Science.gov

Sample records for lignite air-steam gasification

  1. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    SciTech Connect

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu.

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  2. Dairy Biomass-Wyoming Coal Blends Fixed Gasification Using Air-Steam for Partial Oxidation

    DOE PAGESBeta

    Gordillo, Gerardo; Annamalai, Kalyan

    2012-01-01

    Concenmore » trated animal feeding operations such as dairies produce a large amount of manure, termed as dairy biomass (DB), which could serve as renewable feedstock for thermal gasification. DB is a low-quality fuel compared to fossil fuels, and hence the product gases have lower heat content; however, the quality of gases can be improved by blending with coals. This paper deals with air-steam fixed-bed counterflow gasification of dairy biomass-Wyoming coal blend (DBWC). The effects of equivalence ratio ( 1.6 < Φ < 6.4 ) and steam-to-fuel ratio ( 0.4 < S : F < 0.8 ) on peak temperatures, gas composition, gross heating value of the products, and energy recovery are presented. According to experimental results, increasing Φ and ( S : F ) ratios decreases the peak temperature and increases the H 2 and CO 2 production, while CO production decreases. On the other hand, the concentrations of CH 4 and C 2 H 6 were lower compared to those of other gases and almost not affected by Φ.« less

  3. High-temperature air/steam-blown gasification of coal in a pressurized spout-fluid bed

    SciTech Connect

    Rui Xiao; Mingyao Zhang; Baosheng Jin; Yaji Huang; Hongcang Zhou

    2006-03-15

    The concept of high-temperature air/steam-blown gasification technology for converting coal into low-caloric-value gas for power generation is proposed and evaluated experimentally. Preliminary experiments are performed in a 0.1 MW thermal input pressurized spout-fluid bed gasifier. The influences of the gasifying agent preheat temperature, the gasification temperature and pressure, the equivalence ratio, the ratio of steam-to-coal on gas composition, gas higher heating value, carbon conversion, and cold gas efficiency are examined. The experimental results prove the feasibility of high-temperature air/steam-blown gasification process. The gas heating value is increased by 23%, when the gasifying agent temperature is increased from 300 to 700 C. For the operation conditions studied, the results show that gasification temperature is the most important factor influencing coal gasification in the spout-fluid bed. The gasifier performance is improved at elevated pressure mainly due to the better fluidization in the reactor. The operating parameters of the equivalence ratio and the ratio of steam-to-coal exist at optimum operating range for a certain coal gasification process. 21 refs., 10 figs., 4 tabs.

  4. Preventing ash agglomeration during gasification of high-sodium lignite

    SciTech Connect

    Robert S. Dahlin; Johnny R. Dorminey; WanWang Peng; Roxann F. Leonard; Pannalal Vimalchand

    2009-01-15

    Various additives were evaluated to assess their ability to prevent ash agglomeration during the gasification of high-sodium lignite. Additives that showed promise in simple muffle furnace tests included meta-kaolin, vermiculite, two types of silica fume, and one type of bauxite. Additives that were tested and rejected included dolomite, calcite, sand flour, kaolinite, fine kaolin, and calcined bauxite. Based on the muffle furnace test results, the meta-kaolin was selected for a follow-on demonstration in a pilot-scale coal gasifier. Pilot-scale testing showed that the addition of coarse (minus 14-mesh, 920-{mu}m mean size) meta-kaolin at a feed rate roughly equivalent to the ash content of the lignite (10 wt %) successfully prevented agglomeration and deposition problems during gasification of high-sodium lignite at a maximum operating temperature of 927{sup o}C (1700{sup o}F). 13 refs., 24 figs., 1 tab.

  5. Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

  6. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    PubMed

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0. PMID:25265865

  7. Co-gasification of solid waste and lignite - a case study for Western Macedonia.

    PubMed

    Koukouzas, N; Katsiadakis, A; Karlopoulos, E; Kakaras, E

    2008-01-01

    Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct

  8. Supercritical Water as Nanomedium for Gasification of Lignite-Water Suspension

    NASA Astrophysics Data System (ADS)

    Korzh, Raisa; Bortyshevskyi, Valerii

    2016-05-01

    The gasification of an aqueous suspension of lignite from Alexandria coalfield (Ukraine) under the supercritical pressure was studied. The initial rates of the formation of hydrogen, carbon dioxide and methane were evaluated. The mutually stimulating interaction of the components of "brown coal-water-mineral matter" system was shown due to the influence of nanoscaled water medium on the formation of dipole-inductive, dispersive and ionic associates. In the temperature range of 300-450 °C, the oxygen source for gaseous products of the lignite supercritical gasification is mainly ion-associative nanoclustered water. The source of hydrogen at the subcritical temperature is the organic part of brown coal. For the supercritical water, the source of H is the nanoscale medium with ion associates. The last ones were responsible for the further transformation of coal.

  9. Supercritical Water as Nanomedium for Gasification of Lignite-Water Suspension.

    PubMed

    Korzh, Raisa; Bortyshevskyi, Valerii

    2016-12-01

    The gasification of an aqueous suspension of lignite from Alexandria coalfield (Ukraine) under the supercritical pressure was studied. The initial rates of the formation of hydrogen, carbon dioxide and methane were evaluated. The mutually stimulating interaction of the components of "brown coal-water-mineral matter" system was shown due to the influence of nanoscaled water medium on the formation of dipole-inductive, dispersive and ionic associates. In the temperature range of 300-450 °C, the oxygen source for gaseous products of the lignite supercritical gasification is mainly ion-associative nanoclustered water. The source of hydrogen at the subcritical temperature is the organic part of brown coal. For the supercritical water, the source of H is the nanoscale medium with ion associates. The last ones were responsible for the further transformation of coal. PMID:27194442

  10. Behavior of chars from Bursa Mustafa Kemal Pasa Alpagut and Balkesir Dursunbey Cakiirca Lignite (Turkey) during non-catalytic and catalytic gasification

    SciTech Connect

    Bozkurt, Y.; Misirlioglu, Z.; Sinag, A.; Tekes, A.T.; Canel, M.

    2008-07-01

    The reactivities of chars obtained by pyrolysis of Bursa Mustafa Kemal Pasa Alpagut lignite and Balkesir Dursunbey Cakiirca lignite (Turkey) at different temperatures were determined by CO{sub 2} gasification and by combustion with O{sub 2}. Catalytic effect of Na{sub 2}CO{sub 3} on the CO{sub 2} and O{sub 2} gasification reactivity of chars was investigated. Gasification tests were performed in the fixed bed reactors operating at ambient pressure. Reactivity of chars during the CO{sub 2} gasification reactions was determined by calculating the reaction rate constants and reactivity of chars during the O{sub 2} gasification was determined by using ignition temperatures of the samples. Activation energies and Arrhenius constants of the chars on the CO{sub 2} gasification reactions were also calculated by the help of Arrhenius curves. The activation energy for CO{sub 2} gasification was generally decreased with pyrolysis temperature, due to the different surface characteristics and different nature of carbon atoms gasified as the gasification reactions proceed. Generally, the increase in pyrolysis temperature leads to an increase in gasification reactivity with CO{sub 2}. The reactivity of chars in catalytic gasification was higher than the corresponding non-catalytic reactivity of the same chars. Ignition temperature increased with increasing pyrolysis temperature.

  11. Evaluation of US coal performance in the shell coal gasification process (SCGP). Volume 1. Texas lignite. Final report

    SciTech Connect

    Heitz, W.L.; McCullough, G.R.; Gierman, H.; van Kessel, M.M.

    1984-02-01

    The Shell Coal Gasificaton Process was included in the EPRI evaluation of the more promising gasification technologies. This report evaluates the performance of Texas lignite in the SCGP. A companion report (RP2094-1) evaluates the performance of an Illinois No. 5 seam coal. Tests were conducted in the Shell Internationale Research Maatschappij B.V. Amsterdam laboratory process development unit (6 metric ton per day nominal throughput). Shell also has a 150 metric ton per day gasification process development unit at Deutsche Shell's Harburg Refinery, Federal Republic of Germany. These initial tests indicate that Texas lignite is as suitable for the Shell Coal Gasification Process as any bituminous coal previously tested and that only moderate conditions are required for gasification. Process variables included oxygen/MAF (moisture and ash free) coal ratios of 0.82 to 0.96 kg/kg, throughputs of 74 to 207 kg MAF coal/hr, and pressures of 2.1 to 2.8 MPa (1 MPa = 10 bar or 145 psia). Extensive environmental sampling programs were carried out with 50% of normal bleed water recycled to the process via an evaporating venturi. Carbon conversion was nearly complete (99+ %) at reactor outlet temperatures as low as 1250/sup 0/C; at a pressure of 2.1 MPa, a maximum thermal efficiency (76% of LHV-coal) was obtained at an oxygen/MAF coal ratio of 0.90 kg/kg. Process results were only marginally influenced by variations in coal throughput but an increase in pressure at constant throughput increased the cold gas efficiency by two percentage points to 78% of LHV coal (mainly through a reduction in heat loss). In a test on load-following characteristics of the process, the unit pressure remained constant and the flow of product gas responded within one minute to a stepwise change in coal feed rate.

  12. Geotechnical studies related to in situ lignite-gasification trials. Semi-annual technical report, October 1, 1980-March 31, 1981

    SciTech Connect

    Hoskins, E.R.; Russell, J.E.

    1981-04-01

    The Petroleum Engineering Department at Texas A and M University has conducted field tests on in situ gasification of lignite first at the Easterwood Site near the main campus during 1978 and more recently at the Rockdale Site adjacent to the Sandow Mine near the town of Rockdale in Milam County, Texas. The present project is related to the gasification trials at the Rockdale Site. The objective of the current study is to investigate those geotechnical factors that may influence the performance of the in situ gasification process. These factors include: (1) pre-existing fracture patterns in the lignite and their influence on permeability; (2) strength and deformability of the overburden materials and how these properties are changed by the gasification process and their relationship to subsidence; and (3) the size, shape, and orientation of cavities produced by the process and their relationship to local fracture patterns and geologic structure. The current study is necessarily site specific and related to the Rockdale Site. Ultimately, the goal is to develop models that would be adaptable to any site with a minimum amount of site-specific investigation.

  13. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    NASA Astrophysics Data System (ADS)

    Amirabedin, Ehsan; Pooyanfar, Mirparham; Rahim, Murad A.; Topal, Hüseyin

    2014-12-01

    Trigeneration or Combined Cooling, Heat and Power (CCHP) which is based upon combined heat and power (CHP) systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP) can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  14. Investigation of plasma-aided bituminous coal gasification

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2009-04-15

    This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

  15. Plasma gasification of coal in different oxidants

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2008-12-15

    Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

  16. Pelletizing lignite

    DOEpatents

    Goksel, Mehmet A.

    1983-11-01

    Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

  17. Corrosion of candidate container materials in air-steam mixtures

    SciTech Connect

    Lutton, J.M.; Dewees, D.A.; Robinson, C.G.; Brehm, W.F.; Anantatmula, R.P.

    1987-11-01

    The environment during the operating period of a high-level nuclear waste repository in basalt is expected to be air saturated with steam. Liquid groundwater is not expected to be in contact with the container surface during that time. The report presents corrosion findings from tests conducted for one to twenty-five months in an air-steam environment. Tests were carried out with bare metal specimens exposed to an air atmosphere containing 12% moisture in chambers maintained at temperatures between 150/degree/C and 300/degree/C. Cast carbon steel exhibited total penetrations less than 0.002 mm for exposures up to 25 months. A ferritic alloy steel, Fe9Cr1Mo, showed corrosion results very similar to cast carbon steel. Unalloyed copper materials showed essentially linear corrosion rates, with total penetrations between 0.002 mm at 150/degree/C and 0.14 mm at 300/degree/C in 25 months. Cupronickel 90-10 exhibited total penetrations between 0.001 mm at 150/degree/C and 0.05 mm at 300/degree/C in 25 months. There was a tendency for the corrosion rate to increase with time for cupronickel at 250/degree/C and 300/degree/C possibly because of a mid-test change in the corrosion mechanism. Limited testing of specimens surrounded with bentonite/basalt packing material indicated that the presence of packing has no strong effect on the corrosion of iron-base materials; however, copper-base and cupronickel materials corroded at higher rates in the presence of packing, with a possible shift towards the lower bare specimen corrosion rates with increasing time. 8 refs., 5 figs., 3 tabs.

  18. Use of North Dakota lignite in advanced power systems

    SciTech Connect

    Willson, W.G.; Hurley, J.P.; Sharp, L.

    1992-12-01

    In order to develop critical data for Department of Energy (DOE) and private industry for advanced high-efficiency power systems using North Dakota lignite in pressurized gasification and combustion systems, tests were performed in bench-scale equipment at the Energy and Environmental Research Center (EERC). The primary objectives were to (1) determine the conversion levels for Center ND lignite under pressurized fluid-bed gasification conditions with sorbent addition as a function of temperature, (2) determine the sulfur capture using limestone or dolomite under gasification conditions giving 90% or higher carbon conversion, (3) evaluate char/coal conversion and sulfur capture in a pressurized fluid-bed combustor, (4) assess the potential for bed agglomeration under the preferred operating conditions for both systems.

  19. LIGNITE FUEL ENHANCEMENT

    SciTech Connect

    Charles Bullinger

    2005-06-07

    This 3rd quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2005. It also summarizes the subsequent purchasing activity and final dryer/process design.

  20. LIGNITE FUEL ENHANCEMENT

    SciTech Connect

    Charles Bullinger

    2005-07-07

    This 4th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from April 1st through June 30th of 2005. It also summarizes the subsequent purchasing activity and dryer/process construction.

  1. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger

    2006-02-03

    This 6th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from October 1st through December 31st of 2005. It also summarizes the subsequent purchasing activity and dryer/process construction. Hypothesis remains the same. We will be able to dry lignite an increment to benefit the performance of and reduce emissions from a coal burning electric power generating station.

  2. Humic preperations from Russian lignites

    SciTech Connect

    Rodeh, V.V.; Ryzhkov, O.G.

    1994-12-31

    THe objective of this work was to study lignites as the precursor materials to humic substances. Lignites contain humic substances primarily as humic acids. Their extraction requires the processing of coals with alkali.

  3. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger; Nenad Sarunac

    2010-03-31

    Pulverized coal power plants which fire lignites and other low-rank high-moisture coals generally operate with reduced efficiencies and increased stack emissions due to the impacts of high fuel moisture on stack heat loss and pulverizer and fan power. A process that uses plant waste heat sources to evaporate a portion of the fuel moisture from the lignite feedstock in a moving bed fluidized bed dryer (FBD) was developed in the U.S. by a team led by Great River Energy (GRE). The demonstration was conducted with Department of Energy (DOE) funding under DOE Award Number DE-FC26-04NT41763. The objectives of GRE's Lignite Fuel Enhancement project were to demonstrate reduction in lignite moisture content by using heat rejected from the power plant, apply technology at full scale at Coal Creek Station (CCS), and commercialize it. The Coal Creek Project has involved several stages, beginning with lignite drying tests in a laboratory-scale FBD at the Energy Research Center (ERC) and development of theoretical models for predicting dryer performance. Using results from these early stage research efforts, GRE built a 2 ton/hour pilot-scale dryer, and a 75 ton/hour prototype drying system at Coal Creek Station. Operated over a range of drying conditions, the results from the pilot-scale and prototype-scale dryers confirmed the performance of the basic dryer design concept and provided the knowledge base needed to scale the process up to commercial size. Phase 2 of the GRE's Lignite Fuel Enhancement project included design, construction and integration of a full-scale commercial coal drying system (four FBDs per unit) with Coal Creek Units 1 and 2 heat sources and coal handling system. Two series of controlled tests were conducted at Coal Creek Unit 1 with wet and dried lignite to determine effect of dried lignite on unit performance and emissions. Wet lignite was fired during the first, wet baseline, test series conducted in September 2009. The second test series was performed

  4. Natural radioactivity in lignites and lignite ash: Final report

    SciTech Connect

    Greiner, N.R.; Wagner, P.

    1987-04-01

    Natural radioactivity in a Texas lignite field and in leachates from lignite ash from power plants was measured. The radioactivity concentrations found (4 ppM uranium in the lignite, 16 ppM uranium in the lignite ash, and a few picocuries of natural radionuclides per liter in the leachates) do not differ appreciably from those found previously in similar samples and in natural materials such as soils and ground waters. Additional information on stable elements are reported for both the lignites and the leachates.

  5. Binderless lignite briquetting

    SciTech Connect

    Mall, L.

    1996-12-31

    Almost all of Germany`s lignite deposits were formed during the Tertiary Period 20 to 40 million years ago. Germany`s entire coal resources amount to something over 100 billion tonnes, of which roughly 57 billion tonnes may be economically mined with today`s mining technology and energy prices. This means that Germany has more than 10% of the world`s economically mineable coal reserves. Lignite production on an economically significant scale is taking place in the following mining areas: (1) Rhine Mining Area, (2) Helmstedt Mining Area, (3) Central German Mining Area, and (4) Lusatian Mining Area.

  6. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  7. Lignite Research Project.

    ERIC Educational Resources Information Center

    Robinson, Fred

    Since it became known in l979 that the Arkansas Power and Light Company was going to build a large electricity generating plant near Hampton and that there would be a lignite mining operation established there to support the power plant, the Warren public schools have been preparing to meet the impact on the schools. Because it was assumed that…

  8. A preliminary report on a zone containing thick lignite beds, Denver Basin, Colorado

    USGS Publications Warehouse

    Soister, Paul E.

    1973-01-01

    hand pressure. Quality of the lignite is lowered by the non-coal partings and, locally at least, by some small blebs and balls of clay in the lignite itself, especially at the base. Available analyses indicate that the following general figures, on an as-received basis, may be applied to relatively clean lignite from this zone: 6,000-7,000 Btu, 20-35 percent moisture, 8-18 percent ash, and 0.3-0.5 percent sulfur. Rank of the lignite is lignite A as calculated by the formulas of the American Society for Testing and . Materials (ASTM), although some parts, especially of deeper beds, may be as high as subbituminous C coal in rank. Best utilization of the lignite probably would be by gasification, liquefaction, or similar methods, because of the numerous non-coal partings and low quality. The thickest known lignite bed is estimated to contain at least 1.25 billion short tons of lignite. Two methods of roughly estimating the order of magnitude of lignite resources, in beds at least 4 feet thick and within 1,000 feet of the surface in this zone, indicate resources are on the order of 20 billion tons.

  9. Pressure-swinging underground gasification. Theoretical and experimental investigations of gasification, phase 2

    NASA Astrophysics Data System (ADS)

    Mohtadi, M.; Breidung, P.; Fuhrmann, F.; Guntermann, K.; Kurth, M.; Paersch, M.; Ropertz, G.; Subklew, G.

    1982-05-01

    Simulation experiments were run in order to determine the form of the combustion front, the combustion front velocity, the different type of gases liberated, the effect on quality of steam/oxygen ratio, the efficiency of gasification process, and data for regulating and conducting from the surface the channel gasification process. The simulation of the channel gasification process was performed in coal samples 0.32 m in diameter, 4 m long with an axial channel of 3 cm in diameter. Samples were put in an autoclave working at 1 bar or 10 bar pressure. The simulation of the penetration process was performed with coal samples 1 m long and 170 mm in diameter put in an autoclave able to work at 100 bar pressure. It is stated that the penetration process not usable is without a preliminary increase of coal permeability. Reverse combustion was also tested at pressures of 1 and 10 bar. Theoretical investigations simulated a nonstationary gasification. It is shown that this method is usable in case of oxidizing gasification. Practical confirmation of the computation has to be carried out. The reaction constants by air/steam gasification are calculated. A stationary model studied the effect of gas temperature, of steam/coal ratio, and pressure.

  10. LIGNITE FUEL ENHANCEMENT

    SciTech Connect

    Charles Bullinger

    2004-10-29

    This 1st quarterly Technical Progress Report for the Lignite Fuel Enhancement Project explains what has transpired since Great River Energy was selected to negotiate the Cooperative agreement in February of 2003. The report will summarize Pre-award activities and any other activity since signature of the contract on July 9th of this year. It also summarizes the subsequent purchasing activity and final dryer/process design up to September 30th of 2004.

  11. Study of char gasification reactions

    SciTech Connect

    Ballal, G.D.

    1986-01-01

    A Texas lignite, an anthracite and two bituminous coals, Pittsburgh number8 and Illinois number6, were pyrolyzed in a nitrogen atmosphere to prepare chars. Optical microscopy, mercury porosimetry and gas adsorption techniques using nitrogen, CO/sub 2/ and CO, were employed for pore structure characterization. The lignite char exhibited the fastest rates of gaseous diffusion, followed in order of decreasing diffusivities by the Illinois number6, Pittsburgh number8 and anthracite chars. The changes in reactivities and pore structures of chars were measured experimentally during their reaction with oxygen (400-550C) and CO/sub 2/ (800-1000C). For a particular char-gas system, the normalized rate-conversion pattern was invariant with respect to temperature and gaseous concentration. In the case of lignite and Pittsburgh number8 chars, the rate-conversion pattern was similar during reaction with oxygen and CO/sub 2/. Adsorption experiments on partially reacted chars indicated that the micropores in the lignite char were accessible to both reactants. The micropores in the Illinois number6 char were, however, not accessible during its reaction with oxygen. The evolution of pore structure during reaction was modeled by using a probabilistic approach which accounts for overlapping pores with different shapes and sizes. The kinetics of gasification of the lignite and the Pittsburgh number8 chars was studied using a Langmuir-Hinshelwood type kinetic expression to correlate the experimental data. CO was found to inhibit the reaction substantially. The effect of a potassium carbonate catalyst on the reaction of these two chars was also investigated. Substantial increases in reaction rates were observed, and the enhancement was approximately proportional to the catalyst loading.

  12. POLLUTANTS FROM SYNTHETIC FUELS PRODUCTION: COAL GASIFICATION SCREENING TEST RESULTS

    EPA Science Inventory

    Coal gasification test runs have been conducted in a semibatch, fixed-bed laboratory gasifier in order to evaluate various coals and operating conditions for pollutant generation. Thirty-eight tests have been completed using char, coal, lignite, and peat. Extensive analyses were ...

  13. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.

    PubMed

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2014-12-01

    A vacuum fixed bed reactor was applied to pyrolyze lignite, biomass (rice husk) and their blend with high temperature (900 °C) and low heating rate (10 °C/min). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2 h) for their interactions. Remarkable synergetic effects were observed. Addition of biomass obviously influenced the tar and char yields, gas volume yield, gas composition, char structure and tar composition during co-pyrolysis. It was highly possible that char gasification, gaseous phase interactions, and secondary tar cracking were facilitated when lignite and biomass were co-pyrolyzed. PMID:25277348

  14. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger

    2007-03-31

    This 11th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2007. It summarizes the completion of the Prototype testing activity and initial full-scale dryer design, Budget Period 2 activity during that time period. The Design Team completed process design and layouts of air, water, and coal systems. Heyl-Patterson completed dryer drawings and has sent RFPs to several fabricators for build and assembly. Several meetings were held with Barr engineers to finalize arrangement of the drying, air jig, and coal handling systems. Honeywell held meetings do discuss the control system logic and hardware location. By the end of March we had processed nearly 300,000 tons of lignite through the dryer. Outage preparation maintenance activities on a coal transfer hopper restricted operation of the dryer in February and March. The Outage began March 17th. We will not dry coal again until early May when the Outage on Unit No.2 completes. The Budget Period 1 (Phase 1) final report was submitted this quarter. Comments were received from NETL and are being reviewed. The Phase 2 Project Management Plan was submitted to NETL in January 2007. This deliverable also included the Financing Plan. An application for R&D 100 award was submitted in February. The project received an award from the Minnesota Professional Engineering Society's Seven Wonders of Engineering Award and Minnesota ACEC Grand Award in January. To further summarize, the focus this quarter has been on finalizing commercial design and the layout of four dryers behind each Unit. The modification to the coal handling facilities at Coal Creek and incorporation of air jigs to further beneficiate the segregated material the dryers will reject 20 to 30 % of the mercury and sulfur is segregated however this modification will recover the carbon in that stream.

  15. Drying of Beulah Zap lignite

    SciTech Connect

    Vorres, K.S.; Molenda, D. ); Dang, Y.; Malhotra, V.M. . Dept. of Physics)

    1991-01-01

    Recent results on the kinetics of water's desorption from Beulah-Zap lignite coal, as determined by thermogravimetric analysis (TGA) and the differential scanning calorimetry (DSC) technique were reported. The kinetic analysis of DSC was further complimented by determining the mechanism of air drying of lignite coal with the help of an in-situ Desorption Kinetics via Fourier transform infrared (ISDK-FTIR) technique. 17 refs., 5 figs., 1 tab.

  16. Power Systems Development Facility Gasification Test Campaign TC21

    SciTech Connect

    Southern Company Services

    2007-01-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of gasification operation with lignite coal following the 2006 gasifier configuration modifications. This demonstration took place during test campaign TC21, occurring from November 7, 2006, through January 26, 2007. The test campaign began with low sodium lignite fuel, and after 304 hours of operation, the fuel was changed to high sodium lignite, for 34 additional hours of operation. Both fuels were from the North Dakota Freedom mine. Stable operation with low sodium lignite was maintained for extended periods, although operation with high sodium lignite was problematic due to agglomeration formation in the gasifier restricting solids circulation.

  17. Power Systems Development Facility Gasification Test Campaign TC16

    SciTech Connect

    Southern Company Services

    2004-08-24

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

  18. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger

    2005-10-03

    The Design Team continues to conference this quarter albeit not as often. Primary focus this quarter is the continued procurement of material, receiving, and construction/installation. Phase 1 extension recommendation, and subsequent new project estimate. Forms 424 and 4600 were submitted to Ms. Zysk. The NETL technology team subsequently agreed that the increase is justified and made their recommendation to DOE HQ. All major mechanical equipment was delivered this quarter. Three hot water in-bed coils are all that remains for delivery. Two of the five are installed above the dryer air distribution bed. The dryer, baghouse, bucket elevator, control room, exhaust fan, process ductwork, and piping have all been installed. The mezzanine level over the inlet ductwork for access to the dryer was installed. Instrumentation was delivered and locations were identified. Cable is being pulled and connections made from the Control Room to the Motor Control Center. ''Emergency Stop'' equipment logic conditions were discussed and finalized. The functional description was competed and reviewed with Honeywell Controls. Piping & Instrument diagrams are completed. Some electrical schematics have been delivered for equipment south of Q-line. Dry & Wet coal conveyors are not completed. The exhaust chimney was installed. An Open House and ribbon cutting took place on August 9th. GRE project manager gave a presentation of the technology. Joe Strakey, NETL, also spoke. The Open House was attended by Governor Hoevon and Senator Conrad who also spoke about Clean Coal and helped kick-off Blue Flint ethanol and a potential Liquefaction plant. The deign team met the following day to discuss test plan and progress update. Headwaters Energy Incorporated also attended the Open House. A meeting was conducted with them to begin planning for the marketing and finalize our memorandum of understanding. Headwaters still plans to contact all US lignite plants and all bituminous plants who have

  19. Using in-situ hot air/steam stripping (HASS) of hydrocarbons in soils

    SciTech Connect

    La Mori, P.N.

    1994-12-31

    The remediation of soils containing volatile (VOC) and semi-volatile (SVC) hydrocarbons is most desirably accomplished in-situ, i.e., without removal of the contaminated soils from the ground. This approach mitigates the environmental problem, i.e., does not transport it to another location, and when properly applied, does not impact on the local environment during remediation NOVATERRA has demonstrated commercially an in-situ, hot air/steam stripping (HASS) technology to remove VOC and SVC from soils both in the vadose and saturated zones. The technology consists of a drill tower which injects and mixes steam and hot air continuously into the soil below ground and a method to immediately capture all vapors escaping to the surface and remove the vaporized VOC/SVC using condensation and carbon beds. The air can be recompressed and recycled. The condensed liquid containing hydrocarbons is purified by distillation. The recovered hydrocarbons can be destroyed or recycled. The technology has successfully removed various chlorinated aliphatics and aromatics, glycol ethers, phthalates, polyaromatic compounds, ketones, petroleum hydrocarbons and many other compound types from sand to clay soils to risk based standards; e.g. 1 increased cancer risk in 1,000,000 using currently acceptable risk assessment standards.

  20. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger

    2006-04-03

    This 7th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2006. It also summarizes the subsequent purchasing activity, dryer/process construction, and testing. The Design Team began conferencing again as construction completed and the testing program began. Primary focus this quarter was construction/installation completion. Phase 1 extension recommendation, and subsequent new project estimate, Forms 424 and 4600 were accepted by DOE headquarters. DOE will complete the application and amended contract. All major mechanical equipment was run, checked out, and tested this quarter. All water, air, and coal flow loops were run and tested. The system was run on January 30th, shut down to adjust equipment timing in the control system on the 31st, and run to 75 ton//hour on February 1st. It ran for seven to eight hours per day until March 20th when ''pairs'' testing ( 24 hour running) began. ''Pairs'' involves comparative testing of unit performance with seven ''wet'' pulverizers versus six ''wet'' and one ''dry''. During the interim, more operators were brought up to speed on system operation and control was shifted to the main Unit No.2 Control Room. The system is run now from the Unit control board operator and an equipment operator checks the system during regular rounds or when an alarm needs verification. The flawless start-up is unprecedented in the industry and credit should be made to the diligence and tenacity of Coal Creek maintenance/checkout staff. Great River Energy and Headwaters did not meet to discuss the Commercialization Plan this quarter. The next meeting is pending data from the drying system. Discussions with Basin Electric, Otter Tail, and Dairyland continue and confidentiality secured as we promote dryers in their stations. Lighting and fire protection were completed in January. Invoices No.12 through No.20 are completed and forwarded following preliminary

  1. Utilization of lignite ash in concrete mixture

    SciTech Connect

    Demirbas, A.; Karslioglu, S.; Ayas, A.

    1995-12-01

    In this article 11 ashes from various Turkish lignite sources were studied to show the effects upon lignite ash quality for use as a mineral admixture in concrete. The lignite ashes were classified into two general types (Class A and Class B) based on total of silica, alumina, and iron oxide. Total content of the three major oxides must be more than 50% for Class A lignite ash and more than 70% for Class B lignite ash. When 25% of the cement was replaced by LA-1 (Class A) lignite ash, based on 300 kg/m{sup 3} cementitious material, the 28-day compressive strength increased 24.3% compared to the control mix. The optimal lignite ash replacement was 25% at 300 kg/m{sup 3} cementitious material.

  2. Gasification process

    SciTech Connect

    Woldy, P.N.; Kaufman, H.C.; Dach, M.M.; Beall, J.F.

    1981-02-03

    This version of Texaco's gasification process for high-ash-content solids is not extended to include the production of superheated steam, as described in US Patent 4,247,302. The hot, raw gas stream passes through fewer coolers, producing a high-pressure steam instead of a superheated steam.

  3. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char.

    PubMed

    Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian

    2014-12-01

    Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification. PMID:25280109

  4. CHEMICALLY ACTIVE FLUID BED PROCESS FOR SULPHUR REMOVAL DURING GASIFICATION OF CARBONACEOUS FUELS

    EPA Science Inventory

    The report covers the final 3 years of a 9-year program to evaluate the Chemically Active Fluid Bed (CAFB) process for gasification and desulfurization of liquid and solid fuels in a fluidized bed of hot lime. A range of alternative fuels, including three coals and a lignite, wer...

  5. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    SciTech Connect

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.; Kinoshita, M.

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  6. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  7. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  8. Gasification Plant Cost and Performance Optimization

    SciTech Connect

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power

  9. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    SciTech Connect

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were

  10. 2007 gasification technologies conference papers

    SciTech Connect

    2007-07-01

    Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

  11. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  12. Power Systems Development Facility Gasification Test Campaign TC22

    SciTech Connect

    Southern Company Services

    2008-11-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  13. Mineral matter identification of some Turkish lignites

    SciTech Connect

    Yaman, S.; Taptik, Y.; Kuecuekbayrak, S.; Kadioglu, E.

    1995-01-01

    Samples of 15 Turkish lignites were oxidized by performic acid. Their mineral matter was isolated without any important chemical decomposition. The X-ray diffraction method was employed to determine the mineral species in the isolated mineral matter and in the ashes of the lignite samples. The results were compared and discussed.

  14. Multiple-use marketing of lignite

    SciTech Connect

    Knudson, C.L.

    1993-09-01

    Marketing of lignite faces difficulties due to moisture and sulfur contents, as well as the sodium content, of the ash. The purpose of this study is to determine the economic viability of multiple-use marketing of lignite as a method to increase the use of North Dakota lignite by recapturing lost niche markets. Multiple-use marketing means using lignite and sulfur-capturing additives to clean agricultural wastewater followed by either direct steam and power generation or briquetting to produce a higher-Btu compliance fuel. Cooperative ownership of the resulting business by a coal company and an agriculture processing company helps ensure that lignite remains the coal of choice, especially when the ``good`` attributes of lignites are maximized, while the agricultural company obtains cleaner wastewater and a long-term supply of coal at a set price. The economic viabilities of the following scenarios were investigated: (1) Agriprocessing wastewater treatment using lignite and an additive followed by (2) the production of compliance fuel for resale or on-site cogeneration of steam and electricity. Laboratory tests were performed utilizing potato-processing plant wastewater with lignite and lime sludge.

  15. Solubilization of Australian lignites by microorganisms

    SciTech Connect

    Catcheside, D.E.A.; Mallett, K.J.; Cox, R.E.

    1988-01-01

    Australia has substantial lignite deposits, particularly in the Latrobe Valley in Victoria where 4.10/sup 10/ tons are accessible with available technologies. The authors have investigated the susceptibility of these coal to solubilization by microorganisms, including species additional to those already identified as active on North American lignites. The data presented here show that acid oxidized lignites from the Latrobe Valley are solubilized by each of seven species of microorganisms previously found to be active on Leonardite and oxidized North American lignites. These are the wood rot fungi: Trametes versicolor, Poria placenta and Phanerochaete chrysosporium, the lignin degrading prokaryote Streptomyces viridosporus and three fungi isolated from lignite in Mississippi: Candida ML-13, Cunninghamelia YML-1 and Penicillium waksmanii.

  16. Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-12-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

  17. Lignite pellets and methods of agglomerating or pelletizing

    DOEpatents

    Baker, Albert F.; Blaustein, Eric W.; Deurbrouck, Albert W.; Garvin, John P.; McKeever, Robert E.

    1981-01-01

    The specification discloses lignite pellets which are relatively hard, dust resistant, of generally uniform size and free from spontaneous ignition and general degradation. Also disclosed are methods for making such pellets which involve crushing as mined lignite, mixing said lignite with a binder such as asphalt, forming the lignite binder mixture into pellets, and drying the pellets.

  18. Distribution of nitrogen species during vitrinite pyrolysis and gasification

    SciTech Connect

    Lin, J.Y.; Li, W.Y.; Chang, L.P.; Feng, J.; Zhao, W.; Xie, K.C.

    2006-08-15

    The formation of HCN and NH3 during pyrolysis in Ar and gasification in CO{sub 2} and steam/Ar was investigated. Vitrinites were separated and purified from different rank coal from lignite to anthracite. Pyrolysis and gasification were carried out in the drop-tube/fixed-bed reactor at temperatures of 600-900{sup o}C. Results showed that with increase of reaction temperature the yield of HCN increased significantly during pyrolysis and gasification. Decrease of coal rank also increased the yield of HCN. Vitrinite from lower rank of coal with high volatile content released more HCN. The yield of NH3 was the highest at 800 {sup o}C during pyrolysis and gasification. And the yield of NH3 from gasification in steam/Ar was far higher than that from gasification in CO{sub 2}, where the hydrogen radicals play a key role. Nitrogen retained in char was also investigated. The yield of char-N decreased with an increase of pyrolysis temperature. Vitrinite from lower rank coal had lower yield of char-N than that from the high rank coal.

  19. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  20. Gasification of New Zealand coals: a comparative simulation study

    SciTech Connect

    Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young

    2008-07-15

    The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

  1. Kinetic models comparison for steam gasification of coal/biomass blend chars.

    PubMed

    Xu, Chaofen; Hu, Song; Xiang, Jun; Yang, Haiping; Sun, Lushi; Su, Sheng; Wang, Baowen; Chen, Qindong; He, Limo

    2014-11-01

    The non-isothermal thermogravimetric method (TGA) was applied to different chars produced from lignite (LN), sawdust (SD) and their blends at the different mass ratios in order to investigate their thermal reactivity under steam atmosphere. Through TGA analysis, it was determined that the most prominent interaction between sawdust and lignite occurred at the mass ratio of sawdust/lignite as 1:4, but with further dose of more sawdust into its blends with lignite, the positive interaction deteriorated due to the agglomeration and deactivation of the alkali mineral involved in sawdust at high steam gasification temperature. Through systematic comparison, it could be observed that the random pore model was the most suitable among the three gas-solid reaction models adopted in this research. Finally, rational kinetic parameters were reached from these gas-solid reaction models, which provided a basis for design and operation of the realistic system of co-gasification of lignite and sawdust in this research. PMID:25203234

  2. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar

    PubMed Central

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487

  3. Paleocene lignite deposits of southwest Alabama

    SciTech Connect

    Mancini, E.A.

    1984-04-01

    In southwest Alabama, lignite having economic potential occurs in the Oak Hill Member of the Naheola Formation. This middle Paleocene lignite generally consists of a single bed of 1-14 ft (0.5-4 m) in thickness and is the most extensive lignite in the southwest Alabama region. The Oak Hill lignite deposit accumulated in lower delta plain coastal marshes in interchannel areas behind a barrier system. The source area for the deltaic sediments was probably to the west and/or northwest of Choctaw County, Alabama. The lignite occurs in a clay-dominated sequence. Oak Hill interdistributary bay ripple-laminated clays are interbedded with ripple-laminated, crevasse splay sands generally less than 15 ft (5 m) thick. The glauconitic sands of the overlying Coal Bluff Marl Member of the Naheola Formation represent times of marine encroachment into the interchannel basin area. Lignite having subeconomic value at present occurs in the upper part of the Tuscahoma Sand. This upper Paleocene lignite is irregular in its outcrop pattern and apparently is not represented over extensive areas. It is locally persistent with one or more beds less than 3 ft (1 m) thick. The Tuscahoma may contain up to 6 lignite seams that may exceed a total thickness of 5 ft (1.5 m). These lignite beds were deposited in lower delta-plain coastal marshes adjacent to high constructive deltaic bar finger sands. Tuscahoma marsh clays are interbedded with ripple-laminated and cross-bedded bar finger sands. The Tuscahoma Sand is overlain by the Bashi Marl Member of the Hatchetigbee Formation. The Bashi contains a diverse lower Eocene marine fossil assemblage.

  4. Paleocene lignite deposits of southwest Alabama

    SciTech Connect

    Mancini, E.A.

    1984-04-01

    In southwest Alabama, lignite having economic potential occurs in the Oak Hill Member of the Naheola Formation. This middle Paleocene lignite generally consists of a single bed of 1-14 ft (0.5-4 m) in thickness and is the most extensive lignite in the southwest Alabama region. The Oak Hill lignite deposit accumulated in lower delta plain coastal marshes in interchannel areas behind a barrier system. The source area for the deltaic sediments was probably to the west and/or northwest of Choctaw County, Alabama. The lignite occurs in a clay-dominated sequence. Oak Hill interdistributary bay ripple-laminated clays are interbedded with ripple-laminated, crevasse splay sands generally less than 15 ft (5 m) thick. The glauconitic sands of the overlying Coal Bluff Marl Member of the Naheola Formation represent times of marine encroachment into the interchannel basin area. Lignite haing subeconomic value at present occurs in the upper part of the Tuscahoma Sand. This upper Paleocene lignite is irregular in its outcrop pattern and apparently is not represented over extensive areas. It is locally persistent with one or more beds less than 3 ft (1 m) thick. The Tuscahoma may contain up to 6 lignite seams that may exceed a total thickness of 5 ft (1.5 m). These lignite beds were deposited in lower delta-plain coastal marshes adjacent to high constructive deltaic bar finger sands. Tuscahoma marsh clays are interbedded with ripple-laminated and cross-bedded bar finger sands. The Tuscahoma Sand is overlain by the Bashi Marl Member of the Hatchetigbee Formation. The Bashi contains a diverse lower Eocene marine fossil assemblage.

  5. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  6. Coal gasification developments in Europe -- A perspective

    SciTech Connect

    Burnard, G.K.; Sharman, P.W.; Alphandary, M.

    1994-12-31

    This survey paper will review the development status of coal gasification in Europe and give a broad perspective of the future uptake of the technology. Three main families of gasifier design are currently being developed or demonstrated world-wide, namely fixed bed (also known as moving bed), fluidized bed and entrained flow. Gasifiers belonging to each of these families have been or are being developed in European countries. Of the three families, entrained flow gasifiers are at the most advanced stage of development, with two demonstration projects currently underway: these projects are based on designs developed by Shell and Krupp Koppers. Fixed bed systems have been developed to operate under either slagging or non-slagging conditions, ie, the British Gas-Lurgi and Tampella U-Gas systems, respectively. Fluid bed systems of various designs have also been developed, eg, the Rheinbraun HTW, British Coal and Ahlstrom systems. Gasification cycles can be based on either total or partial gasification, and the above designs represent both these options. In addition, a wide variety of fuel sources can be used in gasifiers, including bituminous coal, lignite, biomass, petroleum coke, etc or, indeed, any combination of these. The major demonstration projects in Europe are at Buggenum in the Netherlands, where a 250 MWe entrained flow gasifier based on Shell technology first gasified coal in December 1993. A further 335 MWe entrained flow gasifier, located at Puertollano in Spain, based on Krupp Koppers Prenflo technology, is at an advanced stage of construction.

  7. Modeling higher heating values of lignites

    SciTech Connect

    Demirbas, A.; Dincer, K.

    2008-07-01

    In this work, the elemental analysis results such as carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) were used for calculated higher heating values (HHVs) of 26 lignite samples from different areas of Turkey. The lignite samples have been tested with particle size of 0-0.05 mm. The HHVs of 26 lignite samples obtained from different Turkish sources were experimentally determined and can be calculated from the equation-based modeling. The HHVs (MJ/kg) of the lignite samples as a function of carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) was calculated from the following equation: HHV = 31.6(C) + 142.3(H) + 30.8(S) - 15.4(O) - 14.5(N) of which the correlation coefficients for the equation was 0.9891. HHVs calculated from the equation showed mean deviation of +0.1.

  8. Swelling of lignites in organic solvents

    SciTech Connect

    R.G. Makitra; D.V. Bryk

    2008-10-15

    Data on the swelling of Turkish lignites can be summarized using linear multiparameter equations that take into account various properties of solvents. Factors responsible for the amounts of absorbed solvents are the basicity and cohesion energy density of the solvents.

  9. Gasification: redefining clean energy

    SciTech Connect

    2008-05-15

    This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

  10. 2010 Worldwide Gasification Database

    DOE Data Explorer

    The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

  11. Considerations on coal gasification

    NASA Technical Reports Server (NTRS)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  12. Recent technology advances in the KRW coal gasification development program

    SciTech Connect

    Haldipur, G.B.; Bachovchin, D.; Cherish, P.; Smith, K.J.

    1984-08-01

    This paper presents an update of the technological advances made at the coal gasification PDU during 1982 and 1983. These process improvements have resulted in higher carbon conversion efficiency, greater operational simplicity and enhanced potential for low grade or highly reactive feedstocks such as subbituminous coals and lignites. Process and component performance data are presented on the following topics: Application of advanced non-mechanical fines recycle techniques in a pressurized fluidized bed process, Demonstration of fines consumption and 95+% carbon conversion in recent tests, including results of a successful 15 day process feasibility test; and, Techniques to produce low carbon containing (less than 5%) ash agglomerates from highly reactive feedstocks, such as Wyoming subbituminous coal and North Dakota lignite.

  13. The effects of pore structure on the behavior of water in lignite coal and activated carbon.

    PubMed

    Nwaka, Daniel; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-09-01

    The effects of physical structure (pore structure) on behavior of water in lignite coal and activated carbon (AC) samples were investigated by using Differential Scanning Calorimetry (DSC) and low-temperature X-ray diffraction (XRD) techniques. AC samples with different pore structures were prepared at 800°C in steam and the results were compared with that of parent lignite coal. The DSC results confirmed the presence of two types of freezable water that freeze at -8°C (free water) and -42°C (freezable bound water). A shift in peak position of free water (FW) towards lower temperature was observed in AC samples compared to the lignite coal with decreasing water loading. The amount of free water (FW) increased with increasing gasification conversion. The amounts of free and freezable bound water (FBW) in AC samples were calculated and correlated to pore volume and average pore size. The amount of FW in AC samples is well correlated to the pore volume and average pore size of the samples, while an opposite trend was observed for FBW. The low-temperature XRD analysis confirmed the existence of non-freezable water (NFW) in coal and AC with the boundary between the freezable and non-freezable water (NFW) determined. PMID:27254256

  14. Radiological investigation of lignite ash. The case of the West Macedonia Lignite Center (Greece)

    SciTech Connect

    Tsikritzis, L.I.; Fotakis, M.; Tzimkas, N.; Tsikritzi, R.; Trikoilidou, E.; Kolovos, N.

    2009-07-01

    This article investigates the natural radioactivity of 26 ash samples, laboratory produced from lignite samples collected in the West Macedonia Lignite Center in Northern Greece. The activity concentrations of {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra, and 232Th were measured by spectroscopy and found four to five times higher than those in the original lignite samples. The radionuclides transfer factors depend on the characteristics of the combustion process and were found higher for {sup 232}Th, {sup 228}Ra, and 40K, because of their closer affinity with the inorganic fraction of the lignite. Compared with other results found in the published literature, the studied ash has relatively high content in radioactivity, but the resulting radiation dose from the radionuclide emissions in the West Macedonia Lignite Center do not contribute significantly to the total effective dose.

  15. Coal Gasification (chapter only)

    SciTech Connect

    Shadle, L.J.; Berry, D.A.; Syamlal, Madhava

    2002-11-15

    Coal gasification is presented in terms of the chemistry of coal conversion and the product gas characteristics, the historical development of coal gasifiers, variations in the types and performance of coal gasifiers, the configuration of gasification systems, and the status and economics of coal gasification. In many ways, coal gasification processes have been tailored to adapt to the different types of coal feedstocks available. Gasification technology is presented from a historical perspective considering early uses of coal, the first practical demonstration and utilization of coal gasification, and the evolution of the various processes used for coal gasification. The development of the gasification industry is traced from its inception to its current status in the world economy. Each type of gasifier is considered focusing on the process innovations required to meet the changing market needs. Complete gasification systems are described including typical system configurations, required system attributes, and aspects of the industry's environmental and performance demands. The current status, economics of gasification technology, and future of gasification are also discussed.

  16. Selective oil agglomeration of lignite

    SciTech Connect

    Halime Abakay Temel; Volkan Bozkurt; Arun Kumar Majumder

    2009-01-15

    In this study, desulfurization and deashing of Adiyaman-Glbai lignite by the agglomeration method were studied. For this purpose, three groups of agglomeration experiments were made. The effects of solid concentration, bridging liquid type and dosage, pH, and screen size on the agglomeration after desliming were investigated in the first group of experiments. The effects of lake water and sea water (the Mediterranean Sea water, the Aegean Sea water, and the Black Sea water) on the agglomeration were investigated in the second group of experiments. The effects of different salts (NaCl, MgCl{sub 2}, and FeCl{sub 3}) on the agglomeration were investigated in the third group of experiments. Agglomeration results showed that the usage of sea waters and soda lake water in the agglomeration medium had a positive effect on the reduction of total sulfur content of agglomerates. In addition, the usage of NaCl, MgCl{sub 2}, and FeCl{sub 3} in the agglomeration medium had a positive effect on the ash content reduction of the agglomerates. 27 refs., 10 figs., 6 tabs.

  17. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  18. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges. PMID:26247289

  19. Gasification. 2nd. ed.

    SciTech Connect

    Christopher Higman; Maarten van der Burgt

    2008-02-15

    This book covers gasification as a comprehensive topic, covering its many uses, from refining, to natural gas, to coal. It provides an overview of commercial processes and covers applications relevant to today's demands. The new edition is expanded and provides more detail on the integration issues for current generation, state-of-the-art Integrated Gasification Combined Cycles (IGCC); CO{sub 2} capture in the IGCC context addressing the issues of pre-investment and retrofitting as well as defining what the term 'CO{sub 2} capture ready' might mean in practice; issues of plant reliability, availability and maintainability (RAM) including as evaluation of feedback from existing plants; implementation of fuel cell technology in IGCC concepts. Contents are: Introduction; The Thermodynamics of Gasification; The Kinetics of Gasification and Reactor Theory; Feedstocks and Feedstock Characteristics; Gasification Processes; Practical Issues; Applications; Auxiliary Technologies; Economics, environmental, and Safety Issues; Gasification and the Future. 5 apps.

  20. Solar coal gasification

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Aiman, W. R.; Otsuki, H. H.; Thorsness, C. B.

    1980-01-01

    A preliminary evaluation of the technical and economic feasibility of solar coal gasification has been performed. The analysis indicates that the medium-Btu product gas from a solar coal-gasification plant would not only be less expensive than that from a Lurgi coal-gasification plant but also would need considerably less coal to produce the same amount of gas. A number of possible designs for solar coal-gasification reactors are presented. These designs allow solar energy to be chemically stored while at the same time coal is converted to a clean-burning medium-Btu gas.

  1. Gasification-based biomass

    SciTech Connect

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. Effects of lignite properties on the hydroliquefaction behavior of representative Turkish lignites

    SciTech Connect

    Oener, M.; Bolat, E.; Dincer, S. )

    1992-01-01

    This paper reports on the conversion and yield data obtained for hydroliquefaction of 11 different Turkish lignites in tetralin, anthracene, and creosote oils with or without catalyst at 440{degrees}C and 80 bar that were correlated with the lignite properties obtained from proximate, ultimate, and petrographic analyses. The intercorrelation of experimental results and analytical data was evaluated by both simple linear regression and stepwise multiple linear regression analyses. Simple linear correlations between conversion and yield data with individual lignite parameters are unsatisfactory. An approach utilizing a stepwise multiple linear regression analysis lead to a number of linear equations relating oil yields to ash, sulfur, volatile matter, elemental carbon, maceral, and xylene extract contents of the lignites.

  3. Inorganic constituents of some Turkish lignites

    SciTech Connect

    Yaman, S.; Taptik, Y.; Yavuz, R.; Kuecuekbayrak, S.

    1996-12-31

    In this study the mineral matter contents of two different Turkish lignite samples from Cayirhan and Tuncbilek regions were isolated by means of mild oxidation of organic matrix applying H{sub 2}O{sub 2}/HCOOH treatment. The isolated minerals were analyzed by XRD and FTIR techniques and constituents of the minerals were investigated qualitatively.

  4. Statistical tests for prediction of lignite quality

    SciTech Connect

    C.J. Kolovos

    2007-06-15

    Domestic lignite from large, bucket wheel excavators based open pit mines is the main fuel for electricity generation in Greece. Lignite from one or more mines may arrive at any power plant stockyard. The mixture obtained constitutes the lignite fuel fed to the power plant. The fuel is sampled in regular time intervals. These samples are considered as results of observations of values of spatial random variables. The aim was to form and statistically test many small sample populations. Statistical tests on the values of the humidity content, the ash-water free content, and the lower heating value of the lignite fuel indicated that the sample values form a normal population. The Kolmogorov-Smirnov test was applied for testing goodness-of-fit of sample distribution for a three year period and different power plants of the Kozani-Ptolemais area, western Macedonia, Greece. The normal distribution hypothesis can be widely accepted for forecasting the distribution of values of the basic quality characteristics even for a small number of samples.

  5. Gasification: A Cornerstone Technology

    ScienceCinema

    Gary Stiegel

    2010-01-08

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  6. Gasification: A Cornerstone Technology

    SciTech Connect

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  7. 2006 gasification technologies conference papers

    SciTech Connect

    2006-07-01

    Sessions covered: business overview, industry trends and new developments; gasification projects progress reports; industrial applications and opportunities; Canadian oil sands; China/Asia gasification markets - status and projects; carbon management with gasification technologies; gasification economics and performance issues addressed; and research and development, and new technologies initiatives.

  8. Kosova coal gasification plant health effects study: Volume 3, Retrospective epidemiology

    SciTech Connect

    Morris, S.C.; Haxhiu, M.A.; Canhasi, B.; Begraca, M.; Ukmata, H.

    1987-12-01

    Disease incidence in coal gasification plant workers in Kosova, Yugoslavia, was compared to that in lignite surface miners who received medical care in the same clinic. No statistically significant difference in incidence rate was found for any of twelve disease categories examined. Early development of a high skin cancer rate, as reported within five years of first exposure at a coal hydrogenation plant in Institute, West Virginia, did not occur. Exploratory analysis indicated trends among gasification plant workers in disease incidence with increasing years of service and increasing occupational exposure levels for chronic bronchitis and mental diseases. Particulate exposures in workers' homes were of the same order as exposures at the gasification plant and further study of residential air pollution levels is recommended. 21 refs., 2 figs., 80 tabs.

  9. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L.

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K {+-} 14K. A unique feature of the HTCF is the {open_quotes}diaphragmless{close_quotes} acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel`dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs.

  10. Comparative studies of Eocene silicified peat and lignite: transition between peat and lignite

    SciTech Connect

    Ting, F.T.C.

    1985-01-01

    Silicified Eocene peats with excellent preserved cellular structures were found in lignite beds in western North Dakota and were comparatively studied. The well preserved plant tissues resemble that of modern Taxodium peat. The most striking difference between silicified peat and lignite is the disappearance of cell cavities when peat is transformed to lignite, a phenomenon caused primarily by compaction rather than cell wall swelling through humification or gelification. The differences between textinite and ulminite can be traced back to the differences between early wood and late wood of the secondary xylem. What appear to be cutinites in lignite are compressed cortex tissues of young plants. Silicified leaf and cortex tissues contain more visible fluorinite exhibiting brilliant fluorescence. Clustering phloem fibers or stone cells give rise to a material resembling resinite but are more akin to huminite A and/or suberinite. They converge to vitrinite when vitrinite reflectance exceeds 0.6%. Alternating banded phloem fibers and phloem parenchyma give rise to alternating layers of huminite A and huminite B. True micrinite does occur in lignite but in limited quantities.

  11. The development and testing of an air/steam blown entrained flow gasifier fuelled with cotton waste and sawdust

    SciTech Connect

    Joseph, S.; Denniss, T.; Lipscombe, R.

    1996-12-31

    Australia produces approximately 50 million tonnes of biomass residue per year. Much of this residue is either burnt in the fields, at factory sites or disposed of in land fill. A recent study, sponsored by the Energy Research and Development Corporation (ERDC), has concluded that there is a potential to generate at least 2000MW of electricity per year from this waste. Research carried out in 1990 by Biomass Energy Services and Technology Pty (BEST) indicated that gasification power generating equipment with electrical outputs of 1-5 MW and installed capital costs of US$1200 per kW could be viable at present electricity prices. At that time equipment was not commercially available at the target price and thus an R & D programme was undertaken to develop gasification equipment suitable for Australian conditions. Following a detailed literature search and design study it appeared that an entrained flow (vortex) gasifier could handle the range of fuels available and could be produced at a price that would ensure its commercial viability. In this paper the design will be outlined and the mathematic modeling of the flow and the results of the tests undertaken will be presented. An outline of the demonstration program to be undertaken next year at a cotton gin will be given, along with the preliminary economic analysis that has been carried out.

  12. NOx reduction in a lignite cyclone furnace

    SciTech Connect

    Melland, C.; O`Connor, D.

    1998-12-31

    Reburning, selective catalytic reduction, and selective noncatalytic reduction techniques have demonstrated some potential for NOx reduction in cyclone boilers. These techniques are costly in terms of both capital and operating costs. Lignite cyclone combustion modeling studies indicated that modifying combustion inside the cyclone barrel could reduce cyclone NOx emissions. The modeling showed that air staging, secondary air basing, flue gas injection and variations in coal moisture content could affect NOx emissions. Short term lignite boiler tests and now longer term boiler operation have confirmed that significant NOx reductions can be accomplished merely by modifying cyclone combustion. The low NOx operation does not appear to significantly impact maintenance, reliability or capacity of the cyclone burner or furnace.

  13. Gasification Technologie: Opportunities & Challenges

    SciTech Connect

    Breault, R.

    2012-01-01

    This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

  14. A model approach to highly dispersing catalytic materials in coal for gasification

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1992-01-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and higher catalytic activity of the latter compound will produce economic benefits by reducing the amount of K[sub 2]CO[sub 3] required for high coal char reactivities. As was shown in previous reports, coal loading with potassium or calcium at different pHs produced CO[sub 2] gasification activities which increased in the order pH 6 > pH 10 >>pH 1. A similar trend was obtained when calcium and potassium were simultaneously loaded and char reaction times were less than about 75 min. In the last quarter, the potential application of ammonia as a reactive medium for coal gasification has been investigated. This gas has not been previously applied to coal gasification. However, related work suggests that the potential chemical feedstock base can be broadened by using ammonia to generate hydrogen cyanide and cyanogen from coal. The current report shows that the reactivity of a demineralized lignite in ammonia is significantly higher in the presence of calcium or potassium catalyst than that for the char without added catalyst and suggests that ammonia is a potentially reactive gas for catalyzed coal gasification.

  15. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  16. (Bioprocessing of lignite coals using reductive microorganisms)

    SciTech Connect

    Crawford, D.L.

    1990-01-01

    The objectives of this report are to: (1) characterize selected aerobic bacterial strains for their abilities to depolymerize lignite coal polymers, and isolate and identify the extracellular enzymes responsible for depolymerization of the coal; (2) characterize selected strictly anaerobic bacteria, that were previously shown to reductively transform coal substructure model compounds, for the ability to similarly transform polymeric coal; and (3) isolate more strains of anaerobic bacteria by enrichment using additional coal substructure model compounds and coal as substrates.

  17. Testing of novel catalytic coal-gasification concepts. Task 1. Ultrasound-promoted catalysis. Final report, September 1986-September 1989

    SciTech Connect

    Mensinger, M.C.; Lau, F.S.; Wangerow, J.R.; Punwani, D.V.

    1990-07-01

    Tests were conducted to determine the effects of operating conditions, catalysts, and reactor configurations on ultrasound-promoted coal gasification. The operating conditions tested with lignite-water or lignite-water-salt slurries included temperatures and pressures in the range of 75 to 650 F, and 50 to 1200 psig, respectively. In tests conducted with nonaqueous slurries, the temperatures and pressures tested ranged from 650 to 720 F and 100 to 200 psig. Catalysts tested were KOH, LiOH, K2CO3, hydrogenation, SNOCAT, laterite, CRG-A, and ruthenium. The frequency of the ultrasonic horn was 20 kHz. Overall, at the conditions and with the catalysts and slurry media tested, ultrasound was not effective in sustaining coal gasification reactions. The most favorable results were obtained with a lignite-water slurry irradiated with high intensity ultrasound with KOH catalyst at 550 F and 1050 psig. After 1 hour of sonication, the carbon conversion to gas was about 5%. Analyses of the slurries from tests conducted with and without ultrasound showed that ultrasound significantly increased the types and quantities of components that were solubilized. As expected, ultrasound significantly reduced the particle size of lignite being irradiated.

  18. Shell Coal Gasification Project. Final report on eighteen diverse feeds

    SciTech Connect

    Phillips, J.N.; Kiszka, M.B.; Mahagaokar, U.; Krewinghaus, A.B.

    1993-07-01

    This report summarizes the overall performance of the Shell Coal Gasification Process at SCGP-1 in Deer Park, Texas. It covers the four year demonstration and experimental program jointly conducted by Shell oil and Shell Internationale Research Maatschappij, with support from the Electric Power Research Institute. The report describes coal properties and gasification results on eighteen feeds which include seventeen diverse coals from domestic and international markets, and petroleum coke. Comparisons between design premises and actual performance on two key feeds, Illinois No. 5 coal and Texas lignite demonstrate that the plant met and exceeded design targets on all key process parameters. Equipment performance results are discussed for all areas of the plant based on periodic interim inspections, and the final inspection conducted in April 1991 after the end of operations. The report describes process control tests conducted in gasifier lead and turbine lead configurations, demonstrating the ability of the process to meet utility requirements for load following. Environmental result on the process for a wide variety of feedstocks are documented. These results underscore the inherent strength of the SCGP technology in meeting and exceeding all environmental standards for air, water and solids. The excellent applicability of the Shell Coal Gasification Process in integrated combined cycle power generation systems is described in view of the high efficiency derived from this process.

  19. INTEGRATED ASSESSMENT OF TEXAS LIGNITE DEVELOPMENT. VOLUME I. TECHNICAL ANALYSES

    EPA Science Inventory

    This report contains the results of a project to assess the probable impacts of expected future development of Texas lignite resources. This multi-disciplinary, policy-oriented study considered possible lignite extraction and utilization options through the year 2000. The researc...

  20. Characterization of microbes which polymerize and depolymerize lignite coals

    SciTech Connect

    Polman, J.K.; Breckenridge, C.R.; Quigley, D.R.

    1991-01-01

    Several bacteria were tested for their ability to modify the macromolecular structure of different coals. When grown in the presence of Mississippi Wilcox lignite, North Dakota Beulah Zap lignite, and North Dakota lenoardite, strain Con5-1L produces polymerization products that are derived from coal. This bacterium was characterized extensively with respect to physiology and morphology and may be a member of the genus Arthrobacter. Strain UPLCPS2-B, which was identified as Pseudomonas chlororaphis, may be capable of limited depolymerization of Mississippi Wilcox lignite and leonardite, but not Beulah Zap lignite. Fermentative strain Con5-5C, which may extensively depolymerize Mississippi Wilcox lignite, was characterized according to morphology and physiology. Other strains tested had little or no effect on coal macromolecular structure. These included Escherichia coli, Arthrobacter paraffineus, and strain BED1. 21 refs., 2 figs.

  1. Characterization of microbes which polymerize and depolymerize lignite coals

    SciTech Connect

    Polman, J.K.; Breckenridge, C.R.; Quigley, D.R.

    1991-12-01

    Several bacteria were tested for their ability to modify the macromolecular structure of different coals. When grown in the presence of Mississippi Wilcox lignite, North Dakota Beulah Zap lignite, and North Dakota lenoardite, strain Con5-1L produces polymerization products that are derived from coal. This bacterium was characterized extensively with respect to physiology and morphology and may be a member of the genus Arthrobacter. Strain UPLCPS2-B, which was identified as Pseudomonas chlororaphis, may be capable of limited depolymerization of Mississippi Wilcox lignite and leonardite, but not Beulah Zap lignite. Fermentative strain Con5-5C, which may extensively depolymerize Mississippi Wilcox lignite, was characterized according to morphology and physiology. Other strains tested had little or no effect on coal macromolecular structure. These included Escherichia coli, Arthrobacter paraffineus, and strain BED1. 21 refs., 2 figs.

  2. Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report

    SciTech Connect

    Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

    1982-09-01

    The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than the higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.

  3. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.

    PubMed

    Narobe, M; Golob, J; Klinar, D; Francetič, V; Likozar, B

    2014-06-01

    Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850°C and 900°C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements. PMID:24736208

  4. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  5. Relationships proximate analysis results and higher heating values of lignites

    SciTech Connect

    Demirbas, A.

    2008-07-01

    In this study, the higher heating values (HHVs) of 26 lignite samples were calculated by using the proximate and elemental analyses data. The proximate analysis results such as volatile materials (VM), fixed carbon (FC) and HHV and the elemental analysis results such as carbon, hydrogen (H), oxygen (O), nitrogen (N) and sulfur (S) were determined for 26 lignite samples from different areas of Turkey. The lignite samples have been tested with particle size of 0-0.05 mm. The HHVs of 26 lignite samples obtained from different Turkish sources were determined experimentally and calculated from both ultimate and proximate analyses. HHVs of 26 the lignite samples can be calculated from the equation based modeling. The HHVs (MJ/kg) of the lignite samples as a function of fixed carbon (FC, wt%) or volatile materials (VM, %) was calculated from the following equations: HHV = 0.300FC + 11.117 (1) HHV = -0.323VM + 42.223 (2) where the correlation coefficients for Eqs. (1) and (2) were 0.9907 and 0.9862, respectively. The combustion heats calculated from Eqs. (1) and (2) showed mean differences of +3.9% and +0.3%, respectively. The HHVs (MJ/kg) of the lignite samples as a function of C, H, O, N, and S were calculated from a given equation where the correlation coefficients for the equation was 0.9891. HHVs calculated from this equation showed a mean deviation of +0.1.

  6. Drying grain using a hydrothermally treated liquid lignite fuel

    SciTech Connect

    Bukurov, Z.; Cvijanovic, P.; Bukurov, M.; Ljubicic, B.R.

    1995-12-01

    A shortage of domestic oil and natural gas resources in Yugoslavia, particularly for agricultural and industrial purposes, has motivated the authors to explore the possibility of using liquid lignite as an alternate fuel for drying grain. This paper presents a technical and economic assessment of the possibility of retrofitting grain-drying plants currently fueled by oil or natural gas to liquid lignite fuel. All estimates are based on lignite taken from the Kovin deposit. Proposed technology includes underwater mining techniques, aqueous ash removal, hydrothermal processing, solids concentration, pipeline transport up to 120 km, and liquid lignite direct combustion. For the characterization of Kovin lignite, standard ASTM procedures were used: proximate, ultimate, ash, heating value, and Theological analyses were performed. Results from an extensive economic analysis indicate a delivered cost of US$20/ton for the liquid lignite. For the 70 of the grain-drying plants in the province of Vojvodina, this would mean a total yearly saving of about US $2,500,000. The advantages of this concept are obvious: easy to transport and store, nonflammable, nonexplosive, nontoxic, 30%-40% cheaper than imported oil and gas, domestic fuel is at hand. The authors believe that liquid lignite, rather than an alternative, is becoming more and more an imperative.

  7. Nitrogen incorporation into lignite humic acids during microbial degradation

    SciTech Connect

    Dong, L.H.; Yuan, H.L.

    2009-07-01

    Previous study showed that nitrogen content in lignite humic acids (HA) increased significantly during lignite biodegradation. In this paper we evaluated the factors responsible for the increased level of N in HA and the formation of new nitrogen compound following microbial degradation. When the ammonium sulfate concentration in lignite medium was 0.5%, the N-content in HA was higher than that in the crude lignite humic acid (cHA); when the ammonium sulfate concentration was epsilon 0.5%, both the biodegraded humic acid (bHA) N-content and the content of bHA in lignite increased significantly, but at 2.0% no increase was observed. This indicated that HA incorporated N existing in the lignite medium, and more HA can incorporate more N with the increase of bHA amount in lignite during microbial degradation. CP/MAS {sup 15}N NMR analysis showed that the N incorporated into HA during biotransformation was in the form of free or ionized NH{sub 2}-groups in amino acids and sugars, as well as NH{sub 4}{sup +}. We propose nitrogen can be incorporated into HA biotically and abiotically. The high N content bHA has a potential application in agriculture since N is essential for plant growth.

  8. Briquettability of lignite and woody wastes composite fuel

    SciTech Connect

    Beker, U.G.

    2000-03-01

    Woody wastes have favorable burning characteristics compared to lignite, as well as low ash content and reduced smoke emission. The aim of this study was to blend lignite with woody wastes to obtain a solid fuel that retains the advantageous characteristics of woody materials. Blends with lignite were made up with 7, 9, 12, 15, and 20% of waste and then briquetted under pressures of 400, 550, 700, and 800 MPa. Sunflower shell, sawdust, and paper mill wastes were used in different amounts with molasses as binder. Studies were carried out on a laboratory scale to determine optimum parameters for briquetting, such as moisture content of lignite and pressure. Briquetting of lignite without waste materials produces products of low strength. The strongest briquettes were obtained with waste contents of 12--20% and lignite moisture contents of 10--12% at briquetting pressures of 550, 700, and 800 MPa. Briquettes with adequate mechanical strength are obtained from lignite-waste blends with the addition of 8% molasses.

  9. Emissions estimation for lignite-fired power plants in Turkey

    SciTech Connect

    Nurten Vardar; Zehra Yumurtaci

    2010-01-15

    The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

  10. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time.

    PubMed

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2015-03-01

    Lignite and sewage sludge were co-pyrolyzed in a vacuum reactor with high temperature (900°C) and long contact time (more than 2h). Beneficial synergetic effect on gas yield was clearly observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The gas volume yield, gas lower heating value (LHV), fixed carbon conversion and H2/CO ratio were 1.42 Nm(3)/kg(blend fuel), 10.57 MJ/Nm(3), 96.64% and 0.88% respectively, which indicated this new method a feasible one for gas production. It was possible that sewage sludge acted as gasification agents (CO2 and H2O) and catalyst (alkali and alkaline earth metals) provider during co-pyrolysis, promoting CO2-char and H2O-char gasification which, as a result, invited the improvement of gas volume yield, gas lower heating value and fixed carbon conversion. PMID:25542402

  11. Effects of rank and calcium catalysis on oxygen chemisorption and gasification reactivity of coal chars

    NASA Astrophysics Data System (ADS)

    Piotrowski, Andrzej

    The effects of coal rank and calcium catalysis on oxygen gasification of coal chars have been investigated. Five different coals, from lignite to anthracite were used. Coals were demineralized and a calcium catalyst was deposited on the carbon in different amounts, by ion exchange for lignite and subbituminous coals and by impregnation for the others. Chars from all coals were obtained by both slow and rapid pyrolysis. Oxygen chemisorption studies conducted under conditions far away from gasification and measured oxygen uptakes during gasification revealed that large amounts of oxygen are chemisorbed. The lower the coal rank, the greater the amount of chemisorbed oxygen in both cases. The presence of a calcium catalyst additionally increased the oxygen uptake by solid carbons. The chemisorption tests also showed the influence of diffusion inside the smallest micropores on the kinetics of the process. Reactivity profiles were investigated in detail. Demineralized coal chars showed monotonic, linear increases with burn-off for a broad range of conversion (20-80%). The higher the coal rank, the greater the reactivity increase per unit burn-off. A comparison of reactivities of the demineralized form of coal chars confirmed that the reactivity is affected by diffusion inside the smallest micropores for experiments in the intermediate temperature range, usually 700-800 K. A comparison of reactivities of the calcium-loaded and demineralized coal chars prepared and subsequently reacted at the same conditions has confirmed that the catalytic effect of calcium is the greatest for lower-rank coals, and that it decreases with increasing coal rank. Comparable reactivities for as-received and calcium-loaded lignite and subbituminous char were about two orders of magnitude greater than for a corresponding demineralized char. For higher ranks of coal the effect of calcium loading is smaller than one order of magnitude. For the lower ranks of coal, where calcium is very well

  12. Appraising lignite quality parameters by linguistic fuzzy identification

    SciTech Connect

    Tutmez, B.

    2007-03-15

    Lignite quality parameters have had central importance for power plants. This article addresses a comparative study on fuzzy and regression modeling for estimating the calorific value of lignite, which is one of the quality parameters from the other parameters: moisture, ash, volatile matter, and sulphur content. For the estimations, data driven models were designed based on linguistic fuzzy modeling structures. In addition, estimations of the fuzzy models were compared with linear regression estimations. The great majority of performance evaluations showed that the fuzzy estimations are very satisfactory in estimating calorific value of lignite.

  13. Distribution of coal quality parameters in lignites of northeast Texas

    SciTech Connect

    Crowley, S.S.; Warwick, P.D.; Thomas, R.E.; Mason, W.H.

    1996-12-31

    The distribution of coal quality characteristics was examined in lignites (Wilcox Group, Paleocene-Eocene) near Mt. Pleasant, Texas. Coal quality parameters including ash yield, sulfur forms, moisture, calorific value, and selected potentially hazardous trace elements were plotted on cross sections of lignite beds to determine their stratigraphic distribution. This study has been undertaken as a part of the US Geological Survey`s National Coal Resource Assessment (NCRA) program in the Gulf Coast Lignite Region. The distribution in coal of Hazardous Air Pollutant elements (HAPs), as defined in the Clean Air Act Amendments of 1990, are an important focus of the NCRA program.

  14. Beysehir lignite-mining study. Final report. Export trade information

    SciTech Connect

    Not Available

    1984-03-30

    Mineable lignite has been identified at three zones in the Beysehir area of Turkey; Karadiken, Avdancik, and Akcalar. The lignite from all three areas, has definite possibilities to be economically and selectively recovered by modern open pit mining techniques. It can then be converted into fuel for a steam electric power generating station by technology that has been proven in operation for over eight years. The highest Turkish government authorities have authorized the Turkish Electricity Authority (TEK) to contract for and eventually operate both the lignite mining facility and the steam electric generating plant at Beysehir in an effort to avoid heretofore experienced delays, overruns, and under-production.

  15. Use of fuzzy logic in lignite inventory estimation

    SciTech Connect

    Tutmez, B.; Dag, A.

    2007-07-01

    Seam thickness is one of the most important parameters for reserve estimation of a lignite deposit. This paper addresses a case study on fuzzy estimation of lignite seam thickness from spatial coordinates. From the relationships between input (Cartesian coordinates) and output (thickness) parameters, fuzzy clustering and a fuzzy rule-based inference system were designed. Data-driven fuzzy model parameters were derived from numerical values directly. In addition, estimations of the fuzzy model were compared with kriging estimations. It was concluded that the performance ofthe fuzzy model was more satisfactory. The results indicated that the fuzzy modeling approach is very reliable for the estimation of lignite reserves.

  16. Variable capacity gasification burner

    SciTech Connect

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  17. Advanced hybrid gasification facility

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; Johnson, S.A.; Dixit, V.B.

    1993-08-01

    The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

  18. Gasification of black liquor

    DOEpatents

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  19. Gasification of black liquor

    DOEpatents

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  20. Determination and calculation of combustion heats of 20 lignite samples

    SciTech Connect

    Demirbas, A.; Dincer, K.; Topaloglu, N.

    2008-07-01

    In this study, the proximate analyses, such as volatile matter (VM), fixed carbon (FC), and higher heating value (HHV), were determined for 20 lignite samples from different areas of Turkey. The lignite samples have been tested with particle size of 0-0.05 mm. Combustion heats (higher heating values, HHVs) of 20 lignite samples obtained from different Turkish sources were determined experimentally and calculated from both ultimate and proximate analyses. The HHVs (MJ/kg) of the lignite samples as a function of fixed carbon (FC, wt%) or volatile materials (VM, %) was calculated from the following equations: HHV = 0.2997FC + 11.1170 (1) HHV = -0.3225VM + 42.223 (2). The correlation coefficients for Eqs. (1) and (2) were 0.9820 and 0.9686, respectively. The combustion heats calculated from Eqs. (1) and (2) showed mean differences of +0.4% and +0.4%, respectively.

  1. Effect of mechanical dispersion of lignite on its thermal decomposition

    SciTech Connect

    Yusupov, T.S.; Shumskaya, L.G.; Burdukov, A.P.

    2007-09-15

    It is studied how the high-rate mechanical grinding affects thermal decomposition of lignite extracted from the Kansk-Achinsk Coal Basin. It has been shown that dispersion of lignite in the high energy intensive vibration-centrifugal and planetary mills causes formation of structures exhibiting lower thermal stability. That results in the shift of primary decomposition phenomena into the low-temperature region and, thus, in the higher reactivity of coals.

  2. Evaluation of lignite combustion residues as cement additives

    SciTech Connect

    Demirbas, A.; Aslan, A.

    1999-07-01

    In this study the physical and chemical properties of lignite fly ashes obtained from electrostatic precipitator and cyclone, lignite bottom ash, cement + lignite ash mixtures, and their effects on mechanical properties of concrete were investigated. The ashes were classified into two general types based on total silica, alumina, and iron-III oxide: class A and class B. When 25% of the cement was replaced by class A lignite bottom ash (the combined three oxide contents were 30.2%), the 28-day compressive strength increased by 18.9% compared to the control mix, and when 25% of the cement was replaced by class B lignite ash (the combined three oxide contents were 78.1%), the compressive strength decreased by 3.5% compared to the control mix. The results obtained were compared with the Turkish Standards and, in general, were found to be within the limits. As a result, the lignite fly ash and bottom ash samples may be used as cementitious materials.

  3. Pyrolysis and gasification of coal at high temperatures

    SciTech Connect

    Zygourakis, K.

    1988-01-01

    Particles from two parent coals (Illinois [number sign]6 and lignite) were pyrolyzed in a nitrogen atmosphere using a captive sample microreactor capable of achieving heating rates as high as 1000[degrees]C/s. Direct measurements on digitized image of char particle cross-sections and a stereological model were used to characterize the macropore structure of chars. Macroporosites, pore size distributions and surface areas were accurately measured allowing us to quantify the effects of pyrolysis heating rates and coal particle size. We have paid particular attention to the development of image analysis software that has allowed us to analyze for the first time the shape or bounary tortuosity of the macropores. Tortuous pore boundaries result in higher values for the true macropore surface areas and should enhance the reactivity of the char samples. Another contribution of the current research program is the development of probabilisitic gasification models that work on computational grids obtained from digitized images of actual cross-sections of char particles. These digital images are accurate discrete approximations of a slice of the actual reacting solid. The incorporation of sophisticated image processing technique is perhaps the most attractive feature of the new simulation approach. Preliminary results indicate that the probabilistic models can accurately account for the opening of closed porosity and fragmentation phenomena occurring during gasification at high temperatures.

  4. In-situ gasification and liquefaction show promise

    NASA Astrophysics Data System (ADS)

    Miskell, J. T.

    1980-05-01

    Recent progress in the development of in-situ coal gasification and shale liquefaction is discussed. The presence of potentially gasifiable subbituminous, bituminous and lignite coal reserves in the United States amounting to 1800 billion tons, compared with minable coal reserves of 430 billion tons, is pointed out as a major motivation for the development of in-situ extraction techniques, which are estimated to be some of the least expensive potential sources of synthetic natural gas. The successful test of an underground gasification unit operating for 35 days in a 23-ft thick coal seam dipping at 63 deg to produce low-Btu fuel gas and nitrogen-free synthesis gas that can be converted to hydrocarbons is presented, and operational, geological, environmental and economic constraints on the operation of such a unit are considered. In-situ extraction of kerogen from shale using conventional or RF methods is presented as the most promising means for utilizing the great reserves of shale in the United States, requiring little water and causing least disturbance to the environment, and it is noted that the RF process will probably become available by the mid-1980s.

  5. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher

  6. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  7. The washability of lignites for clay removal

    SciTech Connect

    Oteyaka, B.; Yamik, A.; Ucar, A.; Sahbaz, O.; Demir, U.

    2008-07-01

    In the washability research of the Seyitomer Lignites (Kutahya-Turkey), with lower calorific value (1,863 kcal/kg) and high ash content (51.91%), by heavy medium separation, it was found out that middling clay in the coal had an effect to change the medium density. To prevent this problem, a trommel sieve with 18 and 5 mm aperture diameter was designed, and the clay in the coal was tried to be removed using it before the coal was released to heavy medium. Following that, the obtained coal in -100 + 18 mm and -18 + 5 mm fractions was subjected to sink and float test having 1.4 gcm{sup -3} and 1.7 gcm{sup -3} medium densities (-5 mm fraction will be evaluated in a separate work). Depending on the raw coal, with the floating of -100 + 18 mm and -18 + 5 mm size fraction in 1.4 gcm{sup -3} medium density, clean coal with 60.10% combustible matter recovery, 19.12% ash, and 3,150 kcal/kg was obtained. Also floating of the samples sinking in 1.4 gcm{sup -3} in the medium density (1.7 gcm{sup -3}), middling with 18.70% combustible matter recovery, 41.93% ash, 2,150 kcal/kg, and tailing having 78.31% ash were obtained.

  8. Microbial screening test for lignite degradation. Quarterly progress report No. 1, January-March 1985

    SciTech Connect

    Yen, T.F.

    1985-01-01

    Potassium permanganate and sodium hypochlorite oxidation of lignitic coal were performed. Ion chromatography of low molecular weight carboxylic acids - oxalic acid, formic acid, and acetic acid - produced by potassium permanganate and sodium hypochlorite oxidation was executed. Oxalic acid was found to be the most predominant low molecular weight species. It was estimated that about 10% of the carbon present in the chemical structure of lignite was converted to oxalic acid by sodium hypochlorite oxidation. Ion chromatography analysis showed that about 43% of the lignite carbon was converted to carbon dioxide in all experiments. Biological degradation of lignite by P. versicolor, a white-rot fungus, on lignite/agar and lignite slurry was attempted. Apparently, P. versicolor is capable of growing on lignite slurry. Acclimation of P. versicolor to lignite was proceeded. Biochemical reaction test for laccase production of P. versicolor was performed and found to be positive. 15 refs., 5 figs., 6 tabs.

  9. Radioenvironmental survey of the Megalopolis lignite field basin.

    PubMed

    Rouni, P K; Petropoulos, N P; Anagnostakis, M J; Hinis, E P; Simopoulos, S E

    2001-05-14

    The Megalopolis lignite field basin in southern Greece, with Megalopolis-A and B lignite-fired power plants in operation (total 900 MW), has been repeatedly investigated during the past 25 years by the Nuclear Engineering Section of the National Technical University of Athens (NES-NTUA). The present work aims at an integrated radioenvironmental approach leading to the dose assessment to the public and to the plants staff. This approach includes systematic sampling of lignite and barren at the local lignite mines feeding the power plants and sampling of lignite, fly-ash and bottom ash at the power plants for the determination of the activity of the natural radionuclides 226Ra, 232Th, 40K, 234Th and 210Pb. Furthermore, the following measurements and samplings were conducted in 25 selected sites within 10 km around the power plants: soil sampling for the determination of the above radionuclides, radon concentration and exhalation rate measurements, soil gas radon concentration measurements, dose measurements and calculations, determination of air-particulate matter concentration, etc. The results obtained allowed for the mapping of the parameters studied which lead to useful conclusions. Dosimetric calculations for the population living around the power plants and the plants staff were also performed based on the guidance of UNSCEAR (1982 report). PMID:11379921

  10. Study on Combustion Characteristics of Lignite in a CFB Boiler

    NASA Astrophysics Data System (ADS)

    Leng, J.; Zou, T. S.; Wu, J. X.; Jiang, C.; Gao, J. L.; Wu, J.; Su, D.; Song, D. Y.

    The shortage of coal promotes the lignite utility in power plant because of the rapid economy development recently. However, lignite is high in moisture content as well as volatile content and low in calorific value. It is very difficult to burn in traditional pulverized coal fired boiler. Circulating fluidized bed (CFB) boiler is an alternative with low pollutant emission. Some CFB boilers are built and put into commercial operation in Northeast China and East Inner Mongolia where lignite is abundant. The operation experiences of these boilers are introduced in this paper. The effect of coal particle size on bottom ash ratio, combustion efficiency, thermal efficiency, pollution emission, and ash deposits in convective heating surface were investigated. It was found that for the lignite fired CFB boiler, the largest coal particle size should be 20 to 40mm to maintain bed material balance. But the bottom ash only shares less than 10% of the total ash. Due to high volatile content in the lignite, the combustion efficiency could achieve more than 99%. Meanwhile, NOx emission was relative low and satisfied national environment protection requirement. It is suggested that flue gas velocity in convective heating surface should be ranged in a certain scope to prevent ash deposit and erosion.

  11. Gasification reactivities of solid biomass fuels

    SciTech Connect

    Moilanen, A.; Kurkela, E.

    1995-12-31

    The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

  12. Catalysis in biomass gasification

    SciTech Connect

    Baker, E.G.; Mudge, L.K.

    1984-06-01

    The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

  13. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    SciTech Connect

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated disinfection by-products (DBPs). Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. The Energy & Environmental Research Center has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During previous studies, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon product. As much as a 130% increase in the humic acid sorption capacity of a PAC produced from a high-sodium-content lignite was observed. During this study, activated carbons were prepared from three coals representing high-sodium, low-sodium--low-calcium, and high-calcium compositions in two steps, an initial char formation followed by mild activation with steam to avoid excessive burnout. This set of carbons was characterized with respect to physical and chemical properties. The BET (Brunauer-Emmett-Teller) nitrogen adsorption isotherms gave relatively low surface areas (ranging from 245 to 370 m{sup 2}/g). The lowest-BET area was obtained for the high-sodium carbon, which can be attributed to enlargement of micropores as a result of sodium-catalyzed gasification reaction of the carbon structure. This hypothesis is consistent with the scanning electron microscopy microprobe analyses, which show that in both the coal and the activated carbon from this coal, the sodium is distributed over both the carbon structure and the mineral particles. Thus it is initially associated with carboxylate groups on the coal and then as sodium oxide or

  14. PNNL Coal Gasification Research

    SciTech Connect

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  15. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  16. Air blown gasification cycle

    SciTech Connect

    Dawes, S.G.; Mordecai, M.; Brown, D.; Burnard, G.K.

    1995-12-31

    The Air Blown Gasification Cycle (ABGC) is a hybrid partial gasification cycle based on a novel, air blown pressurized fluidized bed gasifier (PFBG) with a circulating fluidized bed combustor (CFBC) to burn the residual char from the PFBG. The ABGC has been developed primarily as a clean coal generation system and embodies a sulfur capture mechanism based on the addition of limestone, or other sorbent, to the PFBG where it is sulfided in the reducing atmosphere, followed by oxidation to a stable sulfate residue in the CFBC. In order to achieve commercialization, certain key technological issues needed to be addressed and an industry-led consortium was established to develop the components of the system through the prototype plant to commercial exploitation. The consortium, known as the Clean Coal Power Generation Group (CCPGG), is undertaking a program of activity aimed at achieving a design specification for a 75 MWe prototype integrated plant by March, 1996. Component development consists of both the establishment of new components, such as the PFBG and the hot gas clean up system, and specific development of already established components, such as the CFBC, raw gas cooler, heat recovery steam generator (HRSG) and gas turbine. This paper discusses the component development activities and indicates the expected performance and economics of both the prototype and commercial plants. In addition, the strategy for component development and achievement of the specification for a 75 MWe prototype integrated plant is described.

  17. Coal gasification cogeneration process

    SciTech Connect

    Marten, J.H.

    1990-10-16

    This patent describes a process for the coproduction of a combustible first gas stream usable as an energy source, a sulfur-dioxide-containing second gas stream usable as a source for oxidant in the gasification of coal and a sulfur-dioxide-containing third gas stream usable as a feedstock for the production of sulfuric acid. It comprises: reacting coal in a coal gasification zone in the presence of an oxidant under partial coal-gasifying conditions to produce carbonaceous char and a crude gas stream; separating sulfur-containing compounds from the crude gas stream in a sulfur recovery zone to produce a combustible first gas stream and elemental sulfur; reacting the carbonaceous char and gypsum in a reaction zone in proportions such that the non-gypsum portion of the carbonaceous char and gypsum mixture contains sufficient reducing potential to reduce sulfur in the gypsum to gaseous compounds of sulfur in a +4 or lower oxidation state under reducing conditions to produce first a sulfur-dioxide-containing second gas stream which contains weaker SO{sub 2} produced in an early stage of the reaction zone and removed from the reaction zone, and then a sulfur-dioxide-containing third gas stream which contains concentrated SO{sub 2} recovered from a later stage of the reaction zone.

  18. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  19. Thermal decomposition behaviors of lignite by pyrolysis-FTIR

    SciTech Connect

    Feng, J.; Li, W.Y.; Xie, K.C.

    2006-01-21

    An in situ pyrolysis reactor combined with the Fourier transformation infrared spectrometer (PFTIR) technique is employed to study the coal structure and its thermal decomposition behaviors. The interface of pyroprobe with FTIR was designed delicately to ensure the path of the laser beam in FTIR was just 3 {mu}m above the coal sample, so any detection information of products from coal pyrolysis would be acquired previous to the secondary reaction. The PFTIR technique can be adopted to determine the activation energy of coal pyrolysis. Lignite coal has been used to evaluate this new method. The thermal decomposition behaviors of functional groups from lignite pyrolysis coincide with the first-order reaction.

  20. The distribution of trace elements in Turkish lignites in Western Anatolia and the Thrace Basin

    SciTech Connect

    Palmer, C.A.; Tuncali, E.; Finkelman, R.

    1999-07-01

    The United States Geological Survey (USGS) and the General Directorate of Mineral Research and Exploration in Turkey (Maden Tetkik ve Arama:MTA) are working together to provide a more complete understanding of the chemical properties of lignites from major Turkish lignite producing areas. The project is a part of the USGS effort to produce an international coal database and is part of the ``Technological and Chemical properties of Turkish Lignite Inventory Project'' being conducted by the MTA General Directorate. The lignites in Turkey formed in several different depositional environments at different geologic times and have differing chemical properties. The Eocene lignites are limited to northern Turkey. Oligocene lignites, in the Trace Basin of northwestern Turkey, are intercalated with marine sediments. Miocene lignites are generally located in western Turkey. These coal deposits have relatively abundant reserves, with limnic characteristics. The Pliocene-Pleistocene lignites are found in the eastern part of Turkey. Most of these lignites have low calorific values, high moisture and high ash contents. The majority of the lignite extraction is worked in open-pit mines. Turkish lignite production is used mainly by power plants; small amounts are used by households and in industry. All the samples in this study were collected as channel samples of the beds. Analyses of 71 coal samples (mostly lignites) have been completed for 54 elements using various analytical techniques including inductively coupled plasma emission and mass spectrometry, instrumental neutron activation analysis and various single element techniques. Many of these lignites have elemental concentrations similar to those of US lignites. However, maximum or mean concentrations of B, Cr, Cs, Ni, As, Br, Sb, Cs and U in Turkey were higher than the corresponding maximum or mean found in either of the Fort Union or Gulf Coast basins, the two most productive lignite basins in the U.S.

  1. A model approach to highly dispersing catalytic materials in coal for gasification. Eleventh quarterly report, April 1, 1992--June 30, 1992

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1992-10-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and higher catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. As was shown in previous reports, coal loading with potassium or calcium at different pHs produced CO{sub 2} gasification activities which increased in the order pH 6 > pH 10 >>pH 1. A similar trend was obtained when calcium and potassium were simultaneously loaded and char reaction times were less than about 75 min. In the last quarter, the potential application of ammonia as a reactive medium for coal gasification has been investigated. This gas has not been previously applied to coal gasification. However, related work suggests that the potential chemical feedstock base can be broadened by using ammonia to generate hydrogen cyanide and cyanogen from coal. The current report shows that the reactivity of a demineralized lignite in ammonia is significantly higher in the presence of calcium or potassium catalyst than that for the char without added catalyst and suggests that ammonia is a potentially reactive gas for catalyzed coal gasification.

  2. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2001-07-10

    sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. The PGM consists of a pressurized circulating fluidized bed (PCFB) reactor together with a recycle cyclone and a particulate removing barrier filter. Coal, air, steam, and possibly sand are fed to the bottom of the PCFB reactor and establish a relatively dense bed of coal/char in the bottom section. As these constituents react, a hot syngas is produced which conveys the solids residue vertically up through the reactor and into the recycle cyclone. Solids elutriated from the dense bed and contained in the syngas are collected in the cyclone and drain via a dipleg back to the dense bed at the bottom of the PCFB reactor. This recycle loop of hot solids acts as a thermal flywheel and promotes efficient solid-gas chemical reaction.

  3. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  4. Coal gasification vessel

    DOEpatents

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  5. Materials of Gasification

    SciTech Connect

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  6. GAMMA RADIATION TREATMENT OF WATERS FROM LIGNITE MINES

    EPA Science Inventory

    Discussed in this report are results of laboratory investigations carried out with the application of gamma radiation for the purification of waters drained from surface lignite mines. These waters are polluted to a considerable extent with suspended matter of various sizes, a la...

  7. PURIFICATION OF WATERS DISCHARGED FROM POLISH LIGNITE MINES

    EPA Science Inventory

    The exploitation of lignite deposits is linked with the necessity of lowering the groundwater table and dewatering the mine of precipitation. A large percentage of the discharge waters requires purification prior to delivery of receiving streams. The chief pollutants of these wat...

  8. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    SciTech Connect

    Kuznetsov, B.N.; Schchipko, M.L.

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  9. WASHABILITY CHARACTERISTICS OF ARKANSAS AND TEXAS LIGNITES: REPORT OF INVESTIGATIONS

    EPA Science Inventory

    The report describes the washability characteristics of 11 channel samples of lignite: 4 from Arkansas and 7 from Texas. The two samples collected from Dallas County, Arkansas, could be upgraded to meet the current EPA New Source Performance Standard (NSPS) of 1.2 lb SO2/million ...

  10. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Escapeways; bituminous and lignite mines. 75.380 Section 75.380 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation §...

  11. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Escapeways; bituminous and lignite mines. 75.380 Section 75.380 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation §...

  12. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Escapeways; bituminous and lignite mines. 75.380 Section 75.380 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation §...

  13. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Escapeways; bituminous and lignite mines. 75.380 Section 75.380 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation §...

  14. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Escapeways; bituminous and lignite mines. 75.380 Section 75.380 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation §...

  15. Technology Assessment Report: Aqueous Sludge Gasification Technologies

    EPA Science Inventory

    The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...

  16. June 2007 gasification technologies workshop papers

    SciTech Connect

    2007-06-15

    Topics covered in this workshop are fundamentals of gasification, carbon capture and sequestration, reviews of financial and regulatory incentives, co-production, and focus on gasification in the Western US.

  17. Beluga Coal Gasification - ISER

    SciTech Connect

    Steve Colt

    2008-12-31

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  18. Biothermal gasification of biomass

    SciTech Connect

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  19. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward. PMID:12046301

  20. Study on product distributions and char morphology during rapid co-pyrolysis of platanus wood and lignite in a drop tube fixed-bed reactor.

    PubMed

    Meng, Haiyu; Wang, Shuzhong; Chen, Lin; Wu, Zhiqiang; Zhao, Jun

    2016-06-01

    The rapid co-pyrolytic behavior of platanus wood and Pingzhuang lignite was explored in a drop tube fixed-bed reactor under nitrogen atmosphere. Synergistic effects were evaluated using the deviations between experimental and predicted values of product yields and gas components. Surface morphology of residual chars were also investigated applying the scanning electron microscopy technique (SEM). This study found that the experimental values of gas volume yields were greater than the predicted, and the maximum gas volume yield exhibited with 50% biomass blending ratio at 1000°C. Positive or negative synergistic effects happened in gas components at different blending ratios and temperatures. The SEM results indicated that the differences of char surface morphology were evident. The fractal dimensions of residual chars increased with increasing biomass blending ratio, which may improve their gasification or combustion reactivity. The change in product yields and gas components was attributed to the secondary reactions and tar cracking. PMID:26985627

  1. A continuous two stage solar coal gasification system

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.; Manasse, F. K.; Venkataramanan, V.

    The characteristics of a two-stage fluidized-bed hybrid coal gasification system to produce syngas from coal, lignite, and peat are described. Devolatilization heat of 823 K is supplied by recirculating gas heated by a solar receiver/coal heater. A second-stage gasifier maintained at 1227 K serves to crack remaining tar and light oil to yield a product free from tar and other condensables, and sulfur can be removed by hot clean-up processes. CO is minimized because the coal is not burned with oxygen, and the product gas contains 50% H2. Bench scale reactors consist of a stage I unit 0.1 m in diam which is fed coal 200 microns in size. A stage II reactor has an inner diam of 0.36 m and serves to gasify the char from stage I. A solar power source of 10 kWt is required for the bench model, and will be obtained from a central receiver with quartz or heat pipe configurations for heat transfer.

  2. Mild coal gasification: Product separation

    SciTech Connect

    Wallman, P.H.; Singleton, M.F.

    1992-08-04

    Our general objective is to further the development of efficient continuous mild coal gasification processes. The research this year has been focused on product separation problems and particularly the problem of separating entrained ultra-fine particles from the chemically reactive environment of the product gas stream. Specifically, the objective of the present work has been to study candidate barrier filters for application to mild coal gasification processes. Our approach has been to select the most promising existing designs, to develop a design of our own and to test the designs in our bench-scale gasification apparatus. As a first step towards selection of the most promising barrier filter we have determined coking rates on several candidate filter media.

  3. Reduction of iron oxide as an oxygen carrier by coal pyrolysis and steam char gasification intermediate products

    SciTech Connect

    Jing-biao Yang; Ning-sheng Cai; Zhen-shan Li

    2007-12-15

    The feasibility of the reduction of oxygen carrier Fe{sub 2}O{sub 3} in chemical-looping combustion using solid fuel (lignite) provided a gasifying agent like steam was introduced into the reactor was investigated with a fixed-bed reactor. The X-ray diffractometer and scanning electron microscope were used for the characterization of the Fe{sub 2}O{sub 3} and its reduction residue. Results strongly supported the feasibility of Fe{sub 2}O{sub 3} reduction by lignite and obtaining pure CO{sub 2} from the off-gases. Fe{sub 2}O{sub 3} can be fully converted to Fe{sub 3}O{sub 4} by pyrolysis and gasification intermediates primarily H{sub 2} and CO, which was confirmed by both the off-gas concentrations and X-ray diffractometer analysis. A 0.75 g portion of Fe{sub 2}O{sub 3} can be completely reduced to Fe{sub 3}O{sub 4} by the volatile matter released from 0.1 g coal, and Fe{sub 2}O{sub 3} can be fully reduced to Fe{sub 3}O{sub 4} by steam char gasification products provided that the molar ratio of carbon in char to Fe{sub 2}O{sub 3} is 1:6. The purity of CO{sub 2} in the outlet gases was higher than 85% when Fe{sub 2}O{sub 3} was reduced by intermediate products during coal pyrolysis, and the purity of CO{sub 2} in the off-gases was higher than 95% when Fe{sub 2}O{sub 3} was reduced by intermediate products resulting from steam char gasification, making CO{sub 2} sequestration disposal desirable for high purity CO{sub 2}. The char gasification reaction rate was slow compared with the reactivity of the iron oxide with the char gasified intermediates, indicating that char gasification was the rate-limiting step in the reduction process. In the steam char gasification process, the times it took to reach 90% carbon conversion for K-10-char and Ca-10-char were 15 and 30 min, respectively, at 1123 K, but the time for the raw char was 50 min at 1173 K. 40 refs., 15 figs., 3 tabs.

  4. Beneficiation of Turkish lignites by thermal treatment and magnetic separation

    SciTech Connect

    Onal, G.; Renda, D.; Mustafaev, I.; Dogan, Z.

    1999-07-01

    In this paper, the improvement of Turkish lignites by semi-coking and REMS magnetic separation, in two stages, is discussed. The oxidation and decomposition of pyrite through the thermal treatment result in the formation of iron oxide and pyrrhotite on the surface. In addition to pyrite, part of the organic sulfur is also removed. After thermal treatment of lignites at temperatures ranging from 370 to 650 C, the application of REMS magnetic separator produces a product higher in calorific value and lower in sulfur content. The product can be utilized after briquetting. The volatile gases can also be used after sulfur removal. This process appears to be feasible as a clean coal manufacture from the point of energy efficiency. A short economic analysis is also presented.

  5. Oxydesulfurization of a Turkish lignite using trona solutions

    SciTech Connect

    Yaman, S.; Kuecuekbayrak, S.

    1996-06-01

    This article investigates the possibility of using trona minerals in the oxydesulfurization of coal. The experiments were performed on a Turkish lignite having high organic and high pyritic sulfur content from the Gediz area. Oxydesulfurization of the lignite sample using trona minerals was studied at 423--473 K, under 0--1 MPa oxygen partial pressure at 0--0.3 M equivalent alkalinity of Na{sub 2}CO{sub 3} for 2.5--60 min. Almost all of the pyritic sulfur content and, depending on the working conditions, an important part of the organic sulfur content were removed. Unless the temperature reached 473 K, solid product yield was not negatively affected. Trona minerals were seen as a suitable alkaline to use in oxydesulfurization of coal.

  6. Update on cost differentials - lignite versus other coals

    SciTech Connect

    Gorman, P.F.

    1983-11-01

    Renewed interest in solid fossil fuels has developed a strongly competitive market environment for coals and lignites of widely different physical and chemical properties. In addressing this situation, both utility planners and fuel suppliers face decisions involving, simultaneously, the combustibles characteristics and relative pricing. This paper discusses the influence of fuel properties on capital, operating and maintenance costs, and proposes a method for preliminary economic evaluations of competing fuels focusing on heating value and sulfur content. The analysis performed suggests that exclusion of other properties, or their indirect assessment through the heating value, does not introduce significant distortion to the comparison. A procedure correlating fuel characteristics and electricity busbar costs is developed to assist the quick determination of competitive pricing ranges between fuels. A specific application of this approach quantifies the current degree of attractiveness of lignites as an energy source for electrical power generation in the Gulf Coast Region.

  7. Alkylation of lignites and peat in low-temperature plasma

    SciTech Connect

    L.I. Shchukin; S.I. Zherebtsov; M.V. Kornievich; O.A. Skutina

    2007-02-15

    The alkylation of lignites and peat was carried out at 50-270{sup o}C in different plasmas. The degree of conversion determined as the yield of the alcohol-benzene extract increases on passing from methane to alcohol plasma. The dependence of the extract yield on the plasma temperature, treatment time, and sample grinding degree was studied. 5 refs., 4 figs., 2 tabs.

  8. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    SciTech Connect

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  9. Properties and reserves of lignite in the Aydin-Sahinali field, Turkey

    SciTech Connect

    Kirhan, S.; Inaner, H.; Nakoman, E.; Karayigit, A.I.

    2007-07-01

    This study focuses on some lignite properties and calculation of lignite reserves with two classical (isopach and polygon) methods in the Aydin-Sahinali field, Turkey, which is located in the western Turkey. This field has been mined by a private coal company since 1960 by open-cast and mainly underground mining methods. The producing lignites are consumed in domestic heating and industrial factories around Aydin. The metamorphic rocks of Palaezoic age form the basement of the coal field. The lignite-bearing unit of Miocene age, from bottom to the top, consists mainly of pebblestone, lignite and clayey lignite, siltstone with sandstone lenses, white colored claystone, clayey limestone and silisified limestone lenses. This unit in the lignite field was unconformably overlain by Pliocene unconsolidated sands and gravels. Three hundred seventy-three borehole data have been evaluated, and this study shows that a relatively thick and lateral extensive lignite seam has a mineable thickness of 1.6-14.4 m. The core samples from boreholes in panels in the lignite field indicate that the coal seam, on an as-received basis, contains high moisture contents (17.95-23.45%, average), high ash yields (16.30-26.03%, average), relatively high net calorific values (3,281-3,854 kcal/kg, average), and low total sulfur contents (1.00-1.22%, average). The remaining lignite potential in the Aydin-Sahinali lignite field was calculated as a 4.7 Mt of measured and a 2.9 Mt of mineable lignite-reserves.

  10. Underground Coal Gasification Program

    Energy Science and Technology Software Center (ESTSC)

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large,more » almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.« less

  11. Thermal exploitation of wastes with lignite for energy production.

    PubMed

    Grammelis, Panagiotis; Kakaras, Emmanuel; Skodras, George

    2003-11-01

    The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations. PMID:14649749

  12. Aerosol emissions near a coal gasification plant in the Kosovo region, Yugoslavia

    NASA Astrophysics Data System (ADS)

    Boueres, Luis Carlos S.; Patterson, Ronald K.

    1981-03-01

    Ambient aerosol samples from the region of Kosovo, Yugoslavia, were collected and analyzed for their elemental composition in order to determine the effect on ambient air quality of Lurgi coal gasification carried out there using low BTU lignite. Low-volume aerosol samples were used to collect air particulate matter during May of 1979. These samplers were deployed at five sites near the Kosovo industrial complex which is comprised of coal gasifier, a coal-fired power plant and a fertilizer plant which uses the waste products from the gasifier and power plant. A total of 126 impactor sets and 10 week-long "streaker" filters were analyzed by PIXE at FSU for 16-18 elements providing a data base of approximately 16 000 elemental concentrations. Preliminary results are reported here with emphasis on the following elements: Si, S, Ca, Fe, Zn and Pb.

  13. Simulation of biomass and/or coal gasification systems integrated with fuel cells

    SciTech Connect

    Ersoz, A.; Ozdogan, S.; Caglayan, E.; Olgun, H.

    2006-11-15

    This paper presents the results of a system simulation study. The HYSYS 3.1 - ASPEN code has been used for simulation. The system consists of a fixed bed gasifier followed by reforming and clean-up units. The produced hydrogen gas is fed to a PEM fuel cell. The gasified hydrocarbons are hazelnut shells, bark, rice straw, animal waste, and two lignites. Hydrocarbon properties, gasification, and reforming process parameters all affect the system efficiency. The effect of the moisture content and oxygen to carbon ratio of the hydrocarbon fees on the fuel processing and overall system efficiencies are presented. The overall efficiency of the system increases with increasing hydrocarbon fees oxygen to carbon ratio; this tendency is more evident at higher moisture levels.

  14. Sulfur removal from Gediz lignite using aqueous sodium hydroxide solutions under mild oxidative conditions

    SciTech Connect

    Yaman, S.; Kuecuekbayrak, S.

    1999-11-01

    Sulfur removal from a high-sulfur Turkish lignite (Gediz) using aqueous sodium hydroxide solutions having dissolved oxygen was investigated under mild oxidative conditions. Effects of the parameters such as sodium hydroxide/lignite weight ratio, temperature, and partial pressure of oxygen were investigated within the ranges of 0.05--0.8, 423--498 K, and 1--2 MPa, respectively. Optimum values of these parameters were determined regarding sulfur removal and coal recovery. Influences of dry oxidation of the lignite sample as a pretreatment at 573 K and subsequent washing of some treated lignite samples with 1 N HCl were investigated.

  15. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    SciTech Connect

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  16. Coal Gasification for Power Generation, 3. edition

    SciTech Connect

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  17. Coal gasification 2006: roadmap to commercialization

    SciTech Connect

    2006-05-15

    Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

  18. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was

  19. BIMOMASS GASIFICATION PILOT PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  20. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

    2008-05-15

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  1. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    SciTech Connect

    Buchsbaum, L.

    2009-08-15

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  2. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  3. Chemistry of lignite liquefaction. Quarterly report, October-December 1981

    SciTech Connect

    Baltisberger, R.J.; Stenberg, V.I.; Klabunde, K.J.; Woolsey, N.F.

    1982-01-01

    Asphaltene and preasphaltene samples were isolated by solvent extraction using toluene and tetrahydrofuran, respectively, from GFETC liquefaction runs 44-14, 44-12, 45-15, 46-16 and 58-15. All the forty series samples were prepared from North Dakota lignite while 58-15 was from a Texas lignite. The quantity of preashpaltenes and asphaltenes in the five samples were 4.5 +- 0.5% wt and 13 +- 3% wt, respectively. The majority of the lignite was converted into distillable oils. The samples contain 7 to 10% wt oxygen for the preasphaltenes and 4 to 6% wt for the asphaltenes. The preasphaltene/asphaltene ratio of oxygen was 1.5 +- 0.1 for a given run. Approximately 50% of the oxygen is phenolic and the remainder we assume to be etheral types. In comparing process conditions, higher reaction pressures led to lower aromaticity and degree of condensation in the products, but had little effect on the oxygen content for the asphaltenes and raised the oxygen percentage for the preasphaltenes. Understanding the Catalytic Role of H/sub 2/S in Low-Rank Coal Liquefaction: One postulate on the mechanism of H/sub 2/S promotion of liquefaction is by means of its conversion into elemental sulfur in intermediate stages. Consequently, elemental sulfur was reacted with compounds postulated to approximate the crucial chemical bonds of coal which are necessary to rupture for liquefaction: diphenylmethane, bibenzyl, diphenyl ether and N,N-dimethylaniline. The reactions quickly proceeded at liquefaction temperatures to give a variety of products. A portion of these products are lower in molecular weight than the starting materials. Some of the products have been identified. N,N-dimethylaniline is demethylated with either elemental sulfur or H/sub 2/S sequentially via N-methylaniline.

  4. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters

    SciTech Connect

    Drosos, M.; Jerzykiewicz, M.; Deligiannakis, Y.

    2009-04-15

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. {sup 13}C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation < 3 (equiv kg{sup -1}) while lignite HAs showed a higher charge variation > 3.5 (equiv kg{sup -1}).

  5. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters.

    PubMed

    Drosos, Marios; Jerzykiewicz, Maria; Deligiannakis, Yiannis

    2009-04-01

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. (13)C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation <3 [equiv kg(-1)] while lignite HAs showed a higher charge variation >3.5 [equiv kg(-1)]. PMID:19144349

  6. Oxydesulfurization of a Turkish hard lignite with ammonia solutions

    SciTech Connect

    Yaman, S.; Kuecuekbayrak, S.

    1996-09-01

    In this study the desulfurization of a high pyritic and high organic sulfur lignite taken from the Gediz area (western Turkey) was investigated by the oxydesulfurization method using ammonia solutions. The influence of such parameters as the concentration of ammonia solution, partial pressure of oxygen, temperature, and reaction time were studied. The ranges of these parameters were selected as 0--10 M concentration of ammonia solution, 0--1.5 MPa partial pressure of oxygen, 403--473 K temperature, and 10--60 min reaction time. It was concluded that the use of ammonia solution as an extraction solution increased the efficiency of the oxydesulfurization process.

  7. Reduction of quinquevalent vanadium solutions by wood and lignite

    USGS Publications Warehouse

    Pommer, A.M.

    1957-01-01

    To determine whether reduced vanadium ores could have been deposited by reduction from supergene quinquevalent vanadium solutions, the reducing capacity of fresh wood, wood degraded by long burial, and lignite was determined experimentally at temperatures of 120?? and 150?? in closed containers. A precipitate obtained by reduction of quinquevalent vanadium solutions with wood gave an X-ray pattern identical with a recently discovered low-valent vanadium mineral. The evidence indicated that deposition of reduced vanadium minerals by this mechanism is possible. ?? 1957.

  8. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites

    NASA Astrophysics Data System (ADS)

    Fabbri, Daniele; Torri, Cristian; Simoneit, Bernd R. T.; Marynowski, Leszek; Rushdi, Ahmed I.; Fabiańska, Monika J.

    Levoglucosan (L), mannosan (M), galactosan (G) and other cellulose and lignin markers from burn tests of Miocene lignites of Poland were determined by gas chromatography-mass spectrometry (GC-MS) to assess their distributions and concentrations in the smoke. Their distributions were compared to those in the pyrolysis products of the lignites. Levoglucosan and other anhydrosaccharides are products from the thermal degradation of cellulose and hemicellulose and are commonly used as tracers for wood smoke in the atmosphere. Here we report emission factors of levoglucosan in smoke particulate matter from burning of lignite varying from 713 to 2154 mg kg -1, which are similar to those from burning of extant plant biomass. Solvent extracts of the lignites revealed trace concentrations of native levoglucosan (0.52-3.7 mg kg -1), while pyrolysis yielded much higher levels (1.6-3.5 × 10 4 mg kg -1), indicating that essentially all levoglucosan in particulate matter of lignite smoke is derived from cellulose degradation. The results demonstrate that burning of lignites is an additional input of levoglucosan to the atmosphere in regions where brown coal is utilized as a domestic fuel. Interestingly, galactosan, another tracer from biomass burning, is not emitted in lignite smoke and mannosan is emitted at relatively low concentrations, ranging from 7.8 to 70.5 mg kg -1. Thus, we propose L/M and L/(M + G) ratios as discriminators between products from combustion of lignites and extant biomass. In addition, other compounds, such as shonanin, belonging to lignans, and some saccharides, e.g., α- and β-glucose and cellobiose, are reported for the first time in extracts of bulk lignites and of smoke particulate matter from burning these lignites.

  9. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Derting, T.M.

    1988-07-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  10. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1988-02-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. DE-AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1-Test Plan; Task 2-Optimization of Mild Gasification Process; Task 3-Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4-Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  11. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Williams, S.W.

    1989-01-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  12. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1987-11-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  13. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  14. Underground coal gasification using oxygen and steam

    SciTech Connect

    Yang, L.H.; Zhang, X.; Liu, S.

    2009-07-01

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  15. Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 April 1983-30 June 1983

    SciTech Connect

    Calo, J.M.; Ganapathi, R.

    1983-01-01

    In the current quarterly technical progress report we present data and results on transient kinetic studies of the steam-char reaction system for activated coconut and lignite chars. These experiments were conducted in a fashion similar to the previous char-CO/sub 2/ studies, under approximately the same experimental conditions. The two principal product species, H/sub 2/ and CO, were monitored using the automatic mass programming system developed especially for this project. In order to perform the steam-char experiments, the original apparatus was modified by the addition of a steam generation/condensate removal system. The steam-char reaction system, being somewhat more complex than the CO/sub 2/-char reaction system, was modeled with a six-parameter, elementary kinetic scheme. The ''effective'' active site concentrations determined from the steam gasification data were of the same order of magnitude, and behaved in a similar fashion, to those obtained for the CO/sub 2/ gasification studies. The implications of this result are briefly discussed. 21 refs., 23 figs., 2 tabs.

  16. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  17. Coal gasification players, projects, prospects

    SciTech Connect

    Blankinship, S.

    2006-07-15

    Integrated gasification combined cycle (IGCC) technology has been running refineries and chemical plants for decades. Power applications have dotted the globe. Two major IGCC demonstration plants operating in the United States since the mid-1900s have helped set the stage for prime time, which is now approaching. Two major reference plant designs are in the wings and at least two major US utilities are poised to build their own IGCC power plants. 2 figs.

  18. Fuel Flexibility in Gasification

    SciTech Connect

    McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K.; Lui, Alain P.; Batton, William A.

    2001-11-06

    coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the

  19. Trace metal transformations in gasification

    SciTech Connect

    Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.

    1995-08-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  20. Trace metal transformations in gasification

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; O`Keefe, C.A.; Katrinak, K.; Allan, S.E.; Hassett, D.J.; Hauserman, W.B.; Zygarlicke, C.J.

    1995-11-01

    The Energy and Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems; (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions; and (3) identify methods to control trace element emissions. Results are presented and discussed on the partitioning of trace metals and the model design for predicting trace metals behavior.

  1. Trace metal transformations in gasification

    SciTech Connect

    Benson, S.; Erickson, T.A.; Zygarlicke, C.J.

    1995-12-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  2. Trace metal transformation in gasification

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.; Katrinak, K.A.; Allen, S.E.; Hassett, D.J.; Hauserman, W.B.; Holcombe, N.T.

    1996-12-31

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to 1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, 2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and 3) identify methods to control trace element emissions.

  3. NO emission during oxy-fuel combustion of lignite

    SciTech Connect

    Andersson, K.; Normann, F.; Johnsson, F.; Leckner, B.

    2008-03-15

    This work presents experimental results and modeling of the combustion chemistry of the oxy-fuel (O{sub 2}/CO{sub 2} recycle) combustion process with a focus on the difference in NO formation between oxy-fired and air-fired conditions. Measurements were carried out in a 100 kW test unit, designed for oxy-fuel combustion with flue gas recycling. Gas concentration and temperature profiles in the furnace were measured during combustion of lignite. The tests comprise a reference test in air and three oxy-fuel cases with different oxygen fractions in the recycled feed gas. With the burner settings used, lignite oxy-combustion with a global oxygen fraction of 25 vol % in the feed gas results in flame temperatures close to those of air-firing. Similar to previous work, the NO emission (mg/MJ) during oxy-fuel operation is reduced to less than 30% of that of air-firing. Modeling shows that this reduction is caused by increased destruction of formed and recycled NO. The reverse Zeldovich mechanism was investigated by detailed modeling and was shown to significantly reduce NO at high temperature, given that the nitrogen content is low (low air leakage) and that the residence time is sufficient.

  4. Radiation intensity of lignite-fired oxy-fuel flames

    SciTech Connect

    Andersson, Klas; Johansson, Robert; Hjaertstam, Stefan; Johnsson, Filip; Leckner, Bo

    2008-10-15

    The radiative heat transfer in oxy-fuel flames is compared to corresponding conditions in air-fuel flames during combustion of lignite in the Chalmers 100 kW oxy-fuel test facility. In the oxy-fuel cases the flue-gas recycle rate was varied, so that, in principle, the same stoichiometry was kept in all cases, whereas the oxygen fraction in the recycled flue-gas mixture ranged from 25 to 29 vol.%. Radial profiles of gas concentration, temperature and total radiation intensity were measured in the furnace. The temperature, and thereby the total radiation intensity of the oxy-fuel flames, increases with decreasing flue-gas recycle rate. The ratio of gas and total radiation intensities increases under oxy-fuel conditions compared to air-firing. However, when radiation overlap between gas and particles is considered the ratios for air-firing and oxy-fuel conditions become more similar, since the gas-particle overlap is increased in the CO{sub 2}-rich atmosphere. A large fraction of the radiation in these lignite flames is emitted by particles whose radiation was not significantly influenced by oxy-fuel operation. Therefore, an increment of gas radiation due to higher CO{sub 2} concentration is not evident because of the background of particle radiation, and, the total radiation intensities are similar during oxy-fuel and air-fuel operation as long as the temperature distributions are similar. (author)

  5. The hydrogasification of lignite and sub-bituminous coals

    NASA Astrophysics Data System (ADS)

    Bhatt, B.; Fallon, P. T.; Steinberg, M.

    1981-02-01

    A North Dakota lignite and a New Mexico sub-bituminous coal have been hydrogenated at up to 900°C and 2500 psi hydrogen pressure. Yields of gaseous hydrocarbons and aromatic liquids have been studied as a function of temperature, pressure, residence time, feed rates and H2/coal ratio. Coal feed rates in excess of 10 lb/hr have been achieved in the 1 in. I. D.×8 ft reactor and methane concentration as high as 55% have been observed. A four-step reaction model was developed for the production and decomposition of the hydrocarbon products. A single object function formulated from the weighted errors for the four dependent process, variables, CH4, C2H6, BTX, and oil yields, was minimized using a program containing three independent iterative techniques. The results of the nonlinear regression analysis for lignite show that a first-order chemical reaction model with respect to C conversion satisfactorily describes the dilute phase hydrogenation. The activation energy for the initial products formation was estimated to be 42,700 cal/gmole and the power of hydrogen partial pressure was found to be +0.14. The overall correlation coefficient was 0.83. The mechanism, the rate expressions, and the design curves developed can be used for scale-up and reactor design.

  6. Activated carbons from North Dakota lignite and leonardite

    SciTech Connect

    Young, B.C.; Olson, E.S.; Knudson, C.L.; Timpe, R.C.

    1995-12-01

    In a research and development program on carbon development, the EERC investigated key factors in the preparation of activated carbons from low-rank coals indigenous to North Dakota. The carbons were prepared for potential sorption applications with flue gas and waste liquid streams. Testing involved as-received, physically cleaned, and demineralized samples of a lignite and a leonardite. The following variables were examined: mineral matter content (7-19 wt%), carbonization temperature (350{degrees}-550{degrees}C), activation temperature (700{degrees}-1000{degrees}C), and activation time (10-60 minutes). Activated carbon samples were characterized by sorption of gaseous sulfur dioxide and liquid iodine. For both lignite and leonardite, sorption activity increased with lower mineral content and correlated with medium carbonization temperature and relatively high activation temperature but relatively short activation time. Steam activation did not significantly enhance the char`s sorptive capacity. Physically cleaned leonardite char had SO{sub 2} sorptive capacities as high as 10.9% of the sample weight at ambient temperatures.

  7. Activated carbons from North Dakota lignite and leonardite

    SciTech Connect

    Young, B.C.; Olson, E.S.; Knudson, C.L.; Timpe, R.C.

    1995-12-31

    The EERC is undertaking a research and development program on carbon development, part of which is directed towards investigating the key parameters in the preparation of activated carbons from low-rank coals indigenous to North Dakota. Carbons have been prepared and characterized for potential sorption applications in flue gas and waste liquid streams. Lignite, owing to its wide occurrence and variability in properties, has received significant attention as a precursor of active carbon manufacture. Mineral matter content and its alkaline nature are two highly variable properties that can have important consequences on the production of suitable activated carbons. Other factors affecting the production include carbonizing conditions, the activation agents, activation temperature, and activation time. However, as previously noted, the relationship between the above factors and the sorption activity is particularly complex. Part of the difficulty is that sorption activity encompasses at least three parameters, namely, surface area, pore distribution, and surface acidity/basicity. The presence of mineral matter in the coal can affect not only carbonization but also the activation and subsequent sorption and desorption processes. This paper presents results of an investigation of demineralization, carbonization temperature, activation temperature, and activation time for one lignite and leonardite from North Dakota.

  8. Appraisal of Hydrologic Information Needed in Anticipation of Lignite Mining in Lauderdale County, Tennessee

    USGS Publications Warehouse

    Parks, William Scott

    1981-01-01

    Lignite in western Tennessee occurs as lenses or beds at various stratigraphic horizons in the Coastal Plain sediments of Late Cretaceous and Tertiary age. The occurrence of this lignite has been known for many decades, but not until the energy crisis was it considered an important energy resource. In recent years, several energy companies have conducted extensive exploration programs in western Tennessee, and tremendous reserves of lignite have been found. From available information, Lauderdale County was selected as one of the counties where strip-mining of lignite will most likely occur. Lignite in this county occurs in the Jackson and Cockfield Formations, undivided, of Tertiary age. The hydrology of the county is known only from regional studies and the collection of some site-specific data. Therefore, in anticipation of the future mining of lignite, a plan is needed for obtaining hydrologic and geologic information to adequately define the hydrologic system before mining begins and to monitor the effects of strip-mining once it is begun. For this planning effort, available hydrologic, geologic, land use, and associated data were located and compiled; a summary description of the surface and shallow subsurface hydrologic system was prepared: the need for additional baseline hydrologic information was outlined; and plans to monitor the effects of strip-mining were proposed. This planning approach, although limited to a county area, has transferability to other Coastal Plain areas under consideration for strip-mining of lignite.

  9. Petrological, geochemical and isotopic characteristics of lignite and calcified lignite from mining area Pesje, Velenje Basin, Slovenia

    NASA Astrophysics Data System (ADS)

    Vrabec, Mirijam; Markič, Miloš; Vrabec, Marko; Jaćimović, Radojko; Kanduč, Tjaša

    2014-05-01

    Lignite (organic rich) and calcified lignite (inorganic rich) samples from excavation field -50c mining area Pesje, Velenje Basin, Slovenia were investigated. During geological and structural mapping lignite and calcified lignite samples were systematically taken for determination of their petrological, geochemical and isotopic characteristics. Lignite is composed of fine detritical gelified matrix. At least five different types of calcified lignite were recognized forming laminations, calcifications after wood, petrified wood and complete replacements of lignite with carbonate. All measured parameters so far indicate geochemical processes during sedimentation of the Velenej Basin. After macroscopic description samples were split to organic and inorganic component (Ward, 1984) and powdered in an agate mortar for geochemical and isotopic analyses. Major and trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Sb, Se, Th, U, Zn) in these samples were determined by instrumental neutron activation analysis (INAA) using k-0 standardization method (Jaćimović et al, 2002). The isotopic composition of carbon and nitrogen was determined using a Europa 20-20 continuous flow IRMS ANCA-SL preparation module. A 1 mg amount of a sample was weighed in a tin capsule for carbon and 10 mg for nitrogen analysis. Samples for carbon analyses were pretreated with 1 M HCl to remove carbonates. Carbonate samples from carbonate-rich strata and calcified xylite were first roasted at 450 deg C (Krantz et al., 1987). Three miligrams of carbonate sample was transformed into CO2 by reaction with anhydrous H3PO4 at 55 deg C under vacuum (McCrea, 1950) and measured with GV 2003 isotope ratio mass spectrometer. Measured isotopic composition of oxygen as VPDB values was recalculated to the VSMOW reference standard to enable the comparison with data from other coal basins. SEM/EDXS of carbonate rich sediments was performed with JEOL JSM 5800 electron microanalyzer scanning electron microscope

  10. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  11. Improved catalysts for carbon and coal gasification

    DOEpatents

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  12. COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: TRACE ELEMENTS

    EPA Science Inventory

    The report summarizes trace element measurements made at several coal gasification facilities. Most of the measurements were made as part of EPA's source testing and evaluation program on low- and medium-Btu gasification. The behavior of trace elements is discussed in light of th...

  13. Updraft gasification of salmon processing waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...

  14. Fundamental aspects of catalysed coal char gasification

    NASA Astrophysics Data System (ADS)

    Gangwal, S. K.; Truesdale, R. S.

    1980-06-01

    A brief review of the basic aspects of catalysed coal char gasification is presented. Kinetics and mechanisms of catalysed and uncatalysed gasification reactions of coal char with steam, carbon dioxide and hydrogen are discussed. Mass transport effects and internal structure of coals are shown to be important in determining rates of these reactions. The importance of the type of catalyst used is also discussed. Such factors as catalyst cations and anions, the method by which the catalyst is contacted with the coal char, and physical and chemical states of the catalyst both prior to and during reaction are shown to be important in the gasification process. Finally, research instruments and equipment used recently for studies in catalysed gasification are reviewed. These include various types of reactor systems for following the course of these reactions and analytical instruments for assessing the physical and/or chemical state of the catalysts and/or coal char both prior to and during the gasification reactions.

  15. Concentration of low-grade lignites by multi-stage processing (washing, semicoking, magnetic separation)

    SciTech Connect

    Onal, G.; Renda, D.; Dogan, Z.

    1999-07-01

    Tavanl-Omerler lignite deposit with a reserve of 264 million tons forms an important section of Turkish lignites. This lignitic coal was subjected to washing, semi-coking and magnetic separation so that the total sulphur and ash contents were reduced from 4.08 % to 1.27 and 15.64 % to 8.5 % respectively. The calorific value of the solid fuel was raised from 5030 Kcal/kg to 6727 Kcal/kg and the volatiles can also be used after sulphur removal. This process appears to be feasible as a clean coal production from the point of energy efficiency. A short economic analysis is also presented.

  16. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    SciTech Connect

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  17. Geochemistry and mineralogy of Greek lignites from the Ioannina Basin

    SciTech Connect

    Gentzis, T.; Goodarzi, F.; Foscolos, A.E.

    1997-02-01

    Mineralogical and elemental composition of 26 lignites/lignitic shales and their ashes from the Ioannina Basin were examined using X-ray diffraction, X-ray fluorescence, and instrumental neutron activation analysis. Mineralogy consists of quartz, 2:1 interstratified layer silicates, kaolinite, and gypsum. Illite, calcite, amphiboles, feldspars, and pyrite are the minor minerals in the samples. The major oxides SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, TiO{sub 2}, and K{sub 2}O show an enrichment in the upper lignite-bearing interval within the succession, CaO shows the exact reverse trend, and Na{sub 2}O and MgO do not show any trends. Arsenic in the samples ranges from 2 to 46 ppm, Br from 10 to 25 ppm, Cl from 61 to 278 ppm, and Se from 2 to 14 ppm. Vertically, As content decreases from the shallower interval II to the deeper interval I. Within interval II, Cr and Br show a decrease from top to bottom. The concentration of Br and Cl is higher in the samples of low mineral matter, while the opposite is true for As. Laterally, there is an increase in Br and Cl from the northern to the central part of the basin, an increase of As in an eastern direction, and a decrease of Se in the same direction. Epigenetic processes related to high water table and subsurface water flow from the nearby phosphorite deposits are probably responsible for the high concentration of U, Mo, Sb, and possibly, V. The enrichment of Se is due to leaching from gypsum and/or anhydrite beds in the area. The rare earth elements follow variations in the low-temperature ash, but more specifically, the light REEs tend to mimic variations in Th and Al{sub 2}O{sub 3} concentration, and the heavy REEs follow the TiO{sub 2} variation.

  18. Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

    1992-11-01

    The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas{trademark}, necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II & III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

  19. Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

    1992-01-01

    The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas[trademark] staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas[trademark], necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

  20. Experimental Study of Hydrogasification of Lignite and Subbituminous Coal Chars

    PubMed Central

    Gil, Stanisław

    2015-01-01

    The experimental facility for pressure hydrogasification research was adapted to the pressure of 10 MPa and temperature of 1300 K, which ensured repeatability of results and hydrogen heating to the process temperature. A hydrogasification reaction of chars produced from two rank coals was investigated at temperatures up to 1173 K, pressures up to 8 MPa, and the gas flow rates of 0.5–5 dmn3/min. Reactivity of the “Szczerców” lignite char was found to be slightly higher than that of the subbituminous “Janina” coal char produced under the same conditions. A high value of the char reactivity was observed to a certain carbon conversion degree, above which a sharp drop took place. It was shown that, to achieve proper carbon conversion, the hydrogasification reaction must proceed at a temperature above 1200 K. PMID:26065028

  1. Microbial desulphurization of Turkish lignites by White Rot Fungi

    SciTech Connect

    Pinar Aytar; Mesut Sam; Ahmet Cabuk

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent of desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.

  2. Discrimination of unique biological communities in the Mississippi lignite belt

    NASA Technical Reports Server (NTRS)

    Miller, W. F. (Principal Investigator); Cutler, J. D.

    1981-01-01

    Small scale hardcopy LANDSAT prints were manually interpreted and color infrared aerial photography was obtained in an effort to identify and map large contiguous areas of old growth hardwood stands within Mississippi's lignite belt which do not exhibit signs of recent disturbance by agriculture, grazing, timber harvesting, fire, or any natural catastrophe, and which may, therefore, contain unique or historical ecological habitat types. An information system using land cover classes derived from digital LANDSAT data and containing information on geology, hydrology, soils, and cultural activities was developed. Using computer-assisted land cover classifications, all hardwood remnants in the study area which are subject to possible disturbance from surface mining were determined. Twelve rare plants were also identified by botanists.

  3. Microbial screening test for lignite degradation: Quarterly progress report No. 9 for the period January-March 1987

    SciTech Connect

    Yen, Teh Fu

    1987-03-01

    Anaerobic fermentation of water soluble fraction of modified lignite was attempted. Solubilized lignite formed bioprecipitate after biodegradation. Fermentation of water solubilized lignite in enrichment media produced gases and organic acids. FT-IR spectra of solubilized lignite after biodegradation showed that the concentration of organic oxygen have decreased and that the concentration of -CH/sub 3/ terminal group have increased. Solubilized lignite may serve as sole carbon source by using selective media. Bacteria was suspected of being able to utilize fulvic-like materials from solubilized lignite. Isolation of anaerobic bacteria was achieved by surface culture, and it indicated morphological differences among isolated colonies. Alginate gel entrapment, an immobilization method, was applied to T. versicolor fungal cells. Active fungal growth was observed from the immobilized spheres on sodium-alginate gel. It seems that the immobilized biocatalysts may be used to enhance the production of bioextract from lignite in a reactor system. Hydroxylation of lignite was accomplished through Fenton reaction at pH 7.5. FT-IR analysis showed that lignite treated with Fenton's reagent exhibits weaker aromatic bending and ether linkage than untreated lignite. 13 refs., 8 figs.

  4. Co-combustion of pellets from Soma lignite and waste dusts of furniture works

    SciTech Connect

    Deveci, N.D.; Yilgin, M.; Pehlivan, D.

    2008-07-01

    In this work, volatiles and char combustion behaviors of the fuel pellets prepared from a low quality lignite and the dusts of furniture works and their various blends were investigated in an experimental fixed bed combustion system through which air flowed by natural convection. Combustion data obtained for varied bed temperatures, mass of pellets, and blend compositions has showed that ignition times of the pellets decreased and volatiles combustion rates tended to increase with the burning temperature. It was concluded that some synergy had existed between lignite and lower ratios of furniture work dusts, which was indicated by a prompt effect on the volatiles combustion rates. Char combustion rates of blend pellets have depended predominantly on the amount of lignite in the blend. The amounts of combustion residues of the pellets were considerably higher than those calculated from individual ash contents of the raw materials and related to lignite ratio in the blends.

  5. Rank and petrology of the Middle Miocene Karapinar lignites in southeast Turkey

    SciTech Connect

    Karayigit, A.I.; Goodarzi, F.; Ardag, Y.; Gentzis, T.

    1996-12-01

    The coal-bearing strata in the Basoren Formation from the Sariz-Karapinar coal region are of middle Miocene age and were deposited in a lacustrine environment. Coal in this formation is lignitic in rank (%Ro, random of eu-ulminite B is 0.37). These lignites have high inertinite content (up to 37.4%), which is higher than in any other Turkish lignites studied previously. Inertinite content in the region increases from the northeast to the southwest, possibly indicating oxidation of organic matter in the coal-forming environment due to lowering of the water level. Total sulfur content in the lignites ranges from 1.8 to 4.8%. High-rank coals present in the Upper Permian Yigiltepe Formation (%Ro, random is 0.66--0.70) contain more sulfur (S{sub tot} = 5.6--6.9%) and less inertinite (9.6--12.1%).

  6. Review of lignite resources of western Tennessee and the Jackson Purchase area, western Kentucky

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; Thomas, Roger E.; Nichols, Douglas J.

    2006-01-01

    Introduction: This review of the lignite deposits of western Tennessee and the Jackson Purchase area in western Kentucky (Fig. 1) is a preliminary report on part of the U.S. Geological Survey's National Coal Resource Assessment of the Gulf Coastal Plain Coal Province. Lignite deposits of western Kentucky and Tennessee are an extension of the Gulf Coastal Plain Coal Province (Cushing and others, 1964), and currently are not economic to mine. These deposits have not been extensively investigated or developed as an energy resource. This review includes a description of the geology of the lignite-bearing units, a discussion of the available coal quality data, and information on organic petrology. Palynological data for lignite samples collected in Kentucky and Tennessee as part of this work are presented in an Appendix.

  7. Nonisothermal Thermogravimetric Analysis of Thai Lignite with High CaO Content

    PubMed Central

    Pintana, Pakamon

    2013-01-01

    Thermal behaviors and combustion kinetics of Thai lignite with different SO3-free CaO contents were investigated. Nonisothermal thermogravimetric method was carried out under oxygen environment at heating rates of 10, 30, and 50°C min−1 from ambient up to 1300°C. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods were adopted to estimate the apparent activation energy (E) for the thermal decomposition of these coals. Different thermal degradation behaviors were observed in lignites with low (14%) and high (42%) CaO content. Activation energy of the lignite combustion was found to vary with the conversion fraction. In comparison with the KAS method, higher E values were obtained by the FWO method for all conversions considered. High CaO lignite was observed to have higher activation energy than the low CaO coal. PMID:24250259

  8. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Blasting § 75.1319 Weight of explosives permitted in boreholes in bituminous and lignite mines. (a... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of...

  9. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    1980-08-04

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

  10. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens.

    PubMed

    Sun, Jianlei; Bai, Mei; Shen, Jianlin; Griffith, David W T; Denmead, Owen T; Hill, Julian; Lam, Shu Kee; Mosier, Arvin R; Chen, Deli

    2016-09-15

    Beef cattle feedlots are a major source of ammonia (NH3) emissions from livestock industries. We investigated the effects of lignite surface applications on NH3 and nitrous oxide (N2O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6kgm(-2), were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH3 and N2O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH3 analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH3 and N2O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240gNhead(-1)day(-1)) was lost via NH3 volatilization from the control pen, while lignite application decreased NH3 volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH3 emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14gN2O-Nhead(-1)day(-1) (<0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N2O emissions by 40 and 57%, to 0.14 and 0.22gN2O-Nhead(-1)day(-1), for Phase 1 and Phase 2, respectively. The increase in N2O emissions resulting from lignite application was counteracted by the lower indirect N2O emission due to decreased NH3 volatilization. Using 1% as a default emission factor of deposited NH3 for indirect N2O emissions, the application of lignite decreased total N2O emissions. PMID:27161136

  11. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  12. Comparison of Copper Sorption on Lignite and on Soils of Different Types and Their Humic Acids

    SciTech Connect

    Pekar, M.; Klucakova, M.

    2008-10-15

    We compared the sorption of copper on South Moravian lignite with that on several soils from Slovakia, using batch adsorption at a laboratory temperature of 25{sup o}C followed by a two-step desorption procedure. The results confirmed that lignite has a copper-sorption capacity and copper-binding strength that is comparable to or better than that of the Slovakian soils that we investigated. We compared these results with previously obtained data for sorption on humic acids (HA) isolated from lignite and soils. Although soil constituents other than HA, such as fulvic acids and mineral particles, also control metal sorption, HA bind copper at higher capacity and with greater strength than do the whole matrices of the soils we tested, and lignite showed a greater binding strength for copper than any of these soils. Our results thus far indicate that natural lignite mined in the Czech Republic, or lignite-derived HA, are potential agents for in situ soil remediation.

  13. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.

    PubMed

    Hasani, F; Shala, F; Xhixha, G; Xhixha, M K; Hodolli, G; Kadiri, S; Bylyku, E; Cfarku, F

    2014-12-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of (40)K, (226)Ra and (232)Th in lignite are found to be 36 ± 8 Bq kg(-1), 9 ± 1 Bq kg(-1) and 9 ± 3 Bq kg(-1), respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry. PMID:25233215

  14. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the

  15. Advances in the shell coal gasification process

    SciTech Connect

    Doering, E.L.; Cremer, G.A.

    1995-12-31

    The Shell Coal Gasification Process (SCGP) is a dry-feed, oxygen-blown, entrained flow coal gasification process which has the capability to convert virtually any coal or petroleum coke into a clean medium Btu synthesis gas, or syngas, consisting predominantly of carbon monoxide and hydrogen. In SCGP, high pressure nitrogen or recycled syngas is used to pneumatically convey dried, pulverized coal to the gasifier. The coal enters the gasifier through diametrically opposed burners where it reacts with oxygen at temperatures in excess of 2500{degrees}F. The gasification temperature is maintained to ensure that the mineral matter in the coal is molten and will flow smoothly down the gasifier wall and out the slag tap. Gasification conditions are optimized, depending on coal properties, to achieve the highest coal to gas conversion efficiency, with minimum formation of undesirable byproducts.

  16. Catalysts for carbon and coal gasification

    DOEpatents

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  17. Coal gasification for electric power generation.

    PubMed

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized. PMID:17788466

  18. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: application of lignite

    NASA Astrophysics Data System (ADS)

    Chen, Deli; Sun, Jianlei; Bai, Mei; Dassanayake, Kithsiri B.; Denmead, Owen T.; Hill, Julian

    2015-11-01

    In open beef feedlot systems, more than 50% of dietary nitrogen (N) is lost as ammonia (NH3). Here we report an effective and economically-viable method to mitigate NH3 emissions by the application of lignite. We constructed two cattle pens (20 × 20 m) to determine the effectiveness of lignite in reducing NH3 emissions. Twenty-four steers were fed identical commercial rations in each pen. The treatment pen surface was dressed with 4.5 kg m-2 lignite dry mass while no lignite was applied in the control pen. We measured volatilised NH3 concentrations using Ecotech EC9842 NH3 analysers in conjunction with a mass balance method to calculate NH3 fluxes. Application of lignite decreased NH3 loss from the pen by approximately 66%. The cumulative NH3 losses were 6.26 and 2.13 kg N head-1 in the control and lignite treatment, respectively. In addition to the environmental benefits of reduced NH3 losses, the value of retained N nutrient in the lignite treated manure is more than $37 AUD head-1 yr-1, based on the current fertiliser cost and estimated cost of lignite application. We show that lignite application is a cost-effective method to reduce NH3 loss from cattle feedlots.

  19. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: application of lignite

    PubMed Central

    Chen, Deli; Sun, Jianlei; Bai, Mei; Dassanayake, Kithsiri B.; Denmead, Owen T.; Hill, Julian

    2015-01-01

    In open beef feedlot systems, more than 50% of dietary nitrogen (N) is lost as ammonia (NH3). Here we report an effective and economically-viable method to mitigate NH3 emissions by the application of lignite. We constructed two cattle pens (20 × 20 m) to determine the effectiveness of lignite in reducing NH3 emissions. Twenty-four steers were fed identical commercial rations in each pen. The treatment pen surface was dressed with 4.5 kg m−2 lignite dry mass while no lignite was applied in the control pen. We measured volatilised NH3 concentrations using Ecotech EC9842 NH3 analysers in conjunction with a mass balance method to calculate NH3 fluxes. Application of lignite decreased NH3 loss from the pen by approximately 66%. The cumulative NH3 losses were 6.26 and 2.13 kg N head−1 in the control and lignite treatment, respectively. In addition to the environmental benefits of reduced NH3 losses, the value of retained N nutrient in the lignite treated manure is more than $37 AUD head−1 yr−1, based on the current fertiliser cost and estimated cost of lignite application. We show that lignite application is a cost-effective method to reduce NH3 loss from cattle feedlots. PMID:26584639

  20. The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea.

    PubMed

    Paramashivam, Dharini; Clough, Tim J; Carlton, Anna; Gough, Kelsi; Dickinson, Nicholas; Horswell, Jacqui; Sherlock, Robert R; Clucas, Lynne; Robinson, Brett H

    2016-02-01

    Lignite has been proposed as a soil amendment that reduces nitrate (NO3(-)) leaching from soil. Our objective was to determine the effect of lignite on nitrogen (N) fluxes from soil amended with biosolids or urea. The effect of lignite on plant yield and elemental composition was also determined. Batch sorption and column leaching experiments were followed by a lysimeter trial where a low fertility soil was amended with biosolids (400 kg N/ha equivalent) and urea (200 kg N/ha equivalent). Treatments were replicated three times, with and without lignite addition (20 t/ha equivalent). Lignite did not reduce NO3(-) leaching from soils amended with either biosolids or urea. While lignite decreased NO3(-) leaching from an unamended soil, the magnitude of this effect was not significant in an agricultural context. Furthermore, lignite increased cumulative N2O production from soils receiving urea by 90%. Lignite lessened the beneficial growth effects of adding biosolids or urea to soil. Further work could investigate whether coating urea granules with lignite may produce meaningful environmental benefits. PMID:26615483

  1. Surface restructuring of lignite by bio-char of Cuminum cyminum - Exploring the prospects in defluoridation followed by fuel applications

    NASA Astrophysics Data System (ADS)

    Msagati, T. A. M.; Mamba, B. B.; Sivasankar, V.; Omine, Kiyoshi

    2014-05-01

    Recently, there has been an interest in the areas of developing new carbon materials for fluoride removal applications. The development of new carbon materials is of recent choice which involves the synthesis of hybrid carbon from various sources. In this context, the present contribution is made to focus on the study the restructured surface of lignite using a bio-material called Cuminum cyminum. The restructured lignite (RSL) was synthesized with an improved carbon content of 13% and its BET surface area was found to be 3.12 times greater than lignite (L). The amorphous nature of lignite and RSL was quite explicable from XRD studies. SEM studies exhibited a fibrous and finer surface of lignite which was well restructured into a semi-melt (5 μm) surface for RSL. Defluoridation potential of Restructured Lignite (15.8 mg g-1) was greater than the lignite (13.8 mg g-1) at pH 7.93 ± 0.03. Kinetic and isotherm parameters derived from various models helped in comprehending the nature and dynamics of fluoride sorption. Both the normal and the restructured lignite were found to be consistent with its fluoride uptake of 57% and 60% respectively even after fifth cycle of regeneration. High heating values of 22.01 MJ kg-1 and 26.90 MJ kg-1 respectively for lignite and RSL deemed their additional application as fuel materials.

  2. Potentially toxic elements in lignite and its combustion residues from a power plant.

    PubMed

    Ram, L C; Masto, R E; Srivastava, N K; George, J; Selvi, V A; Das, T B; Pal, S K; Maity, S; Mohanty, D

    2015-01-01

    The presence of potentially toxic elements in lignite and coal is a matter of global concern during energy extraction from them. Accordingly, Barsingsar lignite from Rajasthan (India), a newly identified and currently exploited commercial source of energy, was evaluated for the presence of these elements and their fate during its combustion. Mobility of these elements in Barsingsar lignite and its ashes from a power plant (Bikaner-Nagaur region of Thar Desert, India) is presented in this paper. Kaolinite, quartz, and gypsum are the main minerals in lignite. Both the fly ash and bottom ash of lignite belong to class-F with SiO₂ > Al₂O₃ > CaO > MgO. Both the ashes contain quartz, mullite, anhydrite, and albite. As, In, and Sr have higher concentration in the feed than the ashes. Compared to the feed lignite, Ba, Co, U, Cu, Cd, and Ni are enriched (10-5 times) in fly ash and Co, Pb, Li, Ga, Cd, and U in bottom ash (9-5 times). Earth crust-normalization pattern showed enrichment of Ga, U, B, Ag, Cd, and Se in the lignite; Li, Ba, Ga, B, Cu, Ag, Cd, Hg, Pb, and Se, in fly ash; and Li, Sr, Ga, U, B, Cu, Ag, Cd, Pb, and Se in bottom ash. Hg, Ag, Zn, Ni, Ba, and Se are possibly associated with pyrite. Leaching test by toxicity characteristic leaching procedure (TCLP) showed that except B all the elements are within the safe limits prescribed by Indian Standards. PMID:25446718

  3. Pyrolysis and gasification of coal at high temperatures. Annual progress report No. 1, September 15, 1987--September 15, 1988

    SciTech Connect

    Zygourakis, K.

    1988-12-31

    Particles from two parent coals (Illinois {number_sign}6 and lignite) were pyrolyzed in a nitrogen atmosphere using a captive sample microreactor capable of achieving heating rates as high as 1000{degrees}C/s. Direct measurements on digitized image of char particle cross-sections and a stereological model were used to characterize the macropore structure of chars. Macroporosites, pore size distributions and surface areas were accurately measured allowing us to quantify the effects of pyrolysis heating rates and coal particle size. We have paid particular attention to the development of image analysis software that has allowed us to analyze for the first time the shape or bounary tortuosity of the macropores. Tortuous pore boundaries result in higher values for the true macropore surface areas and should enhance the reactivity of the char samples. Another contribution of the current research program is the development of probabilisitic gasification models that work on computational grids obtained from digitized images of actual cross-sections of char particles. These digital images are accurate discrete approximations of a slice of the actual reacting solid. The incorporation of sophisticated image processing technique is perhaps the most attractive feature of the new simulation approach. Preliminary results indicate that the probabilistic models can accurately account for the opening of closed porosity and fragmentation phenomena occurring during gasification at high temperatures.

  4. Entrained-flow gasification at elevated pressure: Volume 1: Final technical report, March 1, 1985-April 30,1987

    SciTech Connect

    Hedman, P.O.; Smoot, L.D.; Smith, P.J.; Blackham, A.U.

    1987-10-15

    The general purpose of this research program was to develop a basic understanding of the physical and chemical processes in entrained coal gasification and to use the results to improve and evaluate an entrained gasification computer model. The first task included the collection and analysis of in-situ gasifier data at elevated pressures with three coal types (North Dakota lignite, Wyoming subbituminous and Illinois bituminous), the design, construction, and testing of new coal/oxygen/steam injectors with a fourth coal type (Utah bituminous), the collection of supporting turbulent fluid dynamic (LDV) data from cold-flow studies, and the investigation of the feasibility of using laser-based (CARS) daignostic instruments to make measurements in coal flames. The second task included improvements to the two-dimensional gasifier submodels, tabulation and evaluation of new coal devolatilization and char oxidation data for predictions, fundamental studies of turbulent particle dispersion, the development of improved numerical methods, and validation of the comprehensive model through comparison of predictions with experimental results. The third task was to transfer technical advances to industry and to METC through technical seminars, production of a detailed data book, code placement, and publication of results. Research results for these three tasks are summarized briefly here and presented in detail in the body of the report and in supporting references. 202 refs., 73 figs., 23 tabs.

  5. Workability and strength of lignite bottom ash geopolymer mortar.

    PubMed

    Sathonsaowaphak, Apha; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2009-08-30

    In this paper, the waste lignite bottom ash from power station was used as a source material for making geopolymer. Sodium silicate and sodium hydroxide (NaOH) were used as liquid for the mixture and heat curing was used to activate the geopolymerization. The fineness of bottom ash, the liquid alkaline/ash ratio, the sodium silicate/NaOH ratio and the NaOH concentration were studied. The effects of the additions of water, NaOH and napthalene-based superplasticizer on the workability and strength of the geopolymer mortar were also studied. Relatively high strength geopolymer mortars of 24.0-58.0 MPa were obtained with the use of ground bottom ash with 3% retained on sieve no. 325 and mean particle size of 15.7 microm, using liquid alkaline/ash ratios of 0.429-0.709, the sodium silicate/NaOH ratios of 0.67-1.5 and 7.5-12.5M NaOH. The incorporation of water improved the workability of geopolymer mortar more effectively than the use of napthalene-based superplasticizer with similar slight reduction in strengths. The addition of NaOH solution slightly improves the workability of the mix while maintaining the strength of the geopolymer mortars. PMID:19264400

  6. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  7. Pilot-scale treatment of gasification wastewater and reuse in a cooling tower

    SciTech Connect

    Willson, W.G.; Mayer, G.G.; Hendrikson, J.G.; Winton, S.L.

    1985-04-01

    The University of North Dakota Energy Research Center has operated a 910 kg/hr, oxygen-blown fixed-bed gasifier to produce lignite-derived effluents for characterization, treatment, and reuse studies. Reuse of waste water in a cooling tower was investigated to define environmental and process effects as a function of pretreatment. The gasification wastewater was pretreated in pilot wastewater treatement units which simulate available technology. During the first phase of the program, wastewater was pretreated by solvent extraction and steam stripping to produce phenol and ammonia concentrations comparable to those expected at the Great Plains Gasification Associates plant. This pretreated wastewater was concentrated in a cooling tower to 10 cycles of concentration. No biocides or corrosion inhibitors were added. Severe fouling of heat exchange surfaces and high corrosion rates of carbon steel were encountered. Over 90% of the phenol entering the cooling tower was found to be stripped into the cooling tower exhaust air stream. The high levels of organics remaining in this minimally treated wastewater suggested that further biological treatment and possibly polishing by carbon adsorption would be necessary to prepare a satisfactory feed. In the second phase of the program, the SGL was further treated in an activated sludge process followed by granular activated carbon adsorption. Biotreatment removed 96% of the BOD with a three-day retention time while obtaining satisfactory sludge settling rates in spite of varied influent concentrations. Biorefractory materials were adsorbed on GAC to reach an effuent COD level of 150 mg/l. This upgrading was sufficient to reduce organic emissions from the cooling tower, but corrosion rates were higher than in the previous test, again showing the necessity for corrosion inhibitors. 8 figs., 3 tabs.

  8. Photochemical dissolution of Turkish lignites in tetralin at different irradiation power and reaction times

    SciTech Connect

    F. Karacan; T. Torul

    2007-08-15

    The effect of the power of ultraviolet (UV) irradiation on the tetrahydrofuran (THF) solubles yield (the total soluble product) and the soluble product distribution of the dissolution of Turkish lignites (Beypazari and Tuncbilek lignite) in tetralin at ambient temperatures has been investigated. The lignite samples were exposed to UV irradiation for 1, 2, 3, 5, and 10 days in the power of irradiation ranging from 0 to 180 W at 60 W intervals. The yields of THF solubles and oils increased with increasing irradiation power and time. The optimum irradiation power depends on the irradiation time to obtain the highest degradation products. However, the yield of degradation products depends also on the lignite type. The largest fraction obtained from lignites by photochemical energy is oil. While the yields of THF solubles and oils sharply increased with irradiation power at longer reaction times, the yields of asphaltenes (AS) slightly decreased. Increasing oil yields is relatively larger when AS yields tend to decrease. These trends of AS and oil yields are ascribable to conversion of AS to oils at higher power. Small changes were observed in the PAS yields under all conditions. 27 refs., 5 figs., 1 tab.

  9. Water-resources appraisal of the Camp Swift lignite area, central Texas

    USGS Publications Warehouse

    Gaylord, J.L.; Slade, R.M.; Ruiz, L.M.; Welborn, C.T.; Baker, E.T.

    1985-01-01

    The Camp Swift area, Texas was studied to describe the hydrogeology and to provide baseline data of the groundwater and surface water resources that would be affected by the strip mining of lignite. The investigation was centered on the 18-square mile Camp Swift Military Reservation where a reported 80 to 100 million short tons of commercially mineable lignite occurs within 200 feet of the land surface. Groundwater data showed that water levels in observation wells changed only slightly and that the water quality in the Calvert Bluff Formation, which contains the lignite, and in the Simsboro Formation, which is the major aquifer beneath the Calvert Bluff, is suitable for most uses. Big Sandy Creek, which crosses Camp Swift generally has a base flow of less than 0.5 cu ft/sec and infrequently is dry. Dogwood Creek, which originates on Camp Swift, usually is dry. The flow of both streams changes rapidly in response to rainfall in the watersheds. The quality of the water in both streams generally is suitable for most uses. A lithologic examination of 255 feet of cored section that represents the overburden and the lignite showed cyclic layering of fine sand, silt, clay, and lignite. Chemical analyses indicate that the pyritic sulfur concentration is small but variable. (USGS)

  10. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    NASA Astrophysics Data System (ADS)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.