d at 0.4 W/m(2) stimulated biomass production by 50-100 %, depending on the light source. Light intensities in excess of 1.8 W/m(2) or illumination longer than 30 min/d did not affect biomass production. Carotenoid production and morphology remained unaltered during increased biomass production. These observations provide a cornerstone to the study of photoreception by this important fungus. PMID:25048231

  14. Green exciplex emission from a bilayer light-emitting diode containing a rare earth ternary complex

    NASA Astrophysics Data System (ADS)

    Gao, De-Qing; Huang, Yan-Yi; Huang, Chun-Hui; Li, Fu-You; Huang, Ling

    2001-12-01

    A bilayer organic light-emitting diode using a blue-fluorescent yttrium complex, tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone)-(2,2 '-dipyridyl) yttrium [Y(PMIP) 3(Bipy)] (YPB) as an emitting material and poly( N-vinylcarbazole) (PVK) as a hole-transporting material emitted bright green light instead of blue light. It was attributed to the exciplex formation at the solid interface between the PVK and YPB layers, which was demonstrated by the measurement of the absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra of the mixture of PVK and YPB (molar ratio 1:1). The device exhibited a maximum luminance of 177 cd/m 2 and a peak power efficiency of 0.02 lm/W.

  15. Improved calibration technique of the infrared imaging bolometer using ultraviolet light-emitting diodes.

    PubMed

    Drapiko, E; Peterson, B; Alekseev, A; Seo, D C

    2010-10-01

    The technique used until recently utilizing the Ne-He laser for imaging bolometer foils calibration [B. J. Peterson et al., J. Plasma Fusion Res. 2, S1018 (2007)] has showed several issues. The method was based on irradiation of 1 cm spaced set of points on a foil by the laser beam moved by set of mirrors. Issues were the nonuniformity of laser power due to the vacuum window transmission nonuniformity and high reflection coefficient for the laser. Also, due to the limited infrared (IR) window size, it was very time consuming. The new methodology uses a compact ultraviolet (uv) light-emitting diodes installed inside the vacuum chamber in a fixed position and the foil itself will be moved in the XY directions by two vacuum feedthroughs. These will help to avoid the above mentioned issues due to lack of a vacuum window, fixed emitters, higher uv power absorption, and a fixed IR camera position. PMID:21033981

  16. Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)

    SciTech Connect

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian; Lee, S. C.; Brueck, S. R. J.; Jiang, Y.-B.

    2013-12-02

    GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100 μA is found fixed at 487 nm (peak), 516 nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.

  17. Silicon carbide light-emitting diode as a prospective room temperature source for single photons

    PubMed Central

    Fuchs, F.; Soltamov, V. A.; Väth, S.; Baranov, P. G.; Mokhov, E. N.; Astakhov, G. V.; Dyakonov, V.

    2013-01-01

    Generation of single photons has been demonstrated in several systems. However, none of them satisfies all the conditions, e.g. room temperature functionality, telecom wavelength operation, high efficiency, as required for practical applications. Here, we report the fabrication of light-emitting diodes (LEDs) based on intrinsic defects in silicon carbide (SiC). To fabricate our devices we used a standard semiconductor manufacturing technology in combination with high-energy electron irradiation. The room temperature electroluminescence (EL) of our LEDs reveals two strong emission bands in the visible and near infrared (NIR) spectral ranges, associated with two different intrinsic defects. As these defects can potentially be generated at a low or even single defect level, our approach can be used to realize electrically driven single photon source for quantum telecommunication and information processing. PMID:23572127

  18. Color tunable light-emitting diodes based on copper doped semiconducting nanocrystals

    NASA Astrophysics Data System (ADS)

    Bhaumik, Saikat; Ghosh, Batu; Pal, Amlan J.

    2011-08-01

    We have introduced copper-doped semiconducting nanocrystals in light-emitting diodes (LEDs). Characteristics of the devices show that electroluminescence (EL) emission in these LEDs is color tunable. In copper-doped ZnS nanocrystals in the core and Zn1-xCdxS host as a shell-layer, photoluminescence (PL) arises from a transition from conduction band-edge of the host to 3d-levels of copper-ions. The PL of the nanocrystals and hence the EL of LEDs based on such nanostructures become tunable by varying the Cd-content in Zn-Cd-S alloys, that is, Zn1-xCdxS with different values of x, which changes the conduction band-edge of the host.

  19. Numerical Study on Organic Light Emitting Diodes with Distributed Bragg Reflector.

    PubMed

    Hwang, Young-Wook; Lee, Hyeon-Gi; Won, Tae-Young

    2015-07-01

    In this paper, we report a theoretical study on the electronic-optical properties of the organic light emitting diodes (OLEDs) devices having a multilayer structure which consists of N,N'- bis(3-methylphenyl)-N,N'-bis(phenyl)benzidine (TPD) as a hole transport layer (HTL) and tris(8-hydroxyquinolinato)aluminum (Alq3) as an electron transport layer (ETL). We investigated the angular dependence of the light density of emission as well as CIE chromaticity for devices with and without a distributed Bragg reflector (DBR) between the ITO and the glass wherein the DBR comprise two species of materials with different refractive indices. Our simulation revealed that the insertion of the bottom mirror plays a critical role for the improvement of in the emission efficiency of 17% and the sharper emission characteristics. We found out that the chromaticity as well as the viewing angle improved with the presence of the bottom mirror. PMID:26373071

  20. High performance GaN based blue flip-chip light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Jin, G. M.; Choi, I. G.; Park, J. C.; Jeon, S. K.; Park, E. H.

    2015-09-01

    In this study, high performance nitride-based flip-chip (FC) light-emitting diodes (LEDs) using optimized distributed bragg reflector (DBR) were fabricated and compared with conventional FC-LED using silver (Ag) reflector. Most of FCLEDs are using the silver (Ag) as reflector due to its superior reflectance at visual spectrum region. However, A silver has detrimental problems such as electro-chemical migration and agglomerations, which resulting in reliability issues such as degradation of power drop, unstable operating voltage and leakage issues. Our DBR structure was designed to have 99% at whole visible spectrum range (400~750nm), which is higher reflectance than silver reflector (90~95%). Optical power is higher than higher than the Ag-LED up to 30% @ 500mA. As the current increases up to 1A, the gap slightly decreased. Reliability test results show stable optical power, operating voltage, and leakage maintenance.

  1. GaN-based high-voltage light-emitting diodes with backside reflector

    NASA Astrophysics Data System (ADS)

    Huamao, Huang; Hong, Wang; Xiaosheng, Huang; Jinyong, Hu

    2014-07-01

    High-voltage light-emitting diodes (HV-LED) withbackside reflector, including Ti3O5/SiO2 distributed Bragg reflector (DBR) or hybrid reflector combining DBR and Al or Ag metal layer, are investigated using Monte Carlo ray tracing method. The hybrid reflector leads to more enhancement of light-extraction efficiency (LEE). Moreover, the LEE can also be improved by redesigning the thicknesses of DBR. HV-LED with four redesigned DBR pairs (4-MDBR), and those with a hybrid reflector combining 4-MDBR and Al metal layer (4-MDBR-Al), are fabricated. Compared to 4-MDBR, the enhancement of light-output power induced by 4-MDBR-Al is 4.6%, which is consistent with the simulated value of 4.9%.

  2. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    SciTech Connect

    Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-04-21

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.

  3. Electroluminescence from colloidal semiconductor CdSe nanoplatelets in hybrid organic-inorganic light emitting diode

    NASA Astrophysics Data System (ADS)

    Vitukhnovsky, A. G.; Lebedev, V. S.; Selyukov, A. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S.

    2015-01-01

    We report on the fabrication of a hybrid light-emitting-diode based on colloidal semiconductor CdSe nanoplatelets as emitters and organic TAZ [3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole] and TPD [N, N‧-bis (3-methylphenyl)-N, N‧-bis (phenyl)-benzidine] materials as the electron and hole transporting layers. Electroluminescent and current-voltage characteristics of the developed hybrid device with the turn-on voltage of 5.5 V and the radiation wavelength of 515 nm have been obtained. Semiconductor nanoplatelets like CdSe are attractive for the fabrication of hybrid LEDs with low operating voltages, spectrally pure color and short-wavelength electroluminescence, which is required for RGB devices.

  4. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes.

    PubMed

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-28

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers. PMID:26214140

  5. Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers

    NASA Astrophysics Data System (ADS)

    Kang, Jin Sung; Yoon, Ju-An; Yoo, Seung Il; Kim, Jin Wook; Yi, Seungjun; Zhu, Furong; Cheah, Kok Wai; Kim, Woo Young

    2015-09-01

    This study reports the results of blue phosphorescent organic light emitting diodes (PHOLEDs) employing an electron confinement layer (ECL), tris-(phenylpyrazole)iridium (Ir(ppz)3) and a hole confinement layer (HCl), 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene (TPBi). The electrical and optical characteristics of PHOLEDs with different emissive layers, including current density, luminance, and luminous efficiency, were analyzed. The thickness of the individual emissive layer was optimized, however, and the total thickness of the emitting region was kept constant at 300 Å. This work reveals that the effective electron confinement, due to a large energy level offset between the electron confinement and emitting layers, helps to improve hole-electron current balance in the emitting region. The maximum external quantum efficiency of 23.40% at 1500 cd/m2 was achieved for PHOLEDs with an ECL, which is 60% higher than the structural identical control device without ECL.

  6. White organic light-emitting diodes with 4 nm metal electrode

    NASA Astrophysics Data System (ADS)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  7. Enhanced light extraction efficiency in organic light-emitting diode with randomly dispersed nanopattern.

    PubMed

    Kim, Yang Doo; Han, Kyung-Hoon; Sung, Young Hoon; Kim, Jung-Bum; Choi, Hak-Jong; Lee, Heon; Kim, Jang-Joo

    2015-12-15

    An optical scattering layer composed of randomly dispersed nanopatterns (RDNPs) was introduced in an organic light-emitting diode (OLED) to increase the out-coupling efficiency. An RDNP was fabricated by direct printing on a glass substrate. Owing to its low haze and high transmittance, the RDNP acted as a light extraction layer in the OLED. The RDNP OLEDs showed higher current density and luminance than the reference devices at the same voltage. The current and power efficiencies of the RDNP OLED increased by 25% and 34%, respectively, without electrical degradation. Furthermore, the RDNP devices achieved an external quantum efficiency of 27.5% at 1 mA/cm². PMID:26670525

  8. Color change in organic light-emitting diodes using the magnetic field effect

    NASA Astrophysics Data System (ADS)

    Basel, Tek; Sun, Dali; Gautam, Bhoj; Ehrenfreund, Eitan; Valy Vardeny, Z.

    2013-03-01

    The magnetic field effect has been widely used to generate magneto-electroluminescence (MEL) in organic light-emitting diodes (OLEDs). We have used the MEL effect to change the emission color from OLED in which the active layer is composed of a host polymer with fluorescence (FL) emission and a guest, heavy atom-based molecule with phosphorescence (PH) emission. The color change has been studied as a function of the guest/host weight ratio, and the optimal ratio was determined. The underlying mechanism of the magnetic-field induced color change is the difference that exists between the MEL intensity of the FL emission band respect to that of the PH emission band. The MEL difference between the two types of emission bands will be thoroughly discussed within models used to explain the MEL in organic devices. Research sponsored by National Science Foundation-Material Science & Engineering Center (NSF-MRSEC), University of Utah.

  9. Negative differential resistance phenomena in colloidal quantum dots-based organic light-emitting diodes

    SciTech Connect

    Yang, Shengyi Zhang, Li; Yang, Dan; Zou, Bingsuo; Liu, Peng; Jiang, Yurong; Guo, Sanwei

    2014-01-20

    The influence of ligands on the electrical behavior of CdSe/ZnS core-shell colloidal quantum dots (CQDs)-based organic light-emitting diodes is presented. Negative differential resistance (NDR) phenomena at room temperature are observed from single-layer device ITO/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)/CQDs/Al in which the original capping ligand tri-n-octylphosphine oxide (TOPO) of CQDs is exchanged with oleylamine, as well as in both bilayer device ITO/PEDOT:PSS/CQDs/BCP(10 nm)/Al and trilayer device ITO/PEDOT:PSS/CQDs/BCP(10 nm)/Alq{sub 3}(10 nm)/Al. However, such a kind of NDR phenomenon disappears if TOPO is exchanged with hexadecylamine. Therefore, NDR phenomenon depends greatly on the ligands of the CQDs, and the origin of NDR from these devices is discussed.

  10. Oxadiazole-containing material with intense blue phosphorescence emission for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liang, Fushun; Wang, Lixiang; Ma, Dongge; Jing, Xiabin; Wang, Fosong

    2002-07-01

    2-(2-hydroxyphenyl)-5-phenyl-1, 3, 4-oxadiazole (HOXD), characteristic of excited state intramolecular proton-transfer (ESIPT), was synthesized and found to emit strong blue phosphorescence in the solid state at room temperature and at low temperature (77 K). The photoluminescent spectrum measurement in solution showed that there are two kinds of emission: fluorescence originated from the singlet state and phosphorescence derived from the triplet state in HOXD formed by ESIPT. For the photoluminescent spectrum in the solid state, only phosphorescence emission with the lifetime of 66 mus was observed. Multiple-layer light-emitting diodes with the configuration of ITO/NPB/HOXD/BCP/Alq3/Mg:Ag were fabricated using HOXD as emitter and the maximum brightness of 656 cd/m2 and the luminous efficiency of 0.14 lm/W was obtained.

  11. External modes in quantum dot light emitting diode with filtered optical feedback

    NASA Astrophysics Data System (ADS)

    Al Husseini, Hussein B.; Al Naimee, Kais A.; Al-Khursan, Amin H.; Khedir, Ali. H.

    2016-06-01

    This research reports a theoretical investigation on the role of filtered optical feedback (FOF) in the quantum dot light emitting diode (QD-LED). The underlying dynamics is affected by a sidle node, which returns to an elliptical shape when the wetting layer (WL) is neglected. Both filter width and time delay change the appearance of different dynamics (chaotic and mixed mode oscillations, MMOs). The results agree with the experimental observations. Here, the fixed point analysis for QDs was done for the first time. For QD-LED with FOF, the system transits from the coherence collapse case in conventional optical feedback to a coherent case with a filtered mode in FOF. It was found that the WL washes out the modes which is an unexpected result. This may attributed to the longer capture time of WL compared with that between QD states. Thus, WL reduces the chaotic behavior.

  12. Fabrication of Organic Light-Emitting Diodes Using Photosynthetic Pigments Extracted from Spinach

    NASA Astrophysics Data System (ADS)

    Ohtani, Naoki; Kitagawa, Natsuko; Matsuda, Takashi

    2011-01-01

    We fabricated organic light-emitting diodes (OLEDs) containing chlorophylls in the active region, which were extracted from spinach using a chemical method. Photoluminescence (PL) cannot be observed in the thin film of the extracted chlorophylls owing to concentration quenching. To overcome the concentration quenching, a host material, poly[(m-phenylenevinylene)-alt-(2,5-dihexyloxy-p-phenylenevinylene)] (PPV) was added in the active region. This leads to the observaton of electroluminescence (EL) signals originating from chlorophyll a. We also evaluated the lifetime of the PL and EL. Consequently, the OLEDs containing carotenoids in the active region exhibit the light-emission much longer time than that without carotenoidos. This is assigned to the antioxidant activities of carotenoids. OLEDs containing a large amount of carotenoids are resistant to the oxidation damage.

  13. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    SciTech Connect

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  14. GaInN-based light emitting diodes embedded with wire grid polarizers

    NASA Astrophysics Data System (ADS)

    Cho, Jaehee; Meyaard, David S.; Ma, Ming; Schubert, E. Fred

    2015-02-01

    The use of liquid crystal displays (LCDs) has become prevalent in our modern, technology driven society. We demonstrate a linearly polarized GaInN light-emitting diode (LED) embedded with a wire-grid polarizer (WGP). A derivation of rigorous coupled-wave analysis is given; starting from Maxwell’s equations and finishing by matching the boundary conditions in the grating and other regions of interest. Simulated results are shown for various grating parameters, including different metals used for the grating and the metal-line dimensions. An LED fabrication process is developed for demonstrating WGP-LEDs. A clear polarization preference for the light coming out of the WGP-LED is experimentally demonstrated with a polarization ratio over 0.90, which is in good agreement with simulation results.

  15. High-quality vertical light emitting diodes fabrication by mechanical lift-off technique

    NASA Astrophysics Data System (ADS)

    Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen

    2011-10-01

    We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.

  16. Imprinted nonoxidized graphene sheets as an efficient hole transport layer in polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Yuan; Peter Chen, I.-Wen; Chen, Chih-Jung; Chiang, Ray-Kuang; Vu, Hoang-Tuan

    2014-02-01

    Nonoxidized graphene sheets (NGSs) with single- and multilayered structures were generated by direct exfoliation of highly oriented pyrolytic graphite in a water-ethanol mixture with the assistances of pyridinium salt (Py+Br3-) and sonication. Raman spectrum exhibited a low intensity ratio (0.055) of D and G bands, indicating that the NGSs were nearly defect-free. Their application for the fabrication of polymer light-emitting diodes (PLEDs) was also demonstrated. The PLEDs that used an imprinted NGS film as a hole transport layer show a luminance exceeding 13000 cd/m2, which was comparable to that of devices using the typical hole transport material: poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid.

  17. Wavelength-stable rare earth-free green light-emitting diodes for energy efficiency.

    PubMed

    Wetzel, Christian; Detchprohm, Theeradetch

    2011-07-01

    Solid state lighting seeks to replace both, incandescent and fluorescent lighting by energy efficient light-emitting diodes (LEDs). Just like compact fluorescent tubes, current white LEDs employ costly rare earth-based phosphors, a drawback we propose to overcome with direct emitting LEDs of all colors. We show the benefits of homoepitaxial LEDs on bulk GaN substrate for wavelength-stable green spectrum LEDs. By use of non-polar growth orientation we avoid big color shifts with drive current and demonstrate polarized light emitters that prove ideal for pairing with liquid crystal display modulators in back light units of television monitors. We further offer a comparison of the prospects of non-polar a- and m-plane growth over conventional c-plane growth. PMID:21747568

  18. Improving light-trap efficiency for Culicoides spp. with light-emitting diodes.

    PubMed

    Bishop, A L; Worrall, R J; Spohr, L J; McKenzie, H J; Barchia, I M

    2004-01-01

    The robustness of light traps used to monitor Culicoides spp. throughout Australia was improved with stainless steel and heavy duty plastic fittings. Printed circuit boards and light-dependent resistors were modified to be compatible with recent advances in electronics. In experiments with light-emitting diodes (LEDs), C. brevitarsis Kieffer was significantly attracted to green light. This species is the major vector of Akabane and bluetongue viruses in Australia and is the main target of a national monitoring programme using light traps. This response was significantly greater than the response to the incandescent lights currently used in the light traps. Catches of C. brevitarsis were also related to the intensity of the green LEDs. These were more effective than the currently used incandescent globes at intensities between 46% and 142% of the incandescent intensity. The response of seven other Culicoides spp. to the LEDs was also determined. PMID:20419675

  19. Light Emitting Diodes and Astronomical Environments: Results from in situ Field Measurements

    NASA Astrophysics Data System (ADS)

    Craine, Brian L.; Craine, Eric R.

    2015-05-01

    Light emitting diode (LED) light fixtures are rapidly becoming industry standards for outdoor lighting. They are promoted on the strength of long lifetimes (hence economic efficiencies), low power requirements, directability, active brightness controls, and energy efficiency. They also tend to produce spectral shifts that are undesirable in astronomical settings, but which can be moderated by filters. LED lighting for continuous roadway and parking lot lighting is particularly popular, and many communities are in the process of retrofitting Low Pressure Sodium (LPS) and other lights by tens of thousands of new LED fixtures at a time. What is the impact of this process on astronomical observatories and on dark skies upon which amateur astronomers rely? We bypass modeling and predictions to make actual measurements of these lights in the field. We report on original ground, airborne, and satellite observations of LED lights and discuss their light budgets, zenith angle functions, and impacts on observatory environs.

  20. Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Rulin; Zhang, Yu; Bi, Fuzhen; Frauenheim, Thomas; Chen, Guanhua; Yam, Chiyung

    2016-07-01

    Understanding of the electroluminescence (EL) mechanism in optoelectronic devices is imperative for further optimization of their efficiency and effectiveness. Here, a quantum mechanical approach is formulated for modeling the EL processes in nanoscale light emitting diodes (LED). Based on non-equilibrium Green's function quantum transport equations, interactions with the electromagnetic vacuum environment are included to describe electrically driven light emission in the devices. The presented framework is illustrated by numerical simulations of a silicon nanowire LED device. EL spectra of the nanowire device under different bias voltages are obtained and, more importantly, the radiation pattern and polarization of optical emission can be determined using the current approach. This work is an important step forward towards atomistic quantum mechanical modeling of the electrically induced optical response in nanoscale systems.

  1. Dimmable sunlight-like organic light emitting diodes with ultra-high color rendering index

    NASA Astrophysics Data System (ADS)

    Wu, Jin-Han; Chi, Chien-An; Chiang, Chang-Lin; Chen, Guan-Yu; Lin, Yi-Ping; Chen, Cheng-Chang; Ho, Shu-Yi; Chen, Shih-Pu; Li, Jung-Yu

    2016-05-01

    We propose novel dimmable sunlight-like white organic light-emitting diodes that were fabricated using three luminophores to form an emitting spectrum similar to black body radiation at 2250 K with ultra-high color rendering index (CRI) value of 91, which nearly remained the constant at various luminance values ranging from 100 to more than 2500 cd/m2 at Commission Internationale de l'Eclairage chromaticity coordinates of (0.51, 0.41). Introducing charge modification layers suppressed the energy transfer between the emitting material layers and increased the probability of carrier recombination. Moreover, we reveal that covering long-wavelength ranges played a vital role in achieving high CRI values; the CRI values of a spectrum artificially shifted toward a long-wavelength direction (from 610 to 620 nm) remained constant, whereas those of a spectrum shifted toward a short-wavelength direction (from 610 to 600 nm) dropped to 79.

  2. Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs).

    PubMed

    Ra, Chae Hun; Kang, Chang-Han; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-10-01

    The effects of light-emitting diode (LED) wavelength, light intensity, nitrate concentration, and time of exposure to different LED wavelength stresses in a two-phase culture on lipid production were evaluated in the microalga, Picochlorum atomus. The biomass produced by red LED light was higher than that produced by purple, blue, green, or yellow LED and fluorescent lights from first phase of two-phase culture. The highest lipid production of P. atomus was 50.3% (w/w) with green LED light at 2days of second phase as light stress. Fatty acid analysis of the microalgae showed that palmitic acid (C16:0) and linolenic acid (C18:3) accounted for 84-88% (w/w) of total fatty acids from P. atomus. The two-phase culture of P. atomus is suitable for biofuel production due to higher lipid productivity and favorable fatty acid composition. PMID:27474341

  3. Reliability study of opto-coupled semiconductor devices and Light Emitting Diodes (LED)

    NASA Technical Reports Server (NTRS)

    Maurer, R. C.; Weissflug, V. A.; Sisul, E. V.

    1977-01-01

    Opto-coupler and light emitting diode (LED) failure mechanisms and associated activation energies were determind from the results of environmental and accelerated lift tests of over 2,400 devices. The evaluation program included LED phototransistor opto-couplers from three sources, LED photoamplifier opto-couplers from a single source, and discrete infrared emitting LEDs from two sources. Environmental tests to evaluate device mechanical integrity included power cycling (10,000 cycles), temperature cycling (500 cycles) and a sequence of monitored shock, monitored vibration and constant acceleration. Multiple temperature operating life tests were conducted at ambient temperatures between 25 C and 200 C. Opto-couplers were operated in both the 'on' and 'off' states during life testing.

  4. Excellent photostability of phosphorescent nanoparticles and their application as a color converter in light emitting diodes.

    PubMed

    Kim, Ok-Hee; Ha, Shin-Woo; Kim, Jae Il; Lee, Jin-Kyu

    2010-06-22

    The phosphorescent Ir(III) complexes were modified by allylation and consecutive hydrosilylation, and covalently incorporated into the silica nanoparticles by hydrolysis and condensation reaction with TEOS. These nanoparticles showed an excellent photochemical and thermal stability, and a very high luminescent efficiency due to the blocking of O(2) quenching and suppression of energy transfer through the amorphous silica solid solution. The limited mobility of complexes in the silica matrix also resulted in a decrease in the vibration relaxation and restrained the nonradiative decay. It is expected that these photostable and very efficient phosphorescent nanoparticles can be used in various fields ranging from nanobiotechnology to nanoengineering materials, where long-term stability with the high luminescent efficiency is required. As an example of the use of excellent photostability, a preliminary test result in which they are used as a color converter in a light emitting diode (LED) is also discussed. PMID:20481629

  5. Is it viable to improve light output efficiency by nano-light-emitting diodes?

    SciTech Connect

    Wang, Chao-Hung; Huang, Yu-Wen; Wu, Shang-En; Liu, Chuan-Pu; Center for Micro Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan

    2013-12-02

    Nanopillar arrays with InGaN/GaN multiple-quantum-disks (MQDs) are fabricated by focused-ion-beam milling with surface damage layer removed by KOH wet etching. Nano-light-emitting diodes (Nano-LEDs) made of the InGaN/GaN MQD nanopillars are found to have 19.49% less output power than that of a conventional LED. The reasons are analyzed in detail and considering their current-voltage and electroluminescence characteristics, internal quantum efficiency, external quantum efficiency, light extraction, and wall-plug efficiency. Our results suggest that nanopillar-LED can outperform if the density can be increased to 2.81 × 10{sup 9} cm{sup −2} with the size unchanged or the size can be increased to 854.4 nm with the density unchanged.

  6. Modeling of organic light emitting diodes: From molecular to device properties (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kordt, Pascal; van der Holst, Jeroen J. M.; Al Helwi, Mustapha; Kowalsky, Wolfgang; May, Falk; Badinski, Alexander; Lennartz, Christian; Andrienko, Denis

    2015-10-01

    We review the progress in modeling of charge transport in disordered organic semiconductors on various length-scales, from atomistic to macroscopic. This includes evaluation of charge transfer rates from first principles, parametrization of coarse-grained lattice and off-lattice models, and solving the master and drift-diffusion equations. Special attention is paid to linking the length-scales and improving the efficiency of the methods. All techniques are illustrated on an amorphous organic semiconductor, DPBIC, a hole conductor and electron blocker used in state of the art organic light emitting diodes (OLEDs). The outlined multiscale scheme can be used to predict OLED properties without fitting parameters, starting from chemical structures of compounds. Reference: Advanced Functional Materials, 2015, doi: 10.1002/adfm.201403004

  7. Corrugated Organic Light Emitting Diodes Using Low Tg Electron Transporting Materials.

    PubMed

    Peng, Cheng; Liu, Shuyi; Fu, Xiangyu; Pan, Zhenxing; Chen, Ying; So, Franky; Schanze, Kirk S

    2016-06-29

    A corrugated organic light emitting diode (OLED) with enhanced light extraction is realized by incorporating a corrugated composite electron transport layer (ETL) consisting of two ETLs with different glass transition temperatures. The morphology of the corrugated structure is characterized with atomic force microscopy. The results show that the corrugation can be controlled by the layer thicknesses and annealing temperature. Compared with the control planar device, the corrugated OLED shows a more than 35% enhancement in current efficiency from 31 cd/A to 43 cd/A and a 20% enhancement in external quantum efficiency from 10% to 12% at 100 cd/m(2). In addition, the corrugated OLED also has a greatly improved operational stability. The LT90 lifetime of a device operated at 1000 cd/m(2) is improved greater than 100-fold in the corrugated OLED. PMID:27245622

  8. Vertical nonpolar growth templates for light emitting diodes formed with GaN nanosheets

    NASA Astrophysics Data System (ADS)

    Yeh, Ting-Wei; Lin, Yen-Ting; Ahn, Byungmin; Stewart, Lawrence S.; Daniel Dapkus, P.; Nutt, Steven R.

    2012-01-01

    We demonstrate that nonpolar m-plane surfaces can be generated on uniform GaN nanosheet arrays grown vertically from the (0001)-GaN bulk material. InGaN/GaN multiple quantum wells (MQWs) grown on the facets of these nanosheets are demonstrated by cross-sectional transmission electron microscopy. Owing to the high aspect ratio of the GaN nanosheet structure, the MQWs predominantly grow on nonpolar GaN planes. The results suggest that GaN nanosheets provide a conduction path for device fabrication and also a growth template to reduce the piezoelectric field inside the active region of InGaN-based light emitting diodes.

  9. High-power light-emitting diode based facility for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, G.; Duchovskis, P.; Bliznikas, Z.; Breive, K.; Ulinskaite, R.; Brazaityte, A.; Novickovas, A.; Zukauskas, A.

    2005-09-01

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated.

  10. Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes.

    PubMed

    Wang, Rulin; Zhang, Yu; Bi, Fuzhen; Frauenheim, Thomas; Chen, GuanHua; Yam, ChiYung

    2016-07-21

    Understanding of the electroluminescence (EL) mechanism in optoelectronic devices is imperative for further optimization of their efficiency and effectiveness. Here, a quantum mechanical approach is formulated for modeling the EL processes in nanoscale light emitting diodes (LED). Based on non-equilibrium Green's function quantum transport equations, interactions with the electromagnetic vacuum environment are included to describe electrically driven light emission in the devices. The presented framework is illustrated by numerical simulations of a silicon nanowire LED device. EL spectra of the nanowire device under different bias voltages are obtained and, more importantly, the radiation pattern and polarization of optical emission can be determined using the current approach. This work is an important step forward towards atomistic quantum mechanical modeling of the electrically induced optical response in nanoscale systems. PMID:27249329

  11. Development of high-efficiency and high-power vertical light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hahn, Berthold; Galler, Bastian; Engl, Karl

    2014-10-01

    We provide an overview of the vertical chip technology and discuss recent improvements that have enabled (AlGaIn)N-based light-emitting diodes to further extend the range of their applications. In particular, the excellent scalability of chip size and low electric losses make related devices predestinated for use in high-power and high-luminance tasks. The evolution from standard vertical chips to the advanced chip design is described from a conceptual as well as from a performance point of view. Excellent stability data under demanding conditions are shown, which are the basis for the operation of devices in automotive applications requiring high reliability at current densities exceeding 3 A/mm2. As the vertical chip technology is not directly dependent on the substrate owing to its removal in the chip process, it is highly flexible with respect to the change of substrate materials to the very promising (111) silicon, for example.

  12. Superior performance of organic light-emitting diodes with microcavity effect

    NASA Astrophysics Data System (ADS)

    Park, Sang-Geon; Mori, Tatsuo; Wang, Haiying

    2014-12-01

    The electro-optics characteristics of organic light-emitting diodes (OLEDs) with microcavity effect were investigated. The transmittance of the substrate with Ag anode was lower than that of the indium-tin-oxide (ITO) anode due to the opaque characteristics of Ag. The current density of the device with Ag anode was high due to the low sheet resistance of Ag anode. The current efficiency of the device with Ag anode was high due to microcavity structure between Ag anode and Al cathode. Especially, the devices of Ag anode show over 43% higher current efficiency than that of conventional ITO anode. The low transmittance of Ag anode using microcavity effect realized as one kind of Fabry-Perot filters was also verified.

  13. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    SciTech Connect

    Mazzeo, M.; Genco, A.; Gambino, S.; Ballarini, D.; Mangione, F.; Sanvitto, D.; Di Stefano, O.; Patanè, S.; Savasta, S.; Gigli, G.

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  14. Whole-body Fluorescent Optical Imaging Based on Power Light Emitting Diode.

    PubMed

    Chen, Yanping; Xiong, Tao; Yu, Li; Zeng, Shaoqun; Luo, Qingming

    2005-01-01

    With complex configuration, the general whole-body fluorescence optical imaging system is power-consuming for it is mainly composed of laser or mercury lamp, filter and fiber-optic cable. In this paper we aimed at setting up a compact imaging system based on power light emitting diode (LED). We first discussed fluorescence excitation efficiency of mercury lamp and LED. Then we developed a compact prototype whole-body fluorescence optical imaging system based on power LED. With the prototype, we monitored the dynamic course of green fluorescence protein (GFP) expressing tumors in the same intact nude mice. We also recorded the temporal behavior of the infectious process of GFP-expressing bacteria from outside intact infected animals. This study puts forward a platform for monitoring tumor growth. The experiment reveals that it is doable to substitute power LED for mercury lamp for whole-body fluorescence optical imaging. PMID:17282471

  15. Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes

    SciTech Connect

    Moon, Jong-Min; Bae, Jung-Hyeok; Jeong, Jin-A; Jeong, Soon-Wook; Park, No-Jin; Kim, Han-Ki; Kang, Jae-Wook; Kim, Jang-Joo; Yi, Min-Su

    2007-04-16

    The authors report the enhancement of hole injection using an indium tin oxide (ITO) anode covered with ultraviolet (UV) ozone-treated Ag nanodots for fac tris (2-phenylpyridine) iridium Ir(ppy){sub 3}-doped phosphorescent organic light-emitting diodes (OLEDs). X-ray photoelectron spectroscopy and UV-visible spectrometer analysis exhibit that UV-ozone treatment of the Ag nanodots dispersed on the ITO anode leads to formation of Ag{sub 2}O nanodots with high work function and high transparency. Phosphorescent OLEDs fabricated on the Ag{sub 2}O nanodot-dispersed ITO anode showed a lower turn-on voltage and higher luminescence than those of OLEDs prepared with a commercial ITO anode. It was thought that, as Ag nanodots changed to Ag{sub 2}O nanodots by UV-ozone treatment, the decrease of the energy barrier height led to the enhancement of hole injection in the phosphorescent OLEDs.

  16. White organic light-emitting diodes with ultra-thin mixed emitting layer

    NASA Astrophysics Data System (ADS)

    Jeon, T.; Forget, S.; Chenais, S.; Geffroy, B.; Tondelier, D.; Bonnassieux, Y.; Ishow, E.

    2012-02-01

    White light can be obtained from Organic Light Emitting Diodes by mixing three primary colors, (i.e. red, green and blue) or two complementary colors in the emissive layer. In order to improve the efficiency and stability of the devices, a host-guest system is generally used as an emitting layer. However, the color balance to obtain white light is difficult to control and optimize because the spectrum is very sensitive to doping concentration (especially when a small amount of material is used). We use here an ultra-thin mixed emitting layer (UML) deposited by thermal evaporation to fabricate white organic light emitting diodes (WOLEDs) without co-evaporation. The UML was inserted in the hole-transporting layer consisting of 4, 4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (α-NPB) instead of using a conventional doping process. The UML was formed from a single evaporation boat containing a mixture of two dipolar starbust triarylamine molecules (fvin and fcho) presenting very similar structures and thermal properties and emitting in complementary spectral regions (orange and blue respectively) and mixed according to their weight ratio. The composition of the UML specifically allows for fine tuning of the emission color despite its very thin thickness down to 1 nm. Competitive energy transfer processes from fcho and the host interface toward fvin are key parameters to control the relative intensity between red and blue emission. White light with very good CIE 1931 color coordinate (0.34, 0.34) was obtained by simply adjusting the UML film composition.

  17. A randomly nano-structured scattering layer for transparent organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Huh, Jin Woo; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Park, Seung Koo; Hwang, Joohyun; Cho, Nam Sung; Lee, Jonghee; Han, Jun-Han; Chu, Hye Yong; Lee, Jeong-Ik

    2014-08-01

    A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs.A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs. Electronic supplementary information (ESI) available: Simulation results of total (bottom and top) radiance of TOLEDs with the RSL depending on HTL and ETL thicknesses. See DOI: 10.1039/c4nr01520g

  18. Positive and negative innate immune responses in zebrafish under light emitting diodes conditions.

    PubMed

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Li, Wei-Ye; Wu, Chang-Wen

    2016-09-01

    Certain light emitting diodes (LEDs) have become popular in fish farming beacause of a promoting effect on growth and reproduction. However, little information is available on innate immune responses in related tissues under LEDs conditions. The present study assessed the effects of a white fluorescent bulb (the control) and two different light-emitting diodes (LEDs: blue, LDB, peak at 450 nm; red, LDR, 630 nm) on growth and innate immune responses in the serum, liver and ovary of zebrafish for 8 weeks. LDB significantly enhanced specific growth rate (SGR), food intake (FI), and serum globulin levels. In contrast, LDR sharply inhibited SGR, FI, and the levels of albumin and globulin. Under LDB condition, there was an increase in protein levels of alkaline phophatase (AKP) and protein and activity levels of lysozyme (LZM) in the liver, and the levels of mRNA, protein, and activity of LZM in the ovary. Under LDR condition, LZM was dramatically down-regulated at mRNA, protein and activity levels in the ovary, suggesting that LZM was regulated at a transcriptional level. In the liver of the LDR group, though AKP mRNA levels sharply increased, its protein and activity levels significantly declined, indicating that AKP was regulated at translational level. Furthermore, a positive correlation between transcription factor NF-κB RelA mRNA levels and expression levels of AKP and LZM was observed in the liver and ovary, implying a transcriptional regulation of NF-κB RelA. In conclusion, the present study demonstrated a positive effect of LDB and negative effect of LDR on fish growth and innate immune responses, possibly associated with modifications at transcriptional, translational, and post-translational levels, and the transcriptional regulation of the NF-κB signaling molecule. PMID:27452972

  19. Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection.

    PubMed

    Shaw-Stewart, James; Lippert, Thomas; Nagel, Matthias; Nüesch, Frank; Wokaun, Alexander

    2011-02-01

    Laser-induced forward transfer (LIFT) has been used to print 0.6 mm × 0.5 mm polymer light-emitting diode (PLED) pixels with poly[2-methoxy, 5-(2-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) as the light-emitting polymer. The donor substrate used in the LIFT process is covered by a sacrificial triazene polymer (TP) release layer on top of which the aluminium cathode and functional MEH-PPV layers are deposited. To enhance electron injection into the MEH-PPV layer, a thin poly(ethylene oxide) (PEO) layer on the Al cathode or a blend of MEH-PPV and PEO was used. These donor substrates have been transferred onto both plain indium tin oxide (ITO) and bilayer ITO/PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) blend) receiver substrates to create the PLED pixels. For comparison, devices were fabricated in a conventional manner on ITO substrates coated with a PEDOT:PSS hole-transporting layer. Compared to multilayer devices without PEO, devices with ITO/PEDOT:PSS/MEH-PPV:PEO blend/Al architecture show a 100 fold increase of luminous efficiency (LE) reaching a maximum of 0.45 cd/A for the blend at a brightness of 400 cd/m(2). A similar increase is obtained for the polymer light-emitting diode (PLED) pixels deposited by the LIFT process, although the maximum luminous efficiency only reaches 0.05 cd/A for MEH-PPV:PEO blend, which we have attributed to the fact that LIFT transfer was carried out in an ambient atmosphere. For all devices, we confirm a strong increase in device performance and stability when using a PEDOT:PSS film on the ITO anode. For PLEDs produced by LIFT, we show that a 25 nm thick PEDOT:PSS layer on the ITO receiver substrate considerably reduces the laser fluence required for pixel transfer from 250 mJ/cm(2) without the layer to only 80 mJ/cm(2) with the layer. PMID:21261274

  20. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound

    PubMed Central

    Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing

    2014-01-01

    Abstract. Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884

  1. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound.

    PubMed

    Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing

    2014-12-01

    Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884

  2. Operating longevity of organic light-emitting diodes with perylene derivatives as aggregating light-emitting-layer additives: Expansion of the emission zone

    NASA Astrophysics Data System (ADS)

    Jarikov, Viktor V.; Young, Ralph H.; Vargas, J. Ramon; Brown, Christopher T.; Klubek, Kevin P.; Liao, Liang-Sheng

    2006-11-01

    We describe aggregating perylene derivatives as light-emitting-layer (LEL) additives in organic light-emitting diodes (OLEDs). These molecules readily form emissive aggregates when added to the LEL. In the resulting devices, the aggregates show moderate external quantum efficiencies of 0.9%-1.7%, which can be improved to 2.7%-4.0% by further adding a proper dopant. Importantly, addition of these polycyclic aromatic hydrocarbons increases the half-life (t50) of undoped and doped OLEDs by 30-150 times. Thus, 11cd/A green and 5.2cd/A red devices are produced that have pure color, Commission Internationale de l'Eclairage 1931 2° color chromaticity coordinates (CIEx ,y) 0.32, 0.63 and 0.64, 0.36, respectively, and t50 of 30 000 and 200 000h, respectively, upon operation at 40mA/cm2. A possible link between the thickness of the emission zone and the lifetime increase is illustrated by comparing aluminum 8-hydroxyquinoline chelate (Alq3) as an LEL host versus an Alq3+dibenzo[b ,k]perylene mixed host using C545T as an emissive probe. The comparison suggests that the emission zone and probably the electron-hole recombination zone are expanded for the mixed host.

  3. Electronic properties of anthracene derivatives for blue light emitting electroluminescent layers in organic light emitting diodes: a density functional theory study.

    PubMed

    Raghunath, P; Reddy, M Ananth; Gouri, C; Bhanuprakash, K; Rao, V Jayathirtha

    2006-01-26

    Molecular level parameters are investigated computationally to understand the factors that are responsible for the higher efficiency in derivatives of 9,10-bis(1-naphthyl)anthracene (alpha-ADN), 9,10-bis(2-naphthyl)anthracene (beta-ADN), their tetramethyl derivatives (alpha,beta-TMADN) and the t-Bu derivative (beta-TBADN) as blue light emitting electroluminescent (EL) layers in organic light emitting diodes (OLEDs). DFT studies at the B3LYP/6-31G(d,p) level have been carried out on the substituted anthracenes. The absorption spectra are simulated using time dependent DFT methods (TD-DFT) whereas the emission spectra are approximated by optimizing the excited state by HF/CI-Singles and then carrying out the vertical CI calculations by the TD-DFT method. The reorganization energy for estimating the hole and electron transport is calculated. The transfer integrals between parallely stacked molecules in the bulk state are estimated by calculating the electronic splitting. The substituted anthracenes are compared with unsubstituted anthracene and yet untested 9,10-dianthrylanthracene (TANTH). A larger and slower buildup of the electrons and holes in the EL layer, due to the higher reorganization energy and smaller electronic coupling between the adjacent molecules could lead to an increase in hole-electron recombination in the layer and thus increase the efficiency. PMID:16420020

  4. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off

    NASA Astrophysics Data System (ADS)

    Wong, W. S.; Sands, T.; Cheung, N. W.; Kneissl, M.; Bour, D. P.; Mei, P.; Romano, L. T.; Johnson, N. M.

    1999-09-01

    Indium-gallium nitride (InGaN) multiple-quantum-well (MQW) light-emitting diode (LED) membranes, prefabricated on sapphire growth substrates, were created using pulsed-excimer laser processing. The thin-film InGaN MQW LED structures, grown on sapphire substrates, were first bonded onto a Si support substrate with an ethyl cyanoacrylate-based adhesive. A single 600 mJ/cm2, 38 ns KrF (248 nm) excimer laser pulse was directed through the transparent sapphire, followed by a low-temperature heat treatment to remove the substrate. Free-standing InGaN LED membranes were then fabricated by immersing the InGaN LED/adhesive/Si structure in acetone to release the device from the supporting Si substrate. The current-voltage characteristics and room-temperature emission spectrum of the LEDs before and after laser lift-off were unchanged.

  5. Light-Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect.

    PubMed

    Leem, Young-Chul; Park, Jung Su; Kim, Joon Heon; Myoung, NoSoung; Yim, Sang-Youp; Jeong, Sehee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2016-01-13

    Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are demonstrated by combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. This versatile surface structure can efficiently reduce the total internal reflection and add functions, such as superhydrophobicity and high oleophobicity, to achieve an antifouling effect for VLEDs. PMID:26573888

  6. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City

    SciTech Connect

    Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.

    2012-09-30

    A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.

  7. High-Efficiency Blue Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives.

    PubMed

    Lee, Sae Youn; Adachi, Chihaya; Yasuda, Takuma

    2016-06-01

    High-efficiency blue thermally activated delayed fluorescence (TADF) molecules, consisting of phenoxaphosphine oxide and phenoxathiin dioxide as acceptor units and 9,9-dimethylacridan as a donor unit, are reported. Maximum external electroluminescence quantum efficiencies of up to 20.5% are achieved in blue organic light-emitting diodes (OLEDs) by employing these materials as TADF emitters. PMID:27059783

  8. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  9. 77 FR 45377 - Certain Light-Emitting Diodes and Products Containing the Same; Notice of Request for Statements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ...Notice is hereby given that the presiding administrative law judge has issued a Final Initial Determination and a Recommended Determination on Remedy and Bonding in the above-captioned investigation. The Commission is soliciting comments on public interest issues raised by the recommended relief, specifically, a limited exclusion order (``LEO'') against light-emitting diodes (``LEDs'') found......

  10. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing

    PubMed Central

    Choi, Moon Kee; Yang, Jiwoong; Kang, Kwanghun; Kim, Dong Chan; Choi, Changsoon; Park, Chaneui; Kim, Seok Joo; Chae, Sue In; Kim, Tae-Ho; Kim, Ji Hoon; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2015-01-01

    Deformable full-colour light-emitting diodes with ultrafine pixels are essential for wearable electronics, which requires the conformal integration on curvilinear surface as well as retina-like high-definition displays. However, there are remaining challenges in terms of polychromatic configuration, electroluminescence efficiency and/or multidirectional deformability. Here we present ultra-thin, wearable colloidal quantum dot light-emitting diode arrays utilizing the intaglio transfer printing technique, which allows the alignment of red–green–blue pixels with high resolutions up to 2,460 pixels per inch. This technique is readily scalable and adaptable for low-voltage-driven pixelated white quantum dot light-emitting diodes and electronic tattoos, showing the best electroluminescence performance (14,000 cd m−2 at 7 V) among the wearable light-emitting diodes reported up to date. The device performance is stable on flat, curved and convoluted surfaces under mechanical deformations such as bending, crumpling and wrinkling. These deformable device arrays highlight new possibilities for integrating high-definition full-colour displays in wearable electronics. PMID:25971194

  11. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    ERIC Educational Resources Information Center

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  12. A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector

    ERIC Educational Resources Information Center

    Asheim, Jonas; Kvittingen, Eivind V.; Kvittingen, Lise; Verley, Richard

    2014-01-01

    This article describes how to construct a simple, inexpensive, and robust colorimeter from a few Lego bricks, in which one light-emitting diode (LED) is used as a light source and a second LED as a light detector. The colorimeter is suited to various grades and curricula.

  13. Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes.

    PubMed

    Nguyen, Hieu Pham Trung; Cui, Kai; Zhang, Shaofei; Djavid, Mehrdad; Korinek, Andreas; Botton, Gianluigi A; Mi, Zetian

    2012-03-14

    We have investigated for the first time the impact of electron overflow on the performance of nanowire light-emitting diodes (LEDs) operating in the entire visible spectral range, wherein intrinsic white light emission is achieved from self-organized InGaN quantum dots embedded in defect-free GaN nanowires on a single chip. Through detailed temperature-dependent electroluminescence and simulation studies, it is revealed that electron leakage out of the device active region is primarily responsible for efficiency degradation in such nanowire devices, which in conjunction with the presence of nonradiative surface recombination largely determines the unique emission characteristics of nanowire light-emitting diodes. We have further demonstrated that electron overflow in nanowire LEDs can be effectively prevented with the incorporation of a p-doped AlGaN electron blocking layer, leading to the achievement of phosphor-free white light-emitting diodes that can exhibit for the first time virtually zero efficiency droop for injection currents up to ~2200 A/cm(2). This study also provides unambiguous evidence that Auger recombination is not the primary mechanism responsible for efficiency droop in GaN-based nanowire light-emitting diodes. PMID:22283508

  14. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing.

    PubMed

    Choi, Moon Kee; Yang, Jiwoong; Kang, Kwanghun; Kim, Dong Chan; Choi, Changsoon; Park, Chaneui; Kim, Seok Joo; Chae, Sue In; Kim, Tae-Ho; Kim, Ji Hoon; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2015-01-01

    Deformable full-colour light-emitting diodes with ultrafine pixels are essential for wearable electronics, which requires the conformal integration on curvilinear surface as well as retina-like high-definition displays. However, there are remaining challenges in terms of polychromatic configuration, electroluminescence efficiency and/or multidirectional deformability. Here we present ultra-thin, wearable colloidal quantum dot light-emitting diode arrays utilizing the intaglio transfer printing technique, which allows the alignment of red-green-blue pixels with high resolutions up to 2,460 pixels per inch. This technique is readily scalable and adaptable for low-voltage-driven pixelated white quantum dot light-emitting diodes and electronic tattoos, showing the best electroluminescence performance (14,000 cd m(-2) at 7 V) among the wearable light-emitting diodes reported up to date. The device performance is stable on flat, curved and convoluted surfaces under mechanical deformations such as bending, crumpling and wrinkling. These deformable device arrays highlight new possibilities for integrating high-definition full-colour displays in wearable electronics. PMID:25971194

  15. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing

    NASA Astrophysics Data System (ADS)

    Choi, Moon Kee; Yang, Jiwoong; Kang, Kwanghun; Kim, Dong Chan; Choi, Changsoon; Park, Chaneui; Kim, Seok Joo; Chae, Sue In; Kim, Tae-Ho; Kim, Ji Hoon; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2015-05-01

    Deformable full-colour light-emitting diodes with ultrafine pixels are essential for wearable electronics, which requires the conformal integration on curvilinear surface as well as retina-like high-definition displays. However, there are remaining challenges in terms of polychromatic configuration, electroluminescence efficiency and/or multidirectional deformability. Here we present ultra-thin, wearable colloidal quantum dot light-emitting diode arrays utilizing the intaglio transfer printing technique, which allows the alignment of red-green-blue pixels with high resolutions up to 2,460 pixels per inch. This technique is readily scalable and adaptable for low-voltage-driven pixelated white quantum dot light-emitting diodes and electronic tattoos, showing the best electroluminescence performance (14,000 cd m-2 at 7 V) among the wearable light-emitting diodes reported up to date. The device performance is stable on flat, curved and convoluted surfaces under mechanical deformations such as bending, crumpling and wrinkling. These deformable device arrays highlight new possibilities for integrating high-definition full-colour displays in wearable electronics.

  16. Zinc complexes exhibiting highly efficient thermally activated delayed fluorescence and their application to organic light-emitting diodes.

    PubMed

    Sakai, Yumi; Sagara, Yuta; Nomura, Hiroko; Nakamura, Nozomi; Suzuki, Yoshitake; Miyazaki, Hiroshi; Adachi, Chihaya

    2015-02-21

    Metal complexes emitting thermally activated delayed fluorescence based on intra-ligand charge transfer and enhanced by metallization were synthesized. Organic light-emitting diodes using a thermally stable zinc complex processed by vacuum vapor deposition achieved an external quantum efficiency of nearly 20%. PMID:25605520

  17. Organic Light-Emitting Diodes and Silicon Receivers for Monolithic Silicon Opto-Electronic Circuits.

    NASA Astrophysics Data System (ADS)

    Kim, Helen Haeran

    Power dissipation in electrical connections is an obstacle to achieving higher system performance; optical connections may be a solution. Our calculations highlight those situations where optical connections would be advantageous, compared to the electrical connections, based on the calculation of energy required to implement these connections. Based on today's technology, which unfortunately have a significant conversion loss between electronics and optics, optical connections have this advantage only over distances longer than {~}10 cm. Thus, optical connection may have near to middle term advantages for inter-chip connection. A highly desirable feature is to monolithically integrate opto-electronic components with chips in order to reduce both cost and energy dissipation. Because the overwhelming majority of very large scale integrated circuits are based on silicon (Si) technology, the transmitter and receiver should be process-compatible with Si technology. Unfortunately, Si is not an efficient light emitter. Because of their simple and ultimately inexpensive, Si-compatible processing, we selected semiconducting organic materials as light emitting materials. Based on our monolithically integrated Si receiver, we estimated the requirements of organic light emitting diodes (LEDs) for their efficiency and speed. Having learned the material properties of the organic materials and their device characteristics, we applied the organic LEDs on Si and enhanced the efficiency by using a silicon dioxide intermediate layer. This is the first report of organic LEDs fabricated on Si. In addition, the process is compatible with Si ICs. Although a large improvement has been made to achieve a higher LED efficiency, the speed of the organic LEDs is only in the MHz range. Much effort is needed to increase the mobility of these materials for their use in optical interconnects.

  18. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  19. Absorbance detector based on a deep UV light emitting diode for narrow-column HPLC.

    PubMed

    Bui, Duy Anh; Bomastyk, Benjamin; Hauser, Peter C

    2013-10-01

    A detector for miniaturized HPLC based on deep UV emitting diodes and UV photodiodes was constructed. The measurement is accomplished by the transverse passage of the radiation from the light-emitting diode (LED) through fused-silica tubing with an internal diameter of 250 μm. The optical cell allows flexible alignment of the LED, tubing, and photodiode for optimization of the light throughput and has an aperture to block stray light. A beam splitter was employed to direct part of the emitted light to a reference photodiode and the Lambert-Beer law was emulated with a log-ratio amplifier circuitry. The detector was tested with two LEDs with emission bands at 280 and 255 nm and showed noise levels as low as 0.25 and 0.22 mAU, respectively. The photometric device was employed successfully in separations using a column of 1 mm inner diameter in isocratic as well as gradient elution. Good linearities over three orders of magnitude in concentration were achieved, and the precision of the measurements was better than 1% in all cases. Detection down to the low micromolar range was possible. PMID:23893947

  20. Monolithically Integrated Metal/Semiconductor Tunnel Junction Nanowire Light-Emitting Diodes.

    PubMed

    Sadaf, S M; Ra, Y H; Szkopek, T; Mi, Z

    2016-02-10

    We have demonstrated for the first time an n(++)-GaN/Al/p(++)-GaN backward diode, wherein an epitaxial Al layer serves as the tunnel junction. The resulting p-contact free InGaN/GaN nanowire light-emitting diodes (LEDs) exhibited a low turn-on voltage (∼2.9 V), reduced resistance, and enhanced power, compared to nanowire LEDs without the use of Al tunnel junction or with the incorporation of an n(++)-GaN/p(++)-GaN tunnel junction. This unique Al tunnel junction overcomes some of the critical issues related to conventional GaN-based tunnel junction designs, including stress relaxation, wide depletion region, and light absorption, and holds tremendous promise for realizing low-resistivity, high-brightness III-nitride nanowire LEDs in the visible and deep ultraviolet spectral range. Moreover, the demonstration of monolithic integration of metal and semiconductor nanowire heterojunctions provides a seamless platform for realizing a broad range of multifunctional nanoscale electronic and photonic devices. PMID:26812264

  1. GaN-based light-emitting diodes suitable for white light

    NASA Astrophysics Data System (ADS)

    Mukai, Takashi; Yamada, Motokazu; Mitani, Tomotsugu; Narukawa, Yukio; Shioji, Shuji; Niki, Isamu; Sonobe, Shin-ya; Izuno, Kunihiro; Suenaga, Ryoma

    2003-07-01

    High-efficient light emitting diodes (LEDs) emitting red, amber, green, blue and ultraviolet light have been obtained through the use of an InGaN active layers. The localized energy states caused by In composition fluctuation in the InGaN active layer seem to be related to the high efficiency of the InGaN-based emitting devices in spite of having a large number of threading dislocations (TDs). InGaN single-quantum-well-structure blue LEDs were grown on epitaxially laterally overgrown GaN (ELOG) and sapphire substrates. The characteristics of both LEDs was almost same. These results indicate that the dislocation doesn't affect the efficiency practically. Recently, the development of high-power light source using GaN-based LEDs has become active. In such high-power LEDs, the density of forward current is much higher than that of past LEDs. Therefore, an advantage of carrier localization in InGaN active layer becomes small, because of band filling under high injection level. This means that reducing the density of TDs becomes important, just like GaN-based laser diodes. Also, we show recent results of GaN-based LEDs.

  2. Cathodes incorporating thin fluoride layers for efficient injection in blue polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Brown, Thomas M.; Millard, Ian S.; Lacey, David; Burroughes, Jeremy H.; Friend, Richard H.; Cacialli, Franco

    2002-02-01

    Efficient blue Polymer Light-Emitting Diodes (PLEDs) were fabricated by evaporating thin LiF layers between Al or Ca cathodes. Electroabsorption measurements of the built-in potential across the diodes show that devices fabricated with LiF/Ca/Al cathodes exhibit the smallest average barrier height and operating voltage (compared to both Ca and LiF/Al currently amongst the most efficient electron injectors). The turn-on bias is essentially equivalent to the built-in potential (~2.7 V), indicating an effective minimisation of the barrier to electron injection. Results are also compared with devices incorporating CsF layers and are correlated with the electroluminescent characteristics of the LEDs. A very strong dependence (~ exponential) between the built-in potential and the current and luminance at a fixed electric field (0.5MV/cm) is observed and is explained with the reduction of the cathodic barrier height brought about by the different cathode multilayers.

  3. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics

    PubMed Central

    Allen, Thomas J.; Beard, Paul C.

    2016-01-01

    The use of visible light emitting diodes (LEDs) as an alternative to Q-switched lasers conventionally used as photoacoustic excitation sources has been explored. In common with laser diodes, LEDs offer the advantages of compact size, low cost and high efficiency. However, laser diodes suitable for pulsed photoacoustic generation are typically available only at wavelengths greater than 750nm. By contrast, LEDs are readily available at visible wavelengths below 650nm where haemoglobin absorption is significantly higher, offering the prospect of increased SNR for superficial vascular imaging applications. To demonstrate feasibility, a range of low cost commercially available LEDs operating in the 420-620nm spectral range were used to generate photoacoustic signals in physiologically realistic vascular phantoms. Overdriving with 200ns pulses and operating at a low duty cycle enabled pulse energies up to 10µJ to be obtained with a 620nm LED. By operating at a high pulse repetition frequency (PRF) in order to rapidly signal average over many acquisitions, this pulse energy was sufficient to generate detectable signals in a blood filled tube immersed in an Intralipid suspension (µs’ = 1mm−1) at a depth of 15mm using widefield illumination. In addition, a compact four-wavelength LED (460nm, 530nm, 590nm, 620nm) in conjunction with a coded excitation scheme was used to illustrate rapid multiwavelength signal acquisition for spectroscopic applications. This study demonstrates that LEDs could find application as inexpensive and compact multiwavelength photoacoustic excitation sources for imaging superficial vascular anatomy. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. PMID:27446652

  4. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics.

    PubMed

    Allen, Thomas J; Beard, Paul C

    2016-04-01

    The use of visible light emitting diodes (LEDs) as an alternative to Q-switched lasers conventionally used as photoacoustic excitation sources has been explored. In common with laser diodes, LEDs offer the advantages of compact size, low cost and high efficiency. However, laser diodes suitable for pulsed photoacoustic generation are typically available only at wavelengths greater than 750nm. By contrast, LEDs are readily available at visible wavelengths below 650nm where haemoglobin absorption is significantly higher, offering the prospect of increased SNR for superficial vascular imaging applications. To demonstrate feasibility, a range of low cost commercially available LEDs operating in the 420-620nm spectral range were used to generate photoacoustic signals in physiologically realistic vascular phantoms. Overdriving with 200ns pulses and operating at a low duty cycle enabled pulse energies up to 10µJ to be obtained with a 620nm LED. By operating at a high pulse repetition frequency (PRF) in order to rapidly signal average over many acquisitions, this pulse energy was sufficient to generate detectable signals in a blood filled tube immersed in an Intralipid suspension (µs' = 1mm(-1)) at a depth of 15mm using widefield illumination. In addition, a compact four-wavelength LED (460nm, 530nm, 590nm, 620nm) in conjunction with a coded excitation scheme was used to illustrate rapid multiwavelength signal acquisition for spectroscopic applications. This study demonstrates that LEDs could find application as inexpensive and compact multiwavelength photoacoustic excitation sources for imaging superficial vascular anatomy. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. PMID:27446652

  5. Increased light extraction and directional emission control in gallium nitride photonic crystal light emitting diodes

    NASA Astrophysics Data System (ADS)

    McGroddy, Kelly C.

    GaN has become the prominent material for blue-green light emitting diodes (LEDs) and efficient white light sources. Advancements in LED efficiency for lighting has the potential to dramatically impact energy consumption world wide. A limiting factor to achieving high efficiencies in GaN LEDs is the light extraction efficiency. This work addresses many key issues pertaining to the use of PhCs to increase the extraction efficiency and emission directionality of GaN LEDs. Limitations in extraction efficiency of GaN photonic crystal light emitting diodes (LEDs) are addressed by implementing an LED design using both 2D photonic crystals (PhCs) in-plane and index guiding layers (IGLs) in the vertical direction. The effects of PhCs on light extraction and emission directionality from GaN LEDs are studied experimentally. Angular resolved electroluminescence clearly shows the combined effect of controlling the vertical mode profile with the IGLs and tailoring the emission profile with the periodicity of the PhC lattice. Various materials are used to increase the index contrast of the IGL and the effects are measured. Increases in vertical emission as high as 3.5x are achieved for PhC LEDs with an Al0.12Ga0.88N IGL over non-PhC LEDs with a ˜30% improvement attributed to the incorporation of the AlGaN IGL. This enhancement is achieved by tailoring both the directionality and guided mode control. The impact of incorporating PhCs and IGLs on LED device design and performance are addressed. Effects of etching the PhCs near the QWs have been observed and explanations for this behavior will be discussed. It will be shown that an un-doped IGL can severely limit current spreading in the n-type side of the device and have a detrimental impact on device performance. Finally, a method of patterning PhCs with periodicities as small as 230nm by laser interference lithography and imprint lithography has been developed to provide a fast, inexpensive method of pattering PhCs over large

  6. Improvements to III-nitride light-emitting diodes through characterization and material growth

    NASA Astrophysics Data System (ADS)

    Getty, Amorette Rose Klug

    A variety of experiments were conducted to improve or aid the improvement of the efficiency of III-nitride light-emitting diodes (LEDs), which are a critical area of research for multiple applications, including high-efficiency solid state lighting. To enhance the light extraction in ultraviolet LEDs grown on SiC substrates, a distributed Bragg reflector (DBR) optimized for operation in the range from 250 to 280 nm has been developed using MBE growth techniques. The best devices had a peak reflectivity of 80% with 19.5 periods, which is acceptable for the intended application. DBR surfaces were sufficiently smooth for subsequent epitaxy of the LED device. During the course of this work, pros and cons of AlGaN growth techniques, including analog versus digital alloying, were examined. This work highlighted a need for more accurate values of the refractive index of high-Al-content AlxGa1-xNin the UV wavelength range. We present refractive index results for a wide variety of materials pertinent to the fabrication of optical III-nitride devices. Characterization was done using Variable-Angle Spectroscopic Ellipsometry. The three binary nitrides, and all three ternaries, have been characterized to a greater or lesser extent depending on material compositions available. Semi-transparent p-contact materials and other thin metals for reflecting contacts have been examined to allow optimization of deposition conditions and to allow highly accurate modeling of the behavior of light within these devices. Standard substrate materials have also been characterized for completeness and as an indicator of the accuracy of our modeling technique. We have demonstrated a new technique for estimating the internal quantum efficiency (IQE) of nitride light-emitting diodes. This method is advantageous over the standard low-temperature photoluminescence-based method of estimating IQE, as the new method is conducted under the same conditions as normal device operation. We have developed

  7. Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes

    NASA Astrophysics Data System (ADS)

    Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Butler, T.; Burroughes, J. H.; Cacialli, F.

    2003-05-01

    The electronic nature of metal-semiconductor contacts is a fundamental issue in the understanding of semiconductor device physics, because such contacts control charge injection, and therefore play a major role in determining the electron/hole population in the semiconductor itself. This role is particularly important for organic semiconductors as they are generally used in their pristine, undoped form. Here, we review our progress in the understanding of the energy level line-up in finished, blue-emitting, polyfluorene-based light-emitting diodes, which exploit LiF and CsF thin films in combination with Ca and Al to obtain cathodes with low injection barriers. We have used electroabsorption measurements, as they allow the noninvasive determination of the built-in potential when changing the cathode. This provides precious experimental information on the alteration of the polymer/cathode interfacial energy level line-up. The latter is found to depend strongly on the electrode work function. Thus, the Schottky-Mott model for the energy level alignment is found to be a better first-order approximation than those models where strong pinning or large interface dipoles determine the alignment (e.g., Bardeen model), except for electrodes that extensively react with the polymer, and introduce deep gap states. In addition, we show results that validate the approximation of rigid tilting of polymer energy levels with bias (for biases for which no significant injection of carriers occurs). To investigate further the consequences of the electronic line-up on device operation, we complemented the electroabsorption measurements with characterization of the emissive and transport properties of the light-emitting diodes, and confirmed that the cathodic barrier lowering in CsF/Ca/Al and LiF/Ca/Al electrodes leads to the best improvements in electron injection. We found that luminance and overall current are greatly affected by the barrier-reducing cathodes, indicating a truly

  8. Color tuning of light-emitting-diodes by modulating the concentration of red-emitting silicon nanocrystal phosphors

    SciTech Connect

    Barillaro, G. Strambini, L. M.

    2014-03-03

    Luminescent forms of nanostructured silicon have received significant attention in the context of quantum-confined light-emitting devices thanks to size-tunable emission wavelength and high-intensity photoluminescence, as well as natural abundance, low cost, and non-toxicity. Here, we show that red-emitting silicon nanocrystal (SiN) phosphors, obtained by electrochemical erosion of silicon, allow for effectively tuning the color of commercial light-emitting-diodes (LEDs) from blue to violet, magenta, and red, by coating the LED with polydimethylsiloxane encapsulating different SiN concentrations. High reliability of the tuning process, with respect to SiN fabrication and concentration, and excellent stability of the tuning color, with respect to LED bias current, is demonstrated through simultaneous electrical/optical characterization of SiN-modified commercial LEDs, thus envisaging exciting perspectives for silicon nanocrystals in the field of light-emitting applications.

  9. Fabrication and Characterization of New Hybrid Organic Light Emitting Diode (OLED): Europium-picrate-triethylene oxide Complex

    SciTech Connect

    Sarjidan, M. A. Mohd; Abu Zakaria, N. Z. A.; Abd. Majid, W. H.; Kusrini, Eny; Saleh, M. I.

    2009-07-07

    Thin-film light emitting devices based on organic materials have attracted vast interest in applications such as light emitting diode (LED) and flat-panel display. The organic material can be attached with inorganic material to enhance the performance of the light emitting device. A hybrid OLED based on a new complex of europium picrate (Eu-pic) with triethylene oxide (EO3) ligand is fabricated. The OLED is fabricated by using spin coating technique with acetone as the solvent and aluminum as the top electrode. The optical, photoluminescence (PL) and electrical properties of the sample are carried out by UV-Vis spectroscopy (Jasco V-750), luminescence spectroscopy (Perkin Elmer LS-500) and source measure unit (SMU)(Keithly), respectively.

  10. Effect of Hole Mobility Through Emissive Layer on Temporal Stability of Blue Organic Light-Emitting Diodes

    SciTech Connect

    Culligan, S.W.; Chen, A.C.-A.; Wallace, J.U.; Klubek, K.P.; Tang, C.W.; Chen, S.H.

    2006-07-13

    Light-emitting conjugated oligomers comprising anthracene, naphthalene, and fluorene units have been synthesized to investigate three configurations of blue organic light-emitting diodes (OLEDs) that are designed to identify the origins of device instablilty. The transient OLED technique is employed to measure hole mobilities, which are found to be 3.1 x 10^-4, 8.9 x 10^-5, and 3.6 x 10^-5 cm^2V^-1s^-1 for three different blue-light-emitting model compounds with varying fluorene content. A higher hole mobility through the emissive layer results in a wider recombination zone, which, in turn, is responsible for a longer device lifetime and a lower drive voltage at the expense of luminance yield.

  11. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  12. Color-Pure Violet-Light-Emitting Diodes Based on Layered Lead Halide Perovskite Nanoplates.

    PubMed

    Liang, Dong; Peng, Yuelin; Fu, Yongping; Shearer, Melinda J; Zhang, Jingjing; Zhai, Jianyuan; Zhang, Yi; Hamers, Robert J; Andrew, Trisha L; Jin, Song

    2016-07-26

    Violet electroluminescence is rare in both inorganic and organic light-emitting diodes (LEDs). Low-cost and room-temperature solution-processed lead halide perovskites with high-efficiency and color-tunable photoluminescence are promising for LEDs. Here, we report room-temperature color-pure violet LEDs based on a two-dimensional lead halide perovskite material, namely, 2-phenylethylammonium (C6H5CH2CH2NH3(+), PEA) lead bromide [(PEA)2PbBr4]. The natural quantum confinement of two-dimensional layered perovskite (PEA)2PbBr4 allows for photoluminescence of shorter wavelength (410 nm) than its three-dimensional counterpart. By converting as-deposited polycrystalline thin films to micrometer-sized (PEA)2PbBr4 nanoplates using solvent vapor annealing, we successfully integrated this layered perovskite material into LEDs and achieved efficient room-temperature violet electroluminescence at 410 nm with a narrow bandwidth. This conversion to nanoplates significantly enhanced the crystallinity and photophysical properties of the (PEA)2PbBr4 samples and the external quantum efficiency of the violet LED. The solvent vapor annealing method reported herein can be generally applied to other perovskite materials to increase their grain size and, ultimately, improve the performance of optoelectronic devices based on perovskite materials. PMID:27336850

  13. Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging.

    PubMed

    Pan, Caofeng; Chen, Mengxiao; Yu, Ruomeng; Yang, Qing; Hu, Youfan; Zhang, Yan; Wang, Zhong Lin

    2016-02-01

    Wurtzite materials exhibit both semiconductor and piezoelectric properties under strains due to the non-central symmetric crystal structures. The three-way coupling of semiconductor properties, piezoelectric polarization and optical excitation in ZnO, GaN, CdS and other piezoelectric semiconductors leads to the emerging field of piezo-phototronics. This effect can efficiently manipulate the emission intensity of light-emitting diodes (LEDs) by utilizing the piezo-polarization charges created at the junction upon straining to modulate the energy band diagrams and the optoelectronic processes, such as generation, separation, recombination and/or transport of charge carriers. Starting from fundamental physics principles, recent progress in piezo-phototronic-effect-enhanced LEDs is reviewed; following their development from single-nanowire pressure-sensitive devices to high-resolution array matrices for pressure-distribution mapping applications. The piezo-phototronic effect provides a promising method to enhance the light emission of LEDs based on piezoelectric semiconductors through applying static strains, and may find perspective applications in various optoelectronic devices and integrated systems. PMID:26676842

  14. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction

    SciTech Connect

    Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

    2011-06-06

    Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

  15. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, Nosoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  16. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes.

    PubMed

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, NoSoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-01-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. PMID:26067060

  17. Exploring the Potential of Nucleic Acid Bases in Organic Light Emitting Diodes.

    PubMed

    Gomez, Eliot F; Venkatraman, Vishak; Grote, James G; Steckl, Andrew J

    2015-12-01

    Naturally occurring biomolecules have increasingly found applications in organic electronics as a low cost, performance-enhancing, environmentally safe alternative. Previous devices, which incorporated DNA in organic light emitting diodes (OLEDs), resulted in significant improvements in performance. In this work, nucleobases (NBs), constituents of DNA and RNA polymers, are investigated for integration into OLEDs. NB small molecules form excellent thin films by low-temperature evaporation, enabling seamless integration into vacuum deposited OLED fabrication. Thin film properties of adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U) are investigated. Next, their incorporation as electron-blocking (EBL) and hole-blocking layers (HBL) in phosphorescent OLEDs is explored. NBs affect OLED performance through charge transport control, following their electron affinity trend: G < A < C < T < U. G and A have lower electron affinity (1.8-2.2 eV), blocking electrons but allowing hole transport. C, T, and U have higher electron affinities (2.6-3.0 eV), transporting electrons and blocking hole transport. A-EBL-based OLEDs achieve current and external quantum efficiencies of 52 cd A(-1) and 14.3%, a ca. 50% performance increase over the baseline device with conventional EBL. The combination of enhanced performance, wide diversity of material properties, simplicity of use, and reduced cost indicate the promise of nucleobases for future OLED development. PMID:25503083

  18. Printed microscale inorganic light emitting diodes on flexible substrates for display, biomedical, and robotic applications

    NASA Astrophysics Data System (ADS)

    Kim, Rak Hwan

    Flexible electronics can offer various advantages such as intimate, conformal contacts to curvilinear surfaces and a high level of tolerance to an external strain over the conventional devices integrated on rigid platforms. With suitable choices of materials, design, and integrating strategies, inorganic semiconductor materials can be utilized as active components, integrated with flexible platforms. The deterministic transfer printing technique can generate this outcome where the single-crystalline semiconductor active components retain its original properties, thereby offering flexible electronic system with higher performance compared to organic materials based counterparts. In this dissertation, inorganic III-IV materials were explored to realize the high performance inorganic light emitting diodes (LEDs) on flexible substrate, ranging from bendable, to foldable, and to stretchable formats. In particular, advanced methods in materials growth, processing, mechanics, thermal design, and system manufacturing combine to enable unusual modes of use for inorganic LEDs. Using the type of LED systems, various applications for bio medicine and robotics such as photo-activation of drugs, in situ spectroscopy, or even optical ablation are possible, in minimally invasive modes. Overall, the outcomes have the potential to lead to applications that can complement new emerging areas as well as those already well addressed by conventional forms of inorganic LEDs or organic LEDs.

  19. Waveguide-integrated microdisk light-emitting diode and photodetector based on Ge quantum dots.

    PubMed

    Xu, Xuejun; Maruizumi, Takuya; Shiraki, Yasuhiro

    2014-02-24

    Microdisk integrated with a bus waveguide is fabricated on silicon-on-insulator substrate containing Ge self-assembled quantum dots as active medium. The device is demonstrated to be operated as both light-emitting diode and photodetector. At forward bias, carriers are injected into the microdisk and light emission at 1.45-1.6 μm is extracted through the waveguide via microdisk-waveguide coupling. Sharp resonant peaks with Q-factor as high as 1350 are obtained in the electroluminescence spectra, corresponding to whispering gallery modes of the microdisk. At reverse bias, the device functions as a resonant cavity enhanced photodetector with wavelength-selective photo-response. The photo-current at resonant wavelength of 1533.65 nm is 50 times larger than that at non-resonant wavelength. The dark current density of the photodetector is as low as 0.29 mA/cm2 up to -10 V bias and the peak responsivity is 5.645 mA/W. PMID:24663710

  20. Simulations of emission from microcavity tandem organic light-emitting diodes

    SciTech Connect

    Biswas, Rana; Xu, Chun; Zhao, Weijun; Liu, Rui; Shinar, Ruth; Shinar, Joseph

    2011-01-01

    Microcavity tandem organic light-emitting diodes (OLEDs) are simulated and compared to experimental results. The simulations are based on two complementary techniques: rigorous finite element solutions of Maxwell's equations and Fourier space scattering matrix solutions. A narrowing and blue shift of the emission spectrum relative to the noncavity single unit OLED is obtained both theoretically and experimentally. In the simulations, a distribution of emitting sources is placed near the interface of the electron transport layer tris(8-hydroxyquinoline) Al (Alq{sub 3}) and the hole transport layer (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine) ({alpha}-NPB). Far-field electric field intensities are simulated. The simulated widths of the emission peaks also agree with the experimental results. The simulations of the 2-unit tandem OLEDs shifted the emission to shorter wavelength, in agreement with experimental measurements. The emission spectra's dependence on individual layer thicknesses also agreed well with measurements. Approaches to simulate and improve the light emission intensity from these OLEDs, in particular for white OLEDs, are discussed.