Science.gov

Sample records for lim-homeobox gene lhx2

  1. A role of the LIM-homeobox gene Lhx2 in the regulation of pituitary development

    PubMed Central

    Zhao, Yangu; Mailloux, Christina M.; Hermesz, Edit; Palkovits, Miklos; Westphal, Heiner

    2009-01-01

    The mammalian pituitary gland originates from two separate germinal tissues during embryonic development. The anterior and intermediate lobes of the pituitary are derived from Rathke's pouch, a pocket formed by an invagination of the oral ectoderm. The posterior lobe is derived from the infundibulum, which is formed by evagination of the neuroectoderm in the ventral diencephalon. Previous studies have shown that development of Rathke's pouch and the generation of distinct populations of hormone-producing endocrine cell lineages in the anterior/intermediate pituitary lobes is regulated by a number of transcription factors expressed in the pouch and by inductive signals from the ventral diencephalon/infundibulum. However, little is known about factors that regulate the development of the posterior pituitary lobe. In this study, we show that the LIM-homeobox gene Lhx2 is extensively expressed in the developing ventral diencephalon, including the infundibulum and the posterior lobe of the pituitary. Deletion of Lhx2 gene results in persistent cell proliferation, a complete failure of evagination of the neuroectoderm in the ventral diencephalon, and defects in the formation of the distinct morphological features of the infundibulum and the posterior pituitary lobe. Rathke's pouch is formed and endocrine cell lineages are generated in the anterior/intermediate pituitary lobes of the Lhx2 mutant. However, the shape and organization of the pouch and the anterior/intermediate pituitary lobes are severely altered due to the defects in development of the infundibulum and the posterior lobe. Our study thus reveals an essential role for Lhx2 in the regulation of posterior pituitary development and suggests a mechanism whereby development of the posterior lobe may affect the development of the anterior and intermediate lobes of the pituitary gland. PMID:19900438

  2. Transcription of follicle-stimulating hormone subunit genes is modulated by porcine LIM homeobox transcription factors, LHX2 and LHX3

    PubMed Central

    YOSHIDA, Saishu; KATO, Takako; NISHIMURA, Naoto; KANNO, Naoko; CHEN, Mo; UEHARU, Hiroki; NISHIHARA, Hiroto; KATO, Yukio

    2016-01-01

    The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ. These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fshβ between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fshβ varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fshβ promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage LβT2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fshβ. However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fshβ expression. PMID:26853788

  3. Transcription of follicle-stimulating hormone subunit genes is modulated by porcine LIM homeobox transcription factors, LHX2 and LHX3.

    PubMed

    Yoshida, Saishu; Kato, Takako; Nishimura, Naoto; Kanno, Naoko; Chen, Mo; Ueharu, Hiroki; Nishihara, Hiroto; Kato, Yukio

    2016-06-17

    The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ. These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fshβ between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fshβ varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fshβ promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage LβT2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fshβ. However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fshβ expression. PMID:26853788

  4. LIM homeobox transcription factor Lhx2 inhibits skeletal muscle differentiation in part via transcriptional activation of Msx1 and Msx2.

    PubMed

    Kodaka, Yusaku; Tanaka, Kiyoko; Kitajima, Kenji; Tanegashima, Kosuke; Matsuda, Ryoichi; Hara, Takahiko

    2015-02-15

    LIM homeobox transcription factor Lhx2 is known to be an important regulator of neuronal development, homeostasis of hair follicle stem cells, and self-renewal of hematopoietic stem cells; however, its function in skeletal muscle development is poorly understood. In this study, we found that overexpression of Lhx2 completely inhibits the myotube-forming capacity of C2C12 cells and primary myoblasts. The muscle dedifferentiation factors Msx1 and Msx2 were strongly induced by the Lhx2 overexpression. Short interfering RNA-mediated knockdown of Lhx2 in the developing limb buds of mouse embryos resulted in a reduction in Msx1 and Msx2 mRNA levels, suggesting that they are downstream target genes of Lhx2. We found two Lhx2 consensus-binding sites in the -2097 to -1189 genomic region of Msx1 and two additional sites in the -536 to +73 genomic region of Msx2. These sequences were shown by luciferase reporter assay to be essential for Lhx2-mediated transcriptional activation. Moreover, electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that Lhx2 is present in chromatin DNA complexes bound to the enhancer regions of the Msx1 and Msx2 genes. These data demonstrate that Msx1 and Msx2 are direct transcriptional targets of Lhx2. In addition, overexpression of Lhx2 significantly enhanced the mRNA levels of bone morphogenetic protein 4 and transforming growth factor beta family genes. We propose that Lhx2 is involved in the early stage of skeletal muscle development by inducing multiple differentiation inhibitory factors. PMID:25460335

  5. Early evolution of the LIM homeobox gene family

    SciTech Connect

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  6. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification

    PubMed Central

    2012-01-01

    Background Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx), which have highly conserved functions in neural specification in bilaterian animals. Results Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO) of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet). Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons) than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. Conclusion This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more diversified complements of

  7. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  8. LIM-homeobox gene Lhx5 is required for normal development of Cajal-Retzius cells.

    PubMed

    Miquelajáuregui, Amaya; Varela-Echavarría, Alfredo; Ceci, M Laura; García-Moreno, Fernando; Ricaño, Itzel; Hoang, Kimmi; Frade-Pérez, Daniela; Portera-Cailliau, Carlos; Tamariz, Elisa; De Carlos, Juan A; Westphal, Heiner; Zhao, Yangu

    2010-08-01

    Cajal-Retzius (C-R) cells play important roles in the lamination of the mammalian cortex via reelin secretion. The genetic mechanisms underlying the development of these neurons have just begun to be unraveled. Here, we show that two closely related LIM-homeobox genes Lhx1 and Lhx5 are expressed in reelin+ cells in various regions in the mouse telencephalon at or adjacent to sites where the C-R cells are generated, including the cortical hem, the mantle region of the septal/retrobulbar area, and the ventral pallium. Whereas Lhx5 is expressed in all of these reelin-expressing domains, Lhx1 is preferentially expressed in the septal area and in a continuous domain spanning from lateral olfactory region to caudomedial territories. Genetic ablation of Lhx5 results in decreased reelin+ and p73+ cells in the neocortical anlage, in the cortical hem, and in the septal, olfactory, and caudomedial telencephalic regions. The overall reduction in number of C-R cells in Lhx5 mutants is accompanied by formation of ectopic reelin+ cell clusters at the caudal telencephalon. Based on differential expression of molecular markers and by fluorescent cell tracing in cultured embryos, we located the origin of reelin+ ectopic cell clusters at the caudomedial telencephalic region. We also confirmed the existence of a normal migration stream of reelin+ cells from the caudomedial area to telencephalic olfactory territories in wild-type embryos. These results reveal a complex role for Lhx5 in regulating the development and normal distribution of C-R cells in the developing forebrain. PMID:20685998

  9. Lhx2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth.

    PubMed

    Tomann, Philip; Paus, Ralf; Millar, Sarah E; Scheidereit, Claus; Schmidt-Ullrich, Ruth

    2016-05-01

    In the epidermis of mice lacking transcription factor nuclear factor-kappa B (NF-κB) activity, primary hair follicle (HF) pre-placode formation is initiated without progression to proper placodes. NF-κB modulates WNT and SHH signaling at early stages of HF development, but this does not fully account for the phenotypes observed upon NF-κB inhibition. To identify additional NF-κB target genes, we developed a novel method to isolate and transcriptionally profile primary HF placodes with active NF-κB signaling. In parallel, we compared gene expression at the same developmental stage in NF-κB-deficient embryos and controls. This uncovered novel NF-κB target genes with potential roles in priming HF placodes for down-growth. Importantly, we identify Lhx2 (encoding a LIM/homeobox transcription factor) as a direct NF-κB target gene, loss of which replicates a subset of phenotypes seen in NF-κB-deficient embryos. Lhx2 and Tgfb2 knockout embryos exhibit very similar abnormalities in HF development, including failure of the E-cadherin suppression required for follicle down-growth. We show that TGFβ2 signaling is impaired in NF-κB-deficient and Lhx2 knockout embryos and that exogenous TGFβ2 rescues the HF phenotypes in Lhx2 knockout skin explants, indicating that it operates downstream of LHX2. These findings identify a novel NF-κB/LHX2/TGFβ2 signaling axis that is crucial for primary HF morphogenesis, which may also function more broadly in development and disease. PMID:26952977

  10. A LIM-homeobox gene is required for differentiation of Wnt-expressing cells at the posterior end of the planarian body.

    PubMed

    Hayashi, Tetsutaro; Motoishi, Minako; Yazawa, Shigenobu; Itomi, Kazu; Tanegashima, Chiharu; Nishimura, Osamu; Agata, Kiyokazu; Tarui, Hiroshi

    2011-09-01

    Planarians have high regenerative ability, which is dependent on pluripotent adult somatic stem cells called neoblasts. Recently, canonical Wnt/β-catenin signaling was shown to be required for posterior specification, and Hedgehog signaling was shown to control anterior-posterior polarity via activation of the Djwnt1/P-1 gene at the posterior end of planarians. Thus, various signaling molecules play an important role in planarian stem cell regulation. However, the molecular mechanisms directly involved in stem cell differentiation have remained unclear. Here, we demonstrate that one of the planarian LIM-homeobox genes, Djislet, is required for the differentiation of Djwnt1/P-1-expressing cells from stem cells at the posterior end. RNA interference (RNAi)-treated planarians of Djislet [Djislet(RNAi)] show a tail-less phenotype. Thus, we speculated that Djislet might be involved in activation of the Wnt signaling pathway in the posterior blastema. When we carefully examined the expression pattern of Djwnt1/P-1 by quantitative real-time PCR during posterior regeneration, we found two phases of Djwnt1/P-1 expression: the first phase was detected in the differentiated cells in the old tissue in the early stage of regeneration and then a second phase was observed in the cells derived from stem cells in the posterior blastema. Interestingly, Djislet is expressed in stem cell-derived DjPiwiA- and Djwnt1/P-1-expressing cells, and Djislet(RNAi) only perturbed the second phase. Thus, we propose that Djislet might act to trigger the differentiation of cells expressing Djwnt1/P-1 from stem cells. PMID:21828095

  11. Lhx2 regulates a cortex-specific mechanism for barrel formation

    PubMed Central

    Shetty, Ashwin S.; Godbole, Geeta; Maheshwari, Upasana; Padmanabhan, Hari; Chaudhary, Rahul; Muralidharan, Bhavana; Hou, Pei-Shan; Monuki, Edwin S.; Kuo, Hung-Chih; Rema, V.; Tole, Shubha

    2013-01-01

    LIM homeodomain transcription factors are critical regulators of early development in multiple systems but have yet to be examined for a role in circuit formation. The LIM homeobox gene Lhx2 is expressed in cortical progenitors during development and also in the superficial layers of the neocortex in maturity. However, analysis of Lhx2 function at later stages of cortical development has been hampered by severe phenotypes associated with early loss of function. We identified a particular Cre-recombinase line that acts in the cortical primordium after its specification is complete, permitting an analysis of Lhx2 function in neocortical lamination, regionalization, and circuit formation by selective elimination of Lhx2 in the dorsal telencephalon. We report a profound disruption of cortical neuroanatomical and molecular features upon loss of Lhx2 in the cortex from embryonic day 11.5. A unique feature of cortical circuitry, the somatosensory barrels, is undetectable, and molecular patterning of cortical regions appears disrupted. Surprisingly, thalamocortical afferents innervate the mutant cortex with apparently normal regional specificity. Electrophysiological recordings reveal a loss of responses evoked by stimulation of individual whiskers, but responses to simultaneous stimulation of multiple whiskers were present, suggesting that thalamic afferents are unable to organize the neurocircuitry for barrel formation because of a cortex-specific requirement of Lhx2. We report that Lhx2 is required for the expression of transcription factor paired box gene 6, axon guidance molecule Ephrin A5, and the receptor NMDA receptor 1. These genes may mediate Lhx2 function in the formation of specialized neurocircuitry necessary for neocortical function. PMID:24262147

  12. Postmitotic regulation of sensory area patterning in the mammalian neocortex by Lhx2

    PubMed Central

    Perez-Garcia, Carlos G.; Wang, Chia-Fang; Chou, Shen-Ju; O’Leary, Dennis D. M.

    2015-01-01

    Current knowledge suggests that cortical sensory area identity is controlled by transcription factors (TFs) that specify area features in progenitor cells and subsequently their progeny in a one-step process. However, how neurons acquire and maintain these features is unclear. We have used conditional inactivation restricted to postmitotic cortical neurons in mice to investigate the role of the TF LIM homeobox 2 (Lhx2) in this process and report that in conditional mutant cortices area patterning is normal in progenitors but strongly affected in cortical plate (CP) neurons. We show that Lhx2 controls neocortical area patterning by regulating downstream genetic and epigenetic regulators that drive the acquisition of molecular properties in CP neurons. Our results question a strict hierarchy in which progenitors dominate area identity, suggesting a novel and more comprehensive two-step model of area patterning: In progenitors, patterning TFs prespecify sensory area blueprints. Sequentially, sustained function of alignment TFs, including Lhx2, is essential to maintain and to translate the blueprints into functional sensory area properties in cortical neurons postmitotically. Our results reemphasize critical roles for Lhx2 that acts as one of the terminal selector genes in controlling principal properties of neurons. PMID:25971728

  13. Early embryonic expression of a LIM-homeobox gene Cs-lhx3 is downstream of beta-catenin and responsible for the endoderm differentiation in Ciona savignyi embryos.

    PubMed

    Satou, Y; Imai, K S; Satoh, N

    2001-09-01

    In early Ciona embryos, nuclear accumulation of beta-catenin is most probably the first step of endodermal cell specification. If beta-catenin is mis- and/or overexpressed, presumptive notochord cells and epidermal cells change their fates into endodermal cells, whereas if beta-catenin nuclear localization is downregulated by the overexpression of cadherin, the endoderm differentiation is suppressed, accompanied with the differentiation of extra epidermal cells ( Imai, K., Takada, N., Satoh, N. and Satou, Y. (2000) Development 127, 3009-3020). Subtractive hybridization screens of mRNAs between beta-catenin overexpressed embryos and cadherin overexpressed embryos were conducted to identify potential beta-catenin target genes that are responsible for endoderm differentiation in Ciona savignyi embryos. We found that a LIM-homeobox gene (Cs-lhx3), an otx homolog (Cs-otx) and an NK-2 class gene (Cs-ttf1) were among beta-catenin downstream genes. In situ hybridization signals for early zygotic expression of Cs-lhx3 were evident only in the presumptive endodermal cells as early as the 32-cell stage, those of Cs-otx in the mesoendodermal cells at the 32-cell stage and those of Cs-ttf1 in the endodermal cells at the 64-cell stage. Later, Cs-lhx3 was expressed again in a set of neuronal cells in the tailbud embryo, while Cs-otx was expressed in the anterior nervous system of the embryo. Expression of all three genes was upregulated in beta-catenin overexpressed embryos and downregulated in cadherin overexpressed embryos. Injection of morpholino oligonucleotides against Cs-otx did not affect the embryonic endoderm differentiation, although the formation of the central nervous system was suppressed. Injection of Cs-ttf1 morpholino oligonucleotides also failed to suppress the endoderm differentiation, although injection of its synthetic mRNAs resulted in ectopic development of endoderm differentiation marker alkaline phosphatase. By contrast, injection of Cs-lhx3 morpholino

  14. LIM Homeobox Domain 2 Is Required for Corneal Epithelial Homeostasis

    PubMed Central

    Sartaj, Rachel; Chee, Ru‐ik; Yang, Jing; Wan, Pengxia; Liu, Aihong; Guaiquil, Victor; Fuchs, Elaine

    2016-01-01

    Abstract The cornea requires constant epithelial renewal to maintain clarity for appropriate vision. A subset of stem cells residing at the limbus is primarily responsible for maintaining corneal epithelium homeostasis. Trauma and disease may lead to stem cell deficiency and therapeutic targeting to replenish the stemness capacity has been stalled by the lack of reliable corneal epithelial stem cell markers. Here we identified the location of Lhx2 in mice (mLhx2) cornea and conjunctival tissue using an Lhx2eGFP reporter model and in human tissues (hLHX2). Lhx2 localized to the basal cells of central cornea, the conjunctiva and the entire limbal epithelium in humans and mice. To ascribe a functional role we generated Lhx2 conditional knockout (cKO) mice and the phenotypic effects in corneas were analyzed by slit lamp microscopy, in cell‐based assays and in a model of corneal epithelium debridement. Immunodetection on corneal sections were used to visualize conjunctivalization, a sign of limbal barrier failure. Lhx2cKO mice produced reduced body hair and spontaneous epithelial defects in the cornea that included neovascularization, perforation with formation of scar tissue and opacification. Cell based assays showed that Lhx2cKO derived corneal epithelial cells have a significantly lower capacity to form colonies over time and delayed wound‐healing recovery when compared to wildtype cells. Repeated corneal epithelial wounding resulted in decreased re‐epithelialization and multiple cornea lesions in Lhx2cKO mice compared to normal recovery seen in wildtype mice. We conclude that Lhx2 is required for maintenance of the corneal epithelial cell compartment and the limbal barrier. Stem Cells 2016;34:493–503 PMID:26661907

  15. LIM Homeobox Domain 2 Is Required for Corneal Epithelial Homeostasis.

    PubMed

    Sartaj, Rachel; Chee, Ru-ik; Yang, Jing; Wan, Pengxia; Liu, Aihong; Guaiquil, Victor; Fuchs, Elaine; Rosenblatt, Mark I

    2016-02-01

    The cornea requires constant epithelial renewal to maintain clarity for appropriate vision. A subset of stem cells residing at the limbus is primarily responsible for maintaining corneal epithelium homeostasis. Trauma and disease may lead to stem cell deficiency and therapeutic targeting to replenish the stemness capacity has been stalled by the lack of reliable corneal epithelial stem cell markers. Here we identified the location of Lhx2 in mice (mLhx2) cornea and conjunctival tissue using an Lhx2eGFP reporter model and in human tissues (hLHX2). Lhx2 localized to the basal cells of central cornea, the conjunctiva and the entire limbal epithelium in humans and mice. To ascribe a functional role we generated Lhx2 conditional knockout (cKO) mice and the phenotypic effects in corneas were analyzed by slit lamp microscopy, in cell-based assays and in a model of corneal epithelium debridement. Immunodetection on corneal sections were used to visualize conjunctivalization, a sign of limbal barrier failure. Lhx2cKO mice produced reduced body hair and spontaneous epithelial defects in the cornea that included neovascularization, perforation with formation of scar tissue and opacification. Cell based assays showed that Lhx2cKO derived corneal epithelial cells have a significantly lower capacity to form colonies over time and delayed wound-healing recovery when compared to wildtype cells. Repeated corneal epithelial wounding resulted in decreased re-epithelialization and multiple cornea lesions in Lhx2cKO mice compared to normal recovery seen in wildtype mice. We conclude that Lhx2 is required for maintenance of the corneal epithelial cell compartment and the limbal barrier. PMID:26661907

  16. Molecular cloning of LIM homeodomain transcription factor Lhx2 as a transcription factor of porcine follicle-stimulating hormone beta subunit (FSHβ) gene.

    PubMed

    Kato, Takako; Ishikawa, Akio; Yoshida, Saishu; Sano, Yoshiya; Kitahara, Kousuke; Nakayama, Michie; Susa, Takao; Kato, Yukio

    2012-01-01

    We cloned the LIM-homeodomain protein LHX2 as a transcription factor for the porcine follicle-stimulating hormone β subunit gene (Fshβ) by the Yeast One-Hybrid Cloning System using the upstream region of -852/-746 bases (b) from the transcription start site, called Fd2, as a bait sequence. The reporter assay in LβT2 and CHO cells revealed the presence of an LHX2-responsive region other than Fd2. A potential LHX2 binding sequence was confirmed as AATTAAT containing a consensus homeodomain binding core sequence AATT by Systematic Evolution of Ligands by Exponential Enrichment analysis. DNase I footprinting demonstrated three AATTAAT sequences located at regions -835/-829, -818/-812 and -806/-800 b in the Fd2 region and 12 binding sites in the distal and proximal regions mostly containing an AATT-core sequence. RT-PCR analysis of Lhx2 expression during porcine fetal and postnatal pituitary development showed a gradual increase from fetal day (f) 40 to postnatal day (p) 8 followed by a slight decrease to p230, suggesting that LHX2 may play its role largely in the late fetal and postnatal periods. The analyses of Lhx2 expression in pituitary tumor-derived cell lines showed their expressions in cell lines including αT31, LβT2 and others. Since LHX2 was previously identified as a transcription factor for Cga and the in vitro experiments in the present study suggested that LHX2 regulated the expression of Fshβ, it is possible that LHX2 controls the synthesis of FSH at the transcription level. PMID:22134063

  17. Highly Upregulated Lhx2 in the Foxn1−/− Nude Mouse Phenotype Reflects a Dysregulated and Expanded Epidermal Stem Cell Niche

    PubMed Central

    Bohr, Stefan; Patel, Suraj J.; Vasko, Radovan; Shen, Keyue; Huang, Guofeng; Yarmush, Martin L.; Berthiaume, Francois

    2013-01-01

    Hair cycling is a prime example of stem cell dependent tissue regeneration and replenishment, and its regulatory mechanisms remain poorly understood. In the present study, we evaluated the effect of a blockage in terminal keratinocytic lineage differentiation in the Foxn1−/− nude phenotype on the epithelial progeny. Most notably we found a constitutive upregulation of LIM homeobox protein 2 (Lhx2), a marker gene of epithelial stem cellness indispensible for hair cycle progression. However, histological evidence along with an erratic, acyclic rise of otherwise suppressed CyclinD1 levels along with several key markers of keratinocyte lineage differentiation indicate a frustrated expansion of epithelial stem cell niches in skin. In addition, CD49f/CD34/CD200–based profiling demonstrated highly significant shifts in subpopulations of epithelial progeny. Intriguingly this appeared to include the expansion of Oct4+ stem cells in dermal fractions of skin isolates in the Foxn1 knock-out opposed to wild type. Overall our findings indicate that the Foxn1−/− phenotype has a strong impact on epithelial progeny and thus offers a promising model to study maintenance and regulation of stem cell niches within skin not feasible in other in vitro or in vivo models. PMID:23696871

  18. LIM homeobox protein 5 (Lhx5) is essential for mamillary body development

    PubMed Central

    Miquelajáuregui, Amaya; Sandoval-Schaefer, Teresa; Martínez-Armenta, Miriam; Pérez-Martínez, Leonor; Cárabez, Alfonso; Zhao, Yangu; Heide, Michael; Alvarez-Bolado, Gonzalo; Varela-Echavarría, Alfredo

    2015-01-01

    The mamillary body (MM) is a group of hypothalamic nuclei related to memory and spatial navigation that interconnects hippocampal, thalamic, and tegmental regions. Here we demonstrate that Lhx5, a LIM-HD domain transcription factor expressed early in the developing posterior hypothalamus, is required for the generation of the MM and its derived tracts. The MM markers Foxb1, Sim2, and Lhx1 are absent in Lhx5 knock-out mice from early embryonic stages, suggesting abnormal specification of this region. This was supported by the absence of Nkx2.1 and expansion of Shh in the prospective mamillary area. Interestingly, we also found an ectopic domain expressing Lhx2 and Lhx9 along the anterio-posterior hypothalamic axis. Our results suggest that Lhx5 controls early aspects of hypothalamic development by regulating gene expression and cellular specification in the prospective MM. PMID:26578897

  19. LIM homeobox protein 5 (Lhx5) is essential for mamillary body development.

    PubMed

    Miquelajáuregui, Amaya; Sandoval-Schaefer, Teresa; Martínez-Armenta, Miriam; Pérez-Martínez, Leonor; Cárabez, Alfonso; Zhao, Yangu; Heide, Michael; Alvarez-Bolado, Gonzalo; Varela-Echavarría, Alfredo

    2015-01-01

    The mamillary body (MM) is a group of hypothalamic nuclei related to memory and spatial navigation that interconnects hippocampal, thalamic, and tegmental regions. Here we demonstrate that Lhx5, a LIM-HD domain transcription factor expressed early in the developing posterior hypothalamus, is required for the generation of the MM and its derived tracts. The MM markers Foxb1, Sim2, and Lhx1 are absent in Lhx5 knock-out mice from early embryonic stages, suggesting abnormal specification of this region. This was supported by the absence of Nkx2.1 and expansion of Shh in the prospective mamillary area. Interestingly, we also found an ectopic domain expressing Lhx2 and Lhx9 along the anterio-posterior hypothalamic axis. Our results suggest that Lhx5 controls early aspects of hypothalamic development by regulating gene expression and cellular specification in the prospective MM. PMID:26578897

  20. Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis

    PubMed Central

    de Melo, Jimmy; Clark, Brian S.; Blackshaw, Seth

    2016-01-01

    Müller glia (MG) are the principal glial cell type in the vertebrate retina. Recent work has identified the LIM homeodomain factor encoding gene Lhx2 as necessary for both Notch signaling and MG differentiation in late-stage retinal progenitor cells (RPCs). However, the extent to which Lhx2 interacts with other intrinsic regulators of MG differentiation is unclear. We investigated this question by investigating the effects of overexpression of multiple transcriptional regulators that are either known or hypothesized to control MG formation, in both wildtype and Lhx2-deficient RPCs. We observe that constitutively elevated Notch signaling, induced by N1ICD electroporation, inhibited gliogenesis in wildtype animals, but rescued MG development in Lhx2-deficient retinas. Electroporation of Nfia promoted the formation of cells with MG-like radial morphology, but did not drive expression of MG molecular markers. Plagl1 and Sox9 did not induce gliogenesis in wildtype animals, but nonetheless activated expression of the Müller marker P27Kip1 in Lhx2-deficient cells. Finally, Sox2, Sox8, and Sox9 promoted amacrine cell formation in Lhx2-deficient cells, but not in wildtype retinas. These findings demonstrate that overexpression of individual gliogenic factors typically regulates only a subset of characteristic MG markers, and that these effects are differentially modulated by Lhx2. PMID:27605455

  1. Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis.

    PubMed

    de Melo, Jimmy; Clark, Brian S; Blackshaw, Seth

    2016-01-01

    Müller glia (MG) are the principal glial cell type in the vertebrate retina. Recent work has identified the LIM homeodomain factor encoding gene Lhx2 as necessary for both Notch signaling and MG differentiation in late-stage retinal progenitor cells (RPCs). However, the extent to which Lhx2 interacts with other intrinsic regulators of MG differentiation is unclear. We investigated this question by investigating the effects of overexpression of multiple transcriptional regulators that are either known or hypothesized to control MG formation, in both wildtype and Lhx2-deficient RPCs. We observe that constitutively elevated Notch signaling, induced by N1ICD electroporation, inhibited gliogenesis in wildtype animals, but rescued MG development in Lhx2-deficient retinas. Electroporation of Nfia promoted the formation of cells with MG-like radial morphology, but did not drive expression of MG molecular markers. Plagl1 and Sox9 did not induce gliogenesis in wildtype animals, but nonetheless activated expression of the Müller marker P27(Kip1) in Lhx2-deficient cells. Finally, Sox2, Sox8, and Sox9 promoted amacrine cell formation in Lhx2-deficient cells, but not in wildtype retinas. These findings demonstrate that overexpression of individual gliogenic factors typically regulates only a subset of characteristic MG markers, and that these effects are differentially modulated by Lhx2. PMID:27605455

  2. The LIM Homeodomain Factor Lhx2 Is Required for Hypothalamic Tanycyte Specification and Differentiation

    PubMed Central

    Salvatierra, Juan; Lee, Daniel A.; Zibetti, Cristina; Duran-Moreno, Maria; Yoo, Sooyeon; Newman, Elizabeth A.; Wang, Hong; Bedont, Joseph L.; de Melo, Jimmy; Miranda-Angulo, Ana L.; Gil-Perotin, Sara; Garcia-Verdugo, Jose Manuel

    2014-01-01

    Hypothalamic tanycytes, a radial glial-like ependymal cell population that expresses numerous genes selectively enriched in embryonic hypothalamic progenitors and adult neural stem cells, have recently been observed to serve as a source of adult-born neurons in the mammalian brain. The genetic mechanisms that regulate the specification and maintenance of tanycyte identity are unknown, but are critical for understanding how these cells can act as adult neural progenitor cells. We observe that LIM (Lin-11, Isl-1, Mec-3)-homeodomain gene Lhx2 is selectively expressed in hypothalamic progenitor cells and tanycytes. To test the function of Lhx2 in tanycyte development, we used an intersectional genetic strategy to conditionally delete Lhx2 in posteroventral hypothalamic neuroepithelium, both embryonically and postnatally. We observed that tanycyte development was severely disrupted when Lhx2 function was ablated during embryonic development. Lhx2-deficient tanycytes lost expression of tanycyte-specific genes, such as Rax, while also displaying ectopic expression of genes specific to cuboid ependymal cells, such as Rarres2. Ultrastructural analysis revealed that mutant tanycytes exhibited a hybrid identity, retaining radial morphology while becoming multiciliated. In contrast, postnatal loss of function of Lhx2 resulted only in loss of expression of tanycyte-specific genes. Using chromatin immunoprecipitation, we further showed that Lhx2 directly regulated expression of Rax, an essential homeodomain factor for tanycyte development. This study identifies Lhx2 as a key intrinsic regulator of tanycyte differentiation, sustaining Rax-dependent activation of tanycyte-specific genes while also inhibiting expression of ependymal cell-specific genes. These findings provide key insights into the transcriptional regulatory network specifying this still poorly characterized cell type. PMID:25505333

  3. Lhx2 Is an Essential Factor for Retinal Gliogenesis and Notch Signaling

    PubMed Central

    de Melo, Jimmy; Zibetti, Cristina; Clark, Brian S.; Hwang, Woochang; Miranda-Angulo, Ana L.; Qian, Jiang

    2016-01-01

    Müller glia (MG) are the only glial cell type produced by the neuroepithelial progenitor cells that generate the vertebrate retina. MG are required to maintain retinal homeostasis and support the survival of retinal neurons. Furthermore, in certain vertebrate classes, MG function as adult stem cells, mediating retinal regeneration in response to injury. However, the mechanisms that regulate MG development are poorly understood because there is considerable overlap in gene expression between retinal progenitor cells and differentiated MG. We show that the LIM homeodomain transcription factor Lhx2 is required for the development of MG in the mouse retina. Temporally controlled knock-out studies reveal a requirement for Lhx2 during all stages of MG development, ranging from the proliferation of gliocompetent retinal progenitors, activation of Müller-specific gene expression, and terminal differentiation of MG morphological features. We show that Lhx2 regulates gliogenesis in part by regulating directly the expression of Notch pathway genes including Notch1, Dll1, and Dll3 and gliogenic transcription factors such as Hes1, Hes5, Sox8, and Rax. Conditional knock-out of Lhx2 resulted in a rapid downregulation of Notch pathway genes and loss of Notch signaling. We further demonstrate that Müller gliogenesis induced by misexpression of the potently gliogenic Notch pathway transcriptional effector Hes5 requires Lhx2 expression. These results indicate that Lhx2 not only directly regulates expression of Notch signaling pathway components, but also acts together with the gliogenic Notch pathway to drive MG specification and differentiation. SIGNIFICANCE STATEMENT Müller glia (MG) are radial glial cells located in the vertebrate retina that are essential for the function and survival of retinal neurons. We found the LIM homeodomain transcription factor Lhx2 to be expressed in both retinal progenitor cells and MG. Using conditional knock-outs, we show that Lhx2 is required

  4. Lhx2 is necessary for the maintenance of optic identity and for the progression of optic morphogenesis

    PubMed Central

    Roy, Achira; de Melo, Jimmy; Chaturvedi, Dhananjay; Thein, Thuzar; Cabrera-Socorro, Alfredo; Houart, Corinne; Meyer, Gundela; Blackshaw, Seth; Tole, Shubha

    2013-01-01

    Eye formation is regulated by a complex network of eye field transcription factors (EFTFs) including LIM-homeodomain gene Lhx2. We disrupted Lhx2 function at different stages during this process using a conditional knockout strategy in mice. We find that Lhx2 function is required in an ongoing fashion to maintain optic identity across multiple stages, from the formation of the optic vesicle to the differentiation of the neuroretina. At each stage loss of Lhx2 led to upregulation of a set of molecular markers that are normally expressed in the thalamic eminence and in the anterodorsal hypothalamus in a portion of the optic vesicle or retina. Furthermore, the longer Lhx2 function was maintained, the further optic morphogenesis progressed. Early loss of function caused profound mispatterning of the entire telencephalic-optic-hypothalamic field, such that the optic vesicle became mispositioned and appeared to arise from the diencephalic-telencephalic boundary (DTB). At subsequent stages, loss of Lhx2 did not affect optic vesicle position, but caused arrest of optic cup formation. If Lhx2 was selectively disrupted in the neuroretina from E11.5, the neuroretina showed gross dysmorphology along with aberrant expression of markers specific to the thalamic eminence and anterodorsal hypothalamus. Our findings indicate a continual requirement for Lhx2 throughout the early stages of optic development, not only to maintain optic identity by suppressing alternative fates, but also to mediate multiple steps of optic morphogenesis. These findings provide new insight into the anophthalmic phenotype of the Lhx2 mutant and reveal novel roles for this transcription factor in eye development. PMID:23595746

  5. Lhx2 Is an Essential Factor for Retinal Gliogenesis and Notch Signaling.

    PubMed

    de Melo, Jimmy; Zibetti, Cristina; Clark, Brian S; Hwang, Woochang; Miranda-Angulo, Ana L; Qian, Jiang; Blackshaw, Seth

    2016-02-24

    Müller glia (MG) are the only glial cell type produced by the neuroepithelial progenitor cells that generate the vertebrate retina. MG are required to maintain retinal homeostasis and support the survival of retinal neurons. Furthermore, in certain vertebrate classes, MG function as adult stem cells, mediating retinal regeneration in response to injury. However, the mechanisms that regulate MG development are poorly understood because there is considerable overlap in gene expression between retinal progenitor cells and differentiated MG. We show that the LIM homeodomain transcription factor Lhx2 is required for the development of MG in the mouse retina. Temporally controlled knock-out studies reveal a requirement for Lhx2 during all stages of MG development, ranging from the proliferation of gliocompetent retinal progenitors, activation of Müller-specific gene expression, and terminal differentiation of MG morphological features. We show that Lhx2 regulates gliogenesis in part by regulating directly the expression of Notch pathway genes including Notch1, Dll1, and Dll3 and gliogenic transcription factors such as Hes1, Hes5, Sox8, and Rax. Conditional knock-out of Lhx2 resulted in a rapid downregulation of Notch pathway genes and loss of Notch signaling. We further demonstrate that Müller gliogenesis induced by misexpression of the potently gliogenic Notch pathway transcriptional effector Hes5 requires Lhx2 expression. These results indicate that Lhx2 not only directly regulates expression of Notch signaling pathway components, but also acts together with the gliogenic Notch pathway to drive MG specification and differentiation. PMID:26911688

  6. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  7. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells.

    PubMed

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. PMID:24995995

  8. Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb.

    PubMed

    Kania, A; Johnson, R L; Jessell, T M

    2000-07-21

    Motor neurons extend axons along specific trajectories, but the molecules that control their pathfinding remain poorly defined. We show that two LIM homeodomain transcription factors, Lim1 and Lmx1b, control the initial trajectory of motor axons in the developing mammalian limb. The expression of Lim1 by a lateral set of lateral motor column (LMC) neurons ensures that their axons select a dorsal trajectory in the limb. In a complementary manner, the expression of Lmx1b by dorsal limb mesenchymal cells controls the dorsal and ventral axonal trajectories of medial and lateral LMC neurons. In the absence of these two proteins, motor axons appear to select dorsal and ventral trajectories at random. Thus, LIM homeodomain proteins act within motor neurons and cells that guide motor axons to establish the fidelity of a binary choice in axonal trajectory. PMID:10943837

  9. Lhx2-dependent specification of olfactory sensory neurons is required for successful integration of olfactory, vomeronasal, and GnRH neurons.

    PubMed

    Berghard, Anna; Hägglund, Anna-Carin; Bohm, Staffan; Carlsson, Leif

    2012-08-01

    Inactivation of the LIM-homeodomain 2 gene (Lhx2) results in a severe defect in specification of olfactory sensory neurons (OSNs). However, the ramifications of lack of Lhx2-dependent OSN specification for formation of the primary olfactory pathway have not been addressed, since mutant mice die in utero. We have analyzed prenatal and postnatal consequences of conditionally inactivating Lhx2 selectively in OSNs. A cell-autonomous effect is that OSN axons cannot innervate their target, the olfactory bulb. Moreover, the lack of Lhx2 in OSNs causes unpredicted, non-cell-autonomous phenotypes. First, the olfactory bulb shows pronounced hypoplasia in adults, and the data suggest that innervation by correctly specified OSNs is necessary for adult bulb size and organization. Second, absence of an olfactory nerve in the conditional mutant reveals that the vomeronasal nerve is dependent on olfactory nerve formation. Third, the lack of a proper vomeronasal nerve prevents migration of gonadotropin-releasing hormone (GnRH) cells the whole distance to their final positions in the hypothalamus during embryo development. As adults, the conditional mutants do not pass puberty, and these findings support the view of an exclusive nasal origin of GnRH neurons in the mouse. Thus, Lhx2 in OSNs is required for functional development of three separate systems. PMID:22581782

  10. Lhx2 Regulates the Development of the Forebrain Hem System

    PubMed Central

    Roy, Achira; Gonzalez-Gomez, Miriam; Pierani, Alessandra; Meyer, Gundela; Tole, Shubha

    2014-01-01

    Early brain development is regulated by the coordinated actions of multiple signaling centers at key boundaries between compartments. Three telencephalic midline structures are in a position to play such roles in forebrain patterning: The cortical hem, the septum, and the thalamic eminence at the diencephalic–telencephalic boundary. These structures express unique complements of signaling molecules, and they also produce distinct populations of Cajal–Retzius cells, which are thought to act as “mobile patterning units,” migrating tangentially to cover the telencephalic surface. We show that these 3 structures require the transcription factor Lhx2 to delimit their extent. In the absence of Lhx2 function, all 3 structures are greatly expanded, and the Cajal–Retzius cell population is dramatically increased. We propose that the hem, septum, and thalamic eminence together form a “forebrain hem system” that defines and regulates the formation of the telencephalic midline. Disruptions in the forebrain hem system may be implicated in severe brain malformations such as holoprosencephaly. Lhx2 functions as a central regulator of this system's development. Since all components of the forebrain hem system have been identified across several vertebrate species, the mechanisms that regulate them may have played a fundamental role in driving key aspects of forebrain evolution. PMID:23307637

  11. Lhx2 regulates the timing of β-catenin-dependent cortical neurogenesis.

    PubMed

    Hsu, Lea Chia-Ling; Nam, Sean; Cui, Yi; Chang, Ching-Pu; Wang, Chia-Fang; Kuo, Hung-Chih; Touboul, Jonathan D; Chou, Shen-Ju

    2015-09-29

    The timing of cortical neurogenesis has a major effect on the size and organization of the mature cortex. The deletion of the LIM-homeodomain transcription factor Lhx2 in cortical progenitors by Nestin-cre leads to a dramatically smaller cortex. Here we report that Lhx2 regulates the cortex size by maintaining the cortical progenitor proliferation and delaying the initiation of neurogenesis. The loss of Lhx2 in cortical progenitors results in precocious radial glia differentiation and a temporal shift of cortical neurogenesis. We further investigated the underlying mechanisms at play and demonstrated that in the absence of Lhx2, the Wnt/β-catenin pathway failed to maintain progenitor proliferation. We developed and applied a mathematical model that reveals how precocious neurogenesis affected cortical surface and thickness. Thus, we concluded that Lhx2 is required for β-catenin function in maintaining cortical progenitor proliferation and controls the timing of cortical neurogenesis. PMID:26371318

  12. Transcription Factor CTIP2 Maintains Hair Follicle Stem Cell Pool and Contributes to Altered Expression of LHX2 and NFATC1.

    PubMed

    Bhattacharya, Shreya; Wheeler, Heather; Leid, Mark; Ganguli-Indra, Gitali; Indra, Arup K

    2015-11-01

    Transcription factor CTIP2 (chicken ovalbumin upstream promoter transcription factor-interacting protein 2), also known as BCL11B, is expressed in hair follicles (HFs) of embryonic and adult skin. Ctip2-null mice exhibit reduced HF density during embryonic development. In contrast, conditional inactivation of Ctip2 in the epidermis (Ctip2(ep-/-) mice) leads to a shorter telogen and a premature entry into anagen during the second phase of hair cycling without a detectable change in the number of HFs. Keratinocytes of the bulge stem cells (SCs) niche of Ctip2(ep-/-) mice proliferate more and undergo reduced apoptosis compared with the corresponding cells of wild-type mice. However, premature activation of follicular SCs in mice lacking CTIP2 leads to the exhaustion of this SC compartment in comparison with Ctip2(L2/L2) mice, which retained quiescent follicle SCs. CTIP2 modulates expression of genes encoding EGFR and NOTCH1 during formation of HFs and those encoding nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 and LIM homeobox 2 during normal hair cycling in adult skin. The expression of most of these genes is disrupted in mice lacking CTIP2, and these alterations may underlie the phenotype of Ctip2-null and Ctip2(ep-/-) mice. CTIP2 appears to serve as a transcriptional organizer that integrates input from multiple signaling cues during HF morphogenesis and hair cycling. PMID:26176759

  13. Agenesis of the Corpus Callosum Due to Defective Glial Wedge Formation in Lhx2 Mutant Mice.

    PubMed

    Chinn, Gregory A; Hirokawa, Karla E; Chuang, Tony M; Urbina, Cecilia; Patel, Fenil; Fong, Jeanette; Funatsu, Nobuo; Monuki, Edwin S

    2015-09-01

    Establishment of the corpus callosum involves coordination between callosal projection neurons and multiple midline structures, including the glial wedge (GW) rostrally and hippocampal commissure caudally. GW defects have been associated with agenesis of the corpus callosum (ACC). Here we show that conditional Lhx2 inactivation in cortical radial glia using Emx1-Cre or Nestin-Cre drivers results in ACC. The ACC phenotype was characterized by aberrant ventrally projecting callosal axons rather than Probst bundles, and was 100% penetrant on 2 different mouse strain backgrounds. Lhx2 inactivation in postmitotic cortical neurons using Nex-Cre mice did not result in ACC, suggesting that the mutant phenotype was not autonomous to the callosal projection neurons. Instead, ACC was associated with an absent hippocampal commissure and a markedly reduced to absent GW. Expression studies demonstrated strong Lhx2 expression in the normal GW and in its radial glial progenitors, with absence of Lhx2 resulting in normal Emx1 and Sox2 expression, but premature exit from the cell cycle based on EdU-Ki67 double labeling. These studies define essential roles for Lhx2 in GW, hippocampal commissure, and corpus callosum formation, and suggest that defects in radial GW progenitors can give rise to ACC. PMID:24781987

  14. Lhx2 and Lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating Wnt signaling.

    PubMed

    Peukert, Daniela; Weber, Sabrina; Lumsden, Andrew; Scholpp, Steffen

    2011-12-01

    Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment. PMID:22180728

  15. Lhx2 and Lhx9 Determine Neuronal Differentiation and Compartition in the Caudal Forebrain by Regulating Wnt Signaling

    PubMed Central

    Peukert, Daniela; Weber, Sabrina; Lumsden, Andrew; Scholpp, Steffen

    2011-01-01

    Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment. PMID:22180728

  16. Transcription Factor CTIP2 maintains hair follicle stem cell pool and contributes to altered expression of LHX2 and NFATC1

    PubMed Central

    Bhattacharya, Shreya; Wheeler, Heather; Leid, Mark; Ganguli-Indra, Gitali; Indra, Arup K.

    2015-01-01

    Transcription factor CTIP2 (COUP-TF-interacting protein 2), also known as BCL11B, is expressed in hair follicles of embryonic and adult skin. Ctip2-null mice exhibit reduced hair follicle density during embryonic development. In contrast, conditional inactivation of Ctip2 in epidermis (Ctip2ep−/− mice) leads to a shorter telogen and premature entry into anagen during the second phase of hair cycling without a detectable change in the number of hair follicles. Keratinocytes of the bulge stem cells niche of Ctip2ep−/− mice proliferate more and undergo reduced apoptosis than the corresponding cells of wild-type mice. However, premature activation of follicular stem cells in mice lacking CTIP2 leads to the exhaustion of this stem cell compartment in comparison to Ctip2L2/L2 mice, which retained quiescent follicle stem cells. CTIP2 modulates expression of genes encoding EGFR and NOTCH1 during formation of hair follicles, and those encoding NFATC1 and LHX2 during normal hair cycling in adult skin. The expression of most of these genes is disrupted in mice lacking CTIP2 and these alterations may underlie the phenotype of Ctip2-null and Ctip2ep−/− mice. CTIP2 appears to serve as a transcriptional organizer that integrates input from multiple signaling cues during hair follicle morphogenesis and hair cycling. PMID:26176759

  17. Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken

    PubMed Central

    Abellán, Antonio; Desfilis, Ester; Medina, Loreta

    2014-01-01

    We carried out a study of the expression patterns of seven developmental regulatory genes (Lef1, Lhx2, Lhx9, Lhx5, Lmo3, Lmo4, and Prox1), in combination with topological position, to identify the medial pallial derivatives, define its major subdivisions, and compare them between mouse and chicken. In both species, the medial pallium is defined as a pallial sector adjacent to the cortical hem and roof plate/choroid tela, showing moderate to strong ventricular zone expression of Lef1, Lhx2, and Lhx9, but not Lhx5. Based on this, the hippocampal formation (indusium griseum, dentate gyrus, Ammon's horn fields, and subiculum), the medial entorhinal cortex, and part of the amygdalo-hippocampal transition area of mouse appeared to derive from the medial pallium. In the chicken, based on the same position and gene expression profile, we propose that the hippocampus (including the V-shaped area), the parahippocampal area (including its caudolateral part), the entorhinal cortex, and the amygdalo-hippocampal transition area are medial pallial derivatives. Moreover, the combinatorial expression of Lef1, Prox1, Lmo4, and Lmo3 allowed the identification of dentate gyrus/CA3-like, CA1/subicular-like, and medial entorhinal-like comparable sectors in mouse and chicken, and point to the existence of mostly conserved molecular networks involved in hippocampal complex development. Notably, while the mouse medial entorhinal cortex derives from the medial pallium (similarly to the hippocampal formation, both being involved in spatial navigation and spatial memory), the lateral entorhinal cortex (involved in processing non-spatial, contextual information) appears to derive from a distinct dorsolateral caudal pallial sector. PMID:25071464

  18. Multifunctional roles of urokinase plasminogen activator (uPA) in cancer stemness and chemoresistance of pancreatic cancer

    PubMed Central

    Asuthkar, Swapna; Stepanova, Victoria; Lebedeva, Tatiana; Holterman, AiXuan L.; Estes, Norman; Cines, Douglas B.; Rao, Jasti S.; Gondi, Christopher S.

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is almost always lethal. One of the underlying reasons for this lethality is believed to be the presence of cancer stem cells (CSC), which impart chemoresistance and promote recurrence, but the mechanisms responsible are unclear. Recently the poor prognosis of PDAC has been correlated with increased expression of urokinase plasminogen activator (uPA). In the present study we examine the role of uPA in the generation of PDAC CSC. We observe a subset of cells identifiable as a side population (SP) when sorted by flow cytometry of MIA PaCa-2 and PANC-1 pancreatic cancer cells that possess the properties of CSC. A large fraction of these SP cells are CD44 and CD24 positive, are gemcitabine resistant, possess sphere-forming ability, and exhibit increased tumorigenicity, known characteristics of cancer stemness. Increased tumorigenicity and gemcitabine resistance decrease after suppression of uPA. We observe that uPA interacts directly with transcription factors LIM homeobox-2 (Lhx2), homeobox transcription factor A5 (HOXA5), and Hey to possibly promote cancer stemness. uPA regulates Lhx2 expression by suppressing expression of miR-124 and p53 expression by repressing its promoter by inactivating HOXA5. These results demonstrate that regulation of gene transcription by uPA contributes to cancer stemness and clinical lethality. PMID:23864708

  19. Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA

    PubMed Central

    Beadling, Carol; Patterson, Janice; Justusson, Emily; Nelson, Dylan; Pantaleo, Maria A.; Hornick, Jason L.; Chacón, Matias; Corless, Christopher L.; Heinrich, Michael C.

    2013-01-01

    Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal (ICCs) and are the most common mesenchymal neoplasm of the gastrointestinal tract. While the majority of GISTs harbor activating mutations in either the v-kit Hardy-Zuckerman feline sarcoma viral oncogene homolog (KIT) or platelet-derived growth factor receptor alpha (PDGFRA) tyrosine kinases, approximately 10–15% of adult GISTs and 85% of pediatric GISTs lack such mutations. These “wild-type” GISTs have been reported to express high levels of the insulin-like growth factor 1 receptor (IGF1R), and IGF1R-targeted therapy of wild-type GISTs is being evaluated in clinical trials. However, it is not clear that all wild-type GISTs express IGF1R, because studies to date have predominantly focused on a particular subtype of gastric wild-type GIST that is deficient in the mitochondrial succinate dehydrogenase (SDH) complex. This study of a series of 136 GISTs, including 72 wild-type specimens, was therefore undertaken to further characterize wild-type GIST subtypes based on the relative expression of transcripts encoding IGF1R. Additional transcripts relevant to GIST biology were also evaluated, including members of the IGF-signaling pathway (IGF1, IGF2, and insulin receptor [INSR]), neural markers (CDH2[CDH: Cadherin], neurofilament, light polypeptide, LHX2 [LHX: LIM homeobox], and KIRREL3 [KIRREL: kin of IRRE like]), KIT, PDGFRA, CD34, and HIF1A. Succinate dehydrogenase complex, subunit B protein expression was also assessed as a measure of SDH complex integrity. In addition to the previously described SDH-deficient, IGF1Rhigh wild-type GISTs, other SDH-intact wild-type subpopulations were defined by high relative expression of IGF1R, neural markers, IGF1 and INSR, or low IGF1R coupled with high IGF2. These results underscore the complexity and heterogeneity of wild-type GISTs that will need to be factored into molecularly-targeted therapeutic strategies. PMID:24133624

  20. Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA.

    PubMed

    Beadling, Carol; Patterson, Janice; Justusson, Emily; Nelson, Dylan; Pantaleo, Maria A; Hornick, Jason L; Chacón, Matias; Corless, Christopher L; Heinrich, Michael C

    2013-02-01

    Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal (ICCs) and are the most common mesenchymal neoplasm of the gastrointestinal tract. While the majority of GISTs harbor activating mutations in either the v-kit Hardy-Zuckerman feline sarcoma viral oncogene homolog (KIT) or platelet-derived growth factor receptor alpha (PDGFRA) tyrosine kinases, approximately 10-15% of adult GISTs and 85% of pediatric GISTs lack such mutations. These "wild-type" GISTs have been reported to express high levels of the insulin-like growth factor 1 receptor (IGF1R), and IGF1R-targeted therapy of wild-type GISTs is being evaluated in clinical trials. However, it is not clear that all wild-type GISTs express IGF1R, because studies to date have predominantly focused on a particular subtype of gastric wild-type GIST that is deficient in the mitochondrial succinate dehydrogenase (SDH) complex. This study of a series of 136 GISTs, including 72 wild-type specimens, was therefore undertaken to further characterize wild-type GIST subtypes based on the relative expression of transcripts encoding IGF1R. Additional transcripts relevant to GIST biology were also evaluated, including members of the IGF-signaling pathway (IGF1, IGF2, and insulin receptor [INSR]), neural markers (CDH2[CDH: Cadherin], neurofilament, light polypeptide, LHX2 [LHX: LIM homeobox], and KIRREL3 [KIRREL: kin of IRRE like]), KIT, PDGFRA, CD34, and HIF1A. Succinate dehydrogenase complex, subunit B protein expression was also assessed as a measure of SDH complex integrity. In addition to the previously described SDH-deficient, IGF1R(high) wild-type GISTs, other SDH-intact wild-type subpopulations were defined by high relative expression of IGF1R, neural markers, IGF1 and INSR, or low IGF1R coupled with high IGF2. These results underscore the complexity and heterogeneity of wild-type GISTs that will need to be factored into molecularly-targeted therapeutic strategies. PMID:24133624

  1. Expression of major guidance receptors is differentially regulated in spinal commissural neurons transfated by mammalian Barh genes.

    PubMed

    Kawauchi, Daisuke; Muroyama, Yuko; Sato, Tatsuya; Saito, Tetsuichiro

    2010-08-15

    During development, commissural neurons in the spinal cord project their axons across the ventral midline, floor plate, via multiple interactions among temporally controlled molecular guidance cues and receptors. The transcriptional regulation of commissural axon-associated receptors, however, is not well characterized. Spinal dorsal cells are transfated into commissural neurons by misexpression of Mbh1, a Bar-class homeobox gene. We examined the function of another Bar-class homeobox gene, Mbh2, and how Mbh1 and Mbh2 modulate expression of the receptors, leading to midline crossing of axons. Misexpression of Mbh1 and Mbh2 showed the same effects in the spinal cord. The competence of spinal dorsal cells to become commissural neurons was dependent on the embryonic stage, during which misexpression of the Mbh genes was able to activate guidance receptor genes such as Rig1 and Nrp2. Misexpression of Lhx2, which has been recently shown to be involved in Rig1 expression, activated Rig1 but not Nrp2, and was less effective in generating commissural neurons. Moreover, expression of Lhx2 was activated by and required the Mbh genes. These findings have revealed a transcriptional cascade, in which Lhx2-dependent and -independent pathways leading to expression of guidance receptors branch downstream of the Mbh genes. PMID:20599893

  2. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.

    PubMed

    Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee

    2016-03-01

    Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw. PMID:26969076

  3. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain

    PubMed Central

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-01

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development. PMID:26786896

  4. Genome-wide Association Study and Meta-Analysis Identify ISL1 as Genome-wide Significant Susceptibility Gene for Bladder Exstrophy

    PubMed Central

    Draaken, Markus; Knapp, Michael; Pennimpede, Tracie; Schmidt, Johanna M.; Ebert, Anne-Karolin; Rösch, Wolfgang; Stein, Raimund; Utsch, Boris; Hirsch, Karin; Boemers, Thomas M.; Mangold, Elisabeth; Heilmann, Stefanie; Ludwig, Kerstin U.; Jenetzky, Ekkehart; Zwink, Nadine; Moebus, Susanne; Herrmann, Bernhard G.; Mattheisen, Manuel; Nöthen, Markus M.

    2015-01-01

    The bladder exstrophy-epispadias complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and is thought to result from aberrant embryonic morphogenesis of the cloacal membrane and the urorectal septum. The most common form of BEEC is isolated classic bladder exstrophy (CBE). To identify susceptibility loci for CBE, we performed a genome-wide association study (GWAS) of 110 CBE patients and 1,177 controls of European origin. Here, an association was found with a region of approximately 220kb on chromosome 5q11.1. This region harbors the ISL1 (ISL LIM homeobox 1) gene. Multiple markers in this region showed evidence for association with CBE, including 84 markers with genome-wide significance. We then performed a meta-analysis using data from a previous GWAS by our group of 98 CBE patients and 526 controls of European origin. This meta-analysis also implicated the 5q11.1 locus in CBE risk. A total of 138 markers at this locus reached genome-wide significance in the meta-analysis, and the most significant marker (rs9291768) achieved a P value of 2.13 × 10−12. No other locus in the meta-analysis achieved genome-wide significance. We then performed murine expression analyses to follow up this finding. Here, Isl1 expression was detected in the genital region within the critical time frame for human CBE development. Genital regions with Isl1 expression included the peri-cloacal mesenchyme and the urorectal septum. The present study identified the first genome-wide significant locus for CBE at chromosomal region 5q11.1, and provides strong evidence for the hypothesis that ISL1 is the responsible candidate gene in this region. PMID:25763902

  5. Expression of the Lhx genes apterous and lim1 in an errant polychaete: implications for bilaterian appendage evolution, neural development, and muscle diversification

    PubMed Central

    2013-01-01

    Background Arthropod and vertebrate appendages appear to have evolved via parallel co-option of a plesiomorphic gene regulatory network. Our previous work implies that annelids evolved unrelated appendage-forming mechanisms; we therefore found no support for homology of parapodia and arthropodia at the level of the whole appendage. We expand on that study here by asking whether expression of the LIM homeobox (Lhx) genes apterous and lim1 in the annelid Neanthes arenaceodentata supports homology of the dorsal branches as well as the proximodistal axes of parapodia and arthropodia. In addition, we explore whether the neural expression of apterous and lim1 in Neanthes supports the putative ancestral function of the Lhx gene family in regulating the differentiation and maintenance of neuronal subtypes. Results Both genes exhibit continuous expression in specific portions of the developing central nervous system, from hatching to at least the 13-chaetiger stage. For example, nerve cord expression occurs in segmentally iterated patterns consisting of diffuse sets of many lim1-positive cells and comparatively fewer, clustered pairs of apterous-positive cells. Additionally, continuous apterous expression is observed in presumed neurosecretory ganglia of the posterior brain, while lim1 is continuously expressed in stomatogastric ganglia of the anterior brain. apterous is also expressed in the jaw sacs, dorsal parapodial muscles, and a presumed pair of cephalic sensory organs, whereas lim1 is expressed in multiple pharyngeal ganglia, the segmental peripheral nervous system, neuropodial chaetal sac muscles, and parapodial ligules. Conclusions The early and persistent nervous system expression of apterous and lim1 in Neanthes juveniles supports conservation of Lhx function in bilaterian neural differentiation and maintenance. Our results also suggest that diversification of parapodial muscle precursors involves a complementary LIM code similar to those generating distinct

  6. c.194 A>C (Q65P) mutation in the LMX1B gene in patients with nail-patella syndrome associated with glaucoma

    PubMed Central

    Romero, Pablo; Sanhueza, Felipe; Lopez, Pamela; Reyes, Loreto

    2011-01-01

    Purpose To report the clinical, ophthalmic, extraophthalmic, and genetic characteristics of nail-patella syndrome (NPS) in a Chilean family and to investigate the expressivity of open angle glaucoma (OAG) and ocular hypertension (OHT) in the family members. Methods Five family members affected with NPS and two unaffected members underwent a complete ophthalmologic examination, including computerized visual field, optical coherence tomography (OCT) of the optic disc and ultrasound pachymetry. Renal function was assessed by urinalysis and blood tests. Orthopedic evaluations were also performed, including radiological studies of the wrist, elbow and hip joints. Genomic DNA was extracted from peripheral leukocytes of the five affected and two unaffected family members. Exons 2–6 of the LIM homeobox transcription factor 1-beta (LMX1B) gene were screened for mutations by DNA sequencing of the proband. We also screened for mutations in exon 2 by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the other participants and 91 blood donors. Results Five living family members from three generations were positively diagnosed with NPS, three of them with varying degrees of OAG and one with OHT. Retinal nerve fiber layer (RNFL) thickness measured by spectral domain OCT was below normal values in three individuals. All subjects evaluated had normal nephrologic function. Orthopedic, clinical, and radiological alterations were compatible with NPS. Screening for mutations in exons 2- 6 of LMX1B showed a heterozygous missense mutation c.194 A>C changing glutamine to proline within exon 2 in codon 65 (Q65P) of the coding sequence. This mutation was present in all NPS subjects and absent in the unaffected family members and in 91 Chilean blood donors. Conclusions This is the first report of c.194 A>C mutation in LMX1B in a Chilean family with NPS and the second worldwide. The phenotype associated with this mutation is variable within the family

  7. Catalog of gene expression in adult neural stem cells and their in vivo microenvironment

    SciTech Connect

    Williams, Cecilia; Wirta, Valtteri; Meletis, Konstantinos; Wikstroem, Lilian; Carlsson, Leif; Frisen, Jonas; Lundeberg, Joakim . E-mail: joakim.lundeberg@biotech.kth.se

    2006-06-10

    Stem cells generally reside in a stem cell microenvironment, where cues for self-renewal and differentiation are present. However, the genetic program underlying stem cell proliferation and multipotency is poorly understood. Transcriptome analysis of stem cells and their in vivo microenvironment is one way of uncovering the unique stemness properties and provides a framework for the elucidation of stem cell function. Here, we characterize the gene expression profile of the in vivo neural stem cell microenvironment in the lateral ventricle wall of adult mouse brain and of in vitro proliferating neural stem cells. We have also analyzed an Lhx2-expressing hematopoietic-stem-cell-like cell line in order to define the transcriptome of a well-characterized and pure cell population with stem cell characteristics. We report the generation, assembly and annotation of 50,792 high-quality 5'-end expressed sequence tag sequences. We further describe a shared expression of 1065 transcripts by all three stem cell libraries and a large overlap with previously published gene expression signatures for neural stem/progenitor cells and other multipotent stem cells. The sequences and cDNA clones obtained within this framework provide a comprehensive resource for the analysis of genes in adult stem cells that can accelerate future stem cell research.

  8. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  9. Islet-1 Controls the Differentiation of Retinal Bipolar and Cholinergic Amacrine Cells

    PubMed Central

    Elshatory, Yasser; Everhart, Drew; Deng, Min; Xie, Xiaoling; Barlow, Robert B.; Gan, Lin

    2010-01-01

    Whereas the mammalian retina possesses a repertoire of factors known to establish general retinal cell types, these factors alone cannot explain the vast diversity of neuronal subtypes. In other CNS regions, the differentiation of diverse neuronal pools is governed by coordinately acting LIM-homeodomain proteins including the Islet-class factor Islet-1 (Isl1). We report that deletion of Isl1 profoundly disrupts retinal function as assessed by electroretinograms and vision as assessed by optomotor behavior. These deficits are coupled with marked reductions in mature ON- and OFF-bipolar (>76%), cholinergic amacrine (93%), and ganglion (71%) cells. Mosaic deletion of Isl1 permitted a chimeric analysis of “wild-type” cells in a predominantly Isl1-null environment, demonstrating a cell-autonomous role for Isl1 in rod bipolar and cholinergic amacrine development. Furthermore, the effects on bipolar cell development appear to be dissociable from the preceding retinal ganglion cell loss, because Pou4f2-null mice are devoid of similar defects in bipolar cell marker expression. Expression of the ON- and OFF-bipolar cell differentiation factors Bhlhb4 and Vsx1, respectively, requires the presence of Isl1, whereas the early bipolar cell marker Prox1 initially did not. Thus, Isl1 is required for engaging bipolar differentiation pathways but not for general bipolar cell specification. Spatiotemporal expression analysis of additional LIM-homeobox genes identifies a LIM-homeobox gene network during bipolar cell development that includes Lhx3 and Lhx4. We conclude that Isl1 has an indispensable role in retinal neuron differentiation within restricted cell populations and this function may reflect a broader role for other LIM-homeobox genes in retinal development, and perhaps in establishing neuronal subtypes. PMID:18003851

  10. Genes expressed in mouse cortical progenitors are enriched in Pax, Lhx, and Sox transcription factor putative binding sites.

    PubMed

    Bery, Amandine; Mérot, Yohann; Rétaux, Sylvie

    2016-02-15

    Considerable progress has been made in the understanding of molecular and cellular mechanisms controlling the development of the mammalian cortex. The proliferative and neurogenic properties of cortical progenitors located in the ventricular germinal zone start being understood. Little is known however on the cis-regulatory control that finely tunes gene expression in these progenitors. Here, we undertook an in silico-based approach to address this question, followed by some functional validation. Using the Eurexpress database, we established a list of 30 genes specifically expressed in the cortical germinal zone, we selected mouse/human conserved non-coding elements (CNEs) around these genes and we performed motif-enrichment search in these CNEs. We found an over-representation of motifs corresponding to binding sites for Pax, Sox, and Lhx transcription factors, often found as pairs and located within 100bp windows. A small subset of CNEs (n=7) was tested for enhancer activity, by ex-vivo and in utero electroporation assays. Two showed strong enhancer activity in the germinal zone progenitors. Mutagenesis experiments on a selected CNE showed the functional importance of the Pax, Sox, and Lhx TFBS for conferring enhancer activity to the CNE. Overall, from a cis-regulatory viewpoint, our data suggest an input from Pax, Sox and Lhx transcription factors to orchestrate corticogenesis. These results are discussed with regards to the known functional roles of Pax6, Sox2 and Lhx2 in cortical development. PMID:26721689

  11. The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges.

    PubMed

    Wiens, Matthias; Mangoni, Alfonso; D'Esposito, Monica; Fattorusso, Ernesto; Korchagina, Natalia; Schröder, Heinz C; Grebenjuk, Vladislav A; Krasko, Anatoli; Batel, Renato; Müller, Isabel M; Müller, Werner E G

    2003-01-01

    Molecular data on development/differentiation and on comparative genomics allow insights into the genetic basis of the evolution of a bodyplan. Sponges (phylum Porifera) are animals that are the (still extant) stem group with the hypothetical Urmetazoa as the earliest common ancestor of all metazoans; they possess the basic features of the characteristic metazoan bodyplan also valid for the animals of the crown taxa. Here we describe three homeobox genes from the demosponge Suberites domuncula whose deduced proteins (HOXa1_SUBDO, HOXb1_SUBDO, HOXc1_SUBDO) are to be grouped with the Antennapedia class of homeoproteins (subclasses TIx-Hox11 and NK-2). In addition, a cDNA encoding a LIM/homeobox protein has been isolated which comprises high sequence similarity to the related LIM homeodomain (HD) proteins in its LIM as well as in its HD domains. To elucidate the potential function of these proteins in the sponge a new in vitro system was developed. Primmorphs which are formed from dissociated cells were grown on a homologous galectin matrix. This galectin cDNA was cloned and the recombinant protein was used for the preparation of the matrix. The galectin/polylysine matrix induced in primmorphs the formation of channels, one major morphogenetic process in sponges. Under such conditions the expression of the gene encoding the LIM/homeobox protein is strongly upregulated, while the expression of the other homeobox genes remains unchanged or is even downregulated. Competition experiments with galactosylceramides isolated from S. domuncula were performed. They revealed that a beta-galactosylceramide, named Sdgal-1, prevented the expression of the LIM gene on the galectin matrix, while Sdgal-2, a diglycosylceramide having a terminal alpha-glycosidically linked galactose, caused no effect on the formation of channels in primmorphs or on LIM expression. This study demonstrates for the first time that an extracellular matrix molecule, galectin, induces a morphogenetic process

  12. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats

    PubMed Central

    Yan, Hailong; Zeng, Jie; Ma, Sen; Niu, Yiyuan; Zhou, Guangxian; Jiang, Yu; Chen, Yulin

    2016-01-01

    Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members

  13. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats.

    PubMed

    Gao, Ye; Wang, Xiaolong; Yan, Hailong; Zeng, Jie; Ma, Sen; Niu, Yiyuan; Zhou, Guangxian; Jiang, Yu; Chen, Yulin

    2016-01-01

    Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members

  14. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  15. Genes and Gene Therapy

    MedlinePlus

    ... a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  16. Genes and gene regulation

    SciTech Connect

    MacLean, N.

    1988-01-01

    Genetics has long been a central topic for biologists, and recent progress has captured the public imagination as well. This book addresses questions that are at the leading edge of this continually advancing discipline. In tune with the increasing emphasis on molecular biology and genetic engineering, this text emphasizes the molecular aspects of gene expression, and the evolution of gene sequence organization and control. It reviews the genetic material of viruses, bacteria, and of higher organisms. Cells and organisms are compared in terms of gene numbers, their arrangements within a cell, and the control mechanisms which regulate the activity of genes.

  17. Studying Genes

    MedlinePlus

    ... Area What are genes? Genes are sections of DNA that contain instructions for making the molecules—many ... material in an organism. This includes genes and DNA elements that control the activity of genes. Does ...

  18. Genetic copy number variants in sib pairs both affected with schizophrenia

    PubMed Central

    2010-01-01

    Background Schizophrenia is a complex disorder with involvement of multiple genes. Methods In this study, genome-wide screening for DNA copy-number variations (CNVs) was conducted for ten pairs, a total of 20 cases, of affected siblings using oligonucleotide array-based CGH. Results We found negative symptoms were significantly more severe (p < 0.05) in the subgroup that harbored more genetic imbalance (n ≧ 13, n = number of CNV-disrupted genes) as compared with the subgroup with fewer CNVs (n ≦ 6), indicating that the degree of genetic imbalance may influence the severity of the negative symptoms of schizophrenia. Four central nervous system (CNS) related genes including CCAAT/enhancer binding protein, delta (CEBPD, 8q11.21), retinoid × receptor, alpha (RXRA, 9q34.2), LIM homeobox protein 5 (LHX5, 12q24.13) and serine/threonine kinase 11 (STK11, 19p13.3) are recurrently (incidence ≧ 16.7%) disrupted by CNVs. Two genes, PVR (poliovirus receptor) and BU678720, are concordantly deleted in one and two, respectively, pairs of co-affected siblings. However, we did not find a significant association of this BU678720 deletion and schizophrenia in a large case-control sample. Conclusions We conclude that the high genetic loading of CNVs may be the underlying cause of negative symptoms of schizophrenia, and the CNS-related genes revealed by this study warrant further investigation. PMID:20064257

  19. The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type

    PubMed Central

    Choi, Seong-Kyoon; Huh, Yang Hoon; Fang, Zi; Park, Seo Jin; Kim, Myoung Ok; Ryoo, Zae Young; Kang, Kyeongjin; Kweon, Hee-Seok; Jeon, Won Bae; Li, Chris; Kim, Kyuhyung

    2015-01-01

    The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate muscle quadrants in the head and control the amplitude of sinusoidal movement. Here we show that the LIM homeobox protein LIM-4 determines neuronal characteristics of the SMB neurons. In lim-4 mutant animals, expression of terminal differentiation genes, such as the cholinergic gene battery and the flp-12 neuropeptide gene, is completely abolished and thus the function of the SMB neurons is compromised. LIM-4 activity promotes SMB identity by directly regulating the expression of the SMB marker genes via a distinct cis-regulatory motif. Two human LIM-4 orthologs, LHX6 and LHX8, functionally substitute for LIM-4 in C. elegans. Furthermore, C. elegans LIM-4 or human LHX6 can induce cholinergic and peptidergic characteristics in the human neuronal cell lines. Our results indicate that the evolutionarily conserved LIM-4/LHX6 homeodomain proteins function in generation of precise neuronal subtypes. PMID:26305787

  20. Lhx8 Mediated Wnt and TGFβ Pathways in Tooth Development and Regeneration

    PubMed Central

    Zhou, Chen; Yang, Guodong; Chen, Mo; Wang, Chenglin; He, Ling; Xiang, Lusai; Chen, Danying; Ling, Junqi; Mao, Jeremy J.

    2015-01-01

    LIM homeobox 8 (Lhx8) is a highly conserved transcriptional factor with recently illustrated roles in cholinergic and GABAergic differentiation, and is expressed in neural crest derived craniofacial tissues during development. However, Lhx8 functions and signaling pathways are largely elusive. Here we showed that Lhx8 regulates dental mesenchyme differentiation and function via Wnt and TGFβ pathways. Lhx8 expression was restricted to dental mesenchyme from E11.5 to a peak at E14.5, and absent in dental epithelium. By reconstituting dental epithelium and mesenchyme in an E16.5 tooth organ, Lhx8 knockdown accelerated dental mesenchyme differentiation; conversely, Lhx8 overexpression attenuated dentin formation. Lhx8 overexpressed adult human dental pulp stem/progenitor cells in β-tricalcium phosphate cubes attenuated mineralized matrix production in vivo. Gene profiling revealed that postnatal dental pulp stem/progenitor cells upon Lhx8 overexpression modified several matrix related gene expression including Dspp, Cola1 and osteocalcin. Lhx8 transcriptionally activates Wnt and TGFβ pathways, and its attenuation upregulates multiple dentinogenesis genes. Together, Lhx8 regulates dentin development and regeneration by fine-turning Wnt and TGFβ signaling. PMID:26081866

  1. Lhx8 mediated Wnt and TGFβ pathways in tooth development and regeneration.

    PubMed

    Zhou, Chen; Yang, Guodong; Chen, Mo; Wang, Chenglin; He, Ling; Xiang, Lusai; Chen, Danying; Ling, Junqi; Mao, Jeremy J

    2015-09-01

    LIM homeobox 8 (Lhx8) is a highly conserved transcriptional factor with recently illustrated roles in cholinergic and GABAergic differentiation, and is expressed in neural crest derived craniofacial tissues during development. However, Lhx8 functions and signaling pathways are largely elusive. Here we showed that Lhx8 regulates dental mesenchyme differentiation and function via Wnt and TGFβ pathways. Lhx8 expression was restricted to dental mesenchyme from E11.5 to a peak at E14.5, and absent in dental epithelium. By reconstituting dental epithelium and mesenchyme in an E16.5 tooth organ, Lhx8 knockdown accelerated dental mesenchyme differentiation; conversely, Lhx8 overexpression attenuated dentin formation. Lhx8 overexpressed adult human dental pulp stem/progenitor cells in β-tricalcium phosphate cubes attenuated mineralized matrix production in vivo. Gene profiling revealed that postnatal dental pulp stem/progenitor cells upon Lhx8 overexpression modified matrix related gene expression including Dspp, Cola1 and osteocalcin. Lhx8 transcriptionally activated Wnt and TGFβ pathways, and its attenuation upregulated multiple dentinogenesis genes. Together, Lhx8 regulates dentin development and regeneration by fine-turning Wnt and TGFβ signaling. PMID:26081866

  2. Conserved Noncoding Sequences Regulate lhx5 Expression in the Zebrafish Forebrain

    PubMed Central

    Sun, Liu; Chen, Fengjiao; Peng, Gang

    2015-01-01

    The LIM homeobox family protein Lhx5 plays important roles in forebrain development in the vertebrates. The lhx5 gene exhibits complex temporal and spatial expression patterns during early development but its transcriptional regulation mechanisms are not well understood. Here, we have used transgenesis in zebrafish in order to define regulatory elements that drive lhx5 expression in the forebrain. Through comparative genomic analysis we identified 10 non-coding sequences conserved in five teleost species. We next examined the enhancer activities of these conserved non-coding sequences with Tol2 transposon mediated transgenesis. We found a proximately located enhancer gave rise to robust reporter EGFP expression in the forebrain regions. In addition, we identified an enhancer located at approximately 50 kb upstream of lhx5 coding region that is responsible for reporter gene expression in the hypothalamus. We also identify an enhancer located approximately 40 kb upstream of the lhx5 coding region that is required for expression in the prethalamus (ventral thalamus). Together our results suggest discrete enhancer elements control lhx5 expression in different regions of the forebrain. PMID:26147098

  3. Gene Therapy

    PubMed Central

    Baum, Bruce J

    2014-01-01

    Applications of gene therapy have been evaluated in virtually every oral tissue, and many of these have proved successful at least in animal models. While gene therapy will not be used routinely in the next decade, practitioners of oral medicine should be aware of the potential of this novel type of treatment that doubtless will benefit many patients with oral diseases. PMID:24372817

  4. Trichoderma genes

    DOEpatents

    Foreman, Pamela; Goedegebuur, Frits; Van Solingen, Pieter; Ward, Michael

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  5. A Bmp Reporter with Ultrasensitive Characteristics Reveals That High Bmp Signaling Is Not Required for Cortical Hem Fate

    PubMed Central

    Doan, Linda T.; Javier, Anna L.; Furr, Nicole M.; Nguyen, Kevin L.; Cho, Ken W.; Monuki, Edwin S.

    2012-01-01

    Insights into Bone morphogenetic protein (Bmp) functions during forebrain development have been limited by a lack of Bmp signaling readouts. Here we used a novel Bmp signaling reporter (“BRE-gal” mice) to study Bmp signaling in the dorsal telencephalon. At early stages, BRE-gal expression was restricted to the dorsal telencephalic midline. At later stages, strong BRE-gal expression occurred in neurons of the marginal zone and dentate gyrus. Comparisons to nuclear phospho-Smad1/5/8 (pSmad) and Msx1 indicated that BRE-gal expression occurred exclusively in neural cells with high-level Bmp signaling. BRE-gal responsiveness to Bmps was confirmed in reporter-negative cortical cells cultured with Bmp4, and both in vivo and in vitro, BRE-gal expression was switch-like, or ultrasensitive. In the early dorsal telencephalon, BRE-gal expression negatively correlated with the cortical selector gene Lhx2, indicating a BRE-gal expression border that coincides with the cortex-hem boundary. However, in Lhx2 null chimeras, neither BRE-gal nor nuclear pSmad increases were observed in ectopic hem cells. These findings establish BRE-gal as an ultrasensitive reporter of Bmp signaling in the dorsal telencephalon, imply that hem fate can be specified at different Bmp signaling intensities, and suggest that Lhx2 primarily regulates the responses to – rather than the intensity of – Bmp signaling in dorsal telencephalic cells. PMID:22984456

  6. [Language gene].

    PubMed

    Takahashi, Hiroshi

    2006-11-01

    The human capacity for acquiring speech and language must derive, at least in part, from the genome. Recent advance in the field of molecular genetics finally discovered 'Language Gene'. Disruption of FOXP2 gene, the firstly identified 'language gene' causes severe speech and language disorder. To elucidate the anatomical basis of language processing in the brain, we examined the expression pattern of FOXP2/Foxp2 genes in the monkey and rat brains through development. We found the preferential expression of FOXP2/Foxp2 in the striosomal compartment of the developing striatum. Thus, we suggest the striatum, particularly striosomal system may participate in neural information processing for language and speech. Our suggestion is consistent with the declarative/ procedural model of language proposed by Ullman (1997, 2001), which the procedural memory-dependent mental grammar is rooted in the basal ganglia and the frontal cortex, and the declarative memory-dependent mental lexicon is rooted in the temporal lobe. PMID:17432197

  7. Genes V.

    SciTech Connect

    Lewin, B.

    1994-12-31

    This fifth edition book encompasses a wide range of topics covering 1,272 pages. The book is arranged into nine parts with a total of 36 chapters. These nine parts include Introduction; DNA as a Store of Information; Translation; Constructing Cells; Control of Prokaryotypic Gene Expression; Perpetuation of DNA; Organization of the Eukaryotypic Genome; Eukaryotypic Transcription and RNA Processing; The Dynamic Genome; and Genes in Development.

  8. Attention Genes

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.

    2007-01-01

    A major problem for developmental science is understanding how the cognitive and emotional networks important in carrying out mental processes can be related to individual differences. The last five years have seen major advances in establishing links between alleles of specific genes and the neural networks underlying aspects of attention. These…

  9. Designer Genes.

    ERIC Educational Resources Information Center

    Miller, Judith; Miller, Mark

    1983-01-01

    Genetic technologies may soon help fill some of the most important needs of humanity from food to energy to health care. The research of major designer genes companies and reasons why the initial mad rush for biotechnology has slowed are reviewed. (SR)

  10. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina

    PubMed Central

    Hambright, Dustin; Park, Kye-Yoon; Brooks, Matthew; McKay, Ron; Swaroop, Anand

    2012-01-01

    Purpose To examine the potential of NIH-maintained human embryonic stem cell (hESC) lines TE03 and UC06 to differentiate into retinal progenitor cells (hESC-RPCs) using the noggin/Dkk-1/IGF-1/FGF9 protocol. An additional goal is to examine the in vivo dynamics of maturation and retinal integration of subretinal and epiretinal (vitreous space) hESC-RPC grafts without immunosuppression. Methods hESCs were neuralized in vitro with noggin for 2 weeks and expanded to derive neuroepithelial cells (hESC-neural precursors, NPs). Wnt (Integration 1 and wingless) blocking morphogens Dickkopf-1 (Dkk-1) and Insulin-like growth factor 1 (IGF-1) were used to direct NPs to a rostral neural fate, and fibroblast growth factor 9 (FGF9)/fibroblast growth factor-basic (bFGF) were added to bias the differentiation of developing anterior neuroectoderm cells to neural retina (NR) rather than retinal pigment epithelium (RPE). Cells were dissociated and grafted into the subretinal and epiretinal space of young adult (4–6-week-old) mice (C57BL/6J x129/Sv mixed background). Remaining cells were replated for (i) immunocytochemical analysis and (ii) used for quantitative reverse transcription polymerase chain reaction (qRT–PCR) analysis. Mice were sacrificed 3 weeks or 3 months after grafting, and the grafts were examined by histology and immunohistochemistry for survival of hESC-RPCs, presence of mature neuronal and retinal markers, and the dynamics of in vivo maturation and integration into the host retina. Results At the time of grafting, hESC-RPCs exhibited immature neural/neuronal immunophenotypes represented by nestin and neuronal class III β-tubulin, with about half of the cells positive for cell proliferation marker Kiel University -raised antibody number 67 (Ki67), and no recoverin-positive (recoverin [+]) cells. The grafted cells expressed eye field markers paired box 6 (PAX6), retina and anterior neural fold homeobox (RAX), sine oculis homeobox homolog 6 (SIX6), LIM homeobox 2

  11. Genes and Hearing Loss

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Genes and Hearing Loss Genes and Hearing Loss Patient ... mutation may only have dystopia canthorum. How Do Genes Work? Genes are a road map for the ...

  12. Compare Gene Profiles

    SciTech Connect

    2014-05-31

    Compare Gene Profiles (CGP) performs pairwise gene content comparisons among a relatively large set of related bacterial genomes. CGP performs pairwise BLAST among gene calls from a set of input genome and associated annotation files, and combines the results to generate lists of common genes, unique genes, homologs, and genes from each genome that differ substantially in length from corresponding genes in the other genomes. CGP is implemented in Python and runs in a Linux environment in serial or parallel mode.

  13. Gene gymnastics

    PubMed Central

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  14. Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function.

    PubMed

    Fragkouli, A; Stamatakis, A; Zographos, E; Pachnis, V; Stylianopoulou, F

    2006-01-01

    It has been reported recently that mice lacking both alleles of the LIM-homeobox gene Lhx7, display dramatically reduced number of forebrain cholinergic neurons. In the present study, we investigated whether the Lhx7 mutation affects male and female mice differently, given the fact that gender differences are consistently observed in forebrain cholinergic function. Our results show that in adult male as well as female Lhx7 homozygous mutants there is a dramatic loss of choline acetyltransferase immunoreactive forebrain neurons, both projection and interneurons. The reduction of forebrain choline acetyltransferase immunoreactive neurons in Lhx7 homozygous mutants is accompanied by a decrease of acetylcholinesterase histochemical staining in all forebrain cholinergic neuron target areas of both male and female homozygous mutants. Furthermore, there was an increase of M1-, but not M2-, muscarinic acetylcholine receptor binding site density in the somatosensory cortex and basal ganglia of only the female homozygous mutant mice. Such an increase can be regarded as a mechanism acting to compensate for the dramatically reduced cholinergic input, raising the possibility that the forebrain cholinergic system in female mice may be more plastic and responsive to situations of limited neurotransmitter availability. Finally, our study provides additional data for the sexual dimorphism of the forebrain cholinergic system, as female mice appear to have a lower density of M1-muscarinic acetylcholine receptors in the striatal areas of the basal ganglia and a higher density of M2-muscarinic acetylcholine receptors, in a number of cortical areas, as well as the striatal areas of the basal ganglia. PMID:16338089

  15. Gene doping: gene delivery for olympic victory

    PubMed Central

    Gould, David

    2013-01-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called ‘gene doping’. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted from the engineered cells or is retained locally to, or inside engineered cells will, to some extent, determine the likelihood of detection. It is clear that effective gene delivery technologies now exist and it is important that detection and prevention plans are in place. PMID:23082866

  16. Autism and Genes

    ERIC Educational Resources Information Center

    National Institutes of Health, 2005

    2005-01-01

    This document defines and discusses autism and how genes play a role in the condition. Answers to the following questions are covered: (1) What are genes? (2) What is autism? (3) What causes autism? (4) Why study genes to learn about autism? (5) How do researchers look for the genes involved in autism? (screen the whole genome; conduct cytogenetic…

  17. Compare Gene Profiles

    Energy Science and Technology Software Center (ESTSC)

    2014-05-31

    Compare Gene Profiles (CGP) performs pairwise gene content comparisons among a relatively large set of related bacterial genomes. CGP performs pairwise BLAST among gene calls from a set of input genome and associated annotation files, and combines the results to generate lists of common genes, unique genes, homologs, and genes from each genome that differ substantially in length from corresponding genes in the other genomes. CGP is implemented in Python and runs in a Linuxmore » environment in serial or parallel mode.« less

  18. Evolution by gene loss.

    PubMed

    Albalat, Ricard; Cañestro, Cristian

    2016-07-01

    The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine. PMID:27087500

  19. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  20. Evolution of gene expression after gene amplification.

    PubMed

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-05-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  1. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  2. Reading and Generalist Genes

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Meaburn, Emma L.; Harlaar, Nicole; Plomin, Robert

    2007-01-01

    Twin-study research suggests that many (but not all) of the same genes contribute to genetic influence on diverse learning abilities and disabilities, a hypothesis called "generalist genes". This generalist genes hypothesis was tested using a set of 10 DNA markers (single nucleotide polymorphisms [SNPs]) found to be associated with early reading…

  3. Accepting Foreign Genes.

    PubMed

    Boto, Luis

    2016-05-01

    Three recent papers underline the importance of the host genomic background in allowing the stable maintenance of horizontally acquired genes. These studies suggest that post-transfer changes in both host genome and acquired genes contribute to the stable integration of foreign genes. PMID:27075565

  4. [Imprinted genes in plants].

    PubMed

    Zhang, Li-Geng; Yang, Ruo-Fei; Fu, Feng-Ling; Li, Wan-Chen

    2010-12-01

    The expression of imprinted genes is regulated by epigenetic mechanism. In plant endosperm, the allele of imprinted genes is expressed in a pattern of parent-of-origin-dependent. The expression of imprinted genes plays essential roles in the development of embryos and their annexe structures, as well as seed size, reproductive barriers and apomixis. Along with the progress of plant epigenetic research, the exploration of imprinted genes is becoming hotspot in epigenetic research. This review focused on the parental conflict theory about the origin of imprinted genes, and the latest research advances in expression regulation mechanism of plant imprinted genes, using the examples of the important imprinted genes MEA, FIS2, FWA, MPC, and PHE1 in Arabidopsis, and FIEI and FIE2 in maize. PMID:21513148

  5. Retrieval with gene queries

    PubMed Central

    Sehgal, Aditya K; Srinivasan, Padmini

    2006-01-01

    Background Accuracy of document retrieval from MEDLINE for gene queries is crucially important for many applications in bioinformatics. We explore five information retrieval-based methods to rank documents retrieved by PubMed gene queries for the human genome. The aim is to rank relevant documents higher in the retrieved list. We address the special challenges faced due to ambiguity in gene nomenclature: gene terms that refer to multiple genes, gene terms that are also English words, and gene terms that have other biological meanings. Results Our two baseline ranking strategies are quite similar in performance. Two of our three LocusLink-based strategies offer significant improvements. These methods work very well even when there is ambiguity in the gene terms. Our best ranking strategy offers significant improvements on three different kinds of ambiguities over our two baseline strategies (improvements range from 15.9% to 17.7% and 11.7% to 13.3% depending on the baseline). For most genes the best ranking query is one that is built from the LocusLink (now Entrez Gene) summary and product information along with the gene names and aliases. For others, the gene names and aliases suffice. We also present an approach that successfully predicts, for a given gene, which of these two ranking queries is more appropriate. Conclusion We explore the effect of different post-retrieval strategies on the ranking of documents returned by PubMed for human gene queries. We have successfully applied some of these strategies to improve the ranking of relevant documents in the retrieved sets. This holds true even when various kinds of ambiguity are encountered. We feel that it would be very useful to apply strategies like ours on PubMed search results as these are not ordered by relevance in any way. This is especially so for queries that retrieve a large number of documents. PMID:16630348

  6. Do housekeeping genes exist?

    PubMed

    Zhang, Yijuan; Li, Ding; Sun, Bingyun

    2015-01-01

    The searching of human housekeeping (HK) genes has been a long quest since the emergence of transcriptomics, and is instrumental for us to understand the structure of genome and the fundamentals of biological processes. The resolved genes are frequently used in evolution studies and as normalization standards in quantitative gene-expression analysis. Within the past 20 years, more than a dozen HK-gene studies have been conducted, yet none of them sampled human tissues completely. We believe an integration of these results will help remove false positive genes owing to the inadequate sampling. Surprisingly, we only find one common gene across 15 examined HK-gene datasets comprising 187 different tissue and cell types. Our subsequent analyses suggest that it might not be appropriate to rigidly define HK genes as expressed in all tissue types that have diverse developmental, physiological, and pathological states. It might be beneficial to use more robustly identified HK functions for filtering criteria, in which the representing genes can be a subset of genome. These genes are not necessarily the same, and perhaps need not to be the same, everywhere in our body. PMID:25970694

  7. Towards Consensus Gene Ages.

    PubMed

    Liebeskind, Benjamin J; McWhite, Claire D; Marcotte, Edward M

    2016-01-01

    Correctly estimating the age of a gene or gene family is important for a variety of fields, including molecular evolution, comparative genomics, and phylogenetics, and increasingly for systems biology and disease genetics. However, most studies use only a point estimate of a gene's age, neglecting the substantial uncertainty involved in this estimation. Here, we characterize this uncertainty by investigating the effect of algorithm choice on gene-age inference and calculate consensus gene ages with attendant error distributions for a variety of model eukaryotes. We use 13 orthology inference algorithms to create gene-age datasets and then characterize the error around each age-call on a per-gene and per-algorithm basis. Systematic error was found to be a large factor in estimating gene age, suggesting that simple consensus algorithms are not enough to give a reliable point estimate. We also found that different sources of error can affect downstream analyses, such as gene ontology enrichment. Our consensus gene-age datasets, with associated error terms, are made fully available at so that researchers can propagate this uncertainty through their analyses (geneages.org). PMID:27259914

  8. Do Housekeeping Genes Exist?

    PubMed Central

    Sun, Bingyun

    2015-01-01

    The searching of human housekeeping (HK) genes has been a long quest since the emergence of transcriptomics, and is instrumental for us to understand the structure of genome and the fundamentals of biological processes. The resolved genes are frequently used in evolution studies and as normalization standards in quantitative gene-expression analysis. Within the past 20 years, more than a dozen HK-gene studies have been conducted, yet none of them sampled human tissues completely. We believe an integration of these results will help remove false positive genes owing to the inadequate sampling. Surprisingly, we only find one common gene across 15 examined HK-gene datasets comprising 187 different tissue and cell types. Our subsequent analyses suggest that it might not be appropriate to rigidly define HK genes as expressed in all tissue types that have diverse developmental, physiological, and pathological states. It might be beneficial to use more robustly identified HK functions for filtering criteria, in which the representing genes can be a subset of genome. These genes are not necessarily the same, and perhaps need not to be the same, everywhere in our body. PMID:25970694

  9. The gap gene network

    PubMed Central

    2010-01-01

    Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution. PMID:20927566

  10. Metastasis Suppressor Genes

    PubMed Central

    Yan, Jinchun; Yang, Qin; Huang, Qihong

    2014-01-01

    Metastasis is a major cause of cancer mortality. Metastasis is a complex process that requires the regulation of both metastasis-promoting and metastasis suppressor genes. The discovery of metastasis suppressor genes contributes significantly to our understanding of metastasis mechanisms and provides prognostic markers and therapeutic targets in clinical cancer management. In this review, we summarize the methods that have been used to identify metastasis suppressors and the potential clinical impact of these genes. PMID:23348381

  11. History of gene therapy.

    PubMed

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality. PMID:23618815

  12. Towards Consensus Gene Ages

    PubMed Central

    Liebeskind, Benjamin J.; McWhite, Claire D.; Marcotte, Edward M.

    2016-01-01

    Correctly estimating the age of a gene or gene family is important for a variety of fields, including molecular evolution, comparative genomics, and phylogenetics, and increasingly for systems biology and disease genetics. However, most studies use only a point estimate of a gene’s age, neglecting the substantial uncertainty involved in this estimation. Here, we characterize this uncertainty by investigating the effect of algorithm choice on gene-age inference and calculate consensus gene ages with attendant error distributions for a variety of model eukaryotes. We use 13 orthology inference algorithms to create gene-age datasets and then characterize the error around each age-call on a per-gene and per-algorithm basis. Systematic error was found to be a large factor in estimating gene age, suggesting that simple consensus algorithms are not enough to give a reliable point estimate. We also found that different sources of error can affect downstream analyses, such as gene ontology enrichment. Our consensus gene-age datasets, with associated error terms, are made fully available at so that researchers can propagate this uncertainty through their analyses (geneages.org). PMID:27259914

  13. [The gene or genes of allergic asthma?].

    PubMed

    Demoly, P; Bousquet, J; Godard, P; Michel, F B

    1993-05-15

    Asthma is a multifactorial disease in which the hereditary component has been demonstrated by familial and identical twin studies. Allergy is important in the aetiology of asthma and is characterized by a hyperreaction to allergens triggering predominantly the immunoglobulines E. The levels of these antibodies are found to be elevated even in non allergic asthmatics. The majority of genetic research in this area is focused on either the genes of the specific immune response or that of the non allergic response. These are the genes of the class II MHC, and the APY gene on chromosome 11q respectively. The modern techniques of molecular genetics and in particular those of inverse genetics have recently contributed to a more comprehensive understanding of this disease. PMID:8316547

  14. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  15. Your Genes, Your Choices

    MedlinePlus

    Table of Contents Your Genes, Your Choices describes the Human Genome Project, the science behind it, and the ethical, legal, and social issues that are ... Nothing could be further from the truth. Your Genes, Your Choices points out how the progress of ...

  16. What Is a Gene?

    MedlinePlus

    ... a new kind of medicine — so new that scientists are still doing experiments to see if it works. It uses the technology of genetic engineering to treat a disease caused by a gene that has changed in some way. One method being tested is replacing sick genes with healthy ...

  17. Gene expression networks.

    PubMed

    Thomas, Reuben; Portier, Christopher J

    2013-01-01

    With the advent of microarrays and next-generation biotechnologies, the use of gene expression data has become ubiquitous in biological research. One potential drawback of these data is that they are very rich in features or genes though cost considerations allow for the use of only relatively small sample sizes. A useful way of getting at biologically meaningful interpretations of the environmental or toxicological condition of interest would be to make inferences at the level of a priori defined biochemical pathways or networks of interacting genes or proteins that are known to perform certain biological functions. This chapter describes approaches taken in the literature to make such inferences at the biochemical pathway level. In addition this chapter describes approaches to create hypotheses on genes playing important roles in response to a treatment, using organism level gene coexpression or protein-protein interaction networks. Also, approaches to reverse engineer gene networks or methods that seek to identify novel interactions between genes are described. Given the relatively small sample numbers typically available, these reverse engineering approaches are generally useful in inferring interactions only among a relatively small or an order 10 number of genes. Finally, given the vast amounts of publicly available gene expression data from different sources, this chapter summarizes the important sources of these data and characteristics of these sources or databases. In line with the overall aims of this book of providing practical knowledge to a researcher interested in analyzing gene expression data from a network perspective, the chapter provides convenient publicly accessible tools for performing analyses described, and in addition describe three motivating examples taken from the published literature that illustrate some of the relevant analyses. PMID:23086841

  18. 4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP LOOKING SOUTHWEST. DAM AND SPILLWAY VISIBLE IN BOTTOM OF PHOTO. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  19. Genes and Social Behavior

    PubMed Central

    Robinson, Gene E.; Fernald, Russell D.; Clayton, David F.

    2011-01-01

    What specific genes and regulatory sequences contribute to the organization and functioning of brain circuits that support social behavior? How does social experience interact with information in the genome to modulate these brain circuits? Here we address these questions by highlighting progress that has been made in identifying and understanding two key “vectors of influence” that link genes, brain, and social behavior: 1) social information alters gene readout in the brain to influence behavior; and 2) genetic variation influences brain function and social behavior. We also briefly discuss how evolutionary changes in genomic elements influence social behavior and outline prospects for a systems biology of social behavior. PMID:18988841

  20. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis

    PubMed Central

    Harel, Itamar; Maezawa, Yoshiro; Avraham, Roi; Rinon, Ariel; Ma, Hsiao-Yen; Cross, Joe W.; Leviatan, Noam; Hegesh, Julius; Roy, Achira; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Carvajal, Jaime; Tole, Shubha; Kioussi, Chrissa; Quaggin, Susan; Tzahor, Eldad

    2012-01-01

    The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects. PMID:23112163

  1. Terplex Gene Delivery System.

    PubMed

    Kim, Sung Wan

    2005-01-01

    Polymeric gene delivery systems have been developed to overcome problems caused by viral carriers. They are low cytotoxic, have no size limit, are convenient in handling, of low cost and reproducible. A Terplex gene delivery system consisting of plasmid DNA, low density lipoprotein and hydropholized poly-L-lysine was designed and characterized. The plasmid DNA, when formulated with stearyl PLL and LDL, forms a stable and hydrophobicity/charge-balanced Terplex system of optimal size for efficient cellular uptake. DNA is still intact after the Terplex formation. This information is expected to be utilized for the development of improved transfection vector for in vivo gene therapy. Terplex DNA complex showed significantly longer retention in the vascular space than naked DNA. This system was used in the augmentation of myocardial transfection at an infarction site with the VEGF gene. PMID:16243067

  2. Terplex gene delivery system.

    PubMed

    Kim, Sung Wan

    2005-01-01

    Polymeric gene delivery systems have been developed to overcome problems caused by viral carriers. They are low cytotoxic, have no size limit, are convenient in handling, of low cost and reproducible. A Terplex gene delivery system consisting of plasmid DNA, low density lipoprotein and hydropholized poly-L-lysine was designed and characterized. The plasmid DNA, when formulated with stearyl PLL and LDL, forms a stable and hydrophobicity/charge-balanced Terplex system of optimal size for efficient cellular uptake. DNA is still intact after the Terplex formation. This information is expected to be utilized for the development of improved transfection vector for in vivo gene therapy. Terplex DNA complex showed significantly longer retention in the vascular space than naked DNA. This system was used in the augmentation of myocardial transfection at an infarction site with the VEGF gene. PMID:16240997

  3. Vaginal gene therapy.

    PubMed

    Rodríguez-Gascón, Alicia; Del Pozo-Rodríguez, Ana; Isla, Arantxazu; Solinís, María Angeles

    2015-09-15

    In the last years, vaginal gene therapy has gained increasing attention mainly for the treatment and control of sexually transmitted infections. DNA delivery has been also suggested to improve reproductive outcomes for women with deficiencies in the female reproductive tract. Although no product has reached clinical phase, preclinical investigations reveal the potential of the vaginal tract as an effective administration route for gene delivery. This review focuses on the main advantages and challenges of vaginal gene therapy, and on the most used nucleic acid delivery systems, including viral and non-viral vectors. Additionally, the advances in the application of vaginal gene therapy for the treatment and/or prevention of infectious diseases such as the human immunodeficiency virus (HIV), the human papillomavirus (HPV) or the herpes simplex virus (HSV) are presented. PMID:26189799

  4. GeneLab

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.

    2015-01-01

    NASA GeneLab is expected to capture and distribute omics data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASAs omics data.

  5. "Bad genes" & criminal responsibility.

    PubMed

    González-Tapia, María Isabel; Obsuth, Ingrid

    2015-01-01

    The genetics of the accused is trying to break into the courts. To date several candidate genes have been put forward and their links to antisocial behavior have been examined and documented with some consistency. In this paper, we focus on the so called "warrior gene", or the low-activity allele of the MAOA gene, which has been most consistently related to human behavior and specifically to violence and antisocial behavior. In preparing this paper we had two objectives. First, to summarize and analyze the current scientific evidence, in order to gain an in depth understanding of the state of the issue and determine whether a dominant line of generally accepted scientific knowledge in this field can be asserted. Second, to derive conclusions and put forward recommendations related to the use of genetic information, specifically the presence of the low-activity genotype of the MAOA gene, in modulation of criminal responsibility in European and US courts. PMID:25708001

  6. Fibrinogen gene regulation.

    PubMed

    Fish, Richard J; Neerman-Arbez, Marguerite

    2012-09-01

    The Aα, Bβ and γ polypeptide chains of fibrinogen are encoded by a three gene cluster on human chromosome four. The fibrinogen genes (FGB-FGA-FGG) are expressed almost exclusively in hepatocytes where their output is coordinated to ensure a sufficient mRNA pool for each chain and maintain an abundant plasma fibrinogen protein level. Fibrinogen gene expression is controlled by the activity of proximal promoters which contain binding sites for hepatocyte transcription factors, including proteins which influence fibrinogen transcription in response to acute-phase inflammatory stimuli. The fibrinogen gene cluster also contains cis regulatory elements; enhancer sequences with liver activities identified by sequence conservation and functional genomics. While the transcriptional control of this gene cluster is fascinating biology, the medical impetus to understand fibrinogen gene regulation stems from the association of cardiovascular disease risk with high level circulating fibrinogen. In the general population this level varies from about 1.5 to 3.5 g/l. This variation between individuals is influenced by genotype, suggesting there are genetic variants contributing to fibrinogen levels which reside in fibrinogen regulatory loci. A complete picture of how fibrinogen genes are regulated will therefore point towards novel sources of regulatory variants. In this review we discuss regulation of the fibrinogen genes from proximal promoters and enhancers, the influence of acute-phase stimulation, post-transcriptional regulation by miRNAs and functional regulatory variants identified in genetic studies. Finally, we discuss the fibrinogen locus in light of recent advances in understanding chromosomal architecture and suggest future directions for researching the mechanisms that control fibrinogen expression. PMID:22836683

  7. Gene therapy in epilepsy

    PubMed Central

    Riban, Véronique; Fitzsimons, Helen L.; During, Matthew J.

    2009-01-01

    SUMMARY Results from animal models suggest gene therapy is a promising new approach for the treatment of epilepsy. Several candidate genes such as neuropeptide Y and galanin have been demonstrated in preclinical studies to have a positive effect on seizure activity. For a successful gene therapy-based treatment, efficient delivery of a transgene to target neurons is also essential. To this end, advances have been made in the areas of cell transplantation and in the development of recombinant viral vectors for gene delivery. Recombinant adeno-associated viral (rAAV) vectors in particular show promise for gene therapy of neurological disorders due to their neuronal tropism, lack of toxicity, and stable persistence in neurons, which results in robust, long-term expression of the transgene. rAAV vectors have been recently used in phase I clinical trials of Parkinson’s disease with an excellent safety profile. Prior to commencement of phase I trials for gene therapy of epilepsy, further preclinical studies are ongoing including evaluation of the therapeutic benefit in chronicmodels of epileptogenesis, as well as assessment of safety intoxicological studies. PMID:18717707

  8. Evidence for homosexuality gene

    SciTech Connect

    Pool, R.

    1993-07-16

    A genetic analysis of 40 pairs of homosexual brothers has uncovered a region on the X chromosome that appears to contain a gene or genes for homosexuality. When analyzing the pedigrees of homosexual males, the researcheres found evidence that the trait has a higher likelihood of being passed through maternal genes. This led them to search the X chromosome for genes predisposing to homosexuality. The researchers examined the X chromosomes of pairs of homosexual brothers for regions of DNA that most or all had in common. Of the 40 sets of brothers, 33 shared a set of five markers in the q28 region of the long arm of the X chromosome. The linkage has a LOD score of 4.0, which translates into a 99.5% certainty that there is a gene or genes in this area that predispose males to homosexuality. The chief researcher warns, however, that this one site cannot explain all instances of homosexuality, since there were some cases where the trait seemed to be passed paternally. And even among those brothers where there was no evidence that the trait was passed paternally, seven sets of brothers did not share the Xq28 markers. It seems likely that homosexuality arises from a variety of causes.

  9. 5. OVERHEAD VIEW OF GENE CAMP LOOKING SOUTH. GENE PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OVERHEAD VIEW OF GENE CAMP LOOKING SOUTH. GENE PUMP PLANT IS AT CENTER WITH ADMINISTRATIVE COMPLEX IN FOREGROUND AND RESIDENTIAL AREA BEYOND PLANT. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  10. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  11. Prospects for gene therapy.

    PubMed

    Ali, Robin R

    2004-01-01

    Inherited retinal disease, which includes conditions such as retinitis pigmentosa (RP), affects about 1/3000 of the population in the Western world. It is characterized by gradual loss of vision and results from mutations in any one of 60 or so different genes. There are currently no effective treatments, but many of the genes have now been identified and their functions elucidated, providing a major impetus to develop gene-based treatments. Many of the disease genes are photoreceptor- or retinal pigment epithelium (RPE) cell specific. Since adeno-associated viral (AAV) vectors can be used for efficient gene transfer to these two cell types, we are developing AAV-mediated gene therapy approaches for inherited retinal degeneration using animal models that have defects in these cells. The retinal degeneration slow (rds or Prph2Rd2/Rd) mouse, a model of recessive RP, lacks a functional gene encoding peripherin 2, which is a photoreceptor-specific protein required for the formation of outer segment discs. We have previously demonstrated restoration of photoreceptor ultrastructure and function by AAV-mediated gene transfer of peripherin 2. We have now extended our assessment to central visual neuronal responses in order to show an improvement of central visual function. The Royal College of Surgeons (RCS) rat, provides another model of recessive RP. Here the defect is due to a defect in Mertk, a gene that is expressed in the RPE and encodes a receptor tyrosine kinase that is thought to be involved in the recognition and binding of outer segment debris. The gene defect results in the inability of the RPE to phagocytose the shed outer segments from photoreceptor cells. The resulting accumulation of debris between the RPE and the neuroretina leads to progressive loss of photoreceptor cells. AAV-mediated delivery of Mertk to the RPE results in reduction of debris indicating that the phagocytosing function of the RPE is restored and delays the degeneration of the

  12. Classification of genes based on gene expression analysis

    NASA Astrophysics Data System (ADS)

    Angelova, M.; Myers, C.; Faith, J.

    2008-05-01

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  13. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  14. GeneCards Version 3: the human gene integrator.

    PubMed

    Safran, Marilyn; Dalah, Irina; Alexander, Justin; Rosen, Naomi; Iny Stein, Tsippi; Shmoish, Michael; Nativ, Noam; Bahir, Iris; Doniger, Tirza; Krug, Hagit; Sirota-Madi, Alexandra; Olender, Tsviya; Golan, Yaron; Stelzer, Gil; Harel, Arye; Lancet, Doron

    2010-01-01

    GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73,000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards' unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene's functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite. Database

  15. How old is my gene?

    PubMed Central

    Capra, John A.; Stolzer, Maureen; Durand, Dannie; Pollard, Katherine S.

    2013-01-01

    Gene functions, interactions, disease associations, and ecological distributions are all correlated with gene age. However, it is challenging to estimate the intricate series of evolutionary events leading to a modern day gene and then reduce this history to a single age estimate. Focusing on eukaryotic gene families, we introduce a framework in which to compare current strategies for quantifying gene age, discuss key differences between these methods, and highlight several common problems. We argue that genes with complex evolutionary histories do not have a single well-defined age. As a result, care must be taken to articulate the goals and assumptions of any analysis that uses gene age estimates. Recent algorithmic advances offer the promise of gene age estimates that are fast, accurate, and consistent across gene families. This will enable a shift to integrated genome-wide analyses of all events in gene evolutionary histories in the near future. PMID:23915718

  16. LQTS gene LOVD database.

    PubMed

    Zhang, Tao; Moss, Arthur; Cong, Peikuan; Pan, Min; Chang, Bingxi; Zheng, Liangrong; Fang, Quan; Zareba, Wojciech; Robinson, Jennifer; Lin, Changsong; Li, Zhongxiang; Wei, Junfang; Zeng, Qiang; Qi, Ming

    2010-11-01

    The Long QT Syndrome (LQTS) is a group of genetically heterogeneous disorders that predisposes young individuals to ventricular arrhythmias and sudden death. LQTS is mainly caused by mutations in genes encoding subunits of cardiac ion channels (KCNQ1, KCNH2,SCN5A, KCNE1, and KCNE2). Many other genes involved in LQTS have been described recently(KCNJ2, AKAP9, ANK2, CACNA1C, SCNA4B, SNTA1, and CAV3). We created an online database(http://www.genomed.org/LOVD/introduction.html) that provides information on variants in LQTS-associated genes. As of February 2010, the database contains 1738 unique variants in 12 genes. A total of 950 variants are considered pathogenic, 265 are possible pathogenic, 131 are unknown/unclassified, and 292 have no known pathogenicity. In addition to these mutations collected from published literature, we also submitted information on gene variants, including one possible novel pathogenic mutation in the KCNH2 splice site found in ten Chinese families with documented arrhythmias. The remote user is able to search the data and is encouraged to submit new mutations into the database. The LQTS database will become a powerful tool for both researchers and clinicians. PMID:20809527

  17. Saporin suicide gene therapy.

    PubMed

    Zarovni, Natasa; Vago, Riccardo; Fabbrini, Maria Serena

    2009-01-01

    New genes useful in suicide gene therapy are those encoding toxins such as plant ribosome-inactivating proteins (RIPs), which can irreversibly block protein synthesis, triggering apoptotic cell death. Plasmids expressing a cytosolic saporin (SAP) gene from common soapwort (Saponaria officinalis) are generated by placing the region encoding the mature plant toxin under the control of strong viral promoters and may be placed under tumor-specific promoters. The ability of the resulting constructs to inhibit protein synthesis is tested in cultured tumor cells co-transfected with a luciferase reporter gene. SAP expression driven by the cytomegalovirus (CMV) promoter (pCI-SAP) demonstrates that only 10 ng ofplasmid DNA per 1.6 x 10(4) B16 melanoma cells drastically reduces luciferase reporter activity to 18% of that in control cells (1). Direct intratumoral injections are performed in an aggressive melanoma model. B16 melanoma-bearing mice injected with pCI-SAP complexed with lipofectamine or N-(2,3-dioleoyloxy-1-propyl) trimethylammonium methyl sulfate (DOTAP) show a noteworthy attenuation in tumor growth, and this effect is significantly augmented by repeated administrations of the DNA complexes. Here, we describe in detail this cost-effective and safe suicide gene approach. PMID:19565907

  18. Hox genes and evolution

    PubMed Central

    Hrycaj, Steven M.; Wellik, Deneen M.

    2016-01-01

    Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP) axis in Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian Hox cluster, the role of Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about Hox biology and the roles it has played in the evolution of the Bilaterian body plan. PMID:27239281

  19. Engineered Gene Circuits

    NASA Astrophysics Data System (ADS)

    Hasty, Jeff

    2003-03-01

    Uncovering the structure and function of gene regulatory networks has become one of the central challenges of the post-genomic era. Theoretical models of protein-DNA feedback loops and gene regulatory networks have long been proposed, and recently, certain qualitative features of such models have been experimentally corroborated. This talk will focus on model and experimental results that demonstrate how a naturally occurring gene network can be used as a ``parts list'' for synthetic network design. The model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics, and the utility of such a formulation will be demonstrated through the consideration of specific design criteria for several novel genetic devices. Fluctuations originating from small molecule-number effects will be discussed in the context of model predictions, and the experimental validation of these stochastic effects underscores the importance of internal noise in gene expression. Potential biotech applications will be highlighted within the framework of cellular control schemes. Specifically, the coupling of an oscillating cellular process to a synthetic oscillator will be considered, and the resulting model behavior will be analyzed in the context of synchronization. The underlying methodology highlights the utility of engineering-based methods in the design of synthetic gene regulatory networks.

  20. GeneCards Version 3: the human gene integrator

    PubMed Central

    Safran, Marilyn; Dalah, Irina; Alexander, Justin; Rosen, Naomi; Iny Stein, Tsippi; Shmoish, Michael; Nativ, Noam; Bahir, Iris; Doniger, Tirza; Krug, Hagit; Sirota-Madi, Alexandra; Olender, Tsviya; Golan, Yaron; Stelzer, Gil; Harel, Arye; Lancet, Doron

    2010-01-01

    GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73 000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards’ unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene’s functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite

  1. FunGene: the functional gene pipeline and repository

    PubMed Central

    Fish, Jordan A.; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C. Titus; Tiedje, James M.; Cole, James R.

    2013-01-01

    Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes. PMID:24101916

  2. Human DNA repair genes.

    PubMed

    Wood, R D; Mitchell, M; Sgouros, J; Lindahl, T

    2001-02-16

    Cellular DNA is subjected to continual attack, both by reactive species inside cells and by environmental agents. Toxic and mutagenic consequences are minimized by distinct pathways of repair, and 130 known human DNA repair genes are described here. Notable features presently include four enzymes that can remove uracil from DNA, seven recombination genes related to RAD51, and many recently discovered DNA polymerases that bypass damage, but only one system to remove the main DNA lesions induced by ultraviolet light. More human DNA repair genes will be found by comparison with model organisms and as common folds in three-dimensional protein structures are determined. Modulation of DNA repair should lead to clinical applications including improvement of radiotherapy and treatment with anticancer drugs and an advanced understanding of the cellular aging process. PMID:11181991

  3. Virus induced gene silencing of Arabidopsis gene homologues in wheat identify genes conferring improved drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a non-model staple crop like wheat, functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for wheat breeding. Virus induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited tra...

  4. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  5. Prokaryotic gene prediction using GeneMark and GeneMark.hmm.

    PubMed

    Borodovsky, Mark; Mills, Ryan; Besemer, John; Lomsadze, Alex

    2003-05-01

    In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use of Hidden Markov models to find the transition points (boundaries) between protein coding states and noncoding states and can be efficiently used for larger genome sequences. These methods can be used in conjunction with each other for a higher sensitivity of gene detection. PMID:18428700

  6. Genes and Vocal Learning

    PubMed Central

    White, Stephanie A.

    2009-01-01

    Could a mutation in a single gene be the evolutionary lynchpin supporting the development of human language? A rare mutation in the molecule known as FOXP2 discovered in a human family seemed to suggest so, and its sequence phylogeny reinforced a Chomskian view that language emerged wholesale in humans. Spurred by this discovery, research in primates, rodents and birds suggests that FoxP2 and other language-related genes are interactors in the neuromolecular networks that underlie subsystems of language, such symbolic understanding, vocal learning and theory of mind. The whole picture will only come together through comparative and integrative study into how the human language singularity evolved. PMID:19913899

  7. The gene tree delusion.

    PubMed

    Springer, Mark S; Gatesy, John

    2016-01-01

    Higher-level relationships among placental mammals are mostly resolved, but several polytomies remain contentious. Song et al. (2012) claimed to have resolved three of these using shortcut coalescence methods (MP-EST, STAR) and further concluded that these methods, which assume no within-locus recombination, are required to unravel deep-level phylogenetic problems that have stymied concatenation. Here, we reanalyze Song et al.'s (2012) data and leverage these re-analyses to explore key issues in systematics including the recombination ratchet, gene tree stoichiometry, the proportion of gene tree incongruence that results from deep coalescence versus other factors, and simulations that compare the performance of coalescence and concatenation methods in species tree estimation. Song et al. (2012) reported an average locus length of 3.1 kb for the 447 protein-coding genes in their phylogenomic dataset, but the true mean length of these loci (start codon to stop codon) is 139.6 kb. Empirical estimates of recombination breakpoints in primates, coupled with consideration of the recombination ratchet, suggest that individual coalescence genes (c-genes) approach ∼12 bp or less for Song et al.'s (2012) dataset, three to four orders of magnitude shorter than the c-genes reported by these authors. This result has general implications for the application of coalescence methods in species tree estimation. We contend that it is illogical to apply coalescence methods to complete protein-coding sequences. Such analyses amalgamate c-genes with different evolutionary histories (i.e., exons separated by >100,000 bp), distort true gene tree stoichiometry that is required for accurate species tree inference, and contradict the central rationale for applying coalescence methods to difficult phylogenetic problems. In addition, Song et al.'s (2012) dataset of 447 genes includes 21 loci with switched taxonomic names, eight duplicated loci, 26 loci with non-homologous sequences that are

  8. XLMR genes: Update 1994

    SciTech Connect

    Neri, G.; Chiurazzi, P.; Arena, J.F.; Lubs, H.A.

    1994-07-15

    We provide a comprehensive list of all known forms of X-linked mental retardation. It comprises 127 entries, subdivided into 5 categories (syndromes, dominant disorders, and nonspecific mental retardation). Map location of 69 putative loci demonstrates several overlaps, which will only be resolved by more refined mapping or cloning of the respective genes. The ultimate goal of identifying all the genes on the X chromosome whose mutations cause mental retardation will require a concerted effort between clinical and molecular investigators. 74 refs., 2 figs., 5 tabs.

  9. Gene therapy: progress and predictions

    PubMed Central

    Collins, Mary; Thrasher, Adrian

    2015-01-01

    The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines. PMID:26702034

  10. Multidimensional gene search with Genehopper

    PubMed Central

    Munz, Matthias; Tönnies, Sascha; Balke, Wolf-Tilo; Simon, Eric

    2015-01-01

    The high abundance of genetic information enables researchers to gain new insights from the comparison of human genes according to their similarities. However, existing tools that allow the exploration of such gene-to-gene relationships, apply each similarity independently. To make use of multidimensional scoring, we developed a new search engine named Genehopper. It can handle two query types: (i) the typical use case starts with a term-to-gene search, i.e. an optimized full-text search for an anchor gene of interest. The web-interface can handle one or more terms including gene symbols and identifiers of Ensembl, UniProt, EntrezGene and RefSeq. (ii) When the anchor gene is defined, the user can explore its neighborhood by a gene-to-gene search as the weighted sum of nine normalized gene similarities based on sequence homology, protein domains, mRNA expression profiles, Gene Ontology Annotation, gene symbols and other features. Each weight can be adjusted by the user, allowing flexible customization of the gene search. All implemented similarities have a low pairwise correlation (max r2 = 0.4) implying a low linear dependency, i.e. any change in a single weight has an effect on the ranking. Thus, we treated them as separate dimensions in the search space. Genehopper is freely available at http://genehopper.ifis.cs.tu-bs.de. PMID:25990726

  11. Multidimensional gene search with Genehopper.

    PubMed

    Munz, Matthias; Tönnies, Sascha; Balke, Wolf-Tilo; Simon, Eric

    2015-07-01

    The high abundance of genetic information enables researchers to gain new insights from the comparison of human genes according to their similarities. However, existing tools that allow the exploration of such gene-to-gene relationships, apply each similarity independently. To make use of multidimensional scoring, we developed a new search engine named Genehopper. It can handle two query types: (i) the typical use case starts with a term-to-gene search, i.e. an optimized full-text search for an anchor gene of interest. The web-interface can handle one or more terms including gene symbols and identifiers of Ensembl, UniProt, EntrezGene and RefSeq. (ii) When the anchor gene is defined, the user can explore its neighborhood by a gene-to-gene search as the weighted sum of nine normalized gene similarities based on sequence homology, protein domains, mRNA expression profiles, Gene Ontology Annotation, gene symbols and other features. Each weight can be adjusted by the user, allowing flexible customization of the gene search. All implemented similarities have a low pairwise correlation (max r(2) = 0.4) implying a low linear dependency, i.e. any change in a single weight has an effect on the ranking. Thus, we treated them as separate dimensions in the search space. Genehopper is freely available at http://genehopper.ifis.cs.tu-bs.de. PMID:25990726

  12. Gene therapy in pancreatic cancer

    PubMed Central

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC. PMID:25309069

  13. Association Between a Prognostic Gene Signature and Functional Gene Sets

    PubMed Central

    Hummel, Manuela; Metzeler, Klaus H.; Buske, Christian; Bohlander, Stefan K.; Mansmann, Ulrich

    2008-01-01

    Background The development of expression-based gene signatures for predicting prognosis or class membership is a popular and challenging task. Besides their stringent validation, signatures need a functional interpretation and must be placed in a biological context. Popular tools such as Gene Set Enrichment have drawbacks because they are restricted to annotated genes and are unable to capture the information hidden in the signature’s non-annotated genes. Methodology We propose concepts to relate a signature with functional gene sets like pathways or Gene Ontology categories. The connection between single signature genes and a specific pathway is explored by hierarchical variable selection and gene association networks. The risk score derived from an individual patient’s signature is related to expression patterns of pathways and Gene Ontology categories. Global tests are useful for these tasks, and they adjust for other factors. GlobalAncova is used to explore the effect on gene expression in specific functional groups from the interaction of the score and selected mutations in the patient’s genome. Results We apply the proposed methods to an expression data set and a corresponding gene signature for predicting survival in Acute Myeloid Leukemia (AML). The example demonstrates strong relations between the signature and cancer-related pathways. The signature-based risk score was found to be associated with development-related biological processes. Conclusions Many authors interpret the functional aspects of a gene signature by linking signature genes to pathways or relevant functional gene groups. The method of gene set enrichment is preferred to annotating signature genes to specific Gene Ontology categories. The strategies proposed in this paper go beyond the restriction of annotation and deepen the insights into the biological mechanisms reflected in the information given by a signature. PMID:19812786

  14. Old genes experience stronger translational selection than young genes.

    PubMed

    Yin, Hongyan; Ma, Lina; Wang, Guangyu; Li, Mengwei; Zhang, Zhang

    2016-09-15

    Selection on synonymous codon usage for translation efficiency and/or accuracy has been identified as a widespread mechanism in many living organisms. However, it remains unknown whether translational selection associates closely with gene age and acts differentially on genes with different evolutionary ages. To address this issue, here we investigate the strength of translational selection acting on different aged genes in human. Our results show that old genes present stronger translational selection than young genes, demonstrating that translational selection correlates positively with gene age. We further explore the difference of translational selection in duplicates vs. singletons and in housekeeping vs. tissue-specific genes. We find that translational selection acts comparably in old singletons and old duplicates and stronger translational selection in old genes is contributed primarily by housekeeping genes. For young genes, contrastingly, singletons experience stronger translational selection than duplicates, presumably due to redundant function of duplicated genes during their early evolutionary stage. Taken together, our results indicate that translational selection acting on a gene would not be constant during all stages of evolution, associating closely with gene age. PMID:27259662

  15. Genes2FANs: connecting genes through functional association networks

    PubMed Central

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  16. Resistance gene capture.

    PubMed

    Rowe-Magnus, D A; Mazel, D

    1999-10-01

    Integrons are the primary mechanism for antibiotic-resistance gene capture and dissemination among Gram-negative bacteria. The recent finding of super-integron structures in the genomes of several bacterial species has expanded their role in genome evolution and suggests that they are the source of mobile multi-resistant integrons. PMID:10508722

  17. Naming genes beyond Caenorhabditis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nomenclature of genes in Caenorhabditis elegans is based on long-standing, successful guidelines established in the late 1970s. Over time these guidelines have matured into a comprehensive, systematic nomenclature that is easy to apply, descriptive and therefore highly informative. Recently, a f...

  18. Gene stacking by recombinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits into diverse crops grown in a variety of environments. Over two decades of research has identified several site-specific recombinases that carry out efficient cis and trans recombination betw...

  19. Gene Manipulation In Cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum, the most abundant metal on earth, is detrimental to plant growth and agricultural production. There are about 2.5 billion hectares of acid soils high in aluminum around the world. Molecular markers linked to aluminum tolerance gene complexes in rye would be of value in marker-mediated ge...

  20. Ultrasound mediated gene transfection

    NASA Astrophysics Data System (ADS)

    Williamson, Rene G.; Apfel, Robert E.; Brandsma, Janet L.

    2002-05-01

    Gene therapy is a promising modality for the treatment of a variety of human diseases both inherited and acquired, such as cystic fibrosis and cancer. The lack of an effective, safe method for the delivery of foreign genes into the cells, a process known as transfection, limits this effort. Ultrasound mediated gene transfection is an attractive method for gene delivery since it is a noninvasive technique, does not introduce any viral particles into the host and can offer very good temporal and spatial control. Previous investigators have shown that sonication increases transfection efficiency with and without ultrasound contrast agents. The mechanism is believed to be via a cavitation process where collapsing bubble nuclei permeabilize the cell membrane leading to increased DNA transfer. The research is focused on the use of pulsed wave high frequency focused ultrasound to transfect DNA into mammalian cells in vitro and in vivo. A better understanding of the mechanism behind the transfection process is also sought. A summary of some in vitro results to date will be presented, which includes the design of a sonication chamber that allows us to model the in vivo case more accurately.

  1. Genes and Vocal Learning

    ERIC Educational Resources Information Center

    White, Stephanie A.

    2010-01-01

    Could a mutation in a single gene be the evolutionary lynchpin supporting the development of human language? A rare mutation in the molecule known as FOXP2 discovered in a human family seemed to suggest so, and its sequence phylogeny reinforced a Chomskian view that language emerged wholesale in humans. Spurred by this discovery, research in…

  2. Entrez Gene: gene-centered information at NCBI.

    PubMed

    Maglott, Donna; Ostell, Jim; Pruitt, Kim D; Tatusova, Tatiana

    2007-01-01

    Entrez Gene (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene) is NCBI's database for gene-specific information. Entrez Gene includes records from genomes that have been completely sequenced, that have an active research community to contribute gene-specific information or that are scheduled for intense sequence analysis. The content of Entrez Gene represents the result of both curation and automated integration of data from NCBI's Reference Sequence project (RefSeq), from collaborating model organism databases and from other databases within NCBI. Records in Entrez Gene are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, map location, gene products and their attributes, markers, phenotypes and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is provided via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programing utilities (E-Utilities), and for bulk transfer by ftp. PMID:17148475

  3. Magnetic nanoparticles: Applications in gene delivery and gene therapy.

    PubMed

    Majidi, Sima; Zeinali Sehrig, Fatemeh; Samiei, Mohammad; Milani, Morteza; Abbasi, Elham; Dadashzadeh, Kianoosh; Akbarzadeh, Abolfazl

    2016-06-01

    Gene therapy is defined as the direct transfer of genetic material to tissues or cells for the treatment of inherited disorders and acquired diseases. For gene delivery, magnetic nanoparticles (MNPs) are typically combined with a delivery platform to encapsulate the gene, and promote cell uptake. Delivery technologies that have been used with MNPs contain polymeric, viral, as well as non-viral platforms. In this review, we focus on targeted gene delivery using MNPs. PMID:25727710

  4. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  5. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  6. Dominance from the perspective of gene-gene and gene-chemical interactions.

    PubMed

    Gladki, Arkadiusz; Zielenkiewicz, Piotr; Kaczanowski, Szymon

    2016-02-01

    In this study, we used genetic interaction (GI) and gene-chemical interaction (GCI) data to compare mutations with different dominance phenotypes. Our analysis focused primarily on Saccharomyces cerevisiae, where haploinsufficient genes (HI; genes with dominant loss-of-function mutations) were found to be participating in gene expression processes, namely, the translation and regulation of gene transcription. Non-ribosomal HI genes (mainly regulators of gene transcription) were found to have more GIs and GCIs than haplosufficient (HS) genes. Several properties seem to lead to the enrichment of interactions, most notably, the following: importance, pleiotropy, gene expression level and gene expression variation. Importantly, after these properties were appropriately considered in the analysis, the correlation between dominance and GI/GCI degrees was still observed. Strikingly, for the GCIs of heterozygous strains, haploinsufficiency was the only property significantly correlated with the number of GCIs. We found ribosomal HI genes to be depleted in GIs/GCIs. This finding can be explained by their high variation in gene expression under different genetic backgrounds and environmental conditions. We observed the same distributions of GIs among non-ribosomal HI, ribosomal HI and HS genes in three other species: Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens. One potentially interesting exception was the lack of significant differences in the degree of GIs between non-ribosomal HI and HS genes in Schizosaccharomyces pombe. PMID:26613610

  7. Avirulence Genes in Cereal Powdery Mildews: The Gene-for-Gene Hypothesis 2.0

    PubMed Central

    Bourras, Salim; McNally, Kaitlin E.; Müller, Marion C.; Wicker, Thomas; Keller, Beat

    2016-01-01

    The gene-for-gene hypothesis states that for each gene controlling resistance in the host, there is a corresponding, specific gene controlling avirulence in the pathogen. Allelic series of the cereal mildew resistance genes Pm3 and Mla provide an excellent system for genetic and molecular analysis of resistance specificity. Despite this opportunity for molecular research, avirulence genes in mildews remain underexplored. Earlier work in barley powdery mildew (B.g. hordei) has shown that the reaction to some Mla resistance alleles is controlled by multiple genes. Similarly, several genes are involved in the specific interaction of wheat mildew (B.g. tritici) with the Pm3 allelic series. We found that two mildew genes control avirulence on Pm3f: one gene is involved in recognition by the resistance protein as demonstrated by functional studies in wheat and the heterologous host Nicotiana benthamiana. A second gene is a suppressor, and resistance is only observed in mildew genotypes combining the inactive suppressor and the recognized Avr. We propose that such suppressor/avirulence gene combinations provide the basis of specificity in mildews. Depending on the particular gene combinations in a mildew race, different genes will be genetically identified as the “avirulence” gene. Additionally, the observation of two LINE retrotransposon-encoded avirulence genes in B.g. hordei further suggests that the control of avirulence in mildew is more complex than a canonical gene-for-gene interaction. To fully understand the mildew–cereal interactions, more knowledge on avirulence determinants is needed and we propose ways how this can be achieved based on recent advances in the field. PMID:26973683

  8. Gene prediction and gene classes in Arabidopsis thaliana.

    PubMed

    Mathé, C; Déhais, P; Pavy, N; Rombauts, S; Van Montagu, M; Rouzé, P

    2000-03-31

    Gene prediction methods for eukaryotic genomes still are not fully satisfying. One way to improve gene prediction accuracy, proven to be relevant for prokaryotes, is to consider more than one model of genes. Thus, we used our classification of Arabidopsis thaliana genes in two classes (CU(1) and CU(2)), previously delineated according to statistical features, in the GeneMark gene identification program. For each gene class, as well as for the two classes combined, a Markov model was developed (respectively, GM-CU(1), GM-CU(2) and GM-all) and then used on a test set of 168 genes to compare their respective efficiency. We concluded from this analysis that GM-CU(1) is more sensitive than GM-CU(2) which seems to be more specific to a gene type. Besides, GM-all does not give better results than GM-CU(1) and combining results from GM-CU(1) and GM-CU(2) greatly improve prediction efficiency in comparison with predictions made with GM-all only. Thus, this work confirms the necessity to consider more than one gene model for gene prediction in eukaryotic genomes, and to look for gene classes in order to build these models. PMID:10751690

  9. GENE METHYLATION CHANGES IN TUMOR SUPPRESSOR GENES INDUCED BY ARSENIC

    EPA Science Inventory

    The choice of a dose-response model used for extrapolation can be influenced by knowledge of mechanism of action. We have already showed that arsenic affects methylation of the human p53 gene promoter. Evidence that genes other than the p53 tumor suppressor gene are affected woul...

  10. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES.

    PubMed

    Borodovsky, Mark; Lomsadze, Alex

    2011-09-01

    This unit describes how to use the gene-finding programs GeneMark.hmm-E and GeneMark-ES for finding protein-coding genes in the genomic DNA of eukaryotic organisms. These bioinformatics tools have been demonstrated to have state-of-the-art accuracy for many fungal, plant, and animal genomes, and have frequently been used for gene annotation in novel genomic sequences. An additional advantage of GeneMark-ES is that the problem of algorithm parameterization is solved automatically, with parameters estimated by iterative self-training (unsupervised training). PMID:21901742

  11. SOX genes: architects of development.

    PubMed Central

    Prior, H. M.; Walter, M. A.

    1996-01-01

    Development in higher organisms involves complex genetic regulation at the molecular level. The emerging picture of development control includes several families of master regulatory genes which can affect the expression of down-stream target genes in developmental cascade pathways. One new family of such development regulators is the SOX gene family. The SOX genes are named for a shared motif called the SRY box a region homologous to the DNA-binding domain of SRY, the mammalian sex determining gene. Like SRY, SOX genes play important roles in chordate development. At least a dozen human SOX genes have been identified and partially characterized (Tables 1 and 2). Mutations in SOX9 have recently been linked to campomelic dysplasia and autosomal sex reversal, and other SOX genes may also be associated with human disease. Images FIG. 1 FIG. 2 PMID:8827711

  12. Chapter 15: Disease Gene Prioritization

    PubMed Central

    Bromberg, Yana

    2013-01-01

    Disease-causing aberrations in the normal function of a gene define that gene as a disease gene. Proving a causal link between a gene and a disease experimentally is expensive and time-consuming. Comprehensive prioritization of candidate genes prior to experimental testing drastically reduces the associated costs. Computational gene prioritization is based on various pieces of correlative evidence that associate each gene with the given disease and suggest possible causal links. A fair amount of this evidence comes from high-throughput experimentation. Thus, well-developed methods are necessary to reliably deal with the quantity of information at hand. Existing gene prioritization techniques already significantly improve the outcomes of targeted experimental studies. Faster and more reliable techniques that account for novel data types are necessary for the development of new diagnostics, treatments, and cure for many diseases. PMID:23633938

  13. On atavisms and atavistic genes.

    PubMed

    Cantú, J M; Ruiz, C

    1985-01-01

    The authors propose the term atavistic to designate a gene producing an ancestral phenotype (atavism). Several examples are presented, and the possible origin of atavistic genes, as well as their pathological implications discussed. PMID:3879145

  14. Gene Therapy for Lung Cancer.

    PubMed

    Lara-Guerra, Humberto; Roth, Jack A

    2016-01-01

    Gene therapy was originally conceived to treat monogenic diseases. The replacement of a defective gene with a functional gene can theoretically cure the disease. In cancer, multiple genetic defects are present and the molecular profile changes during the course of the disease, making the replacement of all defective genes impossible. To overcome these difficulties, various gene therapy strategies have been adopted, including immune stimulation, transfer of suicide genes, inhibition of driver oncogenes, replacement of tumor-suppressor genes that could mediate apoptosis or anti-angiogenesis, and transfer of genes that enhance conventional treatments such as radiotherapy and chemotherapy. Some of these strategies have been tested successfully in non-small-cell lung cancer patients and the results of laboratory studies and clinical trials are reviewed herein. PMID:27481008

  15. Gene Testing for Hereditary Ataxia

    MedlinePlus

    ... have a family history of ataxia, but diagnostic tests for known ataxia genes cannot explain the ataxia in their family. In recent years, scientists have developed technologies to sequence thousands of genes at the same ...

  16. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  17. Gene therapy in keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad; Mohammadpour, Mehrdad

    2015-01-01

    Keratoconus (KC) is the most common ectasia of the cornea and is a common reason for corneal transplant. Therapeutic strategies that can arrest the progression of this disease and modify the underlying pathogenesis are getting more and more popularity among scientists. Cumulating data represent strong evidence of a genetic role in the pathogenesis of KC. Different loci have been identified, and certain mutations have also been mapped for this disease. Moreover, Biophysical properties of the cornea create an appropriate candidate of this tissue for gene therapy. Immune privilege, transparency and ex vivo stability are among these properties. Recent advantage in vectors, besides the ability to modulate the corneal milieu for accepting the target gene for a longer period and fruitful translation, make a big hope for stupendous results reasonable. PMID:25709266

  18. Graphene based gene transfection

    NASA Astrophysics Data System (ADS)

    Feng, Liangzhu; Zhang, Shuai; Liu, Zhuang

    2011-03-01

    Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI-10k polymer. The positively charged GO-PEI complexes are able to further bind with plasmid DNA (pDNA) for intracellular transfection of the enhanced green fluorescence protein (EGFP) gene in HeLa cells. While EGFP transfection with PEI-1.2k appears to be ineffective, high EGFP expression is observed using the corresponding GO-PEI-1.2k as the transfection agent. On the other hand, GO-PEI-10k shows similar EGFP transfection efficiency but lower toxicity compared with PEI-10k. Our results suggest graphene to be a novel gene delivery nano-vector with low cytotoxicity and high transfection efficiency, promising for future applications in non-viral based gene therapy.Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI

  19. Brains, Genes and Primates

    PubMed Central

    Belmonte, Juan Carlos Izpisua; Callaway, Edward M.; Churchland, Patricia; Caddick, Sarah J.; Feng, Guoping; Homanics, Gregg E.; Lee, Kuo-Fen; Leopold, David A.; Miller, Cory T.; Mitchell, Jude F.; Mitalipov, Shoukhrat; Moutri, Alysson R.; Movshon, J. Anthony; Okano, Hideyuki; Reynolds, John H.; Ringach, Dario; Sejnowski, Terrence J.; Silva, Afonso C.; Strick, Peter L.; Wu, Jun; Zhang, Feng

    2015-01-01

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. PMID:25950631

  20. Eukaryotic gene prediction using GeneMark.hmm.

    PubMed

    Borodovsky, Mark; Lomsadze, Alex; Ivanov, Nikolai; Mills, Ryan

    2003-05-01

    In this unit, eukaryotic GeneMark.hmm is presented as a method for detecting genes in eukaryotic DNA sequences. The eukaryotic GeneMark.hmm uses Markov models of protein coding and noncoding sequences, as well as positional nucleotide frequency matrices for prediction of the translational start, translational termination and splice sites. All these models along with length distributions of exons, introns and intergenic regions are integrated into one Hidden Markov model. The unit describes running the program over the Internet and locally on a Unix machine. It also discusses GeneMarkS EV, which can be used to detect genes in eukaryotic viruses. PMID:18428701

  1. Time ordering of gene coexpression.

    PubMed

    Leng, Xiaoyan; Müller, Hans-Georg

    2006-10-01

    Temporal microarray gene expression profiles allow characterization of gene function through time dynamics of gene coexpression within the same genetic pathway. In this paper, we define and estimate a global time shift characteristic for each gene via least squares, inferred from pairwise curve alignments. These time shift characteristics of individual genes reflect a time ordering that is derived from ob- served temporal gene expression profiles. Once these time shift characteristics are obtained for each gene, they can be entered into further analyses, such as clustering. We illustrate the proposed methodology using Drosophila embryonic development and yeast cell-cycle gene expression profiles, as well as simulations. Feasibility is demonstrated through the successful recovery of time ordering. Estimated time shifts for Drosophila maternal and zygotic genes provide excellent discrimination between these two categories and confirm known genetic pathways through the time order of gene expression. The application to yeast cell-cycle data establishes a natural time order of genes that is in line with cell-cycle phases. The method does not require periodicity of gene expression profiles. Asymptotic justifications are also provided. PMID:16495429

  2. Independent Gene Discovery and Testing

    ERIC Educational Resources Information Center

    Palsule, Vrushalee; Coric, Dijana; Delancy, Russell; Dunham, Heather; Melancon, Caleb; Thompson, Dennis; Toms, Jamie; White, Ashley; Shultz, Jeffry

    2010-01-01

    A clear understanding of basic gene structure is critical when teaching molecular genetics, the central dogma and the biological sciences. We sought to create a gene-based teaching project to improve students' understanding of gene structure and to integrate this into a research project that can be implemented by instructors at the secondary level…

  3. Gene Porter Bridwell

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Gene Porter Bridwell served as the director of the Marshall Space Flight Center from January 6, 1994 until February 3, 1996, when he retired from NASA after thirty-four years service. Bridwell, a Marshall employee since 1962, had been Marshall's Space Shuttle Projects Office Director and Space Station Redesign Team deputy manager. Under Bridwell, Marshall worked to develop its role as a Center of Excellence for propulsion and for providing access to space.

  4. Genes and athletes.

    PubMed

    Patel, Dilip R; Greydanus, Donald E

    2002-06-01

    Genetics plays an important role in determining characteristics desired for success in a given sport. Advances in biotechnology pose interesting and perplexing dilemmas for athletes, parents, health care providers, and society at large. Gene therapy holds great prospects for disease prevention and treatment. The same techniques also can be misused for genetic manipulation to enhance athletic prowess. This chapter reviews selective aspects of genotype influence on sport performance, uses and misuses of genetic technology, and ethical as well as legal dilemmas. PMID:11986034

  5. nanosheets for gene therapy

    NASA Astrophysics Data System (ADS)

    Kou, Zhongyang; Wang, Xin; Yuan, Renshun; Chen, Huabin; Zhi, Qiaoming; Gao, Ling; Wang, Bin; Guo, Zhaoji; Xue, Xiaofeng; Cao, Wei; Guo, Liang

    2014-10-01

    A new class of two-dimensional (2D) nanomaterial, transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, and WSe2 which have fantastic physical and chemical properties, has drawn tremendous attention in different fields recently. Herein, we for the first time take advantage of the great potential of MoS2 with well-engineered surface as a novel type of 2D nanocarriers for gene delivery and therapy of cancer. In our system, positively charged MoS2-PEG-PEI is synthesized with lipoic acid-modified polyethylene glycol (LA-PEG) and branched polyethylenimine (PEI). The amino end of positively charged nanomaterials can bind to the negatively charged small interfering RNA (siRNA). After detection of physical and chemical characteristics of the nanomaterial, cell toxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polo-like kinase 1 (PLK1) was investigated as a well-known oncogene, which was a critical regulator of cell cycle transmission at multiple levels. Through knockdown of PLK1 with siRNA carried by novel nanovector, qPCR and Western blot were used to measure the interfering efficiency; apoptosis assay was used to detect the transfection effect of PLK1. All results showed that the novel nanocarrier revealed good biocompatibility, reduced cytotoxicity, as well as high gene-carrying ability without serum interference, thus would have great potential for gene delivery and therapy.

  6. Extracting gene-gene interactions through curve fitting.

    PubMed

    Das, Ranajit; Mitra, Sushmita; Murthy, C A

    2012-12-01

    This paper presents a simple and novel curve fitting approach for generating simple gene regulatory subnetworks from time series gene expression data. Microarray experiments simultaneously generate massive data sets and help immensely in the large-scale study of gene expression patterns. Initial biclustering reduces the search space in the high-dimensional microarray data. The least-squares error between fitting of gene pairs is minimized to extract a set of gene-gene interactions, involving transcriptional regulation of genes. The higher error values are eliminated to retain only the strong interacting gene pairs in the resultant gene regulatory subnetwork. Next the algorithm is extended to a generalized framework to enhance its capability. The methodology takes care of the higher-order dependencies involving multiple genes co-regulating a single gene, while eliminating the need for user-defined parameters. It has been applied to the time-series Yeast data, and the experimental results biologically validated using standard databases and literature. PMID:22997274

  7. From SNPs to Genes: Disease Association at the Gene Level

    PubMed Central

    Lehne, Benjamin; Lewis, Cathryn M.; Schlitt, Thomas

    2011-01-01

    Interpreting Genome-Wide Association Studies (GWAS) at a gene level is an important step towards understanding the molecular processes that lead to disease. In order to incorporate prior biological knowledge such as pathways and protein interactions in the analysis of GWAS data it is necessary to derive one measure of association for each gene. We compare three different methods to obtain gene-wide test statistics from Single Nucleotide Polymorphism (SNP) based association data: choosing the test statistic from the most significant SNP; the mean test statistics of all SNPs; and the mean of the top quartile of all test statistics. We demonstrate that the gene-wide test statistics can be controlled for the number of SNPs within each gene and show that all three methods perform considerably better than expected by chance at identifying genes with confirmed associations. By applying each method to GWAS data for Crohn's Disease and Type 1 Diabetes we identified new potential disease genes. PMID:21738570

  8. Advances in Gene Delivery Systems

    PubMed Central

    Kamimura, Kenya; Suda, Takeshi; Zhang, Guisheng; Liu, Dexi

    2011-01-01

    The transfer of genes into cells, both in vitro and in vivo, is critical for studying gene function and conducting gene therapy. Methods that utilize viral and nonviral vectors, as well as physical approaches, have been explored. Viral vector-mediated gene transfer employs replication-deficient viruses such as retro-virus, adenovirus, adeno-associated virus and herpes simplex virus. A major advantage of viral vectors is their high gene delivery efficiency. The nonviral vectors developed so far include cationic liposomes, cationic polymers, synthetic peptides and naturally occurring compounds. These nonviral vectors appear to be highly effective in gene delivery to cultured cells in vitro but are significantly less effective in vivo. Physical methods utilize mechanical pressure, electric shock or hydrodynamic force to transiently permeate the cell membrane to transfer DNA into target cells. They are simpler than viral- and nonviral-based systems and highly effective for localized gene delivery. The past decade has seen significant efforts to establish the most desirable method for safe, effective and target-specific gene delivery, and good progress has been made. The objectives of this review are to (i) explain the rationale for the design of viral, nonviral and physical methods for gene delivery; (ii) provide a summary on recent advances in gene transfer technology; (iii) discuss advantages and disadvantages of each of the most commonly used gene delivery methods; and (iv) provide future perspectives. PMID:22200988

  9. The Gene Wiki: community intelligence applied to human gene annotation.

    PubMed

    Huss, Jon W; Lindenbaum, Pierre; Martone, Michael; Roberts, Donabel; Pizarro, Angel; Valafar, Faramarz; Hogenesch, John B; Su, Andrew I

    2010-01-01

    Annotating the function of all human genes is a critical, yet formidable, challenge. Current gene annotation efforts focus on centralized curation resources, but it is increasingly clear that this approach does not scale with the rapid growth of the biomedical literature. The Gene Wiki utilizes an alternative and complementary model based on the principle of community intelligence. Directly integrated within the online encyclopedia, Wikipedia, the goal of this effort is to build a gene-specific review article for every gene in the human genome, where each article is collaboratively written, continuously updated and community reviewed. Previously, we described the creation of Gene Wiki 'stubs' for approximately 9000 human genes. Here, we describe ongoing systematic improvements to these articles to increase their utility. Moreover, we retrospectively examine the community usage and improvement of the Gene Wiki, providing evidence of a critical mass of users and editors. Gene Wiki articles are freely accessible within the Wikipedia web site, and additional links and information are available at http://en.wikipedia.org/wiki/Portal:Gene_Wiki. PMID:19755503

  10. Identification of genes and gene products necessary for bacterial bioluminescence.

    PubMed

    Engebrecht, J; Silverman, M

    1984-07-01

    Expression of luminescence in Escherichia coli was recently achieved by cloning genes from the marine bacterium Vibrio fischeri. One DNA fragment on a hybrid plasmid encoded regulatory functions and enzymatic activities necessary for light production. We report the results of a genetic analysis to identify the luminescence genes (lux) that reside on this recombinant plasmid. lux gene mutations were generated by hydroxylamine treatment, and these mutations were ordered on a linear map by complementation in trans with a series of polar transposon insertions on other plasmids. lux genes were defined by complementation of lux gene defects on pairs of plasmids in trans in E. coli. Hybrid plasmids were also used to direct the synthesis of polypeptides in the E. coli minicell system. Seven lux genes and the corresponding gene products were identified from the complementation analysis and the minicell programing experiments. These genes, in the order of their position on a linear map, and the apparent molecular weights of the gene products are luxR (27,000), luxI (25,000), luxC (53,000), luxD (33,000), luxA (40,000), luxB (38,000), and luxE (42,000). From the luminescence phenotypes of E. coli containing mutant plasmids, functions were assigned to these genes: luxA, luxB, luxC, luxD, and luxE encode enzymes for light production and luxR and luxI encode regulatory functions. PMID:6377310

  11. Progress in gene targeting and gene therapy for retinitis pigmentosa

    SciTech Connect

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectors for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.

  12. Gene Circuit Analysis of the Terminal Gap Gene huckebein

    PubMed Central

    Ashyraliyev, Maksat; Siggens, Ken; Janssens, Hilde; Blom, Joke; Akam, Michael; Jaeger, Johannes

    2009-01-01

    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network. PMID:19876378

  13. Identifying Gene Interaction Networks

    PubMed Central

    Bebek, Gurkan

    2016-01-01

    In this chapter, we introduce interaction networks by describing how they are generated, where they are stored, and how they are shared. We focus on publicly available interaction networks and describe a simple way of utilizing these resources. As a case study, we used Cytoscape, an open source and easy-to-use network visualization and analysis tool to first gather and visualize a small network. We have analyzed this network’s topological features and have looked at functional enrichment of the network nodes by integrating the gene ontology database. The methods described are applicable to larger networks that can be collected from various resources. PMID:22307715

  14. Gene transfer: transduction.

    PubMed

    Frangipani, Emanuela

    2014-01-01

    Bacteriophages able to propagate on Pseudomonas strains are very common and can be easily isolated from natural environments or lysogenic strains. The development of transducing systems has allowed bacterial geneticists to perform chromosome analyses and mutation mapping. Moreover, these systems have also been proved to be a successful tool for molecular microbiologists to introduce a foreign gene or a mutation into the chromosome of a bacterial cell. This chapter provides a description of the phage methodology illustrated by Adams in 1959 and applicable to strain PAO1 derivatives. PMID:24818891

  15. Genes for sexual behavior.

    PubMed

    Yamamoto, D; Nakano, Y

    1998-05-01

    The mating behavior of Drosophila melanogaster is a stereotyped sequence of fixed action patterns, composed of orientation, tapping, singing, licking, attempted copulation and copulation. Mutations that block a unique aspect of mating behavior were isolated and analyzed at the cellular and molecular levels. The wild-type counterparts of the mutated genes were shown to rescue the phenotypes by their ubiquitous or targeted expression in some of the mutants. This strategy of artificial control of fly behavior opens up an avenue for studies to identify the neural center for individual behavioral actions. PMID:9600058

  16. Computation in gene networks

    NASA Astrophysics Data System (ADS)

    Ben-Hur, Asa; Siegelmann, Hava T.

    2004-03-01

    Genetic regulatory networks have the complex task of controlling all aspects of life. Using a model of gene expression by piecewise linear differential equations we show that this process can be considered as a process of computation. This is demonstrated by showing that this model can simulate memory bounded Turing machines. The simulation is robust with respect to perturbations of the system, an important property for both analog computers and biological systems. Robustness is achieved using a condition that ensures that the model equations, that are generally chaotic, follow a predictable dynamics.

  17. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function.

    PubMed

    Warde-Farley, David; Donaldson, Sylva L; Comes, Ovi; Zuberi, Khalid; Badrawi, Rashad; Chao, Pauline; Franz, Max; Grouios, Chris; Kazi, Farzana; Lopes, Christian Tannus; Maitland, Anson; Mostafavi, Sara; Montojo, Jason; Shao, Quentin; Wright, George; Bader, Gary D; Morris, Quaid

    2010-07-01

    GeneMANIA (http://www.genemania.org) is a flexible, user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics and proteomics data. GeneMANIA also reports weights that indicate the predictive value of each selected data set for the query. Six organisms are currently supported (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Homo sapiens and Saccharomyces cerevisiae) and hundreds of data sets have been collected from GEO, BioGRID, Pathway Commons and I2D, as well as organism-specific functional genomics data sets. Users can select arbitrary subsets of the data sets associated with an organism to perform their analyses and can upload their own data sets to analyze. The GeneMANIA algorithm performs as well or better than other gene function prediction methods on yeast and mouse benchmarks. The high accuracy of the GeneMANIA prediction algorithm, an intuitive user interface and large database make GeneMANIA a useful tool for any biologist. PMID:20576703

  18. Alternative Gene Form Discovery and Candidate Gene Selection from Gene Indexing Projects

    PubMed Central

    Burke, John; Wang, Hui; Hide, Winston; Davison, Daniel B.

    1998-01-01

    Several efforts are under way to partition single-read expressed sequence tag (EST), as well as full-length transcript data, into large-scale gene indices, where transcripts are in common index classes if and only if they share a common progenitor gene. Accurate gene indexing facilitates gene expression studies, as well as inexpensive and early gene sequence discovery through assembly of ESTs that are derived from genes that have not been sequenced by classical methods. We extend, correct, and enhance the information obtained from index groups by splitting index classes into subclasses based on sequence dissimilarity (diversity). Two applications of this are highlighted in this report. First it is shown that our method can ameliorate the damage that artifacts, such as chimerism, inflict on index integrity. Additionally, we demonstrate how the organization imposed by an effective subpartition can greatly increase the sensitivity of gene expression studies by accounting for the existence and tissue- or pathology-specific regulation of novel gene isoforms and polymorphisms. We apply our subpartitioning treatment to the UniGene gene indexing project to measure a marked increase in information quality and abundance (in terms of assembly length and insertion/deletion error) after treatment and demonstrate cases where new levels of information concerning differential expression of alternate gene forms, such as regulated alternative splicing, are discovered. [Tables 2 and 3 can be viewed in their entirety as Online Supplements at http://www.genome.org.] PMID:9521931

  19. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    PubMed Central

    Wold, William S.M.; Toth, Karoly

    2015-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vectors are engineered to replicate preferentially in cancer cells and to destroy cancer cells through the natural process of lytic virus replication. Many clinical trials indicate that replication-defective and replication-competent adenovirus vectors are safe and have therapeutic activity. PMID:24279313

  20. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  1. Gene function prediction with knowledge from gene ontology.

    PubMed

    Shen, Ying; Zhang, Lin

    2015-01-01

    Gene function prediction is an important problem in bioinformatics. Due to the inherent noise existing in the gene expression data, the attempt to improve the prediction accuracy resorting to new classification techniques is limited. With the emergence of Gene Ontology (GO), extra knowledge about the gene products can be extracted from GO and facilitates solving the gene function prediction problem. In this paper, we propose a new method which utilises GO information to improve the classifiers' performance in gene function prediction. Specifically, our method learns a distance metric under the supervision of the GO knowledge using the distance learning technique. Compared with the traditional distance metrics, the learned one produces a better performance and consequently classification accuracy can be improved. The effectiveness of our proposed method has been corroborated by the extensive experimental results. PMID:26529907

  2. Endocrine regulation of HOX genes.

    PubMed

    Daftary, Gaurang S; Taylor, Hugh S

    2006-06-01

    Hox genes have a well-characterized role in embryonic development, where they determine identity along the anteroposterior body axis. Hox genes are expressed not only during embryogenesis but also in the adult, where they are necessary for functional differentiation. Despite the known function of these genes as transcription factors, few regulatory mechanisms that drive Hox expression are known. Recently, several hormones and their cognate receptors have been shown to regulate Hox gene expression and thereby mediate development in the embryo as well as functional differentiation in the adult organism. Estradiol, progesterone, testosterone, retinoic acid, and vitamin D have been shown to regulate Hox gene expression. In the embryo, the endocrine system directs axial Hox gene expression; aberrant Hox gene expression due to exposure to endocrine disruptors contributes to the teratogenicity of these compounds. In the adult, endocrine regulation of Hox genes is necessary to enable such diverse functions as hematopoiesis and reproduction; endocrinopathies can result in dysregulated HOX gene expression affecting physiology. By regulating HOX genes, hormonal signals utilize a conserved mechanism that allows generation of structural and functional diversity in both developing and adult tissues. This review discusses endocrine Hox regulation and its impact on physiology and human pathology. PMID:16632680

  3. Imprinting genes associated with endometriosis

    PubMed Central

    Kobayashi, Hiroshi

    2014-01-01

    Purpose: Much work has been carried out to investigate the genetic and epigenetic basis of endometriosis and proposed that endometriosis has been described as an epigenetic disease. The purpose of this study was to extract the imprinting genes that are associated with endometriosis development. Methods: The information on the imprinting genes can be accessed publicly from a web-based interface at http://www.geneimprint.com/site/genes-by-species. Results: In the current version, the database contains 150 human imprinted genes derived from the literature. We searched gene functions and their roles in particular biological processes or events, such as development and pathogenesis of endometriosis. From the genomic imprinting database, we picked 10 genes that were highly associated with female reproduction; prominent among them were paternally expressed genes (DIRAS3, BMP8B, CYP1B1, ZFAT, IGF2, MIMT1, or MIR296) and maternally expressed genes (DVL1, FGFRL1, or CDKN1C). These imprinted genes may be associated with reproductive biology such as endometriosis, pregnancy loss, decidualization process and preeclampsia. Discussion: This study supports the possibility that aberrant epigenetic dysregulation of specific imprinting genes may contribute to endometriosis predisposition. PMID:26417259

  4. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers. PMID:9034598

  5. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  6. The Zebrafish Annexin Gene Family

    PubMed Central

    Farber, Steven A.; De Rose, Robert A.; Olson, Eric S.; Halpern, Marnie E.

    2003-01-01

    The Annexins (ANXs) are a family of calcium- and phospholipid-binding proteins that have been implicated in many cellular processes, including channel formation, membrane fusion, vesicle transport, and regulation of phospholipase A2 activity. As a first step toward understanding in vivo function, we have cloned 11 zebrafish anx genes. Four genes (anx1a, anx2a, anx5,and anx11a) were identified by screening a zebrafish cDNA library with a Xenopus anx2 fragment. For these genes, full-length cDNA sequences were used to cluster 212 EST sequences generated by the Zebrafish Genome Resources Project. The EST analysis revealed seven additional anx genes that were subsequently cloned. The genetic map positions of all 11 genes were determined by using a zebrafish radiation hybrid panel. Sequence and syntenic relationships between zebrafish and human genes indicate that the 11 genes represent orthologs of human anx1,2,4,5,6,11,13,and suggest that several zebrafish anx genes resulted from duplications that arose after divergence of the zebrafish and mammalian genomes. Zebrafish anx genes are expressed in a wide range of tissues during embryonic and larval stages. Analysis of the expression patterns of duplicated genes revealed both redundancy and divergence, with the most similar genes having almost identical tissue-specific patterns of expression and with less similar duplicates showing no overlap. The differences in gene expression of recently duplicated anx genes could explain why highly related paralogs were maintained in the genome and did not rapidly become pseudogenes. PMID:12799347

  7. Gene-gene interaction between tuberculosis candidate genes in a South African population.

    PubMed

    de Wit, Erika; van der Merwe, Lize; van Helden, Paul D; Hoal, Eileen G

    2011-02-01

    In a complex disease such as tuberculosis (TB) it is increasingly evident that gene-gene interactions play a far more important role in an individual's susceptibility to develop the disease than single polymorphisms on their own, as one gene can enhance or hinder the expression of another gene. Gene-gene interaction analysis is a new approach to elucidate susceptibility to TB. The possibility of gene-gene interactions was assessed, focusing on 11 polymorphisms in nine genes (DC-SIGN, IFN-γ, IFNGR1, IL-8, IL-1Ra, MBL, NRAMP1, RANTES, and SP-D) that have been associated with TB, some repeatedly. An optimal model, which best describes and predicts TB case-control status, was constructed. Significant interactions were detected between eight pairs of variants. The models fitted the observed data extremely well, with p < 0.0001 for all eight models. A highly significant interaction was detected between INFGR1 and NRAMP1, which is not surprising because macrophage activation is greatly enhanced by IFN-γ and IFN-γ response elements that are present in the human NRAMP1 promoter region, providing further evidence for their interaction. This study enabled us to test the theory that disease outcome may be due to interaction of several gene effects. With eight instances of statistically significant gene-gene interactions, the importance of epistasis is clearly identifiable in this study. Methods for studying gene-gene interactions are based on a multilocus and multigene approach, consistent with the nature of complex-trait diseases, and may provide the paradigm for future genetic studies of TB. PMID:20799037

  8. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    PubMed Central

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  9. Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria.

    PubMed

    Finnerty, J R; Martindale, M Q

    1999-01-01

    Among the bilaterally symmetrical, triploblastic animals (the Bilateria), a conserved set of developmental regulatory genes are known to function in patterning the anterior-posterior (AP) axis. This set includes the well-studied Hox cluster genes, and the recently described genes of the ParaHox cluster, which is believed to be the evolutionary sister of the Hox cluster (Brooke et al. 1998). The conserved role of these axial patterning genes in animals as diverse as frogs and flies is believed to reflect an underlying homology (i.e., all bilaterians derive from a common ancestor which possessed an AP axis and the developmental mechanisms responsible for patterning the axis). However, the origin and early evolution of Hox genes and ParaHox genes remain obscure. Repeated attempts have been made to reconstruct the early evolution of Hox genes by analyzing data from the triphoblastic animals, the Bilateria (Schubert et al. 1993; Zhang and Nei 1996). A more precise dating of Hox origins has been elusive due to a lack of sufficient information from outgroup taxa such as the phylum Cnidaria (corals, hydras, jellyfishes, and sea anemones). In combination with outgroup taxa, another potential source of information about Hox origins is outgroup genes (e.g., the genes of the ParaHox cluster). In this article, we present cDNA sequences of two Hox-like genes (anthox2 and anthox6) from the sea anemone, Nematostella vectensis. Phylogenetic analysis indicates that anthox2 (= Cnox2) is homologous to the GSX class of ParaHox genes, and anthox6 is homologous to the anterior class of Hox genes. Therefore, the origin of Hox genes and ParaHox genes occurred prior to the evolutionary split between the Cnidaria and the Bilateria and predated the evolution of the anterior-posterior axis of bilaterian animals. Our analysis also suggests that the central Hox class was invented in the bilaterian lineage, subsequent to their split from the Cnidaria. PMID:11324016

  10. Introns in gene evolution.

    PubMed

    Fedorova, Larisa; Fedorov, Alexei

    2003-07-01

    Introns are integral elements of eukaryotic genomes that perform various important functions and actively participate in gene evolution. We review six distinct roles of spliceosomal introns: (1) sources of non-coding RNA; (2) carriers of transcription regulatory elements; (3) actors in alternative and trans-splicing; (4) enhancers of meiotic crossing over within coding sequences; (5) substrates for exon shuffling; and (6) signals for mRNA export from the nucleus and nonsense-mediated decay. We consider transposable capacities of introns and the current state of the long-lasting debate on the 'early-or-late' origin of introns. Cumulative data on known types of contemporary exon shuffling and the estimation of the size of the underlying exon universe are also discussed. We argue that the processes central to introns-early (exon shuffling) and introns-late (intron insertion) theories are entirely compatible. Each has provided insight: the latter through elucidating the transposon capabilities of introns, and the former through understanding the importance of introns in genomic recombination leading to gene rearrangements and evolution. PMID:12868603

  11. Conotoxin Gene Superfamilies

    PubMed Central

    Robinson, Samuel D.; Norton, Raymond S.

    2014-01-01

    Conotoxins are the peptidic components of the venoms of marine cone snails (genus Conus). They are remarkably diverse in terms of structure and function. Unique potency and selectivity profiles for a range of neuronal targets have made several conotoxins valuable as research tools, drug leads and even therapeutics, and has resulted in a concerted and increasing drive to identify and characterise new conotoxins. Conotoxins are translated from mRNA as peptide precursors, and cDNA sequencing is now the primary method for identification of new conotoxin sequences. As a result, gene superfamily, a classification based on precursor signal peptide identity, has become the most convenient method of conotoxin classification. Here we review each of the described conotoxin gene superfamilies, with a focus on the structural and functional diversity present in each. This review is intended to serve as a practical guide to conotoxin superfamilies and to facilitate interpretation of the increasing number of conotoxin precursor sequences being identified by targeted-cDNA sequencing and more recently high-throughput transcriptome sequencing. PMID:25522317

  12. Bacteriophage phiX174: gene A overlaps gene B.

    PubMed Central

    Weisbeek, P J; Borrias, W E; Langeveld, S A; Baas, P D; Van Arkel, G A

    1977-01-01

    The map position of several phiX174 mutations in the genes A and B was determined by marker rescue with DNA fragments produced by the restriction enzymes Hha I, HindII, Hae III, and Alu I. All the gene B mutants were found to be located within gene A. Genetic complementation and analysis of phage-specific protein synthesis show that, under restrictive conditions, nonsense mutants in gene A do not block the synthesis and activity of the B protein and nonsense mutants in gene B do not affect the gene A function. The map position of the COOH-terminal end of gene A was determined using an amber mutant that synthesizes slightly shortened A and A proteins. It is concluded from these experiments that gene A overlaps gene B completely (or almost completely) and that the overlap region can be translated in two ways with different reading frames: one frame for the synthesis of the A and A proteins and another for the synthesis of the B protein. Images PMID:267943

  13. GeneMark.hmm: new solutions for gene finding.

    PubMed

    Lukashin, A V; Borodovsky, M

    1998-02-15

    The number of completely sequenced bacterial genomes has been growing fast. There are computer methods available for finding genes but yet there is a need for more accurate algorithms. The GeneMark. hmm algorithm presented here was designed to improve the gene prediction quality in terms of finding exact gene boundaries. The idea was to embed the GeneMark models into naturally derived hidden Markov model framework with gene boundaries modeled as transitions between hidden states. We also used the specially derived ribosome binding site pattern to refine predictions of translation initiation codons. The algorithm was evaluated on several test sets including 10 complete bacterial genomes. It was shown that the new algorithm is significantly more accurate than GeneMark in exact gene prediction. Interestingly, the high gene finding accuracy was observed even in the case when Markov models of order zero, one and two were used. We present the analysis of false positive and false negative predictions with the caution that these categories are not precisely defined if the public database annotation is used as a control. PMID:9461475

  14. Gene: a gene-centered information resource at NCBI

    PubMed Central

    Brown, Garth R.; Hem, Vichet; Katz, Kenneth S.; Ovetsky, Michael; Wallin, Craig; Ermolaeva, Olga; Tolstoy, Igor; Tatusova, Tatiana; Pruitt, Kim D.; Maglott, Donna R.; Murphy, Terence D.

    2015-01-01

    The National Center for Biotechnology Information's (NCBI) Gene database (www.ncbi.nlm.nih.gov/gene) integrates gene-specific information from multiple data sources. NCBI Reference Sequence (RefSeq) genomes for viruses, prokaryotes and eukaryotes are the primary foundation for Gene records in that they form the critical association between sequence and a tracked gene upon which additional functional and descriptive content is anchored. Additional content is integrated based on the genomic location and RefSeq transcript and protein sequence data. The content of a Gene record represents the integration of curation and automated processing from RefSeq, collaborating model organism databases, consortia such as Gene Ontology, and other databases within NCBI. Records in Gene are assigned unique, tracked integers as identifiers. The content (citations, nomenclature, genomic location, gene products and their attributes, phenotypes, sequences, interactions, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities and Entrez Direct) and for bulk transfer by FTP. PMID:25355515

  15. Gene-targeting pharmaceuticals for single-gene disorders.

    PubMed

    Beaudet, Arthur L; Meng, Linyan

    2016-04-15

    The concept of orphan drugs for treatment of orphan genetic diseases is perceived enthusiastically at present, and this is leading to research investment on the part of governments, disease-specific foundations and industry. This review attempts to survey the potential to use traditional pharmaceuticals as opposed to biopharmaceuticals to treat single-gene disorders. The available strategies include the use of antisense oligonucleotides (ASOs) to alter splicing or knock-down expression of a transcript, siRNAs to knock-down gene expression and drugs for nonsense mutation read-through. There is an approved drug for biallelic knock-down of the APOB gene as treatment for familial hypercholesterolemia. Both ASOs and siRNAs are being explored to knock-down the transthyretin gene to prevent the related form of amyloidosis. The use of ASOs to alter gene-splicing to treat spinal muscular atrophy is in phase 3 clinical trials. Work is progressing on the use of ASOs to activate the normally silent paternal copy of the imprinted UBE3A gene in neurons as a treatment for Angelman syndrome. A gene-activation or gene-specific ramp-up strategy would be generally helpful if such could be developed. There is exciting theoretical potential for converting biopharmaceutical strategies such gene correction and CRISPR-Cas9 editing to a synthetic pharmaceutical approach. PMID:26628634

  16. Immunity-related genes and gene families in Anopheles gambiae.

    PubMed

    Christophides, George K; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T; Collins, Frank H; Danielli, Alberto; Dimopoulos, George; Hetru, Charles; Hoa, Ngo T; Hoffmann, Jules A; Kanzok, Stefan M; Letunic, Ivica; Levashina, Elena A; Loukeris, Thanasis G; Lycett, Gareth; Meister, Stephan; Michel, Kristin; Moita, Luis F; Müller, Hans-Michael; Osta, Mike A; Paskewitz, Susan M; Reichhart, Jean-Marc; Rzhetsky, Andrey; Troxler, Laurent; Vernick, Kenneth D; Vlachou, Dina; Volz, Jennifer; von Mering, Christian; Xu, Jiannong; Zheng, Liangbiao; Bork, Peer; Kafatos, Fotis C

    2002-10-01

    We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire. PMID:12364793

  17. Sexually antagonistic genes: experimental evidence.

    PubMed

    Rice, W R

    1992-06-01

    When selection differs between the sexes, a mutation beneficial to one sex may be harmful to the other (sexually antagonistic). Because the sexes share a common gene pool, selection in one sex can interfere with the other's adaptive evolution. Theory predicts that sexually antagonistic mutations should accumulate in tight linkage with a new sex-determining gene, even when the harm to benefit ratio is high. Genetic markers and artificial selection were used to make a pair of autosomal genes segregate like a new pair of sex-determining genes in a Drosophila melanogaster model system. A 29-generation study provides experimental evidence that sexually antagonistic genes may be common in nature and will accumulate in response to a new sex-determining gene. PMID:1604317

  18. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  19. Gene targeting with retroviral vectors

    SciTech Connect

    Ellis, J.; Bernstein, A. )

    1989-04-01

    The authors have designed and constructed integration-defective retroviral vectors to explore their potential for gene targeting in mammalian cells. Two nonoverlapping deletion mutants of the bacterial neomycin resistance (neo) gene were used to detect homologous recombination events between viral and chromosomal sequences. Stable neo gene correction events were selected at a frequency of approximately 1 G418/sup r/ cell per 3 x 10/sup 6/ infected cells. Analysis of the functional neo gene in independent targeted cell clones indicated that unintegrated retroviral linear DNA recombined with the target by gene conversion for variable distances into regions of nonhomology. In addition, transient neo gene correction events which were associated with the complete loss of the chromosomal target sequences were observed. These results demonstrated that retroviral vectors can recombine with homologous chromosomal sequences in rodent and human cells.

  20. The Perils of Gene Patents

    PubMed Central

    Salzberg, SL

    2013-01-01

    I argue here that gene patents, and patented genetic tests based on them, are a very bad idea. First, I discuss whether genes can reasonably be the subject of patents in the first place; I maintain that the answer is no. Second, I explain how gene patents interfere with scientific progress, slowing down the development of new cures and treatments for genetic diseases. PMID:22609909

  1. Symmetry and Stochastic Gene Regulation

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José E. M.

    2007-09-01

    Lorentz-like noncompact Lie symmetry SO(2,1) is found in a spin-boson stochastic model for gene expression. The invariant of the algebra characterizes the switch decay to equilibrium. The azimuthal eigenvalue describes the affinity between the regulatory protein and the gene operator site. Raising and lowering operators are constructed and their actions increase or decrease the affinity parameter. The classification of the noise regime of the gene arises from the group theoretical numbers.

  2. Combinatorial approaches to gene recognition.

    PubMed

    Roytberg, M A; Astakhova, T V; Gelfand, M S

    1997-01-01

    Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers. PMID:9440930

  3. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  4. Gene therapy for Parkinson's disease.

    PubMed

    Lawlor, Patricia A; During, Matthew J

    2004-03-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder arising from loss of dopaminergic neurons in the substantia nigra pars compacta and subsequent depletion of striatal dopamine levels, which results in distressing motor symptoms. The current standard pharmacological treatment for PD is direct replacement of dopamine by treatment with its precursor, levodopa (L-dopa). However, this does not significantly alter disease progression and might contribute to the ongoing pathology. Several features of PD make this disease one of the most promising targets for clinical gene therapy of any neurological disease. The confinement of the major pathology to a compact, localised neuronal population and the anatomy of the basal ganglia circuitry mean that global gene transfer is not required and there are well-defined sites for gene transfer. The multifactorial aetiology of idiopathic PD means that it is unlikely any single gene will cure the disease, and as a result at least three separate gene-transfer strategies are currently being pursued: transfer of genes for enzymes involved in dopamine production; transfer of genes for growth factors involved in dopaminergic cell survival and regeneration; and transfer of genes to reset neuronal circuitry by switching cellular phenotype. The merits of these strategies are discussed here, along with remaining hurdles that might impede transfer of gene therapy technology to the clinic as a treatment for PD. PMID:15000692

  5. ERGDB: Estrogen Responsive Genes Database.

    PubMed

    Tang, Suisheng; Han, Hao; Bajic, Vladimir B

    2004-01-01

    ERGDB is an integrated knowledge database dedicated to genes responsive to estrogen. Genes included in ERGDB are those whose expression levels are experimentally proven to be either up-regulated or down-regulated by estrogen. Genes included are identified based on publications from the PubMed database and each record has been manually examined, evaluated and selected for inclusion by biologists. ERGDB aims to be a unified gateway to store, search, retrieve and update information about estrogen responsive genes. Each record contains links to relevant databases, such as GenBank, LocusLink, Refseq, PubMed and ATCC. The unique feature of ERGDB is that it contains information on the dependence of gene reactions on experimental conditions. In addition to basic information about the genes, information for each record includes gene functional description, experimental methods used, tissue or cell type, gene reaction, estrogen exposure time and the summary of putative estrogen response elements if the gene's promoter sequence was available. Through a web interface at http://sdmc.i2r.a-star.edu.sg/ergdb/ cgi-bin/explore.pl users can either browse or query ERGDB. Access is free for academic and non-profit users. PMID:14681475

  6. New genes for boys

    SciTech Connect

    Sinclair, A.H.

    1995-11-01

    Sex is a fascinating topic, particularly at the level of molecular genetics, since it represents a wonderful paradigm for mammalian organ development. Recently, interest in the molecular basis for mammalian sex determination has been heating up as new pieces are added to the jigsaw puzzle of testis development. In mammals, the Y chromosome is male determining and encodes a gene referred to as TDF (testis-determining factor), which induces the indifferent embryonic gonad to develop as a testis. Subsequent male sexual differentiation is largely a consequence of hormonal secretion from the testis. In the absence of the Y chromosome, the testis-determining pathway fails to be initiated, and the embryonic gonad develops as an ovary, resulting in female development. 32 refs.

  7. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  8. Cardiac Gene Therapy

    PubMed Central

    Chaanine, Antoine H.; Kalman, Jill; Hajjar, Roger J.

    2010-01-01

    Heart failure is a chronic progressive disorder where frequent and recurrent hospitalizations are associated with high mortality and morbidity. The incidence and the prevalence of this disease will increase with the increase in the number of the aging population of the United States. Understanding the molecular pathology and pathophysiology of this disease will uncover novel targets and therapies that can restore the function or attenuate the damage of malfunctioning cardiomyocytes by gene therapy that becomes an interesting and a promising field for the treatment of heart failure as well as other diseases in the future. Of equal importance is developing vectors and delivery methods that can efficiently transduce the majority of the cardiomyocytes, that can offer a long term expression and that can escape the host immune response. Recombinant adeno-associated virus vectors have the potential to become a promising novel therapeutic vehicles for molecular medicine in the future. PMID:21092890

  9. DIFFERENTIAL GENE EXPRESSION OF PUTATIVE VIRULENCE GENES IN Flavobacterium columnare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A shot-gun genomic library of the Flavobacterium columnare ALG-530 virulent strain has been constructed and more than 3,000 clones have been sequenced to date (800 contigs). Based on sequence identity with putative known virulence genes from related species, seven genes were selected for differentia...

  10. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine. PMID:16886903

  11. Candidate reference genes for gene expression studies in water lily.

    PubMed

    Luo, Huolin; Chen, Sumei; Wan, Hongjian; Chen, Fadi; Gu, Chunsun; Liu, Zhaolei

    2010-09-01

    The selection of an appropriate reference gene(s) is a prerequisite for the proper interpretation of quantitative Real-Time polymerase chain reaction data. We report the evaluation of eight candidate reference genes across various tissues and treatments in the water lily by the two software packages geNorm and NormFinder. Across all samples, clathrin adaptor complexes medium subunit (AP47) and actin 11 (ACT11) emerged as the most suitable reference genes. Across different tissues, ACT11 and elongation factor 1-alpha (EF1alpha) exhibited a stable expression pattern. ACT11 and AP47 also stably expressed in roots subjected to various treatments, but in the leaves of the same plants the most stably expressed genes were ubiquitin-conjugating enzyme 16 (UBC16) and ACT11. PMID:20452325

  12. Uncovering trends in gene naming

    PubMed Central

    Seringhaus, Michael R; Cayting, Philip D; Gerstein, Mark B

    2008-01-01

    We take stock of current genetic nomenclature and attempt to organize strange and notable gene names. We categorize, for instance, those that involve a naming system transferred from another context (for example, Pavlov’s dogs). We hope this analysis provides clues to better steer gene naming in the future. PMID:18254929

  13. Determining Semantically Related Significant Genes.

    PubMed

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement. PMID:26357049

  14. Candidate gene prioritization with Endeavour.

    PubMed

    Tranchevent, Léon-Charles; Ardeshirdavani, Amin; ElShal, Sarah; Alcaide, Daniel; Aerts, Jan; Auboeuf, Didier; Moreau, Yves

    2016-07-01

    Genomic studies and high-throughput experiments often produce large lists of candidate genes among which only a small fraction are truly relevant to the disease, phenotype or biological process of interest. Gene prioritization tackles this problem by ranking candidate genes by profiling candidates across multiple genomic data sources and integrating this heterogeneous information into a global ranking. We describe an extended version of our gene prioritization method, Endeavour, now available for six species and integrating 75 data sources. The performance (Area Under the Curve) of Endeavour on cross-validation benchmarks using 'gold standard' gene sets varies from 88% (for human phenotypes) to 95% (for worm gene function). In addition, we have also validated our approach using a time-stamped benchmark derived from the Human Phenotype Ontology, which provides a setting close to prospective validation. With this benchmark, using 3854 novel gene-phenotype associations, we observe a performance of 82%. Altogether, our results indicate that this extended version of Endeavour efficiently prioritizes candidate genes. The Endeavour web server is freely available at https://endeavour.esat.kuleuven.be/. PMID:27131783

  15. Using Genes to Guide Prescriptions

    MedlinePlus

    ... Science > Using Genes to Guide Prescriptions Inside Life Science View All Articles | Inside Life Science Home Page Using Genes to Guide Prescriptions By ... to Zoloft: Ways Medicines Work This Inside Life Science article also appears on LiveScience . Learn about related ...

  16. Gene therapy on the move

    PubMed Central

    Kaufmann, Kerstin B; Büning, Hildegard; Galy, Anne; Schambach, Axel; Grez, Manuel

    2013-01-01

    The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders. PMID:24106209

  17. Multifunctional nanorods for gene delivery

    NASA Astrophysics Data System (ADS)

    Salem, Aliasger K.; Searson, Peter C.; Leong, Kam W.

    2003-10-01

    The goal of gene therapy is to introduce foreign genes into somatic cells to supplement defective genes or provide additional biological functions, and can be achieved using either viral or synthetic non-viral delivery systems. Compared with viral vectors, synthetic gene-delivery systems, such as liposomes and polymers, offer several advantages including ease of production and reduced risk of cytotoxicity and immunogenicity, but their use has been limited by the relatively low transfection efficiency. This problem mainly stems from the difficulty in controlling their properties at the nanoscale. Synthetic inorganic gene carriers have received limited attention in the gene-therapy community, the only notable example being gold nanoparticles with surface-immobilized DNA applied to intradermal genetic immunization by particle bombardment. Here we present a non-viral gene-delivery system based on multisegment bimetallic nanorods that can simultaneously bind compacted DNA plasmids and targeting ligands in a spatially defined manner. This approach allows precise control of composition, size and multifunctionality of the gene-delivery system. Transfection experiments performed in vitro and in vivo provide promising results that suggest potential in genetic vaccination applications.

  18. Gene Expression in Oligodendroglial Tumors

    PubMed Central

    Shaw, Elisabeth J.; Haylock, Brian; Husband, David; du Plessis, Daniel; Sibson, D. Ross; Warnke, Peter C.; Walker, Carol

    2010-01-01

    Background: Oligodendroglial tumors with 1p/19q loss are more likely to be chemosensitive and have longer survival than those with intact 1p/19q, but not all respond to chemotherapy, warranting investigation of the biological basis of chemosensitivity. Methods: Gene expression profiling was performed using amplified antisense RNA from 28 oligodendroglial tumors treated with chemotherapy (26 serial stereotactic biopsy, 2 resection). Expression of differentially expressed genes was validated by real-time PCR. Results: Unsupervised hierarchical clustering showed clustering of multiple samples from the same case in 14/17 cases and identified subgroups associated with tumor grade and 1p/19q status. 176 genes were differentially expressed, 164 being associated with 1p/19q loss (86% not on 1p or 19q). 94 genes differed between responders and non-responders to chemotherapy; 12 were not associated with 1p/19q loss. Significant differential expression was confirmed in 11/13 selected genes. Novel genes associated with response to therapy included SSBP2, GFRA1, FAP and RASD1. IQGAP1, INA, TGIF1, NR2F2 and MYCBP were differentially expressed in oligodendroglial tumors with 1p/19q loss. Conclusion: Gene expression profiling using serial stereotactic biopsies indicated greater homogeneity within tumors than between tumors. Genes associated with 1p/19q status or response were identified warranting further elucidation of their role in oligodendroglial tumors. PMID:20966545

  19. From genes to genome biology

    SciTech Connect

    Pennisi, E.

    1996-06-21

    This article describes a change in the approach to mapping genomes, from looking at one gene at a time, to other approaches. Strategies include everything from lab techniques to computer programs designed to analyze whole batches of genes at once. Also included is a update on the work on the human genome.

  20. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  1. Susceptibility Genes in Thyroid Autoimmunity

    PubMed Central

    Ban, Yoshiyuki; Tomer, Yaron

    2005-01-01

    The autoimmune thyroid diseases (AITD) are complex diseases which are caused by an interaction between susceptibility genes and environmental triggers. Genetic susceptibility in combination with external factors (e.g. dietary iodine) is believed to initiate the autoimmune response to thyroid antigens. Abundant epidemiological data, including family and twin studies, point to a strong genetic influence on the development of AITD. Various techniques have been employed to identify the genes contributing to the etiology of AITD, including candidate gene analysis and whole genome screening. These studies have enabled the identification of several loci (genetic regions) that are linked with AITD, and in some of these loci, putative AITD susceptibility genes have been identified. Some of these genes/loci are unique to Graves' disease (GD) and Hashimoto's thyroiditis (HT) and some are common to both the diseases, indicating that there is a shared genetic susceptibility to GD and HT. The putative GD and HT susceptibility genes include both immune modifying genes (e.g. HLA, CTLA-4) and thyroid specific genes (e.g. TSHR, Tg). Most likely, these loci interact and their interactions may influence disease phenotype and severity. PMID:15712599

  2. Nonviral Vectors for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Baoum, Abdulgader Ahmed

    2011-12-01

    The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,L-lactide- co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (˜200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less cytotoxic than PEI suggesting the use of these vehicles for localized, sustained gene delivery to the pulmonary epithelium. On the other hand, a more simple method to synthesize 50-200 nm complexes capable of high transfection efficiency or high gene knockdown was

  3. Fast parsers for Entrez Gene.

    PubMed

    Liu, Mingyi; Grigoriev, Andrei

    2005-07-15

    NCBI completed the transition of its main genome annotation database from Locuslink to Entrez Gene in Spring 2005. However, to this date few parsers exist for the Entrez Gene annotation file. Owing to the widespread use of Locuslink and the popularity of Perl programming language in bioinformatics, a publicly available high performance Entrez Gene parser in Perl is urgently needed. We present four such parsers that were developed using several parsing approaches (Parse::RecDescent, Parse::Yapp, Perl-byacc and Perl 5 regular expressions) and provide the first in-depth comparison of these sophisticated Perl tools. Our fastest parser processes the entire human Entrez Gene annotation file in under 12 min on one Intel Xeon 2.4 GHz CPU and can be of help to the bioinformatics community during and after the transition from Locuslink to Entrez Gene. PMID:15879451

  4. Gene Therapy for Retinal Diseases

    PubMed Central

    Samiy, Nasrollah

    2014-01-01

    Gene therapy has a growing research potential particularly in the field of ophthalmic and retinal diseases owing to three main characteristics of the eye; accessibility in terms of injections and surgical interventions, its immune-privileged status facilitating the accommodation to the antigenicity of a viral vector, and tight blood-ocular barriers which save other organs from unwanted contamination. Gene therapy has tremendous potential for different ocular diseases. In fact, the perspective of gene therapy in the field of eye research does not confine to exclusive monogenic ophthalmic problems and it has the potential to include gene based pharmacotherapies for non-monogenic problems such as age related macular disease and diabetic retinopathy. The present article has focused on how gene transfer into the eye has been developed and used to treat retinal disorders with no available therapy at present. PMID:25709778

  5. The Gene Network Underlying Hypodontia.

    PubMed

    Yin, W; Bian, Z

    2015-07-01

    Mammalian tooth development is a precise and complicated procedure. Several signaling pathways, such as nuclear factor (NF)-κB and WNT, are key regulators of tooth development. Any disturbance of these signaling pathways can potentially affect or block normal tooth development, and presently, there are more than 150 syndromes and 80 genes known to be related to tooth agenesis. Clarifying the interaction and crosstalk among these genes will provide important information regarding the mechanisms underlying missing teeth. In the current review, we summarize recently published findings on genes related to isolated and syndromic tooth agenesis; most of these genes function as positive regulators of cell proliferation or negative regulators of cell differentiation and apoptosis. Furthermore, we explore the corresponding networks involving these genes in addition to their implications for the clinical management of tooth agenesis. We conclude that this requires further study to improve patients' quality of life in the future. PMID:25910507

  6. Immunoglobulin λ Gene Rearrangement Can Precede κ Gene Rearrangement

    DOE PAGESBeta

    Berg, Jörg; Mcdowell, Mindy; Jäck, Hans-Martin; Wabl, Matthias

    1990-01-01

    Imore » mmunoglobulin genes are generated during differentiation of B lymphocytes by joining gene segments. A mouse pre-B cell contains a functional immunoglobulin heavy-chain gene, but no light-chain gene. Although there is only one heavy-chain locus, there are two lightchain loci: κ and λ .It has been reported that κ loci in the germ-line configuration are never (in man) or very rarely (in the mouse) present in cells with functionally rearranged λ -chain genes. Two explanations have been proposed to explain this: (a) the ordered rearrangement theory, which postulates that light-chain gene rearrangement in the pre-B cell is first attempted at the κ locus, and that only upon failure to produce a functional κ chain is there an attempt to rearrange the λ locus; and (b) the stochastic theory, which postulates that rearrangement at the λ locus proceeds at a rate that is intrinsically much slower than that at the κ locus. We show here that λ -chain genes are generated whether or not the κ locus has lost its germ-line arrangement, a result that is compatible only with the stochastic theory.« less

  7. Genes and gene networks implicated in aggression related behaviour.

    PubMed

    Malki, Karim; Pain, Oliver; Du Rietz, Ebba; Tosto, Maria Grazia; Paya-Cano, Jose; Sandnabba, Kenneth N; de Boer, Sietse; Schalkwyk, Leonard C; Sluyter, Frans

    2014-10-01

    Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour. PMID:25142712

  8. Gene therapy progress and prospects: gene therapy for diabetes mellitus.

    PubMed

    Yechoor, V; Chan, L

    2005-01-01

    Diabetes mellitus has long been targeted, as yet unsuccessfully, as being curable with gene therapy. The main hurdles have not only been vector-related toxicity but also the lack of physiological regulation of the expressed insulin. Recent advances in understanding the developmental biology of beta-cells and the transcriptional cascade that drives it have enabled both in vivo and ex vivo gene therapy combined with cell therapy to be used in animal models of diabetes with success. The associated developments in the stem cell biology and immunology have opened up further opportunities for gene therapy to be applied to target autoimmune diabetes. PMID:15496957

  9. Genes and equality.

    PubMed

    Farrelly, C

    2004-12-01

    The way people think about equality as a value will influence how they think genetic interventions should be regulated. In this paper the author uses the taxonomy of equality put forth by Derek Parfit and applies this to the issue of genetic interventions. It is argued that telic egalitarianism is untenable and that deontic egalitarianism collapses into prioritarianism. The priority view maintains that it is morally more important to benefit the people who are worse off. Once this precision has been given to the concerns egalitarians have, a number of diverse issues must be considered before determining what the just regulation of genetic interventions would be. Consideration must be given to the current situation of the least advantaged, the fiscal realities behind genetic interventions, the budget constraints on other social programmes egalitarians believe should receive scarce public funds, and the interconnected nature of genetic information. These considerations might lead egalitarians to abandon what they take to be the obvious policy recommendations for them to endorse regarding the regulation of gene therapies and enhancements. PMID:15574450

  10. Genes, Economics, and Happiness *

    PubMed Central

    De Neve, Jan-Emmanuel; Christakis, Nicholas A.; Fowler, James H.; Frey, Bruno S.

    2012-01-01

    We explore the influence of genetic variation on subjective well-being by employing a twin design and genetic association study. In a nationally-representative twin sample, we first show that about 33% of the variation in life satisfaction is explained by genetic variation. Although previous studies have shown that baseline happiness is significantly heritable, little research has considered molecular genetic associations with subjective well-being. We study the relationship between a functional polymorphism on the serotonin transporter gene (5-HTTLPR) and life satisfaction. We initially find that individuals with the longer, transcriptionally more efficient variant of this genotype report greater life satisfaction (n=2,545, p=0.012). However, our replication attempts on independent samples produce mixed results indicating that more work needs to be done to better understand the relationship between this genotype and subjective well-being. This work has implications for how economists think about the determinants of utility, and the extent to which exogenous shocks might affect individual well-being. PMID:24349601

  11. Genes, Economics, and Happiness.

    PubMed

    De Neve, Jan-Emmanuel; Christakis, Nicholas A; Fowler, James H; Frey, Bruno S

    2012-11-01

    We explore the influence of genetic variation on subjective well-being by employing a twin design and genetic association study. In a nationally-representative twin sample, we first show that about 33% of the variation in life satisfaction is explained by genetic variation. Although previous studies have shown that baseline happiness is significantly heritable, little research has considered molecular genetic associations with subjective well-being. We study the relationship between a functional polymorphism on the serotonin transporter gene (5-HTTLPR) and life satisfaction. We initially find that individuals with the longer, transcriptionally more efficient variant of this genotype report greater life satisfaction (n=2,545, p=0.012). However, our replication attempts on independent samples produce mixed results indicating that more work needs to be done to better understand the relationship between this genotype and subjective well-being. This work has implications for how economists think about the determinants of utility, and the extent to which exogenous shocks might affect individual well-being. PMID:24349601

  12. Environment, genes, and cancer

    SciTech Connect

    Manuel, J.

    1996-03-01

    In January, comedian George Burns turned 100 years old. In recent appearances in the media, he still seems sharp as a tack, and is still seen smoking his trademark cigars. Others of us, however, were never very funny, and would die of cancer at age 60 if we continuously smoked cigars or cigarettes. Burns presents a common but perplexing paradox; some people are able to tolerate at least moderate exposure to toxins such as cigarette smoke with little adverse affect, while others develop cancer, emphysema, or heart disease. New studies support the idea that there is an interaction between genes and the environment, and that this interaction may be an important determinant of cancer risk. To understand such risks, it is essential to look at both an individual`s genetic makeup and environmental exposures. Such studies require the collaboration of molecular epidemiologists and molecular biologists. At the NIEHS, Jack A. Taylor, a lead clinical investigator in the Epidemiology Branch, and Douglas A. Bell, an investigator with the Genetic Risk Group of the Laboratory of Biochemical Risk Analysis, have worked together and with other scientists to uncover new information in this area.

  13. GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes

    SciTech Connect

    Pati, Amrita; Ivanova, Natalia N.; Mikhailova, Natalia; Ovchinnikova, Galina; Hooper, Sean D.; Lykidis, Athanasios; Kyrpides, Nikos C.

    2010-04-01

    We present 'gene prediction improvement pipeline' (GenePRIMP; http://geneprimp.jgi-psf.org/), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies.

  14. Gene Electrotransfer: A Mechanistic Perspective.

    PubMed

    Rosazza, Christelle; Meglic, Sasa Haberl; Zumbusch, Andreas; Rols, Marie-Pierre; Miklavcic, Damijan

    2016-01-01

    Gene electrotransfer is a powerful method of DNA delivery offering several medical applications, among the most promising of which are DNA vaccination and gene therapy for cancer treatment. Electroporation entails the application of electric fields to cells which then experience a local and transient change of membrane permeability. Although gene electrotransfer has been extensively studied in in vitro and in vivo environments, the mechanisms by which DNA enters and navigates through cells are not fully understood. Here we present a comprehensive review of the body of knowledge concerning gene electrotransfer that has been accumulated over the last three decades. For that purpose, after briefly reviewing the medical applications that gene electrotransfer can provide, we outline membrane electropermeabilization, a key process for the delivery of DNA and smaller molecules. Since gene electrotransfer is a multipart process, we proceed our review in describing step by step our current understanding, with particular emphasis on DNA internalization and intracellular trafficking. Finally, we turn our attention to in vivo testing and methodology for gene electrotransfer. PMID:27029943

  15. Simulating evolution by gene duplication.

    PubMed

    Ohta, T

    1987-01-01

    By considering the recent finding that unequal crossing over and other molecular interactions are contributing to the evolution of multigene families, a model of the origin of repetitive genes was studied by Monte Carlo simulations. Starting from a single gene copy, how genetic systems evolve was examined under unequal crossing over, random drift and natural selection. Both beneficial and deteriorating mutations were incorporated, and the latter were assumed to occur ten times more frequently than the former. Positive natural selection favors those chromosomes with more beneficial mutations in redundant copies than others in the population, but accumulation of deteriorating mutations (pseudogenes) have no effect on fitness so long as there remains a functional gene. The results imply the following: Positive natural selection is needed in order to acquire gene families with new functions. Without it, too many pseudogenes accumulate before attaining a functional gene family. There is a large fluctuation in the outcome even if parameters are the same. When unequal crossing over occurs more frequently, the system evolves more rapidly. It was also shown, under realistic values of parameters, that the genetic load for acquiring a new gene is not as large as J.B.S. Haldane suggested, but not so small as in a model in which a system for selection started from already redundant genes. PMID:3557113

  16. GENES IN SPORT AND DOPING

    PubMed Central

    Kaliszewski, P.; Majorczyk, E.; Zembroń-Łacny, A.

    2013-01-01

    Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques. PMID:24744482

  17. Linking Genes to Cardiovascular Diseases: Gene Action and Gene-Environment Interactions.

    PubMed

    Pasipoularides, Ares

    2015-12-01

    A unique myocardial characteristic is its ability to grow/remodel in order to adapt; this is determined partly by genes and partly by the environment and the milieu intérieur. In the "post-genomic" era, a need is emerging to elucidate the physiologic functions of myocardial genes, as well as potential adaptive and maladaptive modulations induced by environmental/epigenetic factors. Genome sequencing and analysis advances have become exponential lately, with escalation of our knowledge concerning sometimes controversial genetic underpinnings of cardiovascular diseases. Current technologies can identify candidate genes variously involved in diverse normal/abnormal morphomechanical phenotypes, and offer insights into multiple genetic factors implicated in complex cardiovascular syndromes. The expression profiles of thousands of genes are regularly ascertained under diverse conditions. Global analyses of gene expression levels are useful for cataloging genes and correlated phenotypes, and for elucidating the role of genes in maladies. Comparative expression of gene networks coupled to complex disorders can contribute insights as to how "modifier genes" influence the expressed phenotypes. Increasingly, a more comprehensive and detailed systematic understanding of genetic abnormalities underlying, for example, various genetic cardiomyopathies is emerging. Implementing genomic findings in cardiology practice may well lead directly to better diagnosing and therapeutics. There is currently evolving a strong appreciation for the value of studying gene anomalies, and doing so in a non-disjointed, cohesive manner. However, it is challenging for many-practitioners and investigators-to comprehend, interpret, and utilize the clinically increasingly accessible and affordable cardiovascular genomics studies. This survey addresses the need for fundamental understanding in this vital area. PMID:26545598

  18. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy.

    PubMed

    Papapetrou, Eirini P; Schambach, Axel

    2016-04-01

    Genomic safe harbors (GSHs) are sites in the genome able to accommodate the integration of new genetic material in a manner that ensures that the newly inserted genetic elements: (i) function predictably and (ii) do not cause alterations of the host genome posing a risk to the host cell or organism. GSHs are thus ideal sites for transgene insertion whose use can empower functional genetics studies in basic research and therapeutic applications in human gene therapy. Currently, no fully validated GSHs exist in the human genome. Here, we review our formerly proposed GSH criteria and discuss additional considerations on extending these criteria, on strategies for the identification and validation of GSHs, as well as future prospects on GSH targeting for therapeutic applications. In view of recent advances in genome biology, gene targeting technologies, and regenerative medicine, gene insertion into GSHs can potentially catalyze nearly all applications in human gene therapy. PMID:26867951

  19. COMPARISON OF THE METHYL REDUCTASE GENES AND GENE PRODUCTS

    EPA Science Inventory

    The DNA sequences encoding component C of methyl coenzyme M reductase (mcr genes) in Methanothermus fervidus, Methanobacterium thermoautotrophicum, Methanococcus vannielii, and Methanosarcina barkeri have been published. omparisons of transcription initiation and termination site...

  20. BRCA1 and BRCA2 gene testing

    MedlinePlus

    ... gov/ency/patientinstructions/000690.htm BRCA1 and BRCA2 gene testing To use the sharing features on this ... br east ca ncer. What is the BRCA Gene Mutation? BRCA1 and BRCA2 are genes that suppress ...

  1. Genomics screens for metastasis genes

    PubMed Central

    Yan, Jinchun; Huang, Qihong

    2014-01-01

    Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis. PMID:22684367

  2. The design of synthetic genes.

    PubMed Central

    Presnell, S R; Benner, S A

    1988-01-01

    Computer programs are described that aid in the design of synthetic genes coding for proteins that are targets of a research program in site directed mutagenesis. These programs "reverse-translate" protein sequences into general nucleic acid sequences (those where codons have not yet been selected), map restriction sites into general DNA sequences, identify points in the synthetic gene where unique restriction sites can be introduced, and assist in the design of genes coding for hybrids and evolutionary intermediates between homologous proteins. Application of these programs therefore facilitates the use of modular mutagenesis to create variants of proteins, and the implementation of evolutionary guidance as a strategy for selecting mutants. PMID:2451218

  3. Gene networks controlling petal organogenesis.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2016-01-01

    One of the biggest unanswered questions in developmental biology is how growth is controlled. Petals are an excellent organ system for investigating growth control in plants: petals are dispensable, have a simple structure, and are largely refractory to environmental perturbations that can alter their size and shape. In recent studies, a number of genes controlling petal growth have been identified. The overall picture of how such genes function in petal organogenesis is beginning to be elucidated. This review will focus on studies using petals as a model system to explore the underlying gene networks that control organ initiation, growth, and final organ morphology. PMID:26428062

  4. The Ensembl gene annotation system.

    PubMed

    Aken, Bronwen L; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J; Murphy, Daniel N; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul; Searle, Stephen M J

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.Database URL: http://www.ensembl.org/index.html. PMID:27337980

  5. The Ensembl gene annotation system

    PubMed Central

    Aken, Bronwen L.; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J.; Murphy, Daniel N.; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y. Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail. Database URL: http://www.ensembl.org/index.html PMID:27337980

  6. Saporin as a novel suicide gene in anticancer gene therapy.

    PubMed

    Zarovni, N; Vago, R; Soldà, T; Monaco, L; Fabbrini, M S

    2007-02-01

    We used a non-viral gene delivery approach to explore the potential of the plant saporin (SAP) gene as an alternative to the currently employed suicide genes in cancer therapy. Plasmids expressing cytosolic SAP were generated by placing the region encoding the mature plant ribosome-inactivating protein under the control of cytomegalovirus (CMV) or simian virus 40 (SV40) promoters. Their ability to inhibit protein synthesis was first tested in cultured tumor cells co-transfected with a luciferase reporter gene. In particular, SAP expression driven by CMV promoter (pCI-SAP) demonstrated that only 10 ng of plasmid per 1.6 x 10(4) B16 cells drastically reduced luciferase activity to 18% of that in control cells. Direct intratumoral injection of pCI-SAP complexed with either lipofectamine or N-(2,3-dioleoyloxy-1-propyl) trimethylammonium methyl sulfate (DOTAP) in B16 melanoma-bearing mice resulted in a noteworthy attenuation of tumor growth. This antitumor effect was increased in mice that received repeated intratumoral injections. A SAP catalytic inactive mutant (SAP-KQ) failed to exert any antitumor effect demonstrating that this was specifically owing to the SAP N-glycosidase activity. Our overall data strongly suggest that the gene encoding SAP, owing to its rapid and effective action and its independence from the proliferative state of target cells might become a suitable candidate suicide gene for oncologic applications. PMID:17008932

  7. Gene Therapy for Cardiovascular Disease

    PubMed Central

    2003-01-01

    The last decade has seen substantial advances in the development of gene therapy strategies and vector technology for the treatment of a diverse number of diseases, with a view to translating the successes observed in animal models into the clinic. Perhaps the overwhelming drive for the increase in vascular gene transfer studies is the current lack of successful long-term pharmacological treatments for complex cardiovascular diseases. The increase in cardiovascular disease to epidemic proportions has also led many to conclude that drug therapy may have reached a plateau in its efficacy and that gene therapy may represent a realistic solution to a long-term problem. Here, we discuss gene delivery approaches and target diseases. PMID:12721517

  8. Gene Cernan on Apollo 17

    NASA Video Gallery

    Apollo 17 Commander Gene Cernan recalls fixing a lunar rover problem with duct tape during his December 1972 mission. Cernan's interview was part of the commemoration of NASA's 50th anniversary in ...

  9. How eukaryotic genes are transcribed

    PubMed Central

    Venters, Bryan J.; Pugh, B. Franklin

    2009-01-01

    Summary Regulation of eukaryotic gene expression is far more complex than one might have imagined thirty years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: 1) a well-defined organization of nucleosomes and modification states at most genes, 2) regulatory networks of sequence-specific transcription factors, 3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II, and 4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation. PMID:19514890

  10. [Genes Responsible for Epileptic Syndromes].

    PubMed

    Kato, Mitsuhiro

    2016-02-01

    The first causative gene for epileptic syndrome was revealed 20 years ago. Since then, many genes responsible for epileptic syndrome, particularly sporadic epileptic encephalopathies, such as Ohtahara syndrome, West syndrome, and focal cortical dysplasia, have been identified. Although epilepsy was recognized as a channelopathy in the beginning stages of gene discovery, other molecular mechanisms for epileptic syndromes, such as interneuronopathy, synaptic vesicle release, and mTOR signal transduction, are emerging. A new technique for gene analysis using the next-generation sequencer is now available for clinical purpose abroad and precision medicine based on the molecular mechanisms has started. Infrastructural development of the official framework, from molecular diagnosis to personalized therapy, is urgently required in Japan. PMID:26873236