Science.gov

Sample records for lignified wood cell

  1. Lignification in poplar tension wood lignified cell wall layers.

    PubMed

    Yoshinaga, Arata; Kusumoto, Hiroshi; Laurans, Françoise; Pilate, Gilles; Takabe, Keiji

    2012-09-01

    The lignification process in poplar tension wood lignified cell wall layers, specifically the S(1) and S(2) layers and the compound middle lamella (CML), was analysed using ultraviolet (UV) and transmission electron microscopy (TEM). Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the lignified cell wall layers had completed their lignification before the deposition of G-layers, or, on the contrary, if lignification of these layers was still active during G-layer formation. Observations using UV microscopy and TEM indicated that both UV absorbance and the degree of potassium permanganate staining increased in the CML and S(1) and S(2) layers during G-layer formation, suggesting that the lignification of these lignified layers is still in progress during G-layer formation. In the context of the cell-autonomous monolignol synthesis hypothesis, our observations suggest that monolignols must go through the developing G-layer during the lignification of CML and the S(1) and S(2) layers. The alternative hypothesis of external synthesis (in the rays) does not require that monolignols go through the G-layer before being deposited in the CML, or the S(1) and S(2) layers. Interestingly, the previous observation of lignin in the poplar G-layer was not confirmed with the microscopy techniques used in the present study. PMID:22933655

  2. Nitrogen metabolism in Lignifying Pinus taeda cell cultures

    NASA Technical Reports Server (NTRS)

    van Heerden, P. S.; Towers, G. H.; Lewis, N. G.

    1996-01-01

    The primary metabolic fate of phyenylalanine, following its deamination in plants, is conscription of its carbon skeleton for lignin, suberin, flavonoid, and related metabolite formation. Since this accounts for approximately 30-40% of all organic carbon, an effective means of recycling the liberated ammonium ion must be operative. In order to establish how this occurs, the uptake and metabolism of various 15N-labeled precursors (15N-Phe, 15NH4Cl, 15N-Gln, and 15N-Glu) in lignifying Pinus taeda cell cultures was investigated, using a combination of high performance liquid chromatography, 15N NMR, and gas chromatograph-mass spectrometry analyses. It was found that the ammonium ion released during active phenylpropanoid metabolism was not made available for general amino acid/protein synthesis. Rather it was rapidly recycled back to regenerate phenylalanine, thereby providing an effective means of maintaining active phenylpropanoid metabolism with no additional nitrogen requirement. These results strongly suggest that, in lignifying cells, ammonium ion reassimilation is tightly compartmentalized.

  3. Attack on Lignified Grass Cell Walls by a Facultatively Anaerobic Bacterium

    PubMed Central

    Akin, Danny E.

    1980-01-01

    A filamentous, facultatively anaerobic microorganism that attacked lignified tissue in forage grasses was isolated from rumen fluid with a Bermuda grass-containing anaerobic medium in roll tubes. The microbe, designated 7-1, demonstrated various colony and cellular morphologies under different growth conditions. Scanning electron microscopy revealed that 7-1 attacked lignified cell walls in aerobic and anaerobic culture. 7-1 predominately degraded tissues reacting positively for lignin with the chlorine-sulfite stain (i.e., sclerenchyma in leaf blades and parenchyma in stems) rather than the more resistant acid phloroglucinol-positive tissues (i.e., lignified vascular tissue and sclerenchyma ring in stems), although the latter tissues were occasionally attacked. Turbidimetric tests showed that 7-1 in anaerobic culture grew optimally at 39°C at a pH of 7.4 to 8.0. Tests for growth on plant cell wall carbohydrates showed that 7-1 grew on xylan and pectin slowly in aerobic cultures but not with pectin and only slightly with xylan in anaerobic culture. 7-1 was noncellulolytic as shown by filter paper tests. The microbe used the phenolic acids sinapic, ferulic, and p-coumaric acids as substrates for growth; the more highly methoxylated acids were used more effectively. Images PMID:16345651

  4. Compressive/Tensile Stresses and Lignified Cells as Resistance Components in Joints between Cladodes of Opuntia laevis (Cactaceae).

    PubMed

    Kahn-Jetter; Evans; Grzan; Frenz

    2000-05-01

    The Cactaceae are a diverse group of plants with a wide variety of morphologies. Many species of Opuntia have segmented stems in which terminal cladodes may be separated from main-stem cladodes with varying amounts of resistance. From a geometric approach, derivations were used to calculate normal (axial and bending) and shear (transverse force and torque) stresses at joints due to the weight of the cladodes. Normal and shear stresses act perpendicular and parallel to (along) the cross sections of joints, respectively. Normal stress caused by bending was >10 times that of the mean value of any other stress. Analyses were performed to determine the relationship between maximum normal stress and the amount of lignified xylem cells. Such cells had thicker cell walls compared with the various other cells of stem joints that had thin cell walls and that thus would provide the most resistance to normal stresses. An analogy was made between cactus joints and a composite beam with reinforcing rods. In such joints, thin-walled parenchyma cells might be analogous to concrete that has little resistance to tensile stress, while the thick-walled, lignified xylem cells would be analogous to reinforcing rods. There were statistically significant relationships between normal stresses (from bending and axial loads) and mean percentage of lignified xylem cells (r=0.73) and between normal stresses and total areas of lignified xylem cells (r=0.65) (more stress, more reinforcing xylem cells). Tensile portions of cactus joints had 23% lignified xylem cells, while compressive portions had only 10% lignified xylem cells in joint areas (more tension, more reinforcing xylem cells). In addition, tensile joint tissues had two to three times more thick-walled, lignified xylem cells in the outer 30% of the radius compared with other joint tissues types (more reinforcing near the surface). To our knowledge, this is the first publication to present mechanical stresses at stem joints of cacti and

  5. Safranine fluorescent staining of wood cell walls.

    PubMed

    Bond, J; Donaldson, L; Hill, S; Hitchcock, K

    2008-06-01

    Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy. PMID:18802812

  6. Non-lignified helical cell wall thickenings in root cortical cells of Aspleniaceae (Polypodiales): histology and taxonomical significance

    PubMed Central

    Leroux, O.; Bagniewska-Zadworna, A.; Rambe, S. K.; Knox, J. P.; Marcus, S. E.; Bellefroid, E.; Stubbe, D.; Chabbert, B.; Habrant, A.; Claeys, M.; Viane, R. L. L.

    2011-01-01

    Background and Aims Extraxylary helical cell wall thickenings in vascular plants are not well documented, except for those in orchid velamen tissues which have been studied extensively. Reports on their occurrence in ferns exist, but detailed information is missing. The aim of this study is to focus on the broad patterns of structure and composition and to study the taxonomic occurrence of helical cell wall thickenings in the fern family Aspleniaceae. Methods Structural and compositional aspects of roots have been examined by means of light, electron, epifluorescence and laser scanning confocal microscopy. To assess the taxonomical distribution of helical cell wall thickenings a molecular phylogenetic analysis based on rbcL sequences of 64 taxa was performed. Key Results The helical cell wall thickenings of all examined species showed considerable uniformity of design. The pattern consists of helical, regularly bifurcating and anastomosing strands. Compositionally, the cell wall thickenings were found to be rich in homogalacturonan, cellulose, mannan and xyloglucan. Thioacidolysis confirmed our negative phloroglucinol staining tests, demonstrating the absence of lignins in the root cortex. All taxa with helical cell wall thickenings formed a monophyletic group supported by a 100 % bootstrap value and composed of mainly epiphytic species. Conclusions This is the first report of non-lignified pectin-rich secondary cell walls in ferns. Based on our molecular analysis, we reject the hypothesis of parallel evolution of helical cell wall thickenings in Aspleniaceae. Helical cell wall thickenings can mechanically stabilize the cortex tissue, allowing maximal uptake of water and nutrients during rainfall events. In addition, it can also act as a boundary layer increasing the diffusive pathway towards the atmosphere, preventing desiccation of the stele of epiphytic growing species. PMID:21118842

  7. Differential Expression of Two Distinct Phenylalanine Ammonia-Lyase Genes in Condensed Tannin-Accumulating and Lignifying Cells of Quaking Aspen

    PubMed Central

    Kao, Yu-Ying; Harding, Scott A.; Tsai, Chung-Jui

    2002-01-01

    Lignins, along with condensed tannins (CTs) and salicylate-derived phenolic glycosides, constitute potentially large phenylpropanoid carbon sinks in tissues of quaking aspen (Populus tremuloides Michx.). Metabolic commitment to each of these sinks varies during development and adaptation, and depends on l-phenylalanine ammonia-lyase (PAL), an enzyme catalyzing the deamination of l-phenylalanine to initiate phenylpropanoid metabolism. In Populus spp., PAL is encoded by multiple genes whose expression has been associated with lignification in primary and secondary tissues. We now report cloning two differentially expressed PAL cDNAs that exhibit distinct spatial associations with CT and lignin biosynthesis in developing shoot and root tissues of aspen. PtPAL1 was expressed in certain CT-accumulating, non-lignifying cells of stems, leaves, and roots, and the pattern of PtPAL1 expression varied coordinately with that of CT accumulation along the primary to secondary growth transition in stems. PtPAL2 was expressed in heavily lignified structural cells of shoots, but was also expressed in non-lignifying cells of root tips. Evidence of a role for Pt4CL2, encoding 4-coumarate:coenzyme A ligase, in determining CT sink strength was gained from cellular co-expression analysis with PAL1 and CTs, and from experiments in which leaf wounding increased PAL1 and 4CL2 expression as well as the relative allocation of carbon to CT with respect to phenolic glycoside, the dominant phenolic sink in aspen leaves. Leaf wounding also increased PAL2 and lignin pathway gene expression, but to a smaller extent. The absence of PAL2 in most CT-accumulating cells provides in situ support for the idea that PAL isoforms function in specific metabolic milieus. PMID:12376645

  8. O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction.

    PubMed

    Pomar, F; Merino, F; Barceló, A Ros

    2002-10-01

    The nature and specificity of the Wiesner test (phloroglucinol-HCl reagent) for the aromatic aldehyde fraction contained in lignins is studied. Phloroglucinol reacted in ethanol-hydrochloric acid with coniferyl aldehyde, sinapyl aldehyde, vanillin, and syringaldehyde to yield either pink pigments (in the case of hydroxycinnamyl aldehydes) or red-brown pigments (in the case of hydroxybenzaldehydes). However, coniferyl alcohol, sinapyl alcohol, and highly condensed dehydrogenation polymers derived from these cinnamyl alcohols and aldehydes did not react with phloroglucinol in ethanol-hydrochloric acid. The differences in the reactivity of phloroglucinol with hydroxycinnamyl aldehydes and their dehydrogenation polymers may be explained by the fact that, in the latter, the unsubstituted (alpha,beta-unsaturated) cinnamaldehyde functional group, which is responsible for the dye reaction, is lost due to lateral chain cross-linking reactions involving the beta carbon. Fourier transform infrared spectroscopy and thioacidolysis analyses of phloroglucinol-positive lignifying plant cell walls belonging to the plant species Zinnia elegans L., Capsicum annuumvar. annuum, Populus albaL., and Pinus halepensisL. demonstrated the presence of 4- O-linked hydroxycinnamyl aldehyde end groups and 4- O-linked 4-hydroxy-3-methoxy-benzaldehyde (vanillin) end groups in lignins. However, given the relatively low abundance of 4- O-linked vanillin in lignifying cell walls and the low extinction coefficient of its red-brown phloroglucinol adduct, it is unlikely that vanillin contributes to a great extent to the phloroglucinol-positive stain reaction. These results suggest that the phloroglucinol-HCl pink stain of lignifying xylem cell walls actually reveals the 4- O-linked hydroxycinnamyl aldehyde structures contained in lignins. Histochemical studies showed that these aldehyde structures are assembled, as in the case of coniferyl aldehyde, during the early stages of xylem cell wall

  9. Ectopic Lignification in the Flax lignified bast fiber1 Mutant Stem Is Associated with Tissue-Specific Modifications in Gene Expression and Cell Wall Composition[C][W

    PubMed Central

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-01-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351

  10. Inhibition of lignifying processes by sulfur dioxide

    SciTech Connect

    Pfanz, H.; Oppmann, B.

    1991-05-01

    Intercellular washing fluids (IWF) from spruce needles (Picea abies L. Karst.) contain peroxidases 1-2% of total IWF protein. These apoplastic enzymes show the ability to polymerize monophenols or phenylpropanes to form lignin precursors in vitro. In the presence of potentially acidic air pollutants like NO{sub 2}, HF(20 mM of salts in solution), and in the presence of Pb-, Cd- (0.5 mM) or Al-salts (8 mM) no inhibitory effect on the polymerization reactions examined was detectable. In contrast, the anions of SO{sub 2} (sulfite and bisulfite) revealed a strong inhibition on the dimerization of ferulic and caffeic acid (Ki ca. 1 mM), and on the dehydration of syringaldazine (Ki ca. 8 {mu}M). Polymerization of coniferyl alcohol, on the other hand, seemed to be enhanced. Maier-Maercker and Koch (1986) demonstrated that the cell walls of guard cells from undamaged spruce needles are properly lignified, whereas those of damaged needles seem to be affected. It is therefore assumed that cell wall lignification, and concomitantly stomatal regulation of coniferous needles are disturbed in regions with high atmospheric SO{sub 2} pollution (e.g. Ore Mountains in CSFR).

  11. Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation.

    PubMed

    Donaldson, Lloyd A; Knox, J Paul

    2012-02-01

    The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides. PMID:22147521

  12. Dirigent proteins and dirigent sites in lignifying tissues

    NASA Technical Reports Server (NTRS)

    Burlat, V.; Kwon, M.; Davin, L. B.; Lewis, N. G.

    2001-01-01

    Tissue-specific dirigent protein gene expression and associated dirigent (site) localization were examined in various organs of Forsythia intermedia using tissue printing, in situ mRNA hybridization and immunolabeling techniques, respectively. Dirigent protein gene expression was primarily noted in the undifferentiated cambial regions of stem sections, whereas dirigent protein sites were detected mainly in the vascular cambium and ray parenchyma cell initials. Immunolocalization also revealed cross-reactivity with particular regions of the lignified cell walls, these being coincident with the known sites of initiation of lignin deposition. These latter regions are considered to harbor contiguous arrays of dirigent (monomer binding) sites for initiation of lignin biopolymer assembly. Dirigent protein mRNA expression was also localized in the vascular regions of roots and petioles, whereas in leaves the dirigent sites were primarily associated with the palisade layers and the vascular bundle. That is, dirigent protein mediated lignan biosynthesis was initiated primarily in the cambium and ray cell initial regions of stems as well as in the leaf palisade layers, this being in accordance with the occurrence of the lignans for defense purposes. Within lignified secondary xylem cell walls, however, dirigent sites were primarily localized in the S(1) sublayer and compound middle lamella, these being coincident with previously established sites for initiation of macromolecular lignin biosynthesis. Once initiation occurs, lignification is proposed to continue through template polymerization.

  13. Characterization of a Lignified Secondary Phloem Fibre‐deficient Mutant of Jute (Corchorus capsularis)

    PubMed Central

    SENGUPTA, GARGI; PALIT, P.

    2004-01-01

    • Background and Aims High lignin content of lignocellulose jute fibre does not favour its utilization in making finer fabrics and other value‐added products. To aid the development of low‐lignin jute fibre, this study aimed to identify a phloem fibre mutant with reduced lignin. • Methods An x‐ray‐induced mutant line (CMU) of jute (Corchorus capsularis) was morphologically evaluated and the accession (CMU 013) with the most undulated phenotype was compared with its normal parent (JRC 212) for its growth, secondary fibre development and lignification of the fibre cell wall. • Key Results The normal and mutant plants showed similar leaf photosynthetic rates. The mutant grew more slowly, had shorter internodes and yielded much less fibre after retting. The fibre of the mutant contained 50 % less lignin but comparatively more cellulose than that of the normal type. Differentiation of primary and secondary vascular tissues throughout the CMU 013 stem was regular but it did not have secondary phloem fibre bundles as in JRC 212. Instead, a few thin‐walled, less lignified fibre cells formed uni‐ or biseriate radial rows within the phloem wedges of the middle stem. The lower and earliest developed part of the mutant stem had no lignified fibre cells. This developmental deficiency in lignification of fibre cells was correlated to a similar deficiency in phenylalanine ammonia lyase activity, but not peroxidase activity, in the bark tissue along the stem axis. In spite of severe reduction in lignin synthesis in the phloem cells this mutant functioned normally and bred true. • Conclusions In view of the observations made, the mutant is designated as deficient lignified phloem fibre (dlpf). This mutant may be utilized to engineer low‐lignin jute fibre strains and may also serve as a model to study the positional information that coordinates secondary wall thickening of fibre cells. PMID:14707004

  14. Association of lignifying enzymes in shell synthesis of oil palm fruit (Elaeis guineensis--dura variety).

    PubMed

    Bhasker, S; Mohankumar, C

    2001-02-01

    Scanning electron microscopic (SEM) observation demonstrates the differentiation of mesocarp and endocarp tissues and their lignified nature in dura fruits at 8 weeks after pollination (WAP). During shell formation, the endocarp cells become lignified to a hard shell while the mesocarp tissue remains cellular and fibrous. A transition zone made up of fibrous units was also visible beneath the shell. The soluble phenols of mesocarp and endocarp tissues at their developmental stage was analyzed using Reverse phase high performance liquid chromatography (RP-HPLC). The appearance of ferulic acid at 4 WAP and its absence at 8 WAP indicates the role of ferulic acid in lignin synthesis. The HPLC data was supported by the lignin concentration. To ascertain the biochemical relationship of lignin pathway enzymes, phenylalanine ammonia lyase (PAL), cinnamyl alcohol-NADPH-dehydrogenase (CAD) and peroxidase (POD) with shell synthesis, the activities of these enzymes and lignin content were assessed during development of the shell between 4 and 8 WAP. The three enzymes, PAL, CAD and POD expressed high level of activity in the mesocarp and endocarp at 4 WAP. At 8 WAP a sharp decline in activity was observed in the endocarp whereas the mesocarp showed a moderate reduction. This variation is an indication of the role of these enzymes in shell formation. PMID:11480213

  15. Nanoindentation techniques for the cell walls of wood

    NASA Astrophysics Data System (ADS)

    Jakes, Joseph Eugene

    There is a recognized need in forest products research to better understand how the mechanical properties of wood derive from the basic polymer components that make up the wood. For development of new engineered wood products there is the need to understand how chemical additives and adhesives interact with wood polymers and influence properties at the cellular level. To meet these needs I have developed nanoindentation techniques for probing the mechanical properties of the cell walls in wood. There are two, key results of this research. The first is a newly invented structural compliance method for isolating the properties of local regions within materials and excluding artifacts brought about by neighboring edges including free edges and interfaces between dissimilar cell wall layers. The second consists of methods to obtain viscoplastic and viscoelastic data over as wide a range of deformation rate as possible. The broadband nanoindentation creep (BNC) technique assesses the viscoplastic properties over 5 orders of magnitude in deformation rate (-10-4 to 10 s-1). Viscoelastic measurements can be made with unloading times ranging from 0.01 to 100 s, resulting in viscoelastic data that span four orders of magnitude in frequency or inverse time (˜10-3 to 10 s-1). To demonstrate the efficacy of these techniques, experiments are performed on a range of materials including fused silica, silicon, molybdenum, siliconon-insulator layered specimen, poly (methylmetacrylate), polycarbonate, polystyrene, wood cells in loblolly pine (Pinus taeda ), and a polypropylene-wood composite. Finally, the structural compliance method and BNC are combined to explore polymeric methylene diphenyl diisocyanate (pMDI)-wood interactions. The data suggest that pMDI polymerizes in situ to create an interpenetrating polymer network.

  16. Cellulose-hemicellulose interaction in wood secondary cell-wall

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  17. Wood-fired fuel cells in an isolated community

    NASA Astrophysics Data System (ADS)

    McIlveen-Wright, D.; Guiney, D. J.

    Fuel cells have the potential for generating electricity very efficiently, and because of their modular construction, retain the same efficiency at any scale. Biomass is one of the renewable energy sources which is not intermittent, location-dependent or very difficult to store. If grown sustainably, biomass can be considered CO 2 neutral. A combined heat and power (CHP) system consisting of a fuel cell integrated with wood gasification (FCIWG) may offer a combination for delivering heat and electricity cleanly and efficiently, even at small-scales. The "isolated community" (IC) could be an island, or simply where grid-supplied electricity is weak or non-existent. The IC was taken to consist of 200 people and three retail outlets. Heat and electricity use profiles for this IC were produced and the FCIWG system was scaled to the power demand. The FCIWG system was modelled for two different types of fuel cell, the molten carbonate and the phosphoric acid. In each case, an oxygen-fired gasification system is proposed, in order to eliminate the need for a methane reformer. Technical, environmental and economic analyses of each version were made, using the ECLIPSE process simulation package. Since fuel cell lifetimes are not yet precisely known, economics for a range of fuel cell lifetimes have been produced. The wood-fired phosphoric acid fuel cell (PAFC) system was found to be suitable where high heat/electricity values were required, but had low electrical efficiency. The wood-fired molten carbonate fuel cell (MCFC) system was found to be quite efficient and suitable for small-scale electricity generation purposes. The expected capital costs of both systems would currently make them uncompetitive for general use, but the specific features of an IC with regard to the high cost of importing other fuel, and/or lack of grid electricity, could still make these systems attractive options.

  18. Detection of Lignin Peroxidase and Xylanase by Immunocytochemical Labeling in Wood Decayed by Basidiomycetes †

    PubMed Central

    Blanchette, R. A.; Abad, A. R.; Farrell, R. L.; Leathers, T. D.

    1989-01-01

    The white rot fungi used in this study caused two different forms of degradation. Phanerochaete chrysosporium, strain BKM-F-1767, and Phellinus pini caused a preferential removal of lignin from birch wood, whereas Trametes (Coriolus) versicolor caused a nonselective attack of all cell wall components. Use of polyclonal antisera to H8 lignin peroxidase and monoclonal antisera to H2 lignin peroxidase followed by immunogold labeling with protein A-gold or protein G-gold, respectively, showed lignin peroxidase extra-and intracellularly to fungal hyphae and within the delignified cell walls after 12 weeks of laboratory decay. Lignin peroxidase was localized at sites within the cell wall where electron-dense areas of the lignified cell wall layers remained. In wood decayed by Trametes versicolor, lignin peroxidase was located primarily along the surface of eroded cell walls. No lignin peroxidase was evident in brown-rotted wood, but slight labeling occurred within hyphal cells. Use of polyclonal antisera to xylanase followed by immunogold labeling showed intense labeling on fungal hyphae and surrounding slime layers and within the woody cell wall, where evidence of degradation was apparent. Colloidal-gold-labeled xylanase was prevalent in wood decayed by all fungi used in this study. Areas of the wood with early stages of cell wall decay had the greatest concentration of gold particles, while little labeling occurred in cells in advanced stages of decay by brown or white rot fungi. Images PMID:16347939

  19. Wood-fired fuel cells in selected buildings

    NASA Astrophysics Data System (ADS)

    McIlveen-Wright, D. R.; McMullan, J. T.; Guiney, D. J.

    The positive attributes of fuel cells for high efficiency power generation at any scale and of biomass as a renewable energy source which is not intermittent, location-dependent or very difficult to store, suggest that a combined heat and power (CHP) system consisting of a fuel cell integrated with a wood gasifier (FCIWG) may offer a combination for delivering heat and electricity cleanly and efficiently. Phosphoric acid fuel cell (PAFC) systems, fuelled by natural gas, have already been used in a range of CHP applications in urban settings. Some of these applications are examined here using integrated biomass gasification/fuel cell systems in CHP configurations. Five building systems, which have different energy demand profiles, are assessed. These are a hospital, a hotel, a leisure centre, a multi-residential community and a university hall of residence. Heat and electricity use profiles for typical examples of these buildings were obtained and the FCIWG system was scaled to the power demand. The FCIWG system was modelled for two different types of fuel cell, the molten carbonate and the phosphoric acid. In each case an oxygen-fired gasification system is proposed, in order to eliminate the need for a methane reformer. Technical, environmental and economic analyses of each version were made, using the ECLIPSE process simulation package. Since fuel cell lifetimes are not yet precisely known, economics for a range of fuel cell lifetimes have been produced. The wood-fired PAFC system was found to have low electrical efficiency (13-16%), but much of the heat could be recovered, so that the overall efficiency was 64-67%, suitable where high heat/electricity values are required. The wood-fired molten carbonate fuel cell (MCFC) system was found to be quite efficient for electricity generation (24-27%), with an overall energy efficiency of 60-63%. The expected capital costs of both systems would currently make them uncompetitive for general use, but the specific features

  20. Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

    PubMed Central

    Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  1. Microscopic characterization of tension wood cell walls of Japanese beech (Fagus crenata) treated with ionic liquids.

    PubMed

    Kanbayashi, Toru; Miyafuji, Hisashi

    2016-09-01

    Tension wood that is an abnormal part formed in angiosperms has been barely used for wood industry. In this study, to utilize the tension wood effectively by means of liquefaction using ionic liquid, we performed morphological and topochemical determination of the changes in tension wood of Japanese beech (Fagus crenata) during ionic liquid treatment at the cellular level using light microscopy, scanning electron microscopy and confocal Raman microscopy. Ionic liquid treatment induced cell wall swelling in tension wood. Changes in the tissue morphology treated with ionic liquids were different between normal wood and tension wood, moreover the types of ionic liquids. The ionic liquid 1-ethyl-3-methylimidazolium chloride liquefied gelatinous layers rapidly, whereas 1-ethylpyridinium bromide liquefied slowly but delignified selectively. These novel insights into the deconstruction behavior of tension wood cell walls during ionic liquid treatment provide better understanding of the liquefaction mechanism. The obtained knowledge will contribute to development of an effective chemical processing of tension wood using ionic liquids and lead to efficient use of wood resources. PMID:27285953

  2. Fluorescence-Detected Linear Dichroism of Wood Cell Walls in Juvenile Serbian Spruce: Estimation of Compression Wood Severity.

    PubMed

    Savić, Aleksandar; Mitrović, Aleksandra; Donaldson, Lloyd; Simonović Radosavljević, Jasna; Bogdanović Pristov, Jelena; Steinbach, Gabor; Garab, Győző; Radotić, Ksenija

    2016-04-01

    Fluorescence-detected linear dichroism (FDLD) microscopy provides observation of structural order in a microscopic sample and its expression in numerical terms, enabling both quantitative and qualitative comparison among different samples. We applied FDLD microscopy to compare the distribution and alignment of cellulose fibrils in cell walls of compression wood (CW) and normal wood (NW) on stem cross-sections of juvenile Picea omorika trees. Our data indicate a decrease in cellulose fibril order in CW compared with NW. Radial and tangential walls differ considerably in both NW and CW. In radial walls, cellulose fibril order shows a gradual decrease from NW to severe CW, in line with the increase in CW severity. This indicates that FDLD analysis of cellulose fibril order in radial cell walls is a valuable method for estimation of CW severity. PMID:26858105

  3. Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress.

    PubMed

    Roussel, Jean-Romain; Clair, Bruno

    2015-12-01

    To recover verticality after disturbance, angiosperm trees produce 'tension wood' allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees remains unclear. A study was carried out on tilted seedlings, saplings and adult Simarouba amara Aubl. trees-a species known to not produce a G-layer. Microscopic observations were done on sections of normal and tension wood after staining or observed under UV light to assess the presence/absence of lignin. We showed that S. amara produces a cell-wall layer with all of the characteristics typical of G-layers, but that this G-layer can be observed only as a temporary stage of the cell-wall development because it is masked by a late lignification. Being thin and lignified, tension wood fibres cannot be distinguished from normal wood fibres in the mature wood of adult trees. These observations indicate that the mechanism generating the high tensile stress in tension wood is likely to be the same as that in species with a typical G-layer and also in species where the G-layer cannot be observed in mature cells. PMID:26427915

  4. Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity

    NASA Technical Reports Server (NTRS)

    Kwon, M.; Bedgar, D. L.; Piastuch, W.; Davin, L. B.; Lewis, N. G.

    2001-01-01

    In the microgravity environment of the Space Shuttle Columbia (Life and Microgravity Mission STS-78), were grown 1-year-old Douglas fir and loblolly pine plants in a NASA plant growth facility. Several plants were harnessed (at 45 degrees ) to establish if compression wood biosynthesis, involving altered cellulose and lignin deposition and cell wall structure would occur under those conditions of induced mechanical stress. Selected plants were harnessed at day 2 in orbit, with stem sections of specific plants harvested and fixed for subsequent microscopic analyses on days 8, 10 and 15. At the end of the total space mission period (17 days), the remaining healthy harnessed plants and their vertical (upright) controls were harvested and fixed on earth. All harnessed (at 45 degrees ) plant specimens, whether grown at 1 g or in microgravity, formed compression wood. Moreover, not only the cambial cells but also the developing tracheid cells underwent significant morphological changes. This indicated that the developing tracheids from the primary cell wall expansion stage to the fully lignified maturation stage are involved in the perception and transduction of the stimuli stipulating the need for alteration of cell wall architecture. It is thus apparent that, even in a microgravity environment, woody plants can make appropriate corrections to compensate for stress gradients introduced by mechanical bending, thereby enabling compression wood to be formed. The evolutionary implications of these findings are discussed in terms of "variability" in cell wall biosynthesis.

  5. Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure.

    PubMed

    Merk, Vivian; Chanana, Munish; Gierlinger, Notburga; Hirt, Ann M; Burgert, Ingo

    2014-06-25

    Anisotropic and hierarchical structures are bound in nature and highly desired in engineered materials, due to their outstanding functions and performance. Mimicking such natural features with synthetic materials and methods has been a highly active area of research in the last decades. Unlike these methods, we use the native biomaterial wood, with its intrinsic anisotropy and hierarchy as a directional scaffold for the incorporation of magnetic nanoparticles inside the wood material. Nanocrystalline iron oxide particles were synthesized in situ via coprecipitation of ferric and ferrous ions within the interconnected pore network of bulk wood. Imaging with low-vacuum and cryogenic electron microscopy as well as spectral Raman mapping revealed layered nanosize particles firmly attached to the inner surface of the wood cell walls. The mineralogy of iron oxide was identified by XRD powder diffraction and Raman spectroscopy as a mixture of the spinel phases magnetite and maghemite. The intrinsic structural architecture of native wood entails a three-dimensional assembly of the colloidal iron oxide which results in direction-dependent magnetic features of the wood-mineral hybrid material. This superinduced magnetic anisotropy, as quantified by direction-dependent magnetic hysteresis loops and low-field susceptibility tensors, allows for directional lift, drag, alignment, (re)orientation, and actuation, and opens up novel applications of the natural resource wood. PMID:24873330

  6. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.

    PubMed

    Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A

    2015-09-01

    A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. PMID:25925133

  7. Wood adhesion cell segmentation scheme based on GVF-Snake model

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Ma, Yan

    2010-08-01

    In order to extract the characteristic parameters of the wood cells accurately, this paper presents an efficient scheme for wood cell segmentation. This scheme is mainly based on GVF-Snake model and the method of image thinning. Firstly, computing the Category Roundness of every connectivity domain is done in order to get the degree of adhesion. Secondly, image thinning helps to get the skeleton of the cell. Finally, according to the location coordinates of skeleton and contour, it can determine the location of segmentation. Experimental results demonstrate the scheme for precise extraction with limited human intervention; it can also determine the correct edge of segmentation. Comparatively speaking, the inaccuracy is rather limited.

  8. Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide.

    PubMed

    Kanbayashi, Toru; Miyafuji, Hisashi

    2015-09-01

    MAIN CONCLUSION : [EtPy][Br] is more reactive toward lignin than toward the PSs in wood cell walls, and [EtPy][Br] treatment results in inhomogenous changes to the cell wall's ultrastructural and chemical components. The effects of the ionic liquid 1-ethylpyridinium bromide ([EtPy][Br]), which prefers to react with lignin rather than cellulose on the wood cell walls of Japanese cedar (Cryptomeria japonica), were investigated from a morphology and topochemistry point of view. The [EtPy][Br] treatment induced cell wall swelling, the elimination of warts, and the formation of countless pores in the tracheids. However, many of the pit membranes and the cellulose crystalline structure remained unchanged. Raman microscopic analyses revealed that chemical changes in the cell walls were different for different layers and that the lignin in the compound middle lamella and the cell corner resists interaction with [EtPy][Br]. Additionally, the interaction of [EtPy][Br] with the wood cell wall is different to that of other types of ionic liquid. PMID:25556160

  9. Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation

    PubMed Central

    Obersriebnig, Michael; Konnerth, Johannes; Gindl-Altmutter, Wolfgang

    2013-01-01

    Spruce wood specimens were bonded with one-component polyurethane (PUR) and urea-formaldehyde (UF) adhesive, respectively. The adhesion of the adhesives to the wood cell wall was evaluated at two different locations by means of a new micromechanical assay based on nanoindentation. One location tested corresponded to the interface between the adhesive and the natural inner cell wall surface of the secondary cell wall layer 3 (S3), whereas the second location corresponded to the interface between the adhesive and the freshly cut secondary cell wall layer 2 (S2). Overall, a trend towards reduced cell wall adhesion was found for PUR compared to UF. Position-resolved examination revealed excellent adhesion of UF to freshly cut cell walls (S2) but significantly diminished adhesion to the inner cell wall surface (S3). In contrast, PUR showed better adhesion to the inner cell wall surface and less adhesion to freshly cut cell walls. Atomic force microscopy revealed a less polar character for the inner cell wall surface (S3) compared to freshly cut cell walls (S2). It is proposed that differences in the polarity of the used adhesives and the surface chemistry of the two cell wall surfaces examined account for the observed trends.

  10. G-fibre cell wall development in willow stems during tension wood induction

    PubMed Central

    Gritsch, Cristina; Wan, Yongfang; Mitchell, Rowan A. C.; Shewry, Peter R.; Hanley, Steven J.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) are important as a potential feedstock for bioenergy and biofuels. Previous work suggested that reaction wood (RW) formation could be a desirable trait for biofuel production in willows as it is associated with increased glucose yields, but willow RW has not been characterized for cell wall components. Fasciclin-like arabinogalactan (FLA) proteins are highly up-regulated in RW of poplars and are considered to be involved in cell adhesion and cellulose biosynthesis. COBRA genes are involved in anisotropic cell expansion by modulating the orientation of cellulose microfibril deposition. This study determined the temporal and spatial deposition of non-cellulosic polysaccharides in cell walls of the tension wood (TW) component of willow RW and compared it with opposite wood (OW) and normal wood (NW) using specific antibodies and confocal laser scanning microscopy and transmission electron microscopy. In addition, the expression patterns of an FLA gene (SxFLA12) and a COBRA-like gene (SxCOBL4) were compared using RNA in situ hybridization. Deposition of the non-cellulosic polysaccharides (1–4)-β-D-galactan, mannan and de-esterified homogalacturonan was found to be highly associated with TW, often with the G-layer itself. Of particular interest was that the G-layer itself can be highly enriched in (1–4)-β-D-galactan, especially in G-fibres where the G-layer is still thickening, which contrasts with previous studies in poplar. Only xylan showed a similar distribution in TW, OW, and NW, being restricted to the secondary cell wall layers. SxFLA12 and SxCOBL4 transcripts were specifically expressed in developing TW, confirming their importance. A model of polysaccharides distribution in developing willow G-fibre cells is presented. PMID:26220085

  11. Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549.

    PubMed

    Bornholdt, Jette; Saber, Anne T; Sharma, Anoop K; Savolainen, Kai; Vogel, Ulla; Wallin, Håkan

    2007-08-15

    Exposure to wood dust is common in many workplaces. Epidemiological studies indicate that occupational exposure to hardwood dusts is more harmful than to softwood dusts. In this study, human epithelial cell line A549 was incubated with well-characterized dusts from six commonly used wood species and from medium density fibreboard (MDF), at concentrations between 10 and 300microg/ml. After 3 and 6h of incubation, genotoxicity was assessed by measurement of DNA damage with the single-cell gel electrophoresis (comet) assay and inflammation was measured by the expression of IL-6 and IL-8 mRNA and by the amount of IL-8 protein. There was a 1.2-1.4-fold increase in DNA strand breaks after incubation with beech, teak, pine and MDF dusts compared with the levels in untreated cells, but after 6h only the increase induced by the MDF dust remained. Increased expression of cellular IL-6 and IL-8 mRNA was induced by all of the wood dusts at both times. Similar to IL-8 mRNA expression, the amounts of secreted IL-8 protein were elevated, except after incubation with oak dust, where a marginal reduction was seen. On the basis of the effects on IL-8 mRNA expression, the wood dusts could be divided into three groups, with teak dust being the most potent, MDF, birch, spruce and pine being intermediate, and beech and oak being the least potent. The induction of DNA strand breaks did not correlate well with the interleukin response. In conclusion, all wood dusts induced cytokine responses, and some dusts induced detectable DNA damage. The inflammatory potency seemed intermediate for dusts from the typical softwoods spruce and pine, whereas the dusts from species linked to cancer, beech and oak, were the least inflammatory. The variation of the effects induced by different wood dusts over time indicates that the DNA damage was not secondary to the cytokine response. Although hardwoods are often considered more harmful than softwoods by regulatory agencies, the current experiments do not

  12. Threshold for ion movements in wood cell walls below fiber saturation observed by X-ray fluorescence microscopy (XFM)

    SciTech Connect

    Zelinka, Samuel L.; Gleber, Sophie-Charlotte; Vogt, Stefan; Rodriguez Lopez, Gabriela M.; Jakes, Joseph E.

    2015-05-01

    Diffusion of chemicals and ions through the wood cell wall plays an important role in wood damage mechanisms. In the present work, free diffusion of ions through wood secondary walls and middle lamellae has been investigated as a function of moisture content (MC) and anatomical direction. Various ions (K, Cl, Zn, Cu) were injected into selected regions of 2 mu m thick wood sections with a microinjector and then the ion distribution was mapped by means of X-ray fluorescence microscopy with submicron spatial resolution. The MC of the wood was controlled in situ by means of climatic chamber with controlled relative humidity (RH). For all ions investigated, there was a threshold RH below which the concentration profiles did not change. The threshold RH depended upon ionic species, cell wall layer, and wood anatomical orientation. Above the threshold RH, differences in mobility among ions were observed and the mobility depended upon anatomical direction and cell wall layer. These observations support a recently proposed percolation model of electrical conduction in wood. The results contribute to understanding the mechanisms of fungal decay and fastener corrosion that occur below the fiber saturation point.

  13. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy

    PubMed Central

    Fackler, Karin; Stevanic, Jasna S.; Ters, Thomas; Hinterstoisser, Barbara; Schwanninger, Manfred; Salmén, Lennart

    2010-01-01

    Spruce wood that had been degraded by brown-rot fungi (Gloeophyllum trabeum or Poria placenta) exhibiting mass losses up to 16% was investigated by transmission Fourier transform infrared (FT-IR) imaging microscopy. Here the first work on the application of FT-IR imaging microscopy and multivariate image analysis of fungal degraded wood is presented and the first report on the spatial distribution of polysaccharide degradation during incipient brown-rot of wood. Brown-rot starts to become significant in the outer cell wall regions (middle lamellae, primary cell walls, and the outer layer of the secondary cell wall S1). This pattern was detected even in a sample with non-detectable mass loss. Most significant during incipient decay was the cleavage of glycosidic bonds, i.e. depolymerisation of wood polysaccharides and the degradation of pectic substances. Accordingly, intramolecular hydrogen bonding within cellulose was reduced, while the presence of phenolic groups increased. PMID:21052475

  14. Measurement of wood/plant cell or composite material attributes with computer assisted tomography

    DOEpatents

    West, Darrell C.; Paulus, Michael J.; Tuskan, Gerald A.; Wimmer, Rupert

    2004-06-08

    A method for obtaining wood-cell attributes from cellulose containing samples includes the steps of radiating a cellulose containing sample with a beam of radiation. Radiation attenuation information is collected from radiation which passes through the sample. The source is rotated relative to the sample and the radiation and collecting steps repeated. A projected image of the sample is formed from the collected radiation attenuation information, the projected image including resolvable features of the cellulose containing sample. Cell wall thickness, cell diameter (length) and cell vacoule diameter can be determined. A system for obtaining physical measures from cellulose containing samples includes a radiation source, a radiation detector, and structure for rotating the source relative to said sample. The system forms an image of the sample from the radiation attenuation information, the image including resolvable features of the sample.

  15. Activation of Transient Receptor Potential Ankyrin-1 (TRPA1) in Lung Cells by Wood Smoke Particulate Material

    PubMed Central

    Shapiro, Darien; Deering-Rice, Cassandra E.; Romero, Erin G.; Hughen, Ronald W.; Light, Alan R.; Veranth, John M.; Reilly, Christopher A.

    2013-01-01

    Cigarette smoke, diesel exhaust, and other combustion-derived particles activate the calcium channel transient receptor potential ankyrin-1 (TRPA1), causing irritation and inflammation in the respiratory tract. It was hypothesized that wood smoke particulate and select chemical constituents thereof would also activate TRPA1 in lung cells, potentially explaining the adverse effects of wood and other forms of biomass smoke on the respiratory system. TRPA1 activation was assessed using calcium imaging assays in TRPA1-overexpressing HEK-293 cells, mouse primary trigeminal neurons, and human adenocarcinoma (A549) lung cells. Particles from pine and mesquite smoke were less potent agonists of TRPA1 than an equivalent mass concentration of an ethanol extract of diesel exhaust particles; pine particles were comparable in potency to cigarette smoke condensate, and mesquite particles were the least potent. The fine particulate (PM<2.5 μm) of wood smoke were the most potent TRPA1 agonists and several chemical constituents of wood smoke particulate: 3,5-ditert-butylphenol, coniferaldehyde, formaldehyde, perinaphthenone, agathic acid, and isocupressic acid were TRPA1 agonists. Pine particulate activated TRPA1 in mouse trigeminal neurons and A549 cells in a concentration-dependent manner, which was inhibited by the TRPA1 antagonist HC-030031. TRPA1 activation by wood smoke particles occurred through the electrophile/oxidant-sensing domain (i.e., C621/C641/C665/K710), based on the inhibition of cellular responses when the particles were pre-treated with glutathione; a role for the menthol-binding site of TRPA1 (S873/T874) was demonstrated for 3,5-ditert-butylphenol. This study demonstrated that TRPA1 is a molecular sensor for wood smoke particulate and several chemical constituents thereof, in sensory neurons and A549 cells, suggesting that TRPA1 may mediate some of the adverse effects of wood smoke in humans. PMID:23541125

  16. Wood and Wood Products

    NASA Astrophysics Data System (ADS)

    Young, Raymond A.

    Wood has been utilized by humans since antiquity. Trees provided a source of many products required by early humans such as food, medicine, fuel, and tools. For example, the bark of the willow tree, when chewed, was used as a painkiller in early Greece and was the precursor of the present-day aspirin. Wood served as the primary fuel in the United States until about the turn of the 19th century, and even today over one-half of the wood now harvested in the world is used for heating fuel.

  17. Evaluating the response of artificially lignified maize cell walls to pretreatments and enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignification was undoubtedly a crucial innovation for the structural development of large terrestrial plants; its malleability provides opportunities for engineering the composition and consequent properties of lignin. In the present study, microscale analysis methods were developed to evaluate the...

  18. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    DOE PAGESBeta

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-06-24

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by

  19. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability.

    PubMed

    Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that

  20. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    PubMed Central

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that

  1. Wood Smoke Particle Sequesters Cell Iron to Impact a Biological Effect.

    PubMed

    Ghio, Andrew J; Soukup, Joleen M; Dailey, Lisa A; Tong, Haiyan; Kesic, Matthew J; Budinger, G R Scott; Mutlu, Gökhan M

    2015-11-16

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We tested the postulate that (1) wood smoke particle (WSP) sequesters host cell iron resulting in a disruption of metal homeostasis, (2) this loss of essential metal results in both an oxidative stress and biological effect in respiratory epithelial cells, and (3) humic-like substances (HULIS), a component of WSP, have a capacity to appropriate cell iron and initiate a biological effect. BEAS-2B cells exposed to WSP resulted in diminished concentrations of mitochondrial (57)Fe, whereas preincubation with ferric ammonium citrate (FAC) prevented significant mitochondrial iron loss after such exposure. Cellular oxidant generation was increased after WSP exposure, but this signal was diminished by coincubation with FAC. Similarly, exposure of BEAS-2B cells to 100 μg/mL WSP activated mitogen-activated protein (MAP) kinases, elevated NF-E2-related factor 2/antioxidant responsive element (Nrf2 ARE) expression, and provoked interleukin (IL)-6 and IL-8 release, but all these changes were diminished by coincubation with FAC. The biological response to WSP was reproduced by exposure to 100 μg/mL humic acid, a polyphenol comparable to HULIS included in the WSP that complexes iron. We conclude that (1) the biological response following exposure to WSP is associated with sequestration of cell iron by the particle, (2) increasing available iron in the cell diminished the biological effects after particle exposure, and (3) HULIS included in WSP can sequester the metal initiating the cell response. PMID:26462088

  2. Acridine Orange Indicates Early Oxidation of Wood Cell Walls by Fungi

    PubMed Central

    Houtman, Carl J.; Kitin, Peter; Houtman, Jon C. D.; Hammel, Kenneth E.; Hunt, Christopher G.

    2016-01-01

    Colonization of wood blocks by brown and white rot fungi rapidly resulted in detectable wood oxidation, as shown by a reduced phloroglucinol response, a loss of autofluorescence, and acridine orange (AO) staining. This last approach is shown to provide a novel method for identifying wood oxidation. When lignin was mildly oxidized, the association between AO and lignin was reduced such that stained wood sections emitted less green light during fluorescence microscopy. This change was detectable after less than a week, an interval that past work has shown to be too short for significant delignification of wood. Although fungal hyphae were observed in only a few wood lumina, oxidation was widespread, appearing relatively uniform over regions several hundred micrometers from the hyphae. This observation suggests that both classes of fungi release low molecular weight mild oxidants during the first few days of colonization. PMID:27454126

  3. Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers.

    PubMed

    Gerber, Lorenz; Zhang, Bo; Roach, Melissa; Rende, Umut; Gorzsás, András; Kumar, Manoj; Burgert, Ingo; Niittylä, Totte; Sundberg, Björn

    2014-09-01

    The biosynthesis of wood in aspen (Populus) depends on the metabolism of sucrose, which is the main transported form of carbon from source tissues. The largest fraction of the wood biomass is cellulose, which is synthesized from UDP-glucose. Sucrose synthase (SUS) has been proposed previously to interact directly with cellulose synthase complexes and specifically supply UDP-glucose for cellulose biosynthesis. To investigate the role of SUS in wood biosynthesis, we characterized transgenic lines of hybrid aspen with strongly reduced SUS activity in developing wood. No dramatic growth phenotypes in glasshouse-grown trees were observed, but chemical fingerprinting with pyrolysis-GC/MS, together with micromechanical analysis, showed notable changes in chemistry and ultrastructure of the wood in the transgenic lines. Wet chemical analysis showed that the dry weight percentage composition of wood polymers was not changed significantly. However, a decrease in wood density was observed and, consequently, the content of lignin, hemicellulose and cellulose was decreased per wood volume. The decrease in density was explained by a looser structure of fibre cell walls as shown by increased wall shrinkage on drying. The results show that SUS is not essential for cellulose biosynthesis, but plays a role in defining the total carbon incorporation to wood cell walls. PMID:24920335

  4. A NOVEL APPROACH FOR ANALYSIS OF POPLAR WOOD USING TWO-DIMENSIONAL NMR SPECTROSCOPY ON DISSOLVED WHOLE CELL WALLS IN COMBINATION WITH CHEMOMETRICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of secondary xylem (wood) biosynthesis and the genes regulating this highly complex machinery have many potential applications, and are the central goals within FuncFiber (a Swedish center of excellence in wood science, (www.funcfiber.se). Research on cell wall biosynthesis requires...

  5. Characterization of fungi from ruminal fluid of beef cattle with different ages and raised in tropical lignified pastures.

    PubMed

    Abrão, Flávia Oliveira; Duarte, Eduardo Robson; Freitas, Cláudio Eduardo Silva; Vieira, Edvaldo Alves; Geraseev, Luciana Castro; da Silva-Hughes, Alice Ferreira; Rosa, Carlos Augusto; Rodrigues, Norberto Mario

    2014-11-01

    The objective of this study was to evaluate the aerobic rumen mycobiota from three age groups of Nelore beef cattle reared extensively on lignified pasture. The experiment was randomized and sampled 50 steers, 50 cows, and 50 calves grazed on Brachiaria spp. pasture during the dry season. Rumen fluid in all animals was aromatic, slightly viscous, and greenish-brown in color. Microscopic examination revealed monocentric and polycentric anaerobic fungi in similar proportions (P > 0.05) in the rumen fluid of cows and steers. However, these microorganisms were not identified in any of the samples from calves. In culture exams, aerobic filamentous population was significantly higher for rumen fluid of cows compared to the other two groups. Microculture and rDNA sequence analyses showed Aspergillus spp. as the most frequent aerobic fungus among the isolates from the three bovine groups evaluated. Biochemical profiles were determined by the growth level of yeast isolates with 44 nutrient sources. Ten different yeast profiles were obtained, and yeast isolates from cow ruminal fluid showed ability to catabolize greater diversity of carbon and nitrogen sources. The differences in the fungal populations observed in this study could be explained by microbial and physiological interactions existing in the ruminal ecosystem of each age bovine group. The present study showed the fungal population of the rumen related with differences among age of cattle raised in lignified pastures. Metabolic capabilities of mycelial fungi or yeast identified in this study may be employed in new probiotics or microbial additives for different bovine categories. PMID:24962597

  6. Reaction wood – a key cause of variation in cell wall recalcitrance in willow

    PubMed Central

    2012-01-01

    Background The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp.) variability of the reaction wood (RW) response and the impact of this variation on cell wall recalcitrance to enzymatic saccharification was considered. Results A pot trial was designed to test if the ‘RW response’ varies between willow genotypes and contributes to the differences observed in cell wall recalcitrance to enzymatic saccharification in field-grown trees. Biomass composition was measured via wet chemistry and used with glucose release yields from enzymatic saccharification to determine cell wall recalcitrance. The levels of glucose release found for pot-grown control trees showed no significant correlation with glucose release from mature field-grown trees. However, when a RW phenotype was induced in pot-grown trees, glucose release was strongly correlated with that for mature field-grown trees. Field studies revealed a 5-fold increase in glucose release from a genotype grown at a site exposed to high wind speeds (a potentially high RW inducing environment) when compared with the same genotype grown at a more sheltered site. Conclusions Our findings provide evidence for a new concept concerning variation in the recalcitrance to enzymatic hydrolysis of the stem biomass of different, field-grown willow genotypes (and potentially other angiosperms). Specifically, that genotypic differences in the ability to produce a response to RW inducing conditions (a ‘RW response’) indicate that this RW response is a primary determinant of the variation observed in cell wall glucan accessibility. The identification of the importance of this RW response trait in willows, is likely to be valuable in selective breeding strategies in willow (and other angiosperm) biofuel crops and, with further work to dissect the nature of RW

  7. Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells.

    PubMed

    Nordli, Henriette Rogstad; Chinga-Carrasco, Gary; Rokstad, Anne Mari; Pukstad, Brita

    2016-10-01

    Wood cellulose nanofibrils (CNF) have been suggested as a potential wound healing material, but its utilization is limited by FDA requirements regarding endotoxin levels. In this study a method using sodium hydroxide followed by TEMPO mediated oxidation was developed to produce ultrapure cellulose nanofibrils, with an endotoxin level of 45 endotoxin units/g (EU/g) cellulose. Scanning transmission electron microscopy (S(T)EM) revealed a highly nanofibrillated structure (lateral width of 3.7±1.3nm). Assessment of cytotoxicity and metabolic activity on Normal Human Dermal Fibroblasts and Human Epidermal Keratinocytes was done. CNF-dispersion of 50μg/ml did not affect the cells. CNF-aerogels induced a reduction of metabolic activity by the fibroblasts and keratinocytes, but no significant cell death. Cytokine profiling revealed no induction of the 27 cytokines tested upon exposure to CNF. The moisture-holding capacity of aerogels was relatively high (∼7500%), compared to a commercially available wound dressing (∼2500%), indicating that the CNF material is promising as dressing material for management of wounds with a moderate to high amount of exudate. PMID:27312614

  8. Partial transparency of compressed wood

    NASA Astrophysics Data System (ADS)

    Sugimoto, Hiroyuki; Sugimori, Masatoshi

    2016-05-01

    We have developed novel wood composite with optical transparency at arbitrary region. Pores in wood cells have a great variation in size. These pores expand the light path in the sample, because the refractive indexes differ between constituents of cell and air in lumen. In this study, wood compressed to close to lumen had optical transparency. Because the condition of the compression of wood needs the plastic deformation, wood was impregnated phenolic resin. The optimal condition for high transmission is compression ratio above 0.7.

  9. Synchrotron-based X-ray fluorescence microscopy in conjunction with nanoindentation to study molecular-scale interactions of phenol-formaldehyde in wood cell walls.

    PubMed

    Jakes, Joseph E; Hunt, Christopher G; Yelle, Daniel J; Lorenz, Linda; Hirth, Kolby; Gleber, Sophie-Charlotte; Vogt, Stefan; Grigsby, Warren; Frihart, Charles R

    2015-04-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenol-formaldehyde (BrPF) into wood cell walls. Cell wall infiltration of five BrPF adhesives with different average molecular weights (MWs) was mapped. Nanoindentation on the same cell walls was performed to assess the effects of BrPF infiltration on cell wall hygromechanical properties. For the same amount of weight uptake, lower MW BrPF adhesives were found to be more effective at decreasing moisture-induced mechanical softening. This greater effectiveness of lower MW phenolic adhesives likely resulted from their ability to more intimately associate with water sorption sites in the wood polymers. Evidence also suggests that a BrPF interpenetrating polymer network (IPN) formed within the wood polymers, which might also decrease moisture sorption by mechanically restraining wood polymers during swelling. PMID:25756624

  10. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol-Formaldehyde in Wood Cell Walls

    SciTech Connect

    Jakes, Joseph E.; Hunt, Chris G.; Yelle, Daniel J.; Lorenz, Linda; Hirth, Kolby; Gleber, Sophie-Charlotte; Vogt, Stefan; Grigsby, Warren; Frihart, Charles R.

    2015-04-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenolformaldehyde (BrPF) into wood cell walls. Cell wall infiltration of five BrPF adhesives with different average molecular weights (MWs) was mapped. Nanoindentation on the same cell walls was performed to assess the effects of BrPF infiltration on cell wall hygromechanical properties. For the same amount of weight uptake, lower MW BrPF adhesives were found to be more effective at decreasing moisture-induced mechanical softening. This greater effectiveness of lower MW phenolic adhesives likely resulted from their ability to more intimately associate with water sorption sites in the wood polymers. Evidence also suggests that a BrPF interpenetrating polymer network (IPN) formed within the wood polymers, which might also decrease moisture sorption by mechanically restraining wood polymers during swelling.

  11. Profiling of Oligolignols Reveals Monolignol Coupling Conditions in Lignifying Poplar Xylem1[w

    PubMed Central

    Morreel, Kris; Ralph, John; Kim, Hoon; Lu, Fachuang; Goeminne, Geert; Ralph, Sally; Messens, Eric; Boerjan, Wout

    2004-01-01

    Lignin is an aromatic heteropolymer, abundantly present in the walls of secondary thickened cells. Although much research has been devoted to the structure and composition of the polymer to obtain insight into lignin polymerization, the low-molecular weight oligolignol fraction has escaped a detailed characterization. This fraction, in contrast to the rather inaccessible polymer, is a simple and accessible model that reveals details about the coupling of monolignols, an issue that has raised considerable controversy over the past years. We have profiled the methanol-soluble oligolignol fraction of poplar (Populus spp.) xylem, a tissue with extensive lignification. Using liquid chromatography-mass spectrometry, chemical synthesis, and nuclear magnetic resonance, we have elucidated the structures of 38 compounds, most of which were dimers, trimers, and tetramers derived from coniferyl alcohol, sinapyl alcohol, their aldehyde analogs, or vanillin. All structures support the recently challenged random chemical coupling hypothesis for lignin polymerization. Importantly, the structures of two oligomers, each containing a γ-p-hydroxybenzoylated syringyl unit, strongly suggest that sinapyl p-hydroxybenzoate is an authentic precursor for lignin polymerization in poplar. PMID:15516504

  12. Oxidation of cinnamyl alcohols and aldehydes by a basic peroxidase from lignifying Zinnia elegans hypocotyls.

    PubMed

    Barceló, A R; Pomar, F

    2001-08-01

    The xylem of 26-day old Zinnia elegans hypocotyls synthesizes lignins derived from coniferyl alcohol and sinapyl alcohol with a G/S ratio of 43/57 in the aryl-glycerol-beta-aryl ether core, as revealed by thioacidolysis. Thioacidolysis of Z. elegans lignins also reveals the presence of coniferyl aldehyde end groups linked by beta-0-4 bonds. Both coniferyl and sinapyl alcohols, as well as coniferyl and sinapyl aldehyde, are substrates of a xylem cell wall-located strongly basic peroxidase, which is capable of oxidizing them in the absence and in the presence of hydrogen peroxide. This peroxidase shows a particular affinity for cinnamyl aldehydes with kappa(M) values in the mu(M) range, and some specificity for syringyl-type phenols. The affinity of this strongly basic peroxidase for cinnamyl alcohols and aldehydes is similar to that shown by the preceding enzymes in the lignin biosynthetic pathway (microsomal 5-hydroxylases and cinnamyl alcohol dehydrogenase), which also use cinnamyl alcohols and aldehydes as substrates, indicating that the one-way highway of construction of the lignin macromolecule has no metabolic "potholes" in which the lignin building blocks might accumulate. This fact suggests a high degree of metabolic plasticity for this basic peroxidase, which has been widely conserved during the evolution of vascular plants, making it one of the driving forces in the evolution of plant lignin heterogeneity. PMID:11430983

  13. Molecular Organization in the Native State of Wood Cell Walls: Studies of Nanoscale Structure and its Development

    SciTech Connect

    Atalla, R. H.

    2001-02-01

    With respect to cell wall biogenesis we have developed a theory concerning the formation of lignin in which the regulation of structure is attributed to the hemicelluloses; they are viewed as templates for the assembly of lignin. The key supporting evidence is derived from the symmetry of annual rings in trees free of reaction wood. This symmetry is interpreted to point to genetic encoding as the dominant factor in the pattern of interunit linkages in lignin. More recently, we have explored further the implications of annual ring symmetries within the contexts of systems and information theory and theories of organization of hierarchic structures. This has led us to proposed a unifying model for cell wall biogenesis that comprehends cell wall polysaccharides as well as lignin. The model is based on examining the implications of symmetries and of hierarchic relationships between different levels of structure, with respect to synchrony and coordination of the stages of formation of the individual constituents.

  14. Biosynthesis and biodegradation of wood components

    SciTech Connect

    Higuchi, T.

    1985-01-01

    A textbook containing 22 chapters by various authors covers the structure of wood, the localization of polysaccharides and lignins in wood cell walls, metabolism and synthetic function of cambial tissue, cell organelles and their function in the biosynthesis of cell wall components, biosynthesis of plant cell wall polysaccharides, lignin, cutin, suberin and associated waxes, phenolic acids and monolignols, quinones, flavonoids, tannins, stilbenes and terpenoid wood extractives, the occurrence of extractives, the metabolism of phenolic acids, wood degradation by micro-organisms and fungi, and biodegradation of cellulose, hemicelluloses, lignin, and aromatic extractives of wood. An index is included.

  15. Wood stains

    MedlinePlus

    The harmful substances in wood stains are hydrocarbons, or substances that contain only carbon and hydrogen. Other harmful ingredients may include: Alcohol Alkanes Cyclo alkanes Glycol ether Corrosives, such as sodium ...

  16. Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel

    NASA Astrophysics Data System (ADS)

    Elleuch, Amal; Halouani, Kamel; Li, Yongdan

    2015-05-01

    Direct carbon fuel cell (DCFC) is a high temperature fuel cell using solid carbon as fuel. The use of environmentally friendly carbon material constitutes a promising option for the DCFC future. In this context, this paper focuses on the use of biomass-derived charcoal renewable fuel. A practical investigation of Tunisian olive wood charcoal (OW-C) in planar DCFCs is conducted and good power density (105 mW cm-2) and higher current density (550 mA cm-2) are obtained at 700 °C. Analytical and predictive techniques are performed to explore the relationships between fuel properties and DCFC chemical and electrochemical mechanisms. High carbon content, carbon-oxygen groups and disordered structure, are the key parameters allowing the achieved good performance. Relatively complex chain reactions are predicted to explain the gas evolution within the anode. CO, H2 and CH4 participation in the anodic reaction is proved.

  17. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  18. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  19. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  20. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  1. Identifying new lignin bioengineering targets: impact of epicatechin, quercetin glycoside, and gallate derivatives on the lignification and fermentation of maize cell walls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, we artificially lignified maize cell walls with normal monolignols pl...

  2. INVESTIGATION INTO HOW WOOD CELL WALLS INTERACT WITH SYNTHETIC ADHESIVES USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the continued growth of the wood adhesive industry and the need to create durable and environmentally friendly adhesive systems, it is still unclear whether covalent bonds contribute to wood adhesive bond strength. In order to investigate this question, solid-state NMR spectroscopy (NMR) has be...

  3. Characterizing moisture-dependent mechanical properties of organic materials: humidity-controlled static and dynamic nanoindentation of wood cell walls

    NASA Astrophysics Data System (ADS)

    Bertinetti, Luca; Hangen, Ude D.; Eder, Michaela; Leibner, Petra; Fratzl, Peter; Zlotnikov, Igor

    2015-06-01

    Nanoindentation is an ideal technique to study local mechanical properties of a wide range of materials on the sub-micron scale. It has been widely used to investigate biological materials in the dry state; however, their properties are strongly affected by their moisture content, which until now has not been consistently controlled. In the present study, we developed an experimental set-up for measuring local mechanical properties of materials by nanoindentation in a controlled environment of relative humidity (RH) and temperature. The significance of this new approach in studying biological materials was demonstrated for the secondary cell wall layer (S2) in Spruce wood (Picea abies). The hardness of the cell wall layer decreased from an average of approximately 0.6 GPa at 6% RH down to approximately 0.2 GPa at 79% RH, corresponding to a reduction by a factor of 3. Under the same conditions, the indentation modulus also decreased by about 40%. The newly designed experimental set-up has a strong potential for a variety of applications involving the temperature- and humidity-dependent properties of biological and artificial organic nanocomposites.

  4. Significance of wood extractives for wood bonding.

    PubMed

    Roffael, Edmone

    2016-02-01

    Wood contains primary extractives, which are present in all woods, and secondary extractives, which are confined in certain wood species. Extractives in wood play a major role in wood-bonding processes, as they can contribute to or determine the bonding relevant properties of wood such as acidity and wettability. Therefore, extractives play an immanent role in bonding of wood chips and wood fibres with common synthetic adhesives such as urea-formaldehyde-resins (UF-resins) and phenol-formaldehyde-resins (PF-resins). Extractives of high acidity accelerate the curing of acid curing UF-resins and decelerate bonding with alkaline hardening PF-resins. Water-soluble extractives like free sugars are detrimental for bonding of wood with cement. Polyphenolic extractives (tannins) can be used as a binder in the wood-based industry. Additionally, extractives in wood can react with formaldehyde and reduce the formaldehyde emission of wood-based panels. Moreover, some wood extractives are volatile organic compounds (VOC) and insofar also relevant to the emission of VOC from wood and wood-based panels. PMID:26685670

  5. Wood smoke particle sequesters cell iron to impact a biological effect.

    EPA Science Inventory

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We te...

  6. Activation of respiratory epithelial cells by wood smoke particles persists beyond immediate exposure.

    EPA Science Inventory

    The biological effect of particles on epithelial cells involves, in part, oxidant generation and a cascade of reactions culminating in inflammatory mediator release. Whether there is an immediate short-lived activation or continued persistent response of the cells to the particle...

  7. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides).

    PubMed

    Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław

    2015-07-01

    The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development. PMID:24943986

  8. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells.

    PubMed

    Awji, Elias G; Chand, Hitendra; Bruse, Shannon; Smith, Kevin R; Colby, Jennifer K; Mebratu, Yohannes; Levy, Bruce D; Tesfaigzi, Yohannes

    2015-03-01

    Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice. C57Bl/6 mice were exposed for 4 or 12 weeks to filtered air, to 10 mg/m(3) WS for 2 h/d, to 250 mg/m(3) cigarette smoke (CS) for 6 h/d, or to CS followed by WS (CW). Inflammation was absent in the filtered air and WS groups, but enhanced by twofold in the bronchoalveolar lavage of the CW compared with CS group as measured by neutrophil numbers and levels of the neutrophil chemoattractant, keratinocyte-derived chemokine. The levels of the anti-inflammatory lipoxin, lipoxin A4, were reduced by threefold along with cyclo-oxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 in airway epithelial cells and PGE2 levels in the bronchoalveolar lavage of CW compared with CS mice. We replicated, in primary human airway epithelial cells, the changes observed in mice. Immunoprecipitations showed that WS blocked the interaction of aryl hydrocarbon receptor (AHR) with AHR nuclear transporter to reduce expression of COX-2 and mPGES-1 by increasing expression of AHR repressor (AHRR). Collectively, these studies show that exposure to low concentrations of WS enhanced CS-induced inflammation by inducing AHRR expression to suppress AHR, COX-2, and mPGES-1 expression, and levels of PGE2 and lipoxin A4. Therefore, AHRR is a potential therapeutic target for WS-associated exacerbations of CS-induced inflammation. PMID:25137396

  9. Wood Smoke Enhances Cigarette Smoke–Induced Inflammation by Inducing the Aryl Hydrocarbon Receptor Repressor in Airway Epithelial Cells

    PubMed Central

    Awji, Elias G.; Chand, Hitendra; Bruse, Shannon; Smith, Kevin R.; Colby, Jennifer K.; Mebratu, Yohannes; Levy, Bruce D.

    2015-01-01

    Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice. C57Bl/6 mice were exposed for 4 or 12 weeks to filtered air, to 10 mg/m3 WS for 2 h/d, to 250 mg/m3 cigarette smoke (CS) for 6 h/d, or to CS followed by WS (CW). Inflammation was absent in the filtered air and WS groups, but enhanced by twofold in the bronchoalveolar lavage of the CW compared with CS group as measured by neutrophil numbers and levels of the neutrophil chemoattractant, keratinocyte-derived chemokine. The levels of the anti-inflammatory lipoxin, lipoxin A4, were reduced by threefold along with cyclo-oxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 in airway epithelial cells and PGE2 levels in the bronchoalveolar lavage of CW compared with CS mice. We replicated, in primary human airway epithelial cells, the changes observed in mice. Immunoprecipitations showed that WS blocked the interaction of aryl hydrocarbon receptor (AHR) with AHR nuclear transporter to reduce expression of COX-2 and mPGES-1 by increasing expression of AHR repressor (AHRR). Collectively, these studies show that exposure to low concentrations of WS enhanced CS-induced inflammation by inducing AHRR expression to suppress AHR, COX-2, and mPGES-1 expression, and levels of PGE2 and lipoxin A4. Therefore, AHRR is a potential therapeutic target for WS-associated exacerbations of CS-induced inflammation. PMID:25137396

  10. Modifying crops to increase cell wall digestibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants are highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-dig...

  11. GELIFICATION OF WOOD DURING COALIFICATION.

    USGS Publications Warehouse

    Hatcher, Patrick G.; Romankiw, Lisa A.; Evans, John R.

    1985-01-01

    Coalified wood was examined by SEM and CPMAS**1**3C NMR to delineate chemical and physical alterations responsible for gelification. Early coalification selectively degrades cellulosic components, preserving lignin-like components that are eventually transformed to coal. Cellular morphology persists until the chemical composition becomes uniform, at which point the cells coalesce under compaction and gelify.

  12. Allelic Variation in Cell Wall Candidate Genes Affecting Solid Wood Properties in Natural Populations and Land Races of Pinus radiata

    PubMed Central

    Dillon, S. K.; Nolan, M.; Li, W.; Bell, C.; Wu, H. X.; Southerton, S. G.

    2010-01-01

    Forest trees are ideally suited to association mapping due to their high levels of diversity and low genomic linkage disequilibrium. Using an association mapping approach, single-nucleotide polymorphism (SNP) markers influencing quantitative variation in wood quality were identified in a natural population of Pinus radiata. Of 149 sites examined, 10 demonstrated significant associations (P < 0.05, q < 0.1) with one or more traits after accounting for population structure and experimentwise error. Without accounting for marker interactions, phenotypic variation attributed to individual SNPs ranged from 2 to 6.5%. Undesirable negative correlations between wood quality and growth were not observed, indicating potential to break negative correlations by selecting for individual SNPs in breeding programs. Markers that yielded significant associations were reexamined in an Australian land race. SNPs from three genes (PAL1, PCBER, and SUSY) yielded significant associations. Importantly, associations with two of these genes validated associations with density previously observed in the discovery population. In both cases, decreased wood density was associated with the minor allele, suggesting that these SNPs may be under weak negative purifying selection for density in the natural populations. These results demonstrate the utility of LD mapping to detect associations, even when the power to detect SNPs with small effect is anticipated to be low. PMID:20498299

  13. Wood's lamp illumination (image)

    MedlinePlus

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  14. Wood's lamp examination

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003386.htm Wood's lamp examination To use the sharing features on this page, please enable JavaScript. A Wood's lamp examination is a test that uses ultraviolet ( ...

  15. Wood's lamp examination

    MedlinePlus

    A Wood's lamp examination is a test that uses ultraviolet (UV) light to look at the skin closely. ... Gebhard RE. Wood's light examination. In: Pfenninger JL, Fowler GC, eds. ... Care . 3rd ed. Philadelphia, PA: Elsevier Mosby; 2010:chap ...

  16. Robert Wood Johnson Foundation

    MedlinePlus

    Robert Wood Johnson Foundation Search How We Work Our Focus Areas About RWJF Search Menu How We Work Grants and Grant ... more For Grantees and Grantseekers The Robert Wood Johnson Foundation supports a wide array of research and ...

  17. Floodplains and wood

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2013-08-01

    Interactions between floodplains and wood date to the Carboniferous, when stable, multithread channel deposits appear with the evolution of tree-like plants. Foundational geologic texts, such as Lyell's, 1830Principles of Geology, describe floodplain-wood interactions, yet modern technical literature describes floodplain-wood interactions in detail for only a very limited range of environments. This likely reflects more than a century of deforestation, flow regulation, and channel engineering, including instream wood removal, which has resulted in severe wood depletion in most of the world's river networks. Instream wood affects floodplain form and process by altering flow resistance, conveyance and channel-floodplain connectivity, and influencing lateral and vertical accretion of floodplains. Instream wood reflects floodplain form and process as the floodplain influences wood recruitment via bank erosion and overbank flow, and wood transport and storage via floodplain effects on stage-discharge relations and flow resistance. Examining turnover times for instream wood at the reach scale in the context of a wood budget, floodplain characteristics influence fluvial transport and dynamics (wood recruitment), valley geometry (wood transport and storage), and hydraulics and river biota (wood decay and breakage). Accumulations of wood that vary from in situ jams and beaver dams in small channels to transport jams and log rafts in very large rivers can create stable, multithread channels and floodplain wetlands. Floodplain-wood interactions are best understood for a subset of small to medium-sized rivers in the temperate zone. We know little about these interactions on very large rivers, or on rivers in the tropical or boreal regions. This review suggests that most, if not all, channels and floodplains within forested catchments in the temperate zone historically had much greater wood loads and consequently much more obvious and important influences from wood than do

  18. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines

    PubMed Central

    2012-01-01

    Background Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles’ physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. Results WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. Conclusion The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs. PMID:23176191

  19. Multi-scale finite element model for a new material inspired by the mechanics and structure of wood cell-walls

    NASA Astrophysics Data System (ADS)

    Saavedra Flores, E. I.; Friswell, M. I.

    2012-07-01

    This paper proposes a fully coupled multi-scale finite element model for the constitutive description of an alumina/magnesium alloy/epoxy composite inspired in the mechanics and structure of the wall of wood cells. The mechanical response of the composite (the large scale continuum) is described by means of a representative volume element (RVE, corresponding to the intermediate scale) in which the fibre is represented as a periodic alternation of alumina and magnesium alloy fractions. Furthermore, at a lower scale the overall constitutive behavior of the alumina/magnesium alloy fibre is modelled as a single material defined by a large number of RVEs (the smallest material scale) at the Gauss point (intermediate) level. Numerical material tests show that this new composite maximises its toughness when the hierarchical design of wood cellulose fibres is replicated. The above results provide for the first time new clues into the understanding of how trees and plants optimise their microstructures at the cellulose level in order to absorb a large amount of strain energy before failure. These findings are likely to shed more light into natural materials and bio-inspired design strategies, which are still not well-understood at present.

  20. In-vitro fermentability of cell walls as influenced by lignin composition and cross-linking.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We assessed how diverse modifications in lignin composition and reductions in ferulate-lignin cross-linking influence the degradability of cell walls. Cell walls from nonlignified maize cell suspensions were artificially lignified with varying ratios of normal monolignols (coniferyl and sinapyl alco...

  1. Wood decay at sea

    NASA Astrophysics Data System (ADS)

    Charles, François; Coston-Guarini, Jennifer; Guarini, Jean-Marc; Fanfard, Sandrine

    2016-08-01

    The oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, "shipworms", i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea.

  2. Cell wall fermentation kinetics impacted more by lignin content and cross-linking than by diverse shifts in lignin composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a biomimetic model system to ascertain how lignification and diverse shifts in lignin cross-linking and composition influence cell wall fermentation. Primary cell walls from nonlignified maize cell suspensions were artificially lignified with varying ratios of normal monolignols (coniferyl a...

  3. Copolymerization of Sinapyl p-coumarate With Sinapyl alcohol: Impact on Syringyl Lignin Formation and Fermentability of Maize Cell Walls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignins in grass biomass and forage crops are highly acylated with p-coumarate, but the function of p-coumarate and its impact on cell wall degradability are poorly understood. In this study, cell walls from maize cell suspensions were artificially lignified with coniferyl alcohol and increasing pro...

  4. Systems genetics of wood formation.

    PubMed

    Mizrachi, Eshchar; Myburg, Alexander A

    2016-04-01

    In woody plants, xylogenesis is an exceptionally strong carbon sink requiring robust transcriptional control and dynamic coordination of cellular and metabolic processes directing carbon allocation and partitioning into secondary cell wall biosynthesis. As a biological process, wood formation is an excellent candidate for systems modeling due to the strong correlation patterns and interconnectedness observed for transcriptional and metabolic component traits contributing to complex phenotypes such as cell wall chemistry and ultrastructure. Genetic variation in undomesticated tree populations provides abundant perturbation of systems components, adding another dimension to plant systems biology (besides spatial and temporal variation). High-throughput analysis of molecular component traits in adult trees has provided the first insights into the systems genetics of wood, an important renewable feedstock for biomaterials and bioenergy. PMID:26943939

  5. Floods and Fluvial Wood

    NASA Astrophysics Data System (ADS)

    Comiti, F.

    2014-12-01

    Several studies have recently addressed the complex interactions existing at various spatial scales among riparian vegetation, channel morphology and wood storage. The majority of these investigations has been carried out in relatively natural river systems, focusing mostly on the long-term vegetation-morphology dynamics under "equilibrium" conditions. Little is still known about the role of flood events - of different frequency/magnitude - on several aspects of such dynamics, e.g. entrainment conditions of in-channel wood, erosion rates of vegetation from channel margins and from islands, transport distances of wood elements of different size along the channel network. Even less understood is how the river's evolutionary trajectory may affect these processes, and thus the degree to which conceptual models derivable from near-natural systems could be applicable to human-disturbed channels. Indeed, the different human pressures - present on most river basins worldwide - have greatly impaired the morphological and ecological functions of fluvial wood, and the attempts to "restore" in-channel wood storage are currently carried out without a sufficient understanding of wood transport processes occurring during floods. On the other hand, the capability to correctly predict the magnitude of large wood transport during large floods is now seen as crucial - especially in mountain basins - for flood hazard mapping, as is the identification of the potential wood sources (e.g. landslides, floodplains, islands) for the implementation of sound and effective hazard mitigation measures. The presentation will first summarize the current knowledge on fluvial wood dynamics and modelling at different spatial and temporal scales, with a particular focus on mountain rivers. The effects of floods of different characteristics on vegetation erosion and wood transport will be then addressed presenting some study cases from rivers in the European Alps and in the Italian Apennines featuring

  6. Urban Wood Waste Resource Assessment

    SciTech Connect

    Wiltsee, G.

    1998-11-20

    This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

  7. Urban Wood Waste Resource Assessment

    SciTech Connect

    G. Wiltsee.

    1999-01-21

    This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories (wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

  8. Cary Woods Elementary School.

    ERIC Educational Resources Information Center

    Havens, Glenda

    1994-01-01

    Describes the school reading program at Cary Woods Elementary School (in Auburn, Alabama), one of several school reading programs designated by the International Reading Association as exemplary. (SR)

  9. Wood pellet production

    SciTech Connect

    Moore, J.W.

    1983-08-01

    Southern Energy Limited's wood pellet refinery, Bristol, Florida, produces wood pellets for fuel from scrap wood from a nearby sawmill and other hog fuel delivered to the plant from nearby forest lands. The refinery will provide 50,000 tons of pellets per year to the Florida State Hospital at Chattahoochee to fire recently converted boilers in the central power plant. The pellets are densified wood, having a moisture content of about 10% and a heating value of 8000 Btu/lb. They are 0.5 inches in diameter and 2 to 3 inches in length.

  10. How James Wood Works

    ERIC Educational Resources Information Center

    Goldstein, Evan R., Comp.

    2008-01-01

    Reading through news-media clippings about James Wood, one might reasonably conclude that "pre-eminent critic" is his official job title. In fact, Wood is a staff writer for "The New Yorker" and a professor of the practice of literary criticism at Harvard University. But at a time when there is much hand-wringing about the death of the…

  11. Functional lignocellulosic materials prepared by ATRP from a wood scaffold

    PubMed Central

    Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo

    2016-01-01

    Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood. PMID:27506369

  12. Functional lignocellulosic materials prepared by ATRP from a wood scaffold.

    PubMed

    Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo

    2016-01-01

    Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood. PMID:27506369

  13. Functional lignocellulosic materials prepared by ATRP from a wood scaffold

    NASA Astrophysics Data System (ADS)

    Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo

    2016-08-01

    Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood.

  14. Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: We used a biomimetic model system to ascertain how reductions in ferulate-lignin cross-linking and shifts in lignin composition influence ruminal cell wall fermentation. Primary walls from maize cell suspensions with normal or reduced feruloylation were artificially lignified with variou...

  15. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  16. How to quantify conduits in wood?

    PubMed

    Scholz, Alexander; Klepsch, Matthias; Karimi, Zohreh; Jansen, Steven

    2013-01-01

    Vessels and tracheids represent the most important xylem cells with respect to long distance water transport in plants. Wood anatomical studies frequently provide several quantitative details of these cells, such as vessel diameter, vessel density, vessel element length, and tracheid length, while important information on the three dimensional structure of the hydraulic network is not considered. This paper aims to provide an overview of various techniques, although there is no standard protocol to quantify conduits due to high anatomical variation and a wide range of techniques available. Despite recent progress in image analysis programs and automated methods for measuring cell dimensions, density, and spatial distribution, various characters remain time-consuming and tedious. Quantification of vessels and tracheids is not only important to better understand functional adaptations of tracheary elements to environment parameters, but will also be essential for linking wood anatomy with other fields such as wood development, xylem physiology, palaeobotany, and dendrochronology. PMID:23507674

  17. Air quality effects of residential wood combustion

    SciTech Connect

    Cannon, J.A.

    1984-09-01

    In the mid 1970s the air quality in Missoula, Montana began to deteriorate due to pollution from wood-burning stoves. By 1980, 12,000 households were heating their homes with wood to some degree. Consequently, particulate concentrations rose sharply, with concentrations of over 500 ..mu..g/m/sup 3/ on many days. Because of health concerns, the Montana Department of Health and Environmental Sciences carried out an air pollution study. According to the data studied, airborne particulates appeared to be impairing the pulmonary function of children and older individuals with obstructive pulmonary disease. The correlation between human health effects and wood stove emissions was even more serious because of the size of the particulates; i.e., less than ten microns in diameter. A number of communities across the country have instituted voluntary and/or mandatory restrictions on local wood-burning. EPA has been involved in a number of activities that support the efforts of any community that thinks it has a potential air quality problem caused by residential wood combustion. The agency has also funded research on mutagenic and carcinogenic effects of wood smoke emission on mamallian cells and rodents.

  18. Wood's Lamp Examination

    MedlinePlus

    ... dermatologists to assist in the diagnosis of various pigment and infectious disorders. The examination is performed in ... lamp. If a fungal or bacterial infection or pigment disorder is present, Wood's lamp examination can strengthen ...

  19. {sup 32}P-postlabeling analysis of DNA adducts in white blood cells of humans exposed to residential wood combustion particulate matter

    SciTech Connect

    Heussen, G.A.H.; Bouman, H.G.M.; Alink, G.M.

    1994-12-31

    Residential wood combustion (RWC) in open fireplaces poses a possible health risk because of the emission into the indoor air of mutagenic and carcinogenic compounds. In the present report it was investigated whether this emission leads to enhanced levels of DNA adducts in white blood cells (WBC) of exposed subjects. Under conditions that most likely reflect the Dutch pattern of use of open fireplaces, RWC increased both indoor air mutagenicity and levels of benzo(a)pyrene (B(a)P) and pyrene. The indirect mutagenicity showed a stronger increase than the direct mutagenicity. The increase in indirect mutagenicity was not directly correlated with the increase in the levels of B(a)P and pyrene. {sup 32}P-postlabelling analysis of DNA adducts following nuclease P1 enrichment or butanol extraction revealed low adduct levels. No combustion-related increase in the amount of adducts was observed. Possible explanations for the lack of correlation between air monitoring data and WBC DNA adduct levels are discussed. 35 refs., 3 figs., 3 tabs.

  20. Transportation fuels from wood

    SciTech Connect

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  1. Impact Tests for Woods

    NASA Technical Reports Server (NTRS)

    1922-01-01

    Although it is well known that the strength of wood depends greatly upon the time the wood is under the load, little consideration has been given to this fact in testing materials for airplanes. Here, results are given of impact tests on clear, straight grained spruce. Transverse tests were conducted for comparison. Both Izod and Charpy impact tests were conducted. Results are given primarily in tabular and graphical form.

  2. Growing with wood waste

    SciTech Connect

    White, K.M.

    1995-05-01

    When officials at Regional Waste Services (Peabody, Mass.) were looking for an outlet for their used wood products in the late 1980s, they had no idea that the material would eventually turn into a whole new market for them. Simply tired of paying exorbitant disposal fees and seeking out obscure landfills willing to accept the waste, company officials decided to build and operate their own 1,000-tpd wood recycling facility. Encouraged by the immediate success of the facility, principals at Regional Waste Services, which at the time was the fifth largest independent waste hauling, transfer, and disposal firm in the US made a strategic business decision to sell their waste hauling business and to concentrate on the wood recycling operation full time. Their newly named company, Wood Recycling, Inc. (WRI, Peabody, Mass.), was officially established in July 1990. Today, nearly five years later, that decision appears to be paying off in a big way. WRI has successfully diverted thousands of tons of urban wood wastes from landfills. It also has turned that waste into an innovative line of recycled wood and paper fiber mulch lawn care products that are being marketed to consumers and commercial entities across the country.

  3. Toxic hazard and chemical analysis of leachates from furfurylated wood.

    PubMed

    Pilgård, Annica; Treu, Andreas; van Zeeland, Albert N T; Gosselink, Richard J A; Westin, Mats

    2010-09-01

    The furfurylation process is an extensively investigated wood modification process. Furfuryl alcohol molecules penetrate into the wood cell wall and polymerize in situ. This results in a permanent swelling of the wood cell walls. It is unclear whether or not chemical bonds exist between the furfuryl alcohol polymer and the wood. In the present study, five different wood species were used, both hardwoods and softwoods. They were treated with three different furfurylation procedures and leached according to three different leaching methods. The present study shows that, in general, the leachates from furfurylated wood have low toxicity. It also shows that the choice of leaching method is decisive for the outcome of the toxicity results. Earlier studies have shown that leachates from wood treated with furfuryl alcohol prepolymers have higher toxicity to Vibrio fischeri than leachates from wood treated with furfuryl alcohol monomers. This is probably attributable to differences in leaching of chemical compounds. The present study shows that this difference in the toxicity most likely cannot be attributed to maleic acid, furan, furfural, furfuryl alcohol, or 2-furoic acid. However, the difference might be caused by the two substances 5-hydroxymethylfurfural and 2,5-furandimethanol. The present study found no difference in the amount of leached furfuryl alcohol between leachates from furfurylated softwood and furfurylated hardwood species. Earlier studies have indicated differences in grafting of furfuryl alcohol to lignin. However, nothing was found in the present study that could support this. The leachates of furfurylated wood still need to be PMID:20821648

  4. Glass-Transition Temperature Profile Measured in a Wood Cell Wall Using Scanning Thermal Expansion Microscope (SThEM)

    NASA Astrophysics Data System (ADS)

    Antoniow, J. S.; Maigret, J.-E.; Jensen, C.; Trannoy, N.; Chirtoc, M.; Beaugrand, J.

    2012-11-01

    This study aims to assess the in situ spatial distribution of glass-transition temperatures ( T g) of the main lignocellulosic biopolymers of plant cell walls. Studies are conducted using scanning thermal expansion microscopy to analyze the cross-section of the cell wall of poplar. The surface topography is mapped over a range of probe-tip temperatures to capture the change of thermal expansion on the sample surface versus temperature. For different temperature values chosen between 20 °C and 250 °C, several quantitative mappings were made to show the spatial variation of the thermal expansion. As the glass transition affects the thermal expansion coefficient and elastic modulus considerably, the same data line of each topography image was extracted to identify specific thermal events in their topographic evolution as a function of temperature. In particular, it is shown that the thermal expansion of the contact surface is not uniform across the cell wall and a profile of the glass-transition temperature could thus be evidenced and quantified corresponding to the mobility of lignocellulosic polymers having a role in the organization of the cell wall structures.

  5. Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines.

    PubMed

    Corsini, Emanuela; Budello, Silvia; Marabini, Laura; Galbiati, Valentina; Piazzalunga, Andrea; Barbieri, Pierluigi; Cozzutto, Sergio; Marinovich, Marina; Pitea, Demetrio; Galli, Corrado L

    2013-12-01

    The aim of this study was to investigate the effect on the induction of interleukin-8 of particulate matter (PM) from fir and beech pellets burnt in domestic appliances on two human cells lines, namely the lung epithelial cell line A549 and the promyelocytic cell line THP-1. The effects of PM2.5 obtained from combustion of beech and fir pellets were compared to reference diesel exhaust particulates (DEP). In parallel, wood smoke PM-induced genotoxicity and oxidative stress were also investigated in A549 cells. Cells were treated for different times (3-72 h) with increasing concentrations of PM2.5 obtained from sequential combustions of fir and beech pellets or reference DEP. Cell viability was assessed by lactate dehydrogenase leakage, and the release of interleukin-8 or CXCL8 (IL-8) was measured to evaluate the pro-inflammatory effect. Oxidative stress was evaluated by the 5(6)-carboxy-2',7'dichlorofluorescein diacetate (DCFH-DA) assay and DNA damage by the alkaline comet assay and micronucleus frequency by flow cytometry. Both A549 and THP-1 cells responded in a dose- and time-related manner to wood smoke PM2.5 with IL-8 release, particles obtained from late combustions being the most active. THP-1 cells were more sensitive than A549 cells. On a mass base, similar effects were observed for both fir and beech PM2.5. However, the combustion of beech pellets generated approximately three times more PM2.5 than fir pellets. Regarding the mechanism of PM2.5 uptake, in both THP-1 and A549 cells, cytochalasin D prevented PM2.5-induced IL-8 mRNA expression and cytokine release, indicating a key role for actin polymerization in particles uptake and that the production of IL-8 correlated with particle phagocytosis. As signal transduction pathway involvement, in both THP-1 and A549 cells, PM2.5-induced IL-8 release could be completely blocked by the selective inhibitor SB203580, indicating a role of p38 MAPK activation. PM2.5 from both fir and beech pellets also induced

  6. Using biomimetic cell wall models to identify new plant lignin bioengineering targets for improving forage and biomass utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioengineering of lignin to contain atypical components derived from other metabolic pathways is increasingly being pursued to custom design lignified cell walls that are inherently more digestible by livestock or more easily pretreated and saccharified for biofuel production. Because plants produce...

  7. Identifying new lignin bioengineering targets for improving biomass and forage utilization: a review of biomimetic studies with maize cell walls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioengineering of lignin to contain atypical components derived from other metabolic pathways is increasingly being pursued to custom design lignified cell walls that are more readily pretreated and saccharified for biofuel production or easily digested by livestock. Because plants produce such a di...

  8. Neighboring Parenchyma Cells Contribute to Arabidopsis Xylem Lignification, while Lignification of Interfascicular Fibers Is Cell Autonomous[W

    PubMed Central

    Smith, Rebecca A.; Schuetz, Mathias; Roach, Melissa; Mansfield, Shawn D.; Ellis, Brian; Samuels, Lacey

    2013-01-01

    Lignin is a critical structural component of plants, providing vascular integrity and mechanical strength. Lignin precursors (monolignols) must be exported to the extracellular matrix where random oxidative coupling produces a complex lignin polymer. The objectives of this study were twofold: to determine the timing of lignification with respect to programmed cell death and to test if nonlignifying xylary parenchyma cells can contribute to the lignification of tracheary elements and fibers. This study demonstrates that lignin deposition is not exclusively a postmortem event, but also occurs prior to programmed cell death. Radiolabeled monolignols were not detected in the cytoplasm or vacuoles of tracheary elements or neighbors. To experimentally define which cells in lignifying tissues contribute to lignification in intact plants, a microRNA against CINNAMOYL CoA-REDUCTASE1 driven by the promoter from CELLULOSE SYNTHASE7 (ProCESA7:miRNA CCR1) was used to silence monolignol biosynthesis specifically in cells developing lignified secondary cell walls. When monolignol biosynthesis in ProCESA7:miRNA CCR1 lines was silenced in the lignifying cells themselves, but not in the neighboring cells, lignin was still deposited in the xylem secondary cell walls. Surprisingly, a dramatic reduction in cell wall lignification of extraxylary fiber cells demonstrates that extraxylary fibers undergo cell autonomous lignification. PMID:24096341

  9. Precision wood particle feedstocks

    DOEpatents

    Dooley, James H; Lanning, David N

    2013-07-30

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  10. Avalanches in Wood Compression.

    PubMed

    Mäkinen, T; Miksic, A; Ovaska, M; Alava, Mikko J

    2015-07-31

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free. PMID:26274428

  11. Genetic and environmental modification of the mechanical properties of wood

    NASA Astrophysics Data System (ADS)

    Sederoff, R.; Allona, I.; Whetten, R.

    1996-02-01

    Wood is one of the nation's leading raw materials and is used for a wide variety of products, either directly as wood, or as derived materials in pulp and paper. Wood is a biological material and evolved to provide mechanical support and water transport to the early plants that conquered the land. Wood is a tissue that results from the differentiation and programmed cell death of cells that derive from a tissue known as the vascular cambium. The vascular cambium is a thin cylinder of undifferentiated tissue in plant stems and roots that gives rise to several different cell types. Cells that differentiate on the internal side of the cambium form xylem, a tissue composed in major part, of long thin cells that die leaving a network of interconnected cell walls that serve to transport water and to provide mechanical support for the woody plant. The shape and chemical composition of the cells in xylem are well suited for these functions. The structure of cells in xylem determines the mechanical properties of the wood because of the strength derived from the reinforced matrix of the wall. The hydrophobic phenolic surface of the inside of the cell walls is essential to maintain surface tension upon which water transport is based and to resist decay caused by microorganisms. The properties of wood derived from the function of xylem also determine its structural and chemical properties as wood and paper products. Therefore, the physical and chemical properties of wood and paper products also depend on the morphology and composition of the cells from which they are derived. Wood (xylem cell walls) is an anisotropic material, a composite of lignocellulose. It is a matrix of cellulose microfibrils, complexed with hemicelluloses, (carbohydrate polymers which contain sugars other than glucose, both pentoses and hexoses), embedded together in a phenolic matrix of lignin. The high tensile strength of wood in the longitudinal direction, is due to the structure of cellulose and the

  12. Wood energy-commercial applications

    NASA Technical Reports Server (NTRS)

    Kennel, R. P.

    1978-01-01

    Wood energy is being widely investigated in many areas of the country because of the many obvious benefits of wood fuel such as the low price per million Btus relative to coal, oil, and gas; the wide availability of noncommercial wood and the proven ability to harvest it; established technology which is reliable and free of pollution; renewable resources; better conservation for harvested land; and the potential for jobs creation. The Southeastern United States has a specific leadership role in wood energy based on its established forest products industry experience and the potential application of wood energy to other industries and institutions. Significant questions about the widespread usage of wood energy are being answered in demonstrations around the country as well as the Southeast in areas of wood storage and bulk handling; high capitalization costs for harvesting and combustion equipment; long term supply and demand contracts; and the economic feasibility of wood energy outside the forest products industry.

  13. Cytochemical localization of cellulases in decayed and nondecayed wood

    SciTech Connect

    Murmanis, L.; Highley, T.L.; Palmer, J.G.

    1987-01-01

    Sawdust from undecayed western hemlock wood and from wood previously decayed by the brown-rot fungus Poria placenta or by the white-rot fungus Ganoderma applanatum was incubated with commercial cellulase from Trichoderma viride. Samples were treated cytochemically to locate cellulase activity and examined by TEM. Results showed that cellulase degraded undecayed wood extensively, with the attack starting on the outer border of a cell wall and progressing inside. Wood decayed by P. placenta, with or without cellulase incubation, and treated by the cytochemical test showed uniform distribution of electron dense particles throughout the cell walls. In wood decayed by G. applanatum, cellulase degradation was similar to that in undecayed wood. From measurements of particle diameter it is suggested that electron dense particles are cellulase. It is concluded that brown-rot and white-rot fungi have different effects on the microstructure of wood. The brown-rot fungus appears to open the wood microstructure so that cellulase can diffuse throughout the degraded tracheid wall.

  14. Classroom Demonstrations of Wood Properties.

    ERIC Educational Resources Information Center

    Foulger, A. N.

    Presented in this manual are 20 activities selected to show some of the properties of wood and how these properties relate to the cellular structure of wood. Each activity includes stated objectives, indicates materials needed, and explains procedures. Illustrations related to the activities, glossary of terms, and photographs of wood structure…

  15. Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance.

    PubMed

    Li, Yuanyuan; Fu, Qiliang; Yu, Shun; Yan, Min; Berglund, Lars

    2016-04-11

    Optically transparent wood (TW) with transmittance as high as 85% and haze of 71% was obtained using a delignified nanoporous wood template. The template was prepared by removing the light-absorbing lignin component, creating nanoporosity in the wood cell wall. Transparent wood was prepared by successful impregnation of lumen and the nanoscale cellulose fiber network in the cell wall with refractive-index-matched prepolymerized methyl methacrylate (MMA). During the process, the hierarchical wood structure was preserved. Optical properties of TW are tunable by changing the cellulose volume fraction. The synergy between wood and PMMA was observed for mechanical properties. Lightweight and strong transparent wood is a potential candidate for lightweight low-cost, light-transmitting buildings and transparent solar cell windows. PMID:26942562

  16. Grant Wood: "American Gothic."

    ERIC Educational Resources Information Center

    Fitzgerald, Diane M.

    1988-01-01

    Presents a lesson plan which exposes students in grades 10-12 to the visual symbols and historical references contained in Grant Wood's "American Gothic." Includes background information on the artist and the painting, instructional strategies, a studio activity, and evaluation criteria. (GEA)

  17. Plasma treatment of wood

    NASA Astrophysics Data System (ADS)

    Volokitin, G. G.; Skripnikova, N. K.; Sinitsyn, V. A.; Volokitin, O. G.; Shekhovtsov, V. V.; Vaschenko, S. P.; Kuz'min, V. I.

    2016-01-01

    Plasma technology was developed to create protective-decorative coatings on the wood surfaces. Experimental investigation on applying the protective coating using the low-temperature plasma energy as well as studies of the distribution of temperature fields over the section of the treated workpiece have been carried out, and the calculated results have been compared with the experimental data.

  18. Aspen SUCROSE TRANSPORTER3 Allocates Carbon into Wood Fibers1[C][W

    PubMed Central

    Mahboubi, Amir; Ratke, Christine; Gorzsás, András; Kumar, Manoj; Mellerowicz, Ewa J.; Niittylä, Totte

    2013-01-01

    Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species, including Populus species, the majority of this carbon is derived from sucrose (Suc) transported in the phloem. The mechanism of radial Suc transport from phloem to developing wood is not well understood. We investigated the role of active Suc transport during secondary cell wall formation in hybrid aspen (Populus tremula × Populus tremuloides). We show that RNA interference-mediated reduction of PttSUT3 (for Suc/H+ symporter) during secondary cell wall formation in developing wood caused thinner wood fiber walls accompanied by a reduction in cellulose and an increase in lignin. Suc content in the phloem and developing wood was not significantly changed. However, after 13CO2 assimilation, the SUT3RNAi lines contained more 13C than the wild type in the Suc-containing extract of developing wood. Hence, Suc was transported into developing wood, but the Suc-derived carbon was not efficiently incorporated to wood fiber walls. A yellow fluorescent protein:PttSUT3 fusion localized to plasma membrane, suggesting that reduced Suc import into developing wood fibers was the cause of the observed cell wall phenotype. The results show the importance of active Suc transport for wood formation in a symplasmically phloem-loading tree species and identify PttSUT3 as a principal transporter for carbon delivery into secondary cell wall-forming wood fibers. PMID:24170204

  19. Pine wood nematode, Bursaphelenchus xylophilus.

    PubMed

    Futai, Kazuyoshi

    2013-01-01

    After devastating vast areas of pine forests in Asian countries, the pine wilt disease spread into European forests in 1999 and is causing worldwide concern. This disease involves very complicated interactions between a pathogenic nematode, its vector beetle, host pine species, and fungi in dead hosts. Pathogenicity of the pine wood nematode is determined not only by its physical and chemical traits but also by its behavioral traits. Most life history traits of the pine wood nematode, such as its phoretic relationship with vector beetles, seem to be more effective in virulent than in avirulent isolates or species. As the pathogenicity determinants, secreted enzymes, and surface coat proteins are very important, they have therefore been studied intensively. The mechanism of quick death of a large pine tree as a result of infection by a tiny nematode could be ascribed to the dysfunction of the water-conducting system caused by the death of parenchyma cells, which must have originally evolved as an inherent resistant system. PMID:23663004

  20. Nanoindentation mapping of a wood-adhesive bond

    NASA Astrophysics Data System (ADS)

    Konnerth, J.; Valla, A.; Gindl, W.

    2007-08-01

    A mapping experiment of a wood phenol-resorcinol-formaldehyde adhesive bond was performed by means of grid nanoindentation. The variability of the modulus of elasticity and the hardness was evaluated for an area of 17 μm by 90 μm. Overall, the modulus of elasticity of the adhesive was clearly lower than the modulus of wood cell walls, whereas the hardness of the adhesive was slightly higher compared to cell walls. A very slight trend of decreasing modulus of elasticity was found with increasing distance from the immediate bond line. However, the trend was superimposed by a high variability of the modulus of elasticity in dependence on the position in the wood cell wall. The unexpectedly high variation of the modulus between 12 and 24 GPa may be explained by the interaction between the helical orientation of the cellulose microfibrils in the S2 layer of the wood cell wall and the geometry of the three-sided Berkovich type indenter pyramid used. Corresponding to the very slight decrease in modulus with increasing distance from the bond line, a similar but clearer trend was found for hardness. Both trends of changing mechanical properties of wood cell walls with varying distance from the bond line are attributed to effects of adhesive penetration into the wood cell wall.

  1. Lump wood combustion process

    NASA Astrophysics Data System (ADS)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  2. Out of the woods.

    PubMed

    Jacobson, J L

    1992-01-01

    Throughout Africa, Asia and Latin America women are pushed out of forests and from their maintenance by governments and private interests for cash crop development disregarding the role of women in conserving forests. In developing countries forests are a source of wood for fuel; 60-80% of women gather wood for family needs in America. Fruits, vegetables, and nuts gathered in woods enhance their diet. Indonesian women pick bananas, mangos, guavas, and avocados from trees around their homes; in Senegal shea-nut butter is made from a local tree fruit to be sold for cash. Women provide labor also in logging, wood processing, and tree nurseries. They make charcoal and grow seedlings for sale. In India 40% of forest income and 75% of forest products export earnings are derived from nonwood resources. Poor, rural women make items out of bamboo, rattan, and rope to sell: 48% of women in an Egyptian province make a living through such activities. In India 600,000 women harvest tendu leaves for use as wrappings for cigarettes. The expansion of commercial tree plantations replacing once communal natural forests has forced poor households to spend up to 4-% of their income on fuel that they used to find in forests. Tribal women in India know the medicinal uses of 300 forest species, and women in Sierra Leone could name 31 products they obtained or made from trees and bushes, while men named only 8 items. Only 1 forestry project appraised by the World Bank during 1984-97 named women as beneficiaries, and only 1 out of 33 rural development programs funded by the World Bank did. Women provide food, fuel, and water for their families in subsistence economies, they know sustainable methods of forestry, yet they are not included in development programs whose success or failure could hinge on more attention to women's contribution and on more equity. PMID:12285836

  3. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  4. Feasibility study of wood biomass gasification/molten carbonate fuel cell power system—comparative characterization of fuel cell and gas turbine systems

    NASA Astrophysics Data System (ADS)

    Morita, H.; Yoshiba, F.; Woudstra, N.; Hemmes, K.; Spliethoff, H.

    The conversion of biomass by means of gasification into a fuel suitable for a high-temperature fuel cell has recently received more attention as a potential substitute for fossil fuels in electric power production. However, combining biomass gasification with a high-temperature fuel cell raises many questions with regard to efficiency, feasibility and process requirements. In this study, a biomass gasification/molten carbonate fuel cell (MCFC) system is modelled and compared with a relatively well-established biomass gasification/gas turbine (GT), in order to understand the peculiarities of biomass gasification/MCFC power systems and to develop a reference MCFC system as a future biomass gasification/MCFC power station.

  5. Structure-Property Characterization of the Crinkle-Leaf Peach Wood Phenotype: A Future Model System for Wood Properties Research?

    NASA Astrophysics Data System (ADS)

    Wiedenhoeft, Alex C.; Arévalo, Rafael; Ledbetter, Craig; Jakes, Joseph E.

    2016-08-01

    Nearly 400 million years of evolution and field-testing by the natural world has given humans thousands of wood types, each with unique structure-property relationships to study, exploit, and ideally, to manipulate, but the slow growth of trees makes them a recalcitrant experimental system. Variations in wood features of two genotypes of peach (Prunus persica L.) trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Crinkle-leaf is a naturally-occurring mutation in which wood strength is altered in conjunction with an easily observed `crinkling' of the leaves' surface. Trees from three vigor classes (low growth rate, average growth rate, and high growth rate) of each genotype were sampled. No meaningful tendency of dissimilarities among the different vigor classes was found, nor any pattern in features in a genotype-by-vigor analysis. Wild-type trees exhibited longer vessels and fibers, wider rays, and slightly higher specific gravity. Neither cell wall mechanical properties measured with nanoindentation nor cell wall histochemical properties were statistically or observably different between crinkle-leaf and wild-type wood. The crinkle-leaf mutant has the potential to be a useful model system for wood properties investigation and manipulation if it can serve as a field-observable vegetative marker for altered wood properties.

  6. Biotechnology in the wood industry.

    PubMed

    Mai, C; Kües, U; Militz, H

    2004-02-01

    Wood is a natural, biodegradable and renewable raw material, used in construction and as a feedstock in the paper and wood product industries and in fuel production. Traditionally, biotechnology found little attention in the wood product industries, apart from in paper manufacture. Now, due to growing environmental concern and increasing scientific knowledge, legal restrictions to conventional processes have altered the situation. Biotechnological approaches in the area of wood protection aim at enhancing the treatability of wood with preservatives and replacing chemicals with biological control agents. The substitution of conventional chemical glues in the manufacturing of board materials is achieved through the application of fungal cultures and isolated fungal enzymes. Moreover, biotechnology plays an important role in the waste remediation of preservative-treated waste wood. PMID:12937955

  7. Dynamic loss properties of wood

    SciTech Connect

    Wert, C.A.; Weller, M.; Caulfield, D.

    1984-11-01

    Internal friction and dielectric loss measurements have been made on whole wood, on cellulose, and on lignin. A prominent ..beta.. peak is seen at 200 K for frequencies around 1 Hz. This peak shifts to lower temperatures (near 160 K) when wood is heated to 475 K. We propose that this shift signifies molecular changes characteristic of the first stages of coalification of wood and lignin. Additional comparisons are made with the macromolecular structure of amber, oil shale, and synthetic polymers.

  8. Dynamic loss properties of wood

    SciTech Connect

    Wert, C.A.; Weller, M.; Caulfield, D.

    1984-11-01

    Internal friction and dielectric loss measurements have been made on wood, on cellulose, and on lignin. A prominent ..beta.. peak is seen at 200 K for frequencies around 1 Hz. This peak shifts to lower temperatures (near 160 K) when wood is heated to 475 K. We propose that this shift signifies molecular changes characteristic of the first stages of coalification of wood and lignin. Additional comparisons are made with the macromolecular structure of amber, oil shale, and synthetic polymers.

  9. Towards optimizing wood development in bioenergy trees.

    PubMed

    Nieminen, Kaisa; Robischon, Marcel; Immanen, Juha; Helariutta, Ykä

    2012-04-01

    To secure a sustainable energy source for the future, we need to develop an alternative to fossil fuels. Cellulose-based biofuel production has great potential for development into a sustainable and renewable energy source. The thick secondary walls of xylem cells provide a natural source of cellulose. As a result of the extensive production of wood through cambial activity, massive amounts of xylem cells can be harvested from trees. How can we obtain a maximal cellulose biomass yield from these trees? Thus far, tree breeding has been very challenging because of the long generation time. Currently, new breeding possibilities are emerging through the development of high-throughput technologies in molecular genetics. What potential does our current knowledge on the regulation of cambial activity provide for the domestication of optimal bioenergy trees? We examine the hormonal and molecular regulation of wood development with the aim of identifying the key regulatory aspects. We describe traits, including stem morphology and xylem cell dimensions, that could be modified to enhance wood production. Finally, we discuss the potential of novel marker-assisted tree breeding technologies. PMID:22474686

  10. Degradation of carbohydrates and lignins in buried woods

    USGS Publications Warehouse

    Hedges, J.I.; Cowie, G.L.; Ertel, J.R.; James, Barbour R.; Hatcher, P.G.

    1985-01-01

    Spruce, alder, and oak woods deposited in coastal sediments were characterized versus their modern counterparts by quantification of individual neutral sugars and lignin-derived phenols as well as by scanning electron microscopy, 13C NMR, and elemental analysis. The buried spruce wood from a 2500 yr old deposit was unaltered whereas an alder wood from the same horizon and an oak wood from an open ocean sediment were profoundly degraded. Individual sugar and lignin phenol analyses indicate that at least 90 and 98 wt% of the initial total polysaccharides in the buried alder and oak woods, respectively, have been degraded along with 15-25 wt% of the lignin. At least 75% of the degraded biopolymer has been physically lost from these samples. This evidence is supported by the SEM, 13C NMR and elemental analyses, all of which indicate selective loss of the carbohydrate moiety. The following order of stability was observed for the major biochemical constituents of both buried hardwoods: vanillyl and p-hydroxyl lignin structural units > syringyl lignin structural units > pectin > ??-cellulose > hemicellulose. This sequence can be explained by selective preservation of the compound middle lamella regions of the wood cell walls. The magnitude and selectivity of the indicated diagenetic reactions are sufficient to cause major changes in the chemical compositions of wood-rich sedimentary organic mixtures and to provide a potentially large in situ nutrient source. ?? 1985.

  11. Wood Substitutes; A Base Syllabus on Wood Technology.

    ERIC Educational Resources Information Center

    Eastern Kentucky Univ., Richmond.

    This curriculum guide is for use by college instructors concerned with expanding traditional woodworking programs. It was developed in a National Defense Education Act summer institute and is based on an outline provided by members of a previous institute. The content concerns wood substitutes which are made to resemble wood and are often used…

  12. Wood reinforcement of poplar by rice NAC transcription factor.

    PubMed

    Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka

    2016-01-01

    Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species. PMID:26812961

  13. Wood reinforcement of poplar by rice NAC transcription factor

    PubMed Central

    Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka

    2016-01-01

    Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species. PMID:26812961

  14. Nanoscale coatings on wood: polyelectrolyte adsorption and layer-by-layer assembled film formation.

    PubMed

    Renneckar, Scott; Zhou, Yu

    2009-03-01

    Surface chemistry of wood is based on the exposed surface that is the combination of the intact and cut cellular wall material. It is inherently complex and changes with processing history. Modification of wood surfaces through noncovalent attachment of amine containing water soluble polyelectrolytes provides a path to create functional surfaces in a controlled manner. Adsorption of polyethylenimine (PEI) and polydiallydimethylammonium chloride (PDDA) to wood was quantified as a function of solution conditions (pH and ionic strength). Polycation adsorption was maximized under basic pH without the addition of electrolyte. Added salt either had marginal influence or decreased adsorption of polycation, indicating interactions are strongly influenced by Coulombic forces. PEI adsorption could be modeled by both a Langmuir and Freundlich equations, although the wood surface is known to be heterogeneous. After adsorption of polycations, layer-by-layer assembled films were created on the wood surface. Layered films masked ultrastructural features of the cell wall, while leaving the microscale features of wood (cut lumen walls and openings) evident. These findings revealed for the first time that nanoscale films on wood can be deposited without changing the microscopic and macroscopic texture. Functionalized wood surfaces created by nanoscale films may have a future role in adhesives systems for wood composites, wood protection, and creating new functional features on wood. PMID:20355976

  15. Towards the regulation of aerosol emissions by their potential health impact: Assessing adverse effects of aerosols from wood combustion and ship diesel engine emissions by combining comprehensive data on the chemical composition and their toxicological effects on human lung cells

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Streibel, T.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Orasche, J.; Müller, L.; Rheda, A.; Passig, J.; Radischat, C.; Czech, H.; Tiita, P.; Jalava, P.; Kasurinen, S.; Schwemer, T.; Yli-Prilä, P.; Tissari, J.; Lamberg, H.; Schnelle-Kreis, J.

    2014-12-01

    Ship engine emissions are important regarding lung and cardiovascular diseases in coastal regions worldwide. Bio mass burning is made responsible for adverse health effects in many cities and rural regions. The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties and health effects of anthropogenic combustion emissions. Typical lung cell responses to combustion aerosols include inflammation and apoptosis, but a molecular link with the specific chemical composition in particular of ship emissions has not been established. Through an air-liquid interface exposure system (ALI), we exposed human lung cells at-site to exhaust fumes from a ship engine running on common heavy fuel oil (HFO) and cleaner-burning diesel fuel (DF) as well as to emissions of wood combustion compliances. A special field deployable ALI-exposition system and a mobile S2-biological laboratory were developed for this study. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling to characterise the cellular responses. The HFO ship emissions contained high concentrations of toxic compounds (transition metals, organic toxicants) and particle masses. The cellular responses included inflammation and oxidative stress. Surprisingly, the DF ship emissions, which predominantly contain rather "pure" carbonaceous soot and much less known toxicants, induced significantly broader biological effects, affecting essential cellular pathways (e.g., mitochondrial function and intracellular transport). Therefore the use of distillate fuels for shipping (this is the current emission reduction strategy of the IMO) appears insufficient for diminishing health effects. The study suggests rather reducing the particle emissions

  16. Wood-burning stove

    SciTech Connect

    Hicks, A.W.; Jolicoeur, G.D.

    1981-05-19

    A wood stove is of all welded steel plate construction except for the door which is of heavy cast iron. When the door is closed, the only source of combustion air is through an adjustable air inlet on the face of the door. The door is hollow and serves to preheat the incoming air. The inner wall of the door divides the incoming air into lower and upper, primary and secondary, respectively, combustion air flows. The stove has an internal upper baffle running from rear to front which helps to promote air flow and combustion efficiency and to knock out entrained matter from the products of combustion. The flue connection is in the rear of the stove above the baffle and is stepped into the back of the stove to allow the stove to be fitted against a wall.

  17. Wood Bond Testing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A joint development program between Hartford Steam Boiler Inspection Technologies and The Weyerhaeuser Company resulted in an internal bond analyzer (IBA), a device which combines ultrasonics with acoustic emission testing techniques. It is actually a spinoff from a spinoff, stemming from a NASA Lewis invented acousto-ultrasonic technique that became a system for testing bond strength of composite materials. Hartford's parent company, Acoustic Emission Technology Corporation (AET) refined and commercialized the technology. The IBA builds on the original system and incorporates on-line process control systems. The IBA determines bond strength by measuring changes in pulsar ultrasonic waves injected into a board. Analysis of the wave determines the average internal bond strength for the panel. Results are displayed immediately. Using the system, a mill operator can adjust resin/wood proportion, reduce setup time and waste, produce internal bonds of a consistent quality and automatically mark deficient products.

  18. Anatomical structure and ultrastructure of the endocarp cell walls of Argania spinosa (L.) Skeels (Sapotaceae).

    PubMed

    Sebaa, H S; Harche, M Kaid

    2014-12-01

    The anatomical and histochemical study of young and adult endocarps of Argania spinosa (sampled from Tindouf; Algeria) shows a general structure that is similar to that of majority of stone fruits. These samples consist of tissues that contain lignified and cellulosic cell walls. The majority of the tissues are composed of sclerenchyma cells; with very thick lignified cell walls and conducting tissues. Coniferyl lignins are abundant in the majority of the lignified tissues. However, the coniferyl lignins appear at the primary xylem during lignification. Syringyl lignins are present in small quantities. The electron microscopy observation of the sclerenchyma cell walls of the young endocarp shows polylamellate strates and, cellular microfibrils in arced patterns. This architecture is observed in the cell walls of the adult endocarp only after the incubation of the tissue in methylamine. These configurations (arcs) are the result of a regular and complete rotation with a 180° variation in the microfibril angle; the complete and symmetrical arcs show a helicoidal mode of construction. The observation of the sclerenchyma cells revealed the capacity of helicoidal morphogenesis to adjust itself under the influence of topological constraints, such as the presence of a large number of pit canals, which maintain symplastic transport. PMID:25125280

  19. Effect of wood ash application on the morphological, physiological and biochemical parameters of Brassica napus L.

    PubMed

    Nabeela, Farhat; Murad, Waheed; Khan, Imran; Mian, Ishaq Ahmad; Rehman, Hazir; Adnan, Muhammad; Azizullah, Azizullah

    2015-10-01

    The present study was conducted to determine the effect of wood ash application on different parameters of Brassica napus L. including seed germination, seedling growth, fresh and dry biomass, water content in seedlings, photosynthetic pigments, soluble sugars, total protein and cell viability. In addition, the effect of wood ash on soil microflora and accumulation of trace elements in seedlings were determined. The seeds of B. napus were grown at different doses of wood ash (0, 1, 10, 25, 50 and 100 g (wood ash)/kg (soil)) and the effect on various parameters was determined. Wood ash significantly inhibited seed germination at doses above 25 g/kg and there was no germination at 100 g/kg of wood ash. At lower concentrations of wood ash, most of the growth parameters of seedlings were stimulated, but at higher concentrations of wood ash most of the studied parameters were adversely affected. Wood ash was found to be very detrimental to B. napus when applied above 25 g/kg. Wood ash application resulted in an increased bioaccumulation of trace elements in seedlings of B. napus. Almost all trace elements were significantly higher in seedlings grown in wood ash above 10 g/kg as compared to the control. An increase in total microbial count was observed with wood ash treatment which was statistically significant at 1 and 10 g/kg of wood ash. It is concluded that at very high concentration, wood ash can be detrimental to plants; however, its application at lower application rate can be recommended. PMID:26163419

  20. Industrial uses of wood char

    SciTech Connect

    Kumar, M.; Gupta, R.C.

    1998-08-01

    The quality and feasibility of wood char utilization in various industries are reported. Wood char provides fuel not only for cooking and domestic heating but also for many industrial purposes, such as manufacture of iron and some ferro-alloys, recovery of gold and other nonferrous metals from their leached solutions, manufacture of chemicals and medicines, burning of bricks and glass, and removal of toxic substances from their solutions. The selection of wood char for these purposes is made on the basis of its properties, such as chemical composition, reactivity, heating value, electrical resistivity, adsorption capacity, and strength.

  1. Wood Technology: Techniques, Processes, and Products

    ERIC Educational Resources Information Center

    Oatman, Olan

    1975-01-01

    Seven areas of wood technology illustrates applicable techniques, processes, and products for an industrial arts woodworking curriculum. They are: wood lamination; PEG (polyethylene glycol) diffusion processes; wood flour and/or particle molding; production product of industry; WPC (wood-plastic-composition) process; residential construction; and…

  2. FIRE INSURANCE AND WOOD SCHOOL BUILDINGS.

    ERIC Educational Resources Information Center

    PURCELL, FRANK X.

    A COMPARISON OF FIRE INSURANCE COSTS OF WOOD, MASONRY, STEEL AND CONCRETE STRUCTURES SHOWS FIRE INSURANCE PREMIMUMS ON WOOD STRUCTURES TEND TO BE HIGHER THAN PREMIUMS ON MASONRY, STEEL AND CONCRETE BUILDINGS, HOWEVER, THE INITIAL COST OF THE WOOD BUILDINGS IS LOWER. DATA SHOW THAT THE SAVINGS ACHIEVED IN THE INITIAL COST OF WOOD STRUCTURES OFFSET…

  3. Moisture Distribution and Flow During Drying of Wood and Fiber

    SciTech Connect

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt

  4. Short rotation Wood Crops Program

    SciTech Connect

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  5. Study of microbial adhesion on some wood species: theoretical prediction.

    PubMed

    Soumya, El abed; Mohamed, Mostakim; Fatimazahra, Berguadi; Hassan, Latrache; Abdellah, Houari; Fatima, Hamadi; Saad, Ibnsouda koraichi

    2011-01-01

    The initial interaction between microorganisms and substrata is mediated by physicochemical forces, which in turn originate from the physicochemical surface properties of both interacting phases. In this context, we have determined the physicochemical proprieties of all microorganisms isolated from cedar wood decay in an old monument at the Medina of Fez-Morocco. The cedar wood was also assayed in terms of hydrophobicity and electron dono-r-electron acceptor (acid-base) properties. Investigations of these two aspects were performed by contact angles measurements via sessile drop technique. Except Bacillus subtilis strain (deltaGiwi < 0), all strains studied showed positive values of the degree ofhydrophobicity (deltaGiwi > 0) and can therefore be considered as hydrophilic while cedar wood revealed a hydrophobic character (deltaGiwi = -58.81 mi m(-2)). All microbial strains were predominantly electron donor. The results show also that all strains were weak electron acceptors. Cedar wood exhibits a weak electron donor/acceptor character. Based on the thermodynamic approach, the Lifshitz-van der Waals interaction free energy, the acid-basic interactions free energy, the total interaction free energy between the microbial cells and six different wood species (cedar, oak, beech, ash, pine and teak) in aqueous media was calculated and used to predict which microbial strains have a higher ability to adhere to wooden surfaces. Except of weak wood, for all the situations studied, generalizations concerning the adhesion of the microbiata on wood species cannot be made and the microbial adhesion on wooden substrata was dependent on wood species and microorganismstested. PMID:21513215

  6. Quantitative Proteomic and Phosphoproteomic Approaches for Deciphering the Signaling Pathway for Tension Wood Formation in Poplar.

    PubMed

    Mauriat, Mélanie; Leplé, Jean-Charles; Claverol, Stéphane; Bartholomé, Jérôme; Negroni, Luc; Richet, Nicolas; Lalanne, Céline; Bonneu, Marc; Coutand, Catherine; Plomion, Christophe

    2015-08-01

    Trees adjust their growth following forced changes in orientation to re-establish a vertical position. In angiosperms, this adjustment involves the differential regulation of vascular cambial activity between the lower (opposite wood) and upper (tension wood) sides of the leaning stem. We investigated the molecular mechanisms leading to the formation of differential wood types through a quantitative proteomic and phosphoproteomic analysis on poplar subjected to a gravitropic stimulus. We identified and quantified 675 phosphopeptides, corresponding to 468 phosphoproteins, and 3 763 nonphosphorylated peptides, corresponding to 1 155 proteins, in the differentiating xylem of straight-growing trees (control) and trees subjected to a gravitational stimulus during 8 weeks. About 1% of the peptides were specific to a wood type (straight, opposite, or tension wood). Proteins quantified in more than one type of wood were more numerous: a mixed linear model showed 389 phosphopeptides and 556 proteins to differ in abundance between tension wood and opposite wood. Twenty-one percent of the phosphoproteins identified here were described in their phosphorylated form for the first time. Our analyses revealed remarkable developmental molecular plasticity, with wood type-specific phosphorylation events, and highlighted the involvement of different proteins in the biosynthesis of cell wall components during the formation of the three types of wood. PMID:26112267

  7. A Cytochemical Study of Extracellular Sheaths Associated with Rigidoporus lignosus during Wood Decay

    PubMed Central

    Nicole, M.; Chamberland, H.; Rioux, D.; Lecours, N.; Rio, B.; Geiger, J. P.; Ouellette, G. B.

    1993-01-01

    An ultrastructural and cytochemical investigation of the development of Rigidoporus lignosus, a white-rot fungus inoculated into wood blocks, was carried out to gain better insight into the structure and role of the extracellular sheaths produced by this fungus during wood degradation. Fungal sheaths had a dense or loose fibrillar appearance and were differentiated from the fungal cell wall early after wood inoculation. Close association between extracellular fibrils and wood cell walls was observed at both early and advanced stages of wood alteration. Fungal sheaths were often seen deep in host cell walls, sometimes enclosing residual wood fragments. Specific gold probes were used to investigate the chemical nature of R. lignosus sheaths. While labeling of chitin, pectin, β-1,4- and β-1,3-glucans, β-glucosides, galactosamine, mannose, sialic acid, RNA, fucose, and fimbrial proteins over fungal sheaths did not succeed, galactose residues and laccase (a fungal phenoloxidase) were found to be present. The positive reaction of sheaths with the PATAg test indicates that polysaccharides such as β-1,6-glucans are important components. Our data suggest that extracellular sheaths produced by R. lignosus during host cell colonization play an important role in wood degradation. Transportation of lignin-degrading enzymes by extracellular fibrils indicates that alteration of plant polymers may occur within fungal sheaths. It is also proposed that R. lignosus sheaths may be involved in recognition mechanisms in fungal cell-wood surface interactions. Images PMID:16349017

  8. Goddard Summer Interns: Danielle Wood

    NASA Video Gallery

    Profile of Goddard intern Danielle Wood. Danielle is interning at Goddard in the Innovative Partnerships Program and at NASA Headquarters in the Office of the Chief Technologist in the summer of 20...

  9. Aspen Tension Wood Fibers Contain β-(1---> 4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls.

    PubMed

    Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J

    2015-11-01

    Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. PMID:26378099

  10. Tribology in secondary wood machining

    SciTech Connect

    Ko, P.L.; Hawthorne, H.M.; Andiappan, J.

    1998-07-01

    Secondary wood manufacturing covers a wide range of products from furniture, cabinets, doors and windows, to musical instruments. Many of these are now mass produced in sophisticated, high speed numerical controlled machines. The performance and the reliability of the tools are key to an efficient and economical manufacturing process as well as to the quality of the finished products. A program concerned with three aspects of tribology of wood machining, namely, tool wear, tool-wood friction characteristics and wood surface quality characterization, was set up in the Integrated Manufacturing Technologies Institute (IMTI) of the National Research Council of Canada. The studies include friction and wear mechanism identification and modeling, wear performance of surface-engineered tool materials, friction-induced vibration and cutting efficiency, and the influence of wear and friction on finished products. This research program underlines the importance of tribology in secondary wood manufacturing and at the same time adds new challenges to tribology research since wood is a complex, heterogeneous, material and its behavior during machining is highly sensitive to the surrounding environments and to the moisture content in the work piece.

  11. Modifying crops to increase cell wall digestibility.

    PubMed

    Jung, Hans-Joachim G; Samac, Deborah A; Sarath, Gautam

    2012-04-01

    Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants is highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-digestible. Digestibility of grasses is slowed severely by lignification of most tissues, but these cell walls remain largely digestible. Cell wall lignification creates an access barrier to potentially digestible wall material by rumen bacteria if cells have not been physically ruptured. Traditional breeding has focused on increasing total dry matter digestibility rather than cell wall digestibility, which has resulted in minimal reductions in cell wall lignification. Brown midrib mutants in some annual grasses exhibit small reductions in lignin concentration and improved cell wall digestibility. Similarly, transgenic approaches down-regulating genes in monolignol synthesis have produced plants with reduced lignin content and improved cell wall digestibility. While major reductions in lignin concentration have been associated with poor plant fitness, smaller reductions in lignin provided measurable improvements in digestibility without significantly impacting agronomic fitness. Additional targets for genetic modification to enhance digestibility and improve roughages for use as biofuel feedstocks are discussed; including manipulating cell wall polysaccharide composition, novel lignin structures, reduced lignin/polysaccharide cross-linking, smaller lignin polymers, enhanced development of non-lignified tissues, and targeting specific cell types. Greater tissue specificity of transgene expression will be needed to maximize benefits while avoiding negative impacts on plant fitness.cauliflower mosiac virus (CaMV) 35S promoter. PMID:22325867

  12. Robert Williams Wood: pioneer of invisible light.

    PubMed

    Sharma, Shruti; Sharma, Amit

    2016-03-01

    The Wood's lamp aids in the diagnosis of multiple infectious, inflammatory and neoplastic dermatologic conditions. Although the Wood's lamp has many applications, which have improved both the diagnosis and management of disease, the man credited for its invention is relatively unknown in medicine. Robert Williams Wood, a prominent physicist of the early 20th century, is credited for the invention of the Wood's lamp. Wood was the father of infrared and ultraviolet photography and made significant contributions to other areas in optics and spectroscopy. Wood's work encompassed the formative years of American Physics; he published over 200 original papers over his lifetime. A few years after the invention of the Wood's lamp for ultraviolet photography, physicians in Europe adopted the Wood's lamp for dermatologic applications. Wood's lamp remains popular in clinics globally, given its ease of use and ability to improve diagnostic precision. PMID:26752503

  13. Acoustic and adsorption properties of submerged wood

    NASA Astrophysics Data System (ADS)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  14. 13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen1

    PubMed Central

    Mahboubi, Amir; Linden, Pernilla; Moritz, Thomas

    2015-01-01

    Wood of trees is formed from carbon assimilated in the photosynthetic tissues. Determining the temporal dynamics of carbon assimilation, subsequent transport into developing wood, and incorporation to cell walls would further our understanding of wood formation in particular and tree growth in general. To investigate these questions, we designed a 13CO2 labeling system to study carbon transport and incorporation to developing wood of hybrid aspen (Populus tremula × tremuloides). Tracking of 13C incorporation to wood over a time course using nuclear magnetic resonance spectroscopy revealed diurnal patterns in wood cell wall biosynthesis. The dark period had a differential effect on 13C incorporation to lignin and cell wall carbohydrates. No 13C was incorporated into aromatic amino acids of cell wall proteins in the dark, suggesting that cell wall protein biosynthesis ceased during the night. The results show previously unrecognized temporal patterns in wood cell wall biosynthesis, suggest diurnal cycle as a possible cue in the regulation of carbon incorporation to wood, and establish a unique 13C labeling method for the analysis of wood formation and secondary growth in trees. PMID:25931520

  15. An integrated database of wood-formation related genes in plants.

    PubMed

    Xu, Ting; Ma, Tao; Hu, Quanjun; Liu, Jianquan

    2015-01-01

    Wood, which consists mainly of plant cell walls, is an extremely important resource in daily lives. Genes whose products participate in the processes of cell wall and wood formation are therefore major subjects of plant science research. The Wood-Formation Related Genes database (WFRGdb, http://me.lzu.edu.cn/woodformation/) serves as a data resource center for genes involved in wood formation. To create this database, we collected plant genome data published in other online databases and predicted all cell wall and wood formation related genes using BLAST and HMMER. To date, 47 gene families and 33 transcription factors from 57 genomes (28 herbaceous, 22 woody and 7 non-vascular plants) have been covered and more than 122,000 genes have been checked and recorded. To provide easy access to these data, we have developed several search methods, which make it easy to download targeted genes or groups of genes free of charge in FASTA format. Sequence and phylogenetic analyses are also available online. WFRGdb brings together cell wall and wood formation related genes from all available plant genomes, and provides an integrative platform for gene inquiry, downloading and analysis. This database will therefore be extremely useful for those who focuses on cell wall and wood research. PMID:26078228

  16. Changes in structural and chemical components of wood delignified by fungi

    SciTech Connect

    Blanchette, R.A.; Otjen, L.; Effland, M.J.; Eslyn, W.E.

    1985-01-01

    Cerrena unicolor, Ganoderma applanatum, Ischnoderma resinosum and Poria medulla-panis were associated with birch (Betula papyrifera) wood that had been selectively delignified in the forest. Preferential lignin degradation was not uniformly distributed throughout the decayed wood. A typical white rot causing a simultaneous removal of all cell wall components was also present. In the delignified wood, 95 to 98% of the lignin was removed as well as substantial amounts of hemicelluloses. Scanning and transmission electron microscopy were used to identify the micromorphological and ultrastructural changes that occurred in the cells during degradation. In delignified areas the compound middle lamella was extensively degraded causing a defibration of cells. The secondary wall, especially the S2 layer, remained relatively unaltered. In simultaneously white-rotted wood all cell wall layers were progressively removed from the lumen toward the middle lamella causing erosion troughs or holes to form. Large voids filled with fungal mycelia resulted from a coalition of degraded areas. Birch wood decayed in laboratory soil-block tests was also intermittently delignified, selective delignification, sparsely distributed throughout the wood, and a simultaneous rot resulting in the removal of all cell wall components were evident. SEM appears to be an appropriate technique for examining selectively delignified decayed wood. 30 references.

  17. Wood Properties and Kinds; A Base Syllabus on Wood Technology.

    ERIC Educational Resources Information Center

    Eastern Kentucky Univ., Richmond.

    Prepared by participants in the 1968 National Defense Education Act Institute on Wood Technology, this syllabus is one of a series of basic outlines designed to aid college level industrial arts instructors in improving and broadening the scope and content of their programs. This booklet is concerned largely with the physical composition and…

  18. Strange Creatures: An Additive Wood Sculpture Project.

    ERIC Educational Resources Information Center

    Wales, Andrew

    2002-01-01

    Describes an art project where students create strange creatures using scraps of wood. Discusses how the students use the wood and other materials. Explains that the students also write about the habitat characteristics of their creatures. Includes learning objectives. (CMK)

  19. The Kiln Drying of Wood for Airplanes

    NASA Technical Reports Server (NTRS)

    Tiemann, Harry D

    1919-01-01

    This report is descriptive of various methods used in the kiln drying of woods for airplanes and gives the results of physical tests on different types of woods after being dried by the various kiln-drying methods.

  20. Pulmonary responses after wood chip mulch exposure.

    PubMed

    Wintermeyer, S F; Kuschner, W G; Wong, H; D'Alessandro, A; Blanc, P D

    1997-04-01

    Organic Dust Toxic Syndrome (ODTS) is a flu-like syndrome that can occur after inhalation of cotton, grain, wood chip dusts, or other organic dusts or aerosols. We investigated whether inflammatory pulmonary responses occur, even after relatively brief, low-level wood chip mulch exposure. Six volunteers were exposed to wood chip mulch dust. Total dust and/or endotoxin levels were measured in five subjects. Pulmonary function and peripheral blood counts were measured before and after exposure in each subject. Bronchoalveolar lavage (BAL) was performed in each subject after exposure, and cell, cytokine, and protein concentrations were measured. Control BAL without previous exposure was also performed on three of the subjects. Three of six subjects had symptoms consistent with ODTS. No clinically relevant or statistically significant changes in pulmonary function tests after exposure were found. Three subjects manifested a marked elevation in neutrophil percentage in their BAL (range, 10 to 57%). When these three subjects underwent control BAL, the postexposure comparison demonstrated an increase in neutrophil levels of 154 +/- 89 x 10(3)/mL (mean +/- standard error; P = 0.22). The mean increase in BAL interleukin-8 levels after exposure, compared with paired control values, was 11.2 +/- SE 2.5 pg/mL (P = 0.047). There was also an increase in BAL interleukin-6 levels that reached borderline significance (6.4 +/- SE 2.0 pg/mL; P = 0.08). Tumor necrosis factor levels were increased in all three subjects' BAL as well (0.4 +/- SE 0.2 pg/mL), but this change was not statistically significant (P = 0.2). Our findings of increased BAL proinflammatory cytokine and neutrophil levels are consistent with the theory that cytokine networking in the lung may mediate ODTS. PMID:9113600

  1. Strengthen Wood Education through a Comprehensive Approach

    ERIC Educational Resources Information Center

    Mative, John M.

    2005-01-01

    Wood education programs across the nation, at and below the secondary levels of education, have declined in enrollment in recent years. To many, wood education means only carpentry or woodworking. A systematic approach to the subject, as a part of a materials science course, can reverse the material's negative connotation and make wood education…

  2. Highly Anisotropic, Highly Transparent Wood Composites.

    PubMed

    Zhu, Mingwei; Song, Jianwei; Li, Tian; Gong, Amy; Wang, Yanbin; Dai, Jiaqi; Yao, Yonggang; Luo, Wei; Henderson, Doug; Hu, Liangbing

    2016-07-01

    For the first time, two types of highly anisotropic, highly transparent wood composites are demonstrated by taking advantage of the macro-structures in original wood. These wood composites are highly transparent with a total transmittance up to 90% but exhibit dramatically different optical and mechanical properties. PMID:27147136

  3. THE HYDROXYL RADICAL AS AN AGENT OF LIGNOCELLULOSE DECAY BY FUNGI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wood decay fungi use a variety of low molecular weight oxidants to bioconvert lignocellulose, and there is increasing interest in the biotechnological application of these agents. The fungal strategy presumably reflects the low porosity of lignified plant cell walls, which in their native condition...

  4. Woods Middle School: A Profile.

    ERIC Educational Resources Information Center

    Coe, Elisabeth

    1993-01-01

    Profiles the activities of the School of the Woods in Houston, which in the early 1980s began a Montessori middle school program to complement the already existing elementary instruction. Discusses the physical environment of the school, the activities of the students and teachers, the curriculum, and the contributions of parents. (MDM)

  5. Hydrogeology of Wood County, Wisconsin

    USGS Publications Warehouse

    Batten, W.G.

    1989-01-01

    The average rate of ground·water pumpage in Wood County in 1985 was 9.7 million gallons per day. Of this rate, about 6 million gallons per day is pumped from municipal-supply wells in seven communities.An additional 1.08 million gallons per day is pumped for agricultural irrigation.

  6. Thermochemical pretreatment of underutilized woody biomass for manufacturing wood composites

    NASA Astrophysics Data System (ADS)

    Pelaez Samaniego, Manuel Raul

    Prescribed fires, one method for reducing hazardous fuel loads from forest lands in the US, are limited by geographical, environmental, and social impacts. Mechanical operations are an alternative type of fuel treatment but these processes are constrained by the difficulty of economically harvesting and/or using large amounts of low-value woody biomass. Adoption and integration of new technologies into existing wood composite facilities offer better utilization of this material. A pretreatment that enables integration of technologies in a typical composite facility will aid with diversification of product portfolio (e.g. wood composites, fuel pellets, liquid fuels, chemicals). Hot water extraction (HWE) is an option for wood pretreatment. This work provides a fundamental understanding of the physicochemical changes to wood resulting from HWE, and how these changes impact processing and performance of composites. Specific objectives were to: 1) review literature on studies related to the manufacture of composites produced with thermally pretreated wood, 2) manufacture wood plastic composites (WPC) and particleboard using HWE wood and evaluate the impacts of pretreatment on product properties, 3) develop an understanding of the effect of HWE on lignin properties, specifically lignin at the cells surface level after migration from cell walls and middle lamella, 4) discern the influence of lignin on the fiber surface on processing WPCs, and, 5) investigate the effect of changing the pretreatment environment (inert gas instead of water) on lignin behavior. Results show that HWE enhances the resistance of both WPCs and particleboard to water with positive or no effect on mechanical properties. Reduction of hemicelluloses and lignin property changes are suggested as the main reasons for enhancing interaction between wood fiber and resins during composite processing. Lignin on the surface of particles after HWE interacts with thermoplastics during WPCs compounding, thus

  7. Transformation of wood components during peatification and early coalification

    SciTech Connect

    Stout, S.; Spackman, W.

    1985-01-01

    Wood has long been known to contribute to the formation of peats and coals but the physical and chemical properties of the materials contributed are not well understood. Representative living and peatified woods were collected from southeastern US swamps and compared to their lignitic equivalents from the Quaternary Trail Ridge lignitic peat and the Tertiary Brandon lignite. Conventional transmitted light, crossed-polarized light, and blue light illumination were employed to distinguish numerous peatified and lignitized products resulting from the wood's peatification and early coalification. Cell walls were usually observed to be: (1) altered, (2) degraded or (3) gelified, each term implying different physical properties such as cell wall integrity, degree of birefringence, and the intensity and color of cell wall fluorescence. This study has revealed that significant differences exist in the reactions to peatification and early coalification between: softwoods and hardwoods, the different xylem cell types, and the different cell wall layers. Optical evidence is presented to show that both the cellulose and lignin in xylem cell walls contribute to peats and lignites in various physical forms.

  8. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk

    PubMed Central

    O’Connor, Roberta M.; Fung, Jennifer M.; Sharp, Koty H.; Benner, Jack S.; McClung, Colleen; Cushing, Shelley; Lamkin, Elizabeth R.; Fomenkov, Alexey I.; Henrissat, Bernard; Londer, Yuri Y.; Scholz, Matthew B.; Posfai, Janos; Malfatti, Stephanie; Tringe, Susannah G.; Woyke, Tanja; Malmstrom, Rex R.; Coleman-Derr, Devin; Altamia, Marvin A.; Dedrick, Sandra; Kaluziak, Stefan T.; Haygood, Margo G.; Distel, Daniel L.

    2014-01-01

    Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products. PMID:25385629

  9. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk.

    PubMed

    O'Connor, Roberta M; Fung, Jennifer M; Sharp, Koty H; Benner, Jack S; McClung, Colleen; Cushing, Shelley; Lamkin, Elizabeth R; Fomenkov, Alexey I; Henrissat, Bernard; Londer, Yuri Y; Scholz, Matthew B; Posfai, Janos; Malfatti, Stephanie; Tringe, Susannah G; Woyke, Tanja; Malmstrom, Rex R; Coleman-Derr, Devin; Altamia, Marvin A; Dedrick, Sandra; Kaluziak, Stefan T; Haygood, Margo G; Distel, Daniel L

    2014-11-25

    Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products. PMID:25385629

  10. Potential adverse health effects of wood smoke.

    PubMed

    Pierson, W E; Koenig, J Q; Bardana, E J

    1989-09-01

    The use of wood stoves has increased greatly in the past decade, causing concern in many communities about the health effects of wood smoke. Wood smoke is known to contain such compounds as carbon monoxide, nitrogen oxides, sulfur oxides, aldehydes, polycyclic aromatic hydrocarbons, and fine respirable particulate matter. All of these have been shown to cause deleterious physiologic responses in laboratory studies in humans. Some compounds found in wood smoke--benzo[a]pyrene and formaldehyde--are possible human carcinogens. Fine particulate matter has been associated with decreased pulmonary function in children and with increased chronic lung disease in Nepal, where exposure to very high amounts of wood smoke occurs in residences. Wood smoke fumes, taken from both outdoor and indoor samples, have shown mutagenic activity in short-term bioassay tests. Because of the potential health effects of wood smoke, exposure to this source of air pollution should be minimal. PMID:2686171

  11. Potential adverse health effects of wood smoke.

    PubMed Central

    Pierson, W E; Koenig, J Q; Bardana, E J

    1989-01-01

    The use of wood stoves has increased greatly in the past decade, causing concern in many communities about the health effects of wood smoke. Wood smoke is known to contain such compounds as carbon monoxide, nitrogen oxides, sulfur oxides, aldehydes, polycyclic aromatic hydrocarbons, and fine respirable particulate matter. All of these have been shown to cause deleterious physiologic responses in laboratory studies in humans. Some compounds found in wood smoke--benzo[a]pyrene and formaldehyde--are possible human carcinogens. Fine particulate matter has been associated with decreased pulmonary function in children and with increased chronic lung disease in Nepal, where exposure to very high amounts of wood smoke occurs in residences. Wood smoke fumes, taken from both outdoor and indoor samples, have shown mutagenic activity in short-term bioassay tests. Because of the potential health effects of wood smoke, exposure to this source of air pollution should be minimal. PMID:2686171

  12. Afterburner for a wood stove

    SciTech Connect

    Dorach, E.H.; Dorsch, H.

    1984-08-21

    An afterburner for a wood stove for use as a retrofit assembly comprises a rectangular housing having openings in the upper and lower surfaces provided with cylindrical collars for cooperation with the flue duct and with the opening in the top of the wood stove respectively. The openings are positioned at the rear of the housing so as to provide a forward section spaced from the openings. A catalytic combuster mounted in a cylindrical support is movable from a position directly above the opening in the bottom surface into the front section by a manually operable handle extending through the front face of the housing. A baffle mounted on the support and arranged at a shallow angle to the horizontal overlies the major part of the combuster so as to direct gases into the front section of the housing for heat exchange contact with the walls thereof.

  13. Aspen Tension Wood Fibers Contain β-(1→4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls1[OPEN

    PubMed Central

    Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J.

    2015-01-01

    Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. PMID:26378099

  14. Blood parasites of wood ducks

    USGS Publications Warehouse

    Herman, C.M.; Knisley, J.O., Jr.; Knipling, G.D.

    1971-01-01

    Examination of blood films from wood ducks (Aix sponsa) from several northeastern states revealed Haemoproteus, Leucocytozoon, Plasmodium and a typanosome. Haemoproteus occurred in all areas sampled and birds of the year from Massachusetts demonstrated the highest incidence during the last 2 weeks in August. Leucocytozoon was most prevalent in more northern areas. P. circumflexum and a trypanosome are reported for the first time from this host.

  15. Densified fuels from wood waste

    SciTech Connect

    Pickering, W.H.

    1995-11-01

    Wood compressed to a specific gravity of about 1.2 constitutes an excellent clean burning fuel. {open_quotes}Prestologs{close_quotes} were marketed before 1940, but in the past ten years a much larger and growing market is densified pellet fuel has developed. The market for pellet fuel is about 90% residential, using special pellet burning stoves. Initial sales were almost entirely in the northwest, but sales in other parts of the country are now growing rapidly. Approximately 300,000 stoves are in use. Note that this industry developed from the private sector with little or no support from federal or state governments. Densified fuel is manufactured by drying and compressing sawdust feedstock. Combustion is different than that of normal wood. For example, wood pellets require ample supplies of air. They then burn with a hot flame and very low particulate emissions. Volatile organic compounds are burned almost completely and carbon monoxide can also be kept very low. Stoves burning pellets easily meet EPA standards. This paper discusses technical and economic factors associated with densified fuel and considers the future of the industry.

  16. Thermopower of beech wood biocarbon

    NASA Astrophysics Data System (ADS)

    Smirnov, I. A.; Smirnov, B. I.; Orlova, T. S.; Sulkovski, Cz.; Misiorek, H.; Jezowski, A.; Muha, J.

    2011-11-01

    This paper reports on measurements of the thermopower S of high-porosity samples of beech wood biocarbon with micron-sized sap pores aligned with the tree growth direction. The measurements have been performed in the temperature range 5-300 K. The samples have been fabricated by pyrolysis of beech wood in an argon flow at different carbonization temperatures ( T carb). The thermopower S has been measured both along and across the sap pores, thus offering a possibility of assessing its anisotropy. The curves S( T carb) have revealed a noticeable increase of S for T carb < 1000°C for all the measurement temperatures. This finding fits to the published data obtained for other physical parameters, including the electrical conductivity of these biocarbons, which suggests that for T carb ˜ 1000°C they undergo a phase transition of the insulator-(at T carb < 1000°C)-metal-(at T carb > 1000°C) type. The existence of this transition is attested also by the character of the temperature dependences S( T) of beech wood biocarbon samples prepared at T carb above and below 1000°C.

  17. Wood and Sediment Dynamics in River Corridors

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  18. Perception of Wood in River Channels

    NASA Astrophysics Data System (ADS)

    Chin, A.

    2003-12-01

    In managing river channels, wood is often perceived as hazardous and has traditionally been removed. On the other hand, wood provides many benefits including food and habitat for fish and mechanisms for energy dissipation. Increasing recognition of the positive role of wood has encouraged the reintroduction of wood to restore rivers. However, it is not clear how widely this practice is accepted, and whether traditional views of wood hazards may influence the success of such restoration projects. This paper describes a large-scale effort to increase understanding of how wood is perceived in stream channels. This project, led by H. Piegay and K.J. Gregory, involves an international group of workers from 9 countries in contrasting parts of the world. A total of 1886 surveys were given to students 20-25 years of age to test the hypothesis that the perception of wood is related to one's socio-cultural environment. Students were asked to view a set of 20 standard photographs, 10 with wood and 10 without, and to answer a set of questions related to how hazardous the scenes are perceived. Results show clear differences in perception, with students from Texas, USA, viewing streams with wood to be more dangerous, less aesthetic, and to need more improvement than those without. These perceptions contrast with those from the Pacific northwest and some areas around the world, providing clues to the potential success and acceptance of reintroducing wood in stream restoration.

  19. Fine particle emissions in three different combustion conditions of a wood chip-fired appliance - Particulate physico-chemical properties and induced cell death

    NASA Astrophysics Data System (ADS)

    Leskinen, J.; Tissari, J.; Uski, O.; Virén, A.; Torvela, T.; Kaivosoja, T.; Lamberg, H.; Nuutinen, I.; Kettunen, T.; Joutsensaari, J.; Jalava, P. I.; Sippula, O.; Hirvonen, M.-R.; Jokiniemi, J.

    2014-04-01

    A biomass combustion reactor with a moving grate was utilised as a model system to produce three different combustion conditions corresponding to efficient, intermediate, and smouldering combustion. The efficient conditions (based on a CO level of approximately 7 mg MJ-1) corresponded to a modern pellet boiler. The intermediate conditions (CO level of approximately 300 mg MJ-1) corresponded to non-optimal settings in a continuously fired biomass combustion appliance. The smouldering conditions (CO level of approximately 2200 mg MJ-1) approached a batch combustion situation. The gaseous and particle emissions were characterised under each condition. Moreover, the ability of fine particles to cause cell death was determined using the particle emissions samples. The physico-chemical properties of the emitted particles and their toxicity were considerably different between the studied combustion conditions. In the efficient combustion, the emitted particles were small in size and large in number. The PM1 emission was low, and it was composed of ash species. In the intermediate and smouldering combustion, the PM1 emission was higher, and the particles were larger in size and smaller in number. In both of these conditions, there were high-emission peaks that produced a significant fraction of the emissions. The PAH emissions were the lowest in the efficient combustion. The smouldering combustion conditions produced the largest PAH emissions. In efficient combustion conditions, the emitted fine particles had the highest potential to cause cell death. This finding was most likely observed because these fine particles were mainly composed of inorganic ash species, and their relative contents of Zn were high. Thus, even the PM1 from optimal biomass combustion might cause health effects, but in these conditions, the particle emissions per energy unit produced were considerably lower.

  20. Quantitative Wood Anatomy—Practical Guidelines

    PubMed Central

    von Arx, Georg; Crivellaro, Alan; Prendin, Angela L.; Čufar, Katarina; Carrer, Marco

    2016-01-01

    Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors—if not avoided or corrected—may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many

  1. Quantitative Wood Anatomy-Practical Guidelines.

    PubMed

    von Arx, Georg; Crivellaro, Alan; Prendin, Angela L; Čufar, Katarina; Carrer, Marco

    2016-01-01

    Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors-if not avoided or corrected-may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many

  2. Carbon sequestration via wood burial

    PubMed Central

    Zeng, Ning

    2008-01-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1), followed by temperate (3.7 GtC y-1) and boreal forests (2.1 GtC y-1). Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market. PMID:18173850

  3. Wood as inspiration for new stimuli-responsive structures and materials

    NASA Astrophysics Data System (ADS)

    Jakes, Joseph E.; Plaza, Nayomi; Zelinka, Samuel L.; Stone, Donald S.; Gleber, Sophie-Charlotte; Vogt, Stefan

    2014-03-01

    Nature has often provided inspiration for new smart structures and materials. Recently, we showed a bundle of a few wood cells are moisture-activated torsional actuators that can reversibly twist multiple revolutions per centimeter of length. The bundles produce specific torque higher than that produced by electric motors and possess shape memory twist capabilities. Here we also report that ion diffusion through wood cell walls is a stimuli-responsive phenomenon. Using the high spatial resolution and sensitivity of synchrotron-based x-ray fluorescence microscopy (XFM), metal ions deposited into individual wood cell walls were mapped. Then, using a custom-built relative humidity (RH) chamber, diffusion of the metal ions was observed in situ first at low RH and then at increasingly higher RH. We found that ions did not diffuse through wood cell walls at low RH, but diffusion occurred at high RH. We propose that both the shape memory twist effect and the moisture content threshold for ionic diffusion are controlled by the hemicelluloses passing through a moisture-dependent glass transition in the 60-80% RH range at room temperature. An advantage of wood over other stimuli-responsive polymers is that wood lacks bulk mechanical softening at the transition that controls the stimuliresponsive behavior. We demonstrate using a custom-built torque sensor that the torque generation in wood cell bundles actually continues to increase over the RH range that hemicelluloses soften. The hierarchical structure of wood provides the inspiration to engineer stimuli-responsive polymers and actuators with increased mechanical strength and higher recovery stresses.

  4. Competitive outcomes between wood-decaying fungi are altered in burnt wood.

    PubMed

    Edman, Mattias; Eriksson, Anna-Maria

    2016-06-01

    Fire is an important disturbance agent in boreal forests where it creates a wide variety of charred and other types of heat-modified dead wood substrates, yet how these substrates affect fungal community structure and development within wood is poorly understood. We allowed six species of wood-decaying basidiomycetes to compete in pairs in wood-discs that were experimentally burnt before fungal inoculation. The outcomes of interactions in burnt wood differed from those in unburnt control wood for two species:Antrodia sinuosanever lost on burnt wood and won over its competitor in 67% of the trials compared to 40% losses and 20% wins on unburnt wood. In contrast, Ischnoderma benzoinumwon all interactions on unburnt wood compared to 33% on burnt wood. However, the responses differed depending on the identity of the competing species, suggesting an interaction between competitor and substrate type. The observed shift in competitive balance between fungal species probably results from chemical changes in burnt wood, but the underlying mechanism needs further investigation. Nevertheless, the results indicate that forest fires indirectly structure fungal communities by modifying dead wood, and highlight the importance of fire-affected dead wood substrates in boreal forests. PMID:27059863

  5. First record of Podocarpoid fossil wood in South China

    PubMed Central

    Li, Long; Jin, Jian-Hua; Quan, Cheng; Oskolski, Alexei A.

    2016-01-01

    A new species of fossil conifer wood, Podocarpoxylon donghuaiense sp. nov., is described from the late Eocene of Nadu Formation in Baise Basin of the Guangxi Province, South China. This fossil wood is characterized by distinct growth rings, circular to oval tracheids in cross section, 1–2-seriate opposite pits on radial tracheid walls, uniseriate (rarely biseriate) rays, smooth end walls of ray parenchyma cells, and the absence of resin ducts, suggesting its affinity to Podocarpaceae. The new species is distinctive from other Cenozoic woods ascribed to this family by the combination of distinctive growth rings, the absence of axial parenchyma, the occurrence of bordered pits on tangential tracheid walls, and the occurrence of 3–4 cuppressoid or taxodioid pits on cross-fields. This represents the first record of podocarpoid fossil wood in South China and provides fossil evidence for the early dispersal and diversification of Podocarpaceae in eastern Asia as well as for mild temperate seasonal climate in this region during the late Eocene. PMID:27571780

  6. First record of Podocarpoid fossil wood in South China.

    PubMed

    Li, Long; Jin, Jian-Hua; Quan, Cheng; Oskolski, Alexei A

    2016-01-01

    A new species of fossil conifer wood, Podocarpoxylon donghuaiense sp. nov., is described from the late Eocene of Nadu Formation in Baise Basin of the Guangxi Province, South China. This fossil wood is characterized by distinct growth rings, circular to oval tracheids in cross section, 1-2-seriate opposite pits on radial tracheid walls, uniseriate (rarely biseriate) rays, smooth end walls of ray parenchyma cells, and the absence of resin ducts, suggesting its affinity to Podocarpaceae. The new species is distinctive from other Cenozoic woods ascribed to this family by the combination of distinctive growth rings, the absence of axial parenchyma, the occurrence of bordered pits on tangential tracheid walls, and the occurrence of 3-4 cuppressoid or taxodioid pits on cross-fields. This represents the first record of podocarpoid fossil wood in South China and provides fossil evidence for the early dispersal and diversification of Podocarpaceae in eastern Asia as well as for mild temperate seasonal climate in this region during the late Eocene. PMID:27571780

  7. Incorporation of metal nanoparticles into wood substrate and methods

    SciTech Connect

    Rector, Kirk D; Lucas, Marcel

    2015-11-04

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation process at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.

  8. Cold-atmospheric pressure plasma polymerization of acetylene on wood flour for improved wood plastics composites

    NASA Astrophysics Data System (ADS)

    Lekobou, William; Pedrow, Patrick; Englund, Karl; Laborie, Marie-Pierre

    2009-10-01

    Plastic composites have become a large class of construction material for exterior applications. One of the main disadvantages of wood plastic composites resides in the weak adhesion between the polar and hydrophilic surface of wood and the non-polar and hydrophobic polyolefin matrix, hindering the dispersion of the flour in the polymer matrix. To improve interfacial compatibility wood flour can be pretreated with environmentally friendly methods such as cold-atmospheric pressure plasma. The objective of this work is therefore to evaluate the potential of plasma polymerization of acetylene on wood flour to improve the compatibility with polyolefins. This presentation will describe the reactor design used to modify wood flour using acetylene plasma polymerization. The optimum conditions for plasma polymerization on wood particles will also be presented. Finally preliminary results on the wood flour surface properties and use in wood plastic composites will be discussed.

  9. Structural wood panels with improved fire resistance

    NASA Technical Reports Server (NTRS)

    Sawko, P. M. (Inventor)

    1980-01-01

    Structural wood paneling or other molded wood compositions consisting of finely divided wood chips, flour, or strands are bound together and hot pressed with a modified novolac resin which is the cured product of a prepolymer made from an aralkyl ether or halide with a phenol and a hardening agent such as hexamethylene tetramine. The fire resistance of these articles is further improved by incorporating in the binder certain inorganic fillers, especially a mixture of ammonium oxalate and ammonium phosphate.

  10. Wood-rotting fungi of North America

    SciTech Connect

    Gilbertson, R.L.

    1980-01-01

    The biology of wood-rotting fungi is reviewed. Discussions are presented in taxonomy, species diversity, North American distribution, developmental response to environmental factors, edibility and toxicity, medical uses, relationships of fungi with insects and birds, the role of fungi as mycorrhiza, pathological relationships with trees, role in wood decay, and ecology. Threats to the continuing existence of these fungi as a result of increased utilization of wood as fuel are also discussed. (ACR)

  11. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma

    PubMed Central

    Zheng, Jingming; Martínez-Cabrera, Hugo I.

    2013-01-01

    Background and Aims In recent years considerable effort has focused on linking wood anatomy and key ecological traits. Studies analysing large databases have described how these ecological traits vary as a function of wood anatomical traits related to conduction and support, but have not considered how these functions interact with cells involved in storage of water and carbohydrates (i.e. parenchyma cells). Methods We analyzed, in a phylogenetic context, the functional relationship between cell types performing each of the three xylem functions (conduction, support and storage) and wood density and theoretical conductivity using a sample of approx. 800 tree species from China. Key Results Axial parenchyma and rays had distinct evolutionary correlation patterns. An evolutionary link was found between high conduction capacity and larger amounts of axial parenchyma that is probably related to water storage capacity and embolism repair, while larger amounts of ray tissue have evolved with increased mechanical support and reduced hydraulic capacity. In a phylogenetic principal component analysis this association of axial parenchyma with increased conduction capacity and rays with wood density represented orthogonal axes of variation. In multivariate space, however, the proportion of rays might be positively associated with conductance and negatively with wood density, indicating flexibility in these axes in species with wide rays. Conclusions The findings suggest that parenchyma types may differ in function. The functional axes represented by different cell types were conserved across lineages, suggesting a significant role in the ecological strategies of the angiosperms. PMID:23904446

  12. Oxygen consumption by conserved archaeological wood.

    PubMed

    Mortensen, Martin N; Matthiesen, Henning

    2013-07-01

    Rates of oxygen consumption have been measured over extended time periods for 29 whole samples of conserved, archaeological wood and four samples of fresh, unconserved wood, at 50% relative humidity and room temperature. Samples from the Swedish Warship Vasa and the Danish Skuldelev Viking ships are included. Most rates were close to 1 μg O2 (g wood)(-1) day(-1) and the process persisted for several years at least. Consumption of oxygen is related to change in chemical composition, which is, in turn, related to degradation. It is thus demonstrated that despite conservation, waterlogged archaeological wood continues to degrade in a museum climate. PMID:23715675

  13. EFFECTS OF BURN RATE, WOOD SPECIES, MOISTURE CONTENT AND WEIGHT OF WOOD LOADED ON WOODSTOVE EMISSIONS

    EPA Science Inventory

    The report gives results of tests of four woodstove operating parameters (burn rate, wood moisture, wood load, and wood species) at two levels each using a half factorial experimental test design to determine statistically significant effects on the emission components CO, CO2, p...

  14. Wood residues: trash or treasure

    SciTech Connect

    Bolgiano, C.

    1983-12-01

    Forest residues have acquired new economic value since the growth of the wood-energy markets has prompted private woodlot owners to begin managing and harvesting their forests after nearly a century of neglect. Estimates place half the commercial forests as overstocked, with poor-quality trees and unmarketable varieties, as well as standing dead or fallen trees and slash which are aesthetically bad. Overzealous cleansing of the forest floor, however, will deplete forests soils of nutrients and expose them to erosion in addition to destroying wildlife habitat. A compromise is needed to balance the ecological and economic benefits. (DCK)

  15. A photochemical method for improvement of color stability at polymer-wood biointerfaces.

    PubMed

    Palija, Tanja; Dobić, Jovan; Jaić, Milan

    2013-08-01

    The possibility of photochemical improvement of color stability by UV-irradiation treatment at coating-wood biointerfaces was investigated. The surface of beech wood was partially delignified by exposure to UV-irradiation by passing of samples under UV lamps: a mercury (Hg) lamp with a peak wavelength of 366nm, a gallium (Ga) lamp with peak wavelengths at 410 and 420nm and a combination of a mercury and a gallium (Hg+Ga) lamp. After UV-irradiation, the samples were coated with a UV-curable acrylic coating. The number of passes under the lamps was varied to determine the optimum combination of the number of passes and the lamp type that produces the smallest change in color of the coated wood in an indoor environment. The coated samples that had been UV-irradiated by passing 15 times under both an Hg lamp and a Ga lamp showed the smallest change in color (decrease in the ΔE by 23.23% compared to the untreated coated samples) after 72h of accelerated artificial sunlight exposure. Microscope images of the same samples showed deformation of the cells in wood surface layer and a roughening of the ‟wood-coating line", which could be related to a partial removal of lignin. These findings suggest that delignification of wood leads to more photo-stable polymer-wood interfaces in terms of color. PMID:23537833

  16. Computed tomography analysis of wood-adhesive bonds

    NASA Astrophysics Data System (ADS)

    Modzel, Gunter Georg Rolf

    The importance of wood bonding increased in the last decades due to the increased usage of wood composites whose performance depends to a large extent on the adhesive penetration and subsequent bonding of the adherends. The presented research used XMT (x-ray microtomography) to perform a non-destructive, three-dimensional analysis of the adhesive bondline and wood-structure of Southern yellow pine, Douglas-fir and yellow-poplar samples. A phenol-formaldehyde adhesive was used. The sodium hydroxide catalyst was replaced with rubidium hydroxide during resin formulation. This was done to improve the image contrast. The reconstructions of the wood structure of Southern yellow pine showed tracheids, rays, fusiform rays, resin canals and pits. On the Douglas-fir sample tracheids, pits and rays were displayed clearly. The yellow-poplar images showed vessels, fibers, bordered pits, scalariform sieve plates and rays. The renderings of the adhesive-bondline of Southern yellow pine proved the dominant role of tracheids for the adhesive flow and showed rays as a secondary pathway of adhesive flow. The results revealed no adhesive flow occured through bordered pits, while simple pits permitted some adhesive flow through ray parenchyma. The results for Douglas-fir showed a similar result; the tracheids were the predominant path of adhesive penetration, while rays played a secondary role and no adhesive flow through the pit aperture was visible. The adhesive flow through the microstructure of yellow-poplar wood occured mainly through vessels and also through rays, but no adhesive flow through the pits was directly observed. The segmentation of the images in three phases: void space, cell wall substance and adhesive, enabled the calculation of the effective bondline thickness based on the adhesive, as well as the volumetric measurement of all three elements and their share on the sample volume. Subsequent experiments showed that the exposure of the Southern yellow pine and yellow

  17. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    NASA Technical Reports Server (NTRS)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  18. Variation in wood nutrients along a tropical soil fertility gradient.

    PubMed

    Heineman, Katherine D; Turner, Benjamin L; Dalling, James W

    2016-07-01

    Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests. PMID:26922861

  19. Particulate waste wood firing system

    SciTech Connect

    Kolze, B.A.; Kolze, M.W.

    1983-03-22

    A furnace for burning dry or wet wood waste products such as hogged bark and the like is provided with a grating therein comprised of aligned rows of bricks resting on supporting cross beams, with at least some of the rows of bricks maintained a uniform distance from other rows of bricks by spacers disposed between such spaced-apart rows of bricks. The furnace is charged by turbulent air entering both above and below the grating, with a select portion of such air being pre-heated. A temperature gradient is established between an area immediately beneath the grating and the area above the grating in the range of 2200/sup 0/ F and can be controlled by selected initial placement of the bricks and spacers to achieve an optimum cross sectional area for flow of heated, turbulent air through the grating to produce a temperature for efficient heating, drying and burning of wood waste products in an essentially pollution-free manner.

  20. IR absorption spectra of cellulose obtained from ozonated wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Autlov, S. A.; Kharlanov, A. N.; Bazarnova, N. G.; Lunin, V. V.

    2015-08-01

    The kinetic curves of ozone absorption by aspen wood were obtained. Processing of wood with peracetic acid gave cellulose samples. The yields of ozonated wood, water-soluble compounds, and cellulose were determined for the samples corresponding to different consumptions of ozone. The IR absorption spectra of wood and cellulose isolated from ozonated wood were analyzed. The supramolecular structure of cellulose can be changed by varying the conditions of wood ozonation.

  1. Wood-Destroying Soft Rot Fungi in the Historic Expedition Huts of Antarctica

    PubMed Central

    Blanchette, Robert A.; Held, Benjamin W.; Jurgens, Joel A.; McNew, Douglas L.; Harrington, Thomas C.; Duncan, Shona M.; Farrell, Roberta L.

    2004-01-01

    Three expedition huts in the Ross Sea region of Antarctica, built between 1901 and 1911 by Robert F. Scott and Ernest Shackleton, sheltered and stored the supplies for up to 48 men for 3 years during their explorations and scientific investigation in the South Pole region. The huts, built with wood taken to Antarctica by the early explorers, have deteriorated over the past decades. Although Antarctica has one of the coldest and driest environments on earth, microbes have colonized the wood and limited decay has occurred. Some wood in contact with the ground contained distinct microscopic cavities within secondary cell walls caused by soft rot fungi. Cadophora spp. could be cultured from decayed wood and other woods sampled from the huts and artifacts and were commonly associated with the soft rot attack. By using internal transcribed spacer sequences of ribosomal DNA and morphological characteristics, several species of Cadophora were identified, including C. malorum, C. luteo-olivacea, and C. fastigiata. Several previously undescribed Cadophora spp. also were found. At the Cape Evans and Cape Royds huts, Cadophora spp. commonly were isolated from wood in contact with the ground but were not always associated with soft rot decay. Pure cultures of Cadophora used in laboratory decay studies caused dark staining of all woods tested and extensive soft rot in Betula and Populus wood. The presence of Cadophora species, but only limited decay, suggests there is no immediate threat to the structural integrity of the huts. These fungi, however, are widely found in wood from the historic huts and have the capacity to cause extensive soft rot if conditions that are more conducive to decay become common. PMID:15006750

  2. Understanding wood wastes as fuel. Technical paper

    SciTech Connect

    Vogler, J.

    1986-01-01

    The publication addresses the following subjects: Combustion in wood-burning stoves; modern air-tight stoves; advanced stove designs; dangers of simple stoves; burning sawdust; compacting wood wastes; sawdust briquettes; high-tech briquetting process; retting and pressing; making charcoal; various kilns; charcoal briquettes; binders for briquetting.

  3. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    EPA Science Inventory

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. wo processing technologies were used to prepare wood-plastic composites: air-laying and melt-...

  4. DEVELOPMENT OF RESIDENTIAL WOOD COMSUMPTION ESTIMATION MODELS

    EPA Science Inventory

    The report gives data on the distribution and usage of firewood, obtained from a pool of household wood use surveys. ased on a series of regression models developed using the STEPWISE procedure in the SAS statistical package, two variables appear to be most predictive of wood use...

  5. DEVELOPING A NO-VOC WOOD TOPCOAT

    EPA Science Inventory

    The paper reports an evaluation of a new low-VOC (volatile organic compound) wood coating technology, its performance characteristics, and its application and emissions testing. The low-VOC wood coating selected for the project was a two-component, water-based epoxy coating. Poly...

  6. WOOD PRESERVING INDUSTRY MULTIMEDIA EMISSION INVENTORY

    EPA Science Inventory

    Restriction of the discharge of wastewater generated during the preservation of wood has resulted in the increased use of evaporation techniques by the wood preserving industry. This report discusses emissions that may occur during evaporation and projects the pollutant burden on...

  7. INDEPENDENT POWER PLANT USING WOOD WASTE

    EPA Science Inventory

    A 1 MWe power plant using waste wood is to be installed at a U.S. Marine Corps base, which will supply all the wood for the plant from a landfill site. The core energy conversion technology is a down-draft gasifier supplying approximately 150 Btu/scf gas to both spark ignition an...

  8. A Better Way to Burn Wood.

    ERIC Educational Resources Information Center

    Robison, Rita

    1979-01-01

    Wood pyrolysis is a process that burns wood without air, producing gas and oil that are then burned for heat. Now being tested at Maryville College, Tennessee, the process is expected to cut fuel costs, solve a waste disposal problem, and produce charcoal for sale. (Author/MLF)

  9. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    EPA Science Inventory

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  10. Aircraft woods: their properties, selection, and characteristics

    NASA Technical Reports Server (NTRS)

    Markwardt, L J

    1931-01-01

    Strength values of various woods for aircraft design for a 15 per cent moisture condition of material and a 3-second duration of stress are presented, and also a discussion of the various factors affecting the values. The toughness-test method of selecting wood is discussed, and a table of acceptance values for several species is given.

  11. Ultraviolet protective eyewear for Wood's light use.

    PubMed

    Herro, Elise M; Cosan, Therese; Jacob, Sharon E

    2011-01-01

    When interpreting delayed patch test reads for children suspected of having contact dermatitis, we use the Wood's light to illuminate the highlighter outlines we made at the first read. Our pediatric patients wear single-use ultraviolet protective goggles to shield their retinas, because children have a propensity to attempt to look into the Wood's lamp. PMID:21615478

  12. CAMP LEJEUNE ENERGY FROM WOOD (CLEW) PROJECT

    EPA Science Inventory

    The paper discusses EPA's Camp Lejeune Energy from Wood (CLEW) project, a demonstration project that converts wood energy to electric power, and provides waste utilization and pollution alleviation. The 1-MWe plant operates a reciprocating engine-generator set on synthetic gas f...

  13. SYNERGISTIC WOOD PRESERVATIVES FOR REPLACEMENT OF CCA

    EPA Science Inventory

    The objective of this project was to evaluate the potential synergistic combinations of environmentally-safe biocides as wood preservatives. These wood preservatives could be potential replacements for the heavy-metal based CCA.

    Didecyldimethylammonium chloride [DDAC] was...

  14. Bacteria in decomposing wood and their interactions with wood-decay fungi.

    PubMed

    Johnston, Sarah R; Boddy, Lynne; Weightman, Andrew J

    2016-11-01

    The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research. PMID:27559028

  15. Alaska Wood Biomass Energy Project Final Report

    SciTech Connect

    Jonathan Bolling

    2009-03-02

    The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

  16. Immunocytochemical localization of laccase L1 in wood decayed by Rigidoporus lignosus.

    PubMed Central

    Nicole, M; Chamberland, H; Geiger, J P; Lecours, N; Valero, J; Rio, B; Ouellette, G B

    1992-01-01

    The cellular distribution of laccase L1 during degradation of wood chips by Rigidoporus lignosus, a tropical white rot fungus, was investigated by using anti-laccase L1 polyclonal antisera in conjunction with immunolabeling techniques. The enzyme was localized in the fungal cytoplasm and was associated with the plasmalemma and the fungal cell wall. An extracellular sheath, often observed around fungal cells, often contained laccase molecules. Diffusion of laccase within apparently unaltered wood was seldom observed. The enzyme penetrated all degraded cell walls, from the secondary wall toward the primary wall, including the middle lamella. Xylem cells showing advanced stages of decay were sometimes devoid of significant labeling. These data suggest that the initial attack on wood was not performed by laccase L1 of R. lignosus. Previous alteration of the lignocellulose complex may facilitate the movement of laccase within the wood cell walls. This immunogold study revealed that laccase localization during wood degradation seems limited not in space but in time. Images PMID:1622245

  17. Learning and Doing: An Interview with Bill Wood.

    PubMed

    Wood, William B

    2016-06-01

    THE Genetics Society of America's Elizabeth W. Jones Award for Excellence in Education recognizes significant and sustained impact on genetics education. As well as having made major contributions to biochemistry and developmental genetics, the 2016 awardee William B. Wood has been a pioneer in the reform of science teaching. Wood's leadership has been crucial in several national initiatives and programs, including the development of the influential National Academies Summer institutes on Undergraduate Education in Biology. He has also catalyzed change in education through his service as Editor-in-Chief of CBE-Life Sciences Education, a peer-reviewed journal published by the American Society for Cell Biology, in editorial partnership with the GSA. PMID:27270697

  18. Extracellular oxidative metabolism of wood decay fungi

    SciTech Connect

    Daniel Cullen

    2010-04-21

    Substantial progress has been made toward understanding the fundamental physiology and genetics of wood decay fungi, microbes that are capable of degrading all major components of plant cell walls. Efficient utilization of lignocellulosic biomass has been hampered in part by limitations in our understanding of enzymatic mechanisms of plant cell wall degradation. This is particularly true of woody substrates where accessibility and high lignin content substantially complicate enzymatic 'deconstruction'. The interdisciplinary research has illuminated enzymatic mechanisms essential for the conversion of lignocellulosics to simple carbohydrates and other small molecular weight products. Progress was in large part dependent on substantial collaborations with the Department of Energy's Joint Genome Institute (JGI) in Walnut Creek and Los Alamos, as well as the Catholic University, Santiago, Chile, the Royal Institute of Technology, Stockholm, the University of Minnesota, St. Paul, and colleagues at the University of Wisconsin and the Forest Products Laboratory. Early accomplishments focused on the development of experimental tools (2, 7, 22, 24-26, 32) and characterization of individual genes and enzymes (1, 3-5, 8, 9, 11, 14, 15, 17, 18, 23, 27, 33). In 2004, the genome of the most intensively studied lignin-degrading fungus, Phanerochaete chrysosporium, was published (21). This milestone lead to additional progress on this important model system (6, 10, 12, 13, 16, 28-31) and was further complemented by genome analysis of other important cellulose-degrading fungi (19, 20). These accomplishments have been highly cited and have paved the way for whole new research areas.

  19. Wood fuel in suspension burners

    SciTech Connect

    Wolle, P.C.

    1982-01-01

    Experience and criteria for solid fuel suspension burning is presented based on more than ten years of actual experience with commercially installed projects. Fuel types discussed range from dried wood with less than 15% moisture content, wet basis, to exotic biomass material such as brewed tea leaves and processed coffee grounds. Single burner inputs range from 1,465 kW (5,000 Mbh) to 13,771 kW (47,000 Mbh) as well as multiple burner applications with support burning using fuel oil and/or natural gas. General requirements for self-sustaining combustion will be reviewed as applied to suspension solid fuel burning, together with results of what can happen if these requirements are not met. Solid fuel preparation, sizing, transport, storage, and metering control is essential for proper feed. Combustion chamber volume, combustion air requirements, excess air, and products of combustion are reviewed, together with induced draft fan sizing. (Refs. 7).

  20. Recycling of treated wood poles

    SciTech Connect

    Fansham, P.

    1995-11-01

    There are approximately 150 million utilities poles in service in North America. Of the 3 million poles removed from service each year, many poles still contain a sound and structurally intact core and only the outer layer has deteriorated. Since most of the old poles are treated with either pentachlorophenol or creosote there are limited disposal options available to pole users. The practice of giving old poles away to farmers or other interested parties in falling into disfavour since this practice does not absolve the utility of the environmental liability associated with the treated wood. TWT has commercialised a thermolysis (Pyrolysis) based process capable of removing oil based preservatives from treated wood. The patented process involves: the shaving of the weathered pole exterior; the rapid distillation of oil based preservatives in an oxygen depleted environment; condensation of the vapours; and separation of liquids. TWT has constructed a 30,000 pole per year facility east of Calgary and has provided recycled poles for the construction of two power lines now in use by TransAlta Utilities Corporation, Canada`s largest investor owned electric utility. TWT has tested two thermolysis (Pyrolysis) technologies and has determined that contact thermolysis using a heated auger design performed better and with less plugging than a fast fluid bed reactor. The fluid bed reactor is prone to coke formation and contamination of the oil by fine char particles. Residual PCP concentration in the shavings was reduced from 9500 ppm to 10 ppm. Leachate testing on the char yielded a PCP concentration of 1.43 ppm in the Leachate, well below the EPA standard maximum of 100 ppm.

  1. Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls

    PubMed Central

    2012-01-01

    Background Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing. In the present study, epigallocatechin gallate (EGCG) was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. Results In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogallyl (B-ring) moieties in EGCG underwent radical cross-coupling with monolignols mainly by β–O–4-type cross-coupling, producing benzodioxane units following rearomatization reactions. Biomimetic lignification of maize cell walls with a 3:1 molar ratio of monolignols and EGCG permitted extensive alkaline delignification of cell walls (72 to 92%) that far exceeded that for lignified controls (44 to 62%). Alkali-insoluble residues from EGCG-lignified walls yielded up to 34% more glucose and total sugars following enzymatic saccharification than lignified controls. Conclusions It was found that EGCG readily copolymerized with monolignols to become integrally cross-coupled into cell wall lignins, where it greatly enhanced alkaline delignification and subsequent enzymatic saccharification. Improved delignification may be attributed to internal trapping of quinone-methide intermediates to prevent benzyl ether cross-linking of lignin to structural polysaccharides during lignification, and to the cleavage of ester intra-unit linkages within EGCG during pretreatment. Overall, our results suggest that apoplastic deposition of EGCG for incorporation into lignin would be a promising plant genetic engineering target for improving the delignification and saccharification of biomass crops. PMID:22889353

  2. Properties of Wood Fibre-Polypropylene Composites: Effect of Wood Fibre Source

    NASA Astrophysics Data System (ADS)

    Butylina, Svetlana; Martikka, Ossi; Kärki, Timo

    2011-04-01

    This study examined the effect of type of wood fibre source on the physical and mechanical properties of wood fibre-polypropylene composites. Wood flour, fibres of heat-treated wood and pellets were used as sources of wood fibres in the manufacturing process. All studied wood fibre-polypropylene composites were made from 75% wood, 22% recycled polypropylene (PP) and 3% maleated polypropylene (MAPP). Wood fibre-polypropylene composites were compounded in a conical twin-screw extruder. Water absorption and thickness swelling were studied. Mechanical properties of the composites were characterised by tensile, flexural, and impact testing. Micromechanical deformation processes were investigated using scanning electron microscopy done on the fractured surfaces of broken samples. The durability of composites exposed to three accelerated cycles of water immersion, freezing and thawing was examined. The results showed that the density of the composites was a key factor governing water absorption and thickness swelling. A significant improvement in tensile strength, flexural strength, and Charpy impact strength was observed for composites reinforced with heat-treated fibre compared to composites reinforced with pellets and especially to wood flour reinforced composites. The flexural strength and dimensional stability performance reduced after exposure to freeze-thaw cycling for all composites, but the degree of these changes was dependent on the wood fibre source.

  3. Towards a worldwide wood economics spectrum.

    PubMed

    Chave, Jerome; Coomes, David; Jansen, Steven; Lewis, Simon L; Swenson, Nathan G; Zanne, Amy E

    2009-04-01

    Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been under-appreciated by ecologists compared to the focus they have given to leaf function. To draw together our current understanding of wood function, we identify and collate data on the major wood functional traits, including the largest wood density database to date (8412 taxa), mechanical strength measures and anatomical features, as well as clade-specific features such as secondary chemistry. We then show how wood traits are related to one another, highlighting functional trade-offs, and to ecological and demographic plant features (growth form, growth rate, latitude, ecological setting). We suggest that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined. We then discuss the biogeography, evolution and biogeochemistry of the spectrum, and conclude by pointing out the major gaps in our current knowledge of wood functional traits. PMID:19243406

  4. Solvolytic liquefaction of wood under mild conditions

    SciTech Connect

    Yu, S.M.

    1982-04-01

    Conversion of wood to liquid products requires cleavage of bonds which crosslink the wood structure. This study examines a low-severity wood solubilization process utilizing a solvent medium consisting of a small amount of sulfuric acid and a potentially wood-derivable alcohol. In one half hour of reaction time at 250/sup 0/C under 15 psia starting nitrogen pressure, over 95% of the wood (maf) was rendered acetone-soluble. The product is a soft, black, bitumen-like solid at room temperature but readily softens at 140/sup 0/C. Between 25 and 50% of the original wood oxygen, depending on alcohol used, was removed as water. Approximately 2 to 17% of the alcohols were retained in the product. Gel permeation chromatography showed that the product's median molecular weight is around 300. Based on experimental and literature results, a mechanism for wood solubilization is proposed. This involves protonation of the etheric oxygen atoms, leading to subsequent bond scission to form carbonium ions which are stabilized by solvent alkoxylation. At severe conditions, polymerization and condensation reactions result in acetone-insoluble materials.

  5. Downed wood in Micronesian mangrove forests

    USGS Publications Warehouse

    Allen, J.A.; Ewel, K.C.; Keeland, B.D.; Tara, T.; Smith, T. J., III

    2000-01-01

    Dead, downed wood is an important component of upland forest and aquatic ecosystems, but its role in wetland ecosystems, including mangroves, is poorly understood. We measured downed wood in ten sites on the western Pacific islands of Kosrae, Pohnpei, and Yap, all located within the Federated States of Micronesia. Our goals were to examine patterns of variability in the quantity of downed wood in these mangrove ecosystems, provide a general characterization of downed wood in a region with no previously published accounts, and investigate the relationship between harvesting practices and the amount of downed wood. The overall mean volume of downed wood at our study sites was estimated to be 60.8 m3 ha-1 (20.9 t ha-1), which is greater than most published data for forested wetlands. There were significant differences among islands, with the sites on Kosrae (104.2 m3 ha-1) having a much greater mean volume of downed wood than those on Pohnpei (43.1 m3 ha-1) or Yap (35.1 m3 ha-1). Part of the difference among islands may be attributable to differences in stand age and structure, but the most important factor seems to be the greater amount of wood harvesting on Kosrae, coupled with a low efficiency of use of cut trees. Of a total of 45 cut trees examined on Kosrae, no wood had been removed from 18 (40%); these are believed to be trees cut down because other, more valuable, trees were caught on them as they were felled. Of the other 27 trees, only 24 to 42% of the stem volume (to a 10 cm top) was removed from the forest, the amount varying by species. The impacts of current harvesting practices are unknown but may include important effects on tree regeneration and the abundance and species composition of crab populations.

  6. Toxicity of pyrolysis gases from wood

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Huttlinger, N. V.; Oneill, B. A.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    The toxicity of the pyrolysis gases from nine wood samples was investigated. The samples of hardwoods were aspen poplar, beech, yellow birch, and red oak. The samples of softwoods were western red cedar, Douglas fir, western hemlock, eastern white pine, and southern yellow pine. There was no significant difference between the wood samples under rising temperature conditions, which are intended to simulate a developing fire, or under fixed temperature conditions, which are intended to simulate a fully developed fire. This test method is used to determine whether a material is significantly more toxic than wood under the preflashover conditions of a developing fire.

  7. [Intraorbital wood foreign body: a case study].

    PubMed

    Karim, A; Taha, I; Tachfouti, S; Benzakour, H; Bencherif, Z; Cherkaoui, O; Mohcine, Z; Daoudi, R

    2006-12-01

    A 12-year-old child had left orbital trauma by wood. He consulted 4 months after for orbital cellulitis with cutaneous fistula. The CT scan showed the presence of a left orbital wood foreign body extended to the homolateral cavernous sinus and intracranial. Extraction of the wood fragment associated with an adapted antibiotic treatment led to clinical improvement without visual recovery. A situation of orbital trauma and secondary orbital inflammatory syndrome must raise the suspicion of a foreign body of the orbit and motivate emergency imaging for optimal management of the disorder. PMID:17211317

  8. Adsorption of phenol on wood surfaces

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Lunin, V. V.

    2016-03-01

    Adsorption of phenol on aspen and pine wood is investigated. It is shown that adsorption isotherms are described by the Langmuir model. The woods' specific surface areas and adsorption interaction constants are determined. It is found that the sorption of phenol on surfaces of aspen and pine is due to Van der Waals interactions ( S sp = 45 m2/godw for aspen and 85 m2/godw for pine). The difference between the adsorption characteristics is explained by properties of the wood samples' microstructures.

  9. Adhesives for the composite wood panel industry

    SciTech Connect

    Koch, G.S.; Klareich, F.; Exstrum, B.

    1987-01-01

    This book presents a market and technology analysis of current fossil-fuel-based adhesives for the composite wood panel industry. It is also a study of the potential for, and technology of, less-energy-intensive biomass-derived adhesives for use in the industry. Adhesives manufacturer and production account for a significant portion of overall wood panel industry energy use as well as overall production costs, and the wood panel industry consumes about 25% of the total U.S. adhesives production. Significant savings might be realized if current fossil-fuel-based resins could be replaced with alternative biomass-derived adhesives.

  10. Quantification of (1→4)-β-d-Galactans in Compression Wood Using an Immuno-Dot Assay

    PubMed Central

    Chavan, Ramesh R.; Fahey, Leona M.; Harris, Philip J.

    2015-01-01

    Compression wood is a type of reaction wood formed on the underside of softwood stems when they are tilted from the vertical and on the underside of branches. Its quantification is still a matter of some scientific debate. We developed a new technique that has the potential to do this based on the higher proportions of (1→4)-β-d-galactans that occur in tracheid cell walls of compression wood. Wood was milled, partially delignified, and the non-cellulosic polysaccharides, including the (1→4)-β-d-galactans, extracted with 6 M sodium hydroxide. After neutralizing, the solution was serially diluted, and the (1→4)-β-d-galactans determined by an immuno-dot assay using the monoclonal antibody LM5, which specifically recognizes this polysaccharide. Spots were quantified using a dilution series of a commercially available (1→4)-β-d-galactan from lupin seeds. Using this method, compression and opposite woods from radiata pine (Pinus radiata) were easily distinguished based on the amounts of (1→4)-β-d-galactans extracted. The non-cellulosic polysaccharides in the milled wood samples were also hydrolysed using 2 M trifluoroacetic acid followed by the separation and quantification of the released neutral monosaccharides by high performance anion exchange chromatography. This confirmed that the compression woods contained higher proportions of galactose-containing polysaccharides than the opposite woods. PMID:27135316

  11. Electrical properties and X-ray diffraction of wood and wood plastic composite (WPC)

    NASA Astrophysics Data System (ADS)

    Ahmad Khan, Mubarak; Idriss Ali, K. M.; Wang, W.

    Wood plastic composite (WPC) of kadom, simul, mango and debdaro were prepared with two monomers, methylmethacrylate (MMA) and butylmethacrylate (BMA) using high energy ionizing radiation. X-ray diffraction and scanning electron microscope (SEM) studies reveal that significant grafting occurred with wood fiber. Electric properties like resistivity and dielectric constant of both wood and WPC were measured under different moisture contents and relative humidities. The resistivities of wood decreased dramatically with increase of moisture content, but those of WPC decreased very slowly with moisture content. The dielectric constant of wood increased significantly with moisture content but no significant difference was observed in the case of WPC within the range of moisture contents studied. The dielectric constants of untreated wood also increased with their densities.

  12. Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics.

    PubMed

    Zhu, Hongli; Fang, Zhiqiang; Wang, Zhu; Dai, Jiaqi; Yao, Yonggang; Shen, Fei; Preston, Colin; Wu, Wenxin; Peng, Peng; Jang, Nathaniel; Yu, Qingkai; Yu, Zongfu; Hu, Liangbing

    2016-01-26

    Wood fibers possess natural unique hierarchical and mesoporous structures that enable a variety of new applications beyond their traditional use. We dramatically modulate the propagation of light through random network of wood fibers. A highly transparent and clear paper with transmittance >90% and haze <1.0% applicable for high-definition displays is achieved. By altering the morphology of the same wood fibers that form the paper, highly transparent and hazy paper targeted for other applications such as solar cell and antiglare coating with transmittance >90% and haze >90% is also achieved. A thorough investigation of the relation between the mesoporous structure and the optical properties in transparent paper was conducted, including full-spectrum optical simulations. We demonstrate commercially competitive multitouch touch screen with clear paper as a replacement for plastic substrates, which shows excellent process compatibility and comparable device performance for commercial applications. Transparent cellulose paper with tunable optical properties is an emerging photonic material that will realize a range of much improved flexible electronics, photonics, and optoelectronics. PMID:26673796

  13. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or...

  14. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or...

  15. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or...

  16. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or...

  17. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or...

  18. Mechanics of wood and trees: some new highlights for an old story

    NASA Astrophysics Data System (ADS)

    Thibaut, Bernard; Gril, Joseph; Fournier, Mériem

    The main aspects of wood mechanics are approached through the role played by wood as the building material of the tree. The main concepts used by nature: progressive setting up of tree weight and architecture, multifunctional role of wood and adaptability to hazard and long-term evolution, are clarified together with their consequence on the multilayered, anisotropic nature of wood. The technological choices of the plant world as the cellular structure, the use of composite with oriented fibres and hydro-carbonated polymers, as well as the systematic prestressing of every new layer, bear obvious consequences on the type of mechanical behaviour of wood. The local control of the level of prestressing through minor modifications of the cell-wall biosynthesis allows the tree to adapt to conditions of light exploration that will evolve according to time and risk occurrence. This analysis of wood genesis process permits in return to improve our understanding of the mechanical behaviour of the material in relation with the parameters of the microstructure.

  19. 8-isoprostane in exhaled breath condensate after experimental exposure to wood smoke in humans.

    PubMed

    Murgia, N; Barregard, L; Sallsten, G; Almstrand, A C; Montuschi, P; Ciabattoni, G; Olin, A C

    2016-01-01

    Wood smoke, a well-known indoor and outdoor air pollutant, may cause adverse health effects through oxidative stress. In this study 8-isoprostane, a biomarker of oxidative stress, was measured in exhaled breath condensate (EBC) and urine before and after experimental exposure to wood smoke. The results were compared with measurements of other biomarkers of oxidative stress and inflammation. Thirteen subjects were exposed first to clean air and then, after 1 week, to wood smoke in an exposure chamber during 4-hour sessions. Exhaled breath condensate, exhaled nitric oxide, blood and urine were sampled before and at various intervals after exposure to wood smoke and clean air. Exhaled breath condensate was examined for 8-isoprostane and malondialdehyde (MDA), while exhaled air was examined for nitric oxide, serum for Clara cell protein (CC16) and urine for 8-isoprostane. 8-isoprostane in EBC did not increase after wood smoke exposure and its net change immediately after exposure was inversely correlated with net changes in MDA (r(s)= -0.57, p= 0.041) and serum CC16 (S-CC16) (r(p)= -0.64, p= 0.020) immediately after the exposure. No correlation was found between 8-isoprostane in urine and 8-isoprostane in EBC. In this study controlled wood smoke exposure in healthy subjects did not increase 8-isoprostane in EBC. PMID:27049101

  20. Variation in wood fibre traits among eight populations of Dipterocarpus indicus in Western Ghats, India.

    PubMed

    Prasad, A G Devi; Al-Sagheer, Nageeb A

    2012-03-01

    Wood elements and anatomical ratio of Dipterocarpus indicus were studied to evaluate variation among populations and to recommend for end selection. The variation of wood element [fibre length (FL), fibre diameter (FD), lumen diameter (LD), cell wall thickness (CWT), double wall thickness (DWT), and lumen volume (LV)] and anatomical ratio [fibre lumen area (FLA), slenderness ratio (SR) and runkel ratio (RR)] were investigated in a girth class of 100 - 120 cm among eight populations of Dipterocarpus indicus in Western Ghats, India. The study revealed a significant variations in FL (0.2426), FD (4.7019), LD (3.1689), CWT (2.7104), DWT and (5.4298) among populations. The variations in anatomical ratios were significant among populations except in case of LV. The causes of variations among populations in their wood traits were attributed to the site factors. The interaction between genetic makeup of wood traits combined with effects of edaphic, local and regional climatic conditions reflect the amount of variation among populations. The highest coefficient of variation (CV %) for FL, FD, CWT and DWT was recorded in population of Gundya whereas low coefficient of variation were recorded in the population of Makuta (FL), Devimane (FD, CWT and DWT), and Sampaje (LD). The wood of Dipterocarpus indicus was found undesirable for pulp wood but can be utilized for plywood timbers. PMID:23033683

  1. Continuous-flow wood chip reactor for biodegradation of 2,4-DCP

    SciTech Connect

    Yum, K.J.; Peirce, J.J.

    1998-02-01

    Chlorinated phenols are by-products of chlorine bleaching in numerous industries including pulp and paper mills and can be emitted from a variety of incineration processes. This research investigates the ability and efficiency of continuous-flow wood chip reactors seeded with a white-rot fungus to degrade 2,4-dichlorophenol (2,4-DCP) using wood chips as a carbon source. When 2,4-DCP was the only substrate (nonglucose treatment conditions), the wood chip reactor system had a high degradation efficiency and operated continuously without excessive fungal biomass buildup on the wood chips. In the presence of added glucose, a clogging problem and an effluent contamination problem of fungal cells are found during the reactor operating period. In addition, 2,4-DCP is degraded effectively both under low-nitrogen as well as high-nitrogen treatment conditions. The 2,4-DCP is degraded to a greater extent with small-size wood chips and hardwood chips as a carbon source. The results of this research demonstrate a potential application of wood chip reactor systems for the treatment of contaminated water while expanding the use of wasted forest products.

  2. LCA-based optimization of wood utilization under special consideration of a cascading use of wood.

    PubMed

    Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus

    2015-04-01

    Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. PMID:25660355

  3. Supporting rural wood industry through timber utilization research. Research paper

    SciTech Connect

    Skog, K.

    1991-10-01

    The report evaluates the potential impact of USDA Forest Service wood utilization and wood energy research on rural employment and income. Recent projections suggest employment will decrease in many forest products industries, such as softwood sawmilling, but will eventually increase in softwood plywood and reconstituated panel mills. Forest products industries expected to provide wages exceeding the average manufacturing production wage include logging, softwood sawmills, millwork, softwood plywood--veneer, structural wood members, particle-board, wood partitions, pulp mills, paper mills, and paperboard mills. Industries expected to pay 90 percent of the average manufacturing production wage include wood kitchen cabinets, mobile homes, prefabricated wood buildings, and wood preservatives.

  4. Involvement of an Extracellular Glucan Sheath during Degradation of Populus Wood by Phanerochaete chrysosporium

    PubMed Central

    Ruel, Katia; Joseleau, Jean-Paul

    1991-01-01

    Observations by transmission electron microscopy of wood samples of Populus tremula inoculated with the white rot fungus Phanerochaete chrysosporium showed that, at certain stages of their growth cycle, hyphae were encapsulated by a sheath which seems to play an active role in the wood cell wall degradation. Chemical and immunochemical techniques and 13C nuclear magnetic resonance spectroscopy were applied to demonstrate the β-1,3-1,6-d-glucan nature of the sheath. Double-staining methods revealed the interaction between the extracellular peroxidases involved in lignin degradation and the glucan mucilage. The glucan was also shown to establish a material junction between the fungus and the wood cell wall. It was concluded that, by means of these interactions, the sheath provides a transient junction between the hyphae and the wood, thus establishing a point of attachment to the site of the degradation. The association of peroxidases to the glucan matrix is in favor of the role of the sheath as a supporting structure. Furthermore, that the sheath was hydrolyzed during the attack demonstrated its active role both in providing the H2O2 necessary to the action of peroxidases and in providing a mode of transport of the fungal enzymes to their substrates at the surface of the wood cell wall. Images PMID:16348406

  5. Compensatory mechanisms mitigate the effect of warming and drought on wood formation.

    PubMed

    Balducci, Lorena; Cuny, Henri E; Rathgeber, Cyrille B K; Deslauriers, Annie; Giovannelli, Alessio; Rossi, Sergio

    2016-06-01

    Because of global warming, high-latitude ecosystems are expected to experience increases in temperature and drought events. Wood formation will have to adjust to these new climatic constraints to maintain tree mechanical stability and long-distance water transport. The aim of this study is to understand the dynamic processes involved in wood formation under warming and drought. Xylogenesis, gas exchange, water relations and wood anatomy of black spruce [Picea mariana (Mill.) B.S.P.] saplings were monitored during a greenhouse experiment where temperature was increased during daytime or night-time (+6 °C) combined with a drought period. The kinetics of tracheid development expressed as rate and duration of the xylogenesis sub-processes were quantified using generalized additive models. Drought and warming had a strong influence on cell production, but little effect on wood anatomy. The increase in cell production rate under warmer temperatures, and especially during the night-time warming at the end of the growing season, resulted in wider tree-rings. However, the strong compensation between rates and durations of cell differentiation processes mitigates warming and drought effects on tree-ring structure. Our results allowed quantification of how wood formation kinetics is regulated when water and heat stress increase, allowing trees to adapt to future environmental conditions. PMID:26662380

  6. Effects of Mixing Temperature and Wood Powder Size on Mechanical Properties of Wood Plastic Recycled Composite

    NASA Astrophysics Data System (ADS)

    Miki, Tsunehisa; Sugimoto, Hiroyuki; Kojiro, Keisuke; Kanayama, Kozo; Yamamoto, Ken

    In this study, wood (cedar) powder ranging from 53 µm to 1 mm sizes, recycled polypropylene (PP) / polyethylene (PE) and acid-modified PP as a compatibilization agent were used to produce a wood-plastic recycled composite (WPRC). For discussing the effects of the wood powder sizes on the mechanical properties of the WPRC, a mixing process of the wood powder and the plastics in a constant wood content of 50% weight was firstly performed by a mixing machine controlled temperature and rotation of mixing blade. And then, to obtain WPRC panels the wood and plastics mixtures were compressed in a mould under a constant pressure and a temperature for a certain holding time. WPRC specimens for mechanical tests were cut from the WPRC panels, and a tensile strength and a size-stability were acquired. The results show that the successful mixing process runs above 180°C, where the mixing torque required compounding keeps constant or slightly increases. The tensile strength of the WPRC increases when the smaller size of wood powder is used for wood/plastic compound under successful mixing conditions. It is shown from thickness change rate of specimens that mixing temperature of wood/plastic compound affects a size stability of the WPRC.

  7. On-line automatic detection of wood pellets in pneumatically conveyed wood dust flow

    NASA Astrophysics Data System (ADS)

    Sun, Duo; Yan, Yong; Carter, Robert M.; Gao, Lingjun; Qian, Xiangchen; Lu, Gang

    2014-04-01

    This paper presents a piezoelectric transducer based system for on-line automatic detection of wood pellets in wood dust flow in pneumatic conveying pipelines. The piezoelectric transducer senses non-intrusively the collisions between wood pellets and the pipe wall. Wavelet-based denoising is adopted to eliminate environmental noise and recover the collision events. Then the wood pellets are identified by sliding a time window through the denoised signal with a suitable threshold. Experiments were carried out on a laboratory test rig and on an industrial pneumatic conveying pipeline to assess the effectiveness and operability of the system.

  8. Wood burning fireplace. Final technical report

    SciTech Connect

    Not Available

    1981-10-05

    This project involved the construction of a fireplace to heat a commercial building. The project was successful in that it demonstrated that wood could be used to heat a commercial building in a properly constructed fireplace.

  9. Wood Recognition Using Image Texture Features

    PubMed Central

    Wang, Hang-jun; Zhang, Guang-qun; Qi, Heng-nian

    2013-01-01

    Inspired by theories of higher local order autocorrelation (HLAC), this paper presents a simple, novel, yet very powerful approach for wood recognition. The method is suitable for wood database applications, which are of great importance in wood related industries and administrations. At the feature extraction stage, a set of features is extracted from Mask Matching Image (MMI). The MMI features preserve the mask matching information gathered from the HLAC methods. The texture information in the image can then be accurately extracted from the statistical and geometrical features. In particular, richer information and enhanced discriminative power is achieved through the length histogram, a new histogram that embodies the width and height histograms. The performance of the proposed approach is compared to the state-of-the-art HLAC approaches using the wood stereogram dataset ZAFU WS 24. By conducting extensive experiments on ZAFU WS 24, we show that our approach significantly improves the classification accuracy. PMID:24146821

  10. TREATABILITY STUDIES FOR WOOD PRESERVING SITES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), National Risk Management Research Laboratory (NRMRL), Site Management Support Branch, conducted a comprehensive treatability project for wood preserving sites in 1995 and 1996. This is a compilation report on the treatability studi...

  11. Strength of Wood Beams: An Engineering Application.

    ERIC Educational Resources Information Center

    Dengerud-Au, Mary

    2000-01-01

    Presents a lesson involving the measurement of wood beams and the prediction and testing of their stress limits. Provides an example of a problem with multiple solutions, each with different consequences. (KHR)

  12. Chemistry and stoichiometry of wood liquefaction

    SciTech Connect

    Davis, H.G.; Kloden, D.J.; Schaleger, L.L.

    1981-06-01

    The approximate stoichiometry of liquefaction, from data of two PDU runs and a laboratory run is Wood (100 g) + CO (0.1 - 0.4 Mol) ..-->.. CO/sub 2/ (0.5 - 1.0 Mol) + H/sub 2/O (0.4 - 0.8 Mol) + Product (55 - 64 g). Product includes wood oil, water soluble organics and residues. Water is formed by decomposition, carbon dioxide by decomposition and reduction of wood oxygen by CO. Aqueous products include many carboxylic acids plus a roughly equal percentage of non-acids. The wood oil is divided into a neutral fraction and three phenolic fractions of varying molecular weight. Some specific compounds found in water and oil phases are listed.

  13. Wood decomposition as influenced by invertebrates.

    PubMed

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically. PMID:25424353

  14. Supplies and production of aircraft wood

    NASA Technical Reports Server (NTRS)

    Sparhawk, W N

    1920-01-01

    The purpose of this report is to present in brief form such information as is available regarding the supplies of the kinds of wood that have been used or seem likely to become important in the construction of airplanes, and the amount of lumber of each species normally put on the market each year. A general statement is given of the uses to which each kind of wood is or may be put.

  15. Coatings to reduce wood preservative leaching.

    PubMed

    Nejad, Mojgan; Cooper, Paul

    2010-08-15

    The efficiency of semitransparent penetrating stains to reduce leaching of wood preservative components was evaluated. Five commercial wood deck finishes were applied to untreated and chromated copper arsenate (CCA), alkaline copper quat (ACQ), and copper azole (CA) treated wood, and leachates were collected and analyzed during 3 years of natural weathering exposure in Toronto, Canada. All stains evaluated effectively reduced the cumulative leaching of all inorganic preservative components by about 60% on average. Although most coatings showed significant film degradation starting around 12 months, the reduced leaching persisted even after 3 years. This suggests that temporary protection of wood with a coating during the early stages of use resulted in long-term reduction in preservative leaching potential. A two-week screening leaching test was able to predict the long-term leaching performance of different coatings reasonably well. Cured coating glass transition temperature (Tg) and liquid coating viscosity were the most important variables affecting a leaching prediction model. To effectively reduce leaching of preservative components from treated wood, coatings should have Tg low enough to withstand stresses caused by freezing in winter and have adequate viscosity to form a barrier film layer on the wood surface. PMID:20704213

  16. Evaluating phenanthrene sorption on various wood chars

    USGS Publications Warehouse

    James, G.; Sabatini, D.A.; Chiou, C.T.; Rutherford, D.; Scott, A.C.; Karapanagioti, H.K.

    2005-01-01

    A certain amount of wood char or soot in a soil or sediment sample may cause the sorption of organic compounds to deviate significantly from the linear partitioning commonly observed with soil organic matter (SOM). Laboratory produced and field wood chars have been obtained and analyzed for their sorption isotherms of a model solute (phenanthrene) from water solution. The uptake capacities and nonlinear sorption effects with the laboratory wood chars are similar to those with the field wood chars. For phenanthrene aqueous concentrations of 1 ??gl-1, the organic carbon-normalized sorption coefficients (log Koc) ranging from 5.0 to 6.4 for field chars and 5.4-7.3 for laboratory wood chars, which is consistent with literature values (5.6-7.1). Data with artificial chars suggest that the variation in sorption potential can be attributed to heating temperature and starting material, and both the quantity and heterogeneity of surface-area impacts the sorption capacity. These results thus help to corroborate and explain the range of log Koc values reported in previous research for aquifer materials containing wood chars. ?? 2004 Elsevier Ltd. All rights reserved.

  17. Ferns and fires: Experimental charring of ferns compared to wood and implications for paleobiology, paleoecology, coal petrology, and isotope geochemistry

    SciTech Connect

    McParland, L.C.; Collinson, M.E.; Scott, A.C.; Steart, D.C.; Grassineau, N.V.; Gibbons, S.J.

    2007-09-15

    We report the effects of charring on the ferns Osmunda, Pteridium, and Matteucia with coniferous wood (Sequoia) for comparison. Like charred wood, charred ferns shrink, become black and brittle with a silky sheen, and retain three-dimensional cellular structure. Ferns yield recognizable charcoal (up to 800{sup o}C) that could potentially survive in the fossil record enabling reconstruction of ancient fire-prone vegetation containing ferns. Charred fossils of herbaceous ferns would indicate surface fires. Like charred wood, cell-wall layers of charred ferns homogenize, and their reflectance values increase with rising temperature. Charcoalified fragments of thick-walled cells from conifer wood or fern tissues are indistinguishable and so cannot be used to infer the nature of source vegetation. Charred conifer wood and charred fern tissues show a relationship between mean random reflectance and temperature of formation and can be used to determine minimum ancient fire temperatures. Charred fern tissues consistently have significantly more depleted {delta}{sup 13}C values ({le} 4 parts per thousand) than charred wood. Therefore, if an analysis of {delta} {sup 13}C through time included fern charcoal among a succession of wood charcoals, any related shifts in {delta} {sup 13}C could be misinterpreted as atmospheric changes or misused as isotope stratigraphic markers. Thus, charcoals of comparable botanical origin and temperatures of formation should be used in order to avoid misinterpretations of shifts in {delta}{sup 13}C values.

  18. A novel approach for FE-SEM imaging of wood-matrix polymer interface in a biocomposite.

    PubMed

    Singh, Adya P; Anderson, Ross; Park, Byung-Dae; Nuryawan, Arif

    2013-01-01

    Understanding the interface between polymer and biomass in composite products is important for developing high performance products, as the quality of adhesion at the interface determines composite properties. For example, with greater stiffness compared to polymer matrix, such as that of high density polyethylene, the wood component enhances stiffness of wood-polymer composites, provided there is good adhesion between composite components. However, in composites made from wood flour (wood particles) and synthetic resins it is often difficult to clearly resolve particle-matrix interfaces in the conventionally employed microscopy method that involves SEM examination of fractured faces of composites. We developed a novel approach, where composites made from high density polyethylene and wood flour were examined and imaged with a FE-SEM (field emission scanning electron microscope) in transverse sections cut through the composites. Improved definition of the interface was achieved using this approach, which enabled a more thorough comparison to be made of the features of the interface between wood particles and the matrix in composites with and without a coupling agent, as it was possible to clearly resolve the interfaces for particles of all sizes, from large particles consisting of many cells down to tiny cell wall fragments, particularly in composites that did not incorporate the coupling agent used to enhance particle adhesion with the matrix polymer. The method developed would be suitable particularly for high definition SEM imaging of a wide range of composites made combining wood and agricultural residues with synthetic polymers. PMID:24063951

  19. Industrial Arts--Woods and Wood Technology: A Curriculum Guide for Intermediate and Secondary Level Programs.

    ERIC Educational Resources Information Center

    Missouri Council for Industrial Arts Education.

    The curriculum outline is designed to aid the instructor in developing a more complete course of study in woods and wood technology for intermediate and secondary school students. The guide is introduced by a discussion of objectives fundamental to a sound program of industrial arts education, followed by an outline and objectives for the content…

  20. CHARACTERIZATION OF ORGANIC EMISSIONS FROM A WOOD FINISHING PRODUCT - WOOD STAIN

    EPA Science Inventory

    The paper gives results of the measurement of emission characteristics of four organic compounds (nonane, decane, undecane, and 1,2,4-trimethylbenzene) from a wood finishing product, wood stain, in an environmental chamber. It was found that the emission patterns of the four orga...

  1. An assessment of management practices of wood and wood-related wastes in the urban environment

    SciTech Connect

    1996-02-01

    The US Environmental Protection Agency estimates that yard waste{sup 1} accounts for approximately 16% of the municipal solid waste (MSW) stream (US EPA, 1994). Until recently, specific data and related information on this component of the (MSW) stream has been limited. The purposes of this study, phase two of the three-phase assessment of urban wood waste issues, are to assess and describe current alternatives to landfills for urban wood waste management; provide guidance on the management of urban wood waste to organizations that produce or manage wood waste; and clarify state regulatory and policy positions affecting these organizations. For this study, urban wood waste is defined as solid waste generated by tree and landscape maintenance services (public and private). Urban wood waste includes the following materials: unchipped mixed wood, unchipped logs, and unchipped tops and brush; clearing and grubbing waste; fall leaves and grass clippings; and chips and whole stumps. Construction and demolition debris and consumer-generated yard waste are not included in this study. Generators of urban wood waste include various organizations; municipal, county, and commercial tree care divisions; nurseries, orchards, and golf courses; municipal park and recreation departments; and electric and telephone utility power line maintenance, excavator and land clearance, and landscape organizations. (1) US EPA defines yard waste as ''yard trimmings'' which includes ''grass, leaves and tree brush trimmings from residential, institutional, and commercial sources.''

  2. DNA Damage among Wood Workers Assessed with the Comet Assay.

    PubMed

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers' exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  3. DNA Damage among Wood Workers Assessed with the Comet Assay

    PubMed Central

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  4. Amino acids in modern and fossil woods

    NASA Technical Reports Server (NTRS)

    Lee, C.; Bada, J. L.; Peterson, E.

    1976-01-01

    The amino acid composition and the extent of racemization in several modern and fossil woods are reported. The method of analysis is described, and data are presented on the total amino acid concentration, the amino acid ratios, and the enantiomeric ratios in each sample. It is found that the amino acid concentration per gram of dry wood decreases with age of the sample, that the extent of racemization increases with increasing age, and that the amounts of aspartic acid, threonine, and serine decrease relative to valine with increasing age. The relative racemization rates of amino acids in wood, bone, and aqueous solution are compared, and it is shown that racemization in wood is much slower than in bone or aqueous solution. Racemization results for woods from the Kalambo Falls area of Zambia are used to calculate a minimum age of 110,000 years for the transition between the Sangoan and Acheulian industries at that site. This result is shown to be consistent with numerous radiometric dates for older Acheulian sites in Africa and to compare well with geologically inferred dates for the beginning of the Eemian and the end of the Acheulian industry in southern Africa.

  5. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta

    PubMed Central

    Civardi, Chiara; Schubert, Mark; Fey, Angelika; Wick, Peter; Schwarze, Francis W. M. R.

    2015-01-01

    Recently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA). In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM) and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles. PMID:26554706

  6. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.

    PubMed

    Civardi, Chiara; Schubert, Mark; Fey, Angelika; Wick, Peter; Schwarze, Francis W M R

    2015-01-01

    Recently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA). In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM) and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles. PMID:26554706

  7. Identification and Biochemical Characterization of Four Wood-Associated Glucuronoxylan Methyltransferases in Populus

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2014-01-01

    Wood is one of the promising bioenergy feedstocks for lignocellulosic biofuel production. Understanding how wood components are synthesized will help us design strategies for better utilization of wood for biofuel production. One of the major wood components is xylan, in which about 10% of xylosyl residues are substituted with glucuronic acid (GlcA) side chains. All the GlcA side chains of xylan in wood of Populus trichocarpa are methylated, which is different from Arabidopsis xylan in which about 60% of GlcA side chains are methylated. Genes responsible for methylation of GlcA side chains in Populus xylan have not been identified. Here, we report genetic and biochemical analyses of four DUF579 domain-containing proteins, PtrGXM1, PtrGXM2, PtrGXM3 and PtrGXM4, from Populus trichocarpa and their roles in GlcA methylation in xylan. The PtrGXM genes were found to be highly expressed in wood-forming cells and their encoded proteins were shown to be localized in the Golgi. When overexpressed in the Arabidopsis gxm1/2/3 triple mutant, PtrGXMs were able to partially complement the mutant phenotypes including defects in glucuronoxylan methyltransferase activity and GlcA methylation in xylan, indicating that PtrGXMs most likely function as glucuronoxylan methyltransferases. Direct evidence was provided by enzymatic analysis of recombinant PtrGXM proteins showing that they possessed a methyltransferase activity capable of transferring the methyl group onto GlcA-substituted xylooligomers. Kinetic analysis showed that PtrGXMs exhibited differential affinities toward the GlcA-substituted xylooligomer acceptor with PtrGXM3 and PtrGXM4 having 10 times higher Km values than PtrGXM1 and PtrGXM2. Together, these findings indicate that PtrGXMs are methyltransferases mediating GlcA methylation in Populus xylan during wood formation. PMID:24523868

  8. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne).

    PubMed Central

    Latham, M J; Brooker, B E; Pettipher, G L; Harris, P J

    1978-01-01

    Bacteroides succinogenes and Ruminococcus flavefaciens are two of the most important cellulolytic bacteria in the rumen. Adhesion of B. succinogenes in pure culture, and in mixed culture with R. flavefaciens, to the various types of cell walls in sections of perennial ryegrass (Lolium perenne L. cultivar S24) leaves was examined by transmission and scanning electron microscopy. B. succinogenes adhered to the cut edges of most plant cell walls except those of the meta- and protoxylem. It also adhered, though in much smaller numbers, to the uncut surfaces of mesophyll, epidermal, and phloem cell walls. In mixed culture, both species adhered in significant numbers to the cut edges of most types of plant cell wall, but R. flavefaciens predominated on the epidermis, phloem, and sclerenchyma cell walls. B. succinogenes predominated on the cut edges and on the uncut surfaces of the mesophyll cell walls, and its ability to adhere to uncut surfaces of other cell walls was not affected by the presence of the ruminococcus. Both organisms rapidly digested the epidermal, mesophyll, and phloem cell walls. Zones of digestion were observed around bacteria of both species when attached to the lignified cell walls of the sclerenchyma, but not when attached to the lignified xylem vessels. Images PMID:567035

  9. USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY TO INVESTIGATE PMDI REACTIONS WITH WOOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solution-state NMR spectroscopy provides a powerful tool for understanding the formation of chemical bonds between wood components and adhesives. Finely ground cell wall (CW) material fully dissolves in a solvent system containing dimethylsulfoxide (DMSO-d6) and N-methyl¬imidazole (NMI-d6), keeping ...

  10. Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gelatinous fibers (G-fibers) are the active component of tension wood. G-fibers are unlike traditional fiber cells in that they possess a thick gelatinous layer (G-layer) located next to the plasmalemma which is devoid of lignin. This G-layer has generally been presumed to be a crystalline cellulo...

  11. Structural changes in wood during ozonation

    NASA Astrophysics Data System (ADS)

    Ben'ko, E. M.; Manisova, O. R.; Murav'eva, G. P.; Lunin, V. V.

    2013-07-01

    It is found that ozone treatment of aspen wood leads to changes in its structural characteristics, i.e., its specific surface area and the crystallinity index of cellulose. Using optical microscopy, it is shown that ozonation is accompanied by a decrease in the average size and visible surface of wood particles. The values for the specific area of the outer surface of samples are calculated. The specific surface area available to the enzyme molecules is determined from data on the adsorption of inert protein hemoglobin on wood. It is shown that this value is an order of magnitude higher than that of the outer surface and increases considerably for an ozonized sample. Based on the results from X-ray analysis, it is established that the structure of cellulose is disordered during ozone delignification, as is indicated by a reduction in the crystallinity index and crystallite sizes.

  12. Bamboo and Wood in Musical Instruments

    NASA Astrophysics Data System (ADS)

    Wegst, Ulrike G. K.

    2008-08-01

    Over centuries and millennia, our ancestors worldwide found the most appropriate materials for increasingly complex acoustical applications. In the temperate climate of Europe, where the instruments of the Western symphony orchestra were developed and perfected, instrument makers still primarily take advantage of the unique property combination and the aesthetic appeal of wood. In all other continents, one material dominates and is frequently chosen for the manufacture of wind, string, and percussion instruments: the grass bamboo. Here, we review from a materials science perspective bamboo's and wood's unique and highly optimized structure and properties. Using material property charts plotting acoustic properties such as the speed of sound, the characteristic impedance, the sound radiation coefficient, and the loss coefficient against one another, we analyze and explain why bamboo and specific wood species are ideally suited for the manufacture of xylophone bars and chimes, flutes and organs, violins and zithers, violin bows, and even strings.

  13. Mathematical Modeling of Primary Wood Processing

    NASA Astrophysics Data System (ADS)

    Szyszka, Barbara; Rozmiarek, Klaudyna

    2008-09-01

    This work presents a way of optimizing wood logs' conversion into semi-products. Calculating algorithms have been used in order to choose the cutting patterns and the number of logs needed to realize an order, including task specification. What makes it possible for the author's computer program TARPAK1 to be written is the visualization of the results, the generation pattern of wood logs' conversion for given entry parameters and prediction of sawn timber manufacture. This program has been created with the intention of being introduced to small and medium sawmills in Poland. The Project has been financed from government resources and written by workers of the Institute of Mathematics (Poznan University of Technology) and the Department of Mechanical Wood Technology (Poznan University of Life Sciences).

  14. Superior wood for violins--wood decay fungi as a substitute for cold climate.

    PubMed

    Schwarze, Francis W M R; Spycher, Melanie; Fink, Siegfried

    2008-01-01

    Violins produced by Antonio Stradivari during the late 17th and early 18th centuries are reputed to have superior tonal qualities. Dendrochronological studies show that Stradivari used Norway spruce that had grown mostly during the Maunder Minimum, a period of reduced solar activity when relatively low temperatures caused trees to lay down wood with narrow annual rings, resulting in a high modulus of elasticity and low density. The main objective was to determine whether wood can be processed using selected decay fungi so that it becomes acoustically similar to the wood of trees that have grown in a cold climate (i.e. reduced density and unchanged modulus of elasticity). This was investigated by incubating resonance wood specimens of Norway spruce (Picea abies) and sycamore (Acer pseudoplatanus) with fungal species that can reduce wood density, but lack the ability to degrade the compound middle lamellae, at least in the earlier stages of decay. Microscopic assessment of the incubated specimens and measurement of five physical properties (density, modulus of elasticity, speed of sound, radiation ratio, and the damping factor) using resonance frequency revealed that in the wood of both species there was a reduction in density, accompanied by relatively little change in the speed of sound. Thus, radiation ratio was increased from 'poor' to 'good', on a par with 'superior' resonance wood grown in a cold climate. PMID:18554266

  15. Characterization of wood mulch and leachate/runoff from three wood recycling facilities.

    PubMed

    Kannepalli, Sarat; Strom, Peter F; Krogmann, Uta; Subroy, Vandana; Giménez, Daniel; Miskewitz, Robert

    2016-11-01

    Large-scale open storage of wood mulch is common practice at wood recycling facilities. During rain and snow melt, leachate with soluble compounds and suspended particles is released from mulch stockpiles. The objective of this study was to determine the quality of leachate/runoff from wood recycling facilities to evaluate its potential to contaminate receiving waterbodies. Wood mulch (n = 30) and leachate/runoff (n = 26) samples were collected over 1.5 years from three wood recycling facilities in New Jersey, USA. Differences by site were found (p < 0.05) for most of the 21 constituents tested in the solid wood mulch samples. Biochemical oxygen demand (range <20-3000 mg/L), chemical oxygen demand (134-6000 mg/L) and total suspended solids (69-401 mg/L) median concentrations of the leachate/runoff samples were comparable to those of untreated domestic wastewater. Total Kjeldahl N, total P and fecal coliform median values were slightly lower than typical wastewater values. Dose-response studies with leachate/runoff samples using zebrafish (Danio rerio) embryos showed that mortality and developmental defects typically did not occur even at the highest concentration tested, indicating low toxicity, although delayed development did occur. Based on this study, leachate/runoff from wood recycling facilities should not be released to surface waters as it is a potential source of organic contamination and low levels of nutrients. A study in which runoff from a controlled drainage area containing wood mulch of known properties is monitored would allow for better assessment of the potential impact of stormwater runoff from wood recycling facilities. PMID:27505167

  16. Hematology and serum biochemistry values of dusky-footed wood rat (Neotoma fuscipes).

    PubMed

    Weber, David K; Danielson, Kathleen; Wright, Stan; Foley, Janet E

    2002-07-01

    Serum chemistry values and complete blood counts were determined for 36 wild dusky-footed wood rats (Neotoma fuscipes) from Sonoma and western Yolo County, California (USA) in summer 1999 and spring 2001. All wood rats had adequate body condition and were hydrated. Many hematologic and biochemical values were comparable to those for house rat (Rattus rattus). There were differences between wood rats tested immediately after capture (those from Yolo County) and after a week of habituation in the laboratory (Sonoma County). Significant differences were noted in red blood cell counts, hemoglobin, hematocrit, neutrophil:lymphocyte ratio, glucose, alanine transaminase, aspartate aminotransferase, and alkaline phosphatase values. The neutrophil:lymphocyte ratio may have been iatrogenically modified in the wood rats tested immediately after capture by stress-induced neutrophilia and lymphopenia. Eosinophilia may have been associated with parasites such as botflies in four individuals, and hyperglycemia in three individuals could have been associated with stress. The cause of elevated enzymes in the animals tested after laboratory habituation is unclear. The hematologic and biochemical values of these apparently healthy wood rats provide valuable baseline information for use in further medical studies performed with this species. PMID:12238375

  17. State-of-the-art report on status of wood hydrolysis for ethanol production

    SciTech Connect

    Baker, A.J.; Jeffries, T.W.

    1981-06-01

    Ethanol is a potentially important substitute liquid fuel for energy-deficient developing countries. This state-of-the-art report describes the most prominent methods for producing ethanol from wood. There are two general methods for producing ethanol from wood: (1) acid hydrolysis of wood into hexose sugars which are then fermented into ethanol, and (2) enzymatic hydrolysis, which involves pretreating wood to yield a product from which cellulose is hydrolyzed into sugar which is then fermented into ethanol. The authors proceed to discuss in succession: the availability, reliability, and chemical composition of raw materials; the specific acid hydrolysis processes used by Georgia Institute of Technology, New York University, American Can Company, Forest Products Laboratory, and a Brazilian firm; mechanical, thermal, solvent, acid and other methods for pretreating wood; and the enzymatic hydrolysis processes used by Natick, Gulf Oil Company, Massachusetts Institute of Technology, and Penn/General Electric. Presented next are descriptions of current technologies for fermenting hexose (conventional practice, vacuum fermentation, immobilized cells, and zymomonas fermentation) and pentose (xylulose fermentation, direct conversion of xylose to ethanol, and bacterial fermentation). The authors conclude that since few techniques have reached the pilot plant and production stages in developed countries, equipment and production costs cannot be established. However, the developing countries most likely to consider producing ethanol are those with high forest growth capacity; an energy deficit; a need for economical, internally-produced liquid fuels; and a low capacity for producing agricultural materials for ethanol production. Appended is a 106-item bibliography (1819-1981).

  18. Activation of aryl hydrocarbon receptor signaling by extracts of teak and other wood dusts.

    PubMed

    Wilson, Mark J; Sabbioni, Gabriele; Rando, Roy; Miller, Charles A

    2015-12-01

    Wood dusts, as a group, are categorized as known human carcinogens, but the risks of exposure to specific types of wood dusts and the carcinogenic chemicals they contain are not well studied. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is linked to the carcinogenic action of specific classes of chemicals. Here we examined whether chemicals in various wood dusts had the potential to activate AhR signaling as a potential toxic mechanism of action. We found that methanol extracts of teak, walnut, mahogany, and poplar dusts contained a wide range of AhR ligand activity, whereas extracts of oak, pine, and other softwoods did not contain appreciable activity. Teak dust extract, being particularly potent, was subjected to chemical analysis. The 2-methylanthraquinone (2-MAQ) accounted for the AhR ligand activity and was present at an average concentration of 0.27 parts per hundred in teak dust. Pure 2-MAQ potently induced AhR signaling (EC50 115 nM), confirming that this was the active ligand. Aqueous extracts of teak dust made using yeast or mammalian cell culture medium also contained robust AhR activity, suggesting the 2-MAQ ligand is soluble at bioactive concentrations in physiologically relevant fluids. The high concentration and potency of 2-MAQ in teak wood suggest it may mediate toxic effects through activation of AhR signaling in exposed wood workers. PMID:24898320

  19. Scrap pallets offer new fuel wood potential

    SciTech Connect

    Wallin, J.C.

    1980-06-01

    The possible use of scrap pallets as a fuelwood is discussed. Disposing of worn-out pallets is a major problem of pallet warehouses, and many save the cost of hauling and dumping the scrap pallet wood by selling it off as fuelwood. It is stated that this was found to be more profitable than chipping the pallets for use in papermaking, while customers only needed a circular saw to produce fuelwood. The article states that if pallet wood were used to replace fuel oil, the U.S. could reduce imports by 441,490,000 gallons annually.

  20. International Trade of Wood Pellets (Brochure)

    SciTech Connect

    Not Available

    2013-05-01

    The production of wood pellets has increased dramatically in recent years due in large part to aggressive emissions policy in the European Union; the main markets that currently supply the European market are North America and Russia. However, current market circumstances and trade dynamics could change depending on the development of emerging markets, foreign exchange rates, and the evolution of carbon policies. This fact sheet outlines the existing and potential participants in the wood pellets market, along with historical data on production, trade, and prices.

  1. BOREAS TE-2 Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. BOREAS TE-2 Continuous Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Ryan, Michael G.; Lavigne, Michael

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration measured continuously (about once per hour) in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. Micron-scale intra-ring analyses of δ13C in early Eocene Arctic wood from Ellesmere Island

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.; Eberle, J.; Sternberg, L.

    2009-12-01

    Early Eocene (ca. 53 Ma) fossil assemblages on Ellesmere Island (75 oN paleolatitude), provide rich information about the plant and animal life of the lush polar ecosystems of the time. Fossil wood recovered from Ellesmere Island is abundant and not permineralized; however, morphological features such as growth rings and resin canals have been obliterated by compression. We report on exceptionally high-resolution intra-ring analyses of δ13C within fossil wood, sampled at ~30 micron intervals across several centimeters of wood sample. Clear patterns in systematic seasonal increases and decreases in wood δ13C allowed us to identify at least 5 annual cycles in the wood. The patterns of increase and decrease in δ13C were consistent with patterns observed for evergreen wood, and distinct from the deciduous patterns we have observed for Metasequoia fossil wood from the middle Eocene (ca. 45 Ma) Arctic site on Axel Heiberg Island. We believe that the high point in the δ13C value of wood seen in each cycle corresponds to the highest environmental temperatures during the annual cycle, as has been seen for modern evergreens (e.g., Barbour et al., 2002). Modern studies have also noted that high temperature periods are correlated with the highest vapor-pressure and soil-water deficits of the annual cycle; these environmental factors would cause the plant to change its discrimination during photosynthesis. We will discuss the relatively low amplitude of δ13C fluctuations (0.5-1.0 ‰) clearly defined by Ellesmere fossil wood, in comparison to observations on modern common evergreens (2.0-4.0 ‰), and speculate that this difference implies greatly dampened seasonal temperature fluctuations in Eocene polar environments, relative to today. Barbour M.M., Walcroft A.S., Farquhar G.D., 2002, Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment: v. 25, p. 1483-1499.

  4. PRESERVATIVE LEACHING FROM WEATHERED CCA-TREATED WOOD

    EPA Science Inventory

    Disposal of discarded CCA-treated wood in landfills raises concerns with respect to leaching of preservative compounds. When unweathered CCA-treated wood is leached using the toxicity characteristic leaching procedure (TCLP), arsenic concentrations exceed the toxicity characteris...

  5. Interior view of loading dock basement facing east, showing wood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of loading dock basement facing east, showing wood posts and capitals, wood floor beams and flooring storage shelves - Southern Pacific Railroad Depot, Railroad Terminal Post Office & Express Building, Fifth & I Streets, Sacramento, Sacramento County, CA

  6. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    EPA Science Inventory

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  7. Investigation of modified cottonseed protein adhesives for wood composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several modified cottonseed protein isolates were studied and compared to corresponding soy protein isolates for their adhesive properties when bonded to wood composites. Modifications included treatments with alkali, guanidine hydrochloride, sodium dodecyl sulfate (SDS), and urea. Wood composites...

  8. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  9. Wood Cellular Dendroclimatology: A Pilot Study on Bristlecone Pine in the Southwest US

    NASA Astrophysics Data System (ADS)

    Ziaco, E.; Biondi, F.; Heinrich, I.

    2015-12-01

    Tree-rings provide paleoclimatic records at annual to seasonal resolution for regions or periods with no instrumental climatic data. Relationships between climatic variability and wood cellular features allow for a more complete understanding of the physiological mechanisms that control the climatic response of trees. Given the increasing importance of wood anatomy as a source of dendroecological information, such studies are now starting in the US. We analyzed 10 cores of bristlecone pine (Pinus longaeva D.K. Bailey) from a high-elevation site included in the Nevada Climate-ecohydrological Assessment Network (NevCAN). Century-long chronologies (1870-2013) of wood anatomical parameters (lumen area, cell diameter, cell wall thickness) can be developed by capturing strongly contrasted microscopic images using a Confocal Laser Scanning Microscope, and then measuring cellular parameters with task-specific software. Measures of empirical signal strength were used to test the strength of the environmental information embedded in wood anatomy. Correlation functions between ring-width, cellular features, and PRISM climatic variables were produced for the period 1926-2013. Time series of anatomical features present lower autocorrelation compared to ring widths, highlighting the role of environmental conditions occurring at the time of cell formation. Mean chronologies of radial lumen length and cell diameter carry a stronger climatic signal compared to cell wall thickness, and are significantly correlated with climatic variables (maximum temperature and total precipitation) in spring (Mar-Apr) and during the growing season (Jun-Sep), whereas ring widths show weaker or no correlation. Wood anatomy holds great potential to refine dendroclimatic reconstructions at higher temporal resolution, providing better estimates of hydroclimatic variability and plant physiological adaptations in the southwest US.

  10. 7 CFR 2902.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused...

  11. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  12. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  13. 7 CFR 2902.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused...

  14. 7 CFR 3201.87 - Wood and concrete stains.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wood and concrete stains. 3201.87 Section 3201.87... Designated Items § 3201.87 Wood and concrete stains. (a) Definition. Products that are designed to be applied as a finish for concrete and wood surfaces and that contain dyes or pigments to change the...

  15. 7 CFR 3201.87 - Wood and concrete stains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wood and concrete stains. 3201.87 Section 3201.87... Designated Items § 3201.87 Wood and concrete stains. (a) Definition. Products that are designed to be applied as a finish for concrete and wood surfaces and that contain dyes or pigments to change the...

  16. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  17. 30 CFR 77.1913 - Fire-resistant wood.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fire-resistant wood. 77.1913 Section 77.1913... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood products which are permanently installed in slopes and shafts, shall be fire resistant....

  18. Magnetic Wood Achieving a Harmony between Magnetic and Woody Functions

    NASA Astrophysics Data System (ADS)

    Oka, Hideo

    Magnetic wood, which was first introduced and developed by the Oka group in 1991, achieves a good balance of both woody and magnetic functions through the active addition of magnetic characteristics to the wood itself. In addition to showing magnetic characteristics, this magnetic wood also offers a woody texture, low specific gravity, humidity control, acoustic absorption and is very easy to process.

  19. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation...

  20. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation...

  1. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation...

  2. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation...

  3. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation...

  4. Poisoned Playgrounds: Arsenic in "Pressure-Treated" Wood.

    ERIC Educational Resources Information Center

    Sharp, Renee; Walker, Bill

    This study of 180 pressure-treated wood samples shows that treated wood is a much greater source of arsenic exposure for children than arsenic-contaminated drinking water. The report determines that an average 5-year-old, playing less than 2 weeks on a chromated-copper-arsenate-treated (CCA) wood play set would exceed the lifetime cancer risk…

  5. 30 CFR 77.1913 - Fire-resistant wood.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fire-resistant wood. 77.1913 Section 77.1913 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood...

  6. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of...

  7. 49 CFR 178.515 - Standards for reconstituted wood boxes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for reconstituted wood boxes. 178.515... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.515 Standards for reconstituted wood boxes. (a) The identification code for a reconstituted wood box is 4F. (b) Construction requirements...

  8. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of...

  9. 30 CFR 77.1913 - Fire-resistant wood.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fire-resistant wood. 77.1913 Section 77.1913 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood...

  10. 49 CFR 178.515 - Standards for reconstituted wood boxes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for reconstituted wood boxes. 178.515... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.515 Standards for reconstituted wood boxes. (a) The identification code for a reconstituted wood box is 4F. (b) Construction requirements...

  11. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of...

  12. 30 CFR 77.1913 - Fire-resistant wood.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fire-resistant wood. 77.1913 Section 77.1913 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood...

  13. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of...

  14. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of...

  15. 49 CFR 178.515 - Standards for reconstituted wood boxes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for reconstituted wood boxes. 178.515... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.515 Standards for reconstituted wood boxes. (a) The identification code for a reconstituted wood box is 4F. (b) Construction requirements...

  16. 49 CFR 178.515 - Standards for reconstituted wood boxes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for reconstituted wood boxes. 178.515... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.515 Standards for reconstituted wood boxes. (a) The identification code for a reconstituted wood box is 4F. (b) Construction requirements...

  17. Environment Conscious, Biomorphic Ceramics from Pine and Jelutong Wood Precursors

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Environment conscious, biomorphic ceramics have been fabricated from pine and jelutong wood precursors. A carbonaceous preform is produced through wood pyrolysis and subsequent infiltration with oxides (ZrO2 sols) and liquid silicon to form ceramics. These biomorphic ceramics show a wide variety of microstructures, densities, and hardness behavior that are determined by the type of wood and infiltrants selected.

  18. Stochastic Human Exposure and Dose Simulation Model for Wood Preservatives

    EPA Science Inventory

    SHEDS-Wood (Stochastic Human Exposure and Dose Simulation Model for Wood Preservatives) is a physically-based stochastic model that was developed to quantify exposure and dose of children to wood preservatives on treated playsets and residential decks. Probabilistic inputs are co...

  19. 30 CFR 77.1913 - Fire-resistant wood.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fire-resistant wood. 77.1913 Section 77.1913... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood products which are permanently installed in slopes and shafts, shall be fire resistant....

  20. Engineering economic assessment of residential wood heating in NY

    EPA Science Inventory

    We provide insight into the recent resurgence in residential wood heating in New York by: (i) examining the lifetime costs of outdoor wood hydronic heaters (OWHHs) and other whole-house residential wood heat devices,(ii) comparing these lifetime costs with those of competing tech...

  1. 21 CFR 178.3800 - Preservatives for wood.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... protecting the wood from decay, mildew, and water absorption. (b) The substances permitted are as follows... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Preservatives for wood. 178.3800 Section 178.3800... § 178.3800 Preservatives for wood. Preservatives may be safely used on wooden articles that are used...

  2. 21 CFR 178.3800 - Preservatives for wood.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to accomplish the technical effect of protecting the wood from decay, mildew, and water absorption... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Preservatives for wood. 178.3800 Section 178.3800... Certain Adjuvants and Production Aids § 178.3800 Preservatives for wood. Preservatives may be safely...

  3. 21 CFR 178.3800 - Preservatives for wood.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to accomplish the technical effect of protecting the wood from decay, mildew, and water absorption... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Preservatives for wood. 178.3800 Section 178.3800... Certain Adjuvants and Production Aids § 178.3800 Preservatives for wood. Preservatives may be safely...

  4. 21 CFR 178.3800 - Preservatives for wood.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to accomplish the technical effect of protecting the wood from decay, mildew, and water absorption... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Preservatives for wood. 178.3800 Section 178.3800... Certain Adjuvants and Production Aids § 178.3800 Preservatives for wood. Preservatives may be safely...

  5. Molecular Dissection of Xylan Biosynthesis During Wood Formation in Poplar

    EPA Science Inventory

    Xylan, being the second most abundant polysaccharide in dicot wood, is considered to be one of the factors contributing to wood biomass recalcitrance for biofuel production. To better utilize wood as biofuel feedstock, it is crucial to functionally characterize all the genes invo...

  6. STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION MODEL FOR THE WOOD PRESERVATIVE SCENARIO (SHEDS-WOOD), VERSION 2 MODEL SAS CODE

    EPA Science Inventory

    Concerns have been raised regarding the safety of young children contacting arsenic and chromium residues while playing on and around Chromated Copper Arsenate (CCA) treated wood playground structures and decks. Although CCA registrants voluntarily canceled treated wood for resi...

  7. Image-based characterization of cement pore structure using Wood`s metal intrusion

    SciTech Connect

    Willis, K.L.; Abell, A.B.; Lange, D.A.

    1998-12-01

    Mercury intrusion porosimetry is a widely used technique for characterization of the pore size distribution of cement-based materials. However, the technique has several limitations, among which are the ink bottle effect and a cylindrical pore geometry assumption that lead to inaccurate pore size distribution curves. By substituting Wood`s metal for mercury as the intruding liquid, scanning electron microscopy and imaging techniques can be applied to the sample after intrusion. The molten Wood`s metal solidifies within the pore structure of the sample, which allows it to be sectioned and observed in the scanning electron microscopy. From here, the sample can be analyzed both qualitatively, by observing the changes in the appearance of the sample as the intrusion process progresses, and quantitatively, by applying image analysis techniques. This study provides insight for better interpretation of mercury intrusion porosimetry results and the possibility for quantitative characterization of the spatial geometry of pores in cement-based materials.

  8. How Much Wood Would Wood Waste Waste if None Were Used for Fuel?

    ERIC Educational Resources Information Center

    Franklin, Ben A.

    1978-01-01

    The recent trend in using wood for energy is examined with new developments for gaining greater efficiency from an old source. The threat of deforestation is acknowledged and discussed, particularly in relation to Appalachia. (KR)

  9. Construction Cluster Volume I [Wood Structural Framing].

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.

    The document is the first of a series, to be integrated with a G.E.D. program, containing instructional materials at the basic skills level for the construction cluster. It focuses on wood structural framing and contains 20 units: (1) occupational information; (2) blueprint reading; (3) using leveling instruments and laying out building lines; (4)…

  10. Boron impregnation treatment of Eucalyptus grandis wood.

    PubMed

    Dhamodaran, T K; Gnanaharan, R

    2007-08-01

    Eucalyptus grandis is suitable for small timber purposes, but its wood is reported to be non-durable and difficult to treat. Boron compounds being diffusible, and the vacuum-pressure impregnation (VPI) method being more suitable for industrial-scale treatment, the possibility of boron impregnation of partially dry to green timber was investigated using a 6% boric acid equivalent (BAE) solution of boric acid and borax in the ratio 1:1.5 under different treatment schedules. It was found that E. grandis wood, even in green condition, could be pressure treated to desired chemical dry salt retention (DSR) and penetration levels using 6% BAE solution. Up to a thickness of 50mm, in order to achieve a DSR of 5 kg/m(3) boron compounds, the desired DSR level as per the Indian Standard for perishable timbers for indoor use, it was found that neither the moisture content of wood nor the treatment schedule posed any problem as far as the treatability of E. grandis wood was concerned. PMID:17046244

  11. BIOREMEDIATION AT WOOD-PRESERVING SITES

    EPA Science Inventory

    The removal of organic compounds from ground water during bioremediation at wood-preserving sites is a function of the stoichiometric demand for electron acceptors (oxygen, nitrate, and sulfate) to metabolize the organic contaminants and the supply of the electron acceptors in th...

  12. Habitat Suitability Index Models: Wood Duck

    USGS Publications Warehouse

    Sousa, Patrick J.; Farmer, Adrian H.

    1983-01-01

    A review and synthesis of existing information were used to develop models for breeding and wintering habitats for the wood duck (Aix sponsa). The models are scaled to produce indices of habitat suitability between 0 (unsuitable habitat) and 1 (optimally suitable habitat). Habitat suitability indices are designed for use with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  13. Evaluation Study of VTAE Wood Technics Programs.

    ERIC Educational Resources Information Center

    Wisconsin State Board of Vocational, Technical, and Adult Education, Madison.

    A survey of former students of the Wisconsin Vocational, Technical, and Adult Education (VTAE) wood technics programs and employers in woodworking industries was conducted during spring of 1985. General objectives were to determine job classifications, types of businesses, and relative importance of tasks or duties in various woodworking-related…

  14. Boiler wood ash as a soil amendment

    SciTech Connect

    Mitchell, C.C.

    1996-12-31

    Each of the 88 pulp and paper mills in the southeastern United States produces an average of 43 t of boiler ash daily (47 US tons). Forty percent is wood ash, 5% is coal ash, and the remaining is a combination ash. An analysis of boiler ash from 14 Alabama pulp and paper mills averaged 38% CaCO3 equivalent with a dry density of 500 kg m{sup -3}. Most agricultural soils in the southeastern US require periodic application of ground limestone in order to maintain productivity. Using boiler wood ash and combination ash as an alternative to ground limestone is agronomically productive, environmentally safe, and fiscally sound for both the ash producer and the landowner/ farmer. While plant, nutrient content of ash is variable, it should be considered as an incidental source of plant nutrients for field crops. Metals and phytotoxic components are very low. Extensive research has been reported on the value and safety of wood-fired boiler ashes. Nevertheless, research and development projects continue in efforts to assure safe use of boiler wood ash as an alternative soil liming material.

  15. Residential Wood Combustion Emissions and Safety Guidebook.

    ERIC Educational Resources Information Center

    Becker, Mimi, Ed.; Barnett, Lucy, Ed.

    This seven-part guidebook provides information to assist decision makers and other individuals involved in the residential wood energy fuel cycle. It can be used as a tool for designing or implementing programs, strategies, and policies that encourage, prevent, or mitigate safety or air emission related impacts of residential woodburning equipment…

  16. Anisotropy of Wood in the Microwave Region

    ERIC Educational Resources Information Center

    Ziherl, Sasa; Bajc, Jurij; Urankar, Bernarda; Cepic, Mojca

    2010-01-01

    Wood is transparent for microwaves and due to its anisotropic structure has anisotropic dielectric properties. A laboratory experiment that allows for the qualitative demonstration and quantitative measurements of linear dichroism and birefringence in the microwave region is presented. As the proposed experiments are based on the anisotropy (of…

  17. Adhesives; A Base Syllabus on Wood Technology.

    ERIC Educational Resources Information Center

    Eastern Kentucky Univ., Richmond.

    Prepared by participants in the 1968 National Defense Education Act Institute on Wood Technology, this syllabus is one of a series of basic outlines designed to aid college level industrial arts instructors in improving and broadening the scope and content of their programs. The guide is divided into three sections, the first of which deals with…

  18. School Official Liability: Wood v. Strickland.

    ERIC Educational Resources Information Center

    French, Larry L.

    In Wood v. Strickland, the Supreme Court held that a school board member is not immune from liability for damages if he knew, or reasonably should have known, that the action he took within his sphere of official responsibility would violate the constitutional rights of the student affected; or, if he took the action with the malicious intention…

  19. Wood combustion systems: status of environmental concerns

    SciTech Connect

    Dunwoody, J.E.; Takach, H.; Kelley, C.S.; Opalanko, R.; High, C.; Fege, A.

    1980-01-01

    This document addresses the uncertainties about environmental aspects of Wood Combustion Systems that remain to be resolved through research and development. The resolution of these uncertainties may require adjustments in the technology program before it can be commercialized. The impacts and concerns presented in the document are treated generically without reference to specific predetermined sites unless these are known. Hence, site-specific implications are not generally included in the assessment. The report consists of two main sections which describe the energy resource base involved, characteristics of the technology, and introduce the environmental concerns of implementing the technology; and which review the concerns related to wood combustion systems which are of significance for the environment. It also examines the likelihood and consequence of findings which might impede wood commercialization such as problems and uncertainties stemming from current or anticipated environmental regulation, or costs of potential environmental controls. This document is not a formal NEPA document. Appropriate NEPA documentation will be prepared after a formal wood combustion commercialization program is approved by DOE.

  20. Sediment Movement Near a Tropical Wood Jam

    NASA Astrophysics Data System (ADS)

    Cadol, D.; Wohl, E.

    2008-12-01

    One mechanism by which wood interacts with sediment transport is the trapping of sediment behind jams. In tropical streams, higher discharge per unit of contributing area and higher microbial diversity relative to temperate zones are likely to cause in-stream wood to be more transient. This may reduce the residence time of jams, also reducing wood-induced sediment storage. To begin to evaluate this possibility, tracer clasts, scour chains, and wood pieces were surveyed four times from June 2007 to June 2008 at a wood jam in a stream in Costa Rica. At the study site the moderate gradient (3.2%) stream drains 1.6 km2 of preserved old-growth tropical wet forest of La Selva Biological Station. The mean grain size of the bed material is 205 mm, ranging from coarse sand to boulders, with discontinuous bedrock outcrops on both banks. Distance traveled by the tracer clasts was positively correlated with both maximum and average daily rainfall during the time between surveys. Between the first two surveys, a new accumulation of wood in the jam blocked the thalweg and redirected the majority of flow around the side of the jam. A 15-cm-thick wedge of sediment was deposited behind the blockage, and gravel bars adjacent to and immediately downstream of the jam were scoured by as much as 30 cm. The majority of the gravel sized tracer clasts placed upstream of the jam were not recovered and were presumably incorporated into the sediment wedge. Tracer clasts placed in the portion of the channel affected by the redirected flow were transported downstream as much as 47 m. Clasts larger than D55 (220 mm) were not transported in the course of the study. The jam and key pieces persisted for the entire study period, and the number of pieces in the jam stayed nearly constant. However, the structure was modified and only 46% of the original pieces were retained for the full year. The clast transport distance was positively correlated with wood turnover rate for the three inter

  1. Fast Curing of Composite Wood Products

    SciTech Connect

    Dr. Arthur J. Ragauskas

    2006-04-26

    The overall objective of this program is to develop low temperature curing technologies for UF and PF resins. This will be accomplished by: • Identifying the rate limiting UF and PF curing reactions for current market resins; • Developing new catalysts to accelerate curing reactions at reduced press temperatures and times. In summary, these new curing technologies will improve the strength properties of the composite wood products and minimize the detrimental effects of wood extractives on the final product while significantly reducing energy costs for wood composites. This study is related to the accelerated curing of resins for wood composites such as medium density fiberboard (MDF), particle board (PB) and oriented strandboard (OSB). The latter is frequently manufactured with a phenol-formaldehyde resin whereas ureaformaldehyde (UF) resins are usually used in for the former two grades of composite wood products. One of the reasons that hinder wider use of these resins in the manufacturing of wood composites is the slow curing speed as well as inferior bondability of UF resin. The fast curing of UP and PF resins has been identified as an attractive process development that would allow wood to be bonded at higher moisture contents and at lower press temperatures that currently employed. Several differing additives have been developed to enhance cure rates of PF resins including the use of organic esters, lactones and organic carbonates. A model compound study by Conner, Lorenz and Hirth (2002) employed 2- and 4-hydroxymethylphenol with organic esters to examine the chemical basis for the reported enhanced reactivity. Their studies suggested that the enhance curing in the presence of esters could be due to enhanced quinone methide formation or enhanced intermolecular SN2 reactions. In either case the esters do not function as true catalysts as they are consumed in the reaction and were not found to be incorporated in the polymerized resin product. An

  2. Signature wood modifications reveal decomposer community history.

    PubMed

    Schilling, Jonathan S; Kaffenberger, Justin T; Liew, Feng Jin; Song, Zewei

    2015-01-01

    Correlating plant litter decay rates with initial tissue traits (e.g. C, N contents) is common practice, but in woody litter, predictive relationships are often weak. Variability in predicting wood decomposition is partially due to territorial competition among fungal decomposers that, in turn, have a range of nutritional strategies (rot types) and consequences on residues. Given this biotic influence, researchers are increasingly using culture-independent tools in an attempt to link variability more directly to decomposer groups. Our goal was to complement these tools by using certain wood modifications as 'signatures' that provide more functional information about decomposer dominance than density loss. Specifically, we used dilute alkali solubility (DAS; higher for brown rot) and lignin:density loss (L:D; higher for white rot) to infer rot type (binary) and fungal nutritional mode (gradient), respectively. We first determined strength of pattern among 29 fungi of known rot type by correlating DAS and L:D with mass loss in birch and pine. Having shown robust relationships for both techniques above a density loss threshold, we then demonstrated and resolved two issues relevant to species consortia and field trials, 1) spatial patchiness creating gravimetric bias (density bias), and 2) brown rot imprints prior or subsequent to white rot replacement (legacy effects). Finally, we field-tested our methods in a New Zealand Pinus radiata plantation in a paired-plot comparison. Overall, results validate these low-cost techniques that measure the collective histories of decomposer dominance in wood. The L:D measure also showed clear potential in classifying 'rot type' along a spectrum rather than as a traditional binary type (brown versus white rot), as it places the nutritional strategies of wood-degrading fungi on a scale (L:D=0-5, in this case). These information-rich measures of consequence can provide insight into their biological causes, strengthening the links

  3. XPS characterization of naturally aged wood

    NASA Astrophysics Data System (ADS)

    Popescu, Carmen-Mihaela; Tibirna, Carmen-Mihaela; Vasile, Cornelia

    2009-12-01

    Wood deterioration over time (by a simultaneously biological, chemical or physical attack) is an inevitable continuous process in the environment. This process destroys all heritage resulting in a loss of valuable old wooden structures and their properties. What type of deterioration occurs and how these processes impact the wood are important questions that need consideration if old wooden structures are to be studied and properly preserved. X-ray photoelectron spectroscopy (XPS) was employed to analyze the undegraded (sound wood of ˜6 years) and degraded lime wood (˜150 years, ˜180 years, ˜250 years) from painting supports, differing in terms of the provenance, conservation status and environmental conditions of storage. Elaborated XPS analysis (comparison of C and O individual spectra, decomposition for each atomic component, calculation of O/C ratio) provided a view of the composition of the sample surfaces analyzed. On the basis of these results, it was confirmed that significant changes occurred in the first period of ageing, the ˜150 years lime wood sample having the highest percent of the carbon atoms and the lowest percentage of oxygen atoms and, respectively O/C ratio. According to our previous studies (X-ray diffraction, FTIR spectroscopy, analytical pyrolysis combined with gas chromatography/mass spectrometry and ESR-spectroscopy results), these features could be attributed to the fact that hemicelluloses and amorphous cellulose are degraded in time, whereas the crystalline fraction of cellulose decreases more slowly than the amorphous one. Consequently, the observation may be made that lignin is not so easily degraded under the environmental conditions where paintings are frequently exposed.

  4. Signature Wood Modifications Reveal Decomposer Community History

    PubMed Central

    Schilling, Jonathan S.; Kaffenberger, Justin T.; Liew, Feng Jin; Song, Zewei

    2015-01-01

    Correlating plant litter decay rates with initial tissue traits (e.g. C, N contents) is common practice, but in woody litter, predictive relationships are often weak. Variability in predicting wood decomposition is partially due to territorial competition among fungal decomposers that, in turn, have a range of nutritional strategies (rot types) and consequences on residues. Given this biotic influence, researchers are increasingly using culture-independent tools in an attempt to link variability more directly to decomposer groups. Our goal was to complement these tools by using certain wood modifications as ‘signatures’ that provide more functional information about decomposer dominance than density loss. Specifically, we used dilute alkali solubility (DAS; higher for brown rot) and lignin:density loss (L:D; higher for white rot) to infer rot type (binary) and fungal nutritional mode (gradient), respectively. We first determined strength of pattern among 29 fungi of known rot type by correlating DAS and L:D with mass loss in birch and pine. Having shown robust relationships for both techniques above a density loss threshold, we then demonstrated and resolved two issues relevant to species consortia and field trials, 1) spatial patchiness creating gravimetric bias (density bias), and 2) brown rot imprints prior or subsequent to white rot replacement (legacy effects). Finally, we field-tested our methods in a New Zealand Pinus radiata plantation in a paired-plot comparison. Overall, results validate these low-cost techniques that measure the collective histories of decomposer dominance in wood. The L:D measure also showed clear potential in classifying ‘rot type’ along a spectrum rather than as a traditional binary type (brown versus white rot), as it places the nutritional strategies of wood-degrading fungi on a scale (L:D=0-5, in this case). These information-rich measures of consequence can provide insight into their biological causes, strengthening the

  5. Characterization of milled wood lignin (MWL) in Loblolly pine stem wood, residue, and bark.

    PubMed

    Huang, Fang; Singh, Preet M; Ragauskas, Arthur J

    2011-12-28

    Milled wood lignin samples from Loblolly pine stem wood, forest residue, and bark were isolated and characterized by quantitative (13)C and (31)P nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC) for molecular weight determination. Results from (13)C NMR show the stem wood and forest residue samples have similar functional group contents. However, the bark has fewer methoxyl groups, β-O-4 structures, dibenzodioxocin, and side chains than the other two lignins. The bark lignin has the highest amounts of p-hydroxyphenyl (h) and C-5 condensed lignin, stem wood has the lowest, and the residue lies between. (31)P NMR analysis indicates that bark lignin contains more C-5 substituted phenolics and fewer aliphatic hydroxyl groups than the lignin isolated from stem wood or residue. The molecular weight distribution analysis indicates the bark lignin has higher weight-average molecular weight (M(w)) and polydispersity index than the lignin recovered from stem wood or residue. PMID:22141335

  6. Effect of species and wood to bark ratio on pelleting of southern woods

    SciTech Connect

    Bradfield, J.; Levi, M.P.

    1984-01-01

    Six common southern hardwoods and loblolly pine were pelleted in a laboratory pellet mill. The pellet furnishes were blended to test the effect of different wood to bark ratios on pellet durability and production rate. Included was a ratio chosen to simulate the wood to bark ratio found in whole-tree chips. This furnish produced good quality pellets for all species tested. Pelleting of the pure wood of hardwoods was not successful; furnish routinely blocked the pellet mill dies. Pure pine wood, however, did produce acceptable pellets. It was noted that, as lignin and extractive content increased above a threshold level, the precentage of fines produced in a pellet durability test increased. Thus, all pine and tupelo wood/bark mixes produces high fines. This reduces the desirability of the pellets in the marketplace. Further research is necessary to confirm this relationship. This study suggests that both tree species and wood/bark ratio affect the durability of pellets and the rate with which they can be produced in a laboratory pellet mill. 9 references.

  7. Instream wood in a steep headwater channel: geomorphic significance of large and small wood

    NASA Astrophysics Data System (ADS)

    Galia, Tomáš; Šilhán, Karel; Ruiz-Villanueva, Virginia; Tichavský, Radek

    2016-04-01

    Besides the well-known significance of large wood (LW), also small woody pieces (SW; here defined as pieces with dimensions at least 0.5 m length and 0.05 m diameter), can play an important role in steep narrow headwaters. We inventoried instream wood in the 0.4 km long Mazák headwater channel, Moravskoslezské Beskydy Mts, Czech Republic (2wood dimensions, orientation, decay status (four classes), stability (unattached/contact with hillslopes/attached by bed sediments or other wood), % of influenced channel width by a wood, the geomorphic function of a wood (step, wood jam) and % of length of a wood in channel were assessed. The total number of inventoried instream wood was 90 LWs and 199 SWs. In addition, dendrogeomorphic dating of 36 LWs and 17 SWs was performed to obtain residence time of local instream wood and to provide some insights into its mobility. Practically all investigated pieces were European beeches (Fagus sylvatica L.); only two pieces were Norway spruces (Picea abies (L.) Karst.). First results showed an increase in the number of LWs in channel-reaches confined by the steepest adjacent hillslopes (especially at 0.15-0.20 km). Increasing downstream amount of SW most likely reflected transport processes in the stream, and the later deposition of SWs on the lowest channel gradients. Also LWs and SWs in the downstream channel-reaches were more decayed than wood presented in the upper reaches. The orientation of instream wood was connected with its length and stability, and LWs longer than 5 m were usually attached to adjacent hillslopes. Pieces longer than 2 m, which were unattached or were somehow stabilized in the channel bed, had often orientation of 0° or 337°. LWs were mostly unattached in the upstream channel-reaches, while often stabilized by adjacent hillslopes in the middle part. At 0.05-0.10 km, there were also many logs stabilized by

  8. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    PubMed

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  9. Protection of Wood from Microorganisms by Laccase-Catalyzed Iodination

    PubMed Central

    Engel, J.; Thöny-Meyer, L.; Schwarze, F. W. M. R.; Ihssen, J.

    2012-01-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I−) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  10. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  11. Protection of wood from microorganisms by laccase-catalyzed iodination.

    PubMed

    Schubert, M; Engel, J; Thöny-Meyer, L; Schwarze, F W M R; Ihssen, J

    2012-10-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I(-)) to iodine (I(2)) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  12. Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula X alba) (717-1B4).

    PubMed

    Coleman, Heather D; Cánovas, Francisco M; Man, Huimin; Kirby, Edward G; Mansfield, Shawn D

    2012-09-01

    Hybrid poplar (Populus tremula X P. alba) genetically engineered to express the pine cytosolic glutamine synthetase gene (GS1a) has been previously shown to display desirable field performance characteristics, including enhancements in growth and nitrogen use efficiency. Analysis of wood samples from a 3-year-old field trial of three independently transformed GS1a transgenic hybrid poplar lines revealed that, when compared with wild-type controls, ectopic expression of GS1a resulted in alterations in wood properties and wood chemistry. Included were significant enhancements in wood fibre length, wood density, microfibre angle, per cent syringyl lignin and elevated concentrations of wood sugars, specifically glucose, galactose, mannose and xylose. Total extractive content and acid-insoluble lignin were significantly reduced in wood of GS1a transgenics when compared with wild-type trees. Together, these cell wall characteristics resulted in improved wood pulping attributes, including improved lignin solubilization with no concurrent decrease in yield. Trees with increased GS1a expression have improved characteristics for pulp and paper production and hold potential as a feedstock for biofuels production. PMID:22672155

  13. [Adverse cutaneous reactions induced by exposure to woods].

    PubMed

    Chomiczewska-Skóra, Dorota

    2013-01-01

    Various adverse cutaneous reactions may occur as a result of exposure to wood dust or solid woods. These include allergic contact dermatitis, irritant contact dermatitis and, more rarely, contact urticaria, photoallergic and phototoxic reactions. Also cases of erythema multiforme-like reactions have been reported. Contact dermatitis, both allergic and irritant, is most frequently provoked by exotic woods, e.g. wood of the Dalbergia spp., Machaerium scleroxylon or Tectona grandis. Cutaneous reactions are usually associated with manual or machine woodworking, in occupational setting or as a hobby. As a result of exposure to wood dust, airborne contact dermatitis is often diagnosed. Cases of allergic contact dermatitis due to solid woods of finished articles as jewelry or musical instruments have also been reported. The aim of the paper is to present various adverse skin reactions related to exposure to woods, their causal factors and sources of exposure, based on the review of literature. PMID:23650772

  14. Tracing nitrogen accumulation in decaying wood and examining its impact on wood decomposition rate

    NASA Astrophysics Data System (ADS)

    Rinne, Katja T.; Rajala, Tiina; Peltoniemi, Krista; Chen, Janet; Smolander, Aino; Mäkipää, Raisa

    2016-04-01

    Decomposition of dead wood, which is controlled primarily by fungi is important for ecosystem carbon cycle and has potentially a significant role in nitrogen fixation via diazotrophs. Nitrogen content has been found to increase with advancing wood decay in several studies; however, the importance of this increase to decay rate and the sources of external nitrogen remain unclear. Improved knowledge of the temporal dynamics of wood decomposition rate and nitrogen accumulation in wood as well as the drivers of the two processes would be important for carbon and nitrogen models dealing with ecosystem responses to climate change. To tackle these questions we applied several analytical methods on Norway spruce logs from Lapinjärvi, Finland. We incubated wood samples (density classes from I to V, n=49) in different temperatures (from 8.5oC to 41oC, n=7). After a common seven day pre-incubation period at 14.5oC, the bottles were incubated six days in their designated temperature prior to CO2 flux measurements with GC to determine the decomposition rate. N2 fixation was measured with acetylene reduction assay after further 48 hour incubation. In addition, fungal DNA, (MiSeq Illumina) δ15N and N% composition of wood for samples incubated at 14.5oC were determined. Radiocarbon method was applied to obtain age distribution for the density classes. The asymbiotic N2 fixation rate was clearly dependent on the stage of wood decay and increased from stage I to stage IV but was substantially reduced in stage V. CO2 production was highest in the intermediate decay stage (classes II-IV). Both N2 fixation and CO2 production were highly temperature sensitive having optima in temperature 25oC and 31oC, respectively. We calculated the variation of annual levels of respiration and N2 fixation per hectare for the study site, and used the latter data together with the 14C results to determine the amount of N2 accumulated in wood in time. The proportion of total nitrogen in wood

  15. Magnetoplasmadynamcis - Portrait of George P. Wood

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Portrait of George P. Wood: Wood was head of Magnetoplasmadynamcis' (MPD) Magnetohydrodynamics Section. 'Through the transition period of 1957 and 1958, researchers at the lab continued to seek new ways to accelerate hot plasmas to the tremendous velocities of reentry flight. In a method devised by Langley MPD enthusiast George Wood, a hot gas was fed into a tube, then the body force of crossed electric and magnetic fields was used to accelerate the gas to the point where a mixture of disassociated, high-enthalpy flow would reproduce the very high Mach numbers of hypersonic flight. At NASA's First Anniversary Inspection in 1959, Langley engineers demonstrated a crude version of Wood's crossed-field plasma accelerator. It produced a flash of light, a loud bang, a startled audience, and a belief in the promise of major new scientific findings. Nearly everyone was excited by the potential of plasma accelerators. When John Stack first heard about the facility, he exclaimed, 'This is great!' Stack felt that Langley should call the device something grand; he proposed the awe-inspiring name, the 'Trans-Satellite-Velocity Wind Tunnel.' Given the limited performance of Wood's early version of the experimental accelerator, such a pretentious name would have been a poor choice. As part of a guided tour for top officials from NASA headquarters in late 1959, Langley hoped to show off the radically new plasma acceleration device. almost comically, it did not work. . . . The concept behind Wood's crossed-field plasma accelerator was sound: it was an application of a 130-year-old theory of electromagnetic force that had been expressed by Amp*re in the 1820s. Langley researchers kept fiddling with the pilot model until in 1960 they successfully demonstrated its feasibility. Having done so, they continued research on larger, more powerful versions of the device. One version, the 20-megawatt plasma accelerator, was completed in 1966 at a cost of more than $1 million. With this

  16. Furniture wood wastes: Experimental property characterisation and burning tests

    SciTech Connect

    Tatano, Fabio Barbadoro, Luca; Mangani, Giovanna; Pretelli, Silvia; Tombari, Lucia; Mangani, Filippo

    2009-10-15

    Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected 'raw' and primarily 'engineered' ('composite') wood wastes. The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in 'engineered' wood wastes as compared with 'raw' wood wastes; and relatively high energy content values of 'engineered' wood wastes (ranging on the whole from 3675 to 5105 kcal kg{sup -1} for HHV, and from 3304 to 4634 kcal kg{sup -1} for LHV). The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in 'engineered' wood burning tests of pyrroles and amines, as well as the additional presence (as compared with 'raw' wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon. Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in 'engineered' wood burning tests as compared with 'raw' wood burning test; and considerable generation of the respirable PM{sub 1} fraction during incomplete industrial wood burning.

  17. Molecular and phenotypic profiling from the base to the crown in maritime pine wood-forming tissue.

    PubMed

    Paiva, Jorge A P; Garcés, Marcelo; Alves, Ana; Garnier-Géré, Pauline; Rodrigues, José Carlos; Lalanne, Céline; Porcon, Stéphane; Le Provost, Grégoire; Perez, Denilson da Silva; Brach, Jean; Frigerio, Jean-Marc; Claverol, Stéphane; Barré, Aurélien; Fevereiro, Pedro; Plomion, Christophe

    2008-01-01

    Environmental, developmental and genetic factors affect variation in wood properties at the chemical, anatomical and physical levels. Here, the phenotypic variation observed along the tree stem was explored and the hypothesis tested that this variation could be the result of the differential expression of genes/proteins during wood formation. Differentiating xylem samples of maritime pine (Pinus pinaster) were collected from the top (crown wood, CW) to the bottom (base wood, BW) of adult trees. These samples were characterized by Fourier transform infrared spectroscopy (FTIR) and analytical pyrolysis. Two main groups of samples, corresponding to CW and BW, could be distinguished from cell wall chemical composition. A genomic approach, combining large-scale production of expressed sequence tags (ESTs), gene expression profiling and quantitative proteomics analysis, allowed identification of 262 unigenes (out of 3512) and 231 proteins (out of 1372 spots) that were differentially expressed along the stem. A good relationship was found between functional categories from transcriptomic and proteomic data. A good fit between the molecular mechanisms involved in CW-BW formation and these two types of wood phenotypic differences was also observed. This work provides a list of candidate genes for wood properties that will be tested in forward genetics. PMID:18298434

  18. Effect of Production Conditions of Wood Powder on Bending Properties of Wood Powder Molding Material without Adhesive

    NASA Astrophysics Data System (ADS)

    Imanishi, Hiroshi; Soma, Naho; Yamashita, Osamu; Miki, Tsunehisa; Kanayama, Kozo

    The effect of production conditions of wood powder on the bending properties of wood powder molding material was investigated. Wood powder was produced by milling wood into powder under conditions of different temperatures (25°C, 100°C) and moisture contents (0%MC, about 30%MC). Molding materials were produced from wood powder in stream atmosphere of high temperature and high pressure (175°C, 900kPa) using self-bonding ability of the wood powder. Adhesives, such as a synthetic resin, were not used. To evaluate the bending properties of the molding materials, the modulus of elasticity and the bending strength were examined by static three-point bending test. As for the characteristic of wood particle, in case of wood particle produced by milling wood under a condition of high temperature and high moisture content (100°C and about 30%MC), tendencies for intercellular layer to be exposed on surface of a particle and for the aspect ratio of particles to be large were confirmed. And in that case, the molding material showed the highest value in modulus of elasticity and bending strength. It is highly probable that the inprovement of the self-bonding ability of wood powder and the increase of the aspect ratio of wood particle take part in the improvement of strength properties of molding material.

  19. Organic aerosol mass spectral signatures from wood-burning emissions: Influence of burning conditions and wood type

    NASA Astrophysics Data System (ADS)

    Weimer, S.; Alfarra, M. R.; Schreiber, D.; Mohr, M.; PréVôT, A. S. H.; Baltensperger, U.

    2008-05-01

    Wood-burning for domestic heating purposes is becoming more important owing to the increasing use of wood as a renewable fuel. Particle emissions from residential wood combustion contribute substantially to particulate matter during winter. An Aerodyne quadrupole aerosol mass spectrometer was used to study the variability of the mass spectra of organic aerosol particles emitted from the burning of different wood types as a function of burning conditions and burning technologies. Previously found wood-burning mass fragment markers in ambient air and for levoglucosan such as m/z 60, 73, and 29 were confirmed as a feature of wood-burning aerosol. They were enhanced during the flaming phase and reduced in the smoldering phase when burning was conducted in a small wood stove. The mass spectra during the smoldering phase were dominated by oxygenated species and exhibited a strong resemblance to the mass spectrum of fulvic acid which is used as a model compound for highly oxidized aerosol. A strong resemblance between the mass spectra of fulvic acid and organic particles emitted during wood-burning in an automatic furnace was found. In general, we found larger differences in the mass spectra between flaming and smoldering phases of one wood type than between different wood types within the same phase. Furthermore it was observed that during one experiment where white fir bark was burned the contribution of polycyclic aromatic hydrocarbons to the total organic matter was very high (˜30%) compared to other wood-burning experiments (0.4-2.2%).

  20. Tissue-specific cell wall hydration in sugarcane stalks.

    PubMed

    Maziero, Priscila; Jong, Jennifer; Mendes, Fernanda M; Gonçalves, Adilson R; Eder, Michaela; Driemeier, Carlos

    2013-06-19

    Plant cell walls contain water, especially under biological and wet processing conditions. The present work characterizes this water in tissues of sugarcane stalks. Environmental scanning electron microscopy shows tissue deformation upon drying. Dynamic vapor sorption determines the equilibrium and kinetics of moisture uptake. Thermoporometry by differential scanning calorimetry quantifies water in nanoscale pores. Results show that cell walls from top internodes of stalks are more deformable, slightly more sorptive to moisture, and substantially more porous. These differences of top internode are attributed to less lignified walls, which is confirmed by lower infrared spectral signal from aromatics. Furthermore, cell wall nanoscale porosity, an architectural and not directly compositional characteristic, is shown to be tissue-specific. Nanoscale porosities are ranked as follows: pith parenchyma > pith vascular bundles > rind. This ranking coincides with wall reactivity and digestibility in grasses, suggesting that nanoscale porosity is a major determinant of wall recalcitrance. PMID:23738592

  1. Modelling of pyrolysis of large wood particles.

    PubMed

    Sadhukhan, Anup Kumar; Gupta, Parthapratim; Saha, Ranajit Kumar

    2009-06-01

    A fully transient mathematical model has been developed to describe the pyrolysis of large biomass particles. The kinetic model consists of both primary and secondary reactions. The heat transfer model includes conductive and internal convection within the particle and convective and radiative heat transfer between the external surface and the bulk. An implicit Finite Volume Method (FVM) with Tridiagonal Matrix Algorithm (TDMA) is employed to solve the energy conservation equation. Experimental investigations are carried out for wood fines and large wood cylinder and sphere in an electrically heated furnace under inert atmosphere. The model predictions for temperature and mass loss histories are in excellent agreement with experimental results. The effect of internal convection and particle shrinkage on pyrolysis behaviour is investigated and found to be significant. Finally, simulation studies are carried out to analyze the effect of bulk temperature and particle size on total pyrolysis time and the final yield of char. PMID:19231172

  2. Simulated wood budgets in two mountain streams

    NASA Astrophysics Data System (ADS)

    Hassan, Marwan A.; Bird, Stephen; Reid, David; Hogan, Daniel

    2016-04-01

    Large wood (LW) recruitment, transport, and storage were evaluated over a century in Gregory and Riley creeks (Haida Gwaii, British Columbia) by modeling a reach-scale LW budget using two frameworks for output: LW loss through decay and downstream transport, and loss through depletion. At reach and at watershed scales, mass movement and bank erosion dominated inputs, and fluvial transport was an important flux term in several reaches. Large wood recruitment by mortality was relatively minor in comparison. Large proportions of the in-channel LW were stored in jams with a mean age of 40-50 years. Overall, both modeling approaches yielded reasonable stored LW predictions in the study creeks, with the omission/inclusion of transport responsible for the largest differences between models. Modeled storage generally was within 30% of that measured in the field, and our results illustrate the large temporal variation in storage resulting from episodic inputs of LW from hillslopes.

  3. Wood biomass: The potential of willow

    SciTech Connect

    White, E.H.; Abrahamson, L.P. . Coll. of Environmental Science and Forestry)

    1991-10-01

    Experiments were established in central New York State in spring, 1987, to evaluate the potential of Salix for wood biomass production using ultrashort-rotation intensive-culture techniques. Five selected willow clones and one hybrid poplar clone planted at 1 {times} 1 foot spacing were tested for biomass production with annual coppicing. This report presents results of this research as of December 31, 1990. (VC)

  4. Effects of humidity on the magnetic and woody characteristics of powder-type magnetic wood

    NASA Astrophysics Data System (ADS)

    Oka, H.; Tokuta, H.; Namizaki, Y.; Sekino, N.

    2004-05-01

    Among three types of proposed magnetic wood, powder-type magnetic wood can be made of recycled magnetic materials from IT devices, consumer electronics and waste wood. Because of its wood powder content, powder-type magnetic wood shows special characteristics different from those of typical magnetic materials. We focused on the relationship between humidity and magnetic characteristics of powder-type magnetic wood. The magnetic powder ratio, wood powder density and magnetic binder density were all examined as parameters for AC permeability.

  5. Impregnation mode in wood plastic composite

    NASA Astrophysics Data System (ADS)

    Mozaffar Husain, M.; Khan, Mubarak A.; Azam Ali, M.; Idriss Ali, K. M.; Mustafa, A. I.

    1996-12-01

    Bulk monomer MMA was impregnated into simul, a fuel wood of Bangladesh, under vacuum and under normal temperature and pressure conditions in order to compare the mode of impregnation and its effect on various characteristic parameters of wood plastic composites. Methanol (MeOH) was used as the swelling solvent with methylmethacrylate (MMA) at MMA: MeOH = 70:30, v/v. Impregnation of the bulk monomer was very high under vacuum compared to that at normal condition; but the difference of grafting of MMA to the wood cellulose under these two impregnating conditions was much lower as compared to that of the uptakes of impregnating solution MMA + MeOH under these two modes of impregnation. Incorporation of additives to MMA + MeOH has substantially enhanced grafting, tensile strength, bending strength and compression strength of thcomposite of such an extent that there is virtually very little difference between vacuum impregnation and normal impregnation. Considering the available data it is suggested that the impregnation under normal condition is preferable beacuse different substrates of various sizes and shapes can be suitably impregnated under normal condition while vacuum impregnation has several limitations in this respect.

  6. Weathering of copper-amine treated wood

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Kamdem, D. Pascal; Temiz, Ali

    2009-11-01

    In this study, the effect of ultraviolet light (UV) irradiation and water spray on color, contact angle and surface chemistry of treated wood was studied. Southern pine sapwood ( Pinus Elliottii.Engelm.) treated with copper ethanolamine (Cu-MEA) was subjected to artificially accelerated weathering with a QUV Weathering Tester. The compositional changes and the surface properties of the weathered samples were characterized by Fourier transform infrared (FTIR) spectroscopy, color and contact angle measurements. FTIR indicated that MEA treatment was not found to slow down wood weathering. FTIR spectrum of MEA-treated sample was similar to that of the untreated SP. However, the Cu-MEA treatment retarded the surface lignin degradation during weathering. The main changes in FTIR spectrum of Cu-MEA treatment took place at 915, 1510, and 1595 cm -1. The intensity of the bands at 1510 and 1595 cm -1 increased with the Cu-MEA treatment. Both untreated and MEA-treated exhibited higher Δ E than the Cu-MEA treated samples, indicating that MEA treatment did not retard color changes. However, Δ E decreased with increasing copper concentration, suggesting a positive contribution of Cu-EA to wood color stability. The contact angle of untreated and MEA-treated samples changed rapidly, and dropped from 75 ± 5° to 0° after artificial weathering up to 600 h. Treatment with Cu-MEA slowed down the decreasing in contact angle. As the copper concentration increases, the rate of change in contact angle decreases.

  7. Wood biodegradation in laboratory-scale landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; De la Cruz, Florentino B; Barlaz, Morton A

    2011-08-15

    The objective of this research was to characterize the anaerobic biodegradability of major wood products in municipal waste by measuring methane yields, decay rates, the extent of carbohydrate decomposition, carbon storage, and leachate toxicity. Tests were conducted in triplicate 8 L reactors operated to obtain maximum yields. Measured methane yields for red oak, eucalyptus, spruce, radiata pine, plywood (PW), oriented strand board (OSB) from hardwood (HW) and softwood (SW), particleboard (PB) and medium-density fiberboard (MDF) were 32.5, 0, 7.5, 0.5, 6.3, 84.5, 0, 5.6, and 4.6 mL CH(4) dry g(-1), respectively. The red oak, a HW, exhibited greater decomposition than either SW (spruce and radiata), a trend that was also measured for the OSB-HW relative to OSB-SW. However, the eucalyptus (HW) exhibited toxicity. Thus, wood species have unique methane yields that should be considered in the development of national inventories of methane production and carbon storage. The current assumption of uniform biodegradability is not appropriate. The ammonia release from urea formaldehyde as present in PB and MDF could contribute to ammonia in landfill leachate. Using the extent of carbon conversion measured in this research, 0-19.9%, predicted methane production from a wood mixture using the Intergovernmental Panel for Climate Change waste model is only 7.9% of that predicted using the 50% carbon conversion default. PMID:21749061

  8. Effects of wood preservative leachates from docks

    SciTech Connect

    Wendt, P.H.; Van Dolah, R.F.; Bobo, M.Y.; Mathews, T.D.

    1994-12-31

    Recent evidence indicates that the wood preservative commonly used in dock pilings (chromated copper arsenate or CCA) is highly toxic to several estuarine organisms in laboratory experiments. Increasing demand for residential docks prompted a field study intended to complement these earlier laboratory investigations. Objectives of the study were to: (1) examine concentrations of Cu, Cr, and As in sediments and oysters from intertidal locations in several creeks with and without high densities of docks; (2) examine the bioaccumulation of wood preservative leachates by laboratory-reared oysters transferred to field sites near and distant from newly constructed docks; and (3) investigate the acute toxicity of wood preservative leachates for several species of estuarine fishes and invertebrates exposed to these compounds in the field. Preliminary results indicate that sediment concentrations of all three metals were well below ER-L levels reported by Long and Morgan at all but one dock site. In an ancillary study, 24h LC{sub 50} bioassays were performed using rotifers (Brachionus plicatilis) which were exposed to pore water from sediments in creeks with and without docks. Toxicities of bulk sediments from the same sites were examined using Microtox which measures decreases in bioluminescence of marine bacteria (Photobacterium phosphoreum) as a function of sediment concentration. Neither the rotifer nor the Microtox bioassays showed any significant differences in toxicity between creeks with and without docks.

  9. Environmental controls of wood entrapment in upper Midwestern streams

    USGS Publications Warehouse

    Merten, Eric C.; Finlay, J.; Johnson, L.; Newman, R.; Stefan, H.; Vondracek, B.

    2011-01-01

    Wood deposited in streams provides a wide variety of ecosystem functions, including enhancing habitat for key species in stream food webs, increasing geomorphic and hydraulic heterogeneity and retaining organic matter. Given the strong role that wood plays in streams, factors that influence wood inputs, retention and transport are critical to stream ecology. Wood entrapment, the process of wood coming to rest after being swept downstream at least 10 m, is poorly understood, yet important for predicting stream function and success of restoration efforts. Data on entrapment were collected for a wide range of natural wood pieces (n = 344), stream geomorphology and hydraulic conditions in nine streams along the north shore of Lake Superior in Minnesota. Locations of pieces were determined in summer 2007 and again following an overbank stormflow event in fall 2007. The ratio of piece length to effective stream width (length ratio) and the weight of the piece were important in a multiple logistic regression model that explained 25% of the variance in wood entrapment. Entrapment remains difficult to predict in natural streams, and often may simply occur wherever wood pieces are located when high water recedes. However, this study can inform stream modifications to discourage entrapment at road crossings or other infrastructure by applying the model formula to estimate the effective width required to pass particular wood pieces. Conversely, these results could also be used to determine conditions (e.g. pre-existing large, stable pieces) that encourage entrapment where wood is valued for ecological functions. Copyright ?? 2010 John Wiley & Sons, Ltd.

  10. Wood in New Zealand's Native Forest Streams. Recent Advances

    NASA Astrophysics Data System (ADS)

    Mark, M. A.; Davies-Colley, R.

    2005-05-01

    We conducted a series of research projects to investigate the importance of wood in native forested streams of New Zealand. We examined abundance and geomorphic role of wood in 18 pristine native forest streams (channel width: 3-6 m) throughout New Zealand. Forest type and geographic location had no discernable influence on wood abundance, possibly reflecting the confounding influences of local features (e.g., tree fall regime) and methodology (`snap-shot' survey of a dynamic system). Number (18-66 per 100 m) and dead wood volume (85-470 m3 ha-1) of stream logs were at the high end of the international range. Living trees contributed up to 25% of total wood, and tree ferns were strongly represented (up to 11% of volume). The largest 10% of pieces contributed 75% of the total volume. The importance of the large wood pieces (>10 m3) was explored further with surveys within that watershed containing the site with the greatest wood volume. The largest pieces were rare but seemed relatively uniformly distributed. To explore the biological consequences of stream wood, we studied use of wood-related micro-habitat by the crayfish (Paranephrops planifrons White). Our findings suggest that wood is an important component of New Zealand's forested stream ecosystems.

  11. Application of FTIR spectroscopy to the characterization of archeological wood

    NASA Astrophysics Data System (ADS)

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2016-01-01

    Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P = 0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR.

  12. Surface energy and wettability of spin-coated thin films of lignin isolated from wood.

    PubMed

    Notley, Shannon M; Norgren, Magnus

    2010-04-20

    The surface energy of lignin films spin-coated onto oxidized silicon wafer has been determined from contact angle measurements of different test liquids with varying polar and dispersive components. Three different lignin raw materials were used, a kraft lignin from softwood, along with milled wood lignin from softwood and hardwood. Infrared and (31)P NMR spectroscopy was used to identify any major functional group differences between the lignin samples. No significant difference in the total solid-vapor surface energy for the different lignin films was observed; however, the polar component for the kraft lignin was much greater than for either of the milled wood lignin samples consistent with the presence of carboxyl groups and higher proportion of phenolic hydroxyl groups as shown by quantitative (31)P NMR on the phosphitylated samples. Furthermore, the total surface energy of lignin of 53-56 mJ m(-2) is of a similar magnitude to cellulose, also found in the wood cell wall; however, cellulose has a higher polar component leading to a lower contact angle with water and greater wettability than the milled wood lignin. Although lignin is not hydrophobic according to the strictest definition of a water contact angle greater than 90 degrees, water may only be considered a partially wetting liquid on a lignin surface. This supports the long-held belief that one of the functions of lignin in the wood cell wall is to provide water-proofing to aid in water transport. Furthermore, these results on the solid-vapor surface energy of lignin will provide invaluable insight for many natural and industrial applications including in the design and manufacture of many sustainable products such as paper, fiberboard, and polymer composite blends. PMID:20349913

  13. Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation

    PubMed Central

    ROSNER, SABINE; KARLSSON, BO; KONNERTH, JOHANNES; HANSMANN, CHRISTIAN

    2011-01-01

    Summary The aim of this study was to observe the radial shrinkage of Norway spruce [Picea abies (L. Karst.)] trunkwood specimens with different hydraulic vulnerability to cavitation from the fully saturated state until the overall shrinkage reaches a stable value, and to relate wood shrinkage and recovery from shrinkage to cavitations of the water column inside the tracheids. Radial shrinkage processes in standard-size sapwood specimens (6 mm × 6 mm × 100 mm; radial, tangential and longitudinal) obtained at different positions within the trunk, representing different ages of the cambium, were compared. Cavitation events were assessed by acoustic emission (AE) testing, hydraulic vulnerability by the AE feature analysis and shrinkage was calculated from the changes in contact pressure between the 150 kHz AE transducer and the wood specimen. Two shrinkage processes were observed in both juvenile (annual rings 1 and 2) and mature wood (annual rings 17–19), the first one termed tension shrinkage and the second one cell wall shrinkage process, which started when most of the tracheids reached relative water contents below fiber saturation. Maximum tension shrinkage coincided with high-energy AEs, and the periods of shrinkage recovery could be traced to tension release due to cavitation. Juvenile wood, which was less sensitive to cavitation, had lower earlywood tracheid diameters and was less prone to deformation due to tensile strain than mature wood, showed a lower cell wall shrinkage, and thus total shrinkage. Earlywood lumen diameters and maximum tension shrinkage were strongly positively related to each other, meaning that bigger tracheids are more prone to deformation at the same water tension than the smaller tracheids. PMID:19797244

  14. The Importance of Measuring Mercury in Wood

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Yanai, R. D.; Driscoll, C. T.; Montesdeoca, M.

    2014-12-01

    Forests are important receptors of Hg deposition, and biological Hg hotspots occur mainly in forested regions, but few efforts have been made to determine the Hg content of trees. Mercury concentrations in stem tissue are lower than the foliage and bark, so low that they have often been below detection limits, especially in hardwood species. However, because wood is the largest component of forest biomass, it can be a larger Hg pool than the foliage, and thus quantifying concentrations in wood is important to Hg budgets in forests. The objective of our study was to determine the methods necessary to detect Hg in bole wood of four tree species, including two hardwoods and two conifers. We also evaluated the effect of air-drying and oven-drying samples on Hg recovery, compared to freeze-drying samples prior to analysis, which is the standard procedure. Many archived wood samples that were air-dried or oven-dried could be appropriate for Hg analysis if these methods could be validated; few are freeze-dried. We analyzed samples for total Hg using thermal decomposition, catalytic conversion, amalgamation, and atomic absorption spectrophotometry (Method 7473, USEPA 1998). The result of the method detection limit study was 1.27 ng g-1, based on apple leaf standards (NIST 1515, 44 ± 4 ng/g). Concentrations in the hardwood species were 1.48 ± 0.23 ng g-1 for sugar maple and 1.75 ± 0.14 ng g-1 for American beech. Concentrations were higher in red spruce and balsam fir. Samples that were analyzed fresh, freeze-dried, or oven-dried at 65 ˚C were in close agreement, after correcting for moisture content. However, Hg concentrations were 34 to 45% too high in the air-dry samples, presumably reflecting absorption from the atmosphere, and they were 44 to 66% too low in the samples oven-dried at 103 ˚C, presumably due to volatilization. We recommend that samples be freeze-dried or oven-dried at 65 ˚C for analysis of Hg in wood; archived samples that have been oven-dried at

  15. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood

    PubMed Central

    Bastin, Jean-François; Fayolle, Adeline; Tarelkin, Yegor; Van den Bulcke, Jan; de Haulleville, Thales; Mortier, Frederic; Beeckman, Hans; Van Acker, Joris; Serckx, Adeline; Bogaert, Jan; De Cannière, Charles

    2015-01-01

    Context Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. Methods Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). Results Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific

  16. (I/O) hybrid alkoxysilane/zirconium-oxocluster copolymers as coatings for wood protection.

    PubMed

    Maggini, Simona; Feci, Elisabetta; Cappelletto, Elisa; Girardi, Fabrizio; Palanti, Sabrina; Di Maggio, Rosa

    2012-09-26

    Novel inorganic-organic hybrid copolymers based on vinyl- or (3-mercaptopropyl)-trimethoxysilane and an organically modified zirconium-oxocluster were investigated as a wood preservation treatment. The copolymers were prepared using a modified sol-gel strategy not involving alkoxysilane pre-hydrolysis and were applied on wood through a dip coating method. Even though the copolymers were mainly present on the surface of the wood, EDX analysis showed also a uniform distribution of silicon and zirconium in the cell wall but not in the lumina. The grafting of the copolymers on wood was confirmed through FTIR, (13)C and (29)Si MAS NMR analysis. The copolymer obtained from (3-mercaptopropyl)trimethoxysilane was post-functionalized with the methacrylic ester of thymol; introduced for testing as a biocide. Preliminary accelerated biological tests against the brown rot fungus Coniophora puteana, showed resistance to the fungus for the samples coated with the vinyltrimethoxysilane copolymer, while uneven results were obtained for the samples coated with the (3-mercaptopropyl)trimethoxysilane copolymer, even when functionalized with the ester of thymol. PMID:22970739

  17. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    SciTech Connect

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edges complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.

  18. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE PAGESBeta

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  19. Wood properties of Populus and Betula in long-term exposure to elevated CO₂ and O₃.

    PubMed

    Kostiainen, Katri; Saranpää, Pekka; Lundqvist, Sven-Olof; Kubiske, Mark E; Vapaavuori, Elina

    2014-06-01

    We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free-air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3 ] during growing seasons 1998-2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2- and O3-exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone-specific decrease in wood density and cell wall thickness was observed under elevated CO2 . In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short-term impact studies conducted with young seedlings may not give a realistic view of long-term ecosystem responses. PMID:24372544

  20. Petrifaction of wood by calcium carbonate mineralization: Examples from spring-associated limestones of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Tran, Ha; Ostermann, Marc; Sanders, Diethard

    2015-04-01

    The petrifaction of tissues such as wood can unveil much information on fossil assemblages. Wood most commonly is petrified by silicification, in settings ranging from hot springs to shallow burial. In contrast, we herein characterize wood petrified by calcium carbonate mineralization from spring limestone deposits of the Eastern Alps. The spring-associated limestone (SAL) deposits with calcified wood are post-Glacial (highest 234U/230Th errorchron age: 13.4 ± 0.2 ka) and inactive, and scatter from 800-2200 m a.s.l. Individual deposits range in mineralogy from aragonite plus magnesian calcite to primary low-magnesian calcite. The springs most probably had shed 'cool' waters at or near the ambient mean temperature of their recharge areas. In the Eastern Alps, cool springs with Mg/Ca ratios of 3-5 that actively precipitate aragonite and magnesian calcite are known from a location with a mean annual temperature of 8° C. Wood petrifaction by calcification affected branches to tree logs up to a few decimeters in diameter. Thicker branches and logs, however, are calcified only in a peripheral fringe up to ~10 cm in width, whereas the inner part is a phytomould or filled with other types of spring limestone. The preservation of cells, tracheids and vessels ranges from good to poor and patchy, and commonly allows for distinction of wood of conifers (gymnosperms) from woody angiosperms. Before petrifaction the wood was subject to partial physical disintegration, as recorded by desiccation cracks and local rotting/decomposition of cell walls. In addition, some degree of biological decomposition is indicated by tunnels and patches with calcified pellets (probably of arthropods), and by diffuse patches of micrite perhaps recording fungal and/or microbial infestation. The partial decomposition, in turn, favoured percolation of CaCO3 supersaturated water through the wood, and consequent mineralization. Silicification of wood within a few years was documented by other authors

  1. How to Make a Beetle Out of Wood: Multi-Elemental Stoichiometry of Wood Decay, Xylophagy and Fungivory

    PubMed Central

    Filipiak, Michał; Weiner, January

    2014-01-01

    The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates. PMID:25536334

  2. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOEpatents

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  3. The use of wood for wind turbine blade construction

    NASA Technical Reports Server (NTRS)

    Gougeon, M.; Zuteck, M.

    1979-01-01

    The interrelationships between moisture and wood, conditions for dry rot spore activity, the protection of wood fibers from moisture, wood resin composites, wood laminating, quality control, and the mechanical properties of wood are discussed. The laminated veneer and the bonded sawn stock fabrication techniques, used in the construction of a turbine blade with a monocoque 'D' section forming the leading edge and a built up trailing edge section, are described. A 20 foot root end sample complete with 24 bonded-in studs was successfully subjected to large onetime loads in both the flatwise and edgewise directions, and to fatigue tests. Results indicate that wood is both a viable and advantageous material for use in wind turbine blades. The basic material is reasonably priced, domestically available, ecologically sound, and easily fabricated with low energy consumption.

  4. Toxicological effects of particulate emissions - A comparison of oil and wood fuels in small- and medium-scale heating systems

    NASA Astrophysics Data System (ADS)

    Kasurinen, Stefanie; Jalava, Pasi I.; Tapanainen, Maija; Uski, Oskari; Happo, Mikko S.; Mäki-Paakkanen, Jorma; Lamberg, Heikki; Koponen, Hanna; Nuutinen, Ilpo; Kortelainen, Miika; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2015-02-01

    The use of wood instead of oil fuels in heating systems is strongly encouraged in many countries. Yet it is unknown to what extent such a large-scale change from oil to wood fuels in heating systems would contribute to any negative health effects from their emissions. We compared the toxicological properties of particulate matter (PM) emissions from wood and oil fuels from two small-scale and two medium-scale heating systems. To assess whether oil or wood combustion emissions cause adverse effects and which PM emissions' effects are more profound, we measured cell viability and proliferation, inflammatory markers, as well as DNA damage in RAW264.7 mouse macrophages. We found that the medium-scale oil-fueled heating system induced a dose-dependent increase of DNA damage, short-term cytotoxic effects, and a cell cycle arrest in the G2/M-phase. We did not detect an induction of DNA damage by the medium-scale wood-fired system. However, we detected significant short-term cytotoxicity. We found that both oil and wood combustion emission samples from the small-scale heating systems induced DNA damage. However, the short-term cytotoxic effects were greater for the PM emissions from the oil-fired heating system. PM mass emissions differed significantly between the tested heating systems. The lowest emissions, 0.1 mg/MJ, were produced by the small-scale oil-fired heating system; the highest emissions, 20.3 mg/MJ, by the medium-scale oil-fired heating system. The wood-fired heating systems' PM mass emissions were in between these concentrations, complicating the direct comparison of the emissions' health related toxic effects. Conclusively, our results indicate that the emissions from both the small- and the medium-scale wood-fueled heating systems cause overall less cytotoxicity and DNA damage in a cell model than the emissions from the corresponding oil-fueled heating systems. Hence, controlled wood-fueled heating systems may be good alternatives to heating systems fired

  5. Test evaluation of a laminated wood wind turbine blade concept

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1981-01-01

    A series of tests conducted on a root end section of a laminated wood wind turbine blade are reported. The blade to hub transition of the wood blade uses steel studs cast into the wood D spar with a filled epoxy. Both individual studs and a full scale, short length, root section were tested. Results indicate that the bonded stud concept is more than adequate for both the 30 year life fatigue loads and for the high wind or hurricane gust loads.

  6. Wood Defect Identification Based on Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Dong; Cao, Jun; Wang, Feng-Hu; Sun, Jian-Ping; Liu, Yu

    Defects in wooden material reduce the value of timber. In order to save and improve the utilization of the timber, many studies are carried out on the ways to detect defects in wood. The recent development of computer technology, data processing technology and signal processing technology provides researchers with more damage identification problem solution ideas and methods. This article studies the vibration characteristics of wood. With an exploration of the wavelet analysis and artificial neural network for the wood composite material defects based on non-destructive testing, an artificial neural network model is established for wood-based composite materials non-destructive testing technology.

  7. FBG sensors for painted wood panel deformation monitoring

    NASA Astrophysics Data System (ADS)

    Falciai, Riccardo; Trono, Cosimo; Lanterna, Giancarlo; Castelli, Ciro

    2003-07-01

    The wood support is an essential element of the works of art and is highly sensitive to the environmental climate modification. Wood deformations may have irreversible destructive effects on the work of ar t. The use of fiber Bragg grating (FBG) sensors for the quasi-distributed in-situ measurement and continuous monitoring of the painted wood panel deformations is proposed. FBG sensors have high resolution low invasivity and intrinsic safety. The results of a set of measurement on a wood panel in different climate conditions are presented. The applicability of fiber Bragg grating sensors to the cultural heritage is demonstrated.

  8. 22. DETAIL, WOOD BLOCK FLOOR Delaware, Lackawanna & Western ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL, WOOD BLOCK FLOOR - Delaware, Lackawanna & Western Railroad Freight & Rail Yard, Multiple Unit Light Inspection Shed, New Jersey Transit Hoboken Terminal Rail Yard, Hoboken, Hudson County, NJ

  9. A starling-deterrent wood duck nest box

    USGS Publications Warehouse

    McGilvrey, F.B.; Uhler, F.M.

    1971-01-01

    In many parts of the United States, the starling (Sturnus vulgaris) has I become a serious competitor for nest boxes erected for wood ducks (Aix sponsa). Research at the Patuxent Wildlife Research Center and at Eastern Neck National Wildlife Refuge near Rock Hall, Maryland, demonstrated that horizontal nest structures with semicircular entrance holes 11 inches in diameter were acceptable to nesting wood ducks but discouraged nesting by starlings. Starlings seemed to prefer boxes in open impoundments to those in wooded impoundments, whereas wood ducks seemed to show no preference.

  10. Brodifacoum toxicity and treatment in a white-winged wood duck (Cairina scutulata).

    PubMed

    James, S B; Raphael, B L; Cook, R A

    1998-09-01

    A captive white-winged wood duck (Cairina scutulata) with bilateral epistaxis and anemia (packed cell volume = 16%) was treated with injectable and oral vitamin K1 and transfused with 40 ml whole blood. Brodifacoum was detected in blood at 0.002 ppm. The bird made an uneventful recovery. This report illustrates the risk of anticoagulant pest control products in a zoological setting. PMID:9809607

  11. Wood Pulp Digetster Wall Corrosion Investigation

    SciTech Connect

    Giles, GE

    2003-09-18

    The modeling of the flow in a wood pulp digester is but one component of the investigation of the corrosion of digesters. This report describes the development of a Near-Wall-Model (NWM) that is intended to couple with a CFD model that determines the flow, heat, and chemical species transport and reaction within the bulk flow of a digester. Lubrication theory approximations were chosen from which to develop a model that could determine the flow conditions within a thin layer near the vessel wall using information from the interior conditions provided by a CFD calculation of the complete digester. The other conditions will be determined by coupled solutions of the wood chip, heat, and chemical species transport and chemical reactions. The NWM was to couple with a digester performance code in an iterative fashion to provide more detailed information about the conditions within the NW region. Process Simulations, Ltd (PSL) is developing the digester performance code. This more detailed (and perhaps more accurate) information from the NWM was to provide an estimate of the conditions that could aggravate the corrosion at the wall. It is intended that this combined tool (NWM-PSL) could be used to understand conditions at/near the wall in order to develop methods to reduce the corrosion. However, development and testing of the NWM flow model took longer than anticipated and the other developments (energy and species transport, chemical reactions and linking with the PSL code) were not completed. The development and testing of the NWM are described in this report. In addition, the investigation of the potential effects of a clear layer (layer reduced in concentration of wood chips) near the wall is reported in Appendix D. The existence of a clear layer was found to enhance the flow near the wall.

  12. High-strength fiber-reinforced plastic reinforcement of wood and wood composite

    SciTech Connect

    Tingley, D.A.; Eng, P.

    1996-12-31

    Research and development underway since 1982 has led to the development of a method of reinforcing wood and wood composite structural products (WWC) using high-strength fiber-reinforced plastic. This method allows the use of less wood fiber and lower grade wood fiber for a given load capacity. The first WWC in which reinforcement has been marketed is glulam beams. Marketed under the trade name FiRP{trademark} Reinforced glulam, the product has gained code approval and is now being used in the construction of buildings and bridges in the United States, Japan and other countries. The high-strength fiber-reinforced plastic (FiRP{trademark} Reinforced panel (RP)) has specific characteristics that are required to provide for proper use in WWC`s. This paper discusses these characteristics and the testing requirements to develop code approved allowable design values for carbon, aramid and fiberglass RP`s for such uses. Specific issues such as in-service characteristics, i.e. long term creep tests and tension-tension fatigue tests, are discussed.

  13. Development of acid functional groups during the thermal degradation of wood and wood components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study provides data on acid functional groups in charcoals and how the acid functional group content varies with the formation conditions. Chars were created from purified cellulose, purified lignin, pine wood, and pine bark. The charring temperatures and charring duration were controlled in a ...

  14. Ecotoxicity and fungal deterioration of recycled polypropylene/wood composites: effect of wood content and coupling.

    PubMed

    Sudár, András; López, María J; Keledi, Gergely; Vargas-García, M Carmen; Suárez-Estrella, Francisca; Moreno, Joaquín; Burgstaller, Christoph; Pukánszky, Béla

    2013-09-01

    Recycled polypropylene (rPP) was recovered from an industrial shredder and composites were prepared with a relatively wide range of wood content and with two coupling agents, a maleated PP (MAPP) and a maleated ethylene-propylene-diene elastomer (MAEPDM). The mechanical properties of the composites showed that the coupling agents change structure only slightly, but interfacial adhesion quite drastically. The durability of the materials was determined by exposing them to a range of fungi and, ecotoxicity was studied on the aquatic organism Vibrio fischeri. The composites generally exhibit low acute toxicity, with values below the levels considered to have direct ecotoxic effect on aquatic ecosystems (<2 toxic units). Their toxicity to V. fischeri depended on the presence of the coupling agents with larger E50 values in 24-h aqueous extracts from composites containing MAPP or MAEPDM in comparison to composites without any coupling agent. Evaluation of resistance against fungal colonization and deterioration proved that wood facilitates fungal colonization. Fungi caused slight mass loss (below 3%) but it was not correlated with substantial deterioration in material properties. MAPP seems to be beneficial in the retention of mechanical properties during fungal attack. rPP/wood composites can be considered non-ecotoxic and quite durable, but the influence of wood content on resistance to fungal attack must be taken into account for materials intended for applications requiring long-term outdoor exposure. PMID:23769467

  15. Energy from wood waste - A case study

    NASA Technical Reports Server (NTRS)

    Scola, R.; Daughtrey, K.

    1980-01-01

    A joint study has been conducted by NASA and Army installations collocated in a dense forest in southwestern Mississippi in order to determine the technical and economic feasibility of using wood waste as a renewable energy source. The study has shown that, with proper forest management, the timber on government lands could eventually support the total energy requirements of 832 billion Btu/yr. Analysis of the current conversion technologies indicates that the direct combustion spreader stoker approach is the best demonstrated technology for this specific application. The economics of the individual powerplants reveal them as attractive alternatives to fossil fueled plants. Environmental aspects are also discussed.

  16. Accelerated aging of wood-composite members

    SciTech Connect

    Sonti, S.S.; GangaRao, H.V.S.; Talakanti, D.R.

    1996-12-31

    This paper discusses the longterm performance of various adhesives under accelerated aging conditions, where the intended application of the adhesives is bonding wood member to composite fabric wraps. Northern Red Oak was used as the core and two types of composite fabrics were used (glass and carbon) as external reinforcements. The adhesives used for bonding include: Epoxy, Polyurethane, Isopolyester, Resorcinol Formaldehyde, and Phenolic based Resorcinol Formaldehyde. Results from the shear strength evaluations show that a primer/resin combination provided a better bond compared to the bond developed by resin system only. Also, it was observed that phenolic-based resins had higher retention of shear strength after being subjected to aging conditions.

  17. A wood preservative metabolite in river water.

    PubMed

    Khoroshko, Larisa O; Petrova, Varvara N; Viktorovskii, Igor V; Lahtiperä, Mirja; Sinkkonen, Seija; Paasivirta, Jaakko

    2005-01-01

    A previously unknown pollutant in river water was identified to be 2-mercaptobenzothiazole (2-MBT) by interpretation and simulation of its GC/LRMS spectrum. Further GC/HRMS measurement of the isotope composition of the molecular ion verified this structure. 2-MBT is a well-known agent for corrosion inhibition and a stable metabolite of several other benzothiazoles. The present 2-MBT trace was most probably a metabolite of the wood preservative TCMTB which leaked from an upstream sawmill. The metabolite had been detected earlier in urine of the sawmill workers, but now was identified in the recipient water environment for the first time. PMID:15768735

  18. Moisture Resistant Finishes for Airplane Woods

    NASA Technical Reports Server (NTRS)

    Dunlap, M E

    1921-01-01

    This report describes briefly a series of experiments made at the Forest Products Laboratory, Madison, Wisconsin, to determine the comparative moisture resistance of linseed oil, impregnation treatments, condensation varnishes, oil varnishes, enamels, cellulose varnishes, rubber, electroplated and sprayed metal coatings, and metal-leaf coatings when applied to wood. All coatings except rubber and electroplated metal coatings, which were not developed sufficiently to make them practical, admitted moisture in varying degrees. The most effective and most practical coating was found to be that of aluminum leaf.

  19. Subabul: A wood species for electricity generation

    SciTech Connect

    Kumar, M.; Gupta, R.C.

    1996-10-01

    In view of energy and environmental considerations, efforts have been made in this article to suggest the use of biomass as a renewable and nonpolluting source of energy for power generation. This article presents the results of the proximate analyses and energy contents of various components of the Subabul tree and their impact on land requirements to generate necessary biomass for small-scale electricity generation units. The results have shown that for the Subabul-wood-based thermal power plant, approximately 400 ha of land are required to generate 2,000 kWh/d.

  20. Discriminating the indistinguishable sapwood from heartwood in discolored ancient wood by direct molecular mapping of specific extractives using time-of-flight secondary ion mass spectrometry.

    PubMed

    Saito, Kaori; Mitsutani, Takumi; Imai, Takanori; Matsushita, Yasuyuki; Fukushima, Kazuhiko

    2008-03-01

    A new method that can chemically discriminate the visually indistinguishable sapwood from heartwood in discolored woods is presented in this paper. Discriminating between sapwood and heartwood, which are normally recognized by color in cross sections of stems of tress, is important in dendrochronological dating, as well as in evaluating qualities of woods such as durability. In tree-ring chronology, the felling date, which affects the construction date of architectures, can be estimated only in woods that have a recognizable sapwood/heartwood boundary. However, the felling date cannot be estimated in discolored woods because it has indistinguishable sapwood. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis of specific chemical substances retained for approximately 1300 years after felling demonstrated the presence of sapwood in a discolored ancient architectural wood of Hinoki cypress (Chamaecyparis obtusa). Direct molecular mapping by TOF-SIMS clearly indicated that the specific substances, hinokinin, hinokiresinol, hinokione, and hinokiol, started to accumulate at the sapwood/heartwood boundary where only hinokinin was localized and retained predominantly in ray parenchyma cells. The result allowed the determination of the felling date of the discolored wood. TOF-SIMS has shown to be useful for investigating the distribution of minute amounts of chemical components in woods. PMID:18232669

  1. Gene Expression Analysis of Copper Tolerance and Wood Decay in the Brown Rot Fungus Fibroporia radiculosa

    PubMed Central

    Parker, Leslie A.; Perkins, Andy D.; Sonstegard, Tad S.; Schroeder, Steven G.; Nicholas, Darrel D.; Diehl, Susan V.

    2013-01-01

    High-throughput transcriptomics was used to identify Fibroporia radiculosa genes that were differentially regulated during colonization of wood treated with a copper-based preservative. The transcriptome was profiled at two time points while the fungus was growing on wood treated with micronized copper quat (MCQ). A total of 917 transcripts were differentially expressed. Fifty-eight of these genes were more highly expressed when the MCQ was protecting the wood from strength loss and had putative functions related to oxalate production/degradation, laccase activity, quinone biosynthesis, pectin degradation, ATP production, cytochrome P450 activity, signal transduction, and transcriptional regulation. Sixty-one genes were more highly expressed when the MCQ lost its effectiveness (>50% strength loss) and had functions related to oxalate degradation; cytochrome P450 activity; H2O2 production and degradation; degradation of cellulose, hemicellulose, and pectin; hexose transport; membrane glycerophospholipid metabolism; and cell wall chemistry. Ten of these differentially regulated genes were quantified by reverse transcriptase PCR for a more in-depth study (4 time points on wood with or without MCQ treatment). Our results showed that MCQ induced higher than normal levels of expression for four genes (putative annotations for isocitrate lyase, glyoxylate dehydrogenase, laccase, and oxalate decarboxylase 1), while four other genes (putative annotations for oxalate decarboxylase 2, aryl alcohol oxidase, glycoside hydrolase 5, and glycoside hydrolase 10) were repressed. The significance of these results is that we have identified several genes that appear to be coregulated, with putative functions related to copper tolerance and/or wood decay. PMID:23263965

  2. Gene expression analysis of copper tolerance and wood decay in the brown rot fungus Fibroporia radiculosa.

    PubMed

    Tang, Juliet D; Parker, Leslie A; Perkins, Andy D; Sonstegard, Tad S; Schroeder, Steven G; Nicholas, Darrel D; Diehl, Susan V

    2013-03-01

    High-throughput transcriptomics was used to identify Fibroporia radiculosa genes that were differentially regulated during colonization of wood treated with a copper-based preservative. The transcriptome was profiled at two time points while the fungus was growing on wood treated with micronized copper quat (MCQ). A total of 917 transcripts were differentially expressed. Fifty-eight of these genes were more highly expressed when the MCQ was protecting the wood from strength loss and had putative functions related to oxalate production/degradation, laccase activity, quinone biosynthesis, pectin degradation, ATP production, cytochrome P450 activity, signal transduction, and transcriptional regulation. Sixty-one genes were more highly expressed when the MCQ lost its effectiveness (>50% strength loss) and had functions related to oxalate degradation; cytochrome P450 activity; H(2)O(2) production and degradation; degradation of cellulose, hemicellulose, and pectin; hexose transport; membrane glycerophospholipid metabolism; and cell wall chemistry. Ten of these differentially regulated genes were quantified by reverse transcriptase PCR for a more in-depth study (4 time points on wood with or without MCQ treatment). Our results showed that MCQ induced higher than normal levels of expression for four genes (putative annotations for isocitrate lyase, glyoxylate dehydrogenase, laccase, and oxalate decarboxylase 1), while four other genes (putative annotations for oxalate decarboxylase 2, aryl alcohol oxidase, glycoside hydrolase 5, and glycoside hydrolase 10) were repressed. The significance of these results is that we have identified several genes that appear to be coregulated, with putative functions related to copper tolerance and/or wood decay. PMID:23263965

  3. Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance

    SciTech Connect

    Foston, Marcus B; Hubbell, Christopher A; Samuel, Reichel; Jung, Seung-Yong; Ding, Shi-You; Zeng, Yining; Jawdy, Sara; Sykes, Virginia R; Tuskan, Gerald A; Kalluri, Udaya C; Ragauskas, Arthur J

    2011-01-01

    Biomass is one of the most abundant potential sustainable sources for fuel and material production, however to fully realize this potential an improved understanding of lignocellulosic recalcitrance must be developed. In an effort to appreciate the underlying phenotypic, biochemical and morphological properties associated with the reduced recalcitrance observed in tension stress-induced reaction wood, we report the increased enzymatic sugar yield and corresponding chemical and ultrastructural properties of Populus tension wood. Populus tremula x alba (PTA) was grown under tension and stem segments containing three different wood types: normal wood (NW), tension wood (TW) from the elongated stem side and opposite wood (OW) from the compressed stem side were collected. A variety of analytical techniques were used to describe changes occurring as a result of the tension stress-induced formation of a gelatinous cell wall layer (G-layer). For example, gel permeation chromatography (GPC) and 13C solid-state nuclear magnetic resonance (NMR) revealed that the molecular weight and crystallinity of cellulose in TW is greater than that of cellulose acquired from NW. Whole cell ionic liquid and other solid-state NMR analysis detailed the structure of lignin and hemicellulose in the samples, detecting the presence of variations in lignin and hemicellulose sub-units, linkages and semi-quantitatively estimating the relative amounts of syringyl (S), guaiacyl (G) and p-hydroxybenzoate (PB) monolignol units. It was confirmed that TW displayed an increase in PB or H-like lignin and S to G ratio from 1.25 to 1.50 when compared to the NW sample. Scanning electron microscopy (SEM) and coherent anti-Stokes Raman scattering (CARS) were also used to evaluate the morphology and corresponding spatial distribution of the major lignocellulosic components. We found changes in a combination of cell wall properties appear to influence recalcitrance more than any single factor alone.

  4. [A historical review of the therapeutic use of wood creosote. Part II: Original plant source of crude drug wood creosote].

    PubMed

    Moriguchi, Nobuaki; Sato, Akane; Shibata, Takashi; Yoneda, Yukio

    2011-01-01

    Wood creosote is a medicine that has been listed in the Japanese Pharmacopoeia (JP) since the first edition published in 1886. Medicines containing wood creosote and other natural ingredients have been very popular in Japan and Southeast Asian countries. In Japan, one such medicine, named Seirogan, has been used for more than 100 years. In this paper, we report the results of our examination on the historical aspects of wood creosote. One finding was that creosote, called "kereosote" at that time, was imported to Japan for the first time to Nagasaki by Johann Erdewin Niemann, who was the Director of the Dutch Mercantile House, and prescribed by Johannes Lijdius Catharinus Pompe van Meerdervoort and Anthonius Franciscus Bauduin. From our findings, we concluded that wood creosote was one of the essential medicines for the successful introduction and progression of Western medicine in Japan. Furthermore, we found that Dutch physicians introduced wood creosote to Japanese physicians, including Taizen Sato, Dokai Hayashi, and Jun Matsumoto, and that wood creosote was subsequently popularized by Rintaro (Ogai) Mori during the Russo-Japanese war. In addition, we examined the original plant for wood creosote, and consequently confirmed that the 15th edition of the JP, Supplement Two, clarifying the original plant for wood creosote, matches the pharmaceutical and historical facts. We also provide drug information relating to distinguishing between wood creosote and the creosote bush. PMID:22164686

  5. Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon.

    PubMed

    Fagervold, Sonja K; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  6. Microbial Communities in Sunken Wood Are Structured by Wood-Boring Bivalves and Location in a Submarine Canyon

    PubMed Central

    Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  7. Automatic identification and characterization of radial files in light microscopy images of wood

    PubMed Central

    Brunel, Guilhem; Borianne, Philippe; Subsol, Gérard; Jaeger, Marc; Caraglio, Yves

    2014-01-01

    Background and Aims Analysis of anatomical sections of wood provides important information for understanding the secondary growth and development of plants. This study reports on a new method for the automatic detection and characterization of cell files in wood images obtained by light microscopy. To facilitate interpretation of the results, reliability coefficients have been determined, which characterize the files, their cells and their respective measurements. Methods Histological sections and blocks of the gymnosperms Pinus canariensis, P. nigra and Abies alba were used, together with histological sections of the angiosperm mahogany (Swietenia spp.). Samples were scanned microscopically and mosaic images were built up. After initial processing to reduce noise and enhance contrast, cells were identified using a ‘watershed’ algorithm and then cell files were built up by the successive aggregation of cells taken from progressively enlarged neighbouring regions. Cell characteristics such as thickness and size were calculated, and a method was developed to determine the reliability of the measurements relative to manual methods. Key Results Image analysis using this method can be performed in less than 20 s, which compares with a time of approx. 40 min to produce the same results manually. The results are accompanied by a reliability indicator that can highlight specific configurations of cells and also potentially erroneous data. Conclusions The method provides a fast, economical and reliable tool for the identification of cell files. The reliability indicator characterizing the files permits quick filtering of data for statistical analysis while also highlighting particular biological configurations present in the wood sections. PMID:24989783

  8. Host colonization and substrate utilization by wood-colonizing Ascomycete fungi in the grapevine trunk disease complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine trunk diseases cause chronic wood infections (cankers) in mixed infections within the same vine. To determine the synergistic interactions of trunk-pathogen communities and their impact on the host we are characterizing, on a pathogen-by-pathogen basis, fungal damage to woody cells and tis...

  9. Enzymatic hydrolysis of biomass from wood.

    PubMed

    Álvarez, Consolación; Reyes-Sosa, Francisco Manuel; Díez, Bruno

    2016-03-01

    Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta-xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta-mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2-20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood. PMID:26833542

  10. Radiative pyrolysis of single moist wood particles

    SciTech Connect

    Di Blasi, C.; Hernandez, E.G.; Santoro, A.

    2000-04-01

    Radiative pyrolysis of thermally thick beech wood has been investigated through a comparison between dry and moist [11% dry basis (db)] particles, for heat fluxes in the range 27.5--80 kW/m{sup 2}. The initial moisture content has also been varied from 0 to 50% (db) for two radiative fluxes, 27.5 and 49 kW/m{sup 2}, corresponding to slow and fast external heat-transfer rates, as steady surface temperatures are about 625 and 800 K, respectively. For very slow heating, moisture evaporation precedes wood pyrolysis. As the external heating conditions are made more severe and/or the initial moisture content is increased, the two processes take place simultaneously, associated with the propagation of separate fronts along the particle radius. Spatial gradients also increase, while apparent weight loss kinetics form a single-peak rate turn into a two-peak rate. The conversion times increase almost linearly with the initial moisture content, but differences in primary product (char, gas, and liquids) yields and gas composition are negligible.

  11. Modelling piloted ignition of wood and plastics

    SciTech Connect

    Blijderveen, Maarten van; Bramer, Eddy A.; Brem, Gerrit

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  12. BOWOOSS: bionic optimized wood shells with sustainability

    NASA Astrophysics Data System (ADS)

    Pohl, Göran

    2011-04-01

    In architecture, shell construction is used for the most efficient, large spatial structures. Until now the use of wood rather played a marginal role, implementing those examples of architecture, although this material offers manifold advantages, especially against the background of accelerating shortage of resources and increasing requirements concerning the energy balance. Regarding the implementation of shells, nature offers a wide range of suggestions. The focus of the examinations is on the shells of marine plankton, especially of diatoms, whose richness in species promises the discovery of entirely new construction principles. The project is targeting at transferring advantageous features of these organisms on industrial produced, modular wood shell structures. Currently a transfer of these structures in CAD - models is taking place, helping to perform stress analysis by computational methods. Micro as well as macro structures are the subject of diverse consideration, allowing to draw the necessary conclusions for an architectural design. The insights of these tests are the basis for the development of physical models on different scales, which are used to verify the different approaches. Another important aim which is promoted in the project is to enhance the competitiveness of timber construction. Downsizing of the prefabricated structural elements leads to considerable lower transportation costs as abnormal loads can be avoided as far as possible and means of transportation can be loaded with higher efficiency so that an important contribution to the sustainability in the field of architecture can also be made.

  13. Self-feeding wood burning heating unit

    SciTech Connect

    Lemon, W.T.

    1982-10-26

    A wood burning heating unit capable of being stoked for continuous or extended burning, and of achieving effective combustion of volatiles contained in the smoke is provided. The stove body, a generally cylindrical casing, is supported so that its axis is substantially horizontal. A baffle divides the casing into a fire box or combustion chamber and an exhaust chamber which functions as a heat exchanger. The exhaust chamber is vented to the outside atmosphere by an exhaust conduit or flue pipe. A pair of elongate, fuel feed conduits extend downwardly and inwardly into the fire box or combustion chamber, so that respective, generally upstanding columns of logs can be formed in the fuel feeding conduits with the lower ends of the wood log columns contacting each other to define and limit the area of combustion in the fire box. Manifold means is provided for drawing combustion air from outside the stove body, passing the air through a heat exchange area in the manifold adjacent to the combustion zone for preheating the combustion air, and then supplying the heated air into proximity of the contact between the two columns of logs.

  14. Microwave moisture measurement for wood drying

    SciTech Connect

    Moschler, William W; Hanson, Gregory R; Gee, Timothy Felix; Killough, Stephen M; Wilgen, John B

    2007-01-01

    The goal of this project was to develop a prototype moisture sensor system suitable for a hardwood dry kiln based on the microwave transmission measurements of the complex dielectric constant of the wood. In this project, prototypes of two designs of microwave-based moisture sensor probes (launchers) working in the frequency range from 4.5 GHz to 6 GHz were developed and tested. A prototype set of battery powered electronics that both provides the microwave excitation and records the amplitude and phase of the returned signal after passing through the wood was built and tested. The sensors and electronics built in this project allow a swept frequency microwave transmission measurement through a small area of a board. Using the prototype electronics and launchers, measurements of moisture content (MC) over a range of 6 percent to 70 percent MC for red oak and 6 percent to 100 percent for yellow-poplar with standard deviations of less than 1.5 percent MC have been obtained.

  15. Furnace for burning particulate wood waste material

    SciTech Connect

    Kolze, B.A.; Kolze, M.W.

    1983-03-22

    A furnace for burning dry or wet wood waste products such as hogged bark and the like is provided with a grating therein comprised of aligned rows of bricks resting on supporting cross beams, with at least some of the rows of bricks maintained a uniform distance from other rows of bricks by spacers disposed between such spaced-apart rows of bricks. The furnace is charged by turbulent air entering both above and below the grating, with a select portion of such air being pre-heated. A temperature gradient is established between an area immediately beneath the grating and the area above the grating in the range of 2200/sup 0/ F and can be controlled by selected initial placement of the bricks and spacers to achieve an optimum cross sectional area for flow of heated, turbulent air through the grating to produce a temperature for efficient heating, drying and burning of wood waste products in an essentially pollution-free manner.

  16. Stephen C. Woods: a precocious scientist.

    PubMed

    Smith, Gerard P

    2011-04-18

    To investigate the early scientific development of Steve Woods, I reviewed his research during the first decade after he received his doctoral degree in 1970. The main parts of his research program were conditioned insulin secretion and hypoglycemia, Pavlovian conditioning of insulin secretion before a scheduled access to food, and basal insulin as a negative-feedback signal from fat mass to the brain. These topics were pursued with experimental ingenuity; the resulting publications were interesting, clear, and rhetorically effective. Although the theoretical framework for his experiments with insulin was homeostatic, by the end of the decade he suggested that classic negative-feedback homeostasis needed to be revised to include learning acquired by lifestyle. Thus, Woods functioned as a mature scientist from the beginning of his research-he was very precocious. This precocity also characterized his teaching and mentoring as recalled by two of his students during that time, Joseph Vasselli and Paul Kulkosky. The most unusual and exemplary aspect of his precocity is that the outstanding performance of his first decade was maintained during the subsequent 30years. PMID:21232549

  17. Enrichment with Wood Blocks Does Not Affect Toxicity Assessment in an Exploratory Toxicology Model Using Sprague–Dawley Rats

    PubMed Central

    Ditewig, Amy C; Bratcher, Natalie A; Davila, Donna R; Dayton, Brian D; Ebert, Paige; Lesuisse, Philippe; Liguori, Michael J; Wetter, Jill M; Yang, Hyuna; Buck, Wayne R

    2014-01-01

    Environmental enrichment in rodents may improve animal well-being but can affect neurologic development, immune system function, and aging. We tested the hypothesis that wood block enrichment affects the interpretation of traditional and transcriptomic endpoints in an exploratory toxicology testing model using a well-characterized reference compound, cyclophosphamide. ANOVA was performed to distinguish effects of wood block enrichment separate from effects of 40 mg/kg cyclophosphamide treatment. Biologically relevant and statistically significant effects of wood block enrichment occurred only for body weight gain. ANOVA demonstrated the expected effects of cyclophosphamide on food consumption, spleen weight, and hematology. According to transcriptomic endpoints, cyclophosphamide induced fewer changes in gene expression in liver than in spleen. Splenic transcriptomic pathways affected by cyclophosphamide included: iron hemostasis; vascular tissue angiotensin system; hepatic stellate cell activation and fibrosis; complement activation; TGFβ-induced hypertrophy and fibrosis; monocytes, macrophages, and atherosclerosis; and platelet activation. Changes in these pathways due to cyclophosphamide treatment were consistent with bone marrow toxicity regardless of enrichment. In a second study, neither enrichment nor type of cage flooring altered body weight or food consumption over a 28-d period after the first week. In conclusion, wood block enrichment did not interfere with a typical exploratory toxicology study; the effects of ingested wood on drug level kinetics may require further consideration. PMID:24827566

  18. Wood products trade and foreign markets: european market profile issue, July 1994. Foreign agriculture circular

    SciTech Connect

    Not Available

    1994-07-01

    ;Contents: Trade Highlights; Top Five Markets for U.S. Wood Products; Status of USDA/CCC Export Credit Guarantees for Wood Products; Profiles for Wood Products; European Union; Austria; Belgium-Luxembourg; Denmark; Commodity/Country Trade Tables; Corrigendum; Wood Products Trade Account, 1st Quarter 1994; U.S. Exports, for 1989 - 1st Quarter 1994; Value of Wood Products, by Country; Value of Wood Products, by Commodity.

  19. New Insights on Wood Dimensional Stability Influenced by Secondary Metabolites: The Case of a Fast-Growing Tropical Species Bagassa guianensis Aubl.

    PubMed Central

    Bossu, Julie; Beauchêne, Jacques; Estevez, Yannick

    2016-01-01

    Challenging evaluation of tropical forest biodiversity requires the reporting of taxonomic diversity but also the systematic characterization of wood properties in order to discover new promising species for timber industry. Among wood properties, the dimensional stability is regarded as a major technological characteristic to validate whether a wood species is adapted to commercial uses. Cell structure and organization are known to influence the drying shrinkage making wood density and microfibrils angle markers of choice to predict wood dimensional stability. On the contrary the role of wood extractive content remains unclear. This work focuses on the fast-growing tropical species Bagassa guianensis and we report herein a correlation between heartwood drying shrinkage and extractive content. Chemical extractions and shrinkage experiments were performed on separate wood twin samples to better evaluate correctly how secondary metabolites influence the wood shrinkage behaviour. Extractive content were qualitatively and quantitatively analysed using HPLC and NMR spectroscopy. We found that B guianensis heartwood has a homogeneous low shrinkage along its radius that could not be explained only by its basic density. In fact the low drying shrinkage is correlated to the high extractive content and a corrected model to improve the prediction of wood dimensional stability is presented. Additionally NMR experiments conducted on sapwood and heartwood extracts demonstrate that secondary metabolites biosynthesis occurs in sapwood thus revealing B. guianensis as a Juglans-Type heartwood formation. This work demonstrates that B. guianensis, a fast-growing species associated with high durability and high dimensional stability, is a good candidate for lumber production and commercial purposes. PMID:27007687

  20. 76 FR 76435 - Multilayered Wood Flooring From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Register on June 9, 2011 (76 FR 33782). The hearing was held in Washington, DC, on October 12, 2011, and... COMMISSION Multilayered Wood Flooring From China Determinations On the basis of the record \\1\\ developed in... China of multilayered wood flooring, provided for in subheadings 4409.10, 4409.29, 4412.31,...

  1. 75 FR 79019 - Multilayered Wood Flooring From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... the notice in the Federal Register of October 27, 2010 (75 FR 66126). The conference was held in... COMMISSION Multilayered Wood Flooring From China Determinations On the basis of the record \\1\\ developed in... reason of imports from China of multilayered wood flooring, provided for in subheadings 4409.10,...

  2. REGULATORY PERSPECTIVE ON MANAGING RISKS AT WOOD TREATING SITES

    EPA Science Inventory

    Over 700 sites in the United States have been identified where wood preserving operations have been conducted. The most common types of wood preservatives found at these sites are creosote, pentachlorophenol (PCP), and copper chromated arsenate (CCA). When properly used and dis...

  3. How Deep-Sea Wood Falls Sustain Chemosynthetic Life

    PubMed Central

    Bienhold, Christina; Pop Ristova, Petra; Wenzhöfer, Frank; Dittmar, Thorsten; Boetius, Antje

    2013-01-01

    Large organic food falls to the deep sea – such as whale carcasses and wood logs – are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals. PMID:23301092

  4. A re-appraisal of wood-fired combustion.

    PubMed

    McIlveen-Wright, D R; Williams, B C; McMullan, J T

    2001-02-01

    Targets for a considerable increase in electricity generation from renewables have been set in order to reduce greenhouse gas emissions and fossil fuel dependence. Extensive planting of willow, poplar and alder as energy crops has been planned for power generation plants which use wood as the fuel. The current trend is to use gasification or pyrolysis technology, but alternatively a case may be made for wood combustion, if wood becomes readily available. A range of wood-fired circulating fluidised bed combustion (CFBC) plants, using from 10 to 10,000 dry tonne equivalent (DTE)/day, was examined using the ECLIPSE process simulation package. Various factors, such as wood moisture content, harvest yield, afforestation level (AL) and discounted cash flow rate (DCF) were investigated to test their influence on the efficiency and the economics of the systems. Steam cycle conditions and wood moisture content were found to have the biggest effects on the system efficiencies; DCF and AL had the largest influences on the economics. Plants which could handle more than 500 dry tonnes/day could be economically viable; those using more than 1000 dry tonnes wood/day could be competitive with large-scale, conventional coal-fired plants, if sufficient wood were available. PMID:11198168

  5. MODELING OF ALKANE EMISSIONS FROM A WOOD STAIN

    EPA Science Inventory

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a fu...

  6. LEACHING OF CCA-TREATED WOOD: IMPLICATIONS FOR WASTE DISPOSAL

    EPA Science Inventory

    Leaching of arsenic, chromium, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of US regulatory leaching procedures, including the toxicity character...

  7. How deep-sea wood falls sustain chemosynthetic life.

    PubMed

    Bienhold, Christina; Pop Ristova, Petra; Wenzhöfer, Frank; Dittmar, Thorsten; Boetius, Antje

    2013-01-01

    Large organic food falls to the deep sea--such as whale carcasses and wood logs--are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals. PMID:23301092

  8. 31. July 1974. WOOD SHOP, VIEW LOOKING NORTHEAST, SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. July 1974. WOOD SHOP, VIEW LOOKING NORTHEAST, SHOWING THE WOOD-TURNING LATHE, THE GRUBER-BUILT SPOKE-TENONING MACHINE, AND ASSOCIATED BELT DRIVES. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  9. 29. July 1974. WOOD SHOP, VIEW LOOKING SOUTHEAST AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. July 1974. WOOD SHOP, VIEW LOOKING SOUTHEAST AT THE BELT CHASE FOR THE TRANSMISSION OF POWER FROM THE MAIN LINE-SHAFT BELOW TO THE MACHINES ALONG THE EAST WALL OF THE WOOD SHOP. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  10. Job Grading Standard for Wood Worker, WG-4604.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    A job grading standard for Wood Worker WG-4604 is given for grading jobs under the Federal Wage System. The standard covers physical requirements, tools, job task, skills, and knowledge at three grade levels, and the limits placed on the requirements at each level. In general the wood worker makes and repairs such supply shipping, and storage…

  11. New acridone from the wood of Citrus reticulata Blanco.

    PubMed

    Phetkul, Uraiwan; Wanlaso, Nutthakran; Mahabusarakam, Wilawan; Phongpaichit, Souwalak; Carroll, Anthony R

    2013-10-01

    A new acridone, named citruscridone (1) together with five known compounds were isolated from the wood of Citrus reticulata Blanco. Their structures were established based on spectroscopic evidence. The antibacterial and antifungal activities of the wood extracts and pure compounds were evaluated. PMID:23697332

  12. FORMULATING ULTRA-LOW-VOC WOOD FURNITURE COATINGS

    EPA Science Inventory

    The article discusses the formulation of ultra-low volatile organic compound (VOC) wood furniture coatings. The annual U.S. market for wood coatings is about 240, 000 cu m (63 million gal). In this basis, between 57 and 91 million kg (125 and 200 million lb) of VOCs are emitted i...

  13. CONTROL OF WOOD STOVE EMISSIONS USING IMPROVED SECONDARY COMBUSTION

    EPA Science Inventory

    The report gives results of the operation of two wood stoves in the laboratory with simultaneous on-line chemical analysis of the gases entering the secondary combustion zone and those leaving the stove. (NOTE: Self-initiating secondary combustion in wood stoves is encouraged by ...

  14. 17. Detail view southwest showing brick parapet, wood entablature, brick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Detail view southwest showing brick parapet, wood entablature, brick pilasters with molded wood caps, splayed arch and arched window lintels of north elevation of west operator's house. - Yellow Mill Bridge, Spanning Yellow Mill Channel at Stratford Avenue, Bridgeport, Fairfield County, CT

  15. Interferometric moire analysis of wood and paper structures

    NASA Astrophysics Data System (ADS)

    Hyzer, James B.; Shih, Jim; Rowlands, Robert E.

    1991-12-01

    Moire interferometry was used here to determine fundamental engineering information of cellulosic (wood, paper) structures. Cyclic creep and fracture behavior of paperboard and the displacements (strains) in bolted connectors in wood were analyzed with up to 61,000 lpi moire interferometry.

  16. Emissions Characterization of Residential Wood-Fired Hydronic Heater Technologies

    EPA Science Inventory

    Residential wood-fired hydronic heaters (RWHHs) can negatively impact the local ambient air quality and thus are of major environmental concern in wood burning areas of the U. S. Few studies have been conducted which characterize the emissions from RWHHs. To address the lack of e...

  17. Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology

    ERIC Educational Resources Information Center

    Manyele, S. V.

    2007-01-01

    Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…

  18. APPROACHES FOR REMEDIATION OF UNCONTROLLED WOOD PRESERVING SITES

    EPA Science Inventory

    This document provides an overview of remediation of uncontrolled wood preserving sites. It is, in part, a distillation of discussions that took place at a Forum on Wood Preserving Waste that was held in San Francisco, California, in October 1988. Information from this workshop h...

  19. "What Does Bowdoin Teach"? A Dialogue between Wood and Klingenstein

    ERIC Educational Resources Information Center

    Wood, Peter; Klingenstein, Tom

    2013-01-01

    This article is an exchange of ideas between Peter Wood, President of the National Association of Scholars (NAS), and Tom Klingerstein, Chairman of the Claremont Institute and NAS Board Director, on the study "What Does Bowdoin Teach? How a Contemporary Liberal Arts College Shapes Students" (by Peter Wood and Michael Toscano). This…

  20. 36 CFR 7.6 - Muir Woods National Monument.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Muir Woods National Monument. 7.6 Section 7.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.6 Muir Woods National Monument. (a) Fires. Fires are prohibited within the monument....

  1. NOX EMISSION FACTORS FOR WOOD-FIRED BOILERS

    EPA Science Inventory

    The report gives results of a review of NOx emission data from 14 wood-fired boilers. Types of wood used as fuel included sawdust, chips, shavings, edgings, bark, and other processing residues. Boilers tested ranged in size from 1.5 to 67 MW (4,500 to 200,000 lb steam/hr). The ma...

  2. View of wood stave penstocks (four feet in diameter) with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of wood stave penstocks (four feet in diameter) with steel bands, wood and steel frames; standing on top of penstocks is Doug Hamilton (right), Nooksack Falls hydro-plant operator for puget power, and Ken Rose (left) HAER Historian. - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  3. 29 CFR 1910.25 - Portable wood ladders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Portable wood ladders. 1910.25 Section 1910.25 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Walking-Working Surfaces § 1910.25 Portable wood ladders. (a) Application of requirements. This section...

  4. 29 CFR 1910.25 - Portable wood ladders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Portable wood ladders. 1910.25 Section 1910.25 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Walking-Working Surfaces § 1910.25 Portable wood ladders. (a) Application of requirements. This section...

  5. 29 CFR 1910.25 - Portable wood ladders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Portable wood ladders. 1910.25 Section 1910.25 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Walking-Working Surfaces § 1910.25 Portable wood ladders. (a) Application of requirements. This section...

  6. 29 CFR 1910.25 - Portable wood ladders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Portable wood ladders. 1910.25 Section 1910.25 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Walking-Working Surfaces § 1910.25 Portable wood ladders. (a) Application of requirements. This section...

  7. 30. July 1974. WOOD SHOP, VIEW LOOKING EAST, SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. July 1974. WOOD SHOP, VIEW LOOKING EAST, SHOWING THE WOOD-TURNING LATHE AND THE SPOKE CUT-OFF SAW MOUNTED ON ITS WAYS. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  8. USEPA SHEDS MODEL: METHODOLOGY FOR EXPOSURE ASSESSMENT FOR WOOD PRESERVATIVES

    EPA Science Inventory

    A physically-based, Monte Carlo probabilistic model (SHEDS-Wood: Stochastic Human Exposure and Dose Simulation model for wood preservatives) has been applied to assess the exposure and dose of children to arsenic (As) and chromium (Cr) from contact with chromated copper arsenat...

  9. BIOREMEDIATION FIELD INITIATIVE SITE PROFILE: ESCAMBIA WOOD PRESERVING SITE - BROOKHAVEN

    EPA Science Inventory

    The Escambia Wood Preserving Site—Brookhaven in Brookhaven, Mississippi, is a former wood preserving facility that used pentachlo- rophenol (PCP) and creosote to treat wooden poles. The site contains two pressure treatment cylinders, a wastewater treatment system, five bulk pr...

  10. CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS

    EPA Science Inventory


    The report gives results of a study in which wood furniture manufacturing facilities were identified that had converted at least one of their primary coating steps to low-volatile organic compound (VOC)/hazardous Air pollutant (HAP) wood furniture coatings: high-solids, water...

  11. Predictive algorithm for heating broiler houses with cord wood

    SciTech Connect

    Thompson, S.A.; McLendon, B.D.; Stuckey, T.A.

    1983-06-01

    A 137 MJ/hr wood burner and a 3600 L underground energy storage tank were tested to determine experimentally a means for predicting the performance of the burner tank. Using results of the tests, a program was developed which could predict the amount of wood needed in heating a broiler house, thus reducing management time.

  12. 36 CFR 7.6 - Muir Woods National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Muir Woods National Monument. 7.6 Section 7.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.6 Muir Woods National Monument. (a) Fires. Fires are prohibited within the monument....

  13. RESEARCH AND PRODUCT DEVELOPMENT OF LOW-VOC WOOD COATINGS

    EPA Science Inventory

    The report discusses a project, cofunded by the South Coast Air Quality Management District (SCAQMD) and the U.S. EPA, to develop a new, low volatile organic compound (VOC) wood coating. Traditional wood furniture coating technologies contain organic solvents which become air pol...

  14. MODELING OF ALKANE EMISSIONS FROM A WOOD STAIN

    EPA Science Inventory

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). he test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a fun...

  15. The Earliest Evidence of Holometabolan Insect Pupation in Conifer Wood

    PubMed Central

    Tapanila, Leif; Roberts, Eric M.

    2012-01-01

    Background The pre-Jurassic record of terrestrial wood borings is poorly resolved, despite body fossil evidence of insect diversification among xylophilic clades starting in the late Paleozoic. Detailed analysis of borings in petrified wood provides direct evidence of wood utilization by invertebrate animals, which typically comprises feeding behaviors. Methodology/Principal Findings We describe a U-shaped boring in petrified wood from the Late Triassic Chinle Formation of southern Utah that demonstrates a strong linkage between insect ontogeny and conifer wood resources. Xylokrypta durossi new ichnogenus and ichnospecies is a large excavation in wood that is backfilled with partially digested xylem, creating a secluded chamber. The tracemaker exited the chamber by way of a small vertical shaft. This sequence of behaviors is most consistent with the entrance of a larva followed by pupal quiescence and adult emergence — hallmarks of holometabolous insect ontogeny. Among the known body fossil record of Triassic insects, cupedid beetles (Coleoptera: Archostemata) are deemed the most plausible tracemakers of Xylokrypta, based on their body size and modern xylobiotic lifestyle. Conclusions/Significance This oldest record of pupation in fossil wood provides an alternative interpretation to borings once regarded as evidence for Triassic bees. Instead Xylokrypta suggests that early archostematan beetles were leaders in exploiting wood substrates well before modern clades of xylophages arose in the late Mesozoic. PMID:22355387

  16. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's...

  17. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's...

  18. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's...

  19. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's...

  20. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wood's fluorescent lamp. 866.2600 Section 866.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's...

  1. Ultrasonic Imaging of Reaction Wood in Standing Trees

    NASA Astrophysics Data System (ADS)

    Brancheriau, Loic; Saadat-Nia, Mohammad Ali; Gallet, Philippe; Lasaygues, Philippe; Pourtahmasi, Kambiz; Kaftandjian, Valerie

    Wood is an orthotropic material and its properties depend on its age but also depend on environmental growing conditions. An important feature of property alteration is reaction wood formation. Reaction wood forms when part of a tree is subjected to mechanical stress, and helps to bring parts of the plant into an optimal position. This article aims to study the effect of reaction wood on ultrasonic wave propagation using tomographic imaging. The ultrasonic emission was a pulse train of square wave. The peak frequency was 80 kHz. Two logs of poplar and spruce were tested because of the presence of different types of reaction wood (tension wood for poplar and compression wood for spruce). Maps were computed according to the Radon theory and using a filtered back projection algorithm with fan beam geometry. The intrinsic parameters were the slowness (s/m) and attenuation (dB/m at 80 kHz). In addition to ultrasonic tests, X-ray imaging in transmission was used. The ultrasonic maps were analyzed to highlight the differences between normal wood and observed reaction zones. The X-ray images were also compared to ultrasonic maps and the relationships between X-ray attenuation and ultrasonic parameters were discussed.

  2. FATE AND IMPACT OF WOOD PRESERVATIVES IN A TERRESTRIAL MICROCOSM

    EPA Science Inventory

    The transport and effects of 14C-labeled wood preservatives (creosote with labeled phenanthrene or acenaphthene, pentachlorophenol, and bis(tri-n-butyltin)oxide) impregnated in wood posts were examined in a terrestrial microcosm chamber (TMC-II) in comparison to a reference compo...

  3. Contribution of wood burning to PM10 in London

    NASA Astrophysics Data System (ADS)

    Fuller, Gary W.; Tremper, Anja H.; Baker, Timothy D.; Yttri, Karl Espen; Butterfield, David

    2014-04-01

    Ahead of measures to incentivise wood heating, the current level of wood burning in London was assessed by two tracer methods; i) a six week campaign of daily measurements of levoglucosan along a 38 km transect across the city during winter 2010, ii) a three year (2009-2011) measurement programme of black carbon and particulate matter from wood burning using differential IR and UV absorption by Aethalometer. Mean winter levoglucosan concentrations were 160 ± 17 ng m-3 in central London and 30 ± 26 ng m-3 greater in the suburbs, with good temporal correlation (r2 = 0.68-0.98) between sampling sites. Sensitivity testing found that the aethalometer wood burning tracer method was more sensitive to the assumed value of the Ångström coefficient for fossil fuel black carbon than it was to the Ångström coefficient for wood burning PM, and that the model was optimised with Ångström coefficient for fossil fuel black carbon of 0.96. The aethalometer and levoglucosan estimates of mean PM from wood burning were in good agreement during the winter campaign; 1.8 μg m-3 (levoglucosan) and 2.0 μg m-3 (aethalometer); i.e. between 7% and 9% of mean PM10 across the London transect. Analysis of wood burning tracers with respect to wind speed suggested that wood burning PM was dominated by sources within the city. Concentrations of aethalometer and levoglucosan wood burning tracers were a greatest at weekends suggesting discretionary or secondary domestic wood burning rather than wood being used as a main heating source. Aethalometer wood burning tracers suggests that the annual mean concentration of PM10 from wood burning was 1.1 μg m-3. To put this in a policy context, this PM10 from wood burning is considerably greater than the city-wide mean PM10 reduction of 0.17 μg m-3 predicted from the first two phases of the London Low Emission Zone which was introduced to reduce PM from traffic sources.

  4. The Influence of Wood Grain on the Bullet's Ricochet Behavior.

    PubMed

    Mattijssen, Erwin J A T; Alberink, Ivo; Brouwer, Suzanne D; Kerkhoff, Wim

    2016-05-01

    When a bullet ricochets from wood, various parameters will influence its behavior. In this study, the influence of the wood grain on the ricochet angle (β) and deflection angle (γ) is assessed. Series of five .32 Auto bullets were fired at different angles of incidence (α) on boards of six wood types. The results confirm the previously shown effect that the mean β-angles usually exceed α and increase when α increases. Overall, the maximum mean γ occurs when the angle of wood grain (ζ), in relation to the plane of impact, lies between 30° and 75° but differs per combination of wood and α. The results show the inclination of γ toward the left or right, depending on the bullets left or right rotation while also showing that the direction of ζ can enhance or counteract this effect considerably, especially when α is close to the critical ricochet angle. PMID:27122417

  5. Steam gasification of wood in the presence of catalysts

    NASA Astrophysics Data System (ADS)

    Mudge, L. K.; Mitchell, D. H.; Baker, E. G.; Robertus, R. J.; Brown, M. D.

    1982-09-01

    Catalytic steam gasification of wood, including sawdust, chipped forest slash, and mill shavings, is investigated. Results of laboratory, process development unit (PDR), and feasibility studies illustrate attractive processes for conversion of wood to methanol and a substitute natural gas (SNG). Recent laboratory studies developed a long-lived alloy catalyst for generation of a methanol synthesis gas by steam gasification of wood. Modification of the PDU for operation at 10 atm (150 psia) is complete and initial tests are completed. The modified PDU will be operated at elevated pressures to confirm yields and design parameters used in process feasibility studies. A computer program for evaluating the effect of yield changes on process economics was completed. The base case was the study on economics of methanol-from-wood using catalytic gasification. It was found that methanol-from-wood by catalytic gasification was competitive with the process for methanol production from natural gas.

  6. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    SciTech Connect

    Kocbach, Anette Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-10-15

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 {mu}g/cm{sup 2} of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-{alpha}, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-{alpha}, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-{alpha} and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent.

  7. Characterization of a novel wood mouse virus related to murid herpesvirus 4.

    PubMed

    Hughes, David J; Kipar, Anja; Milligan, Steven G; Cunningham, Charles; Sanders, Mandy; Quail, Michael A; Rajandream, Marie-Adele; Efstathiou, Stacey; Bowden, Rory J; Chastel, Claude; Bennett, Malcolm; Sample, Jeffery T; Barrell, Bart; Davison, Andrew J; Stewart, James P

    2010-04-01

    Two novel gammaherpesviruses were isolated, one from a field vole (Microtus agrestis) and the other from wood mice (Apodemus sylvaticus). The genome of the latter, designated wood mouse herpesvirus (WMHV), was completely sequenced. WMHV had the same genome structure and predicted gene content as murid herpesvirus 4 (MuHV4; murine gammaherpesvirus 68). Overall nucleotide sequence identity between WMHV and MuHV4 was 85 % and most of the 10 kb region at the left end of the unique region was particularly highly conserved, especially the viral tRNA-like sequences and the coding regions of genes M1 and M4. The partial sequence (71 913 bp) of another gammaherpesvirus, Brest herpesvirus (BRHV), which was isolated ostensibly from a white-toothed shrew (Crocidura russula), was also determined. The BRHV sequence was 99.2 % identical to the corresponding portion of the WMHV genome. Thus, WMHV and BRHV appeared to be strains of a new virus species. Biological characterization of WMHV indicated that it grew with similar kinetics to MuHV4 in cell culture. The pathogenesis of WMHV in wood mice was also extremely similar to that of MuHV4, except for the absence of inducible bronchus-associated lymphoid tissue at day 14 post-infection and a higher load of latently infected cells at 21 days post-infection. PMID:19940063

  8. Characterization of a novel wood mouse virus related to murid herpesvirus 4

    PubMed Central

    Hughes, David J.; Kipar, Anja; Milligan, Steven G.; Cunningham, Charles; Sanders, Mandy; Quail, Michael A.; Rajandream, Marie-Adele; Efstathiou, Stacey; Bowden, Rory J.; Chastel, Claude; Bennett, Malcolm; Sample, Jeffery T.; Barrell, Bart; Davison, Andrew J.; Stewart, James P.

    2010-01-01

    Two novel gammaherpesviruses were isolated, one from a field vole (Microtus agrestis) and the other from wood mice (Apodemus sylvaticus). The genome of the latter, designated wood mouse herpesvirus (WMHV), was completely sequenced. WMHV had the same genome structure and predicted gene content as murid herpesvirus 4 (MuHV4; murine gammaherpesvirus 68). Overall nucleotide sequence identity between WMHV and MuHV4 was 85 % and most of the 10 kb region at the left end of the unique region was particularly highly conserved, especially the viral tRNA-like sequences and the coding regions of genes M1 and M4. The partial sequence (71 913 bp) of another gammaherpesvirus, Brest herpesvirus (BRHV), which was isolated ostensibly from a white-toothed shrew (Crocidura russula), was also determined. The BRHV sequence was 99.2 % identical to the corresponding portion of the WMHV genome. Thus, WMHV and BRHV appeared to be strains of a new virus species. Biological characterization of WMHV indicated that it grew with similar kinetics to MuHV4 in cell culture. The pathogenesis of WMHV in wood mice was also extremely similar to that of MuHV4, except for the absence of inducible bronchus-associated lymphoid tissue at day 14 post-infection and a higher load of latently infected cells at 21 days post-infection. PMID:19940063

  9. Production and characterization of carbon structures derived from wood

    NASA Astrophysics Data System (ADS)

    Xie, Xinfeng

    The objective of this research was to produce structural carbon materials from wood, a renewable biomaterial, for advanced material application. A broad range of materials were produced for study including carbonized wood, resin infused carbon composites made from carbonized wood, and carbon nanotubes from wood fibers. The effect of slow heating on the properties of carbonized wood was studied and important carbonized wood properties were found to be produced over a range of heating rates and peak temperatures. Slow heating rates promoted the formation and growth of graphene sheets in turbostratic crystallites, which had a significant influence on the electrical resistivity and Young's modulus of the carbonized wood. A reduction in the rate of heating may be beneficial with respect to carbon properties and the prevention of crack production during the manufacture of large monolithic carbon specimens from wood and wood-based materials. Investigation of selected physical and mechanical properties of resin-infused porous carbon composites made from medium density fiberboard demonstrated that the infused material can be used in specific applications, where high mechanical strength is not required but high dimensional stability at elevated-use temperatures, fire safety, or static dissipation and shielding is required. A unique cyclic heating process has been developed to produce carbon nanotubes directly from wood fibers. Study on the oxidative behavior of carbons derived from cellulose and lignin showed that cellulose carbon ablates faster at a lower temperature in air than lignin carbon when they were prepared at temperatures lower than 500°C due to cellulose carbon's lower content of aromatic structures. It is hypothesized that the formation of carbon nanotubes during the cyclic heating process occurred via template synthesis, with the nanochannels formed from the ablation of cellulose fibrils functioning as a template. Evidence of formation of nanochannels has been

  10. Synchrotron X-ray micro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes.

    PubMed

    Sedighi Gilani, Marjan; Boone, Matthieu N; Mader, Kevin; Schwarze, Francis Willis Mathew Robert

    2014-08-01

    Incubation of Norway spruce with Physisporinus vitreus and sycamore with Xylaria longipes results in reduction in density of these wood species that are traditionally used for the top and bottom plate of a violin, which follows by enhanced acoustic properties. We used Synchrotron X-ray micro-tomography, to study the three-dimensional structure of wood at the micro-scale level and the alterations of the density distribution after incubation with two white-rot fungi. Micro-tomography data from wood treated at different incubation periods are analyzed and compared with untreated (control) specimens to determine the wood density map and changes at the cell-wall level. Differences between the density of early- and latewood, xylem ray and around bordered pits in both Norway spruce and sycamore are studied. Three-dimensional hyphal networks of the P.vitreus and Xylaria longipes hyphae are visualized inside the cell lumina and their significance on the density of the early- and latewood cells after different incubation periods are discussed. The study illustrates the utility of X-ray micro-tomography for both qualitative and quantitative studies of a wide variety of biological systems and due to its high sensitivity, small structural changes can be quantified. PMID:24964385

  11. Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Pardo, A.; Ramírez-Rico, J.; Cabezas-Rodríguez, R.; Martínez-Fernández, J.

    2015-03-01

    Porous graphitic carbons were successfully obtained from wood precursors through pyrolysis using a transition metal as catalyst. Once the catalyst is removed, the resulting material mimics the microstructure of the wood and presents high surface area, open and interconnected porosity and large pore volume, high crystallinity and good electrical conductivity, making these carbons interesting for electrochemical devices. Carbons obtained were studied as electrodes for supercapacitors in half cell experiments, obtaining high capacitance values in a basic media (up to 133 F g-1 at current densities of 20 mA g-1 and 35 F g-1 at current densities of 1 A g-1). Long-cycling experiments showed excellent stability of the electrodes with no reduction of the initial capacitance values after 1000 cycles in voltammetry.

  12. Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes.

    PubMed

    Kersten, Phil; Cullen, Dan

    2014-11-01

    Extracellular peroxide generation, a key component of oxidative lignocellulose degradation, has been attributed to various enzymes including the copper radical oxidases. Encoded by a family of structurally related sequences, the genes are widely distributed among wood decay fungi including three recently completed polypore genomes. In all cases, core catalytic residues are conserved, but five subfamilies are recognized. Glyoxal oxidase, the most intensively studied representative, has been shown physiologically connected to lignin peroxidase. Relatively little is known about structure-function relationships among more recently discovered copper radical oxidases. Nevertheless, differences in substrate preferences have been observed in one case and the proteins have been detected in filtrates of various wood-grown cultures. Such diversity may reflect adaptations to host cell wall composition and changing environmental conditions. PMID:24915038

  13. Bio-based Wrinkled Surfaces Harnessed from Biological Design Principles of Wood and Peroxidase Activity.

    PubMed

    Izawa, Hironori; Okuda, Noriko; Ifuku, Shinsuke; Morimoto, Minoru; Saimoto, Hiroyuki; Rojas, Orlando J

    2015-11-01

    A new and simple approach for surface wrinkling inspired by polymer assemblies in wood fibers is introduced. A hard skin is synthesized on a linear polysaccharide support that resembles the structural units of the cell wall. This skin, a wood mimetic layer, is produced through immersion in a solution containing phenolic precursor and subsequent surface reaction by horseradish peroxidase. A patterned surface with micron-scale wrinkles is formed upon drying and as a result of inhomogeneous shrinkage. We demonstrate that the design of the wrinkled surfaces can be controlled by the molecular structure of the phenolic precursor, temperature, and drying stress. It is noteworthy that this is a totally bio-based system involving green materials and processes. PMID:26489384

  14. Structure-function characterization of the crinkle-leaf peach wood phenotype: a future model system for wood properties research?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in wood features of two genotypes of Prunus persica L. trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Trees from three vigor classes (low, average, and high) of each genotype were sampled. No meaningful tendency of dissimilarit...

  15. Online sorting of recovered wood waste by automated XRF-technology. Part I: detection of preservative-treated wood waste.

    PubMed

    Rasem Hasan, A; Schindler, John; Solo-Gabriele, Helena M; Townsend, Timothy G

    2011-04-01

    Waste wood is frequently contaminated with wood treatment preservatives including chromated copper arsenate (CCA) and alkaline copper quat (ACQ), both of which contain metals which contaminate recycled wood products. The objective of this research was to propose a design for online automated identification of As-based and Cu-based treated wood within the recovered wood waste stream utilizing an X-ray fluorescence (XRF) system, and to evaluate the detection parameters of such system. A full-scale detection unit was used for experimentation. Two main parameters (operational threshold (OT) and measurement time) were evaluated to optimize detection efficiencies. OTs of targeted metals, As and Cu, in wood were reduced to 0.02 and 0.05, respectively. The optimum minimum measurement time of 500 ms resulted in 98%, 91%, and 97% diversion of the As, Cu and Cr mass originally contained in wood, respectively. Comparisons with other detection methods show that XRF technology can potentially fulfill the need for cost-effective processing at large facilities (>30 tons per day) which require the removal of As-based preservatives from their wood waste stream. PMID:21186117

  16. Assessment and Management of Dead-Wood Habitat

    USGS Publications Warehouse

    Hagar, Joan

    2007-01-01

    Introduction The Bureau of Land Management (BLM) is in the process of revising its resource management plans for six districts in western and southern Oregon as the result of the settlement of a lawsuit brought by the American Forest Resource Council. A range of management alternatives is being considered and evaluated including at least one that will minimize reserves on O&C lands. In order to develop the bases for evaluating management alternatives, the agency needs to derive a reasonable range of objectives for key issues and resources. Dead-wood habitat for wildlife has been identified as a key resource for which decision-making tools and techniques need to be refined and clarified. Under the Northwest Forest Plan, reserves were to play an important role in providing habitat for species associated with dead wood (U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, 1994). Thus, the BLM needs to: 1) address the question of how dead wood will be provided if reserves are not included as a management strategy in the revised Resource Management Plan, and 2) be able to evaluate the effects of alternative land management approaches. Dead wood has become an increasingly important conservation issue in managed forests, as awareness of its function in providing wildlife habitat and in basic ecological processes has dramatically increased over the last several decades (Laudenslayer et al., 2002). A major concern of forest managers is providing dead wood habitat for terrestrial wildlife. Wildlife in Pacific Northwest forests have evolved with disturbances that create large amounts of dead wood; so, it is not surprising that many species are closely associated with standing (snags) or down, dead wood. In general, the occurrence or abundance of one-quarter to one-third of forest-dwelling vertebrate wildlife species, is strongly associated with availability of suitable dead-wood habitat (Bunnell et al., 1999; Rose et al

  17. Multipass comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    DOEpatents

    Dooley, James H; Lanning, David N

    2014-05-27

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel.

  18. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    SciTech Connect

    Sujit Banerjee; Terrance Conners

    2007-09-07

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal

  19. Dangerous (toxic) atmospheres in UK wood pellet and wood chip fuel storage.

    PubMed

    Simpson, Andrew T; Hemingway, Michael A; Seymour, Cliff

    2016-09-01

    There is growing use of wood pellet and wood chip boilers in the UK. Elsewhere fatalities have been reported, caused by carbon monoxide poisoning following entry into wood pellet storage areas. The aim of this work was to obtain information on how safely these two fuels are being stored in the UK. Site visits were made to six small-scale boiler systems and one large-scale pellet warehouse, to assess storage practice, risk management systems and controls, user knowledge, and potential for exposure to dangerous atmospheres. Real time measurements were made of gases in the store rooms and during laboratory tests on pellets and chips. Volatile organic compounds (VOCs) emitted and the microbiological content of the fuel was also determined. Knowledge of the hazards associated with these fuels, including confined space entry, was found to be limited at the smaller sites, but greater at the large pellet warehouse. There has been limited risk communication between companies supplying and maintaining boilers, those manufacturing and supplying fuel, and users. Risk is controlled by restricting access to the store rooms with locked entries; some store rooms have warning signs and carbon monoxide alarms. Nevertheless, some store rooms are accessed for inspection and maintenance. Laboratory tests showed that potentially dangerous atmospheres of carbon monoxide and carbon dioxide, with depleted levels of oxygen may be generated by these fuels, but this was not observed at the sites visited. Unplanned ventilation within store rooms was thought to be reducing the build-up of dangerous atmospheres. Microbiological contamination was confined to wood chips. PMID:27030057

  20. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets

    NASA Astrophysics Data System (ADS)

    Johansson, Linda S.; Leckner, Bo; Gustavsson, Lennart; Cooper, David; Tullin, Claes; Potter, Annika

    Emissions from commercial residential boilers fired with wood logs and wood pellets, have been compared. Seven boilers, selected with respect to age, design, connection to heat storage tank, and type of biofuel, were included in the study, which also covers two oil-fired boilers in comparison. The measurements of gaseous emissions comprised carbon monoxide (CO), carbon dioxide (CO 2), oxygen (O 2), total organic carbons (TOC), nitrogen oxides (NO x), polycyclic aromatic hydrocarbons (PAH), and 33 volatile organic compounds (VOC). Particle emissions were characterised by mass concentration, number concentration, and the corresponding particle size distributions. In general, old-type wood boilers caused considerably higher emissions than modern wood and pellet boilers. The mass concentration of particles was 180 times larger in the worst old-type case (a water-cooled wood boiler without heat storage tank) compared to the best modern case (wood pellets). The TOC emission was shown to be correlated to the CO emission, both ranging between very low values and up to 10 000 mg/MJ, depending on design and operation. The highest emissions of unoxidised compounds occurred at the highest excess air ratio, and oxygen was not the limiting parameter for poor combustion. Instead, high excess air can be suspected to cool the combustion chamber, resulting in high CO emissions. VOC was dominated by methane. Especially from an old-type boiler the methane emissions could be high and the effect on climate change then may become larger than that of an oil boiler. However, substitution of an old-type wood boiler with a modern wood boiler attached to a storage tank or with a pellet boiler, would reduce methane emissions by 8 to 9000 times and the efficiency would increase. Most emissions could be considerably lowered by connecting the old-type wood boiler to a heat storage tank, or by charging small (in relation to the combustion chamber) batches of wood.

  1. Be aware of wood in the knee

    PubMed Central

    O’Connell, Rachel Louise; Fageir, Mazin M; Addison, Anthony

    2011-01-01

    The authors report a case of a 7-year-old boy who sustained a penetrating injury of a splinter of wood to the knee. Arthroscopic examination, removal of visualised foreign material and washout did not alleviate the symptoms of pain and swelling in its entirety. Microbiology cultures also failed to determine the cause of the on-going symptoms. Five days later, the patient underwent a mini arthrotomy through a lateral incision, which demonstrated synovitis, and removal of the remaining embedded foreign body from the lateral condyle. Although the authors advocate arthroscopy as the surgeon’s first choice for removal of a foreign body from the knee, a mini-arthrotomy should also be considered to facilitate superior visualisation and easier instrumentation to remove embedded foreign bodies. PMID:22669952

  2. Extracting DNA from submerged pine wood.

    PubMed

    Reynolds, M Megan; Williams, Claire G

    2004-10-01

    A DNA extraction protocol for submerged pine logs was developed with the following properties: (i) high molecular weight DNA, (ii) PCR amplification of chloroplast and nuclear sequences, and (iii) high sequence homology to voucher pine specimens. The DNA extraction protocol was modified from a cetyltrimehtylammonium bromide (CTAB) protocol by adding stringent electrophoretic purification, proteinase K, RNAse, polyvinyl pyrrolidone (PVP), and Gene Releaser. Chloroplast rbcL (ribulose-1,5-bisphosphate carboxylase) could be amplified. Nuclear ribosomal sequences had >95% homology to Pinus taeda and Pinus palustris. Microsatellite polymorphism for PtTX2082 matched 2 of 14 known P. taeda alleles. Our results show DNA analysis for submerged conifer wood is feasible. PMID:15499414

  3. A Review of Polyphenolics in Oak Woods

    PubMed Central

    Zhang, Bo; Cai, Jian; Duan, Chang-Qing; Reeves, Malcolm J.; He, Fei

    2015-01-01

    Polyphenolics, which are ubiquitous in plants, currently are among the most studied phytochemicals because of their perceptible chemical properties and antioxidant activity. Oak barrels and their alternatives, which are widely used in winemaking nowadays, contribute polyphenolics to wines and are thought to play crucial roles in the development of wines during aging. This study summarizes the detailed information of polyphenolics in oak woods and their products by examining their structures and discussing their chemical reactions during wine aging. This paper evaluates the most recent developments in polyphenolic chemistry by summarizing their extraction, separation, and their identification by the use of chromatographic and spectral techniques. In addition, this paper also introduces polyphenol bioactive ingredients in other plant foods. PMID:25826529

  4. Remarks on the Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Çapak, M.; Gönül, B.

    2016-06-01

    More recently, comprehensive applications of approximate analytical solutions of the Woods-Saxon (WS) potential in closed form for the five-dimensional Bohr Hamiltonian have appeared [M. Çapak, D. Petrellis, B. Gönül and D. Bonatsos, J. Phys. G 42, 95102 (2015)] and its comparison to the data for many different nuclei has clearly revealed the domains for the success and failure in case of using such potential forms to analyze the data related to the nuclear structure within the frame of the collective model. Gaining confidence from this work, the exact solvability of the WS type potentials in lower dimensions for the bound states having zero angular momentum is carefully reviewed to finalize an ongoing discussion in the related literature which clearly shows that such kind of potentials have no analytical solutions even for ℓ = 0 case.

  5. Dynamics of Wood Chip Storage: Task I

    SciTech Connect

    Sworden, P. G.

    1982-08-01

    The purpose of this report is to document Dow Corning's decision making process in establishing a fuelwood supply and procurement system with emphasis on how this relates to private forest landowners. The report will provide background on the decision to investigate wood energy systems and key management questions in that decision process. Information used to answer the key management questions will be high-lighted and its usefulness documented, including resource assessment and requirements. The report will discuss the development and implementation of the landowner assistance program and supplier-producer program. At the end of the report, Dow Corning's experiences will be summarized and some conclusions drawn concerning the success of the program.

  6. Xyloglucan endo-Transglycosylase-Mediated Xyloglucan Rearrangements in Developing Wood of Hybrid Aspen1[W][OA

    PubMed Central

    Nishikubo, Nobuyuki; Takahashi, Junko; Roos, Alexandra A.; Derba-Maceluch, Marta; Piens, Kathleen; Brumer, Harry; Teeri, Tuula T.; Stålbrand, Henrik; Mellerowicz, Ewa J.

    2011-01-01

    Xyloglucan endo-transglycosylases (XETs) encoded by xyloglucan endo-transglycosylases/hydrolase (XTH) genes modify the xyloglucan-cellulose framework of plant cell walls, thereby regulating their expansion and strength. To evaluate the importance of XET in wood development, we studied xyloglucan dynamics and XTH gene expression in developing wood and modified XET activity in hybrid aspen (Populus tremula × tremuloides) by overexpressing PtxtXET16-34. We show that developmental modifications during xylem differentiation include changes from loosely to tightly bound forms of xyloglucan and increases in the abundance of fucosylated xyloglucan epitope recognized by the CCRC-M1 antibody. We found that at least 16 Populus XTH genes, all likely encoding XETs, are expressed in developing wood. Five genes were highly and ubiquitously expressed, whereas PtxtXET16-34 was expressed more weakly but specifically in developing wood. Transgenic up-regulation of XET activity induced changes in cell wall xyloglucan, but its effects were dependent on developmental stage. For instance, XET overexpression increased abundance of the CCRC-M1 epitope in cambial cells and xylem cells in early stages of differentiation but not in mature xylem. Correspondingly, an increase in tightly bound xyloglucan content was observed in primary-walled xylem but a decrease was seen in secondary-walled xylem. Thus, in young xylem cells, XET activity limits xyloglucan incorporation into the tightly bound wall network but removes it from cell walls in older cells. XET overexpression promoted vessel element growth but not fiber expansion. We suggest that the amount of nascent xyloglucan relative to XET is an important determinant of whether XET strengthens or loosens the cell wall. PMID:21057113

  7. Wastewater generated during cleaning/washing procedures in a wood-floor industry: toxicity on the microalgae Desmodesmus subspicatus.

    PubMed

    Laohaprapanon, S; Kaczala, F; Salomon, P S; Marques, M; Hogland, W

    2012-01-01

    In industries based on dry processes, such as wood floor and wood furniture manufacture, wastewater is mainly generated after cleaning of surfaces, storage tanks and machinery. Owing to the small volumes, onsite treatment options and potential environmental risks posed to aquatic ecosystems due to discharge of these wastewaters are seldom investigated. In the present study, the effects of cleaning wastewater streams generated at two wood floor production lines on Desmodesmus subspicatus were investigated. The microalgae was exposed to different wastewater concentrations (100, 50, 25, 12.5 and 6.25% v:v) and the algae growth evaluation was based on in vivo chlorophyll fluorescence, cell density, cell size (number of cells/colony) and cell ratio (length/width). Inhibitory effects of the tested wastewaters on the microalgae were positively related to concentration and negatively related to exposure time. The EC50,24 h of blade cleaning wastewater (BCW) and floor cleaning wastewater (FCW) were 3.36 and 5.87% (v:v), respectively. No negative effect on cell colony formation was caused by BCW, whereas an increase of 90% unicellular cells was observed in FCW concentrations below 50% (v:v). At the lowest concentration (3.13% v:v) where no growth inhibition was observed, both wastewater streams caused changes in cell dimensions by increasing cell length and width. To conclude, wastewaters generated during cleaning procedures in the wood floor industries can have severe environmental impacts on aquatic organisms, even after high dilution. Therefore, these wastewaters must be treated before being discharged into water bodies. PMID:23393987

  8. Reprogramming of gene expression during compression wood formation in pine: Coordinated modulation of S-adenosylmethionine, lignin and lignan related genes

    PubMed Central

    2012-01-01

    Background Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. Results By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait.) that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. Conclusions The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes involved in biosynthesis of

  9. In-situ observations on the influence of wood moisture content and temperature on spore germination and wood colonization by Poria carbonica

    SciTech Connect

    Przybylowicz, P.R.; Corden, M.E.

    1986-01-01

    A method for observing germinating fungal spores on wood was developed in which temperature and wood moisture content could be easily controlled and subsequent wood colonization could be determined. Thin radial sections of Douglas fir (Pseudotsuga menziesii) heartwood (8 mm x 8 mm x 60 mu m) were inoculated with a spore suspension and a similar wood section was placed over the inoculated section forming a ''spore sandwich''. The ''spore sandwiches'' were incubated between larger blocks of Douglas fir heartwood to maintain control of the wood moisture content during incubation in controlled temperature-humidity chambers. Spore germination was observed by opening the ''spore sandwiches'' and staining the spores in situ for microscopic observation. Wood colonization was determined by isolations from the surrounding wood blocks. The ''spore sandwich'' method was used to study the influences of temperature and wood moisture content on spore germination of Poria carbonica. Basidiospores and asexual spores germinated and colonized wood at and above the fibre saturation point (c 30% moisture content), but not below. Both spore types germinated and colonized wood at 22 and 30 degrees Centigrade, but basidiospores failed to germinate at 5 and 35 degrees, whereas asexual spores germinated at 5 and 35 degrees, but were unable to colonize the wood. The ''spore sandwich'' method provides a means for assessing spore germination and wood colonization by wood decaying fungi under conditions simulating those occurring naturally in wood in service. (Refs. 21).

  10. Wood innovation in the residential construction sector: Opportunities and constraints

    SciTech Connect

    Goverse, Tessa; Hekkert, Marko P.; Groenewegen, Peter; Worrell, Ernst; Smits, Ruud E.H.M.

    2001-01-01

    We study the opportunities to increase the use of wood in the Dutch residential construction sector and assess the effects on material related CO2 emission. Four house types are modeled with increasing quantities of wood used in constructions. CO2 emission reductions of almost 50 percent are technically possible. We assess the innovation characteristics of these wood applications to create insights in the complexity of the necessary change process. Then we relate the innovation characteristics of the wood options to the context in which implementation of the technologies take place. The options vary strongly in the required technical and network changes and so do the opportunities to implement them. Based on this we expect that a 12 percent CO2 emission reduction related to material use for residential buildings is possible in the short term by an increased share of wood use. We also study the possibilities for increased wood recycling practices. A large technical potential exists. To achieve this potential a significant policy effort is needed since significant changes in both technical and network dimensions are necessary. To stimulate innovation in the use of wood in residential construction, important focus points of policy making should be the culture in the Dutch construction sector, the way new building projects are commissioned, research areas within the building sector, and stabilization of building networks.

  11. Fast analysis of wood preservers using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Uhl, A.; Loebe, K.; Kreuchwig, L.

    2001-06-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the investigation of wood preservers in timber and in furniture. Both experiments in laboratory and practical applications in recycling facilities and on a building site prove the new possibilities for the fast detection of harmful agents in wood. A commercial system was developed for mobile laser-plasma-analysis as well as for industrial use in sorting plants. The universal measuring principle in combination with an Echelle optics permits real simultaneous multi-element-analysis in the range of 200-780 nm with a resolution of a few picometers. It enables the user to detect main and trace elements in wood within a few seconds, nearly independent of the matrix, knowing that different kinds of wood show an equal elemental composition. Sample preparation is not required. The quantitative analysis of inorganic wood preservers (containing, e.g. Cu, Cr, B, As, Pb, Hg) has been performed exactly using carbon as reference element. It can be shown that the detection limits for heavy metals in wood are in the ppm-range. Additional information is given concerning the quantitative analysis. Statistical data, e.g. the standard deviation (S.D.), were determined and calibration curves were used for each particular element. A comparison between ICP-AES and LIBS is given using depth profile correction factors regarding the different penetration depths with respect to the different volumes in wood analyzed by both analytical methods.

  12. Health hazards caused by fungi in stored wood chips

    SciTech Connect

    Thoernquist, T.; Lundstroem, H.

    1982-11-01

    In connection with using wood chips for fuel in heating buildings, a number of people in Sweden were taken ill with a respiratory allergy similar to wood trimmer's disease and farmer's lung. The disease is presumably caused by airborne fungal particles (spores and hyphae) which are inhaled when working with infected wood chips. The occurrence of fungal particles in the air in wood chip storage rooms, halls, and kitchens was studied in 64 buildings heated by chips. Sampling was carried out by exposing 9-cm petri dishes containing malt agar. In the chip storage rooms of 10 of the 64 buildings examined, more than 500 fungal colonies were recorded before disturbing the chips. After disturbance the number of buildings with more than 500 colonies increased to 28. In the halls in three of the buildings and in the kitchens of two, more than 500 fungal colonies were recorded. The number of fungal particles in wood chip storage is mainly dependent on the condition of the raw material before chipping, tree species, and the final storage period. To reduce the risk of large numbers of fungal particles in stored chips, the trees should be limbed before chipping and the stems preferably dried. Hardwood chips are more easily infected by fungi than chips of coniferous wood. The storage of wood chips for periods longer than 3 months should be avoided and a Class 2B protective mask should always be worn when handling chips feared to be infected by fungi. (Refs. 5).

  13. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood. PMID:16485652

  14. The 3C support: A survivable alternative to wood cribbing

    SciTech Connect

    Frederick, J.

    1995-10-01

    Wood cribbing has historically been a somewhat dependable and low cost method of providing mine roof support. In high stress conditions, such as longwall tailgates, the wood crib does not always survive. Failure of tailgate cribs can block travelways, restrict ventilation and force costly time-consuming rehabilitation. At least in the Western United States, wood cribbing is no longer the answer to many roof support problems. Western mines are being forced to find alternatives to wood cribbing. This is due to the escalating cost, questionable availability and dubious quality of available wood supplies. The Corrugated Confined Core mine roof Support (3C Support) was developed to survive the extreme ground control conditions of a longwall tailgate. The 3C Support testing has shown ultimate strengths exceeding 2,000,000 lbs and a yield range over 48-inches. Standard wood cribs, constructed from Western United States softwood, were also tested. The wood cribs had ultimate strengths up to 237,000 lbs and a yield range up to 27-inches. Underground testing of the 3C Support in longwall tailgates at Southern Utah Fuel Company (SUFCO) was also conducted. This testing and installation of over 5000 3C Supports have demonstrated the following advantages: (1) lower installed cost; (2) 55 percent reduction in cribbing manpower requirements; (3) improved yield and ultimate strength characteristics; (4) much improved tailgate roof support survivability; (5) virtually eliminates blocked tailgates; (6) improved safety; (7) reduced flammable material; (8) improved ventilation; and (9) environmentally friendly.

  15. Mechanical properties of acacia and eucalyptus wood chars

    SciTech Connect

    Kumar, M.; Verma, B.B.; Gupta, R.C.

    1999-10-01

    In the present investigation the effects of carbonization conditions (temperature and heating rate) on the mechanical properties (such as crushing and impact strengths and shatter index) of acacia and eucalyptus wood chars have been determined. The crushing and impact strengths of both the acacia and eucalyptus wood chars (made by slow carbonization) decreased with increase of preparation temperature up to 600 C, followed by an increase thereafter. These wood chars showed a continuous increase in shatter index values with carbonization temperature. In contrast to slow carbonization (heating rate 4 C min{sup {minus}1}), rapid carbonization (heating rate 30 C min{sup {minus}1}) yielded chars of lower crushing strengths. Slowly carbonized eucalyptus wood gave chars of superior crushing and impact strengths than those produced from acacia wood under the same carbonization conditions. The crushing and impact strengths of these wood chars, in general, have shown an increase with increase in their apparent density. The crushing strength of cubic-shaped wood char decreased with increase in size.

  16. Coleoptera Associated with Decaying Wood in a Tropical Deciduous Forest.

    PubMed

    Muñoz-López, N Z; Andrés-Hernández, A R; Carrillo-Ruiz, H; Rivas-Arancibia, S P

    2016-08-01

    Coleoptera is the largest and diverse group of organisms, but few studies are dedicated to determine the diversity and feeding guilds of saproxylic Coleoptera. We demonstrate the diversity, abundance, feeding guilds, and succession process of Coleoptera associated with decaying wood in a tropical deciduous forest in the Mixteca Poblana, Mexico. Decaying wood was sampled and classified into four stages of decay, and the associated Coleoptera. The wood was identified according to their anatomy. Diversity was estimated using the Simpson index, while abundance was estimated using a Kruskal-Wallis test; the association of Coleoptera with wood species and decay was assessed using canonical correspondence analysis. Decay wood stage I is the most abundant (51%), followed by stage III (21%). We collected 93 Coleoptera belonging to 14 families, 41 genera, and 44 species. The family Cerambycidae was the most abundant, with 29% of individuals, followed by Tenebrionidae with 27% and Carabidae with 13%. We recognized six feeding guilds. The greatest diversity of Coleoptera was recorded in decaying Acacia farnesiana and Bursera linanoe. Kruskal-Wallis analysis indicated that the abundance of Coleoptera varied according to the species and stage of decay of the wood. The canonical analysis showed that the species and stage of decay of wood determined the composition and community structure of Coleoptera. PMID:26911160

  17. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass and Coal

    SciTech Connect

    Wang, Ping; Howard, Bret; Hedges, Sheila; Morreale, Bryan; Van Essendelft, Dirk; Berry, David

    2013-10-29

    Utilization of biomass as a co-feed in coal and biomass co-firing and co-gasification requires size reduction of the biomass. Reducing biomass to below 0.2 mm without pretreatment is difficult and costly because biomass is fibrous and compressible. Torrefaction is a promising thermal pretreatment process and has the advantages of increasing energy density, improving grindability, producing fuels with more homogenous compositions and hydrophobic behavior. Temperature is the most important factor for the torrefaction process. Biomass grindability is related to cell wall structure, thickness and composition. Thermal treatment such as torrefaction can cause chemical changes that significantly affect the strength of biomass. The objectives of this study are to understand the mechanism by which torrefaction improves the grindability of biomass and discuss suitable temperatures for thermal pretreatment for co-gasification/cofiring of biomass and coal. Wild cherry wood was selected as the model for this study. Samples were prepared by sawing a single tangential section from the heartwood and cutting it into eleven pieces. The samples were consecutively heated at 220, 260, 300, 350, 450 and 550oC for 0.5 hr under flowing nitrogen in a tube furnace. Untreated and treated samples were characterized for physical properties (color, dimensions and weight), microstructural changes by SEM, and cell wall composition changes and thermal behaviors by TGA and DSC. The morphology of the wood remained intact through the treatment range but the cell walls were thinner. Thermal treatments were observed to decompose the cell wall components. Hemicellulose decomposed over the range of ~200 to 300oC and resulted in weakening of the cell walls and subsequently improved grindability. Furthermore, wood samples treated above 300oC lost more than 39% in mass. Therefore, thermal pretreatment above the hemicelluloses decomposition temperature but below 300oC is probably sufficient to improve

  18. Impact of chromated copper arsenate (CCA) in wood mulch.

    PubMed

    Townsend, Timothy G; Solo-Gabriele, Helena; Tolaymat, Thabet; Stook, Kristin

    2003-06-20

    The production of landscape mulch is a major market for the recycling of yard trash and waste wood. When wood recovered from construction and demolition (C&D) debris is used as mulch, it sometimes contains chromated copper arsenate (CCA)-treated wood. The presence of CCA-treated wood may cause some potential environmental problems as a result of the chromium, copper, and arsenic present. Research was performed to examine the leachability of the three metals from a variety of processed wood mixtures in Florida. The mixtures tested included mixed wood from C&D debris recycling facilities and mulch purchased from retail outlets. The synthetic precipitation leaching procedure (SPLP) was performed to examine the leaching of chromium, copper and arsenic. Results were compared to Florida's groundwater cleanup target levels (GWCTLs). Eighteen of the 22 samples collected from C&D debris processing facilities leached arsenic at concentrations greater than Florida's GWCTL of 50 microg/l. The mean leachable arsenic concentration for the C&D debris samples was 153 microg/l with a maximum of 558 microg/l. One of the colored mulch samples purchased from a retail outlet leached arsenic above 50 microg/l, while purchased mulch samples derived from virgin materials did not leach detectable arsenic (<5 microg/l). A mass balance approach was used to compute the potential metal concentrations (mg/kg) that would result from CCA-treated wood being present in wood mulch. Less than 0.1% CCA-treated wood would cause a mulch to exceed Florida's residential clean soil guideline for arsenic (0.8 mg/kg). PMID:12798102

  19. Occupational allergic contact dermatitis caused by wood dusts.

    PubMed

    Estlander, T; Jolanki, R; Alanko, K; Kanerva, L

    2001-04-01

    Exposure to wood dusts may cause various skin and mucosal symptoms. Allergic dermatoses, caused by wood dusts, diagnosed at the Finnish Institute of Occupational Health during 1976-1999 are reported here. 16 had allergic contact dermatitis and, 2 had contact urticaria. 9 men (3 cabinet makers, 3 joiners, 1 carpenter, 1 knifemaker and 1 machinist) were mainly exposed to tropical hardwoods. 1 man had dermatitis caused by western red cedar. 5 patients, 3 men and 2 women, were exposed to Finnish pine or spruce dusts, and 1 man to aspen. 7 also had rhinitis, 4 asthma or dyspnoea and 3 conjunctivitis. On patch testing, 10 men reacted to 9 different wood dusts, including teak (5), palisander (3), jacaranda (2), mahogany (2), walnut (2) and obeche (1). Reactions to wood allergens, including lapachol (2), deoxylapachol (1), (R)-3,4-dimethoxydahlbergione (2), 2,6-dimethoxy-1,4-benzoquinone (1), mansonone A (2) and salicyl alcohol (1), were noted in 4 cases. All but 1 of 5 patients exposed to pine or spruce dusts reacted to the sawdusts, all 5 to colophonium, 3 to abietic acid, 2 to tall oil resin, 3 to wood tar mix and 4 to other wood gum resins. Of the 2 CU patients, 1 was prick and RAST positive to obeche, 1 reacted with urticarial dermatitis to punah wood dust on chamber exposure. Occupational allergic dermatoses are mainly caused by the dusts of hardwoods, mostly due to Type IV allergy, but may also be caused by softwood dusts. Patch tests can be done with wood dusts, but should be confirmed by patch testing with wood allergens if possible. PMID:11260236

  20. The wood frog (Rana sylvatica): a technical conservation assessment

    USGS Publications Warehouse

    Muths, E.; Rittmann, S.; Irwin, J.; Keinath, D.; Scherer, R.

    2005-01-01

    Overall, the wood frog (Rana sylvatica) is ranked G5, secure through most of its range (NatureServe Explorer 2002). However, it is more vulnerable in some states within the USDA Forest Service Region 2: S3 (vulnerable) in Colorado, S2 (imperiled) in Wyoming, and S1 (critically imperiled in South Dakota (NatureServe Explorer 2002); there are no records for wood frogs in Kansas or Nebraska. Primary threats to wood frog populations are habitat fragmentation (loss of area, edge effects, and isolation) and habitat loss due to anthropogenic causes (e.g., wetland draining, grazing) and natural changes as habitat succession occurs. Wood frogs are most conspicuous at breeding sites early in the spring, when snow and ice are often still present at pond margins. They tolerate frezzing and hibernate terrestrially in shallow depressions, under leaf litter, grasses, logs, or rocks (Bagdonas 1968, Bellis 1961a); there are no reports of aquatic hibernation for this species (Licht 1991, Pinder et al. 1992). Wood frogs require semi-permanent and temporary pools of natural origin and adjacent wet meadows, and landscape alterations that shorten the hydroperiod of ponds can result in catastrophic tadpole mortality. Plant communities utilized by wood frogs in the Rocky Mountains are hydric to mesic and include sedge and grass meadows, willow hummocks, aspen groves, lodgepole pine forests, and woodlands with leaf litter and/or herbaceous understory (Maslin 1947, Bellis 1961a, Roberts and Lewin 1979, Haynes and Aird 1981). Wood frogs are likely to disperse into surrounding marsh and woodlands soon after oviposition (Heatwole 1961, Haynes and Aird 1981). In the arly fall, wood frogs begin to seek hibernacula at or just below the ground surface, generally in upland forest habitat (Regosin et al. 2003). Licht (1991) demonstrated shelter-seeking behavior at 1.5 [degrees] C. Once they have concealed themselves for hibernation, wood frogs are very difficult to detecta?|