Science.gov

Sample records for lignite air-steam gasification

  1. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    SciTech Connect

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu.

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  2. Dairy Biomass-Wyoming Coal Blends Fixed Gasification Using Air-Steam for Partial Oxidation

    DOE PAGESBeta

    Gordillo, Gerardo; Annamalai, Kalyan

    2012-01-01

    Concenmore » trated animal feeding operations such as dairies produce a large amount of manure, termed as dairy biomass (DB), which could serve as renewable feedstock for thermal gasification. DB is a low-quality fuel compared to fossil fuels, and hence the product gases have lower heat content; however, the quality of gases can be improved by blending with coals. This paper deals with air-steam fixed-bed counterflow gasification of dairy biomass-Wyoming coal blend (DBWC). The effects of equivalence ratio ( 1.6 < Φ < 6.4 ) and steam-to-fuel ratio ( 0.4 < S : F < 0.8 ) on peak temperatures, gas composition, gross heating value of the products, and energy recovery are presented. According to experimental results, increasing Φ and ( S : F ) ratios decreases the peak temperature and increases the H 2 and CO 2 production, while CO production decreases. On the other hand, the concentrations of CH 4 and C 2 H 6 were lower compared to those of other gases and almost not affected by Φ.« less

  3. High-temperature air/steam-blown gasification of coal in a pressurized spout-fluid bed

    SciTech Connect

    Rui Xiao; Mingyao Zhang; Baosheng Jin; Yaji Huang; Hongcang Zhou

    2006-03-15

    The concept of high-temperature air/steam-blown gasification technology for converting coal into low-caloric-value gas for power generation is proposed and evaluated experimentally. Preliminary experiments are performed in a 0.1 MW thermal input pressurized spout-fluid bed gasifier. The influences of the gasifying agent preheat temperature, the gasification temperature and pressure, the equivalence ratio, the ratio of steam-to-coal on gas composition, gas higher heating value, carbon conversion, and cold gas efficiency are examined. The experimental results prove the feasibility of high-temperature air/steam-blown gasification process. The gas heating value is increased by 23%, when the gasifying agent temperature is increased from 300 to 700 C. For the operation conditions studied, the results show that gasification temperature is the most important factor influencing coal gasification in the spout-fluid bed. The gasifier performance is improved at elevated pressure mainly due to the better fluidization in the reactor. The operating parameters of the equivalence ratio and the ratio of steam-to-coal exist at optimum operating range for a certain coal gasification process. 21 refs., 10 figs., 4 tabs.

  4. Preventing ash agglomeration during gasification of high-sodium lignite

    SciTech Connect

    Robert S. Dahlin; Johnny R. Dorminey; WanWang Peng; Roxann F. Leonard; Pannalal Vimalchand

    2009-01-15

    Various additives were evaluated to assess their ability to prevent ash agglomeration during the gasification of high-sodium lignite. Additives that showed promise in simple muffle furnace tests included meta-kaolin, vermiculite, two types of silica fume, and one type of bauxite. Additives that were tested and rejected included dolomite, calcite, sand flour, kaolinite, fine kaolin, and calcined bauxite. Based on the muffle furnace test results, the meta-kaolin was selected for a follow-on demonstration in a pilot-scale coal gasifier. Pilot-scale testing showed that the addition of coarse (minus 14-mesh, 920-{mu}m mean size) meta-kaolin at a feed rate roughly equivalent to the ash content of the lignite (10 wt %) successfully prevented agglomeration and deposition problems during gasification of high-sodium lignite at a maximum operating temperature of 927{sup o}C (1700{sup o}F). 13 refs., 24 figs., 1 tab.

  5. Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

  6. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    PubMed

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0. PMID:25265865

  7. Co-gasification of solid waste and lignite - a case study for Western Macedonia.

    PubMed

    Koukouzas, N; Katsiadakis, A; Karlopoulos, E; Kakaras, E

    2008-01-01

    Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct

  8. Supercritical Water as Nanomedium for Gasification of Lignite-Water Suspension.

    PubMed

    Korzh, Raisa; Bortyshevskyi, Valerii

    2016-12-01

    The gasification of an aqueous suspension of lignite from Alexandria coalfield (Ukraine) under the supercritical pressure was studied. The initial rates of the formation of hydrogen, carbon dioxide and methane were evaluated. The mutually stimulating interaction of the components of "brown coal-water-mineral matter" system was shown due to the influence of nanoscaled water medium on the formation of dipole-inductive, dispersive and ionic associates. In the temperature range of 300-450 °C, the oxygen source for gaseous products of the lignite supercritical gasification is mainly ion-associative nanoclustered water. The source of hydrogen at the subcritical temperature is the organic part of brown coal. For the supercritical water, the source of H is the nanoscale medium with ion associates. The last ones were responsible for the further transformation of coal. PMID:27194442

  9. Supercritical Water as Nanomedium for Gasification of Lignite-Water Suspension

    NASA Astrophysics Data System (ADS)

    Korzh, Raisa; Bortyshevskyi, Valerii

    2016-05-01

    The gasification of an aqueous suspension of lignite from Alexandria coalfield (Ukraine) under the supercritical pressure was studied. The initial rates of the formation of hydrogen, carbon dioxide and methane were evaluated. The mutually stimulating interaction of the components of "brown coal-water-mineral matter" system was shown due to the influence of nanoscaled water medium on the formation of dipole-inductive, dispersive and ionic associates. In the temperature range of 300-450 °C, the oxygen source for gaseous products of the lignite supercritical gasification is mainly ion-associative nanoclustered water. The source of hydrogen at the subcritical temperature is the organic part of brown coal. For the supercritical water, the source of H is the nanoscale medium with ion associates. The last ones were responsible for the further transformation of coal.

  10. Behavior of chars from Bursa Mustafa Kemal Pasa Alpagut and Balkesir Dursunbey Cakiirca Lignite (Turkey) during non-catalytic and catalytic gasification

    SciTech Connect

    Bozkurt, Y.; Misirlioglu, Z.; Sinag, A.; Tekes, A.T.; Canel, M.

    2008-07-01

    The reactivities of chars obtained by pyrolysis of Bursa Mustafa Kemal Pasa Alpagut lignite and Balkesir Dursunbey Cakiirca lignite (Turkey) at different temperatures were determined by CO{sub 2} gasification and by combustion with O{sub 2}. Catalytic effect of Na{sub 2}CO{sub 3} on the CO{sub 2} and O{sub 2} gasification reactivity of chars was investigated. Gasification tests were performed in the fixed bed reactors operating at ambient pressure. Reactivity of chars during the CO{sub 2} gasification reactions was determined by calculating the reaction rate constants and reactivity of chars during the O{sub 2} gasification was determined by using ignition temperatures of the samples. Activation energies and Arrhenius constants of the chars on the CO{sub 2} gasification reactions were also calculated by the help of Arrhenius curves. The activation energy for CO{sub 2} gasification was generally decreased with pyrolysis temperature, due to the different surface characteristics and different nature of carbon atoms gasified as the gasification reactions proceed. Generally, the increase in pyrolysis temperature leads to an increase in gasification reactivity with CO{sub 2}. The reactivity of chars in catalytic gasification was higher than the corresponding non-catalytic reactivity of the same chars. Ignition temperature increased with increasing pyrolysis temperature.

  11. Evaluation of US coal performance in the shell coal gasification process (SCGP). Volume 1. Texas lignite. Final report

    SciTech Connect

    Heitz, W.L.; McCullough, G.R.; Gierman, H.; van Kessel, M.M.

    1984-02-01

    The Shell Coal Gasificaton Process was included in the EPRI evaluation of the more promising gasification technologies. This report evaluates the performance of Texas lignite in the SCGP. A companion report (RP2094-1) evaluates the performance of an Illinois No. 5 seam coal. Tests were conducted in the Shell Internationale Research Maatschappij B.V. Amsterdam laboratory process development unit (6 metric ton per day nominal throughput). Shell also has a 150 metric ton per day gasification process development unit at Deutsche Shell's Harburg Refinery, Federal Republic of Germany. These initial tests indicate that Texas lignite is as suitable for the Shell Coal Gasification Process as any bituminous coal previously tested and that only moderate conditions are required for gasification. Process variables included oxygen/MAF (moisture and ash free) coal ratios of 0.82 to 0.96 kg/kg, throughputs of 74 to 207 kg MAF coal/hr, and pressures of 2.1 to 2.8 MPa (1 MPa = 10 bar or 145 psia). Extensive environmental sampling programs were carried out with 50% of normal bleed water recycled to the process via an evaporating venturi. Carbon conversion was nearly complete (99+ %) at reactor outlet temperatures as low as 1250/sup 0/C; at a pressure of 2.1 MPa, a maximum thermal efficiency (76% of LHV-coal) was obtained at an oxygen/MAF coal ratio of 0.90 kg/kg. Process results were only marginally influenced by variations in coal throughput but an increase in pressure at constant throughput increased the cold gas efficiency by two percentage points to 78% of LHV coal (mainly through a reduction in heat loss). In a test on load-following characteristics of the process, the unit pressure remained constant and the flow of product gas responded within one minute to a stepwise change in coal feed rate.

  12. Geotechnical studies related to in situ lignite-gasification trials. Semi-annual technical report, October 1, 1980-March 31, 1981

    SciTech Connect

    Hoskins, E.R.; Russell, J.E.

    1981-04-01

    The Petroleum Engineering Department at Texas A and M University has conducted field tests on in situ gasification of lignite first at the Easterwood Site near the main campus during 1978 and more recently at the Rockdale Site adjacent to the Sandow Mine near the town of Rockdale in Milam County, Texas. The present project is related to the gasification trials at the Rockdale Site. The objective of the current study is to investigate those geotechnical factors that may influence the performance of the in situ gasification process. These factors include: (1) pre-existing fracture patterns in the lignite and their influence on permeability; (2) strength and deformability of the overburden materials and how these properties are changed by the gasification process and their relationship to subsidence; and (3) the size, shape, and orientation of cavities produced by the process and their relationship to local fracture patterns and geologic structure. The current study is necessarily site specific and related to the Rockdale Site. Ultimately, the goal is to develop models that would be adaptable to any site with a minimum amount of site-specific investigation.

  13. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    NASA Astrophysics Data System (ADS)

    Amirabedin, Ehsan; Pooyanfar, Mirparham; Rahim, Murad A.; Topal, Hüseyin

    2014-12-01

    Trigeneration or Combined Cooling, Heat and Power (CCHP) which is based upon combined heat and power (CHP) systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP) can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  14. Investigation of plasma-aided bituminous coal gasification

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2009-04-15

    This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

  15. Plasma gasification of coal in different oxidants

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2008-12-15

    Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

  16. Pelletizing lignite

    DOEpatents

    Goksel, Mehmet A.

    1983-11-01

    Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

  17. Corrosion of candidate container materials in air-steam mixtures

    SciTech Connect

    Lutton, J.M.; Dewees, D.A.; Robinson, C.G.; Brehm, W.F.; Anantatmula, R.P.

    1987-11-01

    The environment during the operating period of a high-level nuclear waste repository in basalt is expected to be air saturated with steam. Liquid groundwater is not expected to be in contact with the container surface during that time. The report presents corrosion findings from tests conducted for one to twenty-five months in an air-steam environment. Tests were carried out with bare metal specimens exposed to an air atmosphere containing 12% moisture in chambers maintained at temperatures between 150/degree/C and 300/degree/C. Cast carbon steel exhibited total penetrations less than 0.002 mm for exposures up to 25 months. A ferritic alloy steel, Fe9Cr1Mo, showed corrosion results very similar to cast carbon steel. Unalloyed copper materials showed essentially linear corrosion rates, with total penetrations between 0.002 mm at 150/degree/C and 0.14 mm at 300/degree/C in 25 months. Cupronickel 90-10 exhibited total penetrations between 0.001 mm at 150/degree/C and 0.05 mm at 300/degree/C in 25 months. There was a tendency for the corrosion rate to increase with time for cupronickel at 250/degree/C and 300/degree/C possibly because of a mid-test change in the corrosion mechanism. Limited testing of specimens surrounded with bentonite/basalt packing material indicated that the presence of packing has no strong effect on the corrosion of iron-base materials; however, copper-base and cupronickel materials corroded at higher rates in the presence of packing, with a possible shift towards the lower bare specimen corrosion rates with increasing time. 8 refs., 5 figs., 3 tabs.

  18. Use of North Dakota lignite in advanced power systems

    SciTech Connect

    Willson, W.G.; Hurley, J.P.; Sharp, L.

    1992-12-01

    In order to develop critical data for Department of Energy (DOE) and private industry for advanced high-efficiency power systems using North Dakota lignite in pressurized gasification and combustion systems, tests were performed in bench-scale equipment at the Energy and Environmental Research Center (EERC). The primary objectives were to (1) determine the conversion levels for Center ND lignite under pressurized fluid-bed gasification conditions with sorbent addition as a function of temperature, (2) determine the sulfur capture using limestone or dolomite under gasification conditions giving 90% or higher carbon conversion, (3) evaluate char/coal conversion and sulfur capture in a pressurized fluid-bed combustor, (4) assess the potential for bed agglomeration under the preferred operating conditions for both systems.

  19. LIGNITE FUEL ENHANCEMENT

    SciTech Connect

    Charles Bullinger

    2005-06-07

    This 3rd quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2005. It also summarizes the subsequent purchasing activity and final dryer/process design.

  20. LIGNITE FUEL ENHANCEMENT

    SciTech Connect

    Charles Bullinger

    2005-07-07

    This 4th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from April 1st through June 30th of 2005. It also summarizes the subsequent purchasing activity and dryer/process construction.

  1. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger

    2006-02-03

    This 6th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from October 1st through December 31st of 2005. It also summarizes the subsequent purchasing activity and dryer/process construction. Hypothesis remains the same. We will be able to dry lignite an increment to benefit the performance of and reduce emissions from a coal burning electric power generating station.

  2. Humic preperations from Russian lignites

    SciTech Connect

    Rodeh, V.V.; Ryzhkov, O.G.

    1994-12-31

    THe objective of this work was to study lignites as the precursor materials to humic substances. Lignites contain humic substances primarily as humic acids. Their extraction requires the processing of coals with alkali.

  3. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger; Nenad Sarunac

    2010-03-31

    Pulverized coal power plants which fire lignites and other low-rank high-moisture coals generally operate with reduced efficiencies and increased stack emissions due to the impacts of high fuel moisture on stack heat loss and pulverizer and fan power. A process that uses plant waste heat sources to evaporate a portion of the fuel moisture from the lignite feedstock in a moving bed fluidized bed dryer (FBD) was developed in the U.S. by a team led by Great River Energy (GRE). The demonstration was conducted with Department of Energy (DOE) funding under DOE Award Number DE-FC26-04NT41763. The objectives of GRE's Lignite Fuel Enhancement project were to demonstrate reduction in lignite moisture content by using heat rejected from the power plant, apply technology at full scale at Coal Creek Station (CCS), and commercialize it. The Coal Creek Project has involved several stages, beginning with lignite drying tests in a laboratory-scale FBD at the Energy Research Center (ERC) and development of theoretical models for predicting dryer performance. Using results from these early stage research efforts, GRE built a 2 ton/hour pilot-scale dryer, and a 75 ton/hour prototype drying system at Coal Creek Station. Operated over a range of drying conditions, the results from the pilot-scale and prototype-scale dryers confirmed the performance of the basic dryer design concept and provided the knowledge base needed to scale the process up to commercial size. Phase 2 of the GRE's Lignite Fuel Enhancement project included design, construction and integration of a full-scale commercial coal drying system (four FBDs per unit) with Coal Creek Units 1 and 2 heat sources and coal handling system. Two series of controlled tests were conducted at Coal Creek Unit 1 with wet and dried lignite to determine effect of dried lignite on unit performance and emissions. Wet lignite was fired during the first, wet baseline, test series conducted in September 2009. The second test series was performed

  4. Natural radioactivity in lignites and lignite ash: Final report

    SciTech Connect

    Greiner, N.R.; Wagner, P.

    1987-04-01

    Natural radioactivity in a Texas lignite field and in leachates from lignite ash from power plants was measured. The radioactivity concentrations found (4 ppM uranium in the lignite, 16 ppM uranium in the lignite ash, and a few picocuries of natural radionuclides per liter in the leachates) do not differ appreciably from those found previously in similar samples and in natural materials such as soils and ground waters. Additional information on stable elements are reported for both the lignites and the leachates.

  5. Binderless lignite briquetting

    SciTech Connect

    Mall, L.

    1996-12-31

    Almost all of Germany`s lignite deposits were formed during the Tertiary Period 20 to 40 million years ago. Germany`s entire coal resources amount to something over 100 billion tonnes, of which roughly 57 billion tonnes may be economically mined with today`s mining technology and energy prices. This means that Germany has more than 10% of the world`s economically mineable coal reserves. Lignite production on an economically significant scale is taking place in the following mining areas: (1) Rhine Mining Area, (2) Helmstedt Mining Area, (3) Central German Mining Area, and (4) Lusatian Mining Area.

  6. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  7. Lignite Research Project.

    ERIC Educational Resources Information Center

    Robinson, Fred

    Since it became known in l979 that the Arkansas Power and Light Company was going to build a large electricity generating plant near Hampton and that there would be a lignite mining operation established there to support the power plant, the Warren public schools have been preparing to meet the impact on the schools. Because it was assumed that…

  8. A preliminary report on a zone containing thick lignite beds, Denver Basin, Colorado

    USGS Publications Warehouse

    Soister, Paul E.

    1973-01-01

    hand pressure. Quality of the lignite is lowered by the non-coal partings and, locally at least, by some small blebs and balls of clay in the lignite itself, especially at the base. Available analyses indicate that the following general figures, on an as-received basis, may be applied to relatively clean lignite from this zone: 6,000-7,000 Btu, 20-35 percent moisture, 8-18 percent ash, and 0.3-0.5 percent sulfur. Rank of the lignite is lignite A as calculated by the formulas of the American Society for Testing and . Materials (ASTM), although some parts, especially of deeper beds, may be as high as subbituminous C coal in rank. Best utilization of the lignite probably would be by gasification, liquefaction, or similar methods, because of the numerous non-coal partings and low quality. The thickest known lignite bed is estimated to contain at least 1.25 billion short tons of lignite. Two methods of roughly estimating the order of magnitude of lignite resources, in beds at least 4 feet thick and within 1,000 feet of the surface in this zone, indicate resources are on the order of 20 billion tons.

  9. Pressure-swinging underground gasification. Theoretical and experimental investigations of gasification, phase 2

    NASA Astrophysics Data System (ADS)

    Mohtadi, M.; Breidung, P.; Fuhrmann, F.; Guntermann, K.; Kurth, M.; Paersch, M.; Ropertz, G.; Subklew, G.

    1982-05-01

    Simulation experiments were run in order to determine the form of the combustion front, the combustion front velocity, the different type of gases liberated, the effect on quality of steam/oxygen ratio, the efficiency of gasification process, and data for regulating and conducting from the surface the channel gasification process. The simulation of the channel gasification process was performed in coal samples 0.32 m in diameter, 4 m long with an axial channel of 3 cm in diameter. Samples were put in an autoclave working at 1 bar or 10 bar pressure. The simulation of the penetration process was performed with coal samples 1 m long and 170 mm in diameter put in an autoclave able to work at 100 bar pressure. It is stated that the penetration process not usable is without a preliminary increase of coal permeability. Reverse combustion was also tested at pressures of 1 and 10 bar. Theoretical investigations simulated a nonstationary gasification. It is shown that this method is usable in case of oxidizing gasification. Practical confirmation of the computation has to be carried out. The reaction constants by air/steam gasification are calculated. A stationary model studied the effect of gas temperature, of steam/coal ratio, and pressure.

  10. LIGNITE FUEL ENHANCEMENT

    SciTech Connect

    Charles Bullinger

    2004-10-29

    This 1st quarterly Technical Progress Report for the Lignite Fuel Enhancement Project explains what has transpired since Great River Energy was selected to negotiate the Cooperative agreement in February of 2003. The report will summarize Pre-award activities and any other activity since signature of the contract on July 9th of this year. It also summarizes the subsequent purchasing activity and final dryer/process design up to September 30th of 2004.

  11. Study of char gasification reactions

    SciTech Connect

    Ballal, G.D.

    1986-01-01

    A Texas lignite, an anthracite and two bituminous coals, Pittsburgh number8 and Illinois number6, were pyrolyzed in a nitrogen atmosphere to prepare chars. Optical microscopy, mercury porosimetry and gas adsorption techniques using nitrogen, CO/sub 2/ and CO, were employed for pore structure characterization. The lignite char exhibited the fastest rates of gaseous diffusion, followed in order of decreasing diffusivities by the Illinois number6, Pittsburgh number8 and anthracite chars. The changes in reactivities and pore structures of chars were measured experimentally during their reaction with oxygen (400-550C) and CO/sub 2/ (800-1000C). For a particular char-gas system, the normalized rate-conversion pattern was invariant with respect to temperature and gaseous concentration. In the case of lignite and Pittsburgh number8 chars, the rate-conversion pattern was similar during reaction with oxygen and CO/sub 2/. Adsorption experiments on partially reacted chars indicated that the micropores in the lignite char were accessible to both reactants. The micropores in the Illinois number6 char were, however, not accessible during its reaction with oxygen. The evolution of pore structure during reaction was modeled by using a probabilistic approach which accounts for overlapping pores with different shapes and sizes. The kinetics of gasification of the lignite and the Pittsburgh number8 chars was studied using a Langmuir-Hinshelwood type kinetic expression to correlate the experimental data. CO was found to inhibit the reaction substantially. The effect of a potassium carbonate catalyst on the reaction of these two chars was also investigated. Substantial increases in reaction rates were observed, and the enhancement was approximately proportional to the catalyst loading.

  12. POLLUTANTS FROM SYNTHETIC FUELS PRODUCTION: COAL GASIFICATION SCREENING TEST RESULTS

    EPA Science Inventory

    Coal gasification test runs have been conducted in a semibatch, fixed-bed laboratory gasifier in order to evaluate various coals and operating conditions for pollutant generation. Thirty-eight tests have been completed using char, coal, lignite, and peat. Extensive analyses were ...

  13. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.

    PubMed

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2014-12-01

    A vacuum fixed bed reactor was applied to pyrolyze lignite, biomass (rice husk) and their blend with high temperature (900 °C) and low heating rate (10 °C/min). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2 h) for their interactions. Remarkable synergetic effects were observed. Addition of biomass obviously influenced the tar and char yields, gas volume yield, gas composition, char structure and tar composition during co-pyrolysis. It was highly possible that char gasification, gaseous phase interactions, and secondary tar cracking were facilitated when lignite and biomass were co-pyrolyzed. PMID:25277348

  14. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger

    2007-03-31

    This 11th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2007. It summarizes the completion of the Prototype testing activity and initial full-scale dryer design, Budget Period 2 activity during that time period. The Design Team completed process design and layouts of air, water, and coal systems. Heyl-Patterson completed dryer drawings and has sent RFPs to several fabricators for build and assembly. Several meetings were held with Barr engineers to finalize arrangement of the drying, air jig, and coal handling systems. Honeywell held meetings do discuss the control system logic and hardware location. By the end of March we had processed nearly 300,000 tons of lignite through the dryer. Outage preparation maintenance activities on a coal transfer hopper restricted operation of the dryer in February and March. The Outage began March 17th. We will not dry coal again until early May when the Outage on Unit No.2 completes. The Budget Period 1 (Phase 1) final report was submitted this quarter. Comments were received from NETL and are being reviewed. The Phase 2 Project Management Plan was submitted to NETL in January 2007. This deliverable also included the Financing Plan. An application for R&D 100 award was submitted in February. The project received an award from the Minnesota Professional Engineering Society's Seven Wonders of Engineering Award and Minnesota ACEC Grand Award in January. To further summarize, the focus this quarter has been on finalizing commercial design and the layout of four dryers behind each Unit. The modification to the coal handling facilities at Coal Creek and incorporation of air jigs to further beneficiate the segregated material the dryers will reject 20 to 30 % of the mercury and sulfur is segregated however this modification will recover the carbon in that stream.

  15. Drying of Beulah Zap lignite

    SciTech Connect

    Vorres, K.S.; Molenda, D. ); Dang, Y.; Malhotra, V.M. . Dept. of Physics)

    1991-01-01

    Recent results on the kinetics of water's desorption from Beulah-Zap lignite coal, as determined by thermogravimetric analysis (TGA) and the differential scanning calorimetry (DSC) technique were reported. The kinetic analysis of DSC was further complimented by determining the mechanism of air drying of lignite coal with the help of an in-situ Desorption Kinetics via Fourier transform infrared (ISDK-FTIR) technique. 17 refs., 5 figs., 1 tab.

  16. Power Systems Development Facility Gasification Test Campaign TC21

    SciTech Connect

    Southern Company Services

    2007-01-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of gasification operation with lignite coal following the 2006 gasifier configuration modifications. This demonstration took place during test campaign TC21, occurring from November 7, 2006, through January 26, 2007. The test campaign began with low sodium lignite fuel, and after 304 hours of operation, the fuel was changed to high sodium lignite, for 34 additional hours of operation. Both fuels were from the North Dakota Freedom mine. Stable operation with low sodium lignite was maintained for extended periods, although operation with high sodium lignite was problematic due to agglomeration formation in the gasifier restricting solids circulation.

  17. Power Systems Development Facility Gasification Test Campaign TC16

    SciTech Connect

    Southern Company Services

    2004-08-24

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

  18. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger

    2005-10-03

    The Design Team continues to conference this quarter albeit not as often. Primary focus this quarter is the continued procurement of material, receiving, and construction/installation. Phase 1 extension recommendation, and subsequent new project estimate. Forms 424 and 4600 were submitted to Ms. Zysk. The NETL technology team subsequently agreed that the increase is justified and made their recommendation to DOE HQ. All major mechanical equipment was delivered this quarter. Three hot water in-bed coils are all that remains for delivery. Two of the five are installed above the dryer air distribution bed. The dryer, baghouse, bucket elevator, control room, exhaust fan, process ductwork, and piping have all been installed. The mezzanine level over the inlet ductwork for access to the dryer was installed. Instrumentation was delivered and locations were identified. Cable is being pulled and connections made from the Control Room to the Motor Control Center. ''Emergency Stop'' equipment logic conditions were discussed and finalized. The functional description was competed and reviewed with Honeywell Controls. Piping & Instrument diagrams are completed. Some electrical schematics have been delivered for equipment south of Q-line. Dry & Wet coal conveyors are not completed. The exhaust chimney was installed. An Open House and ribbon cutting took place on August 9th. GRE project manager gave a presentation of the technology. Joe Strakey, NETL, also spoke. The Open House was attended by Governor Hoevon and Senator Conrad who also spoke about Clean Coal and helped kick-off Blue Flint ethanol and a potential Liquefaction plant. The deign team met the following day to discuss test plan and progress update. Headwaters Energy Incorporated also attended the Open House. A meeting was conducted with them to begin planning for the marketing and finalize our memorandum of understanding. Headwaters still plans to contact all US lignite plants and all bituminous plants who have

  19. Using in-situ hot air/steam stripping (HASS) of hydrocarbons in soils

    SciTech Connect

    La Mori, P.N.

    1994-12-31

    The remediation of soils containing volatile (VOC) and semi-volatile (SVC) hydrocarbons is most desirably accomplished in-situ, i.e., without removal of the contaminated soils from the ground. This approach mitigates the environmental problem, i.e., does not transport it to another location, and when properly applied, does not impact on the local environment during remediation NOVATERRA has demonstrated commercially an in-situ, hot air/steam stripping (HASS) technology to remove VOC and SVC from soils both in the vadose and saturated zones. The technology consists of a drill tower which injects and mixes steam and hot air continuously into the soil below ground and a method to immediately capture all vapors escaping to the surface and remove the vaporized VOC/SVC using condensation and carbon beds. The air can be recompressed and recycled. The condensed liquid containing hydrocarbons is purified by distillation. The recovered hydrocarbons can be destroyed or recycled. The technology has successfully removed various chlorinated aliphatics and aromatics, glycol ethers, phthalates, polyaromatic compounds, ketones, petroleum hydrocarbons and many other compound types from sand to clay soils to risk based standards; e.g. 1 increased cancer risk in 1,000,000 using currently acceptable risk assessment standards.

  20. Lignite Fuel Enhancement

    SciTech Connect

    Charles Bullinger

    2006-04-03

    This 7th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2006. It also summarizes the subsequent purchasing activity, dryer/process construction, and testing. The Design Team began conferencing again as construction completed and the testing program began. Primary focus this quarter was construction/installation completion. Phase 1 extension recommendation, and subsequent new project estimate, Forms 424 and 4600 were accepted by DOE headquarters. DOE will complete the application and amended contract. All major mechanical equipment was run, checked out, and tested this quarter. All water, air, and coal flow loops were run and tested. The system was run on January 30th, shut down to adjust equipment timing in the control system on the 31st, and run to 75 ton//hour on February 1st. It ran for seven to eight hours per day until March 20th when ''pairs'' testing ( 24 hour running) began. ''Pairs'' involves comparative testing of unit performance with seven ''wet'' pulverizers versus six ''wet'' and one ''dry''. During the interim, more operators were brought up to speed on system operation and control was shifted to the main Unit No.2 Control Room. The system is run now from the Unit control board operator and an equipment operator checks the system during regular rounds or when an alarm needs verification. The flawless start-up is unprecedented in the industry and credit should be made to the diligence and tenacity of Coal Creek maintenance/checkout staff. Great River Energy and Headwaters did not meet to discuss the Commercialization Plan this quarter. The next meeting is pending data from the drying system. Discussions with Basin Electric, Otter Tail, and Dairyland continue and confidentiality secured as we promote dryers in their stations. Lighting and fire protection were completed in January. Invoices No.12 through No.20 are completed and forwarded following preliminary

  1. Utilization of lignite ash in concrete mixture

    SciTech Connect

    Demirbas, A.; Karslioglu, S.; Ayas, A.

    1995-12-01

    In this article 11 ashes from various Turkish lignite sources were studied to show the effects upon lignite ash quality for use as a mineral admixture in concrete. The lignite ashes were classified into two general types (Class A and Class B) based on total of silica, alumina, and iron oxide. Total content of the three major oxides must be more than 50% for Class A lignite ash and more than 70% for Class B lignite ash. When 25% of the cement was replaced by LA-1 (Class A) lignite ash, based on 300 kg/m{sup 3} cementitious material, the 28-day compressive strength increased 24.3% compared to the control mix. The optimal lignite ash replacement was 25% at 300 kg/m{sup 3} cementitious material.

  2. Gasification process

    SciTech Connect

    Woldy, P.N.; Kaufman, H.C.; Dach, M.M.; Beall, J.F.

    1981-02-03

    This version of Texaco's gasification process for high-ash-content solids is not extended to include the production of superheated steam, as described in US Patent 4,247,302. The hot, raw gas stream passes through fewer coolers, producing a high-pressure steam instead of a superheated steam.

  3. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char.

    PubMed

    Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian

    2014-12-01

    Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification. PMID:25280109

  4. CHEMICALLY ACTIVE FLUID BED PROCESS FOR SULPHUR REMOVAL DURING GASIFICATION OF CARBONACEOUS FUELS

    EPA Science Inventory

    The report covers the final 3 years of a 9-year program to evaluate the Chemically Active Fluid Bed (CAFB) process for gasification and desulfurization of liquid and solid fuels in a fluidized bed of hot lime. A range of alternative fuels, including three coals and a lignite, wer...

  5. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    SciTech Connect

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.; Kinoshita, M.

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  6. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  7. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  8. Gasification Plant Cost and Performance Optimization

    SciTech Connect

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power

  9. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    SciTech Connect

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were

  10. 2007 gasification technologies conference papers

    SciTech Connect

    2007-07-01

    Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

  11. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  12. Power Systems Development Facility Gasification Test Campaign TC22

    SciTech Connect

    Southern Company Services

    2008-11-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  13. Mineral matter identification of some Turkish lignites

    SciTech Connect

    Yaman, S.; Taptik, Y.; Kuecuekbayrak, S.; Kadioglu, E.

    1995-01-01

    Samples of 15 Turkish lignites were oxidized by performic acid. Their mineral matter was isolated without any important chemical decomposition. The X-ray diffraction method was employed to determine the mineral species in the isolated mineral matter and in the ashes of the lignite samples. The results were compared and discussed.

  14. Multiple-use marketing of lignite

    SciTech Connect

    Knudson, C.L.

    1993-09-01

    Marketing of lignite faces difficulties due to moisture and sulfur contents, as well as the sodium content, of the ash. The purpose of this study is to determine the economic viability of multiple-use marketing of lignite as a method to increase the use of North Dakota lignite by recapturing lost niche markets. Multiple-use marketing means using lignite and sulfur-capturing additives to clean agricultural wastewater followed by either direct steam and power generation or briquetting to produce a higher-Btu compliance fuel. Cooperative ownership of the resulting business by a coal company and an agriculture processing company helps ensure that lignite remains the coal of choice, especially when the ``good`` attributes of lignites are maximized, while the agricultural company obtains cleaner wastewater and a long-term supply of coal at a set price. The economic viabilities of the following scenarios were investigated: (1) Agriprocessing wastewater treatment using lignite and an additive followed by (2) the production of compliance fuel for resale or on-site cogeneration of steam and electricity. Laboratory tests were performed utilizing potato-processing plant wastewater with lignite and lime sludge.

  15. Solubilization of Australian lignites by microorganisms

    SciTech Connect

    Catcheside, D.E.A.; Mallett, K.J.; Cox, R.E.

    1988-01-01

    Australia has substantial lignite deposits, particularly in the Latrobe Valley in Victoria where 4.10/sup 10/ tons are accessible with available technologies. The authors have investigated the susceptibility of these coal to solubilization by microorganisms, including species additional to those already identified as active on North American lignites. The data presented here show that acid oxidized lignites from the Latrobe Valley are solubilized by each of seven species of microorganisms previously found to be active on Leonardite and oxidized North American lignites. These are the wood rot fungi: Trametes versicolor, Poria placenta and Phanerochaete chrysosporium, the lignin degrading prokaryote Streptomyces viridosporus and three fungi isolated from lignite in Mississippi: Candida ML-13, Cunninghamelia YML-1 and Penicillium waksmanii.

  16. Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-12-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

  17. Lignite pellets and methods of agglomerating or pelletizing

    DOEpatents

    Baker, Albert F.; Blaustein, Eric W.; Deurbrouck, Albert W.; Garvin, John P.; McKeever, Robert E.

    1981-01-01

    The specification discloses lignite pellets which are relatively hard, dust resistant, of generally uniform size and free from spontaneous ignition and general degradation. Also disclosed are methods for making such pellets which involve crushing as mined lignite, mixing said lignite with a binder such as asphalt, forming the lignite binder mixture into pellets, and drying the pellets.

  18. Distribution of nitrogen species during vitrinite pyrolysis and gasification

    SciTech Connect

    Lin, J.Y.; Li, W.Y.; Chang, L.P.; Feng, J.; Zhao, W.; Xie, K.C.

    2006-08-15

    The formation of HCN and NH3 during pyrolysis in Ar and gasification in CO{sub 2} and steam/Ar was investigated. Vitrinites were separated and purified from different rank coal from lignite to anthracite. Pyrolysis and gasification were carried out in the drop-tube/fixed-bed reactor at temperatures of 600-900{sup o}C. Results showed that with increase of reaction temperature the yield of HCN increased significantly during pyrolysis and gasification. Decrease of coal rank also increased the yield of HCN. Vitrinite from lower rank of coal with high volatile content released more HCN. The yield of NH3 was the highest at 800 {sup o}C during pyrolysis and gasification. And the yield of NH3 from gasification in steam/Ar was far higher than that from gasification in CO{sub 2}, where the hydrogen radicals play a key role. Nitrogen retained in char was also investigated. The yield of char-N decreased with an increase of pyrolysis temperature. Vitrinite from lower rank coal had lower yield of char-N than that from the high rank coal.

  19. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  20. Gasification of New Zealand coals: a comparative simulation study

    SciTech Connect

    Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young

    2008-07-15

    The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

  1. Kinetic models comparison for steam gasification of coal/biomass blend chars.

    PubMed

    Xu, Chaofen; Hu, Song; Xiang, Jun; Yang, Haiping; Sun, Lushi; Su, Sheng; Wang, Baowen; Chen, Qindong; He, Limo

    2014-11-01

    The non-isothermal thermogravimetric method (TGA) was applied to different chars produced from lignite (LN), sawdust (SD) and their blends at the different mass ratios in order to investigate their thermal reactivity under steam atmosphere. Through TGA analysis, it was determined that the most prominent interaction between sawdust and lignite occurred at the mass ratio of sawdust/lignite as 1:4, but with further dose of more sawdust into its blends with lignite, the positive interaction deteriorated due to the agglomeration and deactivation of the alkali mineral involved in sawdust at high steam gasification temperature. Through systematic comparison, it could be observed that the random pore model was the most suitable among the three gas-solid reaction models adopted in this research. Finally, rational kinetic parameters were reached from these gas-solid reaction models, which provided a basis for design and operation of the realistic system of co-gasification of lignite and sawdust in this research. PMID:25203234

  2. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar

    PubMed Central

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487

  3. Paleocene lignite deposits of southwest Alabama

    SciTech Connect

    Mancini, E.A.

    1984-04-01

    In southwest Alabama, lignite having economic potential occurs in the Oak Hill Member of the Naheola Formation. This middle Paleocene lignite generally consists of a single bed of 1-14 ft (0.5-4 m) in thickness and is the most extensive lignite in the southwest Alabama region. The Oak Hill lignite deposit accumulated in lower delta plain coastal marshes in interchannel areas behind a barrier system. The source area for the deltaic sediments was probably to the west and/or northwest of Choctaw County, Alabama. The lignite occurs in a clay-dominated sequence. Oak Hill interdistributary bay ripple-laminated clays are interbedded with ripple-laminated, crevasse splay sands generally less than 15 ft (5 m) thick. The glauconitic sands of the overlying Coal Bluff Marl Member of the Naheola Formation represent times of marine encroachment into the interchannel basin area. Lignite having subeconomic value at present occurs in the upper part of the Tuscahoma Sand. This upper Paleocene lignite is irregular in its outcrop pattern and apparently is not represented over extensive areas. It is locally persistent with one or more beds less than 3 ft (1 m) thick. The Tuscahoma may contain up to 6 lignite seams that may exceed a total thickness of 5 ft (1.5 m). These lignite beds were deposited in lower delta-plain coastal marshes adjacent to high constructive deltaic bar finger sands. Tuscahoma marsh clays are interbedded with ripple-laminated and cross-bedded bar finger sands. The Tuscahoma Sand is overlain by the Bashi Marl Member of the Hatchetigbee Formation. The Bashi contains a diverse lower Eocene marine fossil assemblage.

  4. Paleocene lignite deposits of southwest Alabama

    SciTech Connect

    Mancini, E.A.

    1984-04-01

    In southwest Alabama, lignite having economic potential occurs in the Oak Hill Member of the Naheola Formation. This middle Paleocene lignite generally consists of a single bed of 1-14 ft (0.5-4 m) in thickness and is the most extensive lignite in the southwest Alabama region. The Oak Hill lignite deposit accumulated in lower delta plain coastal marshes in interchannel areas behind a barrier system. The source area for the deltaic sediments was probably to the west and/or northwest of Choctaw County, Alabama. The lignite occurs in a clay-dominated sequence. Oak Hill interdistributary bay ripple-laminated clays are interbedded with ripple-laminated, crevasse splay sands generally less than 15 ft (5 m) thick. The glauconitic sands of the overlying Coal Bluff Marl Member of the Naheola Formation represent times of marine encroachment into the interchannel basin area. Lignite haing subeconomic value at present occurs in the upper part of the Tuscahoma Sand. This upper Paleocene lignite is irregular in its outcrop pattern and apparently is not represented over extensive areas. It is locally persistent with one or more beds less than 3 ft (1 m) thick. The Tuscahoma may contain up to 6 lignite seams that may exceed a total thickness of 5 ft (1.5 m). These lignite beds were deposited in lower delta-plain coastal marshes adjacent to high constructive deltaic bar finger sands. Tuscahoma marsh clays are interbedded with ripple-laminated and cross-bedded bar finger sands. The Tuscahoma Sand is overlain by the Bashi Marl Member of the Hatchetigbee Formation. The Bashi contains a diverse lower Eocene marine fossil assemblage.

  5. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  6. Coal gasification developments in Europe -- A perspective

    SciTech Connect

    Burnard, G.K.; Sharman, P.W.; Alphandary, M.

    1994-12-31

    This survey paper will review the development status of coal gasification in Europe and give a broad perspective of the future uptake of the technology. Three main families of gasifier design are currently being developed or demonstrated world-wide, namely fixed bed (also known as moving bed), fluidized bed and entrained flow. Gasifiers belonging to each of these families have been or are being developed in European countries. Of the three families, entrained flow gasifiers are at the most advanced stage of development, with two demonstration projects currently underway: these projects are based on designs developed by Shell and Krupp Koppers. Fixed bed systems have been developed to operate under either slagging or non-slagging conditions, ie, the British Gas-Lurgi and Tampella U-Gas systems, respectively. Fluid bed systems of various designs have also been developed, eg, the Rheinbraun HTW, British Coal and Ahlstrom systems. Gasification cycles can be based on either total or partial gasification, and the above designs represent both these options. In addition, a wide variety of fuel sources can be used in gasifiers, including bituminous coal, lignite, biomass, petroleum coke, etc or, indeed, any combination of these. The major demonstration projects in Europe are at Buggenum in the Netherlands, where a 250 MWe entrained flow gasifier based on Shell technology first gasified coal in December 1993. A further 335 MWe entrained flow gasifier, located at Puertollano in Spain, based on Krupp Koppers Prenflo technology, is at an advanced stage of construction.

  7. Modeling higher heating values of lignites

    SciTech Connect

    Demirbas, A.; Dincer, K.

    2008-07-01

    In this work, the elemental analysis results such as carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) were used for calculated higher heating values (HHVs) of 26 lignite samples from different areas of Turkey. The lignite samples have been tested with particle size of 0-0.05 mm. The HHVs of 26 lignite samples obtained from different Turkish sources were experimentally determined and can be calculated from the equation-based modeling. The HHVs (MJ/kg) of the lignite samples as a function of carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) was calculated from the following equation: HHV = 31.6(C) + 142.3(H) + 30.8(S) - 15.4(O) - 14.5(N) of which the correlation coefficients for the equation was 0.9891. HHVs calculated from the equation showed mean deviation of +0.1.

  8. Swelling of lignites in organic solvents

    SciTech Connect

    R.G. Makitra; D.V. Bryk

    2008-10-15

    Data on the swelling of Turkish lignites can be summarized using linear multiparameter equations that take into account various properties of solvents. Factors responsible for the amounts of absorbed solvents are the basicity and cohesion energy density of the solvents.

  9. Gasification: redefining clean energy

    SciTech Connect

    2008-05-15

    This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

  10. 2010 Worldwide Gasification Database

    DOE Data Explorer

    The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

  11. Considerations on coal gasification

    NASA Technical Reports Server (NTRS)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  12. Recent technology advances in the KRW coal gasification development program

    SciTech Connect

    Haldipur, G.B.; Bachovchin, D.; Cherish, P.; Smith, K.J.

    1984-08-01

    This paper presents an update of the technological advances made at the coal gasification PDU during 1982 and 1983. These process improvements have resulted in higher carbon conversion efficiency, greater operational simplicity and enhanced potential for low grade or highly reactive feedstocks such as subbituminous coals and lignites. Process and component performance data are presented on the following topics: Application of advanced non-mechanical fines recycle techniques in a pressurized fluidized bed process, Demonstration of fines consumption and 95+% carbon conversion in recent tests, including results of a successful 15 day process feasibility test; and, Techniques to produce low carbon containing (less than 5%) ash agglomerates from highly reactive feedstocks, such as Wyoming subbituminous coal and North Dakota lignite.

  13. The effects of pore structure on the behavior of water in lignite coal and activated carbon.

    PubMed

    Nwaka, Daniel; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-09-01

    The effects of physical structure (pore structure) on behavior of water in lignite coal and activated carbon (AC) samples were investigated by using Differential Scanning Calorimetry (DSC) and low-temperature X-ray diffraction (XRD) techniques. AC samples with different pore structures were prepared at 800°C in steam and the results were compared with that of parent lignite coal. The DSC results confirmed the presence of two types of freezable water that freeze at -8°C (free water) and -42°C (freezable bound water). A shift in peak position of free water (FW) towards lower temperature was observed in AC samples compared to the lignite coal with decreasing water loading. The amount of free water (FW) increased with increasing gasification conversion. The amounts of free and freezable bound water (FBW) in AC samples were calculated and correlated to pore volume and average pore size. The amount of FW in AC samples is well correlated to the pore volume and average pore size of the samples, while an opposite trend was observed for FBW. The low-temperature XRD analysis confirmed the existence of non-freezable water (NFW) in coal and AC with the boundary between the freezable and non-freezable water (NFW) determined. PMID:27254256

  14. Radiological investigation of lignite ash. The case of the West Macedonia Lignite Center (Greece)

    SciTech Connect

    Tsikritzis, L.I.; Fotakis, M.; Tzimkas, N.; Tsikritzi, R.; Trikoilidou, E.; Kolovos, N.

    2009-07-01

    This article investigates the natural radioactivity of 26 ash samples, laboratory produced from lignite samples collected in the West Macedonia Lignite Center in Northern Greece. The activity concentrations of {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra, and 232Th were measured by spectroscopy and found four to five times higher than those in the original lignite samples. The radionuclides transfer factors depend on the characteristics of the combustion process and were found higher for {sup 232}Th, {sup 228}Ra, and 40K, because of their closer affinity with the inorganic fraction of the lignite. Compared with other results found in the published literature, the studied ash has relatively high content in radioactivity, but the resulting radiation dose from the radionuclide emissions in the West Macedonia Lignite Center do not contribute significantly to the total effective dose.

  15. Coal Gasification (chapter only)

    SciTech Connect

    Shadle, L.J.; Berry, D.A.; Syamlal, Madhava

    2002-11-15

    Coal gasification is presented in terms of the chemistry of coal conversion and the product gas characteristics, the historical development of coal gasifiers, variations in the types and performance of coal gasifiers, the configuration of gasification systems, and the status and economics of coal gasification. In many ways, coal gasification processes have been tailored to adapt to the different types of coal feedstocks available. Gasification technology is presented from a historical perspective considering early uses of coal, the first practical demonstration and utilization of coal gasification, and the evolution of the various processes used for coal gasification. The development of the gasification industry is traced from its inception to its current status in the world economy. Each type of gasifier is considered focusing on the process innovations required to meet the changing market needs. Complete gasification systems are described including typical system configurations, required system attributes, and aspects of the industry's environmental and performance demands. The current status, economics of gasification technology, and future of gasification are also discussed.

  16. Selective oil agglomeration of lignite

    SciTech Connect

    Halime Abakay Temel; Volkan Bozkurt; Arun Kumar Majumder

    2009-01-15

    In this study, desulfurization and deashing of Adiyaman-Glbai lignite by the agglomeration method were studied. For this purpose, three groups of agglomeration experiments were made. The effects of solid concentration, bridging liquid type and dosage, pH, and screen size on the agglomeration after desliming were investigated in the first group of experiments. The effects of lake water and sea water (the Mediterranean Sea water, the Aegean Sea water, and the Black Sea water) on the agglomeration were investigated in the second group of experiments. The effects of different salts (NaCl, MgCl{sub 2}, and FeCl{sub 3}) on the agglomeration were investigated in the third group of experiments. Agglomeration results showed that the usage of sea waters and soda lake water in the agglomeration medium had a positive effect on the reduction of total sulfur content of agglomerates. In addition, the usage of NaCl, MgCl{sub 2}, and FeCl{sub 3} in the agglomeration medium had a positive effect on the ash content reduction of the agglomerates. 27 refs., 10 figs., 6 tabs.

  17. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges. PMID:26247289

  18. Gasification. 2nd. ed.

    SciTech Connect

    Christopher Higman; Maarten van der Burgt

    2008-02-15

    This book covers gasification as a comprehensive topic, covering its many uses, from refining, to natural gas, to coal. It provides an overview of commercial processes and covers applications relevant to today's demands. The new edition is expanded and provides more detail on the integration issues for current generation, state-of-the-art Integrated Gasification Combined Cycles (IGCC); CO{sub 2} capture in the IGCC context addressing the issues of pre-investment and retrofitting as well as defining what the term 'CO{sub 2} capture ready' might mean in practice; issues of plant reliability, availability and maintainability (RAM) including as evaluation of feedback from existing plants; implementation of fuel cell technology in IGCC concepts. Contents are: Introduction; The Thermodynamics of Gasification; The Kinetics of Gasification and Reactor Theory; Feedstocks and Feedstock Characteristics; Gasification Processes; Practical Issues; Applications; Auxiliary Technologies; Economics, environmental, and Safety Issues; Gasification and the Future. 5 apps.

  19. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  20. Solar coal gasification

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Aiman, W. R.; Otsuki, H. H.; Thorsness, C. B.

    1980-01-01

    A preliminary evaluation of the technical and economic feasibility of solar coal gasification has been performed. The analysis indicates that the medium-Btu product gas from a solar coal-gasification plant would not only be less expensive than that from a Lurgi coal-gasification plant but also would need considerably less coal to produce the same amount of gas. A number of possible designs for solar coal-gasification reactors are presented. These designs allow solar energy to be chemically stored while at the same time coal is converted to a clean-burning medium-Btu gas.

  1. Gasification-based biomass

    SciTech Connect

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. Effects of lignite properties on the hydroliquefaction behavior of representative Turkish lignites

    SciTech Connect

    Oener, M.; Bolat, E.; Dincer, S. )

    1992-01-01

    This paper reports on the conversion and yield data obtained for hydroliquefaction of 11 different Turkish lignites in tetralin, anthracene, and creosote oils with or without catalyst at 440{degrees}C and 80 bar that were correlated with the lignite properties obtained from proximate, ultimate, and petrographic analyses. The intercorrelation of experimental results and analytical data was evaluated by both simple linear regression and stepwise multiple linear regression analyses. Simple linear correlations between conversion and yield data with individual lignite parameters are unsatisfactory. An approach utilizing a stepwise multiple linear regression analysis lead to a number of linear equations relating oil yields to ash, sulfur, volatile matter, elemental carbon, maceral, and xylene extract contents of the lignites.

  3. Statistical tests for prediction of lignite quality

    SciTech Connect

    C.J. Kolovos

    2007-06-15

    Domestic lignite from large, bucket wheel excavators based open pit mines is the main fuel for electricity generation in Greece. Lignite from one or more mines may arrive at any power plant stockyard. The mixture obtained constitutes the lignite fuel fed to the power plant. The fuel is sampled in regular time intervals. These samples are considered as results of observations of values of spatial random variables. The aim was to form and statistically test many small sample populations. Statistical tests on the values of the humidity content, the ash-water free content, and the lower heating value of the lignite fuel indicated that the sample values form a normal population. The Kolmogorov-Smirnov test was applied for testing goodness-of-fit of sample distribution for a three year period and different power plants of the Kozani-Ptolemais area, western Macedonia, Greece. The normal distribution hypothesis can be widely accepted for forecasting the distribution of values of the basic quality characteristics even for a small number of samples.

  4. Inorganic constituents of some Turkish lignites

    SciTech Connect

    Yaman, S.; Taptik, Y.; Yavuz, R.; Kuecuekbayrak, S.

    1996-12-31

    In this study the mineral matter contents of two different Turkish lignite samples from Cayirhan and Tuncbilek regions were isolated by means of mild oxidation of organic matrix applying H{sub 2}O{sub 2}/HCOOH treatment. The isolated minerals were analyzed by XRD and FTIR techniques and constituents of the minerals were investigated qualitatively.

  5. Gasification: A Cornerstone Technology

    ScienceCinema

    Gary Stiegel

    2010-01-08

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  6. Gasification: A Cornerstone Technology

    SciTech Connect

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  7. 2006 gasification technologies conference papers

    SciTech Connect

    2006-07-01

    Sessions covered: business overview, industry trends and new developments; gasification projects progress reports; industrial applications and opportunities; Canadian oil sands; China/Asia gasification markets - status and projects; carbon management with gasification technologies; gasification economics and performance issues addressed; and research and development, and new technologies initiatives.

  8. Kosova coal gasification plant health effects study: Volume 3, Retrospective epidemiology

    SciTech Connect

    Morris, S.C.; Haxhiu, M.A.; Canhasi, B.; Begraca, M.; Ukmata, H.

    1987-12-01

    Disease incidence in coal gasification plant workers in Kosova, Yugoslavia, was compared to that in lignite surface miners who received medical care in the same clinic. No statistically significant difference in incidence rate was found for any of twelve disease categories examined. Early development of a high skin cancer rate, as reported within five years of first exposure at a coal hydrogenation plant in Institute, West Virginia, did not occur. Exploratory analysis indicated trends among gasification plant workers in disease incidence with increasing years of service and increasing occupational exposure levels for chronic bronchitis and mental diseases. Particulate exposures in workers' homes were of the same order as exposures at the gasification plant and further study of residential air pollution levels is recommended. 21 refs., 2 figs., 80 tabs.

  9. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L.

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K {+-} 14K. A unique feature of the HTCF is the {open_quotes}diaphragmless{close_quotes} acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel`dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs.

  10. Comparative studies of Eocene silicified peat and lignite: transition between peat and lignite

    SciTech Connect

    Ting, F.T.C.

    1985-01-01

    Silicified Eocene peats with excellent preserved cellular structures were found in lignite beds in western North Dakota and were comparatively studied. The well preserved plant tissues resemble that of modern Taxodium peat. The most striking difference between silicified peat and lignite is the disappearance of cell cavities when peat is transformed to lignite, a phenomenon caused primarily by compaction rather than cell wall swelling through humification or gelification. The differences between textinite and ulminite can be traced back to the differences between early wood and late wood of the secondary xylem. What appear to be cutinites in lignite are compressed cortex tissues of young plants. Silicified leaf and cortex tissues contain more visible fluorinite exhibiting brilliant fluorescence. Clustering phloem fibers or stone cells give rise to a material resembling resinite but are more akin to huminite A and/or suberinite. They converge to vitrinite when vitrinite reflectance exceeds 0.6%. Alternating banded phloem fibers and phloem parenchyma give rise to alternating layers of huminite A and huminite B. True micrinite does occur in lignite but in limited quantities.

  11. The development and testing of an air/steam blown entrained flow gasifier fuelled with cotton waste and sawdust

    SciTech Connect

    Joseph, S.; Denniss, T.; Lipscombe, R.

    1996-12-31

    Australia produces approximately 50 million tonnes of biomass residue per year. Much of this residue is either burnt in the fields, at factory sites or disposed of in land fill. A recent study, sponsored by the Energy Research and Development Corporation (ERDC), has concluded that there is a potential to generate at least 2000MW of electricity per year from this waste. Research carried out in 1990 by Biomass Energy Services and Technology Pty (BEST) indicated that gasification power generating equipment with electrical outputs of 1-5 MW and installed capital costs of US$1200 per kW could be viable at present electricity prices. At that time equipment was not commercially available at the target price and thus an R & D programme was undertaken to develop gasification equipment suitable for Australian conditions. Following a detailed literature search and design study it appeared that an entrained flow (vortex) gasifier could handle the range of fuels available and could be produced at a price that would ensure its commercial viability. In this paper the design will be outlined and the mathematic modeling of the flow and the results of the tests undertaken will be presented. An outline of the demonstration program to be undertaken next year at a cotton gin will be given, along with the preliminary economic analysis that has been carried out.

  12. Gasification Technologie: Opportunities & Challenges

    SciTech Connect

    Breault, R.

    2012-01-01

    This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

  13. A model approach to highly dispersing catalytic materials in coal for gasification

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1992-01-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and higher catalytic activity of the latter compound will produce economic benefits by reducing the amount of K[sub 2]CO[sub 3] required for high coal char reactivities. As was shown in previous reports, coal loading with potassium or calcium at different pHs produced CO[sub 2] gasification activities which increased in the order pH 6 > pH 10 >>pH 1. A similar trend was obtained when calcium and potassium were simultaneously loaded and char reaction times were less than about 75 min. In the last quarter, the potential application of ammonia as a reactive medium for coal gasification has been investigated. This gas has not been previously applied to coal gasification. However, related work suggests that the potential chemical feedstock base can be broadened by using ammonia to generate hydrogen cyanide and cyanogen from coal. The current report shows that the reactivity of a demineralized lignite in ammonia is significantly higher in the presence of calcium or potassium catalyst than that for the char without added catalyst and suggests that ammonia is a potentially reactive gas for catalyzed coal gasification.

  14. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  15. NOx reduction in a lignite cyclone furnace

    SciTech Connect

    Melland, C.; O`Connor, D.

    1998-12-31

    Reburning, selective catalytic reduction, and selective noncatalytic reduction techniques have demonstrated some potential for NOx reduction in cyclone boilers. These techniques are costly in terms of both capital and operating costs. Lignite cyclone combustion modeling studies indicated that modifying combustion inside the cyclone barrel could reduce cyclone NOx emissions. The modeling showed that air staging, secondary air basing, flue gas injection and variations in coal moisture content could affect NOx emissions. Short term lignite boiler tests and now longer term boiler operation have confirmed that significant NOx reductions can be accomplished merely by modifying cyclone combustion. The low NOx operation does not appear to significantly impact maintenance, reliability or capacity of the cyclone burner or furnace.

  16. (Bioprocessing of lignite coals using reductive microorganisms)

    SciTech Connect

    Crawford, D.L.

    1990-01-01

    The objectives of this report are to: (1) characterize selected aerobic bacterial strains for their abilities to depolymerize lignite coal polymers, and isolate and identify the extracellular enzymes responsible for depolymerization of the coal; (2) characterize selected strictly anaerobic bacteria, that were previously shown to reductively transform coal substructure model compounds, for the ability to similarly transform polymeric coal; and (3) isolate more strains of anaerobic bacteria by enrichment using additional coal substructure model compounds and coal as substrates.

  17. Testing of novel catalytic coal-gasification concepts. Task 1. Ultrasound-promoted catalysis. Final report, September 1986-September 1989

    SciTech Connect

    Mensinger, M.C.; Lau, F.S.; Wangerow, J.R.; Punwani, D.V.

    1990-07-01

    Tests were conducted to determine the effects of operating conditions, catalysts, and reactor configurations on ultrasound-promoted coal gasification. The operating conditions tested with lignite-water or lignite-water-salt slurries included temperatures and pressures in the range of 75 to 650 F, and 50 to 1200 psig, respectively. In tests conducted with nonaqueous slurries, the temperatures and pressures tested ranged from 650 to 720 F and 100 to 200 psig. Catalysts tested were KOH, LiOH, K2CO3, hydrogenation, SNOCAT, laterite, CRG-A, and ruthenium. The frequency of the ultrasonic horn was 20 kHz. Overall, at the conditions and with the catalysts and slurry media tested, ultrasound was not effective in sustaining coal gasification reactions. The most favorable results were obtained with a lignite-water slurry irradiated with high intensity ultrasound with KOH catalyst at 550 F and 1050 psig. After 1 hour of sonication, the carbon conversion to gas was about 5%. Analyses of the slurries from tests conducted with and without ultrasound showed that ultrasound significantly increased the types and quantities of components that were solubilized. As expected, ultrasound significantly reduced the particle size of lignite being irradiated.

  18. Shell Coal Gasification Project. Final report on eighteen diverse feeds

    SciTech Connect

    Phillips, J.N.; Kiszka, M.B.; Mahagaokar, U.; Krewinghaus, A.B.

    1993-07-01

    This report summarizes the overall performance of the Shell Coal Gasification Process at SCGP-1 in Deer Park, Texas. It covers the four year demonstration and experimental program jointly conducted by Shell oil and Shell Internationale Research Maatschappij, with support from the Electric Power Research Institute. The report describes coal properties and gasification results on eighteen feeds which include seventeen diverse coals from domestic and international markets, and petroleum coke. Comparisons between design premises and actual performance on two key feeds, Illinois No. 5 coal and Texas lignite demonstrate that the plant met and exceeded design targets on all key process parameters. Equipment performance results are discussed for all areas of the plant based on periodic interim inspections, and the final inspection conducted in April 1991 after the end of operations. The report describes process control tests conducted in gasifier lead and turbine lead configurations, demonstrating the ability of the process to meet utility requirements for load following. Environmental result on the process for a wide variety of feedstocks are documented. These results underscore the inherent strength of the SCGP technology in meeting and exceeding all environmental standards for air, water and solids. The excellent applicability of the Shell Coal Gasification Process in integrated combined cycle power generation systems is described in view of the high efficiency derived from this process.

  19. INTEGRATED ASSESSMENT OF TEXAS LIGNITE DEVELOPMENT. VOLUME I. TECHNICAL ANALYSES

    EPA Science Inventory

    This report contains the results of a project to assess the probable impacts of expected future development of Texas lignite resources. This multi-disciplinary, policy-oriented study considered possible lignite extraction and utilization options through the year 2000. The researc...

  20. Characterization of microbes which polymerize and depolymerize lignite coals

    SciTech Connect

    Polman, J.K.; Breckenridge, C.R.; Quigley, D.R.

    1991-01-01

    Several bacteria were tested for their ability to modify the macromolecular structure of different coals. When grown in the presence of Mississippi Wilcox lignite, North Dakota Beulah Zap lignite, and North Dakota lenoardite, strain Con5-1L produces polymerization products that are derived from coal. This bacterium was characterized extensively with respect to physiology and morphology and may be a member of the genus Arthrobacter. Strain UPLCPS2-B, which was identified as Pseudomonas chlororaphis, may be capable of limited depolymerization of Mississippi Wilcox lignite and leonardite, but not Beulah Zap lignite. Fermentative strain Con5-5C, which may extensively depolymerize Mississippi Wilcox lignite, was characterized according to morphology and physiology. Other strains tested had little or no effect on coal macromolecular structure. These included Escherichia coli, Arthrobacter paraffineus, and strain BED1. 21 refs., 2 figs.

  1. Characterization of microbes which polymerize and depolymerize lignite coals

    SciTech Connect

    Polman, J.K.; Breckenridge, C.R.; Quigley, D.R.

    1991-12-01

    Several bacteria were tested for their ability to modify the macromolecular structure of different coals. When grown in the presence of Mississippi Wilcox lignite, North Dakota Beulah Zap lignite, and North Dakota lenoardite, strain Con5-1L produces polymerization products that are derived from coal. This bacterium was characterized extensively with respect to physiology and morphology and may be a member of the genus Arthrobacter. Strain UPLCPS2-B, which was identified as Pseudomonas chlororaphis, may be capable of limited depolymerization of Mississippi Wilcox lignite and leonardite, but not Beulah Zap lignite. Fermentative strain Con5-5C, which may extensively depolymerize Mississippi Wilcox lignite, was characterized according to morphology and physiology. Other strains tested had little or no effect on coal macromolecular structure. These included Escherichia coli, Arthrobacter paraffineus, and strain BED1. 21 refs., 2 figs.

  2. Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report

    SciTech Connect

    Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

    1982-09-01

    The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than the higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.

  3. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.

    PubMed

    Narobe, M; Golob, J; Klinar, D; Francetič, V; Likozar, B

    2014-06-01

    Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850°C and 900°C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements. PMID:24736208

  4. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  5. Briquettability of lignite and woody wastes composite fuel

    SciTech Connect

    Beker, U.G.

    2000-03-01

    Woody wastes have favorable burning characteristics compared to lignite, as well as low ash content and reduced smoke emission. The aim of this study was to blend lignite with woody wastes to obtain a solid fuel that retains the advantageous characteristics of woody materials. Blends with lignite were made up with 7, 9, 12, 15, and 20% of waste and then briquetted under pressures of 400, 550, 700, and 800 MPa. Sunflower shell, sawdust, and paper mill wastes were used in different amounts with molasses as binder. Studies were carried out on a laboratory scale to determine optimum parameters for briquetting, such as moisture content of lignite and pressure. Briquetting of lignite without waste materials produces products of low strength. The strongest briquettes were obtained with waste contents of 12--20% and lignite moisture contents of 10--12% at briquetting pressures of 550, 700, and 800 MPa. Briquettes with adequate mechanical strength are obtained from lignite-waste blends with the addition of 8% molasses.

  6. Relationships proximate analysis results and higher heating values of lignites

    SciTech Connect

    Demirbas, A.

    2008-07-01

    In this study, the higher heating values (HHVs) of 26 lignite samples were calculated by using the proximate and elemental analyses data. The proximate analysis results such as volatile materials (VM), fixed carbon (FC) and HHV and the elemental analysis results such as carbon, hydrogen (H), oxygen (O), nitrogen (N) and sulfur (S) were determined for 26 lignite samples from different areas of Turkey. The lignite samples have been tested with particle size of 0-0.05 mm. The HHVs of 26 lignite samples obtained from different Turkish sources were determined experimentally and calculated from both ultimate and proximate analyses. HHVs of 26 the lignite samples can be calculated from the equation based modeling. The HHVs (MJ/kg) of the lignite samples as a function of fixed carbon (FC, wt%) or volatile materials (VM, %) was calculated from the following equations: HHV = 0.300FC + 11.117 (1) HHV = -0.323VM + 42.223 (2) where the correlation coefficients for Eqs. (1) and (2) were 0.9907 and 0.9862, respectively. The combustion heats calculated from Eqs. (1) and (2) showed mean differences of +3.9% and +0.3%, respectively. The HHVs (MJ/kg) of the lignite samples as a function of C, H, O, N, and S were calculated from a given equation where the correlation coefficients for the equation was 0.9891. HHVs calculated from this equation showed a mean deviation of +0.1.

  7. Drying grain using a hydrothermally treated liquid lignite fuel

    SciTech Connect

    Bukurov, Z.; Cvijanovic, P.; Bukurov, M.; Ljubicic, B.R.

    1995-12-01

    A shortage of domestic oil and natural gas resources in Yugoslavia, particularly for agricultural and industrial purposes, has motivated the authors to explore the possibility of using liquid lignite as an alternate fuel for drying grain. This paper presents a technical and economic assessment of the possibility of retrofitting grain-drying plants currently fueled by oil or natural gas to liquid lignite fuel. All estimates are based on lignite taken from the Kovin deposit. Proposed technology includes underwater mining techniques, aqueous ash removal, hydrothermal processing, solids concentration, pipeline transport up to 120 km, and liquid lignite direct combustion. For the characterization of Kovin lignite, standard ASTM procedures were used: proximate, ultimate, ash, heating value, and Theological analyses were performed. Results from an extensive economic analysis indicate a delivered cost of US$20/ton for the liquid lignite. For the 70 of the grain-drying plants in the province of Vojvodina, this would mean a total yearly saving of about US $2,500,000. The advantages of this concept are obvious: easy to transport and store, nonflammable, nonexplosive, nontoxic, 30%-40% cheaper than imported oil and gas, domestic fuel is at hand. The authors believe that liquid lignite, rather than an alternative, is becoming more and more an imperative.

  8. Nitrogen incorporation into lignite humic acids during microbial degradation

    SciTech Connect

    Dong, L.H.; Yuan, H.L.

    2009-07-01

    Previous study showed that nitrogen content in lignite humic acids (HA) increased significantly during lignite biodegradation. In this paper we evaluated the factors responsible for the increased level of N in HA and the formation of new nitrogen compound following microbial degradation. When the ammonium sulfate concentration in lignite medium was 0.5%, the N-content in HA was higher than that in the crude lignite humic acid (cHA); when the ammonium sulfate concentration was epsilon 0.5%, both the biodegraded humic acid (bHA) N-content and the content of bHA in lignite increased significantly, but at 2.0% no increase was observed. This indicated that HA incorporated N existing in the lignite medium, and more HA can incorporate more N with the increase of bHA amount in lignite during microbial degradation. CP/MAS {sup 15}N NMR analysis showed that the N incorporated into HA during biotransformation was in the form of free or ionized NH{sub 2}-groups in amino acids and sugars, as well as NH{sub 4}{sup +}. We propose nitrogen can be incorporated into HA biotically and abiotically. The high N content bHA has a potential application in agriculture since N is essential for plant growth.

  9. Emissions estimation for lignite-fired power plants in Turkey

    SciTech Connect

    Nurten Vardar; Zehra Yumurtaci

    2010-01-15

    The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

  10. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time.

    PubMed

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2015-03-01

    Lignite and sewage sludge were co-pyrolyzed in a vacuum reactor with high temperature (900°C) and long contact time (more than 2h). Beneficial synergetic effect on gas yield was clearly observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The gas volume yield, gas lower heating value (LHV), fixed carbon conversion and H2/CO ratio were 1.42 Nm(3)/kg(blend fuel), 10.57 MJ/Nm(3), 96.64% and 0.88% respectively, which indicated this new method a feasible one for gas production. It was possible that sewage sludge acted as gasification agents (CO2 and H2O) and catalyst (alkali and alkaline earth metals) provider during co-pyrolysis, promoting CO2-char and H2O-char gasification which, as a result, invited the improvement of gas volume yield, gas lower heating value and fixed carbon conversion. PMID:25542402

  11. Effects of rank and calcium catalysis on oxygen chemisorption and gasification reactivity of coal chars

    NASA Astrophysics Data System (ADS)

    Piotrowski, Andrzej

    The effects of coal rank and calcium catalysis on oxygen gasification of coal chars have been investigated. Five different coals, from lignite to anthracite were used. Coals were demineralized and a calcium catalyst was deposited on the carbon in different amounts, by ion exchange for lignite and subbituminous coals and by impregnation for the others. Chars from all coals were obtained by both slow and rapid pyrolysis. Oxygen chemisorption studies conducted under conditions far away from gasification and measured oxygen uptakes during gasification revealed that large amounts of oxygen are chemisorbed. The lower the coal rank, the greater the amount of chemisorbed oxygen in both cases. The presence of a calcium catalyst additionally increased the oxygen uptake by solid carbons. The chemisorption tests also showed the influence of diffusion inside the smallest micropores on the kinetics of the process. Reactivity profiles were investigated in detail. Demineralized coal chars showed monotonic, linear increases with burn-off for a broad range of conversion (20-80%). The higher the coal rank, the greater the reactivity increase per unit burn-off. A comparison of reactivities of the demineralized form of coal chars confirmed that the reactivity is affected by diffusion inside the smallest micropores for experiments in the intermediate temperature range, usually 700-800 K. A comparison of reactivities of the calcium-loaded and demineralized coal chars prepared and subsequently reacted at the same conditions has confirmed that the catalytic effect of calcium is the greatest for lower-rank coals, and that it decreases with increasing coal rank. Comparable reactivities for as-received and calcium-loaded lignite and subbituminous char were about two orders of magnitude greater than for a corresponding demineralized char. For higher ranks of coal the effect of calcium loading is smaller than one order of magnitude. For the lower ranks of coal, where calcium is very well

  12. Variable capacity gasification burner

    SciTech Connect

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  13. Advanced hybrid gasification facility

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; Johnson, S.A.; Dixit, V.B.

    1993-08-01

    The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

  14. Gasification of black liquor

    DOEpatents

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  15. Gasification of black liquor

    DOEpatents

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  16. Use of fuzzy logic in lignite inventory estimation

    SciTech Connect

    Tutmez, B.; Dag, A.

    2007-07-01

    Seam thickness is one of the most important parameters for reserve estimation of a lignite deposit. This paper addresses a case study on fuzzy estimation of lignite seam thickness from spatial coordinates. From the relationships between input (Cartesian coordinates) and output (thickness) parameters, fuzzy clustering and a fuzzy rule-based inference system were designed. Data-driven fuzzy model parameters were derived from numerical values directly. In addition, estimations of the fuzzy model were compared with kriging estimations. It was concluded that the performance ofthe fuzzy model was more satisfactory. The results indicated that the fuzzy modeling approach is very reliable for the estimation of lignite reserves.

  17. Beysehir lignite-mining study. Final report. Export trade information

    SciTech Connect

    Not Available

    1984-03-30

    Mineable lignite has been identified at three zones in the Beysehir area of Turkey; Karadiken, Avdancik, and Akcalar. The lignite from all three areas, has definite possibilities to be economically and selectively recovered by modern open pit mining techniques. It can then be converted into fuel for a steam electric power generating station by technology that has been proven in operation for over eight years. The highest Turkish government authorities have authorized the Turkish Electricity Authority (TEK) to contract for and eventually operate both the lignite mining facility and the steam electric generating plant at Beysehir in an effort to avoid heretofore experienced delays, overruns, and under-production.

  18. Appraising lignite quality parameters by linguistic fuzzy identification

    SciTech Connect

    Tutmez, B.

    2007-03-15

    Lignite quality parameters have had central importance for power plants. This article addresses a comparative study on fuzzy and regression modeling for estimating the calorific value of lignite, which is one of the quality parameters from the other parameters: moisture, ash, volatile matter, and sulphur content. For the estimations, data driven models were designed based on linguistic fuzzy modeling structures. In addition, estimations of the fuzzy models were compared with linear regression estimations. The great majority of performance evaluations showed that the fuzzy estimations are very satisfactory in estimating calorific value of lignite.

  19. Distribution of coal quality parameters in lignites of northeast Texas

    SciTech Connect

    Crowley, S.S.; Warwick, P.D.; Thomas, R.E.; Mason, W.H.

    1996-12-31

    The distribution of coal quality characteristics was examined in lignites (Wilcox Group, Paleocene-Eocene) near Mt. Pleasant, Texas. Coal quality parameters including ash yield, sulfur forms, moisture, calorific value, and selected potentially hazardous trace elements were plotted on cross sections of lignite beds to determine their stratigraphic distribution. This study has been undertaken as a part of the US Geological Survey`s National Coal Resource Assessment (NCRA) program in the Gulf Coast Lignite Region. The distribution in coal of Hazardous Air Pollutant elements (HAPs), as defined in the Clean Air Act Amendments of 1990, are an important focus of the NCRA program.

  20. Determination and calculation of combustion heats of 20 lignite samples

    SciTech Connect

    Demirbas, A.; Dincer, K.; Topaloglu, N.

    2008-07-01

    In this study, the proximate analyses, such as volatile matter (VM), fixed carbon (FC), and higher heating value (HHV), were determined for 20 lignite samples from different areas of Turkey. The lignite samples have been tested with particle size of 0-0.05 mm. Combustion heats (higher heating values, HHVs) of 20 lignite samples obtained from different Turkish sources were determined experimentally and calculated from both ultimate and proximate analyses. The HHVs (MJ/kg) of the lignite samples as a function of fixed carbon (FC, wt%) or volatile materials (VM, %) was calculated from the following equations: HHV = 0.2997FC + 11.1170 (1) HHV = -0.3225VM + 42.223 (2). The correlation coefficients for Eqs. (1) and (2) were 0.9820 and 0.9686, respectively. The combustion heats calculated from Eqs. (1) and (2) showed mean differences of +0.4% and +0.4%, respectively.

  1. Effect of mechanical dispersion of lignite on its thermal decomposition

    SciTech Connect

    Yusupov, T.S.; Shumskaya, L.G.; Burdukov, A.P.

    2007-09-15

    It is studied how the high-rate mechanical grinding affects thermal decomposition of lignite extracted from the Kansk-Achinsk Coal Basin. It has been shown that dispersion of lignite in the high energy intensive vibration-centrifugal and planetary mills causes formation of structures exhibiting lower thermal stability. That results in the shift of primary decomposition phenomena into the low-temperature region and, thus, in the higher reactivity of coals.

  2. Evaluation of lignite combustion residues as cement additives

    SciTech Connect

    Demirbas, A.; Aslan, A.

    1999-07-01

    In this study the physical and chemical properties of lignite fly ashes obtained from electrostatic precipitator and cyclone, lignite bottom ash, cement + lignite ash mixtures, and their effects on mechanical properties of concrete were investigated. The ashes were classified into two general types based on total silica, alumina, and iron-III oxide: class A and class B. When 25% of the cement was replaced by class A lignite bottom ash (the combined three oxide contents were 30.2%), the 28-day compressive strength increased by 18.9% compared to the control mix, and when 25% of the cement was replaced by class B lignite ash (the combined three oxide contents were 78.1%), the compressive strength decreased by 3.5% compared to the control mix. The results obtained were compared with the Turkish Standards and, in general, were found to be within the limits. As a result, the lignite fly ash and bottom ash samples may be used as cementitious materials.

  3. In-situ gasification and liquefaction show promise

    NASA Astrophysics Data System (ADS)

    Miskell, J. T.

    1980-05-01

    Recent progress in the development of in-situ coal gasification and shale liquefaction is discussed. The presence of potentially gasifiable subbituminous, bituminous and lignite coal reserves in the United States amounting to 1800 billion tons, compared with minable coal reserves of 430 billion tons, is pointed out as a major motivation for the development of in-situ extraction techniques, which are estimated to be some of the least expensive potential sources of synthetic natural gas. The successful test of an underground gasification unit operating for 35 days in a 23-ft thick coal seam dipping at 63 deg to produce low-Btu fuel gas and nitrogen-free synthesis gas that can be converted to hydrocarbons is presented, and operational, geological, environmental and economic constraints on the operation of such a unit are considered. In-situ extraction of kerogen from shale using conventional or RF methods is presented as the most promising means for utilizing the great reserves of shale in the United States, requiring little water and causing least disturbance to the environment, and it is noted that the RF process will probably become available by the mid-1980s.

  4. Pyrolysis and gasification of coal at high temperatures

    SciTech Connect

    Zygourakis, K.

    1988-01-01

    Particles from two parent coals (Illinois [number sign]6 and lignite) were pyrolyzed in a nitrogen atmosphere using a captive sample microreactor capable of achieving heating rates as high as 1000[degrees]C/s. Direct measurements on digitized image of char particle cross-sections and a stereological model were used to characterize the macropore structure of chars. Macroporosites, pore size distributions and surface areas were accurately measured allowing us to quantify the effects of pyrolysis heating rates and coal particle size. We have paid particular attention to the development of image analysis software that has allowed us to analyze for the first time the shape or bounary tortuosity of the macropores. Tortuous pore boundaries result in higher values for the true macropore surface areas and should enhance the reactivity of the char samples. Another contribution of the current research program is the development of probabilisitic gasification models that work on computational grids obtained from digitized images of actual cross-sections of char particles. These digital images are accurate discrete approximations of a slice of the actual reacting solid. The incorporation of sophisticated image processing technique is perhaps the most attractive feature of the new simulation approach. Preliminary results indicate that the probabilistic models can accurately account for the opening of closed porosity and fragmentation phenomena occurring during gasification at high temperatures.

  5. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher

  6. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  7. The washability of lignites for clay removal

    SciTech Connect

    Oteyaka, B.; Yamik, A.; Ucar, A.; Sahbaz, O.; Demir, U.

    2008-07-01

    In the washability research of the Seyitomer Lignites (Kutahya-Turkey), with lower calorific value (1,863 kcal/kg) and high ash content (51.91%), by heavy medium separation, it was found out that middling clay in the coal had an effect to change the medium density. To prevent this problem, a trommel sieve with 18 and 5 mm aperture diameter was designed, and the clay in the coal was tried to be removed using it before the coal was released to heavy medium. Following that, the obtained coal in -100 + 18 mm and -18 + 5 mm fractions was subjected to sink and float test having 1.4 gcm{sup -3} and 1.7 gcm{sup -3} medium densities (-5 mm fraction will be evaluated in a separate work). Depending on the raw coal, with the floating of -100 + 18 mm and -18 + 5 mm size fraction in 1.4 gcm{sup -3} medium density, clean coal with 60.10% combustible matter recovery, 19.12% ash, and 3,150 kcal/kg was obtained. Also floating of the samples sinking in 1.4 gcm{sup -3} in the medium density (1.7 gcm{sup -3}), middling with 18.70% combustible matter recovery, 41.93% ash, 2,150 kcal/kg, and tailing having 78.31% ash were obtained.

  8. Microbial screening test for lignite degradation. Quarterly progress report No. 1, January-March 1985

    SciTech Connect

    Yen, T.F.

    1985-01-01

    Potassium permanganate and sodium hypochlorite oxidation of lignitic coal were performed. Ion chromatography of low molecular weight carboxylic acids - oxalic acid, formic acid, and acetic acid - produced by potassium permanganate and sodium hypochlorite oxidation was executed. Oxalic acid was found to be the most predominant low molecular weight species. It was estimated that about 10% of the carbon present in the chemical structure of lignite was converted to oxalic acid by sodium hypochlorite oxidation. Ion chromatography analysis showed that about 43% of the lignite carbon was converted to carbon dioxide in all experiments. Biological degradation of lignite by P. versicolor, a white-rot fungus, on lignite/agar and lignite slurry was attempted. Apparently, P. versicolor is capable of growing on lignite slurry. Acclimation of P. versicolor to lignite was proceeded. Biochemical reaction test for laccase production of P. versicolor was performed and found to be positive. 15 refs., 5 figs., 6 tabs.

  9. Gasification reactivities of solid biomass fuels

    SciTech Connect

    Moilanen, A.; Kurkela, E.

    1995-12-31

    The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

  10. Catalysis in biomass gasification

    SciTech Connect

    Baker, E.G.; Mudge, L.K.

    1984-06-01

    The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

  11. Radioenvironmental survey of the Megalopolis lignite field basin.

    PubMed

    Rouni, P K; Petropoulos, N P; Anagnostakis, M J; Hinis, E P; Simopoulos, S E

    2001-05-14

    The Megalopolis lignite field basin in southern Greece, with Megalopolis-A and B lignite-fired power plants in operation (total 900 MW), has been repeatedly investigated during the past 25 years by the Nuclear Engineering Section of the National Technical University of Athens (NES-NTUA). The present work aims at an integrated radioenvironmental approach leading to the dose assessment to the public and to the plants staff. This approach includes systematic sampling of lignite and barren at the local lignite mines feeding the power plants and sampling of lignite, fly-ash and bottom ash at the power plants for the determination of the activity of the natural radionuclides 226Ra, 232Th, 40K, 234Th and 210Pb. Furthermore, the following measurements and samplings were conducted in 25 selected sites within 10 km around the power plants: soil sampling for the determination of the above radionuclides, radon concentration and exhalation rate measurements, soil gas radon concentration measurements, dose measurements and calculations, determination of air-particulate matter concentration, etc. The results obtained allowed for the mapping of the parameters studied which lead to useful conclusions. Dosimetric calculations for the population living around the power plants and the plants staff were also performed based on the guidance of UNSCEAR (1982 report). PMID:11379921

  12. Study on Combustion Characteristics of Lignite in a CFB Boiler

    NASA Astrophysics Data System (ADS)

    Leng, J.; Zou, T. S.; Wu, J. X.; Jiang, C.; Gao, J. L.; Wu, J.; Su, D.; Song, D. Y.

    The shortage of coal promotes the lignite utility in power plant because of the rapid economy development recently. However, lignite is high in moisture content as well as volatile content and low in calorific value. It is very difficult to burn in traditional pulverized coal fired boiler. Circulating fluidized bed (CFB) boiler is an alternative with low pollutant emission. Some CFB boilers are built and put into commercial operation in Northeast China and East Inner Mongolia where lignite is abundant. The operation experiences of these boilers are introduced in this paper. The effect of coal particle size on bottom ash ratio, combustion efficiency, thermal efficiency, pollution emission, and ash deposits in convective heating surface were investigated. It was found that for the lignite fired CFB boiler, the largest coal particle size should be 20 to 40mm to maintain bed material balance. But the bottom ash only shares less than 10% of the total ash. Due to high volatile content in the lignite, the combustion efficiency could achieve more than 99%. Meanwhile, NOx emission was relative low and satisfied national environment protection requirement. It is suggested that flue gas velocity in convective heating surface should be ranged in a certain scope to prevent ash deposit and erosion.

  13. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  14. PNNL Coal Gasification Research

    SciTech Connect

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  15. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    SciTech Connect

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated disinfection by-products (DBPs). Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. The Energy & Environmental Research Center has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During previous studies, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon product. As much as a 130% increase in the humic acid sorption capacity of a PAC produced from a high-sodium-content lignite was observed. During this study, activated carbons were prepared from three coals representing high-sodium, low-sodium--low-calcium, and high-calcium compositions in two steps, an initial char formation followed by mild activation with steam to avoid excessive burnout. This set of carbons was characterized with respect to physical and chemical properties. The BET (Brunauer-Emmett-Teller) nitrogen adsorption isotherms gave relatively low surface areas (ranging from 245 to 370 m{sup 2}/g). The lowest-BET area was obtained for the high-sodium carbon, which can be attributed to enlargement of micropores as a result of sodium-catalyzed gasification reaction of the carbon structure. This hypothesis is consistent with the scanning electron microscopy microprobe analyses, which show that in both the coal and the activated carbon from this coal, the sodium is distributed over both the carbon structure and the mineral particles. Thus it is initially associated with carboxylate groups on the coal and then as sodium oxide or

  16. Air blown gasification cycle

    SciTech Connect

    Dawes, S.G.; Mordecai, M.; Brown, D.; Burnard, G.K.

    1995-12-31

    The Air Blown Gasification Cycle (ABGC) is a hybrid partial gasification cycle based on a novel, air blown pressurized fluidized bed gasifier (PFBG) with a circulating fluidized bed combustor (CFBC) to burn the residual char from the PFBG. The ABGC has been developed primarily as a clean coal generation system and embodies a sulfur capture mechanism based on the addition of limestone, or other sorbent, to the PFBG where it is sulfided in the reducing atmosphere, followed by oxidation to a stable sulfate residue in the CFBC. In order to achieve commercialization, certain key technological issues needed to be addressed and an industry-led consortium was established to develop the components of the system through the prototype plant to commercial exploitation. The consortium, known as the Clean Coal Power Generation Group (CCPGG), is undertaking a program of activity aimed at achieving a design specification for a 75 MWe prototype integrated plant by March, 1996. Component development consists of both the establishment of new components, such as the PFBG and the hot gas clean up system, and specific development of already established components, such as the CFBC, raw gas cooler, heat recovery steam generator (HRSG) and gas turbine. This paper discusses the component development activities and indicates the expected performance and economics of both the prototype and commercial plants. In addition, the strategy for component development and achievement of the specification for a 75 MWe prototype integrated plant is described.

  17. Coal gasification cogeneration process

    SciTech Connect

    Marten, J.H.

    1990-10-16

    This patent describes a process for the coproduction of a combustible first gas stream usable as an energy source, a sulfur-dioxide-containing second gas stream usable as a source for oxidant in the gasification of coal and a sulfur-dioxide-containing third gas stream usable as a feedstock for the production of sulfuric acid. It comprises: reacting coal in a coal gasification zone in the presence of an oxidant under partial coal-gasifying conditions to produce carbonaceous char and a crude gas stream; separating sulfur-containing compounds from the crude gas stream in a sulfur recovery zone to produce a combustible first gas stream and elemental sulfur; reacting the carbonaceous char and gypsum in a reaction zone in proportions such that the non-gypsum portion of the carbonaceous char and gypsum mixture contains sufficient reducing potential to reduce sulfur in the gypsum to gaseous compounds of sulfur in a +4 or lower oxidation state under reducing conditions to produce first a sulfur-dioxide-containing second gas stream which contains weaker SO{sub 2} produced in an early stage of the reaction zone and removed from the reaction zone, and then a sulfur-dioxide-containing third gas stream which contains concentrated SO{sub 2} recovered from a later stage of the reaction zone.

  18. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  19. Thermal decomposition behaviors of lignite by pyrolysis-FTIR

    SciTech Connect

    Feng, J.; Li, W.Y.; Xie, K.C.

    2006-01-21

    An in situ pyrolysis reactor combined with the Fourier transformation infrared spectrometer (PFTIR) technique is employed to study the coal structure and its thermal decomposition behaviors. The interface of pyroprobe with FTIR was designed delicately to ensure the path of the laser beam in FTIR was just 3 {mu}m above the coal sample, so any detection information of products from coal pyrolysis would be acquired previous to the secondary reaction. The PFTIR technique can be adopted to determine the activation energy of coal pyrolysis. Lignite coal has been used to evaluate this new method. The thermal decomposition behaviors of functional groups from lignite pyrolysis coincide with the first-order reaction.

  20. A model approach to highly dispersing catalytic materials in coal for gasification. Eleventh quarterly report, April 1, 1992--June 30, 1992

    SciTech Connect

    Abotsi, G.M.K.; Bota, K.B.

    1992-10-01

    This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and higher catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. As was shown in previous reports, coal loading with potassium or calcium at different pHs produced CO{sub 2} gasification activities which increased in the order pH 6 > pH 10 >>pH 1. A similar trend was obtained when calcium and potassium were simultaneously loaded and char reaction times were less than about 75 min. In the last quarter, the potential application of ammonia as a reactive medium for coal gasification has been investigated. This gas has not been previously applied to coal gasification. However, related work suggests that the potential chemical feedstock base can be broadened by using ammonia to generate hydrogen cyanide and cyanogen from coal. The current report shows that the reactivity of a demineralized lignite in ammonia is significantly higher in the presence of calcium or potassium catalyst than that for the char without added catalyst and suggests that ammonia is a potentially reactive gas for catalyzed coal gasification.

  1. The distribution of trace elements in Turkish lignites in Western Anatolia and the Thrace Basin

    SciTech Connect

    Palmer, C.A.; Tuncali, E.; Finkelman, R.

    1999-07-01

    The United States Geological Survey (USGS) and the General Directorate of Mineral Research and Exploration in Turkey (Maden Tetkik ve Arama:MTA) are working together to provide a more complete understanding of the chemical properties of lignites from major Turkish lignite producing areas. The project is a part of the USGS effort to produce an international coal database and is part of the ``Technological and Chemical properties of Turkish Lignite Inventory Project'' being conducted by the MTA General Directorate. The lignites in Turkey formed in several different depositional environments at different geologic times and have differing chemical properties. The Eocene lignites are limited to northern Turkey. Oligocene lignites, in the Trace Basin of northwestern Turkey, are intercalated with marine sediments. Miocene lignites are generally located in western Turkey. These coal deposits have relatively abundant reserves, with limnic characteristics. The Pliocene-Pleistocene lignites are found in the eastern part of Turkey. Most of these lignites have low calorific values, high moisture and high ash contents. The majority of the lignite extraction is worked in open-pit mines. Turkish lignite production is used mainly by power plants; small amounts are used by households and in industry. All the samples in this study were collected as channel samples of the beds. Analyses of 71 coal samples (mostly lignites) have been completed for 54 elements using various analytical techniques including inductively coupled plasma emission and mass spectrometry, instrumental neutron activation analysis and various single element techniques. Many of these lignites have elemental concentrations similar to those of US lignites. However, maximum or mean concentrations of B, Cr, Cs, Ni, As, Br, Sb, Cs and U in Turkey were higher than the corresponding maximum or mean found in either of the Fort Union or Gulf Coast basins, the two most productive lignite basins in the U.S.

  2. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2001-07-10

    sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. The PGM consists of a pressurized circulating fluidized bed (PCFB) reactor together with a recycle cyclone and a particulate removing barrier filter. Coal, air, steam, and possibly sand are fed to the bottom of the PCFB reactor and establish a relatively dense bed of coal/char in the bottom section. As these constituents react, a hot syngas is produced which conveys the solids residue vertically up through the reactor and into the recycle cyclone. Solids elutriated from the dense bed and contained in the syngas are collected in the cyclone and drain via a dipleg back to the dense bed at the bottom of the PCFB reactor. This recycle loop of hot solids acts as a thermal flywheel and promotes efficient solid-gas chemical reaction.

  3. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  4. Coal gasification vessel

    DOEpatents

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  5. Materials of Gasification

    SciTech Connect

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  6. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    SciTech Connect

    Kuznetsov, B.N.; Schchipko, M.L.

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  7. GAMMA RADIATION TREATMENT OF WATERS FROM LIGNITE MINES

    EPA Science Inventory

    Discussed in this report are results of laboratory investigations carried out with the application of gamma radiation for the purification of waters drained from surface lignite mines. These waters are polluted to a considerable extent with suspended matter of various sizes, a la...

  8. PURIFICATION OF WATERS DISCHARGED FROM POLISH LIGNITE MINES

    EPA Science Inventory

    The exploitation of lignite deposits is linked with the necessity of lowering the groundwater table and dewatering the mine of precipitation. A large percentage of the discharge waters requires purification prior to delivery of receiving streams. The chief pollutants of these wat...

  9. WASHABILITY CHARACTERISTICS OF ARKANSAS AND TEXAS LIGNITES: REPORT OF INVESTIGATIONS

    EPA Science Inventory

    The report describes the washability characteristics of 11 channel samples of lignite: 4 from Arkansas and 7 from Texas. The two samples collected from Dallas County, Arkansas, could be upgraded to meet the current EPA New Source Performance Standard (NSPS) of 1.2 lb SO2/million ...

  10. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Escapeways; bituminous and lignite mines. 75.380 Section 75.380 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation §...

  11. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Escapeways; bituminous and lignite mines. 75.380 Section 75.380 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation §...

  12. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Escapeways; bituminous and lignite mines. 75.380 Section 75.380 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation §...

  13. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Escapeways; bituminous and lignite mines. 75.380 Section 75.380 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation §...

  14. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Escapeways; bituminous and lignite mines. 75.380 Section 75.380 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation §...

  15. Technology Assessment Report: Aqueous Sludge Gasification Technologies

    EPA Science Inventory

    The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...

  16. June 2007 gasification technologies workshop papers

    SciTech Connect

    2007-06-15

    Topics covered in this workshop are fundamentals of gasification, carbon capture and sequestration, reviews of financial and regulatory incentives, co-production, and focus on gasification in the Western US.

  17. Biothermal gasification of biomass

    SciTech Connect

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  18. Beluga Coal Gasification - ISER

    SciTech Connect

    Steve Colt

    2008-12-31

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  19. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward. PMID:12046301

  20. Study on product distributions and char morphology during rapid co-pyrolysis of platanus wood and lignite in a drop tube fixed-bed reactor.

    PubMed

    Meng, Haiyu; Wang, Shuzhong; Chen, Lin; Wu, Zhiqiang; Zhao, Jun

    2016-06-01

    The rapid co-pyrolytic behavior of platanus wood and Pingzhuang lignite was explored in a drop tube fixed-bed reactor under nitrogen atmosphere. Synergistic effects were evaluated using the deviations between experimental and predicted values of product yields and gas components. Surface morphology of residual chars were also investigated applying the scanning electron microscopy technique (SEM). This study found that the experimental values of gas volume yields were greater than the predicted, and the maximum gas volume yield exhibited with 50% biomass blending ratio at 1000°C. Positive or negative synergistic effects happened in gas components at different blending ratios and temperatures. The SEM results indicated that the differences of char surface morphology were evident. The fractal dimensions of residual chars increased with increasing biomass blending ratio, which may improve their gasification or combustion reactivity. The change in product yields and gas components was attributed to the secondary reactions and tar cracking. PMID:26985627

  1. A continuous two stage solar coal gasification system

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.; Manasse, F. K.; Venkataramanan, V.

    The characteristics of a two-stage fluidized-bed hybrid coal gasification system to produce syngas from coal, lignite, and peat are described. Devolatilization heat of 823 K is supplied by recirculating gas heated by a solar receiver/coal heater. A second-stage gasifier maintained at 1227 K serves to crack remaining tar and light oil to yield a product free from tar and other condensables, and sulfur can be removed by hot clean-up processes. CO is minimized because the coal is not burned with oxygen, and the product gas contains 50% H2. Bench scale reactors consist of a stage I unit 0.1 m in diam which is fed coal 200 microns in size. A stage II reactor has an inner diam of 0.36 m and serves to gasify the char from stage I. A solar power source of 10 kWt is required for the bench model, and will be obtained from a central receiver with quartz or heat pipe configurations for heat transfer.

  2. Mild coal gasification: Product separation

    SciTech Connect

    Wallman, P.H.; Singleton, M.F.

    1992-08-04

    Our general objective is to further the development of efficient continuous mild coal gasification processes. The research this year has been focused on product separation problems and particularly the problem of separating entrained ultra-fine particles from the chemically reactive environment of the product gas stream. Specifically, the objective of the present work has been to study candidate barrier filters for application to mild coal gasification processes. Our approach has been to select the most promising existing designs, to develop a design of our own and to test the designs in our bench-scale gasification apparatus. As a first step towards selection of the most promising barrier filter we have determined coking rates on several candidate filter media.

  3. Reduction of iron oxide as an oxygen carrier by coal pyrolysis and steam char gasification intermediate products

    SciTech Connect

    Jing-biao Yang; Ning-sheng Cai; Zhen-shan Li

    2007-12-15

    The feasibility of the reduction of oxygen carrier Fe{sub 2}O{sub 3} in chemical-looping combustion using solid fuel (lignite) provided a gasifying agent like steam was introduced into the reactor was investigated with a fixed-bed reactor. The X-ray diffractometer and scanning electron microscope were used for the characterization of the Fe{sub 2}O{sub 3} and its reduction residue. Results strongly supported the feasibility of Fe{sub 2}O{sub 3} reduction by lignite and obtaining pure CO{sub 2} from the off-gases. Fe{sub 2}O{sub 3} can be fully converted to Fe{sub 3}O{sub 4} by pyrolysis and gasification intermediates primarily H{sub 2} and CO, which was confirmed by both the off-gas concentrations and X-ray diffractometer analysis. A 0.75 g portion of Fe{sub 2}O{sub 3} can be completely reduced to Fe{sub 3}O{sub 4} by the volatile matter released from 0.1 g coal, and Fe{sub 2}O{sub 3} can be fully reduced to Fe{sub 3}O{sub 4} by steam char gasification products provided that the molar ratio of carbon in char to Fe{sub 2}O{sub 3} is 1:6. The purity of CO{sub 2} in the outlet gases was higher than 85% when Fe{sub 2}O{sub 3} was reduced by intermediate products during coal pyrolysis, and the purity of CO{sub 2} in the off-gases was higher than 95% when Fe{sub 2}O{sub 3} was reduced by intermediate products resulting from steam char gasification, making CO{sub 2} sequestration disposal desirable for high purity CO{sub 2}. The char gasification reaction rate was slow compared with the reactivity of the iron oxide with the char gasified intermediates, indicating that char gasification was the rate-limiting step in the reduction process. In the steam char gasification process, the times it took to reach 90% carbon conversion for K-10-char and Ca-10-char were 15 and 30 min, respectively, at 1123 K, but the time for the raw char was 50 min at 1173 K. 40 refs., 15 figs., 3 tabs.

  4. Update on cost differentials - lignite versus other coals

    SciTech Connect

    Gorman, P.F.

    1983-11-01

    Renewed interest in solid fossil fuels has developed a strongly competitive market environment for coals and lignites of widely different physical and chemical properties. In addressing this situation, both utility planners and fuel suppliers face decisions involving, simultaneously, the combustibles characteristics and relative pricing. This paper discusses the influence of fuel properties on capital, operating and maintenance costs, and proposes a method for preliminary economic evaluations of competing fuels focusing on heating value and sulfur content. The analysis performed suggests that exclusion of other properties, or their indirect assessment through the heating value, does not introduce significant distortion to the comparison. A procedure correlating fuel characteristics and electricity busbar costs is developed to assist the quick determination of competitive pricing ranges between fuels. A specific application of this approach quantifies the current degree of attractiveness of lignites as an energy source for electrical power generation in the Gulf Coast Region.

  5. Oxydesulfurization of a Turkish lignite using trona solutions

    SciTech Connect

    Yaman, S.; Kuecuekbayrak, S.

    1996-06-01

    This article investigates the possibility of using trona minerals in the oxydesulfurization of coal. The experiments were performed on a Turkish lignite having high organic and high pyritic sulfur content from the Gediz area. Oxydesulfurization of the lignite sample using trona minerals was studied at 423--473 K, under 0--1 MPa oxygen partial pressure at 0--0.3 M equivalent alkalinity of Na{sub 2}CO{sub 3} for 2.5--60 min. Almost all of the pyritic sulfur content and, depending on the working conditions, an important part of the organic sulfur content were removed. Unless the temperature reached 473 K, solid product yield was not negatively affected. Trona minerals were seen as a suitable alkaline to use in oxydesulfurization of coal.

  6. Beneficiation of Turkish lignites by thermal treatment and magnetic separation

    SciTech Connect

    Onal, G.; Renda, D.; Mustafaev, I.; Dogan, Z.

    1999-07-01

    In this paper, the improvement of Turkish lignites by semi-coking and REMS magnetic separation, in two stages, is discussed. The oxidation and decomposition of pyrite through the thermal treatment result in the formation of iron oxide and pyrrhotite on the surface. In addition to pyrite, part of the organic sulfur is also removed. After thermal treatment of lignites at temperatures ranging from 370 to 650 C, the application of REMS magnetic separator produces a product higher in calorific value and lower in sulfur content. The product can be utilized after briquetting. The volatile gases can also be used after sulfur removal. This process appears to be feasible as a clean coal manufacture from the point of energy efficiency. A short economic analysis is also presented.

  7. Underground Coal Gasification Program

    Energy Science and Technology Software Center (ESTSC)

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large,more » almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.« less

  8. Properties and reserves of lignite in the Aydin-Sahinali field, Turkey

    SciTech Connect

    Kirhan, S.; Inaner, H.; Nakoman, E.; Karayigit, A.I.

    2007-07-01

    This study focuses on some lignite properties and calculation of lignite reserves with two classical (isopach and polygon) methods in the Aydin-Sahinali field, Turkey, which is located in the western Turkey. This field has been mined by a private coal company since 1960 by open-cast and mainly underground mining methods. The producing lignites are consumed in domestic heating and industrial factories around Aydin. The metamorphic rocks of Palaezoic age form the basement of the coal field. The lignite-bearing unit of Miocene age, from bottom to the top, consists mainly of pebblestone, lignite and clayey lignite, siltstone with sandstone lenses, white colored claystone, clayey limestone and silisified limestone lenses. This unit in the lignite field was unconformably overlain by Pliocene unconsolidated sands and gravels. Three hundred seventy-three borehole data have been evaluated, and this study shows that a relatively thick and lateral extensive lignite seam has a mineable thickness of 1.6-14.4 m. The core samples from boreholes in panels in the lignite field indicate that the coal seam, on an as-received basis, contains high moisture contents (17.95-23.45%, average), high ash yields (16.30-26.03%, average), relatively high net calorific values (3,281-3,854 kcal/kg, average), and low total sulfur contents (1.00-1.22%, average). The remaining lignite potential in the Aydin-Sahinali lignite field was calculated as a 4.7 Mt of measured and a 2.9 Mt of mineable lignite-reserves.

  9. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    SciTech Connect

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  10. Alkylation of lignites and peat in low-temperature plasma

    SciTech Connect

    L.I. Shchukin; S.I. Zherebtsov; M.V. Kornievich; O.A. Skutina

    2007-02-15

    The alkylation of lignites and peat was carried out at 50-270{sup o}C in different plasmas. The degree of conversion determined as the yield of the alcohol-benzene extract increases on passing from methane to alcohol plasma. The dependence of the extract yield on the plasma temperature, treatment time, and sample grinding degree was studied. 5 refs., 4 figs., 2 tabs.

  11. Simulation of biomass and/or coal gasification systems integrated with fuel cells

    SciTech Connect

    Ersoz, A.; Ozdogan, S.; Caglayan, E.; Olgun, H.

    2006-11-15

    This paper presents the results of a system simulation study. The HYSYS 3.1 - ASPEN code has been used for simulation. The system consists of a fixed bed gasifier followed by reforming and clean-up units. The produced hydrogen gas is fed to a PEM fuel cell. The gasified hydrocarbons are hazelnut shells, bark, rice straw, animal waste, and two lignites. Hydrocarbon properties, gasification, and reforming process parameters all affect the system efficiency. The effect of the moisture content and oxygen to carbon ratio of the hydrocarbon fees on the fuel processing and overall system efficiencies are presented. The overall efficiency of the system increases with increasing hydrocarbon fees oxygen to carbon ratio; this tendency is more evident at higher moisture levels.

  12. Aerosol emissions near a coal gasification plant in the Kosovo region, Yugoslavia

    NASA Astrophysics Data System (ADS)

    Boueres, Luis Carlos S.; Patterson, Ronald K.

    1981-03-01

    Ambient aerosol samples from the region of Kosovo, Yugoslavia, were collected and analyzed for their elemental composition in order to determine the effect on ambient air quality of Lurgi coal gasification carried out there using low BTU lignite. Low-volume aerosol samples were used to collect air particulate matter during May of 1979. These samplers were deployed at five sites near the Kosovo industrial complex which is comprised of coal gasifier, a coal-fired power plant and a fertilizer plant which uses the waste products from the gasifier and power plant. A total of 126 impactor sets and 10 week-long "streaker" filters were analyzed by PIXE at FSU for 16-18 elements providing a data base of approximately 16 000 elemental concentrations. Preliminary results are reported here with emphasis on the following elements: Si, S, Ca, Fe, Zn and Pb.

  13. Thermal exploitation of wastes with lignite for energy production.

    PubMed

    Grammelis, Panagiotis; Kakaras, Emmanuel; Skodras, George

    2003-11-01

    The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations. PMID:14649749

  14. Coal Gasification for Power Generation, 3. edition

    SciTech Connect

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  15. Coal gasification 2006: roadmap to commercialization

    SciTech Connect

    2006-05-15

    Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

  16. Sulfur removal from Gediz lignite using aqueous sodium hydroxide solutions under mild oxidative conditions

    SciTech Connect

    Yaman, S.; Kuecuekbayrak, S.

    1999-11-01

    Sulfur removal from a high-sulfur Turkish lignite (Gediz) using aqueous sodium hydroxide solutions having dissolved oxygen was investigated under mild oxidative conditions. Effects of the parameters such as sodium hydroxide/lignite weight ratio, temperature, and partial pressure of oxygen were investigated within the ranges of 0.05--0.8, 423--498 K, and 1--2 MPa, respectively. Optimum values of these parameters were determined regarding sulfur removal and coal recovery. Influences of dry oxidation of the lignite sample as a pretreatment at 573 K and subsequent washing of some treated lignite samples with 1 N HCl were investigated.

  17. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    SciTech Connect

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  18. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was

  19. BIMOMASS GASIFICATION PILOT PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  20. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

    2008-05-15

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  1. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    SciTech Connect

    Buchsbaum, L.

    2009-08-15

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  2. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  3. Chemistry of lignite liquefaction. Quarterly report, October-December 1981

    SciTech Connect

    Baltisberger, R.J.; Stenberg, V.I.; Klabunde, K.J.; Woolsey, N.F.

    1982-01-01

    Asphaltene and preasphaltene samples were isolated by solvent extraction using toluene and tetrahydrofuran, respectively, from GFETC liquefaction runs 44-14, 44-12, 45-15, 46-16 and 58-15. All the forty series samples were prepared from North Dakota lignite while 58-15 was from a Texas lignite. The quantity of preashpaltenes and asphaltenes in the five samples were 4.5 +- 0.5% wt and 13 +- 3% wt, respectively. The majority of the lignite was converted into distillable oils. The samples contain 7 to 10% wt oxygen for the preasphaltenes and 4 to 6% wt for the asphaltenes. The preasphaltene/asphaltene ratio of oxygen was 1.5 +- 0.1 for a given run. Approximately 50% of the oxygen is phenolic and the remainder we assume to be etheral types. In comparing process conditions, higher reaction pressures led to lower aromaticity and degree of condensation in the products, but had little effect on the oxygen content for the asphaltenes and raised the oxygen percentage for the preasphaltenes. Understanding the Catalytic Role of H/sub 2/S in Low-Rank Coal Liquefaction: One postulate on the mechanism of H/sub 2/S promotion of liquefaction is by means of its conversion into elemental sulfur in intermediate stages. Consequently, elemental sulfur was reacted with compounds postulated to approximate the crucial chemical bonds of coal which are necessary to rupture for liquefaction: diphenylmethane, bibenzyl, diphenyl ether and N,N-dimethylaniline. The reactions quickly proceeded at liquefaction temperatures to give a variety of products. A portion of these products are lower in molecular weight than the starting materials. Some of the products have been identified. N,N-dimethylaniline is demethylated with either elemental sulfur or H/sub 2/S sequentially via N-methylaniline.

  4. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters

    SciTech Connect

    Drosos, M.; Jerzykiewicz, M.; Deligiannakis, Y.

    2009-04-15

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. {sup 13}C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation < 3 (equiv kg{sup -1}) while lignite HAs showed a higher charge variation > 3.5 (equiv kg{sup -1}).

  5. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters.

    PubMed

    Drosos, Marios; Jerzykiewicz, Maria; Deligiannakis, Yiannis

    2009-04-01

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. (13)C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation <3 [equiv kg(-1)] while lignite HAs showed a higher charge variation >3.5 [equiv kg(-1)]. PMID:19144349

  6. Oxydesulfurization of a Turkish hard lignite with ammonia solutions

    SciTech Connect

    Yaman, S.; Kuecuekbayrak, S.

    1996-09-01

    In this study the desulfurization of a high pyritic and high organic sulfur lignite taken from the Gediz area (western Turkey) was investigated by the oxydesulfurization method using ammonia solutions. The influence of such parameters as the concentration of ammonia solution, partial pressure of oxygen, temperature, and reaction time were studied. The ranges of these parameters were selected as 0--10 M concentration of ammonia solution, 0--1.5 MPa partial pressure of oxygen, 403--473 K temperature, and 10--60 min reaction time. It was concluded that the use of ammonia solution as an extraction solution increased the efficiency of the oxydesulfurization process.

  7. Reduction of quinquevalent vanadium solutions by wood and lignite

    USGS Publications Warehouse

    Pommer, A.M.

    1957-01-01

    To determine whether reduced vanadium ores could have been deposited by reduction from supergene quinquevalent vanadium solutions, the reducing capacity of fresh wood, wood degraded by long burial, and lignite was determined experimentally at temperatures of 120?? and 150?? in closed containers. A precipitate obtained by reduction of quinquevalent vanadium solutions with wood gave an X-ray pattern identical with a recently discovered low-valent vanadium mineral. The evidence indicated that deposition of reduced vanadium minerals by this mechanism is possible. ?? 1957.

  8. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Derting, T.M.

    1988-07-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  9. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1988-02-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. DE-AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1-Test Plan; Task 2-Optimization of Mild Gasification Process; Task 3-Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4-Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  10. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Williams, S.W.

    1989-01-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  11. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1987-11-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  12. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  13. Underground coal gasification using oxygen and steam

    SciTech Connect

    Yang, L.H.; Zhang, X.; Liu, S.

    2009-07-01

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  14. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites

    NASA Astrophysics Data System (ADS)

    Fabbri, Daniele; Torri, Cristian; Simoneit, Bernd R. T.; Marynowski, Leszek; Rushdi, Ahmed I.; Fabiańska, Monika J.

    Levoglucosan (L), mannosan (M), galactosan (G) and other cellulose and lignin markers from burn tests of Miocene lignites of Poland were determined by gas chromatography-mass spectrometry (GC-MS) to assess their distributions and concentrations in the smoke. Their distributions were compared to those in the pyrolysis products of the lignites. Levoglucosan and other anhydrosaccharides are products from the thermal degradation of cellulose and hemicellulose and are commonly used as tracers for wood smoke in the atmosphere. Here we report emission factors of levoglucosan in smoke particulate matter from burning of lignite varying from 713 to 2154 mg kg -1, which are similar to those from burning of extant plant biomass. Solvent extracts of the lignites revealed trace concentrations of native levoglucosan (0.52-3.7 mg kg -1), while pyrolysis yielded much higher levels (1.6-3.5 × 10 4 mg kg -1), indicating that essentially all levoglucosan in particulate matter of lignite smoke is derived from cellulose degradation. The results demonstrate that burning of lignites is an additional input of levoglucosan to the atmosphere in regions where brown coal is utilized as a domestic fuel. Interestingly, galactosan, another tracer from biomass burning, is not emitted in lignite smoke and mannosan is emitted at relatively low concentrations, ranging from 7.8 to 70.5 mg kg -1. Thus, we propose L/M and L/(M + G) ratios as discriminators between products from combustion of lignites and extant biomass. In addition, other compounds, such as shonanin, belonging to lignans, and some saccharides, e.g., α- and β-glucose and cellobiose, are reported for the first time in extracts of bulk lignites and of smoke particulate matter from burning these lignites.

  15. Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 April 1983-30 June 1983

    SciTech Connect

    Calo, J.M.; Ganapathi, R.

    1983-01-01

    In the current quarterly technical progress report we present data and results on transient kinetic studies of the steam-char reaction system for activated coconut and lignite chars. These experiments were conducted in a fashion similar to the previous char-CO/sub 2/ studies, under approximately the same experimental conditions. The two principal product species, H/sub 2/ and CO, were monitored using the automatic mass programming system developed especially for this project. In order to perform the steam-char experiments, the original apparatus was modified by the addition of a steam generation/condensate removal system. The steam-char reaction system, being somewhat more complex than the CO/sub 2/-char reaction system, was modeled with a six-parameter, elementary kinetic scheme. The ''effective'' active site concentrations determined from the steam gasification data were of the same order of magnitude, and behaved in a similar fashion, to those obtained for the CO/sub 2/ gasification studies. The implications of this result are briefly discussed. 21 refs., 23 figs., 2 tabs.

  16. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  17. Coal gasification players, projects, prospects

    SciTech Connect

    Blankinship, S.

    2006-07-15

    Integrated gasification combined cycle (IGCC) technology has been running refineries and chemical plants for decades. Power applications have dotted the globe. Two major IGCC demonstration plants operating in the United States since the mid-1900s have helped set the stage for prime time, which is now approaching. Two major reference plant designs are in the wings and at least two major US utilities are poised to build their own IGCC power plants. 2 figs.

  18. Fuel Flexibility in Gasification

    SciTech Connect

    McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K.; Lui, Alain P.; Batton, William A.

    2001-11-06

    coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the

  19. Trace metal transformations in gasification

    SciTech Connect

    Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.

    1995-08-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  20. Trace metal transformations in gasification

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; O`Keefe, C.A.; Katrinak, K.; Allan, S.E.; Hassett, D.J.; Hauserman, W.B.; Zygarlicke, C.J.

    1995-11-01

    The Energy and Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems; (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions; and (3) identify methods to control trace element emissions. Results are presented and discussed on the partitioning of trace metals and the model design for predicting trace metals behavior.

  1. Trace metal transformations in gasification

    SciTech Connect

    Benson, S.; Erickson, T.A.; Zygarlicke, C.J.

    1995-12-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  2. Trace metal transformation in gasification

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.; Katrinak, K.A.; Allen, S.E.; Hassett, D.J.; Hauserman, W.B.; Holcombe, N.T.

    1996-12-31

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to 1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, 2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and 3) identify methods to control trace element emissions.

  3. The hydrogasification of lignite and sub-bituminous coals

    NASA Astrophysics Data System (ADS)

    Bhatt, B.; Fallon, P. T.; Steinberg, M.

    1981-02-01

    A North Dakota lignite and a New Mexico sub-bituminous coal have been hydrogenated at up to 900°C and 2500 psi hydrogen pressure. Yields of gaseous hydrocarbons and aromatic liquids have been studied as a function of temperature, pressure, residence time, feed rates and H2/coal ratio. Coal feed rates in excess of 10 lb/hr have been achieved in the 1 in. I. D.×8 ft reactor and methane concentration as high as 55% have been observed. A four-step reaction model was developed for the production and decomposition of the hydrocarbon products. A single object function formulated from the weighted errors for the four dependent process, variables, CH4, C2H6, BTX, and oil yields, was minimized using a program containing three independent iterative techniques. The results of the nonlinear regression analysis for lignite show that a first-order chemical reaction model with respect to C conversion satisfactorily describes the dilute phase hydrogenation. The activation energy for the initial products formation was estimated to be 42,700 cal/gmole and the power of hydrogen partial pressure was found to be +0.14. The overall correlation coefficient was 0.83. The mechanism, the rate expressions, and the design curves developed can be used for scale-up and reactor design.

  4. NO emission during oxy-fuel combustion of lignite

    SciTech Connect

    Andersson, K.; Normann, F.; Johnsson, F.; Leckner, B.

    2008-03-15

    This work presents experimental results and modeling of the combustion chemistry of the oxy-fuel (O{sub 2}/CO{sub 2} recycle) combustion process with a focus on the difference in NO formation between oxy-fired and air-fired conditions. Measurements were carried out in a 100 kW test unit, designed for oxy-fuel combustion with flue gas recycling. Gas concentration and temperature profiles in the furnace were measured during combustion of lignite. The tests comprise a reference test in air and three oxy-fuel cases with different oxygen fractions in the recycled feed gas. With the burner settings used, lignite oxy-combustion with a global oxygen fraction of 25 vol % in the feed gas results in flame temperatures close to those of air-firing. Similar to previous work, the NO emission (mg/MJ) during oxy-fuel operation is reduced to less than 30% of that of air-firing. Modeling shows that this reduction is caused by increased destruction of formed and recycled NO. The reverse Zeldovich mechanism was investigated by detailed modeling and was shown to significantly reduce NO at high temperature, given that the nitrogen content is low (low air leakage) and that the residence time is sufficient.

  5. Radiation intensity of lignite-fired oxy-fuel flames

    SciTech Connect

    Andersson, Klas; Johansson, Robert; Hjaertstam, Stefan; Johnsson, Filip; Leckner, Bo

    2008-10-15

    The radiative heat transfer in oxy-fuel flames is compared to corresponding conditions in air-fuel flames during combustion of lignite in the Chalmers 100 kW oxy-fuel test facility. In the oxy-fuel cases the flue-gas recycle rate was varied, so that, in principle, the same stoichiometry was kept in all cases, whereas the oxygen fraction in the recycled flue-gas mixture ranged from 25 to 29 vol.%. Radial profiles of gas concentration, temperature and total radiation intensity were measured in the furnace. The temperature, and thereby the total radiation intensity of the oxy-fuel flames, increases with decreasing flue-gas recycle rate. The ratio of gas and total radiation intensities increases under oxy-fuel conditions compared to air-firing. However, when radiation overlap between gas and particles is considered the ratios for air-firing and oxy-fuel conditions become more similar, since the gas-particle overlap is increased in the CO{sub 2}-rich atmosphere. A large fraction of the radiation in these lignite flames is emitted by particles whose radiation was not significantly influenced by oxy-fuel operation. Therefore, an increment of gas radiation due to higher CO{sub 2} concentration is not evident because of the background of particle radiation, and, the total radiation intensities are similar during oxy-fuel and air-fuel operation as long as the temperature distributions are similar. (author)

  6. Activated carbons from North Dakota lignite and leonardite

    SciTech Connect

    Young, B.C.; Olson, E.S.; Knudson, C.L.; Timpe, R.C.

    1995-12-01

    In a research and development program on carbon development, the EERC investigated key factors in the preparation of activated carbons from low-rank coals indigenous to North Dakota. The carbons were prepared for potential sorption applications with flue gas and waste liquid streams. Testing involved as-received, physically cleaned, and demineralized samples of a lignite and a leonardite. The following variables were examined: mineral matter content (7-19 wt%), carbonization temperature (350{degrees}-550{degrees}C), activation temperature (700{degrees}-1000{degrees}C), and activation time (10-60 minutes). Activated carbon samples were characterized by sorption of gaseous sulfur dioxide and liquid iodine. For both lignite and leonardite, sorption activity increased with lower mineral content and correlated with medium carbonization temperature and relatively high activation temperature but relatively short activation time. Steam activation did not significantly enhance the char`s sorptive capacity. Physically cleaned leonardite char had SO{sub 2} sorptive capacities as high as 10.9% of the sample weight at ambient temperatures.

  7. Activated carbons from North Dakota lignite and leonardite

    SciTech Connect

    Young, B.C.; Olson, E.S.; Knudson, C.L.; Timpe, R.C.

    1995-12-31

    The EERC is undertaking a research and development program on carbon development, part of which is directed towards investigating the key parameters in the preparation of activated carbons from low-rank coals indigenous to North Dakota. Carbons have been prepared and characterized for potential sorption applications in flue gas and waste liquid streams. Lignite, owing to its wide occurrence and variability in properties, has received significant attention as a precursor of active carbon manufacture. Mineral matter content and its alkaline nature are two highly variable properties that can have important consequences on the production of suitable activated carbons. Other factors affecting the production include carbonizing conditions, the activation agents, activation temperature, and activation time. However, as previously noted, the relationship between the above factors and the sorption activity is particularly complex. Part of the difficulty is that sorption activity encompasses at least three parameters, namely, surface area, pore distribution, and surface acidity/basicity. The presence of mineral matter in the coal can affect not only carbonization but also the activation and subsequent sorption and desorption processes. This paper presents results of an investigation of demineralization, carbonization temperature, activation temperature, and activation time for one lignite and leonardite from North Dakota.

  8. Appraisal of Hydrologic Information Needed in Anticipation of Lignite Mining in Lauderdale County, Tennessee

    USGS Publications Warehouse

    Parks, William Scott

    1981-01-01

    Lignite in western Tennessee occurs as lenses or beds at various stratigraphic horizons in the Coastal Plain sediments of Late Cretaceous and Tertiary age. The occurrence of this lignite has been known for many decades, but not until the energy crisis was it considered an important energy resource. In recent years, several energy companies have conducted extensive exploration programs in western Tennessee, and tremendous reserves of lignite have been found. From available information, Lauderdale County was selected as one of the counties where strip-mining of lignite will most likely occur. Lignite in this county occurs in the Jackson and Cockfield Formations, undivided, of Tertiary age. The hydrology of the county is known only from regional studies and the collection of some site-specific data. Therefore, in anticipation of the future mining of lignite, a plan is needed for obtaining hydrologic and geologic information to adequately define the hydrologic system before mining begins and to monitor the effects of strip-mining once it is begun. For this planning effort, available hydrologic, geologic, land use, and associated data were located and compiled; a summary description of the surface and shallow subsurface hydrologic system was prepared: the need for additional baseline hydrologic information was outlined; and plans to monitor the effects of strip-mining were proposed. This planning approach, although limited to a county area, has transferability to other Coastal Plain areas under consideration for strip-mining of lignite.

  9. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  10. COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: TRACE ELEMENTS

    EPA Science Inventory

    The report summarizes trace element measurements made at several coal gasification facilities. Most of the measurements were made as part of EPA's source testing and evaluation program on low- and medium-Btu gasification. The behavior of trace elements is discussed in light of th...

  11. Updraft gasification of salmon processing waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...

  12. Improved catalysts for carbon and coal gasification

    DOEpatents

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  13. Petrological, geochemical and isotopic characteristics of lignite and calcified lignite from mining area Pesje, Velenje Basin, Slovenia

    NASA Astrophysics Data System (ADS)

    Vrabec, Mirijam; Markič, Miloš; Vrabec, Marko; Jaćimović, Radojko; Kanduč, Tjaša

    2014-05-01

    Lignite (organic rich) and calcified lignite (inorganic rich) samples from excavation field -50c mining area Pesje, Velenje Basin, Slovenia were investigated. During geological and structural mapping lignite and calcified lignite samples were systematically taken for determination of their petrological, geochemical and isotopic characteristics. Lignite is composed of fine detritical gelified matrix. At least five different types of calcified lignite were recognized forming laminations, calcifications after wood, petrified wood and complete replacements of lignite with carbonate. All measured parameters so far indicate geochemical processes during sedimentation of the Velenej Basin. After macroscopic description samples were split to organic and inorganic component (Ward, 1984) and powdered in an agate mortar for geochemical and isotopic analyses. Major and trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Sb, Se, Th, U, Zn) in these samples were determined by instrumental neutron activation analysis (INAA) using k-0 standardization method (Jaćimović et al, 2002). The isotopic composition of carbon and nitrogen was determined using a Europa 20-20 continuous flow IRMS ANCA-SL preparation module. A 1 mg amount of a sample was weighed in a tin capsule for carbon and 10 mg for nitrogen analysis. Samples for carbon analyses were pretreated with 1 M HCl to remove carbonates. Carbonate samples from carbonate-rich strata and calcified xylite were first roasted at 450 deg C (Krantz et al., 1987). Three miligrams of carbonate sample was transformed into CO2 by reaction with anhydrous H3PO4 at 55 deg C under vacuum (McCrea, 1950) and measured with GV 2003 isotope ratio mass spectrometer. Measured isotopic composition of oxygen as VPDB values was recalculated to the VSMOW reference standard to enable the comparison with data from other coal basins. SEM/EDXS of carbonate rich sediments was performed with JEOL JSM 5800 electron microanalyzer scanning electron microscope

  14. Fundamental aspects of catalysed coal char gasification

    NASA Astrophysics Data System (ADS)

    Gangwal, S. K.; Truesdale, R. S.

    1980-06-01

    A brief review of the basic aspects of catalysed coal char gasification is presented. Kinetics and mechanisms of catalysed and uncatalysed gasification reactions of coal char with steam, carbon dioxide and hydrogen are discussed. Mass transport effects and internal structure of coals are shown to be important in determining rates of these reactions. The importance of the type of catalyst used is also discussed. Such factors as catalyst cations and anions, the method by which the catalyst is contacted with the coal char, and physical and chemical states of the catalyst both prior to and during reaction are shown to be important in the gasification process. Finally, research instruments and equipment used recently for studies in catalysed gasification are reviewed. These include various types of reactor systems for following the course of these reactions and analytical instruments for assessing the physical and/or chemical state of the catalysts and/or coal char both prior to and during the gasification reactions.

  15. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    SciTech Connect

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  16. Concentration of low-grade lignites by multi-stage processing (washing, semicoking, magnetic separation)

    SciTech Connect

    Onal, G.; Renda, D.; Dogan, Z.

    1999-07-01

    Tavanl-Omerler lignite deposit with a reserve of 264 million tons forms an important section of Turkish lignites. This lignitic coal was subjected to washing, semi-coking and magnetic separation so that the total sulphur and ash contents were reduced from 4.08 % to 1.27 and 15.64 % to 8.5 % respectively. The calorific value of the solid fuel was raised from 5030 Kcal/kg to 6727 Kcal/kg and the volatiles can also be used after sulphur removal. This process appears to be feasible as a clean coal production from the point of energy efficiency. A short economic analysis is also presented.

  17. Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

    1992-11-01

    The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas{trademark}, necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II & III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

  18. Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

    1992-01-01

    The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas[trademark] staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas[trademark], necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

  19. Geochemistry and mineralogy of Greek lignites from the Ioannina Basin

    SciTech Connect

    Gentzis, T.; Goodarzi, F.; Foscolos, A.E.

    1997-02-01

    Mineralogical and elemental composition of 26 lignites/lignitic shales and their ashes from the Ioannina Basin were examined using X-ray diffraction, X-ray fluorescence, and instrumental neutron activation analysis. Mineralogy consists of quartz, 2:1 interstratified layer silicates, kaolinite, and gypsum. Illite, calcite, amphiboles, feldspars, and pyrite are the minor minerals in the samples. The major oxides SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, TiO{sub 2}, and K{sub 2}O show an enrichment in the upper lignite-bearing interval within the succession, CaO shows the exact reverse trend, and Na{sub 2}O and MgO do not show any trends. Arsenic in the samples ranges from 2 to 46 ppm, Br from 10 to 25 ppm, Cl from 61 to 278 ppm, and Se from 2 to 14 ppm. Vertically, As content decreases from the shallower interval II to the deeper interval I. Within interval II, Cr and Br show a decrease from top to bottom. The concentration of Br and Cl is higher in the samples of low mineral matter, while the opposite is true for As. Laterally, there is an increase in Br and Cl from the northern to the central part of the basin, an increase of As in an eastern direction, and a decrease of Se in the same direction. Epigenetic processes related to high water table and subsurface water flow from the nearby phosphorite deposits are probably responsible for the high concentration of U, Mo, Sb, and possibly, V. The enrichment of Se is due to leaching from gypsum and/or anhydrite beds in the area. The rare earth elements follow variations in the low-temperature ash, but more specifically, the light REEs tend to mimic variations in Th and Al{sub 2}O{sub 3} concentration, and the heavy REEs follow the TiO{sub 2} variation.

  20. Experimental Study of Hydrogasification of Lignite and Subbituminous Coal Chars

    PubMed Central

    Gil, Stanisław

    2015-01-01

    The experimental facility for pressure hydrogasification research was adapted to the pressure of 10 MPa and temperature of 1300 K, which ensured repeatability of results and hydrogen heating to the process temperature. A hydrogasification reaction of chars produced from two rank coals was investigated at temperatures up to 1173 K, pressures up to 8 MPa, and the gas flow rates of 0.5–5 dmn3/min. Reactivity of the “Szczerców” lignite char was found to be slightly higher than that of the subbituminous “Janina” coal char produced under the same conditions. A high value of the char reactivity was observed to a certain carbon conversion degree, above which a sharp drop took place. It was shown that, to achieve proper carbon conversion, the hydrogasification reaction must proceed at a temperature above 1200 K. PMID:26065028

  1. Microbial desulphurization of Turkish lignites by White Rot Fungi

    SciTech Connect

    Pinar Aytar; Mesut Sam; Ahmet Cabuk

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent of desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.

  2. Discrimination of unique biological communities in the Mississippi lignite belt

    NASA Technical Reports Server (NTRS)

    Miller, W. F. (Principal Investigator); Cutler, J. D.

    1981-01-01

    Small scale hardcopy LANDSAT prints were manually interpreted and color infrared aerial photography was obtained in an effort to identify and map large contiguous areas of old growth hardwood stands within Mississippi's lignite belt which do not exhibit signs of recent disturbance by agriculture, grazing, timber harvesting, fire, or any natural catastrophe, and which may, therefore, contain unique or historical ecological habitat types. An information system using land cover classes derived from digital LANDSAT data and containing information on geology, hydrology, soils, and cultural activities was developed. Using computer-assisted land cover classifications, all hardwood remnants in the study area which are subject to possible disturbance from surface mining were determined. Twelve rare plants were also identified by botanists.

  3. Microbial screening test for lignite degradation: Quarterly progress report No. 9 for the period January-March 1987

    SciTech Connect

    Yen, Teh Fu

    1987-03-01

    Anaerobic fermentation of water soluble fraction of modified lignite was attempted. Solubilized lignite formed bioprecipitate after biodegradation. Fermentation of water solubilized lignite in enrichment media produced gases and organic acids. FT-IR spectra of solubilized lignite after biodegradation showed that the concentration of organic oxygen have decreased and that the concentration of -CH/sub 3/ terminal group have increased. Solubilized lignite may serve as sole carbon source by using selective media. Bacteria was suspected of being able to utilize fulvic-like materials from solubilized lignite. Isolation of anaerobic bacteria was achieved by surface culture, and it indicated morphological differences among isolated colonies. Alginate gel entrapment, an immobilization method, was applied to T. versicolor fungal cells. Active fungal growth was observed from the immobilized spheres on sodium-alginate gel. It seems that the immobilized biocatalysts may be used to enhance the production of bioextract from lignite in a reactor system. Hydroxylation of lignite was accomplished through Fenton reaction at pH 7.5. FT-IR analysis showed that lignite treated with Fenton's reagent exhibits weaker aromatic bending and ether linkage than untreated lignite. 13 refs., 8 figs.

  4. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    1980-08-04

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

  5. Review of lignite resources of western Tennessee and the Jackson Purchase area, western Kentucky

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; Thomas, Roger E.; Nichols, Douglas J.

    2006-01-01

    Introduction: This review of the lignite deposits of western Tennessee and the Jackson Purchase area in western Kentucky (Fig. 1) is a preliminary report on part of the U.S. Geological Survey's National Coal Resource Assessment of the Gulf Coastal Plain Coal Province. Lignite deposits of western Kentucky and Tennessee are an extension of the Gulf Coastal Plain Coal Province (Cushing and others, 1964), and currently are not economic to mine. These deposits have not been extensively investigated or developed as an energy resource. This review includes a description of the geology of the lignite-bearing units, a discussion of the available coal quality data, and information on organic petrology. Palynological data for lignite samples collected in Kentucky and Tennessee as part of this work are presented in an Appendix.

  6. Nonisothermal Thermogravimetric Analysis of Thai Lignite with High CaO Content

    PubMed Central

    Pintana, Pakamon

    2013-01-01

    Thermal behaviors and combustion kinetics of Thai lignite with different SO3-free CaO contents were investigated. Nonisothermal thermogravimetric method was carried out under oxygen environment at heating rates of 10, 30, and 50°C min−1 from ambient up to 1300°C. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods were adopted to estimate the apparent activation energy (E) for the thermal decomposition of these coals. Different thermal degradation behaviors were observed in lignites with low (14%) and high (42%) CaO content. Activation energy of the lignite combustion was found to vary with the conversion fraction. In comparison with the KAS method, higher E values were obtained by the FWO method for all conversions considered. High CaO lignite was observed to have higher activation energy than the low CaO coal. PMID:24250259

  7. Co-combustion of pellets from Soma lignite and waste dusts of furniture works

    SciTech Connect

    Deveci, N.D.; Yilgin, M.; Pehlivan, D.

    2008-07-01

    In this work, volatiles and char combustion behaviors of the fuel pellets prepared from a low quality lignite and the dusts of furniture works and their various blends were investigated in an experimental fixed bed combustion system through which air flowed by natural convection. Combustion data obtained for varied bed temperatures, mass of pellets, and blend compositions has showed that ignition times of the pellets decreased and volatiles combustion rates tended to increase with the burning temperature. It was concluded that some synergy had existed between lignite and lower ratios of furniture work dusts, which was indicated by a prompt effect on the volatiles combustion rates. Char combustion rates of blend pellets have depended predominantly on the amount of lignite in the blend. The amounts of combustion residues of the pellets were considerably higher than those calculated from individual ash contents of the raw materials and related to lignite ratio in the blends.

  8. Rank and petrology of the Middle Miocene Karapinar lignites in southeast Turkey

    SciTech Connect

    Karayigit, A.I.; Goodarzi, F.; Ardag, Y.; Gentzis, T.

    1996-12-01

    The coal-bearing strata in the Basoren Formation from the Sariz-Karapinar coal region are of middle Miocene age and were deposited in a lacustrine environment. Coal in this formation is lignitic in rank (%Ro, random of eu-ulminite B is 0.37). These lignites have high inertinite content (up to 37.4%), which is higher than in any other Turkish lignites studied previously. Inertinite content in the region increases from the northeast to the southwest, possibly indicating oxidation of organic matter in the coal-forming environment due to lowering of the water level. Total sulfur content in the lignites ranges from 1.8 to 4.8%. High-rank coals present in the Upper Permian Yigiltepe Formation (%Ro, random is 0.66--0.70) contain more sulfur (S{sub tot} = 5.6--6.9%) and less inertinite (9.6--12.1%).

  9. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Blasting § 75.1319 Weight of explosives permitted in boreholes in bituminous and lignite mines. (a... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of...

  10. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens.

    PubMed

    Sun, Jianlei; Bai, Mei; Shen, Jianlin; Griffith, David W T; Denmead, Owen T; Hill, Julian; Lam, Shu Kee; Mosier, Arvin R; Chen, Deli

    2016-09-15

    Beef cattle feedlots are a major source of ammonia (NH3) emissions from livestock industries. We investigated the effects of lignite surface applications on NH3 and nitrous oxide (N2O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6kgm(-2), were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH3 and N2O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH3 analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH3 and N2O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240gNhead(-1)day(-1)) was lost via NH3 volatilization from the control pen, while lignite application decreased NH3 volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH3 emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14gN2O-Nhead(-1)day(-1) (<0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N2O emissions by 40 and 57%, to 0.14 and 0.22gN2O-Nhead(-1)day(-1), for Phase 1 and Phase 2, respectively. The increase in N2O emissions resulting from lignite application was counteracted by the lower indirect N2O emission due to decreased NH3 volatilization. Using 1% as a default emission factor of deposited NH3 for indirect N2O emissions, the application of lignite decreased total N2O emissions. PMID:27161136

  11. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  12. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the

  13. Comparison of Copper Sorption on Lignite and on Soils of Different Types and Their Humic Acids

    SciTech Connect

    Pekar, M.; Klucakova, M.

    2008-10-15

    We compared the sorption of copper on South Moravian lignite with that on several soils from Slovakia, using batch adsorption at a laboratory temperature of 25{sup o}C followed by a two-step desorption procedure. The results confirmed that lignite has a copper-sorption capacity and copper-binding strength that is comparable to or better than that of the Slovakian soils that we investigated. We compared these results with previously obtained data for sorption on humic acids (HA) isolated from lignite and soils. Although soil constituents other than HA, such as fulvic acids and mineral particles, also control metal sorption, HA bind copper at higher capacity and with greater strength than do the whole matrices of the soils we tested, and lignite showed a greater binding strength for copper than any of these soils. Our results thus far indicate that natural lignite mined in the Czech Republic, or lignite-derived HA, are potential agents for in situ soil remediation.

  14. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.

    PubMed

    Hasani, F; Shala, F; Xhixha, G; Xhixha, M K; Hodolli, G; Kadiri, S; Bylyku, E; Cfarku, F

    2014-12-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of (40)K, (226)Ra and (232)Th in lignite are found to be 36 ± 8 Bq kg(-1), 9 ± 1 Bq kg(-1) and 9 ± 3 Bq kg(-1), respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry. PMID:25233215

  15. Advances in the shell coal gasification process

    SciTech Connect

    Doering, E.L.; Cremer, G.A.

    1995-12-31

    The Shell Coal Gasification Process (SCGP) is a dry-feed, oxygen-blown, entrained flow coal gasification process which has the capability to convert virtually any coal or petroleum coke into a clean medium Btu synthesis gas, or syngas, consisting predominantly of carbon monoxide and hydrogen. In SCGP, high pressure nitrogen or recycled syngas is used to pneumatically convey dried, pulverized coal to the gasifier. The coal enters the gasifier through diametrically opposed burners where it reacts with oxygen at temperatures in excess of 2500{degrees}F. The gasification temperature is maintained to ensure that the mineral matter in the coal is molten and will flow smoothly down the gasifier wall and out the slag tap. Gasification conditions are optimized, depending on coal properties, to achieve the highest coal to gas conversion efficiency, with minimum formation of undesirable byproducts.

  16. Catalysts for carbon and coal gasification

    DOEpatents

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  17. Coal gasification for electric power generation.

    PubMed

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized. PMID:17788466

  18. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: application of lignite

    NASA Astrophysics Data System (ADS)

    Chen, Deli; Sun, Jianlei; Bai, Mei; Dassanayake, Kithsiri B.; Denmead, Owen T.; Hill, Julian

    2015-11-01

    In open beef feedlot systems, more than 50% of dietary nitrogen (N) is lost as ammonia (NH3). Here we report an effective and economically-viable method to mitigate NH3 emissions by the application of lignite. We constructed two cattle pens (20 × 20 m) to determine the effectiveness of lignite in reducing NH3 emissions. Twenty-four steers were fed identical commercial rations in each pen. The treatment pen surface was dressed with 4.5 kg m-2 lignite dry mass while no lignite was applied in the control pen. We measured volatilised NH3 concentrations using Ecotech EC9842 NH3 analysers in conjunction with a mass balance method to calculate NH3 fluxes. Application of lignite decreased NH3 loss from the pen by approximately 66%. The cumulative NH3 losses were 6.26 and 2.13 kg N head-1 in the control and lignite treatment, respectively. In addition to the environmental benefits of reduced NH3 losses, the value of retained N nutrient in the lignite treated manure is more than $37 AUD head-1 yr-1, based on the current fertiliser cost and estimated cost of lignite application. We show that lignite application is a cost-effective method to reduce NH3 loss from cattle feedlots.

  19. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: application of lignite

    PubMed Central

    Chen, Deli; Sun, Jianlei; Bai, Mei; Dassanayake, Kithsiri B.; Denmead, Owen T.; Hill, Julian

    2015-01-01

    In open beef feedlot systems, more than 50% of dietary nitrogen (N) is lost as ammonia (NH3). Here we report an effective and economically-viable method to mitigate NH3 emissions by the application of lignite. We constructed two cattle pens (20 × 20 m) to determine the effectiveness of lignite in reducing NH3 emissions. Twenty-four steers were fed identical commercial rations in each pen. The treatment pen surface was dressed with 4.5 kg m−2 lignite dry mass while no lignite was applied in the control pen. We measured volatilised NH3 concentrations using Ecotech EC9842 NH3 analysers in conjunction with a mass balance method to calculate NH3 fluxes. Application of lignite decreased NH3 loss from the pen by approximately 66%. The cumulative NH3 losses were 6.26 and 2.13 kg N head−1 in the control and lignite treatment, respectively. In addition to the environmental benefits of reduced NH3 losses, the value of retained N nutrient in the lignite treated manure is more than $37 AUD head−1 yr−1, based on the current fertiliser cost and estimated cost of lignite application. We show that lignite application is a cost-effective method to reduce NH3 loss from cattle feedlots. PMID:26584639

  20. The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea.

    PubMed

    Paramashivam, Dharini; Clough, Tim J; Carlton, Anna; Gough, Kelsi; Dickinson, Nicholas; Horswell, Jacqui; Sherlock, Robert R; Clucas, Lynne; Robinson, Brett H

    2016-02-01

    Lignite has been proposed as a soil amendment that reduces nitrate (NO3(-)) leaching from soil. Our objective was to determine the effect of lignite on nitrogen (N) fluxes from soil amended with biosolids or urea. The effect of lignite on plant yield and elemental composition was also determined. Batch sorption and column leaching experiments were followed by a lysimeter trial where a low fertility soil was amended with biosolids (400 kg N/ha equivalent) and urea (200 kg N/ha equivalent). Treatments were replicated three times, with and without lignite addition (20 t/ha equivalent). Lignite did not reduce NO3(-) leaching from soils amended with either biosolids or urea. While lignite decreased NO3(-) leaching from an unamended soil, the magnitude of this effect was not significant in an agricultural context. Furthermore, lignite increased cumulative N2O production from soils receiving urea by 90%. Lignite lessened the beneficial growth effects of adding biosolids or urea to soil. Further work could investigate whether coating urea granules with lignite may produce meaningful environmental benefits. PMID:26615483

  1. Surface restructuring of lignite by bio-char of Cuminum cyminum - Exploring the prospects in defluoridation followed by fuel applications

    NASA Astrophysics Data System (ADS)

    Msagati, T. A. M.; Mamba, B. B.; Sivasankar, V.; Omine, Kiyoshi

    2014-05-01

    Recently, there has been an interest in the areas of developing new carbon materials for fluoride removal applications. The development of new carbon materials is of recent choice which involves the synthesis of hybrid carbon from various sources. In this context, the present contribution is made to focus on the study the restructured surface of lignite using a bio-material called Cuminum cyminum. The restructured lignite (RSL) was synthesized with an improved carbon content of 13% and its BET surface area was found to be 3.12 times greater than lignite (L). The amorphous nature of lignite and RSL was quite explicable from XRD studies. SEM studies exhibited a fibrous and finer surface of lignite which was well restructured into a semi-melt (5 μm) surface for RSL. Defluoridation potential of Restructured Lignite (15.8 mg g-1) was greater than the lignite (13.8 mg g-1) at pH 7.93 ± 0.03. Kinetic and isotherm parameters derived from various models helped in comprehending the nature and dynamics of fluoride sorption. Both the normal and the restructured lignite were found to be consistent with its fluoride uptake of 57% and 60% respectively even after fifth cycle of regeneration. High heating values of 22.01 MJ kg-1 and 26.90 MJ kg-1 respectively for lignite and RSL deemed their additional application as fuel materials.

  2. Potentially toxic elements in lignite and its combustion residues from a power plant.

    PubMed

    Ram, L C; Masto, R E; Srivastava, N K; George, J; Selvi, V A; Das, T B; Pal, S K; Maity, S; Mohanty, D

    2015-01-01

    The presence of potentially toxic elements in lignite and coal is a matter of global concern during energy extraction from them. Accordingly, Barsingsar lignite from Rajasthan (India), a newly identified and currently exploited commercial source of energy, was evaluated for the presence of these elements and their fate during its combustion. Mobility of these elements in Barsingsar lignite and its ashes from a power plant (Bikaner-Nagaur region of Thar Desert, India) is presented in this paper. Kaolinite, quartz, and gypsum are the main minerals in lignite. Both the fly ash and bottom ash of lignite belong to class-F with SiO₂ > Al₂O₃ > CaO > MgO. Both the ashes contain quartz, mullite, anhydrite, and albite. As, In, and Sr have higher concentration in the feed than the ashes. Compared to the feed lignite, Ba, Co, U, Cu, Cd, and Ni are enriched (10-5 times) in fly ash and Co, Pb, Li, Ga, Cd, and U in bottom ash (9-5 times). Earth crust-normalization pattern showed enrichment of Ga, U, B, Ag, Cd, and Se in the lignite; Li, Ba, Ga, B, Cu, Ag, Cd, Hg, Pb, and Se, in fly ash; and Li, Sr, Ga, U, B, Cu, Ag, Cd, Pb, and Se in bottom ash. Hg, Ag, Zn, Ni, Ba, and Se are possibly associated with pyrite. Leaching test by toxicity characteristic leaching procedure (TCLP) showed that except B all the elements are within the safe limits prescribed by Indian Standards. PMID:25446718

  3. Entrained-flow gasification at elevated pressure: Volume 1: Final technical report, March 1, 1985-April 30,1987

    SciTech Connect

    Hedman, P.O.; Smoot, L.D.; Smith, P.J.; Blackham, A.U.

    1987-10-15

    The general purpose of this research program was to develop a basic understanding of the physical and chemical processes in entrained coal gasification and to use the results to improve and evaluate an entrained gasification computer model. The first task included the collection and analysis of in-situ gasifier data at elevated pressures with three coal types (North Dakota lignite, Wyoming subbituminous and Illinois bituminous), the design, construction, and testing of new coal/oxygen/steam injectors with a fourth coal type (Utah bituminous), the collection of supporting turbulent fluid dynamic (LDV) data from cold-flow studies, and the investigation of the feasibility of using laser-based (CARS) daignostic instruments to make measurements in coal flames. The second task included improvements to the two-dimensional gasifier submodels, tabulation and evaluation of new coal devolatilization and char oxidation data for predictions, fundamental studies of turbulent particle dispersion, the development of improved numerical methods, and validation of the comprehensive model through comparison of predictions with experimental results. The third task was to transfer technical advances to industry and to METC through technical seminars, production of a detailed data book, code placement, and publication of results. Research results for these three tasks are summarized briefly here and presented in detail in the body of the report and in supporting references. 202 refs., 73 figs., 23 tabs.

  4. Pyrolysis and gasification of coal at high temperatures. Annual progress report No. 1, September 15, 1987--September 15, 1988

    SciTech Connect

    Zygourakis, K.

    1988-12-31

    Particles from two parent coals (Illinois {number_sign}6 and lignite) were pyrolyzed in a nitrogen atmosphere using a captive sample microreactor capable of achieving heating rates as high as 1000{degrees}C/s. Direct measurements on digitized image of char particle cross-sections and a stereological model were used to characterize the macropore structure of chars. Macroporosites, pore size distributions and surface areas were accurately measured allowing us to quantify the effects of pyrolysis heating rates and coal particle size. We have paid particular attention to the development of image analysis software that has allowed us to analyze for the first time the shape or bounary tortuosity of the macropores. Tortuous pore boundaries result in higher values for the true macropore surface areas and should enhance the reactivity of the char samples. Another contribution of the current research program is the development of probabilisitic gasification models that work on computational grids obtained from digitized images of actual cross-sections of char particles. These digital images are accurate discrete approximations of a slice of the actual reacting solid. The incorporation of sophisticated image processing technique is perhaps the most attractive feature of the new simulation approach. Preliminary results indicate that the probabilistic models can accurately account for the opening of closed porosity and fragmentation phenomena occurring during gasification at high temperatures.

  5. Workability and strength of lignite bottom ash geopolymer mortar.

    PubMed

    Sathonsaowaphak, Apha; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2009-08-30

    In this paper, the waste lignite bottom ash from power station was used as a source material for making geopolymer. Sodium silicate and sodium hydroxide (NaOH) were used as liquid for the mixture and heat curing was used to activate the geopolymerization. The fineness of bottom ash, the liquid alkaline/ash ratio, the sodium silicate/NaOH ratio and the NaOH concentration were studied. The effects of the additions of water, NaOH and napthalene-based superplasticizer on the workability and strength of the geopolymer mortar were also studied. Relatively high strength geopolymer mortars of 24.0-58.0 MPa were obtained with the use of ground bottom ash with 3% retained on sieve no. 325 and mean particle size of 15.7 microm, using liquid alkaline/ash ratios of 0.429-0.709, the sodium silicate/NaOH ratios of 0.67-1.5 and 7.5-12.5M NaOH. The incorporation of water improved the workability of geopolymer mortar more effectively than the use of napthalene-based superplasticizer with similar slight reduction in strengths. The addition of NaOH solution slightly improves the workability of the mix while maintaining the strength of the geopolymer mortars. PMID:19264400

  6. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  7. Pilot-scale treatment of gasification wastewater and reuse in a cooling tower

    SciTech Connect

    Willson, W.G.; Mayer, G.G.; Hendrikson, J.G.; Winton, S.L.

    1985-04-01

    The University of North Dakota Energy Research Center has operated a 910 kg/hr, oxygen-blown fixed-bed gasifier to produce lignite-derived effluents for characterization, treatment, and reuse studies. Reuse of waste water in a cooling tower was investigated to define environmental and process effects as a function of pretreatment. The gasification wastewater was pretreated in pilot wastewater treatement units which simulate available technology. During the first phase of the program, wastewater was pretreated by solvent extraction and steam stripping to produce phenol and ammonia concentrations comparable to those expected at the Great Plains Gasification Associates plant. This pretreated wastewater was concentrated in a cooling tower to 10 cycles of concentration. No biocides or corrosion inhibitors were added. Severe fouling of heat exchange surfaces and high corrosion rates of carbon steel were encountered. Over 90% of the phenol entering the cooling tower was found to be stripped into the cooling tower exhaust air stream. The high levels of organics remaining in this minimally treated wastewater suggested that further biological treatment and possibly polishing by carbon adsorption would be necessary to prepare a satisfactory feed. In the second phase of the program, the SGL was further treated in an activated sludge process followed by granular activated carbon adsorption. Biotreatment removed 96% of the BOD with a three-day retention time while obtaining satisfactory sludge settling rates in spite of varied influent concentrations. Biorefractory materials were adsorbed on GAC to reach an effuent COD level of 150 mg/l. This upgrading was sufficient to reduce organic emissions from the cooling tower, but corrosion rates were higher than in the previous test, again showing the necessity for corrosion inhibitors. 8 figs., 3 tabs.

  8. Water-resources appraisal of the Camp Swift lignite area, central Texas

    USGS Publications Warehouse

    Gaylord, J.L.; Slade, R.M.; Ruiz, L.M.; Welborn, C.T.; Baker, E.T.

    1985-01-01

    The Camp Swift area, Texas was studied to describe the hydrogeology and to provide baseline data of the groundwater and surface water resources that would be affected by the strip mining of lignite. The investigation was centered on the 18-square mile Camp Swift Military Reservation where a reported 80 to 100 million short tons of commercially mineable lignite occurs within 200 feet of the land surface. Groundwater data showed that water levels in observation wells changed only slightly and that the water quality in the Calvert Bluff Formation, which contains the lignite, and in the Simsboro Formation, which is the major aquifer beneath the Calvert Bluff, is suitable for most uses. Big Sandy Creek, which crosses Camp Swift generally has a base flow of less than 0.5 cu ft/sec and infrequently is dry. Dogwood Creek, which originates on Camp Swift, usually is dry. The flow of both streams changes rapidly in response to rainfall in the watersheds. The quality of the water in both streams generally is suitable for most uses. A lithologic examination of 255 feet of cored section that represents the overburden and the lignite showed cyclic layering of fine sand, silt, clay, and lignite. Chemical analyses indicate that the pyritic sulfur concentration is small but variable. (USGS)

  9. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    NASA Astrophysics Data System (ADS)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  10. Photochemical dissolution of Turkish lignites in tetralin at different irradiation power and reaction times

    SciTech Connect

    F. Karacan; T. Torul

    2007-08-15

    The effect of the power of ultraviolet (UV) irradiation on the tetrahydrofuran (THF) solubles yield (the total soluble product) and the soluble product distribution of the dissolution of Turkish lignites (Beypazari and Tuncbilek lignite) in tetralin at ambient temperatures has been investigated. The lignite samples were exposed to UV irradiation for 1, 2, 3, 5, and 10 days in the power of irradiation ranging from 0 to 180 W at 60 W intervals. The yields of THF solubles and oils increased with increasing irradiation power and time. The optimum irradiation power depends on the irradiation time to obtain the highest degradation products. However, the yield of degradation products depends also on the lignite type. The largest fraction obtained from lignites by photochemical energy is oil. While the yields of THF solubles and oils sharply increased with irradiation power at longer reaction times, the yields of asphaltenes (AS) slightly decreased. Increasing oil yields is relatively larger when AS yields tend to decrease. These trends of AS and oil yields are ascribable to conversion of AS to oils at higher power. Small changes were observed in the PAS yields under all conditions. 27 refs., 5 figs., 1 tab.

  11. Oxidation of lignite: Annotated bibliography, 1974-1986. [51 papers with abstracts

    SciTech Connect

    Kumar, J.V.; Dahlberg, M.D.

    1986-01-01

    Microbial solubilization of coal is being investigated because it requires rather mild operating conditions compared to thermal and chemical processes. A wide variety of fungi are able to liquefy lignites to various degrees. Recently it has become apparent that a high degree of microbial liquefaction is possible only when leonardite is used. Leonardite occurs naturally as oxidized lignite and can be produced by oxidizing lignite in the laboratory, using chemicals, gases, or heat. In an attempt to find the best suitable oxidant for the pretreatment of lignite, a literature search on the oxidation of lignite became necessary in addition to experiments. Literature citations are reported in this publication in reverse chronological order under three headings: (1) Chemical Oxidation; (2) Oxidation Using Air, O/sub 2/, or Other Gases; and (3) Thermal Oxidation. The search was limited to the years 1974 to 1986 because previous work on oxidation of coal has been reviewed by Lowry, Yohe, and Wender et al. Fifty-one articles are listed with asbstracts.

  12. Solid fuel gasification in the global energy sector (a review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2015-07-01

    In the review of the Conference on Gasification of Solid Fuels, which was held on October 2013 by the United States, the commercial use of the most advanced coal gasification systems in the chemical and power industry is considered. Data on the projects of integrated solid fuel gasification combined-cycle plants, either being developed or exploited in the United States, as well as the nature and results performed in specialized organizations to improve the existing gasification equipment and systems, are presented.

  13. The concept of reactive surface area applied to uncatalyzed and catalyzed carbon (char) gasification in carbon dioxide and oxygen

    SciTech Connect

    Lizzio, A.A.

    1990-01-01

    The virtues of, and/or problems with, utilizing the concepts of total and active surface area to explain the reactivity profiles were evaluated and discussed. An alternative approach, involving the concept of reactive surface area (RSA), was introduced and results based on the direct measurement of RSA were presented. Here, reactive surface area is defined as the concentration of carbon atoms on which the carbon-oxygen C(O) surface intermediate forms and subsequently decomposes to give gaseous products. The transient kinetics (TK) approach gave a direct measurement of RSA for chars gasified in CO{sub 2} and O{sub 2}. A temperature-programmed desorption technique was also used to determine the amount of reactive surface intermediate formed on these chars during gasification. A comparison of turnover frequencies for different chars gasified in 1 atm CO{sub 2} suggested that char gasification mat be a structure sensitive reaction. The concept of RSA was also used to achieve a better quantitative understanding of catalyzed char reactivity variations with conversion in CO{sub 2}. For a calcium-exchanged lignite char gasified in 1 atm CO{sub 2}, a poor correlation was found between RSA and reactivity, suggesting that in addition to the direct decomposition of the reactive C(O) intermediate, other processes, e.g., oxygen spillover, contributed to the transient evolution of CO. An extensive study of Saran char loaded with calcium, potassium or nickel by impregnation to incipient wetness (IW) or ion exchange (IE) was undertaken. An excellent correlation was found between reactivity and RSA variations with conversion for both IW and IE K-catalyzed chars, suggesting that TK indeed titrates the reactive K-O-C complexes formed during gasification in CO{sub 2}.

  14. Dual Fluidized Bed Biomass Gasification

    SciTech Connect

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  15. Uses found for gasification slag

    SciTech Connect

    Not Available

    1986-12-01

    A study carried out for the Electric Power Research Institute by Praxis Engineers, Inc. has examined possible uses for the gasifier slag produced during coal gasification. After describing some of the problems foreseen to market development, seven categories of uses are listed and briefly discussed. The possible uses for slag identified are: (1) Agriculture (soil conditioner, lime substitute, low analysis fertilizer, carrier for insecticides); (2) Industrial material (abrasive grit, catalyst and adsorbent, roofing granules, industrial filler, mineral wool production, filter media); (3) Cement and Concrete (concrete aggregate, mortar/grouting material, pozzolanic admixture, raw materials for Portland cement production, masonary unit production); (4) Road Construction and Maintenance (de-icing grit, fine aggregate for bituminous pavement, base aggregate, sub-base aggregate, seal-cost aggregate); (5) Synthetic Aggregate (lightweight construction aggregate, landscaping material, sand substitute); (6) Land Fill and Soil Stabilization (soil conditioner for improving stability, structural fill, embankment material); (7) Resource Recovery (source of carbon, magnetite, iron, aluminium, and other metals). 2 tables.

  16. Solar gasification of carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Taylor, R. W.; Berjoan, R.; Coutures, J. P.

    1983-01-01

    Charcoal, wood and paper have ben gasified in a packed-bed reactor using steam and solar energy. The steam was generated by spraying water directly on to the surface of the fuel and, at the same time, heating the fuel at the focus of a solar furnace. Half of the steam reacted with carbon and 30 pct of the incident solar energy was stored as chemical enthalpy. The performance of a fluidized-bed reactor was compared to that of a packed-bed reactor using charcoal and CO2. The fraction of the incident solar energy utilized to produce CO (stored) was 10 pct in the case of the fluidized-bed reactor and 40 pct for the packed-bed reactor. The fuel value of the gas produced from the steam-gasification of wood and paper was 65 kcal/mole (320 Btu/lb). On an ash free basis the volume yield of the gas was within 0.1 of 1 cu m/kq.

  17. Coal gasification using solar energy

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.

    1983-01-01

    An economic evaluation of conventional and solar thermal coal gasification processes is presented, together with laboratory bench scale tests of a solar carbonization unit. The solar design consists of a heliostat field, a central tower receiver, a gasifier, and a recirculation loop. The synthetic gas is produced in the gasifier, with part of the gas upgraded to CH4 and another redirected through the receiver with steam to form CO and H2. Carbonaceous fuels are burned whenever sunlight is not available. Comparisons are made for costs of Lurgi, Bi-gas, Hygas, CO2 Acceptor, and Peat Gas processes and hybrid units for each. Solar thermal systems are projected to become economical with 350 MWt output and production of 1,420,000 cu m of gas per day. The laboratory bench scale unit was tested with Montana rosebud coal to derive a heat balance assessment and analyse the product gas. Successful heat transfer through a carrier gas was demonstrated, with most of the energy being stored in the product gas.

  18. Plasma Treatments and Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  19. Apparatus for fixed bed coal gasification

    DOEpatents

    Sadowski, Richard S.

    1992-01-01

    An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  20. Chicken-Bio Nuggets Gasification process

    SciTech Connect

    Sheth, A.C.

    1996-12-31

    With the cost of landfill disposal skyrocketing and land availability becoming scarce, better options are required for managing our nation`s biomass waste. In response to this need, the University of Tennessee Space Institute (UTSI) is evaluating an innovative idea (described as Chicken-Bio Nuggets Gasification process) to gasify waste products from the poultry industry and industrial wood/biomass-based residues in {open_quotes}as-is{close_quotes} or aggregate form. The presence of potassium salts in the poultry waste as well as in the biomass can act as a catalyst in reducing the severity of the thermal gasification. As a result, the mixture of these waste products can be gasified at a much lower temperature (1,300-1,400{degrees}F versus 1,800-2,000{degrees}F for conventional thermal gasification). Also, these potassium salts act as a catalyst by accelerating the gasification reaction and enhancing the mediation reaction. Hence, the product gas from this UTSI concept can be richer in methane and probably can be used as a source of fuel (to replace propane in hard reach remote places) or as a chemical feed stock. Exxon Research and Engineering Company has tested a similar catalytic gasification concept in a fluid-bed gasifier using coal in a one ton/day pilot plant in Baytown, Texas. If found technically and economically feasible, this concept can be later on extended to include other kinds of waste products such as cow manure and wastes from swine, etc.

  1. Hydrothermal Gasification for Waste to Energy

    NASA Astrophysics Data System (ADS)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  2. Solar coal gasification - Plant design and economics

    NASA Astrophysics Data System (ADS)

    Aiman, W. R.; Thorsness, C. B.; Gregg, D. W.

    A plant design and economic analysis is presented for solar coal gasification (SCG). Coal pyrolysis and char gasification to form the gasified product are reviewed, noting that the endothermic gasification reactions occur only at temperatures exceeding 1000 K, an energy input of 101-136 kJ/mol of char reformed. Use of solar heat offers the possibility of replacing fuels needed to perform the gasification and the oxygen necessary in order to produce a nitrogen-free product. Reactions, energetics, and byproducts from the gasification of subbituminous coal are modeled for a process analysis code used for the SCG plant. Gas generation is designed to occur in a unit exposed to the solar flux focus from a heliostat field. The SCG gas would have an H2 content of 88%, compared to the 55% offered by the Lurgi process. Initial capital costs for the SCG plant are projected to be 4 times those with the Lurgi process, with equality being achieved when coal costs $4/gJ.

  3. Determination of pyrolysis kinetic parameters of San Miguel (Texas) lignite. Final report. [650 to 800/sup 0/C; atmospheric pressure

    SciTech Connect

    Mann, U.; Selim, S.; Jih, J.

    1982-06-01

    The thermal decomposition of lignite in the absence of oxygen (pyrolysis) is important as a part of processes for converting lignite to more desirable fuels or for recovery of energy from deep basin lignite. The pyrolysis reaction kinetics of San Miguel (Texas) lignite has been experimentally studied in the temperature range 650 to 800/sup 0/C at atmospheric pressure. Gas and tar produced were collected and measured, and weight change as a function of time was measured. Lignite decomposition into gas, tar, and char can be described by three parallel first order reactions. In the temperature range investigated, the rates of pyrolysis are controlled by intraparticle transport phenomena. A simplified kinetic-transport model was used to estimate the individual reaction rate constants and activation energies. The gas produced was found to consist primarily of carbon dioxide, carbon monoxide, and hydrogen, with some methane, ethane, ethylene, and a trace C/sub 3/ compounds. Sample temperature increases and theoretical calculations indicate that oxygen from the lignite structure may be oxidizing lignite or pyrolysis products. It is recommended that, after suitable equipment modifications, the investigation be extended to study combined oxidation and pyrolysis of lignite.

  4. Lignite occurrence in relation to depositional facies, Eocene Wilcox group, Sabine uplift area, east Texas - regional and local comparative studies

    SciTech Connect

    Ambrose, M.L.; Jackson, M.L.W.; Kaiser, W.R.; Fly, D.J.

    1984-04-01

    Lignite occurrence was related to sandbody geometry in two subsurface studies: a 12-county regional study and a local study of the Trawick gas field area, north-central Nacogdoches County. For both studies, the Wilcox Group was informally divided into lower progradational (deltaic) and upper aggradational (fluvial) units. The local study utilized closely spaced data to investigate a more detailed Wilcox stratigraphy. The most continuous lignite-bearing zone lies at the transition between lower and upper Wilcox strata. Mapping of lignite occurrence in both studies shows this zone to be coincident with distributary channels indicative of delta-plain settings. Lignites and laterally equivalent muds rest on platforms of sandy sediments. Initiation of peat accumulation in interdistributary basins, with upward and subsequent lateral development as blanket peat, is inferred from the local study. Thickness and most laterally extensive seams occur in Shelby and Panola Counties on the flanks of major delta lobes. Thick upper Wilcox lignites (> 5 ft, 1.5 m) occur regionally between major fluvial channel sand belts and cap 30 to 40-ft (9 to 12-m) upward-coarsening sequences (crevasse splays.). These lignites are surface-mined in Panola and Harrison Counties at Martin Lake and Darco. Westward, in northern Cherokee County, our drilling shows thick lignites (up to 11 ft, 3.4 m) have limited lateral extent in channel sand belt areas. Similarly, the local study lies within a major sand belt; small interchannel basins limit lateral continuity of lignites.

  5. Lignite combustion test project interim report: Tests L101-L114

    SciTech Connect

    Phillips, K.E.; Wilson, K.B.

    1980-08-01

    Fluidized bed combustion research on North Dakota lignite is being performed by Combustion Power Company, Inc. under contract to Grand Forks Energy Technology Center in a 7 sq ft Atmospheric Fluid Bed Combustor. A series of 14 parameteric tests have been completed in which various combinations of bed temperature, superficial velocity, excess air, and limestone Ca/S ratios made up the test matrix. Twelve of the 14 tests used ash recycle. The test results extend the lignite combustion characteristics determined from GFETC tests on smaller reactors with respect to: (1) sulfur retention on lignite ash and supplemental sorbents; (2) ash and bed agglomeration problems; (3) effect of operational conditions and bed characteristics on heat transfer coeffficient; (4) ash reinjection; and (5) flue gas pollutants. This interim report summarizes the test setup, test procedures and test results, describes operational problems, and provides observations noted during the tests and on post-test inspections.

  6. Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions

    USGS Publications Warehouse

    Behar, F.; Lewan, M.D.; Lorant, F.; Vandenbroucke, M.

    2003-01-01

    The objectives of the study are to compare product compositions and yields generated from lignite artificially matured by open nonhydrous pyrolysis, closed nonhydrous pyrolysis, and hydrous pyrolysis. The pyrolysis products were fractionated into CO2, H2O, CH4, C2-C5, C8-C14, C14+ saturates, C14+ aromatics and NSOs (resins+asphaltenes). All three methods generated high and similar quantities of water during pyrolysis that ranged between 14.6 and 15.2 wt.% of the original lignite. As a result of this high water content generated by the lignite, the experiments with no added water are referred to as nonhydrous rather than anhydrous. Rock-Eval pyrolysis and elemental analyses were conducted on the recovered lignite after solvent extraction to determine their residual hydrocarbon generation potential and to plot their position in a van Krevelen diagram, respectively. Residual lignite from the closed nonhydrous and hydrous experiments showed relationships between vitrinite reflectance (%Ro) values and atomic H/C ratios that occurred within the fields observed for natural maturation of coal. Although no significant differences in the atomic H/C ratios were observed between closed nonhydrous and hydrous pyrolysis, the vitrinite reflectance values were on the average 0.2% Ro lower in the residual lignite from the nonhydrous experiments. The remaining hydrocarbon generation potential as determined by Rock-Eval pyrolysis of the residual lignite showed that the nonhydrous residuals had on the average 16 mg more hydrocarbon potential per gram of original lignite than the hydrous residuals. This suggests there is a better release of the pyrolysis products from the lignite network in the hydrous experiments once generation occurs. For gas generation, at maximum yields, open nonhydrous pyrolysis generates the most hydrocarbon gas (21.0 mg/g original lignite), which is 20% more than closed nonhydrous pyrolysis and 29% more than hydrous pyrolysis. Closed nonhydrous pyrolysis

  7. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    PubMed

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage. PMID:27416511

  8. Sorption of metal ions on lignite and the derived humic substances.

    PubMed

    Havelcová, Martina; Mizera, Jirí; Sýkorová, Ivana; Pekar, Miloslav

    2009-01-15

    The study presents results of sorption of metal ions (Pb2+, Zn2+, Cu2+, and Cd2+) onto lignite mined in South Moravia, Czech Republic, and solid humic substances (humin and humic acid) derived from it. The efficiency of these sorbents has been studied as a function of contact time, solution pH, and metal concentration. The sorption efficiencies were higher for humin and lower for humic acid samples than for the original lignite. With its high sorption capacities of several mmol/g, particularly for Pb2+ and Cd2+, the South Moravian lignite can provide a cheap source material for preparation of sorbents utilizable in removal of toxic metals from wastewaters. PMID:18490104

  9. Levoglucosan and other cellulose markers in pyrolysates of Miocene lignites: geochemical and environmental implications

    SciTech Connect

    Daniele Fabbri; Leszek Marynowski; Monika J. Fabianska; Michal Zaton; Bernd R.T. Simoneit

    2008-04-15

    Using the pyrolysis-gas chromatography-mass spectrometry and off-line pyrolysis/silylation methods for lignites from three Miocene brown coal basins of Poland resulted in the characterization of many organic compounds, including dominant cellulose degradation products such as levoglucosan, 1,6-anhydro-{beta}-D-glucofuranose, and 1,4:3,6-dianhydroglucopyranose. Levoglucosan is a general source-specific tracer for wood smoke in the atmosphere and recent sediments. The presence of unusually high levels of this compound in brown coal pyrolysates suggests that a portion of this compound concentration in some airsheds may originate from lignite combustion. On the other hand, nonglucose anhydrosaccharides, in particular, mannosan and galactosan, typical of hemicellulose, are not detected in those lignite pyrolysates investigated. This indicates that mannosan and galactosan are better specific tracers for combustion of contemporary biomass in those regions where the utilization of brown coals containing fossilized cellulose is important. 7 refs., 2 figs., 3 tabs.

  10. Lignite mine spoil characterization and approaches for its rehabilitation

    SciTech Connect

    Praveen-Kumar; Kumar, S.; Sharma, K.D.; Choudhary, A.; Gehlot, K.

    2005-01-15

    Open cast mining of lignite leaves behind stockpiles of excavated materials (dumps) and refilled mining pits (spoils). Physicochemical and biochemical properties of both kinds of sites were estimated to identify the reasons for their barrenness. Subsequently, surface modifications were attempted, first in a greenhouse and later infield to develop a suitable approach for their rehabilitation. Dumps had low pH (4.8) and high Na{sup +} (2.5 mg g{sup -1}), spoils high pH (8.7) and high Na{sup +} (1.59 mg g{sup -1} soil). Both sites had low available nitrogen and phosphorus and showed very low dehydrogenase and phosphatases activity but no nitrification. The extreme physicochemical conditions and inert nature of damps and spoils explained their barrenness. In the greenhouse experiment, 14 plant species sown in surface materials of dumps and spoils after spreading a 0.15 m thick layer of dune sand, germinated ({gt}85%), and their seedlings survived for two months. This technique was followed at a spoil site (modified spoil site). After three years of stabilization the modified spoil site had only one-fifth Na{sup +} of that in spoil surface in the beginning and also showed higher dehydrogenase and phosphatase activity and nitrification. Pearl millet and Cenchrus ciliaris grown in modified spoil produced 128 to 394 kg and 2.25 to 3.50 Mg dry matter ha{sup -1}. Addition of farmyard manure with N and P fertilizers increased pearl millet yields.

  11. Possible linkages between lignite aquifers, pathogenic microbes, and renal pelvic cancer in northwestern Louisiana, USA.

    PubMed

    Bunnell, Joseph E; Tatu, Calin A; Bushon, Rebecca N; Stoeckel, Donald M; Brady, Amie M G; Beck, Marisa; Lerch, Harry E; McGee, Benton; Hanson, Bradford C; Shi, Runhua; Orem, William H

    2006-12-01

    In May and September, 2002, 14 private residential drinking water wells, one dewatering well at a lignite mine, eight surface water sites, and lignite from an active coal mine were sampled in five Parishes of northwestern Louisiana, USA. Using a geographic information system (GIS), wells were selected that were likely to draw water that had been in contact with lignite; control wells were located in areas devoid of lignite deposits. Well water samples were analyzed for pH, conductivity, organic compounds, and nutrient and anion concentrations. All samples were further tested for presence of fungi (cultures maintained for up to 28 days and colonies counted and identified microscopically) and for metal and trace element concentration by inductively-coupled plasma mass spectrometry and atomic emission spectrometry. Surface water samples were tested for dissolved oxygen and presence of pathogenic leptospiral bacteria. The Spearman correlation method was used to assess the association between the endpoints for these field/laboratory analyses and incidence of cancer of the renal pelvis (RPC) based on data obtained from the Louisiana Tumor Registry for the five Parishes included in the study. Significant associations were revealed between the cancer rate and the presence in drinking water of organic compounds, the fungi Zygomycetes, the nutrients PO(4) and NH(3), and 13 chemical elements. Presence of human pathogenic leptospires was detected in four out of eight (50%) of the surface water sites sampled. The present study of a stable rural population examined possible linkages between aquifers containing chemically reactive lignite deposits, hydrologic conditions favorable to the leaching and transport of toxic organic compounds from the lignite into the groundwater, possible microbial contamination, and RPC risk. PMID:17120101

  12. Possible linkages between lignite aquifers, pathogenic microbes, and renal pelvic cancer in northwestern Louisiana, USA

    USGS Publications Warehouse

    Bunnell, J.E.; Tatu, C.A.; Bushon, R.N.; Stoeckel, D.M.; Brady, A.M.G.; Beck, M.; Lerch, H.E.; McGee, B.; Hanson, B.C.; Shi, R.; Orem, W.H.

    2006-01-01

    In May and September, 2002, 14 private residential drinking water wells, one dewatering well at a lignite mine, eight surface water sites, and lignite from an active coal mine were sampled in five Parishes of northwestern Louisiana, USA. Using a geographic information system (GIS), wells were selected that were likely to draw water that had been in contact with lignite; control wells were located in areas devoid of lignite deposits. Well water samples were analyzed for pH, conductivity, organic compounds, and nutrient and anion concentrations. All samples were further tested for presence of fungi (cultures maintained for up to 28 days and colonies counted and identified microscopically) and for metal and trace element concentration by inductively-coupled plasma mass spectrometry and atomic emission spectrometry. Surface water samples were tested for dissolved oxygen and presence of pathogenic leptospiral bacteria. The Spearman correlation method was used to assess the association between the endpoints for these field/laboratory analyses and incidence of cancer of the renal pelvis (RPC) based on data obtained from the Louisiana Tumor Registry for the five Parishes included in the study. Significant associations were revealed between the cancer rate and the presence in drinking water of organic compounds, the fungi Zygomycetes, the nutrients PO4 and NH3, and 13 chemical elements. Presence of human pathogenic leptospires was detected in four out of eight (50%) of the surface water sites sampled. The present study of a stable rural population examined possible linkages between aquifers containing chemically reactive lignite deposits, hydrologic conditions favorable to the leaching and transport of toxic organic compounds from the lignite into the groundwater, possible microbial contamination, and RPC risk. ?? Springer Science+Business Media B.V. 2006.

  13. Paleocene-eocene lignite beds of southwest Alabama: Parasequence beds in highstand systems tracts

    SciTech Connect

    Mancini, E.A.; Tew, B.H. ); Carroll, R.E. )

    1993-09-01

    In southwest Alabama, lignite beds are present in at least four stratigraphic intervals that span approximately 8 m.y. of geologic time. Lignite is found in the Paleocene Oak Hill Member and Coal Bluff Member of the Naheola Formation of the Midway Group and the Paleocene Tuscahoma Sand and the Eocene Hatchetigbee Formation of the Wilcox Group. Lignite beds range in thickness from 0.5 to 11 ft and consist of 32-53% moisture, 13-39% volatile matter, 4-36% fixed carbon, and 5-51% ash. These Paleocene and Eocene lignite beds occur as parasequence deposits in highstand systems tracts of four distinct third-order depositional sequences. The lignite beds are interpreted as strata within highstand systems tract parasequences that occur in mud-dominated regressive intervals. Lignite beds were deposited in coastal marsh and low-lying swamp environments as part of deltaic systems that prograded into southwestern Alabama from the west. As sediment was progressively delivered into the basin from these deltas, the effects of relative sea level rise during an individual cycle were overwhelmed, producing a net loss of accommodation and concomitant overall basinward progradation of the shoreline (regression). Small-scale fluctuations in water depth resulting from the interaction of eustasy, sediment yield, and subsidence led to cyclical flooding of the low-lying coastal marshes and swamps followed by periods of progradational and regression. Highstand systems tract deposition within a particular depositional sequence culminated with a relative sea level fall that resulted in a lowering of base level and an abrupt basinward shift in coastal onlap. Following sea level fall and the subsequent accumulation of the lowstand deposits, significant relative sea level rise resulted in the marine inundation of the area previously occupied by coastal marshes and swamps and deposition of the transgressive systems tract of the overlying sequence.

  14. Quantitative evaluation of minerals in lignites and intraseam sediments from the Achlada Basin, Northern Greece

    SciTech Connect

    Nikolaos Koukouzas; Colin R. Ward; Dimitra Papanikolaou; Zhongsheng Li

    2009-04-15

    Seven core samples (five lignite samples and two intraseam nonlignite rock samples) from the Achlada open-cut mine in northern Greece were characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. Quantitative evaluation of the mineral phases in each sample was made from the powder X-ray diffractograms using Siroquant commercial interpretation software, which is based on Rietveld principles. The main minerals in the low-temperature ash (LTA) ash of the lignites are kaolinite and illite, with bassanite and quartz in minor proportions. The nonlignite rock samples mainly consist of illite, mica (2M1), and kaolinite (poorly ordered), along with quartz, chlorite (ferroan), feldspar (albite), rutile, and dolomite. Oriented-aggregate XRD study further shows the presence of smectite, and interstratified illite/smectite (I/S), in the clay fractions of the lignite and rock samples, with the mineral matter of the lignites being richer in kaolinite, smectite, and I/S than in mineral matter of the nonlignite materials. The differences in mineralogy between the lignite and the rock materials probably reflect selective concentration of minerals in the original peat during deposition, combined with authigenic precipitation of minerals such as kaolinite in the peat deposit. Inferred chemical analyses derived from the XRD data show reasonably good correlations with chemical data obtained by direct ash analysis, especially if the smectite and I/S are taken into account. This provides a link between mineralogical and chemical studies that may be valuable in evaluating the behavior of the lignite under different utilization conditions. 27 refs., 4 figs., 6 tabs.

  15. Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the thirteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Blind Canyon bituminous coal, from July 31, 1984 to August 11, 1984. 6 refs., 22 figs., 20 tabs.

  16. Fixed-bed gasification research using US coals. Volume 15. Gasification of ''fresh'' Rosebud subbituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-09-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the fifteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Rosebud subbituminous coal, from June 17, 1985 to June 24, 1985. 4 refs., 20 figs., 15 tabs.

  17. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.; Smith, E. )

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes the stream assessment. 6 refs., 3 figs., 3 tabs.

  18. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Rindt, J.R.; Smith, E. )

    1988-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report contains information on oxygenate analysis of jet fuels.

  19. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

  20. ADVANCED GASIFICATION BY-PRODUCT UTILIZATION

    SciTech Connect

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

    2005-04-01

    The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  1. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  2. Process for fixed bed coal gasification

    DOEpatents

    Sadowski, Richard S.

    1992-01-01

    The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  3. Biomass Gasification Technology Assessment: Consolidated Report

    SciTech Connect

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  4. Effect of catalysts and solvents on the direct hydroliquefaction of Turkish lignites

    SciTech Connect

    Oner, M.; Bolat, E.; Dincer, S. )

    1990-01-01

    This paper reports the effectiveness of solvents on the liquefaction of 11 different Turkish lignites investigated by using tetralin, creosote, and anthracene oils. The highest total conversions were obtained with tetralin. The catalytic effects of CoMo and red mud were compared by using creosote oil as the solvent. It was found that red mud catalyzed mainly the asphaltene formation reaction for the given experimental conditions. The additional of CoMo significantly catalyzed the liquefaction reaction, thus increasing the lignite conversion and oil formation.

  5. Comparative radiocarbon dating of lignite, pottery, and charcoal samples from Babeldaob Island, Republic of Palau

    SciTech Connect

    Anderson, A.; Chappell, J.; Clark, G.; Phear, S.

    2005-07-01

    It is difficult to construct archaeological chronologies for Babeldaob, the main island of Palau (western Micronesia), because the saprolitic clays of the dominant terraced-hill sites and associated ceramic sherds often contain old carbon that originated in lignites. This has implications, as well, for chronologies of sedimentary sequences. Comparative analysis of the dating problem using lignite, pottery, and charcoal samples indicates that, in fact, there are both old and young sources of potential contamination. It is concluded that radiocarbon samples from Babeldaob need to be tested for appropriate carbon content rather than relying solely upon material identification.

  6. Bio-liquefaction/solubilization of lignitic humic acids by white-rot fungus (Phanerochaete chrysosporium)

    SciTech Connect

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Peksel, A.; Kuzu, H.

    2006-08-15

    Humic acid samples obtained from lignite were liquefied/solubilized by using white-rot fungus, and chemical characterization of the products was investigated by FTIR and GC-MS techniques. Prior to the microbial treatment, raw lignite was oxidized with hydrogen peroxide and nitric acid separately, and then humic acids were extracted by alkali solution. The prepared humic acid samples were placed on the agar surface of the fungus and liquid products formed by microbial affects were collected. The products were analyzed and the chemical properties were compared. The results show that oxidation agent and oxidation degree affect composition of the liquid products formed by microbial attack.

  7. Updraft gasification of salmon processing waste.

    PubMed

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable. PMID:19799663

  8. Numerical simulation of waste tyres gasification.

    PubMed

    Janajreh, Isam; Raza, Syed Shabbar

    2015-05-01

    Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable. PMID:25755167

  9. Production of Hydrogen from Underground Coal Gasification

    DOEpatents

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  10. Continuous Removal of Coal-Gasification Residue

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Suitor, J.; Dubis, D.

    1986-01-01

    Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.

  11. Updraft Fixed Bed Gasification Aspen Plus Model

    Energy Science and Technology Software Center (ESTSC)

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability ofmore » the process model.« less

  12. Beluga coal gasification feasibility study

    SciTech Connect

    Robert Chaney; Lawrence Van Bibber

    2006-07-15

    The objective of the study was to determine the economic feasibility of developing and siting a coal-based integrated gasification combined-cycle (IGCC) plant in the Cook Inlet region of Alaska for the co-production of electric power and marketable by-products. The by-products, which may include synthesis gas, Fischer-Tropsch (F-T) liquids, fertilizers such as ammonia and urea, alcohols, hydrogen, nitrogen and carbon dioxide, would be manufactured for local use or for sale in domestic and foreign markets. This report for Phase 1 summarizes the investigation of an IGCC system for a specific industrial setting on the Cook Inlet, the Agrium U.S. Inc. ('Agrium') fertilizer plant in Nikiski, Alaska. Faced with an increase in natural gas price and a decrease in supply, the Agrium is investigating alternatives to gas as feed stock for their plant. This study considered all aspects of the installation and infrastructure, including: coal supply and cost, coal transport costs, delivery routes, feedstock production for fertilizer manufacture, plant steam and power, carbon dioxide (CO{sub 2}) uses, markets for possible additional products, and environmental permit requirements. The Cook Inlet-specific Phase 1 results, reported here, provided insight and information that led to the conclusion that the second study should be for an F-T plant sited at the Usibelli Coal Mine near Healy, Alaska. This Phase 1 case study is for a very specific IGCC system tailored to fit the chemical and energy needs of the fertilizer manufacturing plant. It demonstrates the flexibility of IGCC for a variety of fuel feedstocks depending on plant location and fuel availability, as well as the available variety of gas separation, gas cleanup, and power and steam generation technologies to fit specific site needs. 18 figs., 37 tabs., 6 apps.

  13. Geosphere in underground coal gasification

    SciTech Connect

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  14. Numerical Study of Coal Gasification Using Eulerian-Eulerian Multiphase Model

    SciTech Connect

    Shi, S.; Guenther, C.; Orsino, S.

    2007-09-01

    Gasification converts the carbon-containing material into a synthesis gas (syngas) which can be used as a fuel to generate electricity or used as a basic chemical building block for a large number of uses in the petrochemical and refining industries. Based on the mode of conveyance of the fuel and the gasifying medium, gasification can be classified into fixed or moving bed, fluidized bed, and entrained flow reactors. Entrained flow gasifiers normally feature dilute flow with small particle size and can be successfully modeled with the Discrete Phase Method (DPM). For the other types, the Eulerian-Eulerian (E-E) or the so called two-fluid multiphase model is a more appropriate approach. The E-E model treats the solid phase as a distinct interpenetrating granular “fluid” and it is the most general-purposed multi-fluid model. This approach provides transient, three-dimensional, detailed information inside the reactor which would otherwise be unobtainable through experiments due to the large scale, high pressure and/or temperature. In this paper, a transient, three-dimensional model of the Power Systems Development Facility (PSDF) transport gasifier will be presented to illustrate how Computational Fluid Dynamics (CFD) can be used for large-scale complicated geometry with detailed physics and chemistry. In the model, eleven species are included in the gas phase while four pseudo-species are assumed in the solid phase. A total of sixteen reactions, both homogeneous (involving only gas phase species) and heterogeneous (involving species in both gas and solid phases), are used to model the coal gasification chemistry. Computational results have been validated against PSDF experimental data from lignite to bituminous coals under both air and oxygen blown conditions. The PSDF gasifier geometry was meshed with about 70,000, hexahedra-dominated cells. A total of six cases with different coal, feed gas, and/or operation conditions have been performed. The predicted and

  15. Fixed-bed gasification research using US coals. Volume 6. Gasification of delayed petroleum coke

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the sixth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of delayed petroleum coke from Pine Bend, MN. The period of the gasification test was June 1-17, 1983. 2 refs., 15 figs., 22 tabs.

  16. Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

  17. Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the seventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Piney Tipple bituminous coal. The period of the gasification test was July 18-24, 1983. 6 refs., 20 figs., 17 tabs.

  18. Fixed-bed gasification research using US coals. Volume 5. Gasification of Stahlman Stoker bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fifth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Stahlman Stoker bituminous coal from Clarion County, PA. The period of the gasification test was April 30 to May 4, 1983. 4 refs., 16 figs., 10 tabs.

  19. Macroscopic lithotype characterisation of the 1st Middle-Polish (1st Lusatian) Lignite Seam in the Miocene of central Poland

    NASA Astrophysics Data System (ADS)

    Widera, Marek

    2012-03-01

    The 1st Middle-Polish (1st Lusatian) Lignite Seam is exploited in open-cast mines in central Poland. A large number of lignite lithotypes, grouped in four lithotype associations, are distinguished: xylitic, detritic, xylo-detritic and detro-xylitic lithotype associations, which show various structures. Each lithotype association was produced under specific peat-forming environmental conditions. In the case of the lignite seams under study they represent all the main environments that are known from Neogene mires, i.e.: fen or open water, bush moor, wet forest swamp and dry forest swamp. For a simple and practical description in the field of both the lignite sections and borehole cores, a new codification for lignite lithotypes is proposed. It is based on the codification of clastic deposits (lithofacies). The practical value of the new lignite lithotype codification is examined in three vertical sections of the 1st Middle-Polish Lignite Seam.

  20. BIOMASS GASIFICATION PILOT STUDY PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  1. DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.

    EPA Science Inventory

    The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

  2. Integrated coal drying and steam gasification process

    SciTech Connect

    Nahas, N.C.

    1981-08-18

    Carbonaceous solids slurried in an aqueous solution, which preferably contains catalyst constituents having gasification activity, are dried by contacting the slurry with superheated steam in a fluid bed slurry dryer and the resultant dried solids are subsequently gasified with steam generated in the dryer.

  3. EFFECT OF UNDERGROUND COAL GASIFICATION ON GROUNDWATER

    EPA Science Inventory

    The potential effect of underground coal gasification on groundwater has been examined in a laboratory study. The study was directed at Fruitland Formation subbituminous coal of the San Juan Basin and at the groundwater found in this coal seam. Two wells were drilled into the coa...

  4. Production of cooking briquettes from Maissade (Haiti) lignite. Feasibility study and preliminary plant design

    SciTech Connect

    Hauserman, W.B.; Johnson, M.D.

    1986-03-20

    A laboratory study was done to establish the technical feasibility of producing domestic cooking briquettes to be marketed in Haiti, from the Maissade lignite reserves of that country, which are high in both ash and sulfur and not yet mined. It was found that acceptable briquettes could be made from Maissade char, pyrolized and compacted with a molasses-lime binder and the addition of bagasse to improve strength and burning rate. Molasses, lime and bagasse are all produced in Haiti. Sodium nitrate was added to enhance ignition, and borax as a wetting and release agent. Standard, ''pillow-shaped'' briquettes were successfully produced on a standard, double roll briquetting machine. The recommended process sequence and equipment selection are virtually identical to that used to produce standard US barbecue briquettes from North Dakota lignite. The heating value of the Maissade briquettes is lower due to their high ash level, which may be acceptable if they can be produced at a cost per heating value comparable to wood charcoal, currently used in Haiti. The high sulfur content, mostly in organic form, presents no problem, since it is tied up after combustion as CaSO/sub 4/ by the unusually high calcium content of this lignite. Detailed analyses of Maissade lignite and its mineral components are included, as well as a preliminary plant design and capital cost estimate, for capacities of 10,000 and 50,000 metric tons per year, and for a smaller pilot plant.

  5. Hydrologic and geochemical data for the Big Brown lignite mine area, Freestone County, Texas

    USGS Publications Warehouse

    Dorsey, Michael E.

    1985-01-01

    Lignite mining in east and east-central Texas is increasing in response to increased energy needs throughout the State. Associated with the increase in mining activities is a greater need to know the effects of mining activities on the water quantity and quality of near-surface aquifers. The near-surface lignite beds mined at the Big Brown Lignite Mine are from the Calvert Bluff Formation of the Wilcox Group of Eocene age, which is a minor aquifer generally having water suitable for all uses, in eastern Freestone County, Texas. One of the potential hydro!ogic effects of surface-coal mining is a change in the quality of ground water associated with replacement of aquifer materials by mine spoils. The purpose of this report is to compile and categorize geologic, mineralogic, geochemical, and hydrologic data for the Big Brown Lignite Mine and surrounding area in east-central Texas. Included are results of pasteextract analyses, constituent concentrations in water from batch-mixing experiments, sulfur analyses, and minerals or mineral groups detected by X-ray diffraction in 12 spoil material samples collected from 3 locations at the mine site. Also, common-constituent and trace-constituent concentrations in water from eight selected wells, located updip and downdip from the mine, are presented. Dissolved-solids concentrations in water from batch-mixing experiments vary from 12 to 908 milligrams per liter. Water from selected wells contain dissolved-solids concentrations ranging from 75 to 510 milligrams per liter.

  6. Catalytic hydrogenation of Turkish lignites to oxygen free oil and gas

    SciTech Connect

    Yorulmaz, V.; Weiss, A.H.

    1981-01-01

    The purpose of this study was to convert low heating value Turkish lignites (Elbistan and Beypaza) to high quality liquid and gaseous products and to investigate the kinetics and mechanisms of the reactions with the optimum conditions of petroleum type oil production. 8 refs.

  7. Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor

    SciTech Connect

    Zuhal Gogebakan; Nevin Selcuk

    2008-05-15

    In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnut shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.

  8. Lignite recovery of cobalt(+3) from an ammoniacal ammonium sulfate solution. Report of investigations/1984

    SciTech Connect

    Slavens, G.J.; Traut, D.E.; Penner, L.R.; Henry, J.L.

    1984-01-01

    The Bureau of Mines has devised technology to recover cobalt, nickel, and byproduct copper from domestic lateritic material using an oxidative, ammoniacal ammonium sulfate leach. Nickel, cobalt, and copper were recovered by solvent extraction and electrowinning. To reduce the cost and complexity of cobalt recovery, an alternate method using lignite to extract Co(+3) was investigated as reported herein.

  9. The association of major, minor and trace inorganic elements with lignites. I. Experimental approach and study of a North Dakota lignite

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.; Given, Peter H.

    1986-09-01

    Lignites resemble peats, the precursors of coals, in containing many carboxylic acid and other functional groups. Consequently much of the relatively small amount of inorganic matter in lignites is present as cations in carboxylates and in chelated coordination complexes, and not only as distinct mineral phases. Consequently the distribution of inorganic matter in lignites will be influenced by the structure of the organic matter, as well as by microbial processes in peats and the geochemical processes involving erosion of rocks and transport of mineral grains and cations in solution. The objective of this study was to seek information on the distribution of major, minor and trace elements in different forms of combination, and in particular to document organic/inorganic interactions in coal formation. Study of the first of five lignites is reported here. The coal (from the Hagel seam in North Dakota) was separated into five fractions by float/ sink methods, and the fractions were further separated into an ammonium acetate extract, an HCl extract and an insoluble residue. Analysis of the fractions (by atomic absorption, plasma arc emission, emission spectroscopy and neutron activation) was found to give much information on how elements were combined in the coals. Results of the fractionation indicate that Ca, Mg, Na, K, Sr, Ba and Mn were present largely or partly in ion-exchangeable form; appreciable amounts of K (illite), Ba (sulfate, carbonate) and Mn were also present in mineral phases. Some Al appeared to be present in organic association. Ti often occurs in sediments by substitution in clays, but we infer that substantial amounts are present here in both acidsoluble and acid-insoluble organic chelates. The considerable enrichment of a number of elements in the fractions of lowest specific gravity suggests that Be, Sc, Cr, Y, Yb, V, Ni, Cu and Zn are associated primarily or partly with the organic matter. The extent to which these elements are associated with

  10. Innovative gasification technology for future power generation

    SciTech Connect

    Mahajan, K.; Shadle, L.J.; Sadowski, R.S.

    1995-07-01

    Ever tightening environmental regulations have changed the way utility and non-utility electric generation providers currently view their fuels choices. While coal is still, by far, the major fuel utilized in power production, the general trend over the past 20 years has been to switch to low-sulfur coal and/or make costly modifications to existing coal-fired facilities to reach environmental compliance. Unfortunately, this approach has led to fragmented solutions to balance our energy and environmental needs. To date, few integrated gasification combined-cycle (IGCC) suppliers have been able to compete with the cost of other more conventional technologies or fuels. One need only look at the complexity of many IGCC approaches to understand that unless a view toward IEC is adopted, the widespread application of such otherwise potentially attractive technologies will be unlikely in our lifetime. Jacobs-Sirrine Engineers and Riley Stoker Corporation are working in partnership with the Department of Energy`s Morgantown Energy Technology Center to help demonstrate an innovative coal gasification technology called {open_quotes}PyGas{trademark},{close_quotes} for {open_quotes}pyrolysis-gasification{close_quotes}. This hybrid variation of fluidized-bed and fixed-bed gasification technologies is being developed with the goal to efficiently produce clean gas at costs competitive with more conventional systems by incorporating many of the principles of IEC within the confines of a single-gasifier vessel. Our project is currently in the detailed design stage of a 4 ton-per-hour gasification facility to be built at the Fort Martin Station of Allegheny Power Services. By locating the test facility at an existing coal-fired plant, much of the facility infrastructure can be utilized saving significant costs. Successful demonstration of this technology at this new facility is a prerequisite to its commercialization.

  11. Atmospheric pressure gasification process for power generation

    SciTech Connect

    Morris, M.

    1996-12-31

    Since 1987 TPS Termiska Processer AB has been working on the development of both a biomass-fueled circulating fluidized bed (CFB) gasification process and a downstream dolomite catalytic tar removal process. The combined process has been developed in a 2 MWth pilot plant which was built originally for investigating the use of the product gas in a diesel motor cogeneration plant. A prototype gasification plant comprising two waste-fueled 15 MWth CFB gasifiers has been installed in Greve-in-Chianti, Italy. Since 1990, TPS has been working on the development of a biomass-fueled integrated gasification combined-cycle scheme utilizing both a CFB gasifier and a CFB tar cracker. In 1992, TPS was contracted by the Global Environmental Facility (GEF) to perform work for Phase II of the Brazilian BIG-GT (Biomass Integrated Gasification-Gas Turbine) project. This stage of the project involved both experimental and engineering studies and the basic engineering for a 30 MWe eucalyptus-fueled power plant in Brazil. The plant is based on the GE LM 2500 gas turbine. During this stage of the project the TPS process was in competition with a process from a pressurized gasification technology vendor. However, in 1995 TPS was selected for participation in Phase III of the project. Phase III of the project includes construction and commissioning of the plant. Involvement in the Brazilian BIG-GT project has served as a springboard for the participation of TPS in similar projects in the Netherlands and the UK. In the UK, ARBRE Energy Limited is constructing a coppice-fueled 8 MWe plant with support from the EU THERMIE program and the UKs NFFO (Non Fossil Fuel Obligation). The design contract will be awarded in late 1996. In the Netherlands, a number of projects for biomass and wastes are being pursued by TPS in cooperation with Royal Schelde of the Netherlands.

  12. Rapid toxicity screening of gasification ashes.

    PubMed

    Zhen, Xu; Rong, Le; Ng, Wei Cheng; Ong, Cynthia; Baeg, Gyeong Hun; Zhang, Wenlin; Lee, Si Ni; Li, Sam Fong Yau; Dai, Yanjun; Tong, Yen Wah; Neoh, Koon Gee; Wang, Chi-Hwa

    2016-04-01

    The solid residues including bottom ashes and fly ashes produced by waste gasification technology could be reused as secondary raw materials. However, the applications and utilizations of these ashes are very often restricted by their toxicity. Therefore, toxicity screening of ash is the primary condition for reusing the ash. In this manuscript, we establish a standard for rapid screening of gasification ashes on the basis of in vitro and in vivo testing, and henceforth guide the proper disposal of the ashes. We used three different test models comprising human cell lines (liver and lung cells), Drosophila melanogaster and Daphnia magna to examine the toxicity of six different types of ashes. For each ash, different leachate concentrations were used to examine the toxicity, with C0 being the original extracted leachate concentration, while C/C0 being subsequent diluted concentrations. The IC50 for each leachate was also quantified for use as an index to classify toxicity levels. The results demonstrated that the toxicity evaluation of different types of ashes using different models is consistent with each other. As the different models show consistent qualitative results, we chose one or two of the models (liver cells or lung cells models) as the standard for rapid toxicity screening of gasification ashes. We may classify the gasification ashes into three categories according to the IC50, 24h value on liver cells or lung cells models, namely "toxic level I" (IC50, 24h>C/C0=0.5), "toxic level II" (C/C0=0.05gasification plants every day. Subsequently, appropriate disposal methods can be recommended for each toxicity category. PMID:26923299

  13. Coal properties and system operating parameters for underground coal gasification

    SciTech Connect

    Yang, L.

    2008-07-01

    Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

  14. Subtask 4.4 - North Dakota Lignite Fuel Upgrading

    SciTech Connect

    Michael Swanson

    2009-03-15

    This project will add the capability for the Energy & Environmental Research Center (EERC) to conduct Fischer-Tropsch (FT) catalyst testing at a scale consistent with the benchscale continuous fluid-bed reactor. This capability will enable various vendors to test their FT catalysts on actual coal-derived syngas. The project goals were to also develop some EERC expertise with issues associated with FT liquid production. A study by Dr. Calvin Bartholmew at Brigham Young University (BYU) is further apparent that it is possible to build a single reactor (rather than multiple reactors of different sizes) consisting of three 1-inch-diameter, 10 foot-long tubes to accommodate the anticipated range of catalytic activities and process conditions. However, this single reactor should ideally be designed to operate over a significant range of recycle ratio (e.g., 1-10), temperature (25-400 C), pressure (10-25 bar), flow rate (1-6 scfm), and cooling duty (0.2-1.5 kW). It should have the flexibility of flowing gas to one, two, or three tubes. Based on the recommended design specifications provided by BYU while staying within the approved budget, the EERC decided to build a two fixed-bed reactor system with the capability to add a third reactor at a later time. This system was constructed to be modular and sized such that it can fit into the area around the EERC continuous fluid-bed reactor or also be located in explosion-rated areas such as the gasification tower next to the EERC pilot-scale transport reactor or in the National Center for Hydrogen Technology building high-bay area.

  15. Biomass thermochemical gasification: Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  16. Catalytic Wet Gasification of Municipal and Animal Wastes

    SciTech Connect

    Ro, Kyoung S.; Cantrell, Keri; Elliott, Douglas C.; Hunt, Patrick G.

    2007-02-21

    Applicability of wet gasification technology for various animal and municipal wastes was examined. Wet gasification of swine manure and raw sewage sludge generated high number of net energies. Furthermore, the moisture content of these wastes is ideal for current wet gasification technology. Significant quantities of water must be added to dry feedstock wastes such as poultry litter, feedlot manures and MSW to make the feedstock pumpable. Because of their high ash contents, MSW and unpaved feedlot manure would not generate positive energy return from wet gasification. The costs of a conceptual wet gasification manure management system for a model swine farm were significantly higher than that of the anaerobic lagoon system. However, many environmental advantages of the wet gasification system were identified, which might reduce the costs significantly. Due to high sulfur content of the wastes, pretreatment to prevent the poisoning of catalysts is critically needed.

  17. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, Marvin W.

    1988-01-01

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  18. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, M.W.

    1987-03-23

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  19. Apparatus and method for solar coal gasification

    DOEpatents

    Gregg, David W.

    1980-01-01

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  20. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  1. Supercritical droplet gasification experiments with forced convection

    NASA Technical Reports Server (NTRS)

    Litchford, Ron; Parigger, Chris; Jeng, San-Mou

    1992-01-01

    Preliminary results of a comprehensive experimental program are presented which offer the first direct observations of suspended n-heptane droplet gasifications in pure nitrogen with forced convection without the interference to optical probing associated with a flame. Measurements show attainment of a wet-bulb temperature until reduced pressures exceed about 1.0 under supercritical gas temperatures. Thereafter, temperature measurements indicate fully transient heat-up through the critical temperature. The surface is found to regress in a continuous manner with the measured temperature approaching the critical value at the end of the droplet lifetime under supercritical conditions with very mild level of convection. At increased level of convection for the same ambient conditions, similar sized droplets will undergo significant deformation during the gasification process until partially convected away as a dense vapor cloud as the critical temperature is approached.

  2. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  3. The ENCOAL Mild Gasification Demonstration Project

    SciTech Connect

    Not Available

    1990-07-01

    The DOE plans to enter into a Cooperative Agreement with ENCOAL Corporation, a wholly owned subsidiary of Shell Mining Company, for the cost-shared design, construction and operation of a mild gasification facility based on Liquids-from-Coal (LFC) technology. The facility is planned to be located at the Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The mild gasification process to be demonstrated will produce two new, low-sulfur fuel forms (a solid and a liquid) from subbituminous coal. The new fuel forms would be suitable for combustion in commercial, industrial, and utility boilers. This environmental assessment has been prepared by the DOE to comply with the requirements of the NEPA. Pollutant emissions, land use, water, and waste management are briefly discussed. 3 figs., 5 tabs.

  4. Catalytic gasification: Isotopic labeling and transient reaction

    SciTech Connect

    Saber, J.M.; Falconer, J.L.; Brown, L.F.

    1985-01-01

    Temperature-programmed reaction was used with labeled isotopes (/sup 13/C and /sup 18/O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO/sub 2//90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 K and 950 K, and in the presence of gaseous carbon dioxide, the complexes promoted carbon and oxygen exchange between the gas-phase CO/sub 2/ and the surface. Oxygen exchanged between the surface complexes; but carbon did not exchange between the carbonate and the carbon black. As the temperature rose, the complexes decomposed to produce carbon dioxide, and catalytic gasification then began. Elemental potassium formed, and the active catalyst appears to alternate between potassium metal and a potassium-oxygen-carbon complex.

  5. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  6. Co-liquefaction of the Elbistan Lignite and Poplar Sawdust. Part I: The Effect of the Liquefaction Parameters

    SciTech Connect

    Karaca, H.; Acar, M.; Yilmaz, M.; Keklik, I.

    2009-07-01

    In this study, the liquefaction of Elbistan lignite and poplar sawdust, and the co-liquefaction of the Elbistan lignite and the poplar sawdust in an inert atmosphere and in non-catalytic conditions have been examined. Also, the effects of solvent/coal ratio and stirring speed on the total conversion derived as the result of the liquefaction process was attempted to be determined. Based on the results, although the effects of the solvent/coal ratio and the stirring speed on total conversion are similar for both the Elbistan lignite and the poplar sawdust, it was also noted that, under similar conditions, the conversion for the poplar sawdust was higher, as compared to the conversion of the Elbistan lignite. As the result of the liquefaction of Elbistan lignite and poplar sawdust under inert atmospheric conditions, the total conversion was increased partially, depending on both solvent/coal ratio and the speed of stirring. However, it was also noted that the total conversion did not change to a significant extent in high solvent/coal ratios and in stirring speed. As the result of the co-liquefaction of the Elbistan lignite and poplar sawdust under inert atmospheric conditions, total conversion was increased, based on the solvent/coal ratio. However, as in the case of the liquefaction of Elbistan lignite and poplar sawdust, it was noted that the high solvent/coal ratios (i.e., solvent/coal ratios of higher than 2/1) did not have a significant effect on the total conversion that was derived as the result of the co-liquefaction of the Elbistan lignite and poplar sawdust.

  7. Gasification performance of switchgrass pretreated with torrefaction and densification

    SciTech Connect

    Jaya Shankar Tumuluru; Various

    2014-08-01

    The purpose of this study was to investigate gasification performance of four switchgrass pretreatments (torrefaction at 230 and 270 °C, densification, and combined torrefaction and densification) and three gasification temperatures (700, 800 and 900 °C). Gasification was performed in a fixed-bed externally heated reactor with air as an oxidizing agent. Switchgrass pretreatment and gasification temperature had significant effects on gasification performance such as gas yields, syngas lower heating value (LHV), and carbon conversion and cold gas efficiencies. With an increase in the gasification temperature, yields of H2 and CO, syngas LHV, and gasifier efficiencies increased whereas CH4, CO2 and N2 yields decreased. Among all switchgrass pretreatments, gasification performance of switchgrass with combined torrefaction and densification was the best followed by that of densified, raw and torrefied switchgrass. Gasification of combined torrefied and densified switchgrass resulted in the highest yields of H2 (0.03 kg/kg biomass) and CO (0.72 kg/kg biomass), highest syngas LHV (5.08 MJ m-3), CCE (92.53%), and CGE (68.40%) at the gasification temperature of 900 °C.

  8. Integrated gasification iron-air electrical system

    SciTech Connect

    Brown, J.T.

    1988-05-17

    An integrated, gasification, iron-air electrical system, capable of generating electrical energy from a carbonaceous material is described comprising: (A) a gasification means for carbonaceous materials comprising at least one gasification reactor, where a carbonaceous material is contacted and reacted with a gaseous medium containing steam and air, at a temperature and for a time effective to gasify the carbonaceous material and produce a hot gaseous reaction product comprising CO and H/sub 2/; (B) an iron-air cell containing at least one discharged iron electrode; (C) means to remove the discharged iron electrode from the cell of (B), and contact it with the gaseous reaction product produced in (A); (D) the discharged iron electrode removed from the cell of (B), containing material consisting essentially of Fe and Fe(OH)/sub 2/, which electrode is contacted with the hot gaseous reaction product produced in the gasification reactor of (A), directly, at a temperature of from about 450/sup 0/C to about 700/sup 0/C, for a time effective to convert, by reduction, discharged iron compounds consisting essentially of Fe and Fe(OH)/sub 2/ to charge iron compounds in the electrode and provide a recharged iron electrode; (E) an iron-air cell into which the recharged iron electrode provided in (D) is placed; (F) means to transport the recharged iron electrode provided in (D) to the iron-air cell of (E); and (G) electrical connection means attached to the iron-air cell of (E), providing the cell with capability of generating electrical energy.

  9. Gasification Product Improvement Facility (GPIF). Final report

    SciTech Connect

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  10. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  11. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  12. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter

  13. Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

  14. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect

    Gregory Wotzak; Chellappa Balan; Faress Rahman; Nguyen Minh

    2003-08-01

    The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Cell (SOFC) technology. This pre-baseline case will be used as a basis for identifying the critical factors impacting system performance and the major technical challenges in implementing such systems. Top-level system requirements were used as the criteria to evaluate and down select alternative sub-systems. The top choice subsystems were subsequently integrated to form the pre-baseline case. The down-selected pre-baseline case includes a British Gas Lurgi (BGL) gasification and cleanup sub-system integrated with a GE Power Systems 6FA+e gas turbine and the Hybrid Power Generation Systems planar Solid Oxide Fuel Cell (SOFC) sub-system. The overall efficiency of this system is estimated to be 43.0%. The system efficiency of the pre-baseline system provides a benchmark level for further optimization efforts in this program.

  15. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  16. Development of solar coal gasification technology

    SciTech Connect

    Adinberg, R.; Epstein, M.

    1996-12-31

    This paper describes an approach to the development and characterization of a solar-assisted coal gasification plant. Two solar receivers for steam coal gasification, both on a sub pilot scale, have been designed and set up at the Weizmann Institute`s solar facilities for tests under the conditions of highly concentrated solar radiation. In spite of the fact that chemical reactors of different types, one-tubular and the second-volumetric, have been installed in each of these receivers, they have in common the integration of a reactor and associated steam generator into one complex solar thermal system. The receiver constructed of a reaction tube coupled with a superheated steam generator provides processing of grained carbonaceous materials at temperature as high as 900--950 C with a sufficiently high rate of the syngas yield. Results from a series of the windowed reactor/receiver tests are also successful, demonstrating the suitability of this reactor for operating in a wide range of conditions required for coal gasification. Being designed in a certain degree of simplicity, that is adequate to the present stage of problem initiation, the receivers employed need to be optimized in order to achieve considerable efficiency of solar thermal power conversion into the energy of product gas. Results show that the temperature of process steam can strongly influence the system performance.

  17. The lignipel process mass production of a low moisture content lignite agglomeration

    SciTech Connect

    Blaustein, E.W.; Garvin, J.P.

    1983-11-01

    The goal is to convert lignite to a less degradable and easily transportable product with a greatly reduced water content. Ideally, a process was sought that would result in an agglomerate with less than 20 percent moisture content remaining, without spontaneous combustion problems, significantly reduced dust losses, and improved heating value. The research and development project was significantly contracted to an engineering company and not to a research institution. The rationale was that the development of the improved coal should be as soon as possible translated into an actual industrial process. The approach while unorthodox produced results. Four years after conceiving the project, the engineering team demonstrated the new process with a continuous production of lignite pellets in a small industrial facility. A conceptional design and cost estimate for a 4,000 ton/day pelletizing facility was completed shortly thereafter.

  18. Moessbauer analysis of Lewisville, Texas, archaeological site lignite and hearth samples. Environmental geology notes

    SciTech Connect

    Shiley, R.H.; Hughes, R.E.; Cahill, R.A.; Konopka, K.L.; Hinckley, C.C.

    1985-01-01

    The Lewisville site, located in Denton County on the Trinity River north of Dallas, Texas, was thought to provide evidence of the earliest human activity in the western hemisphere. Radiocarbon dates of 37,000 to 38,000 B.P. determined for the site in the late 1950s conflicted with the presence of a Clovis point, which would fix the age of the site between 11,000 and 11,500 B.P. It was hypothesized (Johnson, 1982) that Clovis people were burning lignite from nearby outcrops: lignite in hearth residues would give older than actual ages by radiocarbon dating. X-ray diffraction and instrumental neutron-activation analysis proved inconclusive; however, Moessbauer spectroscopy indicated that hematite, a pyrite combustion product, was present in the ash. From this evidence the authors conclude that there is some support for the hypothesis.

  19. Correlation between the mineral matter and the combustion kinetics of some Turkish lignites

    SciTech Connect

    Haykiri-Acma, H.; Yavuz, R.; Ersoy-Mericboyu, A.; Kuecuekbayrak, S.

    1996-12-31

    Coal is a complex mixture of organic and inorganic materials. The inorganic portion of coal is the sum of all mineral matter and inorganically bound elements that are present in coal. Coal contains significant and variable amounts of largely incombustible mineral matter which could influence the combustion characteristics of it, which is important in the design of coal fired boilers. In this investigation, kinetic evaluation of the combustion TG curves obtained at defined conditions for 23 Turkish lignites was achieved. A computer program in BASIC which enables regression analysis to be carried out was used to obtain the kinetic parameters from experimental nonisothermal TG data. In the kinetic analysis of curves 20 different model equations of possible solid-state rate controlling mechanism were considered. It was found that experimental TG curves were correlated well with Prout-Tompkins` model equation. Calculated activation energy values of lignites were correlated with their Ca, Mg, K and Na contents.

  20. Estimation of spatial variability of lignite mine dumping ground soil properties using CPTu results

    NASA Astrophysics Data System (ADS)

    Bagińska, Irena; Kawa, Marek; Janecki, Wojciech

    2016-03-01

    The paper deals with application of CPTu test results for the probabilistic modeling of dumping grounds. The statistical measures use results from 42 CPT test points located in the lignite mine dumping ground from the region of Central Europe. Both the tip resistance qc as well as local friction fs are tested. Based on the mean values and standard deviations of measured quantities the specific zones in the dumping site profile are distinguished. For three main zones standard deviations of linearly de-trended functions, distributions of normalized de-trended values for qc and fs are examined. Also the vertical scales of fluctuation for both measured quantities are estimated. The obtained result shows that lignite mine dumping site can be successfully described with the Random Field Theory. Additional use of fs values introduces supplementary statistical information.

  1. Kinetics and mechanisms of catalytic hydroliquefaction and hydrogasification of lignite. Quarterly report, April-June 1981

    SciTech Connect

    Kranich, W.L.; Gueruez, K.; Weiss, A.H.

    1981-08-10

    The work reported in the Final Report for DOE Contract DE-AC22-77ET10618 has been continued under the current contract to expand the range of conditions previously studied. This has permitted a more detailed analysis of the variables involved in the hydroliquefaction and hydrogasification of lignite than was possible in the previous report. The principal progress has been a study of the catalytic batch hydroliquefaction of a range of low rank coals including two sub-bituminous coals, four lignites, and leonardite, as well as cellulose. These were studied both as received and after partial demineralization by washing with hydrochloric acid. The study is fully reported in the attached article which has been submitted for publication in a technical journal.

  2. Production of a nitrogeneous humic fertilizer by the oxidation-ammoniation of lignite

    SciTech Connect

    Coca, J.

    1984-12-01

    Two lignite samples were oxidised with HNO/sub 3/ (20% wt) at 75 C and treated afterwards with NH/sub 3/ in a fluidised-bed reactor in a temperature range 100-375 C. The effects of temperature, NH/sub 3/ flow rate, and reaction time on the total N/sub 2/ content of the product are reported. The product contained 7-13% wt of total N/sub 2/ which increased as the ammoniation temperature increased. Soil nitrification measurements of the N/sub 2/-enriched lignites showed that the maximum conversion to nitrates and rate of nitrification are exhibited by the product obtained at the lowest ammoniation temperature, i.e. 100 C. Maximum conversion to nitrates at that temperature was 45%, which compares well with similar products such as ammoniated peat (35%) and ammonium nitrohumates (45%).

  3. Long term results from the first US low NOx conversion of a tangential lignite fired unit

    SciTech Connect

    McCarthy, K.; Woldehanna, S.; Grusha, J.; Heinz, G.

    1999-07-01

    Lignite fueled tangential furnaces, when compared to those burning bituminous coal, have unique design and operating requirements which obligate careful assessment for successful low NOx retrofit. Recently, a Foster Wheeler Energy Corporation Tangential Low NOx (TLN) system was installed at Cooperative Power/United Power Association (CP/UPA) lignite fired Coal Creek Unit No. 2. The system has not only achieved the plant's annual NOx emission compliance requirements, but has also substantially improved furnace operating conditions. After nearly one year of operation, the systems performance has continued to support these results. A second unit is scheduled for retrofit in the Spring of 1999. These results are an important milestone for tangential low NOx technology and serve as a forerunner for future low NOx conversions involving low rank coals.

  4. Effect of various experimental parameters on the swelling and supercritical extraction properties of lignite

    SciTech Connect

    Hacimehmetoglu, S.; Sinag, A.; Tekes, A.T.; Misirlioglu, Z.; Canel, M.

    2007-07-01

    The original lignite sample, the samples swollen in dimethylsulfoxide (DMSO), dimethylformamide (DMF), pyridine, tetrahydrofuran (THF), acetone, ethylenediamine (EDA), N-methyl-2-pyrrolidone (NMP), tetrabutylammonium hydroxide (TBAH), the samples impregnated by ZnCl{sub 2} as catalyst and the samples both swollen in the solvents and impregnated by ZnCl{sub 2} were subjected to the supercritical toluene extraction and the effects of temperature, pressure, pre-swelling procedure, hydrogen donor solvent (tetralin), and catalyst on the extract yields were investigated.

  5. Environment of deposition of an Eocene lignite-bearing sedimentary sequence in northeast Rusk County, Texas

    SciTech Connect

    Cole, W.F.; Kersey, D.G.; Mathewson, C.C.

    1984-04-01

    The stratigraphy and environment of deposition of the undivided Wilcox Group (lower Eocene) and Carrizo Formation (Eocene) were studied in an 88 km/sup 2/ (34 mi/sup 2/) area in northeastern Rusk County, Texas. Seven cores and 300 boreholes logs were used in the study. The undivided Wilcox Group is the predominant geologic unit in the study area and consists of poorly lithified, interlaminated sandstones, siltstone, claystones, and lignite seams. Lignite seams range in thickness from 0.1 to 2.2 m (4 in. to 7 ft) and are conformable with the overlying and underlying strata. Subtle coarsening-upward sequences, 1.8-31.3 m (6-103 ft) thick, occur between lignite seams; however, the individual sandstone units, 0.3-1.8 m (4 in.-6 ft) thick, within these sequences fine upward. The fine-grained rocks of the Wilcox Group are overlain unconformably by well-sorted, medium to coarse-grained sandstones of the Carrizo Formation. The small-scale sedimentary structures, fine-grain size, and matrix-rich nature of the undivided Wilcox units are characteristic of fluvial overbank deposits. Peat beds probably accumulated in interchannel swamps on a lower alluvial plain, distal from overbank discharge. As streams meandered across the area, overbank discharge buried the swamps. The coarsening-upward sequences between lignite seams indicate overbank deposition from a prograding stream. Swamps were reestablished as the stream was abandoned or migrated away. Fining-upward trends in grain size and the upward decrease in scale of sedimentary structures indicate the Carrizo Formation was deposited in fluvial channels.

  6. A study of uranium and molybdenum in a South Texas lignite

    SciTech Connect

    Ilger, J.D.

    1989-01-01

    The modes of occurrence of U and Mo in a South Texas lignite (Eocene, Jackson Group, Whitsett Formation) have been investigated in detail. The distribution of U and Mo in the whole coal density separates indicates variable modes of occurrence predominantly in finely disseminated form. The relative enrichment of U in the heaviest density separate indicates the presence of mineralized uranium. U and Mo extraction efficiencies for most of the organic solvents studied were low and it appears that these elements are not occurring in significant amounts as low molecular weight organometallics. Humic acids have been separated into three M.W. tractions (110,000, 24,000, and 7,000 daltons) by gel filtration chromatography. The humic acids have also been separated into five molecular weight fractions (ranging from > 100,000 to < 1000) by ultrafiltration for the determination of the U and Mo distribution. The >100,000 M.W. fraction contained 78 percent of the U and the <1000 M.W. fraction contained 67 percent of the Mo. Sequential extraction of the lignite with HCl solutions ranging in pH from 3.0 to 0.7 produced a U extraction curve that is similar in shape to the acid dissociation curves of metal complexes. The good fit between curves for the first HCl lignite extraction and calculated pH dependent uranyl-humate extraction are consistent with an exchange between the uranyl ions and hydrogen ions at the humic acid sites. Calculations indicate that approximately 80 percent of the U is humically associated. Poorly crystalline uranium oxide minerals (possibly uraninite) were found in the >2.90 g/ml fraction of the low temperature ash by SEMEDS. These minerals appear to be precipitated onto clay particles. The uranium oxide minerals account for 10 to 20 percent of the U present in the lignite.

  7. Combustion characteristics of blends of lignite and bituminous coal with different binder materials

    SciTech Connect

    Haykiri-Acma, H.; Ersoy-Mericboyu, A.; Kuecuekbayrak, S.

    2000-05-01

    In this study, the combustion characteristics of blends of a Turkish lignite and a Siberian bituminous coal with and without binder materials were investigated. Sunflower shell, sawdust, and molasses were used as binder materials. The combustion curves of the coal and binder material samples and of the blends were obtained using differential thermal analysis (DTA). The differences observed in the DTA curves of the samples are discussed in detail.

  8. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching.

    PubMed

    Tsang, Daniel C W; Olds, William E; Weber, Paul A; Yip, Alex C K

    2013-11-01

    Utilising locally available industrial by-products for in situ metal stabilisation presents a low-cost remediation approach for contaminated soil. This study explored the potential use of inorganic (acid mine drainage (AMD) sludge and zero-valent iron) and carbonaceous materials (green waste compost, manure compost, and lignite) for minimising the environmental risks of As and Cu at a timber treatment site. After 9-month soil incubation, significant sequestration of As and Cu in soil solution was accomplished by AMD sludge, on which adsorption and co-precipitation could take place. The efficacy of AMD sludge was comparable to that of zero-valent iron. There was marginal benefit of adding carbonaceous materials. However, in a moderately aggressive environment (Toxicity Characteristic Leaching Procedure), AMD sludge only suppressed the leachability of As but not Cu. Therefore, the provision of compost and lignite augmented the simultaneous reduction of Cu leachability, probably via surface complexation with oxygen-containing functional groups. Under continuous acid leaching in column experiments, combined application of AMD sludge with compost proved more effective than AMD sludge with lignite. This was possibly attributed to the larger amount of dissolved organic matter with aromatic moieties from lignite, which may enhance Cu and As mobility. Nevertheless, care should be taken to mitigate ecological impact associated with short-term substantial Ca release and continuous release of Al at a moderate level under acid leaching. This study also articulated the engineering implications and provided recommendations for field deployment, material processing, and assessment framework to ensure an environmentally sound application of reactive materials. PMID:24144464

  9. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India

    NASA Astrophysics Data System (ADS)

    Rao, M. R.; Sahni, Ashok; Rana, R. S.; Verma, Poonam

    2013-04-01

    Early Eocene sedimentary successions of south Asia, are marked by the development of extensive fossil-bearing, lignite-rich sediments prior to the collision of India with Asia and provide data on contemporary equatorial faunal and vegetational assemblages. One such productive locality in western India is the Vastan Lignite Mine representing approximately a 54-52 Ma sequence dated by the presence of benthic zone marker species, Nummulites burdigalensis burdigalensis. The present study on Vastan Lignite Mine succession is based on the spore-pollen and dinoflagellate cyst assemblages and documents contemporary vegetational changes. 86 genera and 105 species belonging to algal remains (including dinoflagellate cysts), fungal remains, pteridophytic spores and angiospermous pollen grains have been recorded. On the basis of first appearance, acme and decline of palynotaxa, three cenozones have been recognized and broadly reflect changing palaeodepositional environments. These are in ascending stratigraphic order (i) Proxapertites Spp. Cenozone, (ii) Operculodinium centrocarpum Cenozone and (iii) Spinizonocolpites Spp. Cenozone. The basal sequence is lagoonal, palm-dominated and overlain by more open marine conditions with dinoflagellate cysts and at the top, mangrove elements are dominant. The succession has also provided a unique record of fish, lizards, snakes, and mammals.

  10. Co-firing of olive residue with lignite in bubbling FBC

    SciTech Connect

    Gogebakan, Z.; Gogebakan, Y.; Selcuk, N.

    2008-07-01

    The effect of biomass share on gaseous pollutant emissions from fluidized bed co-firing of various biomass fuels with high calorific value coals have extensively been investigated to date. However, effect of co-firing of olive residues with low calorific value lignites having high ash and sulfur contents has not been studied in bubbling fluidized bed combustors. In this study, experimental results of various runs pertaining to gaseous emissions (O{sub 2}, CO{sub 2}, CO, SO{sub 2}, NO, N{sub 2}O) from METU 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) test rig co-firing olive residue with indigenous lignite at different biomass shares are presented. The results reveal that co-firing increases combustion efficiency irrespective of the biomass share and that increase in biomass share reduces N{sub 2}O and SO{sub 2} emissions considerably while increasing CO emission. O{sub 2}, CO{sub 2} and NO emissions are not found sensitive to increase in biomass share. Olive residues are co-fired with high ash and sulfur containing lignite without any operational problems.

  11. A geochemical study of macerals from a Miocene lignite and an Eocene bituminous coal, Indonesia

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Mastalerz, Maria

    1996-01-01

    Optical and chemical studies of maceral concentrates from a Miocene lignite and an Eocene high-volatile bituminous C coal from southeastern Kalimantan, Indonesia were undertaken using pyro-Lysis, optical, electron microprobe and FTIR techniques Pyrolysis products of vitrinite from bituminous coal were dominated by straight-chain aliphatics and phenols. The huminite of the Miocene lignite produced mostly phenolic compounds upon pyrolysis. Differences in the pyrolysis products between the huminite and vitrinite samples reflect both maturation related and paleobotanical differences. An undefined aliphatic source and/or bacterial biomass were the likely contributors of n-alkyl moieties to the vitrinite. The resinite fraction in the lignite yielded dammar-derived pyrolysis products, as well as aliphatics and phenols as the products of admixed huminite and other liptinites. The optically defined resinite-rich fraction of the bituminous coal from Kalimantan produced abundant n-aliphatic moieties upon pyrolysis, but only two major resin markers (cadalene and 1,6-dimethylnaphthalene). This phenomenon is likely due to the fact that Eocene resins were not dammar-related. Data from the electron microprobe and Fourier transform infrared spectrometry strongly support the results obtained by Py GC MS and microscopy.

  12. Ecohydrological perspective of phytogenic organic and inorganic components in Greek lignites: a quantitative reinterpretation

    NASA Astrophysics Data System (ADS)

    Mulder, Christian; Sakorafa, Vasiliki; Burragato, Francesco; Visscher, Henk

    2000-06-01

    A consensus about the development of freshwater wetlands in relation to time and space is urgently required. Our study aims to address this issue by providing additional data for a fine-scaled comparison of local depositional settings of Greek mires during the Pliocene and Pleistocene. Lignite profiles exhibit phytogenic organic components (macerals) that have been used to investigate the past peat-forming vegetation structure and their succession series. The organic petrology of lignite samples from the opencast mines of Komanos (Ptolemais) and Choremi (Megalopolis) was achieved to assess the water supply, wetland type, nutrient status and vegetation physiognomy. A holistic approach (a study of ecosystems as complete entities) was carried out for a paleoecological reconstruction of the mires. Huminite, liptinite and inertinite were traced by means of their chemical and morphological differences together with the morphogenic and taphonomic affinities. The problem of combining independent information from different approaches in a multivariate calibration setup has been considered. Linear regression, non-metric multidimensional scaling and one-way analysis of variance tested the occurrence of palynological and petrological proxies. Although the lignite formation and deposition are less related to humid periods than expected, the resulting differences occurring in the reconstructed development stages appear to be related to astronomically forced climate fluctuations.

  13. Investigation of lignite and firewood co-combustion in a furnace for tobacco curing application

    SciTech Connect

    Nakorn Tippayawong; Chutchawan Tantakitti; Satis Thavornun

    2006-07-01

    Co-combustion of lignite and firewood was investigated for an application in tobacco curing industry in Northern Thailand. Extensive experiments have been carried out in a newly developed furnace suitable for small curing unit, in place of locally made furnace. The aim of this investigation is to evaluate the performance of the combustion chamber in the required thermal output range for tobacco curing and to examine the influence of fuel feed rate, fuel mixture ratio and air staging on the combustion and emission characteristics of the furnace during steady state operation. Their effects are characterized in terms of the observed variations of temperature distributions, emissions of CO, SO{sub 2}, CO{sub 2}, O{sub 2} and combustion efficiency. Co-firing of firewood and lignite has been found to exhibit acceptable temperature distribution, high combustion efficiency and low emissions over a wide thermal output span. Stable operation at low (50 kW) and high (150 kW) thermal output was achieved with average CO and SO{sub 2} content in flue gas typically below 1400 and 100 ppm, respectively. Under the conditions considered, it was showed that the fuel feed rate had greater influence on combustion and emissions than firewood and lignite mixture ratio and air staging.

  14. Radiation impact from lignite burning due to 226Ra in Greek coal-fired power plants.

    PubMed

    Papastefanou, C

    1996-02-01

    Lignite contains naturally occurring radionuclides arising from the uranium and thorium series as well as from 40K. Lignite burning is, therefore, one of the sources of technologically enhanced exposure to humans from natural radionuclides. Emissions from thermal power stations in gaseous and particulate form contain radioisotopes, such as 226Ra, that are discharged into the environment causing radiation exposures to the population. About 11,672 MBq y-1 of 226Ra are discharged into the environment from four coal-fired power plants totalling 3.62 GW electrical energy in the Ptolemais Valley, Northern Greece, in which the combustion of 1.1 x 10(10) kg of lignite is required to produce an electrical energy of 1 GW y. The collective committed equivalent dose to lung tissue per unit power generated resulting from atmospheric releases of 226Ra was estimated to be 1.1 x 10(-2) person Sv (GW y)-1; i.e. more than 15 times higher than the average value for a modern type coal-fired power plant according to the UNSCEAR 1988 data. PMID:8567285

  15. Modeling Water Flow and Bromide Transport in a Two-Scale-Structured Lignitic Mine Soil

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Gerke, H. H.; Vogel, T.; Maurer, T.; Buczko, U.

    2008-12-01

    Two-dimensional single- and dual-permeability simulations are used to analyze water and solute fluxes in heterogeneous lignitic mine soil at a forest-reclaimed mine spoil heap. The soil heterogeneity on this experimental site "Barenbrucker Hohe" resulted from inclined dumping structures and sediment mixtures that consist of sand with lignitic dust and embedded lignitic fragments. Observations on undisturbed field suction- cell lysimeters including tracer experiments revealed funneling-type preferential flow with lateral water and bromide movement along inclined sediment structures. The spatial distribution of soil structures and fragment distributions was acquired by a digital camera and identified by a supervised classification of the digital profile image. First, a classical single-domain modeling approach was proposed with spatially variable scaling factors inferred from image analyses. In the next step, a two-continuum scenario was constructed to examine additional effects of nonequilibrium on the flow regime. The scaling factors used for the preferential flow domain are here obtained from the gradient of the grayscale images. So far, the single domain scenarios failed to predict the bromide leaching patterns although water effluent could be described. Dual-permeability model allows the incorporation of structural effects and can be used as a tool to further testing other approaches that account for structure effects. The numerical study suggests that additional experiments are required to obtain better understanding of the highly complex transport processes on this experimental site.

  16. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.

    PubMed

    Toptas, Asli; Yildirim, Yeliz; Duman, Gozde; Yanik, Jale

    2015-02-01

    In this study, the combustion behavior of different kinds of torrefied biomass (lignocellulosic and animal wastes) and their blends with lignite was investigated via non-isothermal thermogravimetric method under air atmosphere. For comparison, combustion characteristics of raw biomasses were also determined. Torrefaction process improved the reactivity of char combustion step of biomasses. Characteristic combustion parameters for blends showed non-additivity behavior. It was found that the mixture of torrefied biomasses and lignite at a ratio of 1:1 had a lower ignition and burnout temperature than the coal-only sample. Although no interactions were observed between the lignite and torrefied biomass at initial step of combustion, a certain degree of interaction between the components occurred at char combustion step. Kinetic parameters of combustion were calculated by using the Coats Redfern model. Overall, this study showed that poultry litters can be used as a substitute fuel in coal/biomass co-firing systems by blending with lignocellulosic biomass. PMID:25496955

  17. Pyrolysis kinetics of blends of Yeni Celtek lignite and sugar beet pulp

    SciTech Connect

    Devrim, Y.G.

    2008-07-01

    Pyrolysis kinetics of the Yeni Celtek lignite/sugar beet pulp blends prepared at different ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) were investigated by thermogravimetric analysis in the present study. All the experiments were carried out in nitrogen atmosphere under non-isothermal conditions with a heating rate range of 30 K/min in the pyrolysis temperature interval of 298-1,173 K. The Arrhenius model is applied to determine the kinetic parameters from TG/DTG curves. Apparent activation energies of the lignite and sugar beet pulp were calculated as 51.55 kJ/mol and 97.27 kJ/mol, respectively. Activation energies of the blends were also calculated and were found to vary between 54.87 and 74.83 kJ/mol. Effects of blending ratio of lignite to sugar beet pulp on kinetic parameters were investigated and the results were discussed.

  18. Limitations and plausibility of the Pliocene lignite hypothesis in explaining the etiology of Balkan endemic nephropathy

    PubMed Central

    Maharaj, S V M

    2014-01-01

    Background: Balkan endemic nephropathy (BEN) is a chronic, tubulointerstitial renal disease often accompanied by urothelial cancer that has a lethality of nearly 100%. Introduction: One of the many factors that have been proposed to play an etiological role in BEN is exposure to organic compounds from Pliocene lignite coal deposits via the drinking water in endemic areas. Objectives: The objective of this study was to systematically evaluate the role of the tenets of the Pliocene lignite hypothesis in the etiology of BEN in order to provide an improved understanding of the hypothesis for colleagues and patients alike. Methods: A comprehensive compilation of the possible limitations of the hypothesis, with each limitation addressed in turn is presented. Results: The Pliocene lignite hypothesis can best account for, is consistent with, or has the potential to explain the evidence associated with the myriad of factors related to BEN. Conclusions: Residents of endemic areas are exposed to complex mixtures containing hundreds of organic compounds at varying doses and their potentially more toxic (including nephrotoxic) and/or carcinogenic metabolites; however, a multifactorial etiology of BEN appears most likely. PMID:24075451

  19. Advanced power assessment for Czech lignite. Task 3.6, Volume 1

    SciTech Connect

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is a challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.

  20. Edaphological characteristics of unweathered and weathered fly ashes from Gondwana and lignite coal.

    PubMed

    Khandkar, U R; Gangwar, M S; Srivastava, P C; Singh, M

    1993-01-01

    Naturally weathered and unweathered samples of fly ashes produced from Gondwana and lignite coals were characterized for their edaphological properties. The particle size distribution in these fly ashes varied widely, and the percentage of [Formula: see text] size particles governed their water holding capacity. All fly ashes were noncoherent in the dry state and had lower particle density than quartz and mulite. The fly ashes were low in available N, but were sufficient in available P, K, Ca, Mg, S, Cu, Fe, Mn, Zn and B. Among the fly ashes, unweathered lignite fly ash was the richest source of K, Ca, Mg, S and Fe, while weathered lignite fly ash had the highest amounts of Mn, Zn and B. The pH of the fly ashes was closely related to the ratio of exchangeable Ca to exchangeable Al. The fly ashes were high in soluble salt, but were poor in cation exchange capacity. As an amendment to correct soil pH, the fly ashes had a poor buffering capacity. Weathering decreased the total Fe, available S and exchangeable Na percentages, but increased the organic C content of the fly ashes. Invariably, an excess of soluble salts and exchangeable Na could limit plant growth on fly ash dumps. Toxic levels of B and Al existed in only some fly ashes. PMID:15091893

  1. Characteristics of rice husk gasification in an entrained flow reactor.

    PubMed

    Zhao, Yijun; Sun, Shaozeng; Tian, Hongming; Qian, Juan; Su, Fengming; Ling, Feng

    2009-12-01

    Experiments were performed in an entrained flow reactor to better understand the characteristics of biomass gasification. Rice husk was used in this study. Effects of the gasification temperature (700, 800, 900 and 1000 degrees C) and the equivalence ratio in the range of 0.22-0.34 on the biomass gasification and the axial gas distribution in the reactor were studied. The results showed that reactions of CnHm were less important in the gasification process except cracking reactions which occurred at higher temperature. In the oxidization zone, reactions between char and oxygen had a more prevailing role. The optimal gasification temperature of the rice husk could be above 900 degrees C, and the optimal value of ER was 0.25. The gasification process was finished in 1.42 s when the gasification temperature was above 800 degrees C. A first order kinetic model was developed for describing rice husk air gasification characteristics and the relevant kinetic parameters were determined. PMID:19589673

  2. BIOMASS REACTIVITY IN GASIFICATION BY THE HYNOL PROCESS

    EPA Science Inventory

    A thermobalance reactor was used to evaluate the reactivity of poplar wood in gasification under the operating conditions specific for the Hynol process where biomass is gasified at 30 atm and 800E C with a hydrogen-rich gas recycled from methane synthesis. The gasification invol...

  3. Coal gasification for power generation. 2nd ed.

    SciTech Connect

    2006-10-15

    The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

  4. THEORETICAL INVESTIGATION OF SELECTED TRACE ELEMENTS IN COAL GASIFICATION PLANTS

    EPA Science Inventory

    The report gives results of a theoretical investigation of the disposition of five volatile trace elements (arsenic, boron, lead, selenium, and mercury) in SNG-producing coal gasification plants. Three coal gasification processes (dry-bottom Lurgi, Koppers-Totzek, and HYGAS) were...

  5. Methods for sequestering carbon dioxide into alcohols via gasification fermentation

    DOEpatents

    Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean

    2013-11-26

    The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

  6. U.S. EPA'S EVALUATION OF A TEXACO GASIFICATION TECHNOLOGY

    EPA Science Inventory

    Gasification technologies are designed to produce, from carbonaceous organic materials (e.g., coal, oil), a useable mixture of carbon monoxide and hydrogen called synthesis gas, or syngas. yngas could be used to produce power or chemicals. he Texaco Gasification Process (TGP) emp...

  7. FUGITIVE EMISSION TESTING AT THE KOSOVO COAL GASIFICATION PLANT

    EPA Science Inventory

    The report summarizes results of a test program to characterize fugitive emissions from the Kosovo coal gasification plant in Yugoslavia, a test program implemented by the EPA in response to a need for representative data on the potential environmental impacts of Lurgi coal gasif...

  8. Catalytic wet gasification of municipal and animal wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there is worldwide interest in deriving energy from bio-based materials via gasification. Our objective was to assess the feasibility of wet gasification for treatment/energy conversion of both animal and municipal wastes. Wet wastes such as swine manure and raw sewage sludge could be pro...

  9. Coal gasification. Quarterly report, July-September 1979

    SciTech Connect

    1980-07-01

    The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

  10. Environmental footprints and costs of coal-based integrated gasification combined cycle and pulverized coal technologies

    SciTech Connect

    2006-07-15

    The report presents the results of a study to establish the environmental footprint and costs of the coal-based integrated gasification combined cycle (IGCC) technology relative to the conventional pulverized coal (PC) technologies. The technology options evaluated are restricted to those that are projected by the authors to be commercially applied by 2010. The IGCC plant configurations include coal slurry-based and dry coal-based, oxygen-blown gasifiers. The PC plant configurations include subcritical, supercritical, and ultra-supercritical boiler designs. All study evaluations are based on the use of three different coals: bituminous, sub-bituminous, and lignite. The same electric generating capacity of 500 MW is used for each plant configuration. State-of-the-art environmental controls are also included as part of the design of each plant. The environmental comparisons of IGCC and PC plants are based on thermal performance, emissions of criteria and non-criteria air pollutants, solid waste generation rates, and water consumption and wastewater discharge rates associated with each plant. The IGCC plants in these comparisons include NOX and SO{sub 2} controls considered viable for 2010 deployment. In addition, the potential for use of other advanced controls, specifically the selective catalytic reduction system for NOX reduction and the ultra-efficient Selexol and Rectisol systems for SO{sub 2} reduction, is also investigated. The cost estimates presented in the report include capital and operating costs for each IGCC and PC plant configuration. Cost impacts of using the advanced NOx and SO{sub 2} controls are included. The report provides an assessment of the CO{sub 2} capture and sequestration potential for the IGCC and PC plants. A review of the technical and economic aspects of CO{sub 2} capture technologies is included. 20 refs., 75 figs., 3 apps.

  11. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    SciTech Connect

    Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and

  12. Advanced coal-gasification technical analyses. Appendix 2: coal fines disposal. Final report, December 1982-September 1985

    SciTech Connect

    Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

    1986-01-01

    This report is a compilation of several studies conducted by KRSI under the Advanced Coal Gasification Technical Analyses contract with GRI. It addresses the issue of disposal and/or utilization of the coal fines that cannot be used as feedstock for fixed-bed (i.e. Lurgi) gasifiers. Specific items addressed are: (1) Technical, legal and economic aspects of fines burial, (2) Estimation of the premium for fines-free coal delivered to an SNG plant and resulting reduction in SNG production costs, (3) Comparison of the relative advantages and limitations of Winkler and GKT gasifiers to consuming fines, (4) Review of coal-size consist curves in the GRI Guidelines to assess the fines content of ROM coals, (5) a first-pass design and cost estimate using GKT gasifiers in tandem with Lurgi gasifiers in an North Dakota lignite-to-SNG plant to consume full range of coal-size consist, (6) Evaluation of the General Electric technology for extrusion of coal fines and testing of the extrudates in a fixed-bed gasifier, and (7) Investigation of equipment and variables involved in briquetting of coal fines, such that fines could be fed to the gasifiers along with the lump coal.

  13. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  14. Advanced Gasification By-Product Utilization

    SciTech Connect

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Harold Schobert

    2006-02-01

    With the recent passing of new legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2004 to August 31, 2005. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  15. Vaporization and gasification of hydrocarbon feedstocks

    SciTech Connect

    Davies, H.S.; Garstang, J.H.; Timmins, C.

    1983-08-23

    Heavy hydrocarbon feedstocks, e.g. gas oils, are vaporized and subsequently gasified at high temperatures without pyrolytic degradation by first admixing the hydrocarbon with a hot gaseous reactant, e.g. product gas or steam, to bring the temperature of the mixture above that of the dew point of the hydrocarbon and thereafter raising the temperature of the mixture to above that at which pyrolysis of the hydrocarbon begins to be significant by admixture with further quantities of the reactant which are superheated thereby to bring the temperature of the resultant mixture to that required for effecting a catalytic gasification reaction.

  16. Organic facies characteristics of the Miocene Soma Formation (Lower Lignite Succession-KM2), Soma Coal Basin, western Turkey

    NASA Astrophysics Data System (ADS)

    Hokerek, Selin; Ozcelik, Orhan

    2015-04-01

    The Soma coal basin is one of the largest economic lignite-bearing alluvial basins of western Turkey. The Miocene succession (Soma Formation) of the coalfield contains two lignite seams successions; Lower Lignite, Middle Lignite .The Lower Lignite (KM2) is a seam 15 m thick and found in contact between siliciclastic and carbonate deposits (marlstones). Detailed data from thick Miocene sediments (Soma Formation) made it possible to construct an organic facies framework using different zonations. Organic matter is composed predominantly of woody material. Kerogen in the deposits is type III, as indicated by organic petrographic observations and Rock-Eval data. Total organic carbon (TOC) values are generally between 28.45 and 72.66 %, but reach 73.38 % in the formation. Tmax values vary between 403 and 429 °C, confirming maturation trends indicated by vitrinite reflectance data (between 0.35-0.48 Ro %). Organic facies type C and CD were identified in the investigated units. Organic facies C and CD are related to clayey coal and coal lithofacies. These facies are characterized by average values of HI around 126 mg HC/g TOC (equivalent to type III kerogen), TOC around 56.61 %, and an average of S2 of 72.4 mg HC/g of rock. The organic matter is partly oxidized/oxidized and reworked. Keywords: Western Turkey; Soma Formation; organic facies; organic geochemistry

  17. Hydrogeology of and potential mining impacts on strippable lignite areas in the Denver Aquifer, east-central Colorado

    USGS Publications Warehouse

    Driver, N.E.; Williams, R.S.

    1986-01-01

    This study describes the hydrogeology of and potential impacts of mining on strippable lignite areas in the Denver aquifer in the east-central Colorado plains. Strippable lignitic coal seams , 20 to 60 ft thick, are present in the Denver Formation. The Denver aquifer, the saturated part of the Denver Formation, is likely to be affected locally by surface mining of lignite. Transmissivity of the aquifer in the study area ranges from 145 to 1,000 mg/L to the northeast in the study area as, hydraulic head decreases from 6,600 to 5,400 ft. Distance-drawdown curves show the extent of water level drawdown near a dewatered surface mine. After reclamation of the lignite mine pit, flow through the lignite spoil pile may increase the dissolved solids concentrations in the Denver aquifer. This increase could occur, because, as water from rain and overland flow percolates through the newly-exposed rock surfaces in the spoil material, minerals from the overburden can be dissolved in the water, which then joins with water from the aquifer. This increase could locally change streams, springs, and alluvial and bedrock aquifers. (USGS)

  18. Combustion, pyrolysis, gasification, and liquefaction of biomas

    NASA Astrophysics Data System (ADS)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  19. ENCOAL mild coal gasification project. Annual report

    SciTech Connect

    Not Available

    1993-10-01

    This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

  20. Economics of synfuel and gasification systems

    SciTech Connect

    Hahn, O.J.

    1981-01-01

    The performance characteristics of several gasification systems are discussed. Cost estimates of various synthetic fuels are presented. The lowest cost synthetic fuel is significantly above the current natural gas price of about $2.75/MMBtu and about equivalent to present oil prices at the plant gate. Gas prices for the Welman-Galusha gasifier would have to be increased significantly if the plant ran on two shifts only or if the gasifiers were not fully loaded. For industrial application the lowest cost fuel is probably the direct use of low sulfur coal with some post combustion pollution control. This is followed by the atmospheric fluidized bed combustor. Coal/oil mixtures and solvent refined coal liquids (SRC I or SRC II) are the next options. High Btu gas from a large coal gasification plant will be more competitive for industrial use. Large industrial uses in the range of 1000 tons of coal a day may find reduced costs with an entrained coal conversion unit such as a Texaco or the Saarberg-Otto Gasifiers. However, before 1985 when the gas price decontrol has been felt, it is unlikely that low Btu gas, medium Btu gas and methanol will be an economical choice for industrial users.

  1. In Situ Causticizing for Black Liquor Gasification

    SciTech Connect

    Scott Alan Sinquefield

    2005-10-01

    Black liquor gasification offers a number of attractive incentives to replace Tomlinson boilers but it also leads to an increase in the causticizing load. Reasons for this have been described in previous reports (FY04 ERC, et.al.). The chemistries have also been covered but will be reviewed here briefly. Experimental results of the causticizing reactions with black liquor are presented here. Results of the modeling work were presented in detail in the Phase 1 report. They are included in Table 2 for comparison but will not be discussed in detail. The causticizing agents were added to black liquor in the ratios shown in Table 1, mixed, and then spray-dried. The mixture ratios (doping levels) reflect amount calculated from the stoichiometry above to achieve specified conversions shown in the table. The solids were sieved to 63-90 microns for use in the entrained flow reactors. The firing conditions are shown in Table 2. Pictures and descriptions of the reactors can be found in the Phase 1 annual report. Following gasification, the solids (char) was collected and analyzed by coulometric titration (for carbonate and total carbon), and by inductively coupled plasma emission spectroscopy (ICP) for a wide array of metals.

  2. Advanced gasification-based biomass power generation

    SciTech Connect

    Williams, R.H.; Larson, E.D.

    1993-12-31

    A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

  3. Combustion, pyrolysis, gasification, and liquefaction of biomass

    SciTech Connect

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  4. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    NASA Astrophysics Data System (ADS)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  5. Supercritical gasification for the treatment of o-cresol wastewater.

    PubMed

    Wei, Chao-hai; Hu, Cheng-sheng; Wu, Chao-fei; Yan, Bo

    2006-01-01

    The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater. PMID:17078539

  6. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. PMID:26896004

  7. Launch Vehicle with Combustible Polyethylene Case Gasification Chamber Design Basis

    NASA Astrophysics Data System (ADS)

    Yemets, V.

    A single-stage launch vehicle equipped with a combustible tank shell of polyethylene and a moving propulsion plant is proposed. The propulsion plant is composed of a chamber for the gasification of the shell, a compressor of pyrolysed polyethylene and a magnetic powder obturator. It is shown that the “dental” structure of the gasification chamber is necessary to achieve the necessary contact area with the polyethylene shell. This conclusion is drawn from consideration of the thermo- physical properties of polyethylene, calculating quasisteady temperature field in the gasification chamber, estimating gasification rate of polyethylene, launch vehicle shortening rate and area of gasification. Experimental determination of the gasification rate is described. The gasification chamber specific mass as well as the propulsion plant weight-to-thrust ratio are estimated under some assumptions concerning the obturator and compressor. Combustible launch vehicles are compared with conventional launch vehicles taking into consideration their payload mass ratios. Combustible launchers are preferable as small launchers for micro and nano satellites. Reusable versions of such launchers seem suitable if polyethylene tank shells filled with metal or metal hydride fine dusts are used.

  8. Wabash River coal gasification repowering project: Public design report

    SciTech Connect

    1995-07-01

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  9. FATE OF TRACE AND MINOR CONSTITUENTS OF COAL DURING GASIFICATION

    EPA Science Inventory

    The report gives results of a study of the fate of selected minor and trace elements of Montana lignite and Illinois No. 6 bituminous coals during development of the HYGAS process. Solid residue samples from various development stages were analyzed. The data indicate that certain...

  10. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the

  11. High temperature steam gasification of solid wastes: Characteristics and kinetics

    NASA Astrophysics Data System (ADS)

    Gomaa, Islam Ahmed

    Greater use of renewable energy sources is of pinnacle importance especially with the limited reserves of fossil fuels. It is expected that future energy use will have increased utilization of different energy sources, including biomass, municipal solid wastes, industrial wastes, agricultural wastes and other low grade fuels. Gasification is a good practical solution to solve the growing problem of landfills, with simultaneous energy extraction and nonleachable minimum residue. Gasification also provides good solution to the problem of plastics and rubber in to useful fuel. The characteristics and kinetics of syngas evolution from the gasification of different samples is examined here. The characteristics of syngas based on its quality, distribution of chemical species, carbon conversion efficiency, thermal efficiency and hydrogen concentration has been examined. Modeling the kinetics of syngas evolution from the process is also examined. Models are compared with the experimental results. Experimental results on the gasification and pyrolysis of several solid wastes, such as, biomass, plastics and mixture of char based and plastic fuels have been provided. Differences and similarities in the behavior of char based fuel and a plastic sample has been discussed. Global reaction mechanisms of char based fuel as well polystyrene gasification are presented based on the characteristic of syngas evolution. The mixture of polyethylene and woodchips gasification provided superior results in terms of syngas yield, hydrogen yield, total hydrocarbons yield, energy yield and apparent thermal efficiency from polyethylene-woodchips blends as compared to expected weighed average yields from gasification of the individual components. A possible interaction mechanism has been established to explain the synergetic effect of co-gasification of woodchips and polyethylene. Kinetics of char gasification is presented with special consideration of sample temperature, catalytic effect of ash

  12. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  13. Behavior of trace metals in simulated gasification conditions

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Zygarlicke, C.J.

    1995-03-01

    The fate of trace metals is being investigated in two emerging coal gasification electric power-generating systems: integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC). Some of the trace metals in coal are considered air toxics when released into the atmosphere and can also cause the degradation of fuel cell efficiency as a result of contamination. The fate of trace metals during coal conversion in GCC and IGFC systems is closely tied to how the trace metals are associated in the coal and gasification conditions. Bench- and pilot-scale gasification experiments were performed using Illinois No. 6 coal to determine the partitioning of mercury, selenium, arsenic, nickel, cadmium, lead, and chromium into gas, liquid, and solid phases as a function of gasification conditions and coal composition. Entrained ash was collected from the small-scale reactor using a multicyclone and impinger sampling train. Coal analysis revealed arsenic, mercury, nickel, lead, and selenium to be primarily associated with pyrite. Chromium was associated primarily with clay minerals, and cadmium appeared to have mostly an organic association. The partitioning during gasification indicated that chromium, lead, and nickel were enriched in the small ash particulate fraction (less than 1.5 {mu}m), while arsenic, selenium, and mercury were depleted in the particulate and more enriched in the vapor-phase fraction (collected in the impingers). Oxygen contents were varied to represent both combustion and gasification systems. Most of the work was conducted at lower oxygen-to-carbon ratios. Lower oxygen-to-carbon ratios resulted in more reducing environments in the gasification system, which appeared to drive more mercury to the vapor phase. Under constant oxygen-to-carbon ratios, mercury, selenium, and cadmium showed increasing volatility with increasing reaction zone temperature.

  14. The role of high-Btu coal gasification technology

    NASA Astrophysics Data System (ADS)

    German, M. I.

    An analysis is given of the role and economic potential of Lurgi-technology gasification of coal to the year 2000, in relation to other gas-supply options, the further development of gasifier designs, and probable environmental impact. It is predicted that coal gasification may reach 10% of total gas supplies by the year 2000, with Eastern U.S. coal use reaching commercially significant use in the 1990's. It is concluded that coal gasification is the cleanest way of using coal, with minimal physical, chemical, biological and socioeconomic impacts.

  15. Start-up method for coal gasification plant

    SciTech Connect

    Farnia, K.; Petit, P.J.

    1983-04-05

    A method is disclosed for initiating operation of a coal gasification plant which includes a gasification reactor and gas cleansing apparatus fabricated in part from materials susceptible to chloride induced stress corrosion cracking the presence of oxygen. The reactor is preheated by combusting a stoichiometric mixture of air and fuel to produce an exhaust gas which is then diluted with steam to produce product gas which contains essentially no free oxygen. The product gas heats the reactor to a temperature profile necessary to maintain autothermic operation of the gasification process while maintaining air oxygen-free environment within the plant apparatus while chlorine is liberated from coal being gasified.

  16. Method for in situ gasification of a subterranean coal bed

    DOEpatents

    Shuck, Lowell Z.

    1977-05-31

    The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.

  17. Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district

    NASA Astrophysics Data System (ADS)

    Hüttl, Reinhard F.; Weber, Edwin

    2001-08-01

    The restoration of surface mining landscapes requires the (re)creation of ecosystems. In Lusatia (eastern Germany), large-scale open-cast lignite mining operations generated spoil dumps widely consisting of acidified, phytotoxic substrates. Amelioration and rehabilitation measures have been developed and applied to these substrates since the 1950s. However, it is still not clear whether these approaches are sustainable. This paper reports on collaborative research work into the ecological potential of forest ecosystem development on typical minesites in the Lusatian lignite district. At first sight, pine stands on minesites along a chronosequence comprising about 35 years did not show differences when compared with stands on non-mined sites of the general region. Furthermore, with some modification, conceptual models for flora and fauna succession in forest stands on non-mined sites seem to be applicable, at least for the early stages of forest ecosystem development. For example, soil organism abundance and activity at minesites had already reached levels typical of non-mined sites after about 20-30 years. In contrast, mine soils are very different from non-mined soils of the test region. Chemically, mine soil development is dominated by processes originating from pyrite oxidation. Geogenic, i.e. lignitic, soil organic carbon was shown to substitute for some functions of pedogenic soil organic matter. Rooting was hampered but not completely impeded in strongly acidified soil compartments. Roots and mycorrhizae are apparently able to make use of the characteristic heterogeneity of young mine soils. Considering these recent results and the knowledge accumulated during more than 30 years of research on minesite rehabilitation internationally, it can be stated that minesite restoration might be used as an ideal case study for forest ecosystem development starting at "point zero" on " terra nova".

  18. Rehabilitation of a lignite mine-disturbed area in the Indian Desert

    USGS Publications Warehouse

    Sharma, K.D.; Kumar, P.; Gough, L.P.; SanFilipo, J.R.

    2004-01-01

    Extensive lignite mining in the Indian (Thar) Desert commenced within the past decade. Accompanying extraction of this valuable resource there have been visible, important environmental impacts. The resultant land degradation has prompted concern from both public and regulatory bodies. This research assesses the success of rehabilitation plans implemented to revegetate a lignite mine-disturbed area, near the village of Giral in western Rajasthan State. Rehabilitation success was achieved within the environmental constraints of this northwest Indian hot-desert ecosystem using a combination of: (1) backfilling (abandoned pits) with minespoil and of covering the backfilled-surfaces with fresh topsoil to a thickness of about 0??30 m; (2) use of micro-catchment rainwater harvesting (MCWH) technique; (3) soil profile modification approaches; (4) plant establishment methodologies; and (5) the selection of appropriate germplasm material (trees, shrubs and grasses). Preliminary results indicate that the resulting vegetative cover will be capable of self-perpetuation under natural conditions while at the same time meeting the land-use requirements of the local people. The minespoil is alkaline in nature and has high electrical conductance. The average content of organic carbon, N, P and K is lower than in the regional topsoil. However, the concentration of Ca, Mg, Na and total S in the minespoil is much higher than in the topsoil. Further, the spoil material has no biological activity. Enhanced plant growth was achieved in MCWH plots, compared to control plots, where minespoil moisture storage was improved by 18-43 per cent. The rehabilitation protocol used at the site appears to have been successful because, in addition to the planted species, desirable native invasive species have become established. This study developed methods for the rehabilitation of lignite mine-disturbed areas and has also resulted in an understanding of rehabilitation processes in arid regions with

  19. Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

  20. Approaches to Post-Mining Land Reclamation in Polish Open-Cast Lignite Mining

    NASA Astrophysics Data System (ADS)

    Kasztelewicz, Zbigniew

    2014-06-01

    The paper presents the situation regarding the reclamation of post-mining land in the case of particular lignite mines in Poland until 2012 against the background of the whole opencast mining. It discusses the process of land purchase for mining operations and its sales after reclamation. It presents the achievements of mines in the reclamation and regeneration of post-mining land as a result of which-after development processes carried out according to European standards-it now serves the inhabitants as a recreational area that increases the attractiveness of the regions.

  1. Diagnostic measurements on the great machines conditions of lignite surface mines

    SciTech Connect

    Helebrant, F.; Jurman, J.; Fries, J.

    2005-07-01

    An analysis of the diagnosis of loading and service dependability of a rail-mounted excavator used in surface lignite mining is described. Wheel power vibrations in electric motor bearings and electric motor input bearings to the gearbox were measured in situ, in horizontal, vertical, and axial directions. The data were analyzed using a mathematical relationship. The results are presented in a loading diagram that shows the deterioration and the acceptable lower bound of machine conditions over time. Work is continuing. 5 refs., 1 fig.

  2. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  3. Waste-gasification efficiency of a two-stage fluidized-bed gasification system.

    PubMed

    Liu, Zhen-Shu; Lin, Chiou-Liang; Chang, Tsung-Jen; Weng, Wang-Chang

    2016-02-01

    This study employed a two-stage fluidized-bed gasifier as a gasification reactor and two additives (CaO and activated carbon) as the Stage-II bed material to investigate the effects of the operating temperature (700°C, 800°C, and 900°C) on the syngas composition, total gas yield, and gas-heating value during simulated waste gasification. The results showed that when the operating temperature increased from 700 to 900°C, the molar percentage of H2 in the syngas produced by the two-stage gasification process increased from 19.4 to 29.7mol% and that the total gas yield and gas-heating value also increased. When CaO was used as the additive, the molar percentage of CO2 in the syngas decreased, and the molar percentage of H2 increased. When activated carbon was used, the molar percentage of CH4 in the syngas increased, and the total gas yield and gas-heating value increased. Overall, CaO had better effects on the production of H2, whereas activated carbon clearly enhanced the total gas yield and gas-heating value. PMID:26698684

  4. Carbonate and lignite cycles in the Ptolemais Basin: Orbital control and suborbital variability (Late Neogene, northern Greece)

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Tougiannidis, N.; Ricken, W.; Rolf, C.; Kleineder, M.; Bertram, N.; Antoniadis, P.

    2009-04-01

    We recently commenced a project to investigate deep drillings as well as outcrops in the Ptolemais Basin, northern Greece, for paleoenvironmental and paleoclimate change. Specific attention is paid to mining sites Achlada, Vevi, Vegora, Amynteon, North Field, South Field, and Lava. The sediment archive comprises Upper Miocene to Quaternary continental lake deposits (up to 800 m thick) with an extended Lower Pliocene section. The Upper Miocene sections are composed of diatomaceous mud and gray marls. Pliocene lake sediments commence with the Kyrio member (lignite/grey marl), followed by the Theodoxus member (beige marl/lignite), and the Notio member (marl with intercalated sand /lignite). The limnic deposits show striking rhythmic bedding of (mostly) carbonates and lignites, reflecting orbital-induced humidity and temperature changes in this small NW-SE elongated continental basin. First, we retrieved chronometric information by determining magnetic polarity changes on three sites as independent stratigraphic ground-truth in combination with palynological evidence and published data. Then we conducted a number of high-resolution (1 - 6 cm increment), non-destructive measurements to obtain paleoclimate proxies: photospectrometry (colors L, a, b), magnetic susceptibility, and natural gamma. Accordingly, we achieved a multi-proxy insight into paleoclimate and paleoenvironmental evolution at unprecedented temporal resolution (up to a few decades!) over long time series and at a number of key sites. Using the newly-developed ESALab software, we conducted spectral and evolutionary spectral analysis to evaluate the cyclo-stratigraphic development. As for orbital variability, spectral power is concentrated on precession, hemi-precession, and eccentricity, with only minor impact of orbital tilt. We used this information to increase the temporal resolution of our age models by tuning as many precession (insolation) maxima as possible to carbonate minima (lignite maxima

  5. Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station, Greece.

    PubMed

    Megalovasilis, Pavlos; Papastergios, Georgios; Filippidis, Anestis

    2013-07-01

    The Kozani-Ptolemais-Amyntaio basin constitutes the principal coal field of Greece. Approximately 50% of the total power production of Greece is generated by five power stations operating in the area. Lignite samples, together with the corresponding fly ash and bottom ash were collected, over a period of 3 months, from the power plant of Amyntaio and analyzed for their content in 16 trace elements. The results indicate that Y, Nb, U, Rb, Zr, Ni, Pb, Ba, Zn, Sr, Cu, and Th demonstrate an organic affinity during the combustion of lignite, while V has an inorganic affinity. Three elements (Co, Cr, and Sc) show an intermediate affinity. PMID:23188071

  6. Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eleventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of peat pellets and peat sods during 3 different test periods. 2 refs., 20 figs., 13 tabs.

  7. Second stage gasifier in staged gasification and integrated process

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  8. Underground coal gasification: a brief review of current status

    SciTech Connect

    Shafirovich, E.; Varma, A.

    2009-09-15

    Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

  9. Kinetics of gasification of black liquor char by steam

    SciTech Connect

    Li, J.; van Heiningen, A.R.P. )

    1991-07-01

    This paper reports on the steam gasification kinetics of kraft black liquor char that were studied in a thermogravimetric analysis reactor. The effect of steam and hydrogen concentration on gasification rate can be described by Langmuir-Hinshelwood type kinetics. An activation energy of 210 kJ/mol was obtained. Methane formation was negligible, and H{sub 2}S was the major gaseous sulfur-containing product obtained over the temperature range studied, 873-973 K. The CO{sub 2} concentration was higher than calculated for the water-shift reaction at equilibrium. A gasification mechanism is proposed whereby CO{sub 2} is one of the primary gasification products.

  10. Carbon dioxide sorption capacities of coal gasification residues.

    PubMed

    Kempka, Thomas; Fernández-Steeger, Tomás; Li, Dong-Yong; Schulten, Marc; Schlüter, Ralph; Krooss, Bernhard M

    2011-02-15

    Underground coal gasification is currently being considered as an economically and environmentally sustainable option for development and utilization of coal deposits not mineable by conventional methods. This emerging technology in combination with carbon capture and sorptive CO2 storage on the residual coke as well as free-gas CO2 storage in the cavities generated in the coal seams after gasification could provide a relevant contribution to the development of Clean Coal Technologies. Three hard coals of different rank from German mining districts were gasified in a laboratory-scale reactor (200 g of coal at 800 °C subjected to 10 L/min air for 200 min). High-pressure CO2 excess sorption isotherms determined before and after gasification revealed an increase of sorption capacity by up to 42%. Thus, physical sorption represents a feasible option for CO2 storage in underground gasification cavities. PMID:21210659

  11. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  12. STUDY OF THE STEAM GASIFICATION OF ORGANIC WASTES

    EPA Science Inventory

    Chemical kinetic data describing the pyrolysis/gasification characteristics of organic waste (biomass) materials is needed for the design of improved conversion reactors. Unfortunately, little data is available in the literature on the pyrolysis kinetics of waste materials, and e...

  13. Coal gasification: New challenge for the Beaumont rotary feeder

    NASA Technical Reports Server (NTRS)

    Stelian, J.

    1977-01-01

    The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

  14. Steam gasification of wood in the presence of catalysts

    NASA Astrophysics Data System (ADS)

    Mudge, L. K.; Mitchell, D. H.; Baker, E. G.; Robertus, R. J.; Brown, M. D.

    1982-09-01

    Catalytic steam gasification of wood, including sawdust, chipped forest slash, and mill shavings, is investigated. Results of laboratory, process development unit (PDR), and feasibility studies illustrate attractive processes for conversion of wood to methanol and a substitute natural gas (SNG). Recent laboratory studies developed a long-lived alloy catalyst for generation of a methanol synthesis gas by steam gasification of wood. Modification of the PDU for operation at 10 atm (150 psia) is complete and initial tests are completed. The modified PDU will be operated at elevated pressures to confirm yields and design parameters used in process feasibility studies. A computer program for evaluating the effect of yield changes on process economics was completed. The base case was the study on economics of methanol-from-wood using catalytic gasification. It was found that methanol-from-wood by catalytic gasification was competitive with the process for methanol production from natural gas.

  15. INITIAL ENVIRONMENTAL TEST PLAN FOR SOURCE ASSESSMENT OF COAL GASIFICATION

    EPA Science Inventory

    The report describes an initial source assessment environmental test plan, developed to investigate the fate of various constituents during coal gasification. The plan is an approach to the problems associated with sampling point selection, sample collection, and sample analysis ...

  16. Pyrolysis and gasification of coal at high temperatures

    SciTech Connect

    Zygourakis, K.

    1992-02-10

    The macropore structure of chars is a major factor in determining their reactivity during the gasification stage. The major objectives of this contract were to (a) quantify by direct measurements the effect of pyrolysis conditions of the macropore structure, and (b) establish how the macropores affected the reactivity pattern, the ignition behavior and the fragmentation of the char particles during gasification in the regime of strong diffusional limitations. Results from this project provide much needed information on the factors that affect the quality of the solid products (chars) of coal utilization processes (for example, mild gasification processes). The reactivity data will also provide essential parameters for the optimal design of coal gasification processes. (VC)

  17. Methane Production from Catalytic Wet Gasification of Animal Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research investigates the technical and economical viability of a proprietary catalytic wet gasification process in treating animal wastewater, capturing nutrients, destroying pharmaceutically active compounds (PACs) and estrogens, and producing methane. This study reviews and analyzes physicoc...

  18. Demonstration of Black Liquor Gasification at Big Island

    SciTech Connect

    Robert DeCarrera

    2007-04-14

    This Final Technical Report provides an account of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific LLC's Big Island, VA facility. This report covers the period from May 5, 2000 through November 30, 2006.

  19. Advanced Gasification By-Product Utilization

    SciTech Connect

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31

    With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The objectives of this

  20. Gasification of cyanobacterial in supercritical water.

    PubMed

    Zhang, Huiwen; Zhu, Wei; Xu, Zhirong; Gong, Miao

    2014-01-01

    Cyanobacterial collected from eutrophic freshwater lakes constituted intractable waste with a rich algae biomass content. Supercritical water gasification (SCWG) was proposed to treat the cyanobacterial and to produce hydrogen for energy. The H 2 yield reached 2.92 mol/kg at reaction conditions of 500 °C, 30 min and 22 MPa; this yield accounted for 26% of the total gaseous products. Abundant ammonia and dissolved reactive phosphorous were concentrated in the liquid product, which could be recovered and used as a liquid fertilizer. Solid residue, which accounted only for about 1% of the wet weight, was mainly composed of coke and ash. The efficiency of H 2 production was better than that from other biomass, because of the abundant organic matter in cyanobacterial. Thus, cyanobacterial are an ideal biomass feedstock for H 2 production from SCWG. PMID:25176482

  1. Heat exchanger for coal gasification process

    DOEpatents

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  2. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  3. Method for control of subsurface coal gasification

    DOEpatents

    Komar, Charles A.

    1976-12-14

    The burn front in an in situ underground coal gasification operation is controlled by utilizing at least two parallel groups of vertical bore holes disposed in the coalbed at spaced-apart locations in planes orthogonal to the plane of maximum permeability in the coalbed. The combustion of the coal is initiated in the coalbed adjacent to one group of the bore holes to establish a combustion zone extending across the group while the pressure of the combustion supporting gas mixture and/or the combustion products is regulated at each well head by valving to control the burn rate and maintain a uniform propagation of the burn front between the spaced-apart hole groups to gasify virtually all the coal lying therebetween.

  4. Biomass Gasification Research Facility Final Report

    SciTech Connect

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature

  5. Conceptual design of a black liquor gasification pilot plant

    SciTech Connect

    Kelleher, E. G.

    1987-08-01

    In July 1985, Champion International completed a study of kraft black liquor gasification and use of the product gases in a combined cycle cogeneration system based on gas turbines. That study indicated that gasification had high potential as an alternative to recovery boiler technology and offered many advantages. This paper describes the design of the plant, the construction of the pilot plant, and finally presents data from operation of the plant.

  6. Pilot gasification and hot gas cleanup operations

    SciTech Connect

    Rockey, J.M.; Galloway, E.; Thomson, T.A.; Rutten, J.; Lui, A.

    1995-12-31

    The Morgantown Energy Technology Center (METC) has an integrated gasification hot gas cleanup facility to develop gasification, hot particulate and desulfurization process performance data for IGCC systems. The objective of our program is to develop fluidized-bed process performance data for hot gas desulfurization and to further test promising sorbents from lab-scale screening studies at highpressure (300 psia), and temperatures (1,200{degrees}F) using coal-derived fuel gases from a fluid-bed gasifier. The 10-inch inside diameter (ID), nominal 80 lb/hr, air blown gasifier is capable of providing about 300 lb/hr of low BTU gas at 1,000{degrees}F and 425 psig to downstream cleanup devices. The system includes several particle removal stages, which provide the capability to tailor the particle loading to the cleanup section. The gas pressure is reduced to approximately 300 psia and filtered by a candle filter vessel containing up to four filter cartridges. For batch-mode desulfurization test operations, the filtered coal gas is fed to a 6-inch ID, fluid-bed reactor that is preloaded with desulfurization sorbent. Over 400 hours of gasifier operation was logged in 1993 including 384 hours of integration with the cleanup rig. System baseline studies without desulfurization sorbent and repeatability checks with zinc ferrite sorbent were conducted before testing with the then most advanced zinc titanate sorbents, ZT-002 and ZR-005. In addition to the desulfurization testing, candle filters were tested for the duration of the 384 hours of integrated operation. One filter was taken out of service after 254 hours of filtering while another was left in service. At the conclusion of testing this year it is expected that 3 candles, one each with 254, 530, and 784 hours of filtering will be available for analysis for effects of the exposure to the coal gas environment.

  7. Toxicity studies of mild gasification products

    SciTech Connect

    Ong, T.M.; Whong, W.Z.; Ma, J.; Zhong, B.Z.; Bryant, D.

    1992-01-01

    The objectives of this project are: (1) to perform mutagenicity studies with the Ames Salmonella/microsomal assay system on coal liquids produced by mild gasification from different coals and/or processing conditions, (2) to determine whether coal liquids which are mutagenic to bacteria are also genotoxic to mammalian cells, (3) to establish correlations between mutagenicity, aromaticity, and boiling point range of coal liquids, and (4) to identify the chemical classes which are likely to be responsible for the mutagenic activity of gasification products. Four of the seven samples tested so far failed to demonstrate any mutagenic activity under any conditions tested. Those samples were SHELL[number sign]830331, MG-122IBP-420[degree]F, MG-122 420--720[degree]F, and MG-122 720[degree]F+. Table 1 summarizes the results from all samples tested in DMSO and Tween 80. When solvated in DMSO, MG-119 and MG-120 composite materials displayed slight, but ultimately insignificant, genotoxic activity on TA98 and TA1OO in the presence of S9. When Tween 80 was used as the solvent, MG-119 and MG-120 displayed slight, but significant, geno-toxic activity on TA98 with S9 (Figure 4). CTC[number sign]11 in DMSO displayed significant genotoxic activity on both TA98 and TA1OO with and without S9. The activity was higher on TA98 than TA100, and higher with S9 than without, primarily indicating the presence of indirect-acting frameshift mutagen. The results of the testing on CTC[number sign]11 were similar for both solvents, DMSO and Tween 80 (Table 2).

  8. Toxicity studies of mild gasification products

    SciTech Connect

    Ong, T.M.; Whong, W.Z.; Ma, J.; Zhong, B.Z.; Bryant, D.

    1992-11-01

    The objectives of this project are: (1) to perform mutagenicity studies with the Ames Salmonella/microsomal assay system on coal liquids produced by mild gasification from different coals and/or processing conditions, (2) to determine whether coal liquids which are mutagenic to bacteria are also genotoxic to mammalian cells, (3) to establish correlations between mutagenicity, aromaticity, and boiling point range of coal liquids, and (4) to identify the chemical classes which are likely to be responsible for the mutagenic activity of gasification products. Four of the seven samples tested so far failed to demonstrate any mutagenic activity under any conditions tested. Those samples were SHELL{number_sign}830331, MG-122IBP-420{degree}F, MG-122 420--720{degree}F, and MG-122 720{degree}F+. Table 1 summarizes the results from all samples tested in DMSO and Tween 80. When solvated in DMSO, MG-119 and MG-120 composite materials displayed slight, but ultimately insignificant, genotoxic activity on TA98 and TA1OO in the presence of S9. When Tween 80 was used as the solvent, MG-119 and MG-120 displayed slight, but significant, geno-toxic activity on TA98 with S9 (Figure 4). CTC{number_sign}11 in DMSO displayed significant genotoxic activity on both TA98 and TA1OO with and without S9. The activity was higher on TA98 than TA100, and higher with S9 than without, primarily indicating the presence of indirect-acting frameshift mutagen. The results of the testing on CTC{number_sign}11 were similar for both solvents, DMSO and Tween 80 (Table 2).

  9. Gasification Studies Task 4 Topical Report

    SciTech Connect

    Whitty, Kevin; Fletcher, Thomas; Pugmire, Ronald; Smith, Philip; Sutherland, James; Thornock, Jeremy; Boshayeshi, Babak; Hunsacker, Isaac; Lewis, Aaron; Waind, Travis; Kelly, Kerry

    2014-02-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical processes (Subtask 4.4) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation. Highlights of this work include: • Verification and validation activities performed with the Arches coal gasification simulation tool on experimental data from the CANMET gasifier (Subtask 4.1). • The simulation of multiphase reacting flows with coal particles including detailed gas-phase chemistry calculations using an extension of the one-dimensional turbulence model’s capability (Subtask 4.2). • The demonstration and implementation of the Reverse Monte Carlo ray tracing (RMCRT) radiation algorithm in the ARCHES code (Subtask 4.3). • Determination of steam and CO{sub 2} gasification kinetics of bituminous coal chars at high temperature and elevated pressure under entrained-flow conditions (Subtask 4.4). In addition, attempts were made to gain insight into the chemical structure differences between young and mature coal soot, but both NMR and TEM characterization efforts were hampered by the highly reacted nature of the soot. • The development, operation, and demonstration of in-situ gas phase measurements from the University of Utah’s pilot-scale entrained-flow coal gasifier (EFG) (Subtask 4.6). This subtask aimed at acquiring predictable, consistent performance and characterizing the

  10. Solar coal gasification reactor with pyrolysis gas recycle

    DOEpatents

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  11. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R.; Lisauskas, R.A.; Dixit, V.J.; Morgan, M.E.; Johnson, S.A.; Boni, A.A.

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  12. Modeling of contaminant transport in underground coal gasification

    SciTech Connect

    Lanhe Yang; Xing Zhang

    2009-01-15

    In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.

  13. Integrated coal liquefaction, gasification and electricity production process

    SciTech Connect

    Cheng, S.

    1986-06-10

    A method is described for the physical and operational integration of a carbonaceous gasification plant, a gas fuel synthesis plant and a power generation station to economically produce synfuel and electric power consisting of: (a) producing synthesis gas comprising carbon monoxide and hydrogen from carbonaceous raw materials in a gasification unit under endothermic reaction conditions wherein the gasification unit utilizes exhaust steam from step (f) effective to provide at least a portion of the endothermic heat of reaction necessary for the reaction and wherein the gas from the gasification unit is passed to a coal liquefaction stage; (b) liquefying and hydrogenating coal under exothermic reaction conditions with the synthesis gas from the gasification unit as a source of hydrogen thereby producing a synthetic hydrocarbonaceous fuel and tail gases; (c) providing water to the liquefaction stage in an indirect heat exchange relationship to remove at least a portion of the exothermic heat of reaction from the coal liquefaction stage by generating high pressure steam from the water and passing the high pressure steam to a power generation unit; (d) continuously purging the tail gases from the liquefaction stage, feeding the tail gases to the power generation unit and burning the tail gases with or without additional fuel sources to superheat the high pressure steam; (e) passing the superheated steam to a turbine-generator means within the power generating unit to produce electricity and exhaust steam; and (f) feeding at least a portion of the exhaust steam from the power generating unit to the gasification unit.

  14. Subtask 4.2 - Coal Gasification Short Course

    SciTech Connect

    Kevin Galbreath

    2009-06-30

    Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of hydrogen, liquid fuels, chemicals, and electricity. Financing these projects is challenging because of the complexity, diverse nature of gasification technologies, and the risk associated with certain applications of the technology. The Energy & Environmental Research Center has developed a gasification short course that is designed to provide technical personnel with a broad understanding of gasification technologies and issues, thus mitigating the real or perceived risk associated with the technology. Based on a review of research literature, tutorial presentations, and Web sites on gasification, a short course presentation was prepared. The presentation, consisting of about 500 PowerPoint slides, provides at least 7 hours of instruction tailored to an audience's interests and needs. The initial short course is scheduled to be presented September 9 and 10, 2009, in Grand Forks, North Dakota.

  15. Trace elements in the lignite-bearing area of Lofoi, Florina basin, Western Greek Macedonia, Greece

    SciTech Connect

    Pentari, D.; Foscolos, A.E.; Perdikatsis, V.

    2008-07-01

    Drill core samples of two boreholes from the Lofoi lignite-bearing area of Miocene-Pliocene age were analyzed for their trace element contents. The methods used were Instrumental Neutron Activation Analysis (INAA), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), and Atomic Absorption Spectroscopy (AAS). The results showed that all studied elements occur in concentrations within the reported ones for different coal-bearing basins of Greece. The elements Co, U, Sb, Th, Cs, As, Li, Mo, Y, Cu, Ni, Cr, Pb, Yb, Be, Rb, V, and Lu are enriched in the ashes when compared to their average concentration on the Earth's crust. The enrichment of elements encountered in silicic rocks as well as mafic and ultramafic rocks implies that there are two different types of rocks influencing the formation of the lignite deposit. Very strong to intermediate correlation is observed for the REE as well as for the elements Mo with As, Cu with Sb, Sc with Ni, Co, and V, and Rb with Ga, which is expected for these elements. Intermediate to strong positive correlation is also observed for the elements Th with Zn, Y with Be, Cr with As, Sb with Yb, As with Y, Zn with both Yb and Eu, as well as Cu with Th; this could only be attributed to the hypothesis that both silisic and mafic-ultramafic rocks influenced the formation of the deposit.

  16. Petrographical, palynological, and sedimentological aspects regarding the genesis of Palaeogene lignites near Alexandroupolis, Thrace, Greece

    SciTech Connect

    Antoniadis, P.; Kaouras, G.; Khanaqa, P.; Riegel, W.; Gentzis, T.

    2006-01-21

    Several minor lignite deposits of Palaeogene (Eocene to Oligocene) age occur in the vicinity of Alexandroupolis, Thrace, northern Greece. A few, rather thin seams were mined in the past by small private operations for local use. Coal samples have been collected from old mine dumps and outcrops around abandoned mine posts to be studied by means of maceral analysis at high magnification. The groundwater and vegetation index are calculated from the maceral composition and used to draw conclusions concerning the environment of deposition. In addition, block samples of coal cut perpendicular to bedding were studied at intermediate magnification and underfluorescence, thus revealing some interesting bedding features as well as well-preserved plant organisms. The coals are characteristically finely laminated and highly gelified. Palynological preparations have thus far yielded only poorly preserved palynomorph assemblages, rather low in diversity and dominated by fern spores. This fern dominance is rather unusual: however, it is compatible with the occurrence of fertile fern fronds observed in petrographic coal sections. Accompanying clastic sediments exhibit cyclic fining-upward sequences at a scale averaging about 1 m in vertical extent. Grain sizes range from small gravel to clay and silt. In some cases, siltstones in the roof of coal seams include abundant plant fragments showing parallel venation. The evidence presented from various sources suggests a rather unstable fluvial environment and a generally high water table on the flood plain for the formation of these lignites.

  17. Simulation of 0.3 MWt AFBC test rig burning Turkish lignites

    SciTech Connect

    Selcuk, N.; Degirmenci, E.; Oymak, O.

    1997-12-31

    A system model coupling bed and freeboard models for continuous combustion of lignite particles of wide size distribution burning in their own ash in a fluidized bed combustor was modified to incorporate: (1) a procedure for faster computation of particle size distributions (PSDs) without any sacrifice in accuracy; (2) energy balance on char particles for the determination of variation of temperature with particle size, (3) plug flow assumption for the interstitial gas. An efficient and accurate computer code developed for the solution of the conservation equations for energy and chemical species was applied to the prediction of the behavior of a 0.3 MWt AFBC test rig burning low quality Turkish lignites. The construction and operation of the test rig was carried out within the scope of a cooperation agreement between Middle East Technical University (METU) and Babcock and Wilcox GAMA (BWG) under the auspices of Canadian International Development Agency (CIDA). Predicted concentration and temperature profiles and particle size distributions of solid streams were compared with measured data and found to be in reasonable agreement. The computer code replaces the conventional numerical integration of the analytical solution of population balance with direct integration in ODE form by using a powerful integrator LSODE (Livermore Solver for Ordinary Differential Equations) resulting in two orders of magnitude decrease in CPU (Central Processing Unit) time.

  18. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.

    PubMed

    Anagnostopoulos, I M; Stivanakis, V E; Angelopoulos, G N; Papamantellos, D C

    2010-02-15

    The present research study investigates the synergy of industrial solid by-products from lignite combustion (fly ash and bottom ash) and aluminum production (ferroalumina) in the production of lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering. Bottom ash (BA) is used as the principal raw material in mixtures while ferroalumina (FAL) is added in lower percentages (5-30 wt%). BA carbon content is used as the fuel of sintering process in high temperatures, around 1250 degrees C, and gas generation is responsible for porous structure formation. Physical properties such as porosity, water absorption and bulk density, of sintering products are measured. Increase of FAL percentage in sintering mixtures results in decrease of porosity from 61% to 35% and of water absorption from 61% to 21% and in increase of bulk density from 1.02 g/cm(3) to 1.80 g/cm(3) of the produced aggregates. Aggregates produced by FAL addition up to 20 wt% are characterized as LWA. Aggregates formed are used in the production of concrete specimens. Compressive strength of concrete increases by increasing FAL addition in aggregates from 5 wt% to 15 wt% (highest strength value), while decrease by increasing FAL addition from 20 wt% to 30 wt%. FAL addition in lignite ashes sintering mixtures (up to 15 wt%) is considered as an important parameter for enhancing aggregates strength. PMID:19850411

  19. Factors affecting the oil agglomeration of Sivas-Divrigi Ulucayir lignite

    SciTech Connect

    Unal, I.; Gorgun Ersan, M.

    2007-07-01

    In the coal industry, the coal particles need to be decreased to a very fine size because of the need of removing inorganic materials from coal. Oil agglomeration is a kind of coal cleaning technique that is used for separation of organic and inorganic parts of fine sized coal. In this study, the oil agglomeration of Sivas-Divrigi (S-D) Ulucayir lignite was carried out by using kerosene, diesel oil, fuel oil, poppy oil, and sunflower oil. The amount of bridging oil was varied from 5% to 25% of the amount of lignite. The effect of oil amount, oil type, solid content, agitation rate and time, pH on agglomeration performance was investigated. Maximum recovery value of 98.18% was observed by using poppy oil. In order to investigate the effect of pH on agglomeration NaOH and HCl is added to the slurry in various amounts. It is decided that the best agglomeration condition is obtained at low pH values. The effect of nonionic surface active agent (Igepal-CA 630) on agglomeration is investigated by adding to the slurry and it is observed that the grade is increased with the amount of surface active agent.

  20. Land movement monitoring at the Mavropigi lignite mine using spaceborne D-InSAR

    NASA Astrophysics Data System (ADS)

    Papadaki, Eirini; Tripolitsiotis, Achilleas; Steiakakis, Chrysanthos; Agioutantis, Zacharias; Mertikas, Stelios; Partsinevelos, Panagiotis; Schilizzi, Pavlos

    2013-08-01

    This paper examines the capability of remote sensing radar interferometry to monitor land movements, as it varies with time, in areas close to open pit lignite mines. The study area is the "Mavropigi" lignite mine in Ptolemais, Northern Greece; whose continuous operation is of vital importance to the electric power supply of Greece. The mine is presently 100-120m deep while horizontal and vertical movements have been measured in the vicinity of the pit. Within the mine, ground geodetic monitoring has revealed an average rate of movement amounting to 10-20mm/day at the southeast slopes. In this work, differential interferometry (DInSAR), using 19 Synthetic Aperture Radar (SAR) images of ALOS satellite, has been applied to monitor progression of land movement caused my mining within the greater area of "Mavropigi" region. The results of this work show that DInSAR can be used effectively to capture ground movement information, well before signs of movements can be observed visually in the form of imminent fissures and tension cracks. The advantage of remote sensing interferometry is that it can be applied even in inaccessible areas where monitoring with ground equipment is either impossible or of high-cost (large areas).

  1. Structural degradation of Thar lignite using MW1 fungal isolate: optimization studies

    USGS Publications Warehouse

    Haider, Rizwan; Ghauri, Muhammad A.; Jones, Elizabeth J.; Orem, William H.; SanFilipo, John R.

    2015-01-01

    Biological degradation of low-rank coals, particularly degradation mediated by fungi, can play an important role in helping us to utilize neglected lignite resources for both fuel and non-fuel applications. Fungal degradation of low-rank coals has already been investigated for the extraction of soil-conditioning agents and the substrates, which could be subjected to subsequent processing for the generation of alternative fuel options, like methane. However, to achieve an efficient degradation process, the fungal isolates must originate from an appropriate coal environment and the degradation process must be optimized. With this in mind, a representative sample from the Thar coalfield (the largest lignite resource of Pakistan) was treated with a fungal strain, MW1, which was previously isolated from a drilled core coal sample. The treatment caused the liberation of organic fractions from the structural matrix of coal. Fungal degradation was optimized, and it showed significant release of organics, with 0.1% glucose concentration and 1% coal loading ratio after an incubation time of 7 days. Analytical investigations revealed the release of complex organic moieties, pertaining to polyaromatic hydrocarbons, and it also helped in predicting structural units present within structure of coal. Such isolates, with enhanced degradation capabilities, can definitely help in exploiting the chemical-feedstock-status of coal.

  2. The physico-chemical properties and biostimulative activities of humic substances regenerated from lignite.

    PubMed

    David, Jan; Smejkalová, Daniela; Hudecová, Sárka; Zmeškal, Oldřich; von Wandruszka, Ray; Gregor, Tomáš; Kučerík, Jiří

    2014-01-01

    The positive effect of humic acids on the growth of plant roots is well known, however, the mechanisms and role of their physical structure in these processes have not been fully explained yet. In this work, South-Moravian lignite was oxidized by means of nitric acid and hydrogen peroxide to produce a set of regenerated humic acids. The elemental composition, solid state stability and solution characteristics were determined and correlated in vitro with their biological activity. A modified hydroponic method was applied to determine the effects of their potassium salts on Zea mays seedlings roots with respect to the plant weight, root length, root division, and starch and protein content. The relations between the determined parameters were evaluated through Principal Component Analysis and Pearson's correlation coefficients. The results indicated that the most important factor determining the biological activity of South-Moravian lignite potassium humates is related to the nature of self-assemblies, while the chemical composition had no direct connection with the root growth of Zea mays seedlings. It was demonstrated a controlled processing that provided humic substances with different chemical and physicochemical properties and variable biological activity. PMID:24790812

  3. Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

  4. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  5. Comparative palynology of clastics and lignites from the Manning Formation, Jackson Group, Upper Eocene, Grimes County, TX

    SciTech Connect

    Gennett, J.A.

    1996-09-01

    The 3500 lignite seam at the Gibbons Creek Mine in Grimes County, TX was sampled for pollen and spores at 10 cm intervals. The majority of samples are dominated (to 60%) by Momipites from the Juglandaceae (walnut family), as is typical of Jackson Group sediments. Other palynomorph taxa vary systematically, with a peak of pollen of the freshwater tree Nyssa (blackgum) and associated Rboipites angustus (to 17%) occurring at the base. Higher in the seam, increase (to 55%) of Cupuliferoipollenites (a chestnut-like grain) and Cyrillaceae-pollenites? ventosus (to 7%) percentages may indicate a higher salinity environment. A Chrysophyllum (satin leaf) peak (to 25%) near the top of the seam suggests relatively shallow fresh-water conditions. Core samples from an interval above the lignites represent a transgressive-regressive cycle in inner shelf clastics. These samples were taken at 40 cm or greater intervals and reveal the regional pollen flora. Although minor changes occur, palynomorph spectra are for the most part homogenous. The dominant grain is again Momipites coryloides, but in general percentages are lower (to 35%). Cupuliferoipollenites (to 17%), Chrysophyllum (to 5%), and Rhoipites angustus (to 3%) are not less important, but do not peak as they do in the lignite spectra. Palm leaf megafossils; in one sample suggest a clastic wetland; in this sample palm pollen (mostly Arecipites, representing the modern saw palmetto) reaches 73%. Another sample contains high (26%) percentages of the fern spore Lygodiumsporites adriennis. High percentages of these two taxa do not occur in the lignite samples.

  6. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  7. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    PubMed

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. PMID:26894568

  8. Trace elements in a Pliocene-Pleistocene lignite profile from the Afsin-Elbistan field, eastern Turkey

    SciTech Connect

    Karayigit, A.I.; Gayer, R.A.

    2000-01-01

    The authors present the results of proximate and ultimate analyses, mineralogical determination, and trace element analysis of a lignite profile from the Afsin-Elbistan field (eastern Turkey). The lignite, which developed during the Pliocene-Pleistocene transition under freshwater lacustrine conditions, contains white gastropod (Planorbidae) shells composed of calcite and a little aragonite. Other identifiable mineral constituents, analyzed by X-ray powder diffraction, include quartz, pyrite, clay minerals, and rare feldspares. Petrographical studies demonstrate the immature nature of these lignites and very low degree of compaction during diagenesis. The mean concentrations of trace elements in the lignite, determined by inductively coupled plasma mass spectrometry (ICP-MS), show relative enrichment in Mo (avg. 20 ppm), W (avg. 15 ppm) and U (avg. 25 ppm) when compared to the global range for most coals, while the others (Ti, p, Sc, Be, Mn, Co, Cu, Zn, Ga, As, Rb, Sr, Zr, Nb, Cs, Ba, Y, Ta, Tl, Pb, Bi, Th, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu) fall within their global ranges. Many of the trace elements show a good correlation with the ash yield, implying an inorganic affinity. However, Mo and Sr show a negative correlation with the ash yield and are thought to be organically associated. A lack of correlation of U with either the ash yield or the coal sulfur content, together with its relative enrichment, suggests secondary mobility of this element.

  9. 78 FR 63463 - Intent To Prepare a Regional Environmental Impact Statement for Surface Coal and Lignite Mining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...The U.S. Army Corps of Engineers (USACE) is preparing a Regional Environmental Impact Statement (REIS) to analyze the direct, indirect, and cumulative effects associated with a decision to develop and assess data and information with waters of the United States and other relevant resources that may be potentially impacted by future surface coal and lignite mine expansions in the state of Texas......

  10. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    SciTech Connect

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  11. Origin and significance of high nickel and chromium concentrations in pliocene lignite of the Kosovo Basin, Serbia

    USGS Publications Warehouse

    Ruppert, L.; Finkelman, R.; Boti, E.; Milosavljevic, M.; Tewalt, S.; Simon, N.; Dulong, F.

    1996-01-01

    Trace element data from 59 Pliocene lignite cores from the lignite field in the Kosovo Basin, southern Serbia, show localized enrichment of Ni and Cr (33-304 ppm and 8-176 ppm, respectively, whole-coal basis). Concentrations of both elements decrease from the western and southern boundaries of the lignite field. Low-temperature ash and polished coal pellets of selected bench and whole-coal samples were analyzed by X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray analyses. These analyses show that most of the Ni and Cr are incorporated in detrital and, to a lesser degree, in authigenic minerals. The Ni- and Cr-bearing detrital minerals include oxides, chromites, serpentine-group minerals and rare mixed-layer clays. Possible authigenic minerals include Ni-Fe sulfates and sulfides. Analyses of three lignite samples by a supercritical fluid extraction technique indicate that some (1-11%) of the Ni is organically bound. Ni- and Cr-bearing oxides, mixed-layer clays, chromites and serpentine-group minerals were also identified in weathered and fresh samples of laterite developed on serpentinized Paleozoic peridotite at the nearby Glavica and C??ikatovo Ni mines. These mines are located along the western and northwestern rim, respectively, of the Kosovo Basin, where Ni contents are highest. The detrital Ni- and Cr-bearing minerals identified in lignite samples from the western part of the Kosovo Basin may have been transported into the paleoswamp by rivers that drained the two Paleocene laterites. Some Ni may have been transported directly into the paleoswamp in solution or, alternatively, Ni may have been leached from detrital minerals by acidic peat water and adsorbed onto organic matter and included into authigenic mineral phases. No minable source of Ni and Cr is known in the southern part of the lignite field; however, the mineral and chemical data from the lignite and associated rocks suggest that such a source area may exist.

  12. Preparation and combustion of Yugoslavian lignite-water fuel, Task 7.35. Topical report, July 1991--December 1993

    SciTech Connect

    Anderson, C.M.; DeWall, R.A.; Ljubicic, B.R.; Musich, M.A.; Richter, J.J.

    1994-03-01

    Yugoslavia`s interest in lignite-water fuel (LWF) stems from its involvement in an unusual power project at Kovin in northern Serbia. In the early 1980s, Electric Power of Serbia (EPS) proposed constructing a 600-MW power plant that would be fueled by lignite found in deposits along and under the Danube River. Trial underwater mining at Kovin proved that the dredging operation is feasible. The dredging method produces a coal slurry containing 85% to 90% water. Plans included draining the water from the coal, drying it, and then burning it in the pulverized coal plant. In looking for alternative ways to utilize the ``wet coal`` in a more efficient and economical way, a consortium of Yugoslavian companies agreed to assess the conversion of dredged lignite into a LWF using hot-water-drying (HWD) technology. HWD is a high-temperature, nonevaporative drying technique carried out under high pressure in water that permanently alters the structure of low-rank coals. Changes effected by the drying process include irreversible removal of moisture, micropore sealing by tar, and enhancement of heating value by removal of oxygen, thus, enhancement of the slurry ability of the coal with water. Physical cleaning results indicated a 51 wt % reduction in ash content with a 76 wt % yield for the lignite. In addition, physical cleaning produced a cleaned slurry that had a higher attainable solids loading than a raw uncleaned coal slurry. Combustion studies were then performed on the raw and physically cleaned samples with the resulting indicating that both samples were very reactive, making them excellent candidates for HWD. Bench-scale results showed that HWD increased energy densities of the two raw lignite samples by approximately 63% and 81%. An order-of-magnitude cost estimate was conducted to evaluate the HWD and pipeline transport of Kovin LWF to domestic and export European markets. Results are described.

  13. Methane or methanol via catalytic gasification of biomass

    SciTech Connect

    Mitchell, D.H.; Mudge, L.K.; Robertus, R.J.; Weber, S.L.; Sealock, L.J. Jr.

    1980-03-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. A 5 cm diameter reactor has been used to determine the desired catalysts and operating temperature. A process development unit (PDU) has demonstrated steam gasification of biomass with catalysts at rates up to 35 kg per hour. Methane yields of 0.28 nm/sup 3/ per kg of dry wood were produced in the small laboratory reactor. Further methanation of the product gas mixture can increase methane yields to 0.33 nm/sup 3//kg. The catalyst system is nickel and silica-alumina. The preferred reactor operating temperature is 500 to 550/sup 0/C. Tests have been at atmospheric pressure. The PDU performance has confirmed results obtained in the laboratory. Methanol synthesis gas can be produced in a single stage reactor at 750 to 850/sup 0/C by steam gasification of wood with silica-alumina and nickel catalysts present. From this gas, up to 0.6 kg of methanol can be produced per kg of wood. Gasification of the wood to produce synthesis gas has been demonstrated in the laboratory scale reactor, but remains to be successfully done using the PDU. Catalyst deactivation rates and regeneration schemes must be determined in order to determine the economic feasibility of wood to methane or methanol processes. Some advantages of catalytic steam gasification of biomass over steam-oxygen gasification are: no oxygen is required for methane or methanol synthesis gas, therefore, no oxygen plant is needed; little or no tar is produced resulting in simpler gas cleaning equipment; no shift reactor is required for methanol synthesis; methanation requirements are low resulting in high conversion efficiency; and yields and efficiencies are greater than obtained by conventional gasification.

  14. Development of biological coal gasification (MicGAS process)

    SciTech Connect

    Not Available

    1992-10-30

    Laboratory scale studies examining biogasification of Texas lignite at various coal solids loadings have been completed. Bench scale bioreactors are currently being used to scale up the biogasification process to higher coal solids loadings (5% and 10%) Specific observations reported this quarter are that methane production was not curtailed when B-vitamin solution was not added to the biogasification medium and that aeration of Mic-1 did not sufficiently oxidize the medium to eliminate strict anaerobic bacteria including methanogens.

  15. An ecosystem approach to evaluate restoration measures in the lignite mining district of Lusatia/Germany

    NASA Astrophysics Data System (ADS)

    Schaaf, Wolfgang

    2015-04-01

    Lignite mining in Lusatia has a history of over 100 years. Open-cast mining directly affected an area of 1000 km2. Since 20 years we established an ecosystem oriented approach to evaluate the development and site characteristics of post-mining areas mainly restored for agricultural and silvicultural land use. Water and element budgets of afforested sites were studied under different geochemical settings in a chronosequence approach (Schaaf 2001), as well as the effect of soil amendments like sewage sludge or compost in restoration (Schaaf & Hüttl 2006). Since 10 years we also study the development of natural site regeneration in the constructed catchment Chicken Creek at the watershed scale (Schaaf et al. 2011, 2013). One of the striking characteristics of post-mining sites is a very large small-scale soil heterogeneity that has to be taken into account with respect to soil forming processes and element cycling. Results from these studies in combination with smaller-scale process studies enable to evaluate the long-term effect of restoration measures and adapted land use options. In addition, it is crucial to compare these results with data from undisturbed, i.e. non-mined sites. Schaaf, W., 2001: What can element budgets of false-time series tell us about ecosystem development on post-lignite mining sites? Ecological Engineering 17, 241-252. Schaaf, W. and Hüttl, R. F., 2006: Direct and indirect effects of soil pollution by lignite mining. Water, Air and Soil Pollution - Focus 6, 253-264. Schaaf, W., Bens, O., Fischer, A., Gerke, H.H., Gerwin, W., Grünewald, U., Holländer, H.M., Kögel-Knabner, I., Mutz, M., Schloter, M., Schulin, R., Veste, M., Winter, S. & Hüttl, R.F., 2011: Patterns and processes of initial terrestrial-ecosystem development. Journal of Plant Nutrition and Soil Science, 174, 229-239. Schaaf, W., Elmer, M., Fischer, A., Gerwin, W., Nenov, R., Pretsch, H. and Zaplate, M.K., 2013: Feedbacks between vegetation, surface structures and hydrology

  16. Use of humic acids derived from peat and lignite as phenanthrene sorbents

    NASA Astrophysics Data System (ADS)

    Sofikitis, Elias; Giannouli, Andriana; Kalaitzidis, Stavros; Christanis, Kimon; Karapanagioti, Hrissi K.; Papanicolaou, Cassiani

    2015-04-01

    A broad range of materials is being applied for environmental remediation of water, among them sorbents such as humic acids. Being natural substances, the extraction and purification of humic acids might be cheaper than the production of synthetic sorbents. Having higher absorbing capacity than most of the sorbents used to date, humic acids have a competitive advantage against commonly used sorbents such as active charcoals and biochar. Humic acids are "complex colloidal super-mixtures" that are characterized by their functional groups. Therefore, composition and molecular formula can vary depending on the properties of the parent material. The aim of this project was (a) to study the sorption capacity of humic acids derived from peat and lignite samples picked up from deposits spread throughout Greece and (b) to compare the results with these of the parent materials. This comparison provides an insight to which matrix samples are suitable for further chemical treatment for the isolation of humic acids to be used as sorbents. The selected model pollutant was phenanthrene, which is a PAH that consists of three fused benzene rings. Humic acids were extracted according to the methodology proposed by the IHSS, slightly modified, in order to fit better to the properties of organic sediments. Sorption experiments were conducted by mixing 0.004 g of the sorbent (peat or lignite or humic acid) with aqueous solutions of phenanthrene at different concentrations of 30, 50, 100, 300, and 500 μg/L. The results show that phenanthrene sorption is higher for the humic acid than for the original lignite and peat samples. The original samples display higher sorption at the lower phenanthere solutions (30 μg/L; Kd ranges from 15,000 to 47,000 L/kg) than at the higher one (500 μg/L; Kd ranges from 4,100 to 13,000 L/Kg) suggesting non-linear sorption. The humic acids display mainly linear isotherms with Kd ranges from 6,600 to 120,000 L/kg. Concerning the suitability of the studied

  17. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    NASA Astrophysics Data System (ADS)

    Ilse, Jürgen

    2010-05-01

    Coal is the energy source with the largest geological availability worldwide. Of all non-renewable energies coal and lignite accounting for 55 % of the reserves and some 76 % of the resources represent the largest potential. Reserves are those geological quantities of a mineral which can currently be mined under technically and economically viable conditions. Resources are those quantities which are either proven but currently not economically recoverable or quantities which can still be expected or explored on the basis of geological findings. The global availability of energy source does not only depend on geological and economic factors. The technical availability, e.g. mining and preparation capacities, the sufficient availability of land and sea-borne transportation as well as transloading capacities and also a political availability are required likewise. The latter may be disturbed by domestic-policy disputes like strikes or unrest or by foreign-policy disputes like embargos, trade conflicts or even tensions and wars in the producing regions. In the energy-economic discussion the reach of fossil primary energies plays a central role with the most important questions being: when will which energy source be exhausted, which impact will future developments have on the energy price, what does the situation of the other energies look like and which alternatives are there? The reach of coal can only be estimated because of the large deposits on the one hand and the uncertain future coal use and demand on the other. The stronger growth of population and the economic catching-up process in the developing and threshold countries will result in a shift of the production and demand centres in the global economy. However, also in case of further increases the geological potential will be sufficient to reliably cover the global coal demand for the next 100 years. The conventional mining of seams at great depths or of thin seams reaches its technical and economic limits

  18. Fluidized bed gasification of select granular biomaterials.

    PubMed

    Subramanian, P; Sampathrajan, A; Venkatachalam, P

    2011-01-01

    Biomaterials can be converted into solid, liquid and gaseous fuels through thermochemical or biochemical conversion processes. Thermochemical conversion of granular biomaterials is difficult because of its physical nature and one of the suitable processes is fluidized bed gasification. In this study, coir pith, rice husk and saw dust were selected and synthetic gas was generated using a fluidized bed gasifier. Gas compositions of product gas were analyzed and the percentage of carbon monoxide and carbon dioxide was in the range of 8.24-19.55 and 10.21-17.14, respectively. The effect of equivalence ratio (0.3, 0.4 and 0.5) and reaction time (at 10 min interval) on gas constituents was studied. The gas yield for coir pith, rice husk and sawdust were found to be in the range of 1.98-3.24, 1.79-2.81 and 2.18-3.70 Nm3 kg(-1), respectively. Models were developed to study the influence of biomaterial properties and operating conditions on molar concentration of gas constituents and energy output. PMID:20817445

  19. Advanced Hydrogen Transport Membrane for Coal Gasification

    SciTech Connect

    Schwartz, Joseph; Porter, Jason; Patki, Neil; Kelley, Madison; Stanislowski, Josh; Tolbert, Scott; Way, J. Douglas; Makuch, David

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  20. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  1. Cyclic flow underground coal gasification process

    DOEpatents

    Bissett, Larry A.

    1978-01-01

    The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.

  2. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect

    Sheldon Kramer

    2003-09-01

    This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for

  3. Pulsed combustion process for black liquor gasification

    SciTech Connect

    Durai-Swamy, K.; Mansour, M.N.; Warren, D.W.

    1991-02-01

    The objective of this project is to test an energy efficient, innovative black liquor recovery system on an industrial scale. In the MTCI recovery process, black liquor is sprayed directly onto a bed of sodium carbonate solids which is fluidized by steam. Direct contact of the black liquor with hot bed solids promotes high rates of heating and pyrolysis. Residual carbon, which forms as a deposit on the particle surface, is then gasified by reaction with steam. Heat is supplied from pulse combustor resonance tubes which are immersed within the fluid bed. A portion of the gasifier product gas is returned to the pulse combustors to provide the energy requirements of the reactor. Oxidized sulfur species are partially reduced by reaction with the gasifier products, principally carbon monoxide and hydrogen. The reduced sulfur decomposed to solid sodium carbonate and gaseous hydrogen sulfide (H{sub 2}S). Sodium values are recovered by discharging a dry sodium carbonate product from the gasifier. MTCI's indirectly heated gasification technology for black liquor recovery also relies on the scrubbing of H{sub 2}S for product gases to regenerate green liquor for reuse in the mill circuit. Due to concerns relative to the efficiency of sulfur recovery in the MTCI integrated process, an experimental investigation was undertaken to establish performance and design data for this portion of the system.

  4. Preparation of gasification feedstock from leafy biomass.

    PubMed

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw. PMID:26289326

  5. Kosova coal gasification plant health effects study: Volume 1, Summary

    SciTech Connect

    Morris, S.C.; Jackson, J.O.; Haxhiu, M.A.

    1987-03-01

    This is the summary volume of a three-volume report of the Kosova coal gasification plant health effects study. The plant is of the Lurgi type and began commercial operation in 1971. The study was conducted under the auspices of the U.S.-Yugoslav Joint Board for Scientific and Technological Cooperation. It had five overall purposes: (1) Identify potential health risks in the gasification plant and provide information on possible control measures. (2) Use the experience in Kosova as a basis of judging potential health risks and avoiding potential problems at future commercial scale gasification plants in the United States and Yuogoslavia. (3) Acquire information on industrial hygiene practices at an operating commercial scale coal gasification plant. (4) Use the experience in Kosova to contribute to understanding dose-response relationships of exposure to complex organic mixtures. (5) Increase the scientific capabilities of scientists in Kosova in the areas of epidemiology and industrial hygiene. This report introduced the Kosova gasification plant and the study design and summarizes the preliminary studies of 1981 to 1983, the detailed characterization campaign of 1984, the retrospective epidemiology study, ongoing clinical studies, and the successful technology transfer. It presents conclusions and recommendations from the industrial hygiene and epidemiology studies. 18 refs.

  6. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-06-17

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic. PMID:24938297

  7. Tar Management and Recycling in Biomass Gasification and Syngas Purification

    NASA Astrophysics Data System (ADS)

    McCaffrey, Zach

    Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.

  8. Gasification of agricultural residues (biomass): Influence of inorganic constituents

    SciTech Connect

    DeGroot, W.F.; Kannan, M.P.; Richards, G.N. ); Theander, O. )

    1990-01-01

    Four different biomass samples are included in this study, viz., sphagnum peat, wheat straw, sugar beet pulp, and potato pulp. They were chosen to represent a wide range of plant origin and inorganic content. This paper represents a preliminary investigation of an approach based on pyrolysis of biomass to produce volatile products and chars, followed by gasification of the chars. The particular interest lies in the investigation of the influence of the indigenous metal ions on the rate of gasification. Carbon dioxide has been used for the gasification, and the biomass was analyzed for nine metals, uronic acids (which are implicated in the binding of inorganic counterions), protein, and Klason lignin. The highest individual metal ion content was 13,964 ppm of potassium in potato pulp, and the gasification rates, under constant conditions, covered up to a 20-fold range, with char from potato pulp being the most readily gasified and char from peat the most resistant. The correlation of gasification rates with content of the major metal ions (alkali metals and alkaline earths) was poor. However, a high level of correlation was observed when wheat straw was omitted. It is speculated that the latter biomass may be anomalous with respect to the other three because of its high silica content.

  9. Hydrogen recovery from the thermal plasma gasification of solid waste.

    PubMed

    Byun, Youngchul; Cho, Moohyun; Chung, Jae Woo; Namkung, Won; Lee, Hyeon Don; Jang, Sung Duk; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo

    2011-06-15

    Thermal plasma gasification has been demonstrated as one of the most effective and environmentally friendly methods for solid waste treatment and energy utilization in many of studies. Therefore, the thermal plasma process of solid waste gasification (paper mill waste, 1.2 ton/day) was applied for the recovery of high purity H(2) (>99.99%). Gases emitted from a gasification furnace equipped with a nontransferred thermal plasma torch were purified using a bag-filter and wet scrubber. Thereafter, the gases, which contained syngas (CO+H(2)), were introduced into a H(2) recovery system, consisting largely of a water gas shift (WGS) unit for the conversion of CO to H(2) and a pressure swing adsorption (PSA) unit for the separation and purification of H(2). It was successfully demonstrated that the thermal plasma process of solid waste gasification, combined with the WGS and PSA, produced high purity H(2) (20 N m(3)/h (400 H(2)-Nm(3)/PMW-ton), up to 99.99%) using a plasma torch with 1.6 MWh/PMW-ton of electricity. The results presented here suggest that the thermal plasma process of solid waste gasification for the production of high purity H(2) may provide a new approach as a future energy infrastructure based on H(2). PMID:21497018

  10. Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.

    PubMed

    Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

  11. Countercurrent fixed-bed gasification of biomass at laboratory scale

    SciTech Connect

    Di Blasi, C.; Signorelli, G.; Portoricco, G.

    1999-07-01

    A laboratory-scale countercurrent fixed-bed gasification plant has been designed and constructed to produce data for process modeling and to compare the gasification characteristics of several biomasses (beechwood, nutshells, olive husks, and grape residues). The composition of producer gas and spatial temperature profiles have been measured for biomass gasification at different air flow rates. The gas-heating value always attains a maximum as a function of this operating variable, associated with a decrease of the air-to-fuel ratio. Optical gasification conditions of wood and agricultural residues give rise to comparable gas-heating values, comprised in the range 5--5.5 MJ/Nm{sup 3} with 28--30% CO, 5--7% CO{sub 2}, 6--8% H{sub 2}, 1--2% CH{sub 4}, and small amounts of C{sub 2}- hydrocarbons (apart from nitrogen). However, gasification of agricultural residues is more difficult because of bed transport, partial ash sintering, nonuniform flow distribution, and the presence of a muddy phase in the effluents, so that proper pretreatments are needed for largescale applications.

  12. Survey of biomass gasification. Volume III. Current technology and research

    SciTech Connect

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  13. Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier

    PubMed Central

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

  14. Release of fuel-bound nitrogen during biomass gasification

    SciTech Connect

    Zhou, J.; Masutani, S.M.; Ishimura, D.M.; Turn, S.Q.; Kinoshita, C.M.

    2000-03-01

    Gasification of four biomass feedstocks (leucaena, sawdust, bagasse, and banagrass) with significantly different fuel-bound nitrogen (FBN) content was investigated to determine the effects of operational parameters and nitrogen content of biomass on the partitioning of FBN among nitrogenous gas species. Experiments were performed using a bench-scale, indirectly heated, fluidized-bed gasifier. Data were obtained over a range of temperatures and equivalence ratios representative of commercial biomass gasification processes. An assay of all major nitrogenous components in the gasification products was performed for the first time, providing a clear accounting of the evolution of FBN. Important findings of this research include the following: (1) NH{sub 3} and N{sub 2} are the dominant species evolved from fuel nitrogen during biomass gasification; >90% of FBN in feedstock is converted to NH{sub 3} and N{sub 2}; (2) relative levels of NH{sub 3} and N{sub 2} are determined by thermochemical reactions in the gasifier; these reactions are affected strongly by temperature; (3) N{sub 2} appears to be primarily produced through the conversion of NH{sub 3} in the gas phase; (4) the structural formula and content of fuel nitrogen in biomass feedstock significantly affect the formation and evolution of nitrogen species during biomass gasification.

  15. Biofunctional Characteristics of Lignite Fly Ash Modified by Humates: A New Soil Conditioner

    PubMed Central

    Chassapis, Konstantinos; Roulia, Maria; Vrettou, Evangelia; Fili, Despina; Zervaki, Monica

    2010-01-01

    Fly ash superficially modified with humic substances from the Megalopolis lignitic power plant was prepared and evaluated for agricultural uses. UV-vis spectrophotometry and IR spectroscopy revealed that fly ash shows high sorption efficiency towards humic substances. Adsorption proceeds stepwise via strong Coulombic and hydrophophic forces of attraction between guest and host materials. Langmuir, Freundlich, BET, Harkins-Jura, and Dubinin-Radushkevich isotherm models were employed to evaluate the ongoing adsorption and shed light to the physicochemical properties of the sorbent-adsorbate system. Humic substances desorption and microbial cultivation experiments were also carried out to examine the regeneration of the humates under washing and explore the possibility of this material acclimatizing in real soil conditions, both useful for biofunctional agricultural applications. PMID:20592758

  16. Fluorescent carbon nano dots from lignite: unveiling the impeccable evidence for quantum confinement.

    PubMed

    Kumar Thiyagarajan, Senthil; Raghupathy, Suresh; Palanivel, Dharmalingam; Raji, Kaviyarasan; Ramamurthy, Perumal

    2016-04-28

    Synthesizing nano carbon from its bulk precursors is of recent research interest. In this report, luminescent carbon nanoparticles (CNPs) with tunable particle size and surface functionality are fabricated from lignite using ethylenediamine as the reactive solvent and surface passivating agent via different experimental methods. From the steady-state and time-resolved photophysical studies of these differently sized CNPs, it is unveiled that the energy of the excitons generated after photoexcitation is quantum confined, and it influences the observed photophysical behaviour significantly only when the particle size is less than 10 nm. A larger size of the CNPs and less surface functionalization lead to aggregation, and quenching of the fluorescence. But by dispersing smaller size CNPs in sodium sulfate matrix exhibits fluorescence in the solid state with an absolute fluorescence quantum yield of ∼34%. The prospective application of this hybrid material in sensing and removal of moisture in the atmosphere is illustrated. PMID:27067247

  17. Thermal effects of a basaltic intrusion on the Soma lignite bed in West Turkey

    SciTech Connect

    Karayigit, A.I.

    1998-01-01

    A mineable lignite bed (k1) in the Soma Formation from the southern part of the Soma basin is of middle Miocene age and was deposited in a lacustrine environment. Its thickness reaches up to 24 m, and it is extensively mined by open-pit methods. The Soma Formation was invaded by an olivine basaltic intrusion during the Pliocene-Pleistocene. The intrusion has resulted in a local contact metamorphic influence at the top level of the k1. The coal bed, on the basis of proximate analyses and random reflectance measurement (%Ro, random) of huminite/vitrinite of coals or groundmass of cokes, can be divided into normal coal, transition zone, and natural coke, differing in their degree of coal metamorphism. Closer to the contact point with the intrusion, moisture and volatile matter contents rapidly decrease, while calorific value and the %Ro, random values increase.

  18. Raman spectroscopic study of amorphous and crystalline hydrocarbons from soils, peats and lignite

    NASA Astrophysics Data System (ADS)

    Jehlička, Jan; Edwards, Howell G. M.; Villar, Susana E. J.; Pokorný, Jan

    2005-08-01

    FT-Raman spectra were obtained from the natural hydrocarbon mixtures ozokerite and hatchettite as well as from the terpenoid minerals fichtelite (norabietane) and hartite (α-phyllocladane). Some of these hydrocarbons occur in soil and peat environments of Holocene age. However, hartite occurs in lignite, in fossilised Glyptostrobus ( Taxodiaceae) trees and in pelosiderites of the Bílina Miocene series (about 20 Ma); it represents the accumulated and crystallised product of diagenetic transformation of precursor biogenic terpenoids. Raman spectra of earth waxes investigated confirm their dominantly aliphatic character and oxidative degradation (related to weathering and/or subaerial alteration in museum cabinets). Vibrational assignments are proposed and differences in Raman spectra of fichtelite and hartite discussed. Some of the individual features can be used for discrimination (e.g., hartite bands at 1480, 1310, 1287, 1041, 729 and 693 cm -1 and fichtelite bands at 1302, 836, 717 and 533 cm -1).

  19. Evaluating nephrotoxicity of high-molecular-weight organic compounds in drinking water from lignite aquifers

    USGS Publications Warehouse

    Bunnell, J.E.; Tatu, C.A.; Lerch, H.E.; Orem, W.H.; Pavlovic, N.

    2007-01-01

    High-molecular-weight organic compounds such as humic acids and/or fulvic acids that are naturally mobilized from lignite beds into untreated drinking-water supplies were suggested as one possible cause of Balkan endemic nephropathy (BEN) and cancer of the renal pelvis. A lab investigation was undertaken in order to assess the nephrotoxic potential of such organic compounds using an in vitro tissue culture model. Because of the infeasibility of exposing kidney tissue to low concentrations of organics for years in the lab, tangential flow ultrafiltration was employed to hyperconcentrate samples suitable for discerning effects in the short time frames necessitated by tissue culture systems. Effects on HK-2 kidney cells were measured using two different cell proliferation assays (MTT and alamarBlue). Results demonstrated that exposure of kidney tissue to high-molecular-weight organics produced excess cell death or proliferation depending on concentration and duration of exposure. Copyright ?? Taylor & Francis Group, LLC.

  20. Biofunctional characteristics of lignite fly ash modified by humates: a new soil conditioner.

    PubMed

    Chassapis, Konstantinos; Roulia, Maria; Vrettou, Evangelia; Fili, Despina; Zervaki, Monica

    2010-01-01

    Fly ash superficially modified with humic substances from the Megalopolis lignitic power plant was prepared and evaluated for agricultural uses. UV-vis spectrophotometry and IR spectroscopy revealed that fly ash shows high sorption efficiency towards humic substances. Adsorption proceeds stepwise via strong Coulombic and hydrophophic forces of attraction between guest and host materials. Langmuir, Freundlich, BET, Harkins-Jura, and Dubinin-Radushkevich isotherm models were employed to evaluate the ongoing adsorption and shed light to the physicochemical properties of the sorbent-adsorbate system. Humic substances desorption and microbial cultivation experiments were also carried out to examine the regeneration of the humates under washing and explore the possibility of this material acclimatizing in real soil conditions, both useful for biofunctional agricultural applications. PMID:20592758

  1. Application of artificial neural networks to co-combustion of hazelnut husk-lignite coal blends.

    PubMed

    Yıldız, Zeynep; Uzun, Harun; Ceylan, Selim; Topcu, Yıldıray

    2016-01-01

    The artificial neural network (ANN) theory is applied to thermal data obtained by non-isothermal thermogravimetric analysis (TGA) from room temperature to 1000°C at different heating rates in air to study co-combustion of hazelnut husk (HH)-lignite coal (LC) blends of various composition. The heating rate, blend ratio and temperature were used in the ANN analysis to predict the TG curves of the blends as parameters that affect the thermal behavior during combustion. The ANN model provides a good prediction of the TG curves for co-combustion with a coefficient of determination for the developed model of 0.9995. The agreement between the experimental data and the predicted values substantiated the accuracy of the ANN calculation. PMID:26476163

  2. Mineral matter identification in Nallihan lignite by leaching with mineral acids

    SciTech Connect

    Gulen, J.

    2007-02-15

    Coals are heterogeneous, complex noncrystalline macromolecules having both organic and inorganic materials that contain some inorganic constituents. Some techniques have been applied to this fossil fuel in order to remove these undesired inorganic parts from the organic part. Chemical demineralization is one of the suitable methods for removal of inorganic elements although it is an expensive way. But by this method, many elements are leached effectively from the lignite body from the point of economic view because these inorganic parts may cause some undesired deleterious effects. In this study, the demineralization effect of some aqueous acids of 5% such as HCl, H{sub 2}SO{sub 4}, HNO{sub 3}, and HF was studied. The effect of these mineral acids was shown by X-ray spectroscopy.

  3. Identification of organic matter from peat, leonardite and lignite fertilisers using humification parameters and electrofocusing.

    PubMed

    Cavani, L; Ciavatta, C; Gessa, C

    2003-01-01

    The organic matter extracted from peats (P), leonardites (Le) and lignites (Li) was characterised by humification parameters and electrofocusing (EF). The degree of humification and the humification index might be used to distinguish P from Le and Li, but not Le from Li because they showed overlapped values, while the humification rate could be used only for the identification of Le and EF profiles of P, Le and Li fertilisers revealed different band patterns: P samples did not show bands in the region with isoelectric point, pI > 4.4; Le samples showed very intense bands in the region with pI > 4.4; Li samples showed a very different band pattern with poorly resolved bands in the region with pI > 3.8. P, Le and Li samples can be distinguished by combining humification parameters and EF. PMID:12421008

  4. Spectroscopic study (DRIFT, SERS and 1H NMR) of peat, leonardite and lignite humic substances

    NASA Astrophysics Data System (ADS)

    Francioso, O.; Sànchez-Cortés, S.; Tugnoli, V.; Marzadori, C.; Ciavatta, C.

    2001-05-01

    Diffuse reflectance infrared Fourier transform, surface-enhanced Raman and proton nuclear magnetic resonance spectroscopies were applied to investigate the structure of humic acids (HA) extracted from peat (P-HA), leonardite (Le-HA) and lignite (Li-HA) samples. The combined use of these techniques has shown a specific pattern of functional groups for each sample. P-HA was characterised by a greater content of oxygenate (COOH, C-OH in carbohydrates and phenols) and aliphatic groups. Le-HA and Li-HA showed a lower content of sugar-like components and polyethers. On the other hand, the aromatic structures were ubiquitous in all samples, although the different composition in Le-HA and Li-HA could be employed to identify and distinguish the HA in these two kinds of humic materials.

  5. Kinetic studies of the liquid-phase adsorption of a reactive dye onto activated lignite

    SciTech Connect

    Petrolekas, P.D.; Maggenakis, G.

    2007-02-14

    The kinetics of batch adsorption of a commercial reactive dye onto activated lignite has been investigated at temperatures of 26, 40, and 55{sup o}C, using aqueous solutions with initial dye concentrations in the range of 15-60 mg/L. An empirical single parameter relationship of the adsorbent loading versus the square root of contact time was proposed, which was determined to provide a very good description of the batch adsorption transients up to equilibrium. The data were also examined by means of the Elovich equation. The effect of the temperature and the initial dye concentration on the adsorption kinetics was analyzed, and the results were discussed by considering that intraparticle diffusion is the dominant mechanism.

  6. Elements in the hair of non-mining workers of a lignite open mine in Neyveli.

    PubMed

    Sukumar, Athimoolam; Subramanian, Ramachandran

    2003-04-01

    Trace elements are analyzed in the human scalp hair to assess the extent of body burden of pollution. The levels of seven elements (Cd, Cr, Cu, Mn, Ni, Pb and Zn) were determined in the hair of fishermen from Pondicherry, students and businessmen from Madras and non-mining workers from Neyveli lignite open mine. When compared between them, significantly high concentrations of Cd in the non-mining workers from Neyveli and Pb in both the students and businessmen from Madras were observed, thereby indicating environmental source of Cd and Pb pollution. The low Zn level was observed in the fishermen indicating their low nutritional source. In addition to the different residential areas, age, diet, smoking habit and family income of subjects are other factors influencing the concentrations of elements in the hair. PMID:12725465

  7. Modeling of NOx emissions from fluidized bed combustion of high volatile lignites

    SciTech Connect

    Afacan, O.; Gogebakan, Y.; Selcuk, N.

    2007-01-15

    A comprehensive model, previously developed and tested for prediction of behavior of continuous fluidized bed combustors is extended to incorporate NOx formation and reduction reactions and applied to the simulation of Middle East Technical University (METU) 0.3 MW Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) burning lignites with high Volatile Matter/Fixed Carbon (VM/FC) ratios in their own ashes. Favorable comparisons are obtained between the predicted and measured temperatures and concentrations of gaseous species along the combustor. Results show that determination of partitioning of coal nitrogen into char-N and volatile-N, char combustion rate, and amount of volatile nitrogen released along the combustor are found to be the most important parameters that affect NO formation and reduction in bubbling fluidized bed combustors.

  8. Analysis of renewable energy sources and electric vehicle penetration into energy systems predominantly based on lignite

    NASA Astrophysics Data System (ADS)

    Dedinec, A.; Jovanovski, B.; Gajduk, A.; Markovska, N.; Kocarev, L.

    2016-05-01

    We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050.

  9. Assessment of selexolVAcid gas removal powers for use with Lurgi gasification

    SciTech Connect

    Apte, A.J.; Fein, H.L.

    1981-01-01

    Selexol acid gas removal as used with entrained-bed gasification is less expensive than the Rectisol process configuration generally used with Lurgi gasification. The objective of this study was to determine whether cost savings could be derived from using the Selexol process with Lurgi gasification or whether the Lurgi gas composition required use of a Rectisol clean-up unit. 5 refs.

  10. Depositional environment of the San Miguel lignite deposit in Atascosa and McMullen Counties, Texas

    SciTech Connect

    Gowan, S.W.

    1985-01-01

    An analysis of the environment of deposition of the San Miguel lignite deposit was carried out in order to understand newly discovered characteristics of the deposit. The environment of deposition of the overburden and underburden was evaluated through an interpretation of three continuous cores. Four coal cores and a highwall section were carefully described to determine the depositional environmental of the coal seams and partings. These studies were supplemented by the construction of seam and parting isopachs, and the analysis of the distribution of sulfur isotopes, sulfur, forms, and total sulfur within the coal. The sedimentary package is composed of a basal prograding barrier that beach, dune, and back-barrier sands. This unit correlates with a downdip sand that was also interpreted as a prograding barrier by other authors. The barrier is overlain by a series of slit and clay deposits of lagoonal, tidal flat, and tidal channel origin. These deposits are capped by restricted lagoon sediments composed of green, calcareous clays that occasionally contain shell layers. The restricted lagoon deposits formed when the barrier closed the lagoon off from the sea. Peat forming freshwater swamps eventually became established behind the barrier and on top of the restricted lagoon sediments. The parting isopachs reveal a reticulate morphology similar to the mangrove swamps located lateral to the modern Niger River Delta. The partings represent vegetated tidal flat deposits that formed during periodic invasions by the sea that killed the swamp and inundated the peat with sulfate rich water. The lignite interval is capped by open lagoon and tidal flat sediments.

  11. Modeling of combustion of low grade lignites in fluidized beds with heat extraction

    SciTech Connect

    Mancuhan, E.; Oezyl, E.

    1999-07-01

    A computerized model was developed for any low rank coal with a known particle size distribution and mass fraction. When the coal is fed into the bed, the volatile matter is assumed to be released instantaneously and a new particle size distribution is achieved within the bed. The effect of elutriation and chemical reactions are also taken into account. The model developed investigates the effect of excess air on elutriation, particle size distribution of the semi-coke, and the mass fraction values within the bed at steady state conditions. The excess air ranged from 1 to 1.48. The model also takes into account the effect of coal type on the bed temperature. As is already known, temperature may vary significantly from type to type in the low quality coal range, much more than in the high quality coal types. The results of the model simulation studies are compared with a limited amount of experimental work available for Turkish lignites. The agreement between the model prediction and the experimental data is reasonably good. Closer to the distributor plate, the bed temperature prediction of the model is low, but agreement improves as the active bed surface is reached. The results obtained from the model are presented for feed air temperatures of 300, 400, and 500 K for Seyitoemer lignite. If 60% of the desired heat is extracted from the active bed, the optimum results can be obtained. Under optimum conditions, 70% of the volatile matter is burned within the active bed and the remainder of the freeboard.

  12. Utilization of lignite power generation residues for the production of lightweight aggregates.

    PubMed

    Anagnostopoulos, Iason M; Stivanakis, Victor E

    2009-04-15

    A novel process is proposed for the utilization of lignite combustion solid residues in the production of inflammable lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering, and carbon contained in BA was used as the process fuel. The main residues bottom ash (BA) and fly ash (FA) from Megalopolis power plant were characterized, mixed in different proportions and treated through pelletization and sintering process. Sintering benefits from combustion of BA carbon content and the product is a hardened porous cake. The energy required for achievement of high temperatures, in the range of 1250 degrees C, was offered by carbon combustion and CO(2) evolution is responsible for porous structure formation. Selected physical properties of sintered material relevant to use as lightweight aggregates were determined, including bulk density, porosity and water absorption. Bulk density varies from 0.83 to 0.91 g/cm(3), porosity varies from 60% to 64% and water absorption varies from 66% to 80%. LWA formed is used for the production of lightweight aggregate concrete (LWAC). Thermal conductivity coefficient varies from 0.25 to 0.37 W/mK (lower than maximum limit 0.43 W/mK) and compressive strength varies from 19 to 23 MPa (higher than minimum limit 17 MPa). The results indicate that sintering of lignite combustion residues is an efficient method of utilization of carbon containing BA and production of LWA for structural and insulating purposes. Carbon content of BA is a key factor in LWA production. Finally, this research work comprises the first proposed application for utilization of BA in Greece. PMID:18804911

  13. Palynomorphs of the Hagel Bed (lignite), Sentinel Butte Formation, North Dakota

    SciTech Connect

    Steadman, E.N.

    1985-01-01

    The Hagel bed is an important economic lignite and is the lowermost named lignite in the Sentinel Butte Formation. The Hagel bed extends throughout the Knife River Basin coal-mining area of central North Dakota. Stratigraphic sections were measured from the highwalls of the Center mine, Glenharold mine and Falkirk mine. Samples from these stratigraphic sections were described and analyzed (using standard palynological techniques) for their palynomorph content. Pollen and spores proved to be well preserved and abundant. Over seventy palynomorph species and morphotypes were identified. Listed in Table 1 are some of the significant species present and their modern-day equivalents. The genera present suggest a wet, temperature, depositional environment. The palynologic data has been quantified (using conventional percentage-frequency data) to elucidate trends present. The samples have a relatively consistent palynoflora and tyically contain a combination of lowland swamp taxa (e.q. Sphagnum, and some Taxodiaceae) and an upland element (e.q. Corylus, Alnus, Pinus). This combination is interpreted as representing taxa living in the depositional environment (a swamp) along with taxa brought in as detritus from adjacent upland source areas. Palynomorphs of the family Taxodiaceae (such as redwoods, cyprus, and yews) are commonly the dominant forms in Hagel bed samples and are a major constituent in all of them. An abundance of this sort of microfossil suggests a very moist forest-moor type of depositional environment. The abundance of the Taxodiaceae in the associated claystones and silstones suggests that these were deposited in swamp marginal environment in the area studied. 3 references, 1 table.

  14. Advanced power assessment for Czech lignite task 3.6. Topical report

    SciTech Connect

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    Major reforms in the Czech energy sector have been initiated to reverse 40 years of central planning, subsidized energy pricing, unchecked pollution from coal-fired plants, concerns over nuclear safety and fuel cycle management, and dependence on the former U.S.S.R. for oil, gas, and nuclear fuel processing. Prices for electricity, heat, and natural gas paid by industry are close to western levels, but subsidized prices for households are as much as 40% lower and below economic cost. State control of major energy enterprises is being reduced by moving toward government-regulated, investor-owned companies to raise needed capital, but with a strategic stake retained by the state. Foreign firms will participate in privatization, but they are not expected to acquire a controlling interest in Czech energy companies. Economic conditions in the Czech Republic are now improving after the disruptions caused by restructuring since 1989 and separation of the former Czech and Slovak Federal Republics in January 1993. The downturn in the economy after 1989 was concentrated in energy-intensive heavy industry, and recovery is paced by consumer trade, services, light industry and construction. Energy use in relation to gross domestic product (GDP) has declined, but it is still significantly higher than in OECD (Organization for Economic Cooperation and Development) countries. The GDP increased by 2% in 1994 after dropping 22% between 1989 and 1993. A positive balance of payments has been achieved, with foreign investment offsetting a small trade deficit. The government`s external debt is only 4% of GDP. This report studies the application of lignite resources within the newly formulated energy policies of the republic, in light of a move toward privatization and stronger air pollution regulations. Lignite has represented the major energy source for the country.

  15. Thermophysical models of underground coal gasification and FEM analysis

    SciTech Connect

    Yang, L.H.

    2007-11-15

    In this study, mathematical models of the coupled thermohydromechanical process of coal rock mass in an underground coal gasification panel are established. Combined with the calculation example, the influence of heating effects on the observed values and simulated values for pore water pressure, stress, and displacement in the gasification panel are fully discussed and analyzed. Calculation results indicate that 38, 62, and 96 days after the experiment, the average relative errors for the calculated values and measured values for the temperature and water pressure were between 8.51-11.14% and 3-10%, respectively; with the passage of gasification time, the calculated errors for the vertical stress and horizontal stress gradually declined, but the simulated errors for the horizontal and vertical displacements both showed a rising trend. On the basis of the research results, the calculated values and the measured values agree with each other very well.

  16. Gasification of pelletized biomass in a pilot scale downdraft gasifier.

    PubMed

    Simone, Marco; Barontini, Federica; Nicolella, Cristiano; Tognotti, Leonardo

    2012-07-01

    This work presents a pilot-scale investigation aimed at assessing the feasibility and reliability of biomass pellet gasification. Wood sawdust and sunflower seeds pellets were tested in a 200 kW downdraft gasifier operating with air as gasifying agent. The gasification of pelletized biomass led to rather high and unstable pressure drops, reducing the gasifier productivity and stability. Furthermore the generation of fine residues compromised the operation of wet ash removal systems. On the other hand, good syngas compositions (H(2) 17.2%, N(2) 46.0%, CH(4) 2.5%, CO 21.2%, CO(2) 12.6%, and C(2)H(4) 0.4%), specific gas production (2.2-2.4 N m(3) kg(-1)) and cold gas efficiency (67.7-70.0%) were achieved. For these reasons pelletized biomass should be considered only as complementary fuel in co-gasification with other feedstock. PMID:22537399

  17. Coal gasification systems engineering and analysis. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

  18. Separating hydrogen from coal gasification gases with alumina membranes

    SciTech Connect

    Egan, B.Z. ); Fain, D.E.; Roettger, G.E.; White, D.E. )

    1991-01-01

    Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

  19. Development program to support industrial coal gasification. Quarterly report 1

    SciTech Connect

    1982-01-15

    The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

  20. A summary report on combustion and gasification processes

    SciTech Connect

    Rath, L.K.; Lee, G.T.

    1996-08-01

    Six poster papers regarding combustion and gasification were reviewed. These six papers address various different technology subjects: (1) underground coal gasification modeling, (2) wood gasification kinetics, (3) heat transfer surface pretreatment by iron implantation, (4) coal water slurry stabilization technology, (5) coal log pipeline technology, and (6) nuclear reactor decontamination. Summaries and comments of the following papers are presented: Characterization of Flow and Chemical Processes in an Underground Gasifier at Great Depth; Model for Reaction Kinetics in Pyrolysis of Wood; Development of a Stainless Steel Heat Transfer Surface with Low Scaling Tendency; Storage and Transportation of Coal Water Mixtures; Coal Log Pipeline: Development Status of the First Commercial System; and Decontamination of Nuclear Systems at the Grand Gulf Nuclear Station.