Science.gov

Sample records for lindemann ellu saar

  1. Physics of the Lindemann melting rule

    SciTech Connect

    Lawson, Andrew C

    2008-01-01

    We investigate the thermodynamics of melting for 74 distinct chemical elements including several actinides and rare earths. We find that the observed melting points are consistent with a linear relationship between the correlation entropy of the liquid and the Grueneisen constant of the solid, and that the Lindemann rule is well obeyed for the elements with simple structures and less well obeyed for the less symmetric more open structures. No special assumptions are required to explain the melting points of the rare earths or light actinides.

  2. A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields

    NASA Astrophysics Data System (ADS)

    Bertrand, Daniel; Pillay, Anand

    2010-04-01

    We prove an analogue of the Lindemann-Weierstrass theorem (that the exponentials of a {Q} -linearly independent set of algebraic numbers are algebraically independent), replacing {Q}^{alg} by {C}(t)^{alg} and {G}_{m}^{n} by a semi-abelian variety over {C}(t)^{alg} . Both the formulations of our results and the methods are differential algebraic in nature.

  3. On the volume-dependence of the Grüneisen parameter and the Lindemann law of melting

    NASA Astrophysics Data System (ADS)

    Kushwah, S. S.; Tomar, Y. S.; Upadhyay, A. K.

    2013-08-01

    It has been shown by Errandonea (Physica B 357 (2005) 356) that the Lindemann law cannot reproduce the high pressure melting curves of transition metals. Using an expression for the volume dependence of the Grüneisen parameter γ originally due to Burakovsky and Preston (J. Phys. Chem. Solids 65 (2004) 1581), Errandonea determined the constants appearing in the expression of gamma by making the Lindemann law to match the experimental melting data. The results for the volume dependence of gamma thus obtained by Errandonea are shown here to be much different from those determined using the Burakovsky-Preston approach. A direct comparison of the results based on the two approaches has been presented for the transition metal Mo. It is reinforced that the Lindemann law does not work satisfactorily for the transition metals with low slopes of melting curves.

  4. Geothermal reservoir properties of the Rotliegend (Permocarboniferous) sediments in the Saar Nahe Basin (South-West Germany)

    NASA Astrophysics Data System (ADS)

    Aretz, A.; Bär, K.; Sass, I.

    2012-04-01

    The geothermal potential of the Rotliegend (Permocarboniferous) in the Northern Upper Rhine Graben and the Saar-Nahe-Basin (Germany) has been shown in large scale regional studies. To further assess the geothermal potential of the different lithostratigraphical units and facies types within this Variscan intramontane basin, knowledge of their thermophysical and hydraulic properties is indispensable. Where the Cenozoic Upper Rhine Graben crosses the Permocarboniferous molasse basin, the top of the up to two kilometers thick Permocarboniferous deposits is located at a depth of one to three kilometers and is overlain by Tertiary and Quaternary sediments. Therefore, the reservoir temperatures exceed 150°C, making it suitable for geothermal power production. Lithologically the Permocarboniferous deposits consist of different formations and facies types including fine, middle and coarse grained sandstones, arcosic sandstones, siltstones, volcanics and carbonates. Within the framework of the study presented here, outcrop analogue studies west of the Graben in the Saar-Nahe-Basin, and east of the Graben in the Wetterau and the Wetterau-Fulda-Basin are conducted. Each lithostratigraphic formation and lithofacies type is sampled in various outcrops to generate a statistically sufficient amount of samples of the different sedimentary rocks in order to determine their petrophysical, sedimentological and geochemical characteristics. The petrophysical parameters measured include the porosity, permeability, density, thermal conductivity, thermal diffusivity and uniaxial compressive strength. So far, the petrophysical properties of samples of more than 70 locations have been measured in our lab facilities, showing a clear correlation with the facies type. Excluding the coarse grained sandstones of the Donnersberg formation at the beginning of the Nahe-subgroup of the Upper Rotliegend, the geothermal reservoir properties are more suitable in the Glan-subgroup of the Lower

  5. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar.

    PubMed

    Lillemo, M; Asalf, B; Singh, R P; Huerta-Espino, J; Chen, X M; He, Z H; Bjørnstad, A

    2008-05-01

    Powdery mildew, caused by Blumeria graminis f. sp. tritici is a major disease of wheat (Triticum aestivum L.) that can be controlled by resistance breeding. The CIMMYT bread wheat line Saar is known for its good level of partial and race non-specific resistance, and the aim of this study was to map QTLs for resistance to powdery mildew in a population of 113 recombinant inbred lines from a cross between Saar and the susceptible line Avocet. The population was tested over 2 years in field trials at two locations in southeastern Norway and once in Beijing, China. SSR markers were screened for association with powdery mildew resistance in a bulked segregant analysis, and linkage maps were created based on selected SSR markers and supplemented with DArT genotyping. The most important QTLs for powdery mildew resistance derived from Saar were located on chromosomes 7DS and 1BL and corresponded to the adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29. A major QTL was also located on 4BL with resistance contributed by Avocet. Additional QTLs were detected at 3AS and 5AL in the Norwegian testing environments and at 5BS in Beijing. The population was also tested for leaf rust (caused by Puccinia triticina) and stripe rust (caused by P. striiformis f. sp. tritici) resistance and leaf tip necrosis in Mexico. QTLs for these traits were detected on 7DS and 1BL at the same positions as the QTLs for powdery mildew resistance, and confirmed the presence of Lr34/Yr18 and Lr46/Yr29 in Saar. The powdery mildew resistance gene at the Lr34/Yr18 locus has recently been named Pm38. The powdery mildew resistance gene at the Lr46/Yr29 locus is designated as Pm39. PMID:18347772

  6. Aromatized arborane/fernane hydrocarbons as molecular indicators of floral changes in Upper Carboniferous/Lower Permian strata of the Saar-Nahe Basin, southwestern Germany

    NASA Astrophysics Data System (ADS)

    Vliex, M.; Hagemann, H. W.; Püttmann, W.

    1994-11-01

    Thirty-seven coal samples of Upper Carboniferous and Lower Permian age from three boreholes in the Saar-Nahe Basin, Germany, have been studied by organic geochemical and coal petrological methods. The investigations were aimed at the recognition of floral changes in the Upper Carboniferous and Lower Permian strata. The results show that compositional changes in the extracts are only partly caused by variations in coalification. Specific aromatic hydrocarbons appear in Upper Westphalian D coal seams and increase in concentration up to the Rotliegendes. The dominant compound has been identified by mass spectrometry and NMR-spectroscopy as 5-methyl-10-(4-methylpentyl)-des- A-25-norarbora(ferna)-5,7,9-triene (MATH) and always occurs associated with 25-norarbora(ferna)-5,7,9-triene. Both compounds are thought to originate from isoarborinol, fernene-3β-ol, or fernenes. The strongly acidic conditions during deposition of the coals might have induced the 4,5-cleavage combined with a methyl-shift in an arborane/fernane-type pentacyclic precursor yielding the MATH. Based on petrological investigations, palynomorphs related to early Gymnospermopsida such as Pteridospermales and Coniferophytes ( Cordaitales and Coniferales) increased in abundance in the strata beginning with the Upper Westphalian D concomitant with the above mentioned biomarkers. The results suggest the arborane/fernane derivatives originate from the plant communities producing these palynomorphs.

  7. Fluvial sedimentary styles and associated depositional environments in the buntsandstein west of river rhine in saar area and pfalz (F.R. Germany) and vosges (France)

    NASA Astrophysics Data System (ADS)

    Dachroth, Wolfgang

    The Buntsandstein west of river Rhine in Saar area, Pfalz and Vosges consists of three fluvial magnacycles which are characterized by different associated non-alluvial environments. The stratigraphic sequence is divided by several unconformities reflecting tectonic movements which were connected with periods of extension of the depositional area. Two major phases and two minor events are recognized by the evaluation of the Pfalz unconformity and the Lothringen unconformity, and the Leuter unconformity and the Saar unconformity, respectively. The Lower Buntsandstein (including Zechstein) compries the first magnacycle and is built up of alluvial-fan deposits, fluvial braidplain sediments and marine to lagoonal deposits. Some aeolian sands as well as several palaeosols are also present. The palaeolandscape consists of alluvial fans seaming the margin of the basin and fluvial braidplains reaching from the toes of the fan belt to the centre of the depositional area which is occupied by a lagoonal sea that partially evolves into a playa-lake with progressive refreshment. The Middle Buntsandstein comprises the second magnacycle and is composed of an alternation of aeolian Dünnschichten and fluvial Felsbänke. The third facies are alluvial-fan deposits of palaeogeographically restricted distribution along the margins of the basin. The aeolian Dünnschichten originate in the marginal parts of chott-type depressions (in comparison with the recent Chott Djerid in Tunesia) where rising ground water moistens the dry sediments that are laid down on the playa floor and thus allows their enhanced preservation. In dry periods, wind-blown sand is spread out as plane sheets or as migrating wind ripple trains, or accumulates to barchanoid-type dunes that advance across the flat. Depending on supply of sand, all stages of transition between dune fields with only narrow interdune corridors between the ridges and interdune playas with isolated widely-spaced dunes are developed. The

  8. Lindemann's rule applied to the melting of crystals and ultra-stable glasses

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.

    2016-05-01

    The ratio of the mean square amplitude root of thermal vibrations and the interatomic distance is a universal constant δls at the melting temperature Tm. The classical Gibbs free energy change completed by a volume energy saving ɛls (or Δɛlg) × ΔHm that governs the liquid to solid and liquid to ultra-stable glass transformations leads to a universal constant equal to δls (or δlg), ΔHm being the crystal melting enthalpy. The minimum values 0.217 of ɛls and 0.103 of δls are used to predict ultra-stable glass formation in pure metallic liquid elements at a universal reduced temperature θg = (Tg - Tm)/Tm = -0.6223.

  9. The Accentuation of Intransitive Sentences in English.

    ERIC Educational Resources Information Center

    Faber, David

    1987-01-01

    Discusses the accentuation of two types of sentence in English: (1) straightforward intransitive sentences, and (2) intransitive sentences embedded in the frame "It's just NP noun phrase[ V verb[-ing." Modifications to Gussenhoven's (1983) Sentence Accent Assignment Rule (SAAR) are suggested based on large groups of exceptions of the SAAR.…

  10. What I Learned in Grad School, or Literary Training and the Theorizing of Composition.

    ERIC Educational Resources Information Center

    Bizzaro, Patrick

    1999-01-01

    Examines the impact of training in literature on the development of theories of composition. Examines connections between the strategies employed in seven influential composition theorists' dissertations (Linda Flower, Art Young, David Bartholomae, Erika Lindemann, Toby Fulwiler, Lisa Ede, and Peter Elbow) and those strategies used in their…

  11. The Utility of the Lambert Function W[a exp(a - bt)] in Chemical Kinetics

    ERIC Educational Resources Information Center

    Williams, Brian Wesley

    2010-01-01

    The mathematical Lambert function W[a exp(a - bt)] is used to find integrated rate laws for several examples, including simple enzyme and Lindemann-Christiansen-Hinshelwood (LCH) unimolecular decay kinetics. The results derived here for the well-known LCH mechanism as well as for a dimer-monomer reaction mechanism appear to be novel. A nonlinear…

  12. Professional Writers Teaching Professional Writing: Transcending the Borders between Professional Writers and Academic Scholars, Harmonizing Throught and Reality: A Text Arguing for Teaching Sentences First, Last, and Foremost.

    ERIC Educational Resources Information Center

    Beene, LynnDianne

    Good writing is good sentences. It is a simple truth that many in the business of teaching writing have strayed from. Good writing is a first sentence that makes a reader want to read the second sentence, a second sentence that makes a reader want to read the third, and so on. Erika Lindemann suggests that certain types of sentence instruction can…

  13. Problems with Current Models of Grieving and Consequences for Older Persons.

    ERIC Educational Resources Information Center

    Horacek, Bruce J.

    Classical models of the grieving process include Freud's concept of withdrawal of ties to the love object called decathexis, and Lindemann's emancipation from the bondage to the deceased involving adjusting to the loss in one's environment and the ability to form new relationships. Most of the models and explanations of the grieving process over…

  14. Systematic prediction of high-pressure melting curves of transition metals

    SciTech Connect

    Hieu, Ho Khac

    2014-10-28

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100 GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  15. Correlation between dynamic flow and thermodynamic glass transition in metallic glasses

    NASA Astrophysics Data System (ADS)

    Ke, H. B.; Wen, P.; Zhao, D. Q.; Wang, W. H.

    2010-06-01

    We report the values of steps of heat capacity (ΔCp) during the glass transition in a variety of metallic glasses (MGs). It is found that ΔCp is around 13.69 J mol-1 K-1 and almost invariable for the MGs. Based on the Eyring's theory [N. Hirai and H. Eyring, J. Polym. Sci. 37, 51 (1959)], the phenomenon corresponds to a critical reduced free volume value. This exhibits that the glass transition takes place when the reduced free volume approaches to ˜2.35% in the MG systems. The value, consistent with that of the yielding of MGs, confirms that temperature and stress are equivalent for fluidizing MGs. Our results give an implication to understanding the glass transition in MGs as a Lindemann-type melting behavior [F. A. Lindemann, Z. Phys. 11, 609 (1910)].

  16. Generalized melting criterion for amorphization. [NiZr, NiZr[sub 2], NiTi, FeTi

    SciTech Connect

    Devanathan, R. Northwestern Univ., Evanston, IL . Dept. of Materials Science and Engineering); Lam, N.Q.; Okamoto, P.R. ); Meshii, M. . Dept. of Materials Science and Engineering)

    1992-12-01

    We present a thermodynamic model of solid-state amorphization based on a generalization of the well-known Lindemann criterion. The original Lindemann criterion proposes that melting occurs when the root-mean-square amplitude of thermal displacement exceeds a critical value. This criterion can be generalized to include solid-state amorphization by taking into account the static displacements. In an effort to verify the generalized melting criterion, we have performed molecular dynamics simulations of radiation-induced amorphization in NiZr, NiZr[sub 2], NiTi and FeTi using embedded-atom potentials. The average shear elastic constant G was calculated as a function of the total mean-square atomic displacement following random atom-exchanges and introduction of Frenkel pairs. Results provide strong support for the generalized melting criterion.

  17. Generalized melting criterion for amorphization

    SciTech Connect

    Devanathan, R. |; Lam, N.Q.; Okamoto, P.R.; Meshii, M.

    1992-12-01

    We present a thermodynamic model of solid-state amorphization based on a generalization of the well-known Lindemann criterion. The original Lindemann criterion proposes that melting occurs when the root-mean-square amplitude of thermal displacement exceeds a critical value. This criterion can be generalized to include solid-state amorphization by taking into account the static displacements. In an effort to verify the generalized melting criterion, we have performed molecular dynamics simulations of radiation-induced amorphization in NiZr, NiZr{sub 2}, NiTi and FeTi using embedded-atom potentials. The average shear elastic constant G was calculated as a function of the total mean-square atomic displacement following random atom-exchanges and introduction of Frenkel pairs. Results provide strong support for the generalized melting criterion.

  18. Clusters of the charged dust particles in a magnetic trap at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. M.; Petrov, O. F.; Statsenko, K. B.

    2015-11-01

    The formation of cryogenic colloid of charged particles in static magnetic traps was studied for the first time. We presented experimental results of formation of strongly correlated structures consisting of about 103 particles. Ordered structures were formed by particles with a diameter of 30-60 microns with a charge up to 107e. Estimates of mean interparticle distance, dust particle charges, coupling parameter and Lindemann parameter, which turned out to be typical for strongly coupled crystalline or glass-like systems.

  19. Self-consistent Debye-Waller factors of the electron solid on liquid helium

    NASA Astrophysics Data System (ADS)

    Namaizawa, H.

    1980-05-01

    Based on the self-consistent field formalism we propose a shear-mode self-consistency for the high-frequency Debye-Waller factors (HFDWF) of the electron solid bound on a free surface of liquid helium. Our results are qualitatively in agreement with the empirical DW factor determined by Fisher, Halperin, and Platzman with the experiment of Grimes and Adams. We also report the analysis of the HFDWF according to the Lindemann law.

  20. Disorder-induced amorphization

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.; Li, Mo

    1997-03-01

    Many crystalline materials undergo a crystalline-to-amorphous (c-a) phase transition when subjected to energetic particle irradiation at low temperatures. By focusing on the mean-square static atomic displacement as a generic measure of chemical and topological disorder, we are led quite naturally to a generalized version of the Lindemann melting criterion as a conceptual framework for a unified thermodynamic approach to solid-state amorphizing transformations. In its simplest form, the generalized Lindemann criterion assumes that the sum of the static and dynamic mean-square atomic displacements is constant along the polymorphous melting curve so that c-a transformations can be understood simply as melting of a critically-disordered crystal at temperatures below the glass transition temperature where the supercooled liquid can persist indefinitely in a configurationally-frozen state. Evidence in support of the generalized Lindemann melting criterion for amorphization is provided by a large variety of experimental observations and by molecular dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds.

  1. Patulin in grape must and new, still fermenting wine (Federweißer).

    PubMed

    Majerus, P; Hain, J; Kölb, C

    2008-09-01

    Extreme differences in temperature were anticipating a high mycotoxin contamination of the 2006 vintage. 96 samples of different grapes and must qualities of the producing region Mosel-Saar-Ruwer as well as Federweißer from retail sales were analyzed for patulin according to EN 14177, whereat the fermentation of the must was stopped by addition of sodium azide. PMID:23604748

  2. Birthing Ethics: What Mothers, Families, Childbirth Educators, Nurses, and Physicians Should Know About the Ethics of Childbirth

    PubMed Central

    Torres, Jennifer M; De Vries, Raymond G

    2009-01-01

    This article discusses current ethical issues associated with childbirth in the United States. It provides a review of moral problems and ethical choices made by parents and health-care professionals during the prenatal, intrapartum, and postpartum periods. Ethical issues are identified and framed through a “naturalized bioethics” approach, as recommended by Margaret Walker and her colleagues, Hilde Lindemann and Marian Verkerk. This approach critiques traditional bioethics and gives attention to everyday ethics and the social, economic, and political context within which ethical problems exist. This approach provides the reader with the tools needed to critically assess the way ethical problems are defined and resolved. PMID:19360141

  3. Monte Carlo simulation of flux lattice melting in a model high- T sub c superconductor

    SciTech Connect

    Ryu, S.; Doniach, S.; Deutscher, G.; Kapitulnik, A. School of Physics and Astronomy, Tel Aviv University, Ramat-Aviv 69978 )

    1992-02-03

    We studied flux lattice melting in a model high-{ital T}{sub {ital c}} superconductor by Monte Carlo simulation in terms of vortex variables. We identify two melting curves in the {ital B}-{ital T} phase diagram and evaluate a density-dependent Lindemann criterion number for melting. We also observe that the transition temperature shifts downward toward the two-dimensional melting limit as the density of flux lines increases. Although the transition temperature does not change, a significant difference in shear modulus is observed when flux cutting or reconnection is allowed.

  4. Vortex-lattice melting in magnesium diboride in terms of the elastic theory

    NASA Astrophysics Data System (ADS)

    Nie, Qing-Miao; Lv, Jian-Ping; Chen, Qing-Hu

    2010-01-01

    In the framework of elastic theory, we study the vortex-lattice melting transitions in magnesium diboride for magnetic fields both parallel and perpendicular to the anisotropy axis. Using the parameters from experiments, the vortex-lattice melting lines in the H- T diagram are located systematically by various groups of Lindemann numbers. It is observed that the theoretical result for the vortex melting with parallel and perpendicular fields agrees well with the experimental data. Therefore, it is suggested that the phenomenological elastic theory is universal to various type-II superconductors, including two- and multi-band superconductors.

  5. High pressure melting curves of silver, gold and copper

    SciTech Connect

    Hieu, Ho Khac

    2013-11-15

    In this work, based on the Lindemann's formula of melting and the pressure-dependent Grüneisen parameter, we have investigated the pressure effect on melting temperature of silver, gold and copper metals. The analytical expression of melting temperature as a function of volume compression has been derived. Our results are compared with available experimental data as well as with previous theoretical studies and the good and reasonable agreements are found. We also proposed the potential of this approach on predicting melting of copper at very high pressure.

  6. Imaging the Homogeneous Nucleation During the Melting of Superheated Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Ziren; Wang, Feng; Peng, Yi; Zheng, Zhongyu; Han, Yilong

    2012-10-01

    The nucleation process is crucial to many phase transitions, but its kinetics are difficult to predict and measure. We superheated and melted the interior of thermal-sensitive colloidal crystals and investigated by means of video microscopy the homogeneous melting at single-particle resolution. The observed nucleation precursor was local particle-exchange loops surrounded by particles with large displacement amplitudes rather than any defects. The critical size, incubation time, and shape and size evolutions of the nucleus were measured. They deviate from the classical nucleation theory under strong superheating, mainly because of the coalescence of nuclei. The superheat limit agrees with the measured Born and Lindemann instabilities.

  7. Theoretical estimation of surface Debye temperature of nano structured material

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Bijan Kumar; Sarkar, A.

    2016-05-01

    The estimation of Debye temperature (TD) exploiting phonon is very important. In this work an attempt has been made to estimate TD for solids in a simple phenomenological approach. The ultimate goal is to estimate TD for nano structured material. The objective of this present work is to extend Debye model for nano-structured material and hence to extract the contribution to surface specific heat and surface Debye temperature. An empirical relation between TD and surface Debye temperature (TDS) is proposed. Lindemann melting criterion is also extended towards nano structure. The overall results obtained are compared and found to be in good agreement.

  8. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing density functional theory (DFT) and quantum Monte Carlo (QMC) treatments. The method is applied to address the longstanding discrepancy between DFT calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, in contrast to DAC data.

  9. Characteristic quantities and dimensional analysis

    NASA Astrophysics Data System (ADS)

    Grimvall, Göran

    Phenomena in the physical sciences are described with quantities that have a numerical value and a dimension, i.e., a physical unit. Dimensional analysis is a powerful aspect of modeling and simulation. Characteristic quantities formed by a combination of model parameters can give new insights without detailed analytic or numerical calculations. Dimensional requirements lead to Buckingham's Π theorem - a general mathematical structure of all models in physics. These aspects are illustrated with many examples of modeling, e.g., an elastic beam on supports, wave propagation on a liquid surface, the Lennard-Jones potential for the interaction between atoms, the Lindemann melting rule, and saturation phenomena in electrical and thermal conduction.

  10. Experimental Evidence for a Crossover between Two Distinct Mechanisms of Amorphization in Ice Ih under Pressure

    SciTech Connect

    Straessle, Thierry; Klotz, Stefan; Hamel, Gerard; Koza, Michael M.; Schober, Helmut

    2007-10-26

    We report neutron scattering data which reveal the central role of phonon softening leading to a negative melting line, solid-state amorphization, and negative thermal expansion of ice. We find that pressure-induced amorphization is due to mechanical melting at low temperatures, while at higher temperatures amorphization is governed by thermal melting (violations of Born's and Lindemann's criteria, respectively). This confirms earlier conjectures of a crossover between two distinct amorphization mechanisms and provides a natural explanation for the strong annealing observed in high-density amorphous ice.

  11. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    SciTech Connect

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.

  12. Quantum melting of a two-dimensional vortex lattice at zero temperature

    SciTech Connect

    Rozhkov, A.; Stroud, D.

    1996-11-01

    We consider the quantum melting of a two-dimensional flux lattice at temperature {ital T} = 0 in the {open_quote}{open_quote}superclean limit.{close_quote}{close_quote} In this regime, we find that vortex motion is dominated by the Magnus force. A Lindemann criterion predicts melting when {ital n}{sub {ital v}}/{ital n}{sub {ital p}}{ge}{beta}, where {ital n}{sub {ital v}} and {ital n}{sub {ital p}} are the areal number densities of vortex pancakes and Cooper pairs, and {beta}{approx_equal}0.1. A second criterion is derived by using Wigner-crystal and Laughlin wave functions for the solid and liquid phases respectively, and setting the two energies equal. This gives a melting value similar to the Lindemann result. We discuss the numerical value of the {ital T}=0 melting field for thin layers of a low-{ital T}{sub {ital c}} superconductor, such as {ital a}-MoGe, and single layers of high-{ital T}{sub {ital c}} materials. {copyright} {ital 1996 The American Physical Society.}

  13. Is there a linkage between bioaccumulation and the effects of alkylphenols on male breams (Abramis brama)?

    PubMed

    Klein, Roland; Bartel, Martina; He, Xiaohua; Müller, Josef; Quack, Markus

    2005-05-01

    There was some evidence from a previous study that estrogenic disruptors, like alkylphenols, could effect fish in the small River Saar of Southwestern Germany. Concentrations of 4NP and 4NP1EO found in breams (Abramis brama) in the Saar River were much higher than those found in other sampling sites of the German Environmental Specimen Bank, including those from sampling sites in the Rivers Elbe, Rhine, Mulde, and Saale and in Lake Belau. We studied the relationship between accumulation and effect using vitellogenin (vtg) and a hepatosomatic index (HSI) of estrogenic effects and by measuring concentrations of AP and APE accumulated in breams caught at six sampling sites in the River Saar and one in the River Mosel. To link these results with those of the previous study we standardized our sampling efforts to obtain comparable data. Elevated vtg levels were found in the breams at all sampling sites near to or downstream of sewage plant discharges, whereas low vtg levels corresponded to sampling sites not influenced by municipal waste water. While HSI values did not correspond to the location of sampling sites, there was a weak but statistically significant correlation to vtg concentrations. Concentrations of four AP and APE were much more lower, as in the previous study, and were neither linked with sewage treatment plant discharges nor correlated with vtg levels. In conclusion, a linkage between accumulation and the effects of AP and APE could not be established, but the relationship between elevated vtg concentrations and municipal waste water, which contains other important endocrine disruptors, was clear. PMID:15721884

  14. Effect of defects on the critical points in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}

    SciTech Connect

    Kwok, W. K.; Olsson, R. J.; Karapetrov, G.; Paulis, L. M.; Moulton, W. G.; Hofman, D. J.; Crabtree, G. W.

    2000-01-26

    The upper and lower critical points are investigated in untwinned YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} single crystals with dilute columnar defects. Dilute columnar defects raise the upper critical point, indicating that the transition near the upper critical point is a vortex entanglement transition. The lower critical point is very sensitive to columnar defect disorder and its position can be described by a Lindemann-like criterion similar to that for melting. Dilute columnar defects induce non-linear behavior in the I-V curves of the vortex liquid state above the lower critical point, which the authors interpret as a vestige of the critical region associated with the Bose glass transition below the lower critical point.

  15. An equation of state for alkali metals

    NASA Astrophysics Data System (ADS)

    Arafin, Sayyadul; Singh, Ram N.

    2016-04-01

    Semi-empirical equations of state based on Lindemann's law have been developed to determine the pressure (P) dependence of the melting temperature (Tm) of Li, K, Rb and Cs. The basic inputs are Grüneisen parameter and the bulk modulus. Tm-P variations exhibit maximum melting temperature with concave downwards. The maximum in Tm for Cs is found to occur at pressure of 2.2 GPa whereas for Li, K and Rb it falls in the range of 7-9.5 GPa. The predicted values of Tm as a function of pressure, based on the present empirical relation, fit quite well with the available experimental data. The empirical relation can also be used to extrapolate Tm at higher pressure from the values available at lower pressures.

  16. Flux-line-lattice stability and dynamics

    NASA Astrophysics Data System (ADS)

    Glyde, H. R.; Moleko, L. K.; Findeisen, P.

    1992-02-01

    The mechanical stability of a flux-line lattice (FLL) having parameters appropriate for the high-Tc superconductors is determined using the self-consistent phonon theory of lattice dynamics. Nearly parallel flux lines (FL's) are assumed and FL pinning is neglected. The FLL becomes unstable when a phonon frequency goes to zero. At instability the rms vibrational amplitude diverges and the FL's can no longer be localized. In Bi2Sr2CaCuO2O8, the instability line as a function of temperature and magnetic field lies below but in reasonable agreement with the observed irreversibility line. In YBa2Cu3O7, it lies significantly below. The present instability line is a reliable upper bound to the FLL melting line. Identifying instability with melting, we find the Lindemann criterion of melting does not hold. However, the present instability lines and the melting lines obtained by Houghton et al. are found to have similar shape.

  17. Thermodynamics of freezing and melting

    PubMed Central

    Pedersen, Ulf R.; Costigliola, Lorenzo; Bailey, Nicholas P.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  18. Applications of nonequilibrium melting concept to damage-accumulation processes

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.

    1998-01-01

    The authors recent study of crystalline-to-amorphous transformation led to the successful development of a unified thermodynamic description of disorder-induced amorphization and heat-induced melting, based on a generalized version of the Lindemann melting criterion. The generalized criterion requires that the melting temperature of a defective crystal decreases with increasing static atomic disorder. Hence, any crystal can melt at temperatures below the melting point of its perfect crystalline state when driven far from equilibrium by introducing critical amounts of misfitting solute atoms and lattice imperfections, radiation damage, and/or tensile stresses. This conceptual approach to nonequilibrium melting provides new insight into long-standing materials problems such as brittle fracture, embrittlement, and environmentally-induced cracking, for example irradiation-assisted stress corrosion cracking.

  19. Rational approximations to linear forms of exponentials and binomials

    PubMed Central

    Chudnovsky, G. V.

    1983-01-01

    Mahler proved the following quantitative result supplementing the Lindemann-Weierstrass theorem: ǀΣi=0nCieriǀ > H-n-ε for any distinct rational numbers r0,r1,..., rn and rational integers C0,C1,...,Cn with H = max0≤i≤n ǀCiǀ. We improve Mahler's estimate by replacing exponentials eri by linearly independent linear forms Li = Σ Lijesij with rational Lij,siji = 0,1,...,n. Similar results are obtained for binomials (a/b)ri or Σ Lij(a/b)sij with integers a,b and logǀbǀ/logǀaǀ > 1 - ε. The simplest examples of new numbers with the irrationality exponent “2 + ε” are sinh 1 or sin 1. PMID:16593320

  20. Pressure dependence of the melting temperature of metals

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert; Vinet, Pascal; Ferrante, John

    1989-01-01

    A new method for the analysis of the experimental data for the pressure dependence of the melting temperature of metals is presented. The method combines Lindemann's law, the Debye model, and a first-order equation of state with the experimental observation that the Grueneisen parameter divided by the volume is constant. It is observed that, based on these assumptions, in the absence of phase transitions, plots of the logarithm of the normalized melting temperature versus the logarithm of the normalized pressure are straight lines. It is found that the normalized-melting--temperature versus normalized-pressure curves accurately satisfy the linear relationship for Al, Ag, Au, Cs, Cu, K, Na, Pt, and Rb. In addition, this technique provides a sensitive tool for detecting phase transitions.

  1. Thermodynamics of freezing and melting.

    PubMed

    Pedersen, Ulf R; Costigliola, Lorenzo; Bailey, Nicholas P; Schrøder, Thomas B; Dyre, Jeppe C

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature-pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  2. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE PAGESBeta

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  3. Applications of liquid state physics to the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1980-01-01

    New results derived for application to the earth's outer core using the modern theory of liquids and the hard-sphere model of liquid structure are presented. An expression derived in terms of the incompressibility and pressure is valid for a high-pressure liquid near its melting point, provided that the pressure is derived from a strongly repulsive pair potential; a relation derived between the melting point and density leads to a melting curve law of essentially the same form as Lindemann's law. Finally, it is shown that the 'core paradox' of Higgins and Kennedy (1971) can occur only if the Gruneisen parameter is smaller than 2/3, and this constant is larger than this value in any liquid for which the pair potential is strongly repulsive.

  4. Characteristic quantities and dimensional analysis

    NASA Astrophysics Data System (ADS)

    Grimvall, Göran

    2008-04-01

    Phenomena in the physical sciences are described with quantities that have a numerical value and a dimension, i.e., a physical unit. Dimensional analysis is a powerful aspect of modeling and simulation. Characteristic quantities formed by a combination of model parameters can give new insights without detailed analytic or numerical calculations. Dimensional requirements lead to Buckingham’s Π theorem—a general mathematical structure of all models in physics. These aspects are illustrated with many examples of modeling, e.g., an elastic beam on supports, wave propagation on a liquid surface, the Lennard-Jones potential for the interaction between atoms, the Lindemann melting rule, and saturation phenomena in electrical and thermal conduction.

  5. Characteristic quantities and dimensional analysis

    NASA Astrophysics Data System (ADS)

    Grimvall, Göran

    Phenomena in the physical sciences are described with quantities that have a numerical value and a dimension, i.e., a physical unit. Dimensional analysis is a powerful aspect of modeling and simulation. Characteristic quantities formed by a combination of model parameters can give new insights without detailed analytic or numerical calculations. Dimensional requirements lead to Buckingham's Π theorem—a general mathematical structure of all models in physics. These aspects are illustrated with many examples of modeling, e.g., an elastic beam on supports, wave propagation on a liquid surface, the Lennard-Jones potential for the interaction between atoms, the Lindemann melting rule, and saturation phenomena in electrical and thermal conduction.

  6. Excess of low frequency vibrational modes and glass transition: A molecular dynamics study for soft spheres at constant pressure

    NASA Astrophysics Data System (ADS)

    Flores-Ruiz, Hugo M.; Naumis, Gerardo G.

    2009-10-01

    Using molecular dynamics at constant pressure, the relationship between the excess of low frequency vibrational modes (known as the boson peak) and the glass transition is investigated for a truncated Lennard-Jones potential. It is observed that the quadratic mean displacement is enhanced by such modes, as predicted using a harmonic Hamiltonian for metastable states. As a result, glasses loose mechanical stability at lower temperatures than the corresponding crystal, since the Lindemann criteria are observed, as is also deduced from density functional theory. Finally, we found that the average force and elastic constant are reduced in the glass due to such excess of modes. The ratio between average elastic constants can be approximated using the 2/3 rule between melting and glass transition temperatures.

  7. Instability of insulating states in optical lattices due to collective phonon excitations

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Ziegler, K.

    2015-02-01

    The effect of collective phonon excitations on the properties of cold atoms in optical lattices is investigated. These phonon excitations are collective excitations, whose appearance is caused by intersite atomic interactions correlating the atoms, and they do not arise without such interactions. These collective excitations should not be confused with lattice vibrations produced by an external force. No such force is assumed. But the considered phonons are purely self-organized collective excitations, characterizing atomic oscillations around lattice sites, due to intersite atomic interactions. It is shown that these excitations can essentially influence the possibility of atoms' being localized. The states that would be insulating in the absence of phonon excitations can become delocalized when these excitations are taken into account. This concerns long-range as well as local atomic interactions. To characterize the region of stability, the Lindemann criterion is used.

  8. Narrative ARTifice and women's agency.

    PubMed

    Kalbian, Aline H

    2005-04-01

    The choice to pursue fertility treatments is a complex one. In this paper I explore the issues of choice, agency, and gender as they relate to assisted reproductive technologies (ARTs). I argue that narrative approaches to bioethics such as those by Arthur Frank and Hilde Lindemann Nelson clarify judgments about autonomy and fertility medicine. More specifically, I propose two broad narrative categories that help capture the experience of encounters with fertility medicine: narratives of hope and narratives of resistance. This narrative typology captures the inevitable conflict that women feel when they become subjects of fertility medicine. On the one hand, they must remain hopeful; on the other, they must not surrender themselves completely. Nelson's account of counterstories as narratives of resistance helps us see how women can reconcile the experience of a strong desire to have children with the desire to remain authentic and whole. PMID:15943020

  9. Coulomb structures of charged macroparticles in static magnetic traps at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. M.; Petrov, O. F.; Statsenko, K. B.

    2015-12-01

    Electrically charged (up to 107 e) macroscopic superconducting particles with sizes in the micrometer range confined in a static magnetic trap in liquid nitrogen and in nitrogen vapor at temperatures of 77-91 K are observed experimentally. The macroparticles with sizes up to 60 μm levitate in a nonuniform static magnetic field B ~ 2500 G. The formation of strongly correlated structures comprising as many as ~103 particles is reported. The average particle distance in these structures amounts to 475 μm. The coupling parameter and the Lindemann parameter of these structures are estimated to be ~107 and ~0.03, respectively, which is characteristic of strongly correlated crystalline or glasslike structures.

  10. Vortex penetration depth of organic superconductors: Evidence for vortex lattice melting

    SciTech Connect

    Tea, N.H.; Giannetta, R.W.; Salamon, M.B.; Williams, J.M.; Wang, H.H.; Geiser, U.

    1997-07-01

    The authors observe a crossover field H* in the temperature and magnetic field dependence of the rf vortex penetration depth in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br for {rvec H}{sub dc}{parallel}{cflx b}-axis. They find that H* can be described quantitatively by the 3D Lindemann melting theory; thus, it corresponds to the melting of the vortex lattice in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br and lies very close to the irreversibility line. In the vortex-liquid state, they argue that the saturation of the vortex penetration depth in a magnetic field results from the finite size of the sample. The results do not have the scaling form predicted by the Coffey-Clem model in contrast to previous findings.

  11. Effect of grain size on the melting point of confined thin aluminum films

    NASA Astrophysics Data System (ADS)

    Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof; Kurzydlowski, Krzysztof J.

    2014-10-01

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4 nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grain boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4 nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933 K) only when the grain size is reduced to 6 nm.

  12. A unified description of crystalline-to-amorphous transitions

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.; Devanathan, R. |; Meshii, M.

    1993-07-01

    Amorphous metallic alloys can now be synthesized by a variety of solid-state processes demonstrating the need for a more general approach to crystalline-to-amorphous (c-a) transitions. By focusing on static atomic displacements as a measure of chemical and topological disorder, we show that a unified description of c-a transformations can be based on a generalization of the phenomenological melting criterion proposed by Lindemann. The generalized version assumes that melting of a defective crystal occurs whenever the sum of thermal and static mean-square displacements exceeds a critical value identical to that for melting of the defect-free crystal. This implies that chemical or topological disorder measured by static displacements is thermodynamically equivalent to heating, and therefore that the melting temperature of the defective crystal will decrease with increasing amount of disorder. This in turn implies the existence of a critical state of disorder where the melting temperature becomes equal to a glass-transition temperature below which the metastable crystal melts to a glass. The generalized Lindemann melting criterion leads naturally to an interpretation of c-a transformations as defect-induced, low-temperature melting of critically disordered crystals. Confirmation of this criterion is provided by molecular-dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds caused either by the production of Frenkel pairs or anti-site defects. The thermodynamic equivalence between static atomic disorder and heating is reflected in the identical softening effects which they have on elastic properties and also in the diffraction analysis of diffuse scattering from disordered crystals, where the effect of static displacements appears as an artificially-enlarged thermal Debye-Waller factor. Predictions of this new, unified approach to melting and amorphization are compared with available experimental information.

  13. Electronic and structural properties of metallic microclusters

    SciTech Connect

    Maiti, A.

    1992-04-01

    The first part of this thesis presents a first-order pseudopotential calculation at T=O of the total energy of small sodium clusters of size N<800. The calculation is based on a local-pseudopotential scheme and local-density correlation and exchange. A temperature-size (T-N) phase-diagram is then derived using the T=O results and Lindemann`s criterion for melting. The phase-diagram contains three regions of stability: (1) a liquid (jellium) phase at temperatures above the melting line T{sub M}(N) where cluster-stability occurs at electronic magic numbers: (2) a phase related to complete geometrical shells of body-centered-cubic structure at temperatures below the melting line; and (3) a close-packed structure at very low temperatures and sufficiently large N. The melting line drops to T{sub M}(N)=O for N<65, where electronic magic numbers are stable even at T=O. The phase diagram reduces asymptotically to the known phases of sodium as N{yields}{infinity}, including the known martensitic transformation at T{approximately}5 K. The second and the last part of this thesis consists of a study of small-cluster many-body systems by means of an on-site ``local`` chemical potential which allows the continuous variation of local electron-density. This method yields a criterion to distinguish particular features of a small cluster that are likely to survive in the large-N thermodynamic limit from those discontinuities that arise only from finite-size effects.

  14. Simultaneous selection for yield-related traits and susceptibility to Fusarium head blight in spring wheat RIL population

    PubMed Central

    Wiśniewska, Halina; Surma, Maria; Krystkowiak, Karolina; Adamski, Tadeusz; Kuczyńska, Anetta; Ogrodowicz, Piotr; Mikołajczak, Krzysztof; Belter, Jolanta; Majka, Maciej; Kaczmarek, Zygmunt; Krajewski, Paweł; Sawikowska, Aneta; Lenc, Leszek; Baturo-Cieśniewska, Anna; Łukanowski, Aleksander; Góral, Tomasz; Sadowski, Czesław

    2016-01-01

    Fusarium head blight (FHB), caused by the fungal plant pathogen Fusarium, is a fungal disease that occurs in wheat and can cause significant yield and grain quality losses. The present paper examines variation in the resistance of spring wheat lines derived from a cross between Zebra and Saar cultivars. Experiments covering 198 lines and parental cultivars were conducted in three years, in which inoculation with Fusarium culmorum was applied. Resistance levels were estimated by scoring disease symptoms on kernels. In spite of a similar reaction of parents to F. culmorum infection, significant differentiation between lines was found in all the analyzed traits. Seven molecular markers selected as linked to FHB resistance QTLs gave polymorphic products for Zebra and Saar: Xgwm566, Xgwm46, Xgwm389, Xgwm533, Xgwm156, Xwmc238, and Xgwm341. Markers Xgwm389 and Xgwm533 were associated with the rate of Fusarium-damaged kernels (FDK) as well as with kernel weight per spike and thousand kernel weight in control plants. Zebra allele of marker Xwmc238 increased kernel weight per spike and thousand kernel weight both in control and infected plants, whereas Zebra allele of marker Xgwm566 reduced the percentage of FDK and simultaneously reduced the thousand kernel weight in control and infected plants. PMID:27162499

  15. Simultaneous selection for yield-related traits and susceptibility to Fusarium head blight in spring wheat RIL population.

    PubMed

    Wiśniewska, Halina; Surma, Maria; Krystkowiak, Karolina; Adamski, Tadeusz; Kuczyńska, Anetta; Ogrodowicz, Piotr; Mikołajczak, Krzysztof; Belter, Jolanta; Majka, Maciej; Kaczmarek, Zygmunt; Krajewski, Paweł; Sawikowska, Aneta; Lenc, Leszek; Baturo-Cieśniewska, Anna; Łukanowski, Aleksander; Góral, Tomasz; Sadowski, Czesław

    2016-03-01

    Fusarium head blight (FHB), caused by the fungal plant pathogen Fusarium, is a fungal disease that occurs in wheat and can cause significant yield and grain quality losses. The present paper examines variation in the resistance of spring wheat lines derived from a cross between Zebra and Saar cultivars. Experiments covering 198 lines and parental cultivars were conducted in three years, in which inoculation with Fusarium culmorum was applied. Resistance levels were estimated by scoring disease symptoms on kernels. In spite of a similar reaction of parents to F. culmorum infection, significant differentiation between lines was found in all the analyzed traits. Seven molecular markers selected as linked to FHB resistance QTLs gave polymorphic products for Zebra and Saar: Xgwm566, Xgwm46, Xgwm389, Xgwm533, Xgwm156, Xwmc238, and Xgwm341. Markers Xgwm389 and Xgwm533 were associated with the rate of Fusarium-damaged kernels (FDK) as well as with kernel weight per spike and thousand kernel weight in control plants. Zebra allele of marker Xwmc238 increased kernel weight per spike and thousand kernel weight both in control and infected plants, whereas Zebra allele of marker Xgwm566 reduced the percentage of FDK and simultaneously reduced the thousand kernel weight in control and infected plants. PMID:27162499

  16. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils.

    PubMed

    Pies, Carmen; Hoffmann, Burkhard; Petrowsky, Jelena; Yang, Yi; Ternes, Thomas A; Hofmann, Thilo

    2008-08-01

    Elevated PAH concentrations were detected in bank soils along the Mosel and Saar Rivers in Germany. Information on the identification of PAH sources in this area however remains unclear. This study was able to characterize the PAH sources by application of several approaches, including consideration of the distribution patterns of 45 PAHs (including 16 EPA PAHs and some alkyl PAHs), specific PAH ratios, distribution patterns of n-alkanes and principal component analysis (PCA). In addition, the efficiency of the tested approaches was assessed. The results from the application of the various source identification methods showed that pyrogenic PAHs dominate soil samples collected upstream of the confluence of the Mosel and Saar Rivers, and petrogenic and pyrogenic PAHs dominate samples downstream of the confluence. Based on the analysis of reference materials and organic petrography, the petrogenic input was found to be dominated by coal particles. More detailed information on the petrogenic sources was provided by the n-alkane analyses. The current study concludes that to accurately determine the origin of PAHs, several identification methods must be applied. PMID:18513782

  17. Aromatized arborane/fernane hydrocarbons as biomarkers for cordaites

    NASA Astrophysics Data System (ADS)

    Auras, Stefan; Wilde, Volker; Scheffler, Kay; Hoernes, Stephan; Kerp, Hans; Püttmann, Wilhelm

    2006-12-01

    Previous palaeobotanical and palynological studies on coals from Euramerican Pennsylvanian (≡ Late Carboniferous) coal basins indicate a major change in coal-swamp floras, especially at the Westphalian Stephanian (≈Kasimovian Gzhelian, according to Geological Time Scale 2004) boundary. A flora dominated by arborescent lycophytes was replaced by a vegetation dominated by marattialean tree ferns in various Euramerican coal basins. Earlier combined palynological and organic geochemical studies on Westphalian/Stephanian coals and shales from the Saar-Nahe Basin (Germany) revealed that the distribution of aromatized arborane/fernane hydrocarbons in solvent extracts reflects the increasing importance of seed plants, especially cordaites (extinct group of gymnosperms), conifers and pteridosperms. However, the biological source of the precursor molecules could not be specified. To clarify if the arborane/fernane derivatives MATH, MAPH, DAPH 1, and DAPH 2 in Westphalian/Stephanian coals can be assigned to one of the three potential source plant groups, we analyzed coals, sediments and fossil plant remains from different Euramerican locations with respect to their biomarker composition and stable carbon isotopic composition. Thereby, stable carbon isotopic ratios showed only insignificant variations between Westphalian and Stephanian samples and proved to be an unsuitable tool to describe floral changes during the Westphalian/Stephanian of the Saar-Nahe Basin. In contrast, we were able to show for the first time that MATH, MAPH, DAPH 1 and DAPH 2 are prominent constituents only in extracts of cordaitean macrofossils and can therefore be regarded as biomarkers for this group of gymnosperms.

  18. Modeling of long-duration two-ribbon flares on M dwarf stars

    NASA Astrophysics Data System (ADS)

    Poletto, G.; Pallavicini, R.; Kopp, R. A.

    1988-07-01

    A time-dependent model of magnetic reconnection for the decay phase of solar two-ribbon flares is applied to long-duration stellar flares observed by the Einstein and Exosat observatories on the stars EQ Peg and Prox Cen. It is shown that the model reproduces correctly the energy release rate and temporal evolution during the decay phase of the observed events. It is concluded that the observed behavior is consistent with the interpretation of these flares as stellar counterparts of solar two-ribbon flares. In addition, taking into account recent measurements of stellar magnetic fields by Saar and Linsky (1985), it is shown that the agreement between the data and the analytical model results in a well-defined set of physical parameters for the emitting region.

  19. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    NASA Technical Reports Server (NTRS)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  20. Melting curves of metals by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Minakov, Dmitry; Levashov, Pavel

    2015-06-01

    In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).

  1. Melting curves of metals with excited electrons in the quasiharmonic approximation

    NASA Astrophysics Data System (ADS)

    Minakov, D. V.; Levashov, P. R.

    2015-12-01

    We present melting curves of aluminum, copper, and nickel calculated on the basis of a quasiharmonic approximation. The dependence of a phonon density of states on electron temperature is taken into account for both thermodynamic properties and a mean square displacement of atoms. Linear expansion coefficients are strongly dependent on an approximation of the exchange-correlation functional; the generalized gradient approximation gives better results at normal conditions. Using the Lindemann criterion we obtain good agreement with experimental pressure dependences of the melting temperature for Al and Cu. In the case of Ni we consider a spin polarization effect to reproduce a recent first-principle simulation and shock-wave data. However, our melting curve is located significantly higher than static experimental points. We also consider a thermal excitation of electrons in a crystal and investigate the dependence of the melting temperature on the electronic one at normal and elevated densities. Hardening of the crystal structure for all the metals is obtained in our simulation; this effect might be confirmed experimentally owing to a relatively long lifetime of the two-temperature state.

  2. Specific heat capacity of nanoporous Al2O3

    NASA Astrophysics Data System (ADS)

    Huang, Cong-Liang; Feng, Yan-Hui; Zhang, Xin-Xin; Li, Jing; Wang, Ge

    2013-09-01

    Based on Lindemann's criterion, a specific heat capacity model for nanoporous material was proposed by defining the surface-atom layer, to take the surface atoms and the volume atoms separately into account. The height of the surface-atom layer was determined from the experiment, and results show that only the first layer atoms on the surface should be separately considered for nanoporous Al2O3. The shape factor of the pore was also introduced in the model with values between 2 (for cylindrical pore) and 3 (for spherical pore) to characterize the morphology of the pore. It turns out experimentally that the specific heat capacity of the analyzed nanoporous Al2O3 is much larger than that of the bulk, which can be interpreted as due to the fact that the surface atom plays a more important role than the volume one. And the smaller the radius and/or the larger the porosity, which lead to a larger surface-volume ratio, the larger the specific heat capacity becomes. The nanoporous material could be a better heat storage medium than the corresponding bulk with a much lighter weight, smaller volume but higher heat storage capacity.

  3. Universal scaling between structural relaxation and vibrational dynamics in glass-forming liquids and polymers

    NASA Astrophysics Data System (ADS)

    Larini, L.; Ottochian, A.; de Michele, C.; Leporini, D.

    2008-01-01

    If liquids, polymers, bio-materials, metals and molten salts can avoid crystallization during cooling or compression, they freeze into a microscopically disordered solid-like state, a glass. On approaching the glass transition, particles become trapped in transient cages-in which they rattle on picosecond timescales-formed by their nearest neighbours; the particles spend increasing amounts of time in their cages as the average escape time, or structural relaxation time τα, increases from a few picoseconds to thousands of seconds through the transition. Owing to the huge difference between relaxation and vibrational timescales, theoretical studies addressing the underlying rattling process have challenged our understanding of the structural relaxation. Numerical and experimental studies on liquids and glasses support the theories, but not without controversies (for a review see ref. 21). Here we show computer simulations that, when compared with experiments, reveal the universal correlation of the structural relaxation time (as well as the viscosity η) and the rattling amplitude from glassy to low-viscosity states. According to the emerging picture the glass softens when the rattling amplitude exceeds a critical value, in agreement with the Lindemann criterion for the melting of crystalline solids and the free-volume model.

  4. Predicting pressure-dependent unimolecular rate constants using variational transition state theory with multidimensional tunneling combined with system-specific quantum RRK theory: a definitive test for fluoroform dissociation.

    PubMed

    Bao, Junwei Lucas; Zhang, Xin; Truhlar, Donald G

    2016-06-22

    Understanding the falloff in rate constants of gas-phase unimolecular reaction rate constants as the pressure is lowered is a fundamental problem in chemical kinetics, with practical importance for combustion, atmospheric chemistry, and essentially all gas-phase reaction mechanisms. In the present work, we use our recently developed system-specific quantum RRK theory, calibrated by canonical variational transition state theory with small-curvature tunneling, combined with the Lindemann-Hinshelwood mechanism, to model the dissociation reaction of fluoroform (CHF3), which provides a definitive test for falloff modeling. Our predicted pressure-dependent thermal rate constants are in excellent agreement with experimental values over a wide range of pressures and temperatures. The present validation of our methodology, which is able to include variational transition state effects, multidimensional tunneling based on the directly calculated potential energy surface along the tunneling path, and torsional and other vibrational anharmonicity, together with state-of-the-art reaction-path-based direct dynamics calculations, is important because the method is less empirical than models routinely used for generating full mechanisms, while also being simpler in key respects than full master equation treatments and the full reduced falloff curve and modified strong collision methods of Troe. PMID:27273734

  5. Atomic mechanism of the heating-induced phase transitions of the simple monatomic glasses

    NASA Astrophysics Data System (ADS)

    Hoang, Vo Van

    2011-10-01

    Atomic mechanism of the heating-induced phase transitions of the monatomic Lennard-Jones (LJ) glass has been studied via molecular dynamics (MD) simulations. Monatomic LJ glass was heated up at two different heating rates, crystallization occurs at the lowest one and further heating leads to the melting of LJ crystal. Thermodynamics of the phase transitions and corresponding evolution of structural properties upon heating have been analyzed in details. Atomic mechanism of a crystallization of the glassy state was monitored via spatio-temporal arrangements of the atoms involved in the 1421 bond-pair of the fcc crystalline structure. The 1421 bond-pair was detected via the Honeycutt-Andersen analysis [J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91 (1987) 4950]. We found that crystallization of the monatomic LJ glass occurs via homogeneous local rearrangements of atoms in the glassy matrix and we found an important role of the liquid-like atoms (existed in the glassy state) in crystallization of the system. In addition, spatio-temporal arrangements of the liquid-like atoms in the system upon further heating were shown in order to clarify the atomic mechanism of a melting of the obtained LJ crystal. Liquid-like atoms were defined by the Lindemann melting criterion. Our results provide previously un-reported data and give deeper understanding of the heating-induced phase transitions in the less stable metallic glasses, which have been observed in practice.

  6. Effect of grain size on the melting point of confined thin aluminum films

    SciTech Connect

    Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof; Kurzydlowski, Krzysztof J.

    2014-10-28

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4 nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grain boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4 nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933 K) only when the grain size is reduced to 6 nm.

  7. First-principles modeling of quantum nuclear effects and atomic interactions in solid 4He at high pressure

    NASA Astrophysics Data System (ADS)

    Cazorla, Claudio; Boronat, Jordi

    2015-01-01

    We present a first-principles computational study of solid 4He at T =0 K and pressures up to ˜160 GPa. Our computational strategy consists in using van der Waals density functional theory (DFT-vdW) to describe the electronic degrees of freedom in this material, and the diffusion Monte Carlo (DMC) method to solve the Schrödinger equation describing the behavior of the quantum nuclei. For this, we construct an analytical interaction function based on the pairwise Aziz potential that closely matches the volume variation of the cohesive energy calculated with DFT-vdW in dense helium. Interestingly, we find that the kinetic energy of solid 4He does not increase appreciably with compression for P ≥85 GPa. Also, we show that the Lindemann ratio in dense solid 4He amounts to 0.10 almost independently of pressure. The reliability of customary quasiharmonic DFT (QH DFT) approaches in describing quantum nuclear effects in solids is also studied. We find that QH DFT simulations, although provide a reasonable equation of state in agreement with experiments, are not able to reproduce correctly these critical effects in compressed 4He. In particular, we disclose huge discrepancies of at least ˜50 % in the calculated 4He kinetic energies using both the QH DFT and present DFT-DMC methods.

  8. Dynamics and Melting of Finite Plasma Crystals

    NASA Astrophysics Data System (ADS)

    Ludwig, Patrick; K"Ahlert, Hanno; Baumgartner, Henning; Thomsen, Hauke; Bonitz, Michael

    2009-11-01

    Interacting few-particle systems in external trapping potentials are of strong current interest since they allow to realize and control strong correlation and quantum effects [1]. Here, we present our recent results on the structural and thermodynamic properties of the crystal-like Wigner phase of complex plasma confined in a 3D harmonic potential. We discuss the linear response of the strongly correlated system to external excitations, which can be described in terms of normal modes [2]. By means of first-principle simulations the details of the melting phase transitions of these mesoscopic systems are systematically analysed with the melting temperatures being determined by a modified Lindemann parameter for the pair distance fluctuations [3]. The critical temperatures turn out to be utmost sensitive to finite size effects (i.e., the exact particle number), and form of the (screened) interaction potential.[4pt] [1] PhD Thesis, P. Ludwig, U Rostock (2008)[0pt] [2] C. Henning et al., J. Phys. A 42, 214023 (2009)[0pt] [3] B"oning et al., Phys. Rev. Lett. 100, 113401 (2008)

  9. Disorder-driven nonequilibrium melting studied by electron diffraction, brillouis scattering, and molecular dynamics

    SciTech Connect

    Okamoto, P. R.; Lam, N. Q.; Grimsditch, M.

    1999-12-21

    In the present paper, a brief overview of the electron diffraction, Brillouin scattering and molecular dynamics studies of radiation-induced amorphization of ordered intermetallic compounds is presented. In these studies, measured changes in the velocity of surface acoustic phonons, lattice constant, and the Bragg-Williams long-range order parameter induced by irradiation were compared with the results of computer simulations of defect-induced amorphization. The results indicate that progressive chemical disordering of the superlattice structure during irradiation is accompanied by an expansion of the lattice and a large change in sound velocity corresponding to a {approximately} 50% decrease in the average shear modulus. The onset of amorphization occurs when the average shear modulus of the crystalline compound becomes equal to that of the amorphous phase. This elastic softening criterion for the onset of amorphization and the dependence of the average shear modulus on the long-range-order parameter are in excellent agreement with molecular dynamics simulations. Both the experimental observations and computer simulations confirm the predictions of the generalized Lindemann melting criterion which stipulates that thermodynamic melting of a defective crystal occurs when the sum of the dynamic and static mean-square atomic displacements reaches a critical value identical to that for melting of the defect-free crystal. In this broader view of melting, the crystal-to-glass transformation is a disorder-driven nonequilibrium melting process occurring at temperatures below the Kauzmann isentropic glass-transition temperature.

  10. Home-based care, technology, and the maintenance of selves.

    PubMed

    Parks, Jennifer A

    2015-06-01

    In this paper, I will argue that there is a deep connection between home-based care, technology, and the self. Providing the means for persons (especially older persons) to receive care at home is not merely a kindness that respects their preference to be at home: it is an important means of extending their selfhood and respecting the unique selves that they are. Home-based technologies like telemedicine and robotic care may certainly be useful tools in providing care for persons at home, but they also have important implications for sustaining selfhood in ways that are of value to individuals and those who care for them. I will argue, by appealing to Hilde Lindemann's notion of "holding" persons' identities in place, that technological interventions are not only useful tools for improving and sustaining health and good care at home, but that they may also help to extend our personal identities and relational capacities in ways that are practically and ethically good. Because of these important goods, I will claim that there is a prima facie moral duty to do this "holding" work and that it is best done by family members and loved ones who are well suited to the job because of their history and relationship with the individual that needs to be "held" in place. PMID:25787720

  11. Physics in Oxford, 1839-1939 - Laboratories, Learning, and College Life

    NASA Astrophysics Data System (ADS)

    Fox, Robert; Gooday, Graeme

    2005-08-01

    Physics in Oxford 1839-1939 offers a challenging new interpretation of pre-war physics at the University of Oxford, which was far more dynamic than most historians and physicists have been prepared to believe. It explains, on the one hand, how attempts to develop the University's Clarendon Laboratory by Robert Clifton, Professor of Experimental Philosophy from 1865 to 1915, were thwarted by academic politics and funding problems, and latterly by Clifton's idiosyncratic concern with precision instrumentation. Conversely, by examining in detail the work of college fellows and their laboratories, the book reconstructs the decentralized environment that allowed physics to enter on a period of conspicuous vigor in the late nineteenth and early twentieth centuries, especially at the characteristically Oxonian intersections between physics, physical chemistry, mechanics, and mathematics. Whereas histories of Cambridge physics have tended to focus on the self-sustaining culture of the Cavendish Laboratory, it was Oxford's college-trained physicists who enabled the discipline to flourish in due course in university as well as college facilities, notably under the newly appointed professors, J. S. E. Townsend from 1900 and F. A. Lindemann from 1919. This broader perspective allows us to understand better the vitality with which physicists in Oxford responded to the demands of wartime research on radar and techniques relevant to atomic weapons and laid the foundations for the dramatic post-war expansion in teaching and research that has endowed Oxford with one of the largest and most dynamic schools of physics in the world.

  12. The acoustic properties of panels with rectangular apertures.

    PubMed

    Vigran, T E

    2014-05-01

    A model for the acoustic properties of a plate perforated with slots of rectangular shape is proposed. The model is based on known expressions for the complex density and compressibility of a pore of rectangular shape together with the radiation impedance of a rectangular shaped piston in a baffle. For the so-called end correction of a rectangular aperture in a plate, an approximate solution is shown to fit an exact solution for the imaginary part of the radiation impedance, the latter solution based on the work of Lindemann [J. Acoust. Soc. Am, 55, 708-717 (1974)]. Two different procedures are tested to calculate the mutual influence of the apertures on the end correction, the one calculating the mutual impedance of neighboring pistons in the plate, the other by calculating the end correction of a piston placed in the end of an infinitely long tube. The model is used calculating the input impedance and absorption coefficient of a Helmholtz resonator with such a plate, comparing with measurement results. The fit between predicted and measured results, using plates with narrow slits, is good, but it is believed that the model also cover a wider range of dimensions for such a slotted plate. PMID:24815260

  13. Mode couplings and resonance instabilities in dust clusters.

    PubMed

    Qiao, Ke; Kong, Jie; Oeveren, Eric Van; Matthews, Lorin S; Hyde, Truell W

    2013-10-01

    The normal modes for three to seven particle two-dimensional (2D) dust clusters in a complex plasma are investigated using an N-body simulation. The ion wakefield downstream of each particle is shown to induce coupling between horizontal and vertical modes. The rules of mode coupling are investigated by classifying the mode eigenvectors employing the Bessel and trigonometric functions indexed by order integers (m, n). It is shown that coupling only occurs between two modes with the same m and that horizontal modes having a higher shear contribution exhibit weaker coupling. Three types of resonances are shown to occur when two coupled modes have the same frequency. Discrete instabilities caused by both the first and third type of resonances are verified and instabilities caused by the third type of resonance are found to induce melting. The melting procedure is observed to go through a two-step process with the solid-liquid transition closely obeying the Lindemann criterion. PMID:24229289

  14. Molecular dynamics simulations of ring inversion in RDX

    NASA Astrophysics Data System (ADS)

    Wallis, Eric P.; Thompson, Donald L.

    1993-08-01

    Molecular dynamics simulations, using the finite volume method of Murrell and co-workers [J. Chem. Phys. 94, 3908 (1991)], have been carried out to study conformational changes in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in isolation and in dense Xe gas. The configurational distributions for RDX in a Xe bath and in the gas-phase are markedly different. The results show that as the solvent concentration increases, the concentration of RDX molecules in the boat conformation increases by a factor of about 4. The rate constant for the chair→boat ring inversion was calculated as a function of the xenon concentration [Xe]. The rate constant obeys Lindemann behavior at low concentrations, i.e., it increases with increasing solvent density. At [Xe]˜6.2 mol dm-3, the rate constant reaches a maximum (Kramer's turnover) and becomes a decreasing function of the solvent concentration. For [Xe] above 16.2 mol dm-3, the rate constant again increases as a function of the solvent density.

  15. Theory of activated dynamics and glass transition of hard colloids in two dimensions.

    PubMed

    Zhang, Bo-kai; Li, Hui-shu; Tian, Wen-de; Chen, Kang; Ma, Yu-qiang

    2014-03-01

    The microscopic nonlinear Langevin equation theory is applied to study the localization and activated hopping of two-dimensional hard disks in the deeply supercooled and glass states. Quantitative comparisons of dynamic characteristic length scales, barrier, and their dependence on the reduced packing fraction are presented between hard-disk and hard-sphere suspensions. The dynamic barrier of hard disks emerges at higher absolute and reduced packing fractions and correspondingly, the crossover size of the dynamic cage which correlates to the Lindemann length for melting is smaller. The localization lengths of both hard disks and spheres decrease exponentially with packing fraction. Larger localization length of hard disks than that of hard spheres is found at the same reduced packing fraction. The relaxation time of hard disks rises dramatically above the reduced packing fraction of 0.88, which leads to lower reduced packing fraction at the kinetic glass transition than that of hard spheres. The present work provides a foundation for the subsequent study of the glass transition of binary or polydisperse mixtures of hard disks, normally adopted in experiments and simulations to avoid crystallization, and further, the rheology and mechanical response of the two-dimensional glassy colloidal systems. PMID:24606367

  16. Skyrmion Flux Lattices in p,-wave Superconductors

    NASA Astrophysics Data System (ADS)

    Li, Qi; Toner, John; Belitz, Dietrich

    2007-03-01

    In p,-wave superconductors, topological excitations known as skyrmions are allowed, in addition to the usual vortices. In strongly type-II materials in an external magnetic field, a skyrmion flux lattice is expected to be energetically favored compared to a vortex flux lattice [1]. We analytically calculate the energy, magnetization curves (B(H)), and elasticity of skyrmion flux lattices in p,-wave superconductors near the lower critical field Hc1, and use these results with the Lindemann criterion to predict their melting curve [2]. In striking contrast to vortex flux lattices, which always melt at an external field H > Hc1, skyrmion flux lattices never melt near Hc1. This provides a simple and unambiguous test for the presence of skyrmions. In addition, the internal magnetic field distributions (which are measurable by muon spin rotation techniques [3]) of skyrmion and vortex lattices are very different. [1] A. Knigavko, B. Rosenstein, and Y.F. Chen, Phys. Rev. B 60, 550 (1999). [2] Qi Li, John Toner, and D. Belitz, cond-mat/0607391 [3] J.E. Sonier, J. Phys. Cond. Matt. 16, S4499 (2004)

  17. Structural evolution of proteinlike heteropolymers

    NASA Astrophysics Data System (ADS)

    Nelson, Erik D.; Grishin, Nick V.

    2014-12-01

    The biological function of a protein often depends on the formation of an ordered structure in order to support a smaller, chemically active configuration of amino acids against thermal fluctuations. Here we explore the development of proteins evolving to satisfy this requirement using an off-lattice polymer model in which monomers interact as low resolution amino acids. To evolve the model, we construct a Markov process in which sequences are subjected to random replacements, insertions, and deletions and are selected to recover a predefined minimum number of solid-ordered monomers using the Lindemann melting criterion. We show that polymers generated by this process consistently fold into soluble, ordered globules of similar length and complexity to small protein motifs. To compare the evolution of the globules with proteins, we analyze the statistics of amino acid replacements, the dependence of site mutation rates on solvent exposure, and the dependence of structural distance on sequence distance for homologous alignments. Despite the simplicity of the model, the results display a surprisingly close correspondence with protein data.

  18. Reconciling simulated melting and ground-state properties of metals with a modified embedded-atom method potential

    NASA Astrophysics Data System (ADS)

    Sushko, G. B.; Verkhovtsev, A. V.; Kexel, Ch; Korol, A. V.; Schramm, S.; Solov'yov, A. V.

    2016-04-01

    We propose a modification of the embedded-atom method-type potential aiming at reconciling simulated melting and ground-state properties of metals by means of classical molecular dynamics. Considering titanium, magnesium, gold, and platinum as case studies, we demonstrate that simulations performed with the modified force field yield quantitatively correctly both the melting temperature of the metals and their ground-state properties. It is shown that the accounting for the long-range interatomic interactions noticeably affects the melting point assessment. The introduced modification weakens the interaction at interatomic distances exceeding the equilibrium one by a characteristic vibration amplitude defined by the Lindemann criterion, thus allowing for the correct simulation of melting, while keeping its behavior in the vicinity of the ground state minimum. The modification of the many-body potential has a general nature and can be applicable to metals with different characteristics of the electron structure as well as for many different molecular and solid state systems experiencing phase transitions.

  19. Effect of many-body interactions on the solid-liquid phase behavior of charge-stabilized colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Dobnikar, J.; Rzehak, R.; von Grünberg, H. H.

    2003-03-01

    The solid-liquid phase diagram of charge-stabilized colloidal suspensions has been calculated using a technique that combines a continuous Poisson-Boltzmann description for the microscopic electrolyte ions with a molecular-dynamics simulation for the macroionic colloidal spheres. While correlations between the microions are neglected in this approach, many-body interactions between the colloids, mediated by the screening ionic fluid between them, are fully included. The Lindemann criterion has been used to determine the solid-to-liquid transition temperature in a colloidal system at a relatively high colloid volume fraction where many-body interactions are expected to be strong. With a view to the Derjaguin-Landau-Verwey-Overbeek theory predicting that colloids interact via Yukawa pair potentials, we compare our results with the phase diagram of a simple Yukawa liquid. We find an agreement under high-salt conditions, but considerable differences at low ionic strength. Using effective force calculations and data from molecular-dynamics simulations with simple model potentials, we further demonstrate that these differences are due to many-body interactions.

  20. Phase diagram and dynamics of Yukawa systems

    NASA Astrophysics Data System (ADS)

    Robbins, Mark. O.; Kremer, Kurt; Grest, Gary S.

    1988-03-01

    The phase diagram and dynamical properties of systems of particles interacting through a repulsive screened Coulomb (Yukawa) potential have been calculated using molecular and lattice dynamics techniques. The phase diagram contains both a melting transition and a transition from fcc to bcc crystalline phases. These phase transitions have been studied as a function of potential shape (screening length) and compared to phenomenological criteria for transition temperatures such as those of Lindemann and of Hansen and Verlet. The transition from fcc to bcc with increasing temperature is shown to result from a higher entropy in the bcc phase because of its softer shear modes. Even when the stable solid phase below the melting temperature is fcc, bcc-like local order is found in the liquid phase. This may substantially slow crystallization. The calculated phase diagram and shear modulus are in good agreement with experiments on colloidal suspensions of polystyrene spheres. The single particle dynamics of Yukawa systems show several unusual features. There is a pronounced subdiffusive regime in liquids near and below the melting temperature. This regime reflects the existence of two time scales: a typical phonon period, and the time for a particle to feel a new environment. The second time scale becomes longer as the temperature is lowered or the range of interaction (screening length) increases.

  1. Ground state of two-dimensional Yukawa bosons: Applications to vortex melting

    NASA Astrophysics Data System (ADS)

    Magro, W. R.; Ceperley, D. M.

    1993-07-01

    Using variational and diffusion Monte Carlo techniques, we investigate the ground state of bosons interacting in the continuum through a repulsive modified-Bessel-function potential, ɛK0(r/σ), in two dimensions. This is a simplified model for flux lines in high-Tc superconductors. A pair-product trial function is first optimized so that its variational energy is very near the ground-state energy, then the diffusion Monte Carlo technqiue is used to calculate the exact ground-state energy. As a function of mass and density, we calculate the region of stability of the solid for densities greater than 0.01/σ2. The quantum crystal melts at high density, due to the potential's soft core, and at low density, due to the exponentially weak interaction. Bosons with ħ2/2mσ2ɛ>0.09 do not crystallize at any density. Within the flux model, we compute the flux-line phase diagram for Bi2Sr2CaCu2O8. Pair-correlation functions, structure factors, and Lindemann ratios at melting are also comptued.

  2. Freezing and melting line invariants of the Lennard-Jones system.

    PubMed

    Costigliola, Lorenzo; Schrøder, Thomas B; Dyre, Jeppe C

    2016-06-01

    The invariance of several structural and dynamical properties of the Lennard-Jones (LJ) system along the freezing and melting lines is interpreted in terms of isomorph theory. First the freezing/melting lines of the LJ system are shown to be approximated by isomorphs. Then we show that the invariants observed along the freezing and melting isomorphs are also observed on other isomorphs in the liquid and crystalline phases. The structure is probed by the radial distribution function and the structure factor and dynamics are probed by the mean-square displacement, the intermediate scattering function, and the shear viscosity. Studying these properties with reference to isomorph theory explains why the known single-phase melting criteria hold, e.g., the Hansen-Verlet and the Lindemann criteria, and why the Andrade equation for the viscosity at freezing applies, e.g., for most liquid metals. Our conclusion is that these empirical rules and invariants can all be understood from isomorph theory and that the invariants are not peculiar to the freezing and melting lines, but hold along all isomorphs. PMID:27186598

  3. Radiation-induced crystalline-to-amorphous transition in intermetallic compounds of the Cu-Ti alloy system

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.; Devanathan, R. ); Sabochick, M.J. . Computer Applications Div.)

    1992-02-01

    Recent progress in molecular-dynamics studies of radiation-induced crystalline-to-amorphous transition in the ordered intermetallic compounds of the Cu-Ti system is discussed. The effect of irradiation was simulated by the generation of Frenkel pairs,which resulted in both the formation of stable point defects and chemical disorder upon defect recombination. The thermodynamic, structural and mechanical responses of the compounds during irradiation were determined by monitoring changes in the system potential energy, volume expansion, pair correlation function, diffraction patterns, and elastic constants. It was found that the intermetallics Cu{sub 4}Ti{sub 3}, CuTi, and CuTi{sub 2} could be rendered amorphous by the creation of Frenkel pairs, but Cu{sub 4}Ti could not, consistent with experimental observations during electron irradiation. However, the simulations showed that Cu{sub 4}Ti did become amorphous when clusters of Frenkel pairs were introduced, indicating that this compound may be susceptible to amorphization by heavy-ion bombardment. A generalization of the Lindemann criterion was used to develop a thermodynamic description of solid-state amorphization as a disorder- induced melting process.

  4. Kinetic study of the reaction of vanadium and vanadium-titanium oxide cluster anions with SO2.

    PubMed

    Janssens, Ewald; Lang, Sandra M; Brümmer, Mathias; Niedziela, Andrzej; Santambrogio, Gabriele; Asmis, Knut R; Sauer, Joachim

    2012-11-01

    The reactivity of mass-selected V(4)O(10)(-) cluster anions towards sulphur dioxide is investigated in an ion trap under multi-collision conditions. Gas phase reaction kinetics are studied as a function of temperature (T(R) = 150-275 K). The binding energy of SO(2) to V(4)O(10)(-) is obtained by analyzing the experimental low pressure rate constants, employing the Lindemann energy transfer model for association reactions in conjunction with statistical RRKM theory. In addition, infrared multiple photon dissociation spectroscopy is used in conjunction with density functional theory for the structural assignment of the [V(4)O(10)(-), SO(2)] complex, revealing a square pyramidal structure with the SO(2) molecule incorporated in the vanadium oxide framework. Energy profiles are calculated for the reaction between V(4)O(10)(-) and V(6)O(15)(-) with SO(2). Whereas the transition structures along the reaction pathway of V(4)O(10)(-) with SO(2) have energies below those of the separated partners, the reaction of V(6)O(15)(-) with SO(2) proceeds via a transition structure with energy higher than the educts. The role of cluster size and composition is investigated by studying the reaction kinetics of larger (V(6)O(15)(-) and V(8)O(20)(-)) and titanium doped (V(3)TiO(10)(-) and V(2)Ti(2)O(10)(-)) vanadium oxide clusters with SO(2). The observed cluster size and composition dependencies are discussed. PMID:23008835

  5. Theory of mass-independent fractionation of isotopes, phase space accessibility, and a role of isotopic symmetry

    PubMed Central

    Marcus, Rudolph A.

    2013-01-01

    Key experimental and theoretical features of mass-independent fractionation (MIF) of isotopes, also known as the η-effect, are summarized, including its difference from the exit channel zero-point energy difference effect. The latter exactly cancels in the MIF. One key experimental result is that the MIF for O3 formation is a low-pressure phenomenon and, moreover, that it decreases with increasing pressure of third bodies at pressures far below the “Lindemann fall-off” pressures for three-body recombination of O and O2. A possible origin of the MIF is discussed in terms of a role for isotopologue symmetry in intramolecular energy sharing. An explanation is suggested for the large difference in the fall-off pressure for recombination and the pressure for a large decrease in MIF, in terms of a difference between deactivating collisions and what we term here “symmetry-changing collisions”. It is noted that the theory of the MIF involves four recombination rate constants and an equilibrium constant, for each trace isotope, seven rate constants in all and two equilibrium constants. A conceptual shortcut is noted. Experimental and computational information that may provide added insight into the MIF mechanism and tests is described. PMID:23812747

  6. Silane-initiated nucleation in chemically active plasmas: validation of density functionals, mechanisms, and pressure-dependent variational transition state calculations.

    PubMed

    Bao, Junwei Lucas; Truhlar, Donald G

    2016-04-21

    The growth of anionic silicon hydride clusters is a critically important process in nanodusty plasmas. In the current study, we focus on the formation of homologs of silylene (Sin+1H2n+2(-), n = 3, 4) and silyl (SinH2n+1(-), n = 4, 5) anions via anion-neutral reaction pathways. Species like silyl or silylene anions and their related elementary reactions, which are involved in the formation of silicon hydride clusters, were not used in developing exchange-correlation (xc) density functionals (i.e., they were not included in the training set of semiempirical density functionals); therefore, we explored the accuracy of various widely used xc density functionals based on reaction energies and barrier heights. Among the 21 density functionals we tested, M06-2X has the best performance for a hybrid functional, and MN15-L has the best performance for a local functional. Thermal rate constants of the elementary reactions involved in the reaction mechanism are calculated using M06-2X and multistructural canonical variational transition state theory with the small-curvature tunneling approximation (MS-CVT/SCT). The pressure dependence of unimolecular isomerization reactions is treated with system-specific quantum RRK theory (SS-QRRK) and the Lindemann-Hinshelwood mechanism. PMID:27009479

  7. Thermal tracing of flow and transport in fractured media

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Klepikova, M.; Goderniaux, P.; Bour, O.; Read, T.; Hochreutener, R.; Boschero, V.; Lavenant, N.; Bense, V.

    2012-12-01

    Flow in fractured media is known to be very heterogeneous, both at the fracture scale where aperture fluctuations can imply significant flow channeling, and at the scale of fracture networks, which are characterized by a large distribution of fracture lengths and transmissivities. The coexistence of fast pathways and stagnation zones, dominated by diffusive transport, implies broad residence time distributions. The characterization of flow and transport patterns from pumping or tracer tests in such system is a strongly under-constrained inverse problem. The coupling of several types of data is a possible way to reduce the associated uncertainty. Temperature is a parameter that may have a good potential for providing new constraints on flow heterogeneity, as discussed in recent reviews (Anderson, 2005, Saar, 2011). Furthermore, recent technical developments, such as distributed temperature sensing, allow measuring temperature with high accuracy and fine spatial resolution. Temperature anomalies can be either naturally induced by flow heterogeneities or created by injection of a hot or cold tracer. In the first case, the natural geothermal gradient is perturbed locally by fracture upflow (positive anomaly) or downflow (negative anomaly). Using a borehole scale model of flow and heat transport, we show that perturbed borehole temperature profiles can be used to estimate vertical borehole flow profiles (Klepikova et al., 2011). Thus, we propose a methodology to inverse temperature profiles under ambient, single borehole and cross borehole pumping conditions for estimating fracture hydraulic and connectivity properties. We then discuss the interest of using thermal tracer tests compared to classical tracer tests. We conducted a series of thermal and solute tracer tests at the fractured crystalline aquifer of Ploemeur, France. Thermal tracer tests were performed by injecting continuously 50 degrees Celsius water in a fracture located at 50 meters depth. The breakthrough

  8. Usutu virus in Italy: an emergence or a silent infection?

    PubMed

    Savini, Giovanni; Monaco, Federica; Terregino, Calogero; Di Gennaro, Annapia; Bano, Luca; Pinoni, Chiara; De Nardi, Roberta; Bonilauri, Paolo; Pecorari, Monica; Di Gialleonardo, Luigina; Bonfanti, Lebana; Polci, Andrea; Calistri, Paolo; Lelli, Rossella

    2011-08-01

    A two year study (2008-2009) was carried out to monitor the Usutu virus (USUV) circulation in Italy. Sentinel horses and chickens, wild birds and mosquitoes were sampled and tested for the presence of USUV and USUV antibodies within the WND National Surveillance plan. Seroconversion evidenced in sentinel animals proved that in these two years the virus has circulated in Tuscany, Emilia Romagna, Veneto and Friuli Venezia Giulia regions. In Veneto USUV caused a severe blackbird die-off disease involving at least a thousand birds. Eleven viral strains were detected in organs of 9 blackbirds (52.9%) and two magpies (0.5%) originating from Veneto and Emilia Romagna regions. USUV was also detected in a pool of Culex pipiens caught in Tuscany. According to the alignment of the NS5 partial sequences, no differences between the Italian USUV strains isolated from Veneto, Friuli and Emilia Romagna regions were observed. The Italian North Eastern strain sequences were identical to those of the strain detected in the brain of a human patient and shared a high similarity with the isolates from Vienna and Budapest. Conversely, there were few differences between the Italian strains which circulated in the North Eastern regions and the USUV strain detected in a pool of C. pipiens caught in Tuscany. A high degree of similarity at both nucleotide and amino acid level was also found when the full genome sequence of the Italian North Eastern isolate was compared with that of the strains circulating in Europe. The North Eastern Italian strain sequence exhibited 97% identity to the South African reference strain SAAR-1776. The deduced amino acid sequences of the Italian strain differed by 10 and 11 amino-acids from the Budapest and Vienna strains, respectively, and by 28 from the SAAR-1776 strain. According to this study two strains of USUVs are likely to have circulated in Italy between 2008 and 2009. They have developed strategies of adaptation and evolution to spread into new areas

  9. Defects and order in liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa

    This thesis investigates the partial destruction of ordering in liquid crystalline systems due to the influence of defects and thermal fluctuations. The systems under consideration are hexagonal columnar crystals with crystalline order perpendicular to the columns, and two-dimensional smectics with order perpendicular to the layers. We first study the possibility of reentrant melting of a hexagonal columnar crystal of flexible charged polymers at high enough densities. The Lindemann criterion is employed in determining the melting point. Lattice fluctuations are calculated in the Debye model, and an analogy with the Abrikosov vortex lattice in superconductors is exploited in estimating both the elastic constants of the hexagonal lattice, and the appropriate Lindemann constant. We also discuss the unusual functional integral describing the statistical mechanics of a single polymer in an Einstein cage model using the path-integral formulation. A crossover as a function of an external field along the column axis is discussed as well. Next, we study defects in a columnar crystal in the form of vacancy/interstitial loops or strings of vacancies and interstitials bounded by column "heads" and "tails". These defect strings are oriented by the columnar lattice and can change size and shape by movement of the ends and forming kinks along the length. Hence an analysis in terms of directed living polymers is appropriate to study their size and shape distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in the crystalline phase, a string proliferation transition occurs, leading to a "supersolid" phase with infinitely long vacancy or interstitial strings. We estimate the wandering entropy and examine the behaviour in the transition regime. We also calculate numerically the line tension of various species of vacancies and interstitials in a triangular lattice for power-law potentials as well as for a modified Bessel

  10. A new and effective method for thermostatting confined fluids

    NASA Astrophysics Data System (ADS)

    De Luca, Sergio; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2014-02-01

    We present a simple thermostatting method suitable for nanoconfined fluid systems. Two conventional strategies involve thermostatting the fluid directly or employing a thermal wall that couples only the wall atoms with the thermostat. When only a thermal wall is implemented, the temperature control of the fluid is true to the actual experiment and the heat is transferred from the fluid to the walls. However, for large or complex systems it can often be computationally prohibitive to employ thermal walls. To overcome this limitation many researchers choose to freeze wall atoms and instead apply a synthetic thermostat to the fluid directly through the equations of motion. This, however, can have serious consequences for the mechanical, thermodynamic, and dynamical properties of the fluid by introducing unphysical behaviour into the system [Bernardi et al., J. Chem. Phys. 132, 244706 (2010)]. In this paper, we propose a simple scheme which enables working with both frozen walls and naturally thermostatted liquids. This is done by superimposing the walls with oscillating particles, which vibrate on the edge of the fluid control volume. These particles exchange energy with the fluid molecules, but do not interact with wall atoms or each other, thus behaving as virtual particles. Their displacements violate the Lindemann criterion for melting, in such a way that the net effect would not amount to an additional confining surface. One advantage over standard techniques is the reduced computational cost, particularly for large walls, since they can be kept rigid. Another advantage over accepted strategies is the opportunity to freeze complex charged walls such as β-cristobalite. The method furthermore overcomes the problem with polar fluids such as water, as thermalized charged surfaces require higher spring constants to preserve structural stability, due to the effects of strong Coulomb interactions, thus inevitably degrading the thermostatting efficiency.

  11. A new and effective method for thermostatting confined fluids

    SciTech Connect

    De Luca, Sergio; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2014-02-07

    We present a simple thermostatting method suitable for nanoconfined fluid systems. Two conventional strategies involve thermostatting the fluid directly or employing a thermal wall that couples only the wall atoms with the thermostat. When only a thermal wall is implemented, the temperature control of the fluid is true to the actual experiment and the heat is transferred from the fluid to the walls. However, for large or complex systems it can often be computationally prohibitive to employ thermal walls. To overcome this limitation many researchers choose to freeze wall atoms and instead apply a synthetic thermostat to the fluid directly through the equations of motion. This, however, can have serious consequences for the mechanical, thermodynamic, and dynamical properties of the fluid by introducing unphysical behaviour into the system [Bernardi et al., J. Chem. Phys. 132, 244706 (2010)]. In this paper, we propose a simple scheme which enables working with both frozen walls and naturally thermostatted liquids. This is done by superimposing the walls with oscillating particles, which vibrate on the edge of the fluid control volume. These particles exchange energy with the fluid molecules, but do not interact with wall atoms or each other, thus behaving as virtual particles. Their displacements violate the Lindemann criterion for melting, in such a way that the net effect would not amount to an additional confining surface. One advantage over standard techniques is the reduced computational cost, particularly for large walls, since they can be kept rigid. Another advantage over accepted strategies is the opportunity to freeze complex charged walls such as β-cristobalite. The method furthermore overcomes the problem with polar fluids such as water, as thermalized charged surfaces require higher spring constants to preserve structural stability, due to the effects of strong Coulomb interactions, thus inevitably degrading the thermostatting efficiency.

  12. Collisional energy transfer in highly excited molecules.

    PubMed

    Houston, Paul L; Conte, Riccardo; Bowman, Joel M

    2014-09-11

    The excitation/de-excitation step in the Lindemann mechanism is investigated in detail using model development and classical trajectory studies based on a realistic potential energy surface. The model, based on a soft-sphere/line-of-centers approach and using elements of Landau-Teller theory and phase space theory, correctly predicts most aspects of the joint probability distribution P(ΔE,ΔJ) for the collisional excitation and de-excitation process in the argon-allyl system. The classical trajectories both confirm the validity of the model and provide insight into the energy transfer. The potential employed was based on a previously available ab initio intramolecular potential for the allyl fit to 97418 allyl electronic energies and an intermolecular potential fit to 286 Ar-allyl energies. Intramolecular energies were calculated at the CCSD(T)/AVTZ level of theory, while intermolecular energies were calculated at the MP2/AVTZ level of theory. Trajectories were calculated for each of four starting allyl isomers and for an initial rotational level of Ji = 0 as well as for Ji taken from a microcanonical distribution. Despite a dissimilarity in Ar-allyl potentials for fixed Ar-allyl geometries, energy transfer properties starting from four different isomers were found to be remarkably alike. A contributing factor appears to be that the orientation-averaged potentials are almost identical. The model we have developed suggests that most hydrocarbons should have similar energy transfer properties, scaled by differences in the potential offset of the atom-hydrogen interaction. Available data corroborate this suggestion. PMID:25116732

  13. High-Pressure Studies on Iron Analogs with Application to Planetary Cores

    NASA Astrophysics Data System (ADS)

    Godwal, B. K.; Raju, S.; Geballe, Z.; Jeanloz, R.

    2013-12-01

    The properties of hexagonal close-packed (hcp) metals at high pressures are of geophysical interest because hcp Fe is likely to be the primary constituent of Earth's inner core. Zinc and cadmium crystallize in a distorted hcp structure, and undergo electronic topological transitions at high pressures manifested through anomalous values of the c/a crystal-axis ratio, compressibility and electron transport properties. There is renewed interest in such electronic transitions due to their recent association with anomalies in c/a, Debye velocity and Mössbauer center shift in Fe and Fe-Ni alloy near 40 GPa. Past high-pressure studies have shown that the c/a anomaly is larger in Cd as compared to Zn. Nonhydrostatic measurements on Cd reveal texture development, which is used in identifying deformation mechanisms in Os and Fe. Angular x-ray diffraction measurements in a resistively heated diamond-anvil cell, with argon as pressure medium, were carried out on Cd up to 25 GPa at room temperature. We minimized nonhydrostatic conditions by thermally annealing the sample at each pressure by heating it to 100° C, which resulted in sharpening of diffraction peaks. Variations of c/a with pressure revealed anomalies near 2, 7, 15 and 22 GPa, with corresponding anomalies in compression at similar pressures. We associate these anomalies with electronic topological transitions, based on results of first-principles electronic structure calculations at high pressures. Our data are in good agreement with independent measurements using helium as a pressure medium, so the anomalies cannot be ascribed to nonhydrostaticity. Also, in-situ x-ray powder-diffraction shows that the melting curve of Cd deviates from the Lindemann law above 1 GPa, consistent with the occurrence of electronic transitions.

  14. From D. Schröder: Reply on ``Chapman and Alvén: A Rigorous Mathematical Physicist Versus an Inspirational Experimental Physicist''

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    I read the recent article by S. -I. Akasofu ( Eos, 22 July, p. 269) with great interest because many years ago I had a discussion with Thomas George Cowling and Hannes Alfvén on the same subject. Sydney Chapman's style was very different than that of Kristian Birkeland. At the beginning of his career, Chapman published short notes on problems of geomagnetic variations and on other topics. In 1918, he commenced work on magnetic storms and, in spite of his reference to Birkeland's work, he does not seem to have been unduly influenced by it. This is connected with their different attitudes. Chapman was a mathematician and only returned to a mathematical approximation when it seemed unavoidable to him. Thus, Birkeland was more interested in the details of geophysical phenomenon, whereas Chapman sought to present a general solution. Chapman and his research student, Vincenzo Ferraro, in about 1930/1933 developed an interpretation of the initial phase of magnetic storm. For both of them, the space around the Earth played an important role, where the interplanetary plasma is compelled by the geomagnetic field to co-rotate with the Earth. Following F. A. Lindemann's ideas, they started from the premise that the cloud of particles consisted of an externally neutral plasma, containing electrons and protons of a magnetic storm, or electrons and protons intended for the accompanying auroras In the 1950s, Ferraro described the situation as follows: ``Our first ideas about ring current, unlike those relating to the main phase, were not based on hydrodynamic concepts, and our theory of the main phase is generally considered unacceptable.''

  15. Solidification of 4He clusters adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Markić, L. Vranješ; Stipanović, P.; Bešlić, I.; Zillich, R. E.

    2016-07-01

    We determined the ground state of He4N clusters adsorbed on one side of graphene for selected cluster sizes in the range from N =20 to N =127 . For all investigated clusters variational and diffusion Monte Carlo simulations were performed at T =0 K, and in addition for a selected subset finite temperature path integral Monte Carlo. At T =0 K the liquid or solid character of each cluster was investigated by restricting the phase using corresponding importance sampling trial-wave functions. The 4He-graphene interaction was modeled as a sum of individual 4He-C interactions, where both isotropic and anisotropic models were tested; also the effect of the substrate-mediated McLachlan interaction was investigated. We have found homogeneous crystallization in models of anisotropic interactions, starting from clusters with N =26 atoms in simulations without the McLachlan interaction, and between N =37 and 61 when it is included. The atoms become increasingly delocalized as one moves from the center of the cluster to the perimeter, evidenced by the Lindemann parameter. On the other hand, in the case of the isotropic interaction model, a liquidlike structure is more favorable for all considered cluster sizes. We use a liquid-drop model to extrapolate the energy per particle to the N →∞ limit, and the results are compared with the values obtained in studies of bulk 4He on graphene. Low-temperature path integral Monte Carlo simulations are in agreement with ground-state results.

  16. Grüneisen parameter of hcp-Fe to 171 GPa

    SciTech Connect

    Murphy, Caitlin A.; Jackson, Jennifer M.; Sturhahn, Wolfgang; Chen, Bin

    2012-02-07

    We measured the phonon density of states (DOS) of hexagonal close-packed iron ({var_epsilon}-Fe) with high statistical quality using nuclear resonant inelastic X-ray scattering and in situ X-ray diffraction experiments between pressures of 30 GPa and 171 GPa and at 300 K, with a neon pressure medium up to 69 GPa. The shape of the phonon DOS remained similar at all compression points, while the maximum (cutoff) energy increased regularly with decreasing volume. As a result, we present a generalized scaling law to describe the volume dependence of {var_epsilon}-Fe's total phonon DOS which, in turn, is directly related to the ambient temperature vibrational Grueneisen parameter ({gamma}{sub vib}). Fitting our individual {gamma}{sub vib} data points with {gamma}{sub vib} = {gamma}{sub vib, 0}(V/V{sub 0}){sup q}, a common parameterization, we found an ambient pressure {gamma}{sub vib,0} = 2.0 {+-} 0.1 for the range q = 0.8 to 1.2. We also determined the Debye sound velocity (v{sub D}) from the low-energy region of the phonon DOS and our in situ measured volumes, and used the volume dependence of v{sub D} to determine the commonly discussed Debye Grueneisen parameter ({gamma}{sub D}). Comparing our {gamma}{sub vib}(V) and {gamma}{sub D}(V), we found {gamma}{sub vib} to be {approx}10% larger than {gamma}{sub D} at any given volume. Finally, applying our {gamma}{sub vib}(V) to a Mie-Grueneisen type relationship and an approximate form of the empirical Lindemann melting criterion, we predict the vibrational thermal pressure and estimate the high-pressure melting behavior of {var_epsilon}-Fe at Earth's core pressures.

  17. Electronic and structural properties of metallic microclusters

    SciTech Connect

    Maiti, A.

    1992-04-01

    The first part of this thesis presents a first-order pseudopotential calculation at T=O of the total energy of small sodium clusters of size N<800. The calculation is based on a local-pseudopotential scheme and local-density correlation and exchange. A temperature-size (T-N) phase-diagram is then derived using the T=O results and Lindemann's criterion for melting. The phase-diagram contains three regions of stability: (1) a liquid (jellium) phase at temperatures above the melting line T{sub M}(N) where cluster-stability occurs at electronic magic numbers: (2) a phase related to complete geometrical shells of body-centered-cubic structure at temperatures below the melting line; and (3) a close-packed structure at very low temperatures and sufficiently large N. The melting line drops to T{sub M}(N)=O for N<65, where electronic magic numbers are stable even at T=O. The phase diagram reduces asymptotically to the known phases of sodium as N{yields}{infinity}, including the known martensitic transformation at T{approximately}5 K. The second and the last part of this thesis consists of a study of small-cluster many-body systems by means of an on-site local'' chemical potential which allows the continuous variation of local electron-density. This method yields a criterion to distinguish particular features of a small cluster that are likely to survive in the large-N thermodynamic limit from those discontinuities that arise only from finite-size effects.

  18. Arrhythmic risk stratification after myocardial infarction using ambulatory electrocardiography signal averaging.

    PubMed

    Roche, Frédéric; DaCosta, Antoine; Karnib, Ibrahim; Triomphe, Géraldine; Roche, Christian; Isaaz, Karl; Geyssant, André; Barthélémy, Jean-Claude

    2002-05-01

    Ambulatory ECG had been proposed to examine the amplified high resolution signal-averaged electrocardiogram (SAECG). Clinical investigations are required to confirm the predictive value of such a high resolution technique in arrhythmic risk stratification. The prognostic value of ambulatory Holter SAECG was evaluated in 108 postinfarction patients for the purpose of predicting the occurrence of serious arrhythmic (SARR) events (sudden cardiac death [SCD], VT, or VF) in comparison with classical real-time SAECG. During the 42+/-8 months of follow-up, the sudden cardiac death mortality was 4.6% (five deaths), six (5.6%) patients had VT, and one (0.9%) VF. QRSd was found to be the most predictive parameter using ROC curves analysis for SAAR + outcome (W = 0.833 and W = 0.803 for 25-250 Hz and 40-250 Hz filters, respectively) followed by RMS (W = 0.766 and W = 0.721) and LAS (W = 0.759, W = 0.709) (all P < 0.01). Abnormal Holter SAECG for 25 and 40-Hz LP filter were significant predictors of SARR+ by log-rank test (P < 0.01, P < 0.05, respectively). This study confirms that valuable prognostic information can be obtained from the ambulatory high resolution ECG technique and that Holter SAECG may predict arrhythmic risk in a postinfarction population. PMID:12049370

  19. Effect of Tool Offset and Tool Rotational Speed on Enhancing Mechanical Property of Al/Mg Dissimilar FSW Joints

    NASA Astrophysics Data System (ADS)

    Liang, Zhiyuan; Chen, Ke; Wang, Xiaona; Yao, Junshan; Yang, Qi; Zhang, Lanting; Shan, Aidang

    2013-08-01

    Friction stir welding (FSW) is a promising solid-state joining technique for producing effective welds between Al alloy and Mg alloy. However, previously reported Al/Mg dissimilar FSW joints generally have limited strength or barely any ductility with relatively high strength, which was blamed on the brittle intermetallics formed during welding. In this study, effective joints with comparably high strength (163 MPa) and large elongation (~6 pct) were obtained. Three crucial/weak zones were identified in the welds: (1) Al/Mg bottom interface (BI) zone that resulted from the insufficient materials' intermixing and interdiffusion; (2) banded structure (BS) zone which contains intermetallic particles possibly formed by constitutional liquation; and (3) softened Al alloy to the retreating side (SAA-RS) zone due to the dissolution and coarsening of the strengthening precipitates. Three fracture modes observed in the tensile specimens perpendicular to the weld seam were found closely related to these zones. Their microstructure evolution with the change of tool rotational speed and tool offset was characterized and the consequent effect on the fracture mode alteration was studied. It turned out that enhancing the strengths of all these zones, but keeping the strength of the SAA lowest, is an effective way for enhancing ductility while keeping comparatively high strength in Al/Mg FSW joints. Also, suggestions for further improving the mechanical property of the Al/Mg dissimilar FSW joints were made accordingly for practical applications.

  20. Laser surgery for Zenker's diverticulum: European combined study.

    PubMed

    Papaspyrou, Giorgos; Schick, Bernhard; Papaspyrou, Spyros; Wiegand, Susanne; Al Kadah, Basel

    2016-01-01

    Surgical intervention is the gold standard of treatment for Zenker's diverticulum. The aim of this study was to examine the role of laser surgery in a large number of patients with this pathological entity. The data of 91 consecutive patients treated due to Zenker's diverticulum with the aid of CO2 laser in three institutions (Homburg/Saar and Marburg, Germany/Athens, Greece) during the last 10 years were retrospectively analyzed. Parameters examined were sex, age, preoperative symptoms, length of operation and complications, revision surgery necessity and degree of patient satisfaction. All patients had a minimum follow-up of one year. Dysphagia was the most common preoperative symptom (78 %). The most common minor complication was dental injury (6.6 %), but a serious complication in form of emphysema was observed in only two patients (2.2 %). A surgical revision was necessary in 8 (8.8 %) of the treated patients. The majority of treated patients was free of symptoms (86.8 %), or presented mild symptoms (9.9 %) one year after intervention, and only three patients (3.3 %) were dissatisfied. Our study shows that laser treatment of Zenker's diverticulum is an efficient operative technique associated with low complications rates and significant improvement of patients' symptoms in most of the examined cases. PMID:25567345

  1. Effect of ship locking on sediment oxygen uptake in impounded rivers

    NASA Astrophysics Data System (ADS)

    Lorke, A.; McGinnis, D. F.; Maeck, A.; Fischer, H.

    2012-12-01

    In the majority of large river systems, flow is regulated and/or otherwise affected by operational and management activities, such as ship locking. The effect of lock operation on sediment-water oxygen fluxes was studied within a 12.9 km long impoundment at the Saar River (Germany) using eddy-correlation flux measurements. The continuous observations cover a time period of nearly 5 days and 39 individual locking events. Ship locking is associated with the generation of surges propagating back and forth through the impoundment which causes strong variations of near-bed current velocity and turbulence. These wave-induced flow variations cause variations in sediment-water oxygen fluxes. While the mean flux during time periods without lock operation was 0.5 ± 0.1 g m-2 d-1, it increased by about a factor of 2 to 1.0 ± 0.5 g m-2 d-1within time periods with ship locking. Following the daily schedule of lock operations, fluxes are predominantly enhanced during daytime and follow a pronounced diurnal rhythm. The driving force for the increased flux is the enhancement of diffusive transport across the sediment-water interface by bottom-boundary layer turbulence and perhaps resuspension. Additional means by which the oxygen budget of the impoundment is affected by lock-induced flow variations are discussed.

  2. Mechanical behaviour of standardized, endoskeleton-including hip spacers implanted into composite femurs

    PubMed Central

    Thielen, T.; Maas, S.; Zuerbes, A.; Waldmann, D.; Anagnostakos, K.; Kelm, J.

    2009-01-01

    Two-stage reconstruction using an antibiotic loaded cement spacer is the preferred treatment method of late hip joint infections. Hip spacers maintain stability of the joint and length of the limb during treatment period. However, as the material strength of bone cement (PMMA) is limited, spacer fractures led to serious complications in the past. This study investigated the load capacity of custom made hip spacers, developed at the 'Klinik für Orthopädie und Orthopädische Chirurgie' (Universitätsklinikum des Saarlandes, Homburg / Saar, Germany), and implanted into composite femurs. In a quasi-static test, non-reinforced spacers tolerated hip joint loads of about 3000 N, whereas reinforced spacers with titanium-grade-two endoskeletons doubled this load up to 6000 N. Even for cyclic loading, endoskeleton-including hip spacers tolerated loads of >4500 N with 500,000 load cycles. Thus, an endoskeleton-including spacer should provide a mobile and functional joint through the treatment course. A generated FE-model was used to determine the fracture stresses and allows for further sensitivity analysis. PMID:19834594

  3. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards.

    PubMed

    Rodrigo Comino, J; Iserloh, T; Lassu, T; Cerdà, A; Keestra, S D; Prosdocimi, M; Brings, C; Marzen, M; Ramos, M C; Senciales, J M; Ruiz Sinoga, J D; Seeger, M; Ries, J B

    2016-09-15

    The aim of this study was to enable a quantitative comparison of initial soil erosion processes in European vineyards using the same methodology and equipment. The study was conducted in four viticultural areas with different characteristics (Valencia and Málaga in Spain, Ruwer-Mosel valley and Saar-Mosel valley in Germany). Old and young vineyards, with conventional and ecological planting and management systems were compared. The same portable rainfall simulator with identical rainfall intensity (40mmh(-1)) and sampling intervals (30min of test duration, collecting the samples at 5-min-intervals) was used over a circular test plot with 0.28m(2). The results of 83 simulations have been analysed and correlation coefficients were calculated for each study area to identify the relationship between environmental plot characteristics, soil texture, soil erosion, runoff and infiltration. The results allow for identification of the main factors related to soil properties, topography and management, which control soil erosion processes in vineyards. The most important factors influencing soil erosion and runoff were the vegetation cover for the ecological German vineyards (with 97.6±8% infiltration coefficients) and stone cover, soil moisture and slope steepness for the conventional land uses. PMID:27265730

  4. Deep reflection seismic data along the central part of the European Geotraverse in Germany: a review

    NASA Astrophysics Data System (ADS)

    Wever, T. h.; Meissner, R.; Sadowiak, P.; Dekorp Group

    1990-04-01

    Deep reflection seismic data collected in Germany during the last three decades allow an insight into the structure of the Variscan crust in Germany. Although the crustal thickness is relatively constant, reflection data revealed important internal structures. Most profiles show a poorly reflective upper crust (disregarding fault zones) while its lower part is characterized by many flat-lying reflections. But also dipping reflections in the upper and lower crust have been observed on DEKORP reflection lines. Beneath the geothermal anomaly of Urach an updoming of the reflective lower crust coinciding with a pronounced low-velocity body can be observed. Near the suture zones between Moldanubian, Saxothuringian and Rhenohercynian abundant diffractions appear in the middle and lower crust. One exception is found in the west where post-Variscan developments created the deep Saar-Nahe-trough. The North Variscan Deformation Front exhibits thin-skinned tectonics west of the Rhine while farther east more steeply dipping fault zones are observed. In the North German Basin, just north of the Variscides, an industrial north-south profile shows strong bands of reflections from both midcrustal and Moho levels. The distance between these bands becomes smaller to the north. An industrial west-east line of 90 km length in Schleswig-Holstein, south of Kiel, shows a thinning of the crust of about 6 km towards the North Sea, although the Moho is not faulted. The sediments reach down to at least 15 km.

  5. Reconstruction of Pseudomariopteris busquetii, a vine-like Late Carboniferous-Early Permian pteridosperm.

    PubMed

    Krings, M; Kerp, H; Taylor, E L; Taylor, T N

    2001-05-01

    The growth habit of the Late Carboniferous-Early Permian pteridosperm Pseudomariopteris busquetii is reconstructed based on compression material from the upper Stephanian of the Blanzy-Montceau and Commentry Basins (Massif Central, France), and the upper Rotliegend of the Saar-Nahe Basin (Nahe Group, N 4, Rheinland Pfalz, Germany). Pseudomariopteris busquetii was a medium-sized, vine- to liana-like plant with slender stems to which small bipartite fronds were attached. What is most interesting is that the species used at least two different strategies to both anchor and support the plant body. Most specimens possess specialized climber hooks developed from apical extensions of the pinna axes, indicating that the fronds were used to attach the plant. A few specimens suggest that the stem may also have had some capacity for attachment. In the absence of suitable supports, however, P. busquetii was apparently able to grow in dense stands or thickets in which the individual plants supported each other. PMID:11353702

  6. Endonasal modification of the frontal sinus drainage type IIb according to Draf.

    PubMed

    Al Kadah, Basel; Schick, B

    2015-08-01

    The description of different endonasal drainage options (type I, II and III according to Draf) and their successful use in numerous patients has reached a milestone in frontal sinus surgery. We herein describe a modification of an endonasal frontal sinus drainage type IIb with the additional removal of the lower part of the frontal sinus septum without opening the frontal recess of the other side and without resection of the nasal septum. The modified endonasal endoscopic frontal sinus drainage type IIb was performed on 9 patients at the Department of Otorhinolaryngology, University Medical Center, Homburg/Saar between 02/2011 and 6/2013 after having gained patients' consent. Follow-ups with endoscopic examination were performed after 6, 12 and 24 months (median follow-up: 14 months). Endonasal endoscopic opening of the frontal sinus was achieved in all patients. Endoscopic examination 6, 12 and 24 months after surgery revealed patent frontal sinus drainage in 8 patients. The frontal sinus drainage could not be visualized endoscopically in one patient who was free of symptoms for 24 months and where a ventilated frontal sinus was proven radiologically by computed tomography. The study demonstrates the option to additionally remove the lower part of the inter-frontal septum with a frontal sinus drainage type IIb. As the number of patients treated by this modified frontal sinus type IIb drainage is limited, further investigations are needed to define the value of a modified frontal sinus drainage type IIb. PMID:25294052

  7. The concept of a hierarchical cosmos

    NASA Astrophysics Data System (ADS)

    Grujić, P. V.

    2003-10-01

    The idea of a hierachically structured cosmos can be traced back to the Presocratic Hellada. In the fifth century BC Anaxagoras from Clazomenae developed an idea of a sort of fractal material world, by introducing the concept of seeds (spermata), or homoeomeries as Aristotle dubbed it later (Grujić 2001). Anaxagoras ideas have been grossly neglected during the Middle Ages, to be invoked by a number of post-Renaissance thinkers, like Leibniz, Kant, etc, though neither of them referred to their Greek predecessor. But the real resurrections of the hierarchical paradigm started at the beginning of the last century, with Fournier and Charlier (Grujić 2002). Second half of the 20th century witnessed an intensive development of the theoretical models based on the (multi)fractal paradigm, as well as a considerable body of the observational evidence in favour of the hierarchical cosmos (Saar 1988). We overview the state of the art of the cosmological fractal concept, both within the astrophysical (Sylos Labini et al 1998), methodological (Ribeiro 2001) and epistemological (Ribeiro and Videira 1998) context.

  8. Seasonal variability in Tibetan seismicity 1991-2013

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Day, J.; Burgmann, R.; Manga, M.

    2013-12-01

    Seismicity in the High Himalaya in Nepal (Bollinger et al., GRL, 2007, Bettinelli et al., EPSL, 2008), the San Andreas fault near Parkfield, California (Christiansen et al., 2007), Mt. Hochstaufen in Germany (Hainzl et al., 2006), and some Cascade Range volcanoes (Christiansen et al., GRL, 2005; Saar and Manga, EPSL, 2003) shows seasonal modulation. From 1991 to 2013, seismicity throughout the ~500 km by ~1000 km Tibetan Plateau also appears to be modulated with 66% more shallow (depth < 20km) earthquakes in spring and fall than in the summer and winter. This variation cannot be explained by seasonal changes in seismic network coverage or triggering by (or occurrence of) large magnitude earthquakes. Significant foreshocks and aftershocks of the 2008 M7.9 Wenchuan earthquake in Sichuan dominate the seismic record from 2008 to 2009 and those years are not considered in the statistical analysis. The Tibetan seismicity, although weaker, is very similar to the modulation observed in Nepal and in the locked section of the San Andreas fault at Parkfield. To explain this biannual signal, we assess the possible effects of hydrologic loading (and unloading), pore pressure diffusion, fault plane orientation, evapotranspiration, earth tides, and atmospheric pressure. The similarity in seasonal signals throughout the area suggests that many faults on the Tibetan Plateau are critically stressed and sensitive to small transient stresses.

  9. Removing Activity-Related Radial Velocity Noise to Improve Extrasolar Planet Searches

    NASA Technical Reports Server (NTRS)

    Saar, Steven; Lindstrom, David M. (Technical Monitor)

    2004-01-01

    We have made significant progress towards the proposal goals of understanding the causes and effects of magnetic activity-induced radial velocity (v_r) jitter and developing methods for correcting it. In the process, we have also made some significant discoveries in the fields of planet-induced stellar activity, planet detection methods, M dwarf convection, starspot properties, and magnetic dynamo cycles. We have obtained super high resolution (R approximately 200,000), high S / N (greater than 300) echelle study of joint line bisector and radial velocity variations using the McDonald 2-D coude. A long observing run in October 2002 in particular was quite successful (8 clear nights). We now have close to three years of data, which begins to sample a good fraction of the magnetic cycle timescales for some of our targets (e.g., kappa Ceti; P_cyc = 5.6 yrs). This will be very helpful in unraveling the complex relationships between plage and radial velocity (v-r) changes which we have uncovered. Preliminary analysis (Saar et al. 2003) of the data in hand, reveals correlations between median line bisector displacement and v_r. The correlation appears to be specific the the particular star being considered, probably since it is a function of both spectral type and rotation rate. Further analysis and interpretation will be in the context of evolving plage models and is in progress.

  10. [Malignancies in families of children with cancer].

    PubMed

    Graf, N; Breitenmoser, M; Jobke, A; Kaatsch, P

    1990-01-01

    We examined the frequency and kind of cancer in families with a child having a neoplasm at the Universitätskinderklinik Homburg/Saar, at the Universitätskinderklinik Freiburg and at the Institut für Medizinische Statistik und Dokumentation der Johannes Gutenberg-Universität Mainz. The following could be shown: 1. There is no difference in the distribution of various kinds of cancer in children, whether they have relatives with cancer or not. 2. It is necessary to examine the family history repeatedly to obtain an accurate documentation of familial cancer. 3. Cancer in familial members did occur in a third of all families on an average. 4. Independently of the diagnosis of the child, in most families only one additional family member did have cancer. 5. The majority of relatives with cancer are grandparents. 6. Cancer of the lung and of the breast are the most frequent kinds of neoplasms occurring in family members. 7. Comparing the most frequent kinds of neoplasms in family members in this study with the distribution of cancer in adults, it is obviously, that there is a higher percentage of leukemia and brain tumors in relatives of children with cancer than is expected. 8. Typical tumor constellations can be found in affected families like breast cancer and soft tissue sarcomas. PMID:2395314

  11. Quantitative comparison of soil erosion, runoff and infiltration coefficients using the same small portable rainfall simulator in German and Spanish vineyards

    NASA Astrophysics Data System (ADS)

    Rodrigo Comino, Jesús; Iserloh, Thomas; Lassu, Tamás; Cerdà, Artemi; Keesstra, Saskia; Prosdocimi, Massimo; Concepción Ramos, María; Brings, Christine; María Senciales, José; Damián Ruiz Sinoga, José; Seeger, Manuel; Ries, Johannes B.

    2016-04-01

    Small portable rainfall simulations have been used for decades to compare and quantify the relationship between the factors influencing runoff generation and soil erosion. Though, the comparability of these researches is problematic due to the different simulators and methods applied. In order to enable a quantitative comparison of the soil erosion processes of four study areas (Valencia and Málaga in Spain, Ruwer-Mosel valley and Saar-Mosel valley in Germany) similar type of portable rainfall simulator (with a square metal frame of 0.45 m x 0.45 m, one nozzle Lechler 460 608, four telescopic aluminium legs, a rubber tarpaulin to avoid wind influences, a circular test plot with 0.28m2) with similar methodology (rainfall intensity of 40 mm h-1, during 30 minutes of time duration, collecting the samples with intervals of 5 minutes) was used. Older and younger vineyards with conventional and ecological planting system were being compared with each other. All together the results of 77 simulations have been analysed and additionally the Spearman's Correlation Coefficient was calculated for each study area to identify the relationship between the different parameters.

  12. Integration of porosity, connectivity and permeability measurements to determine syn-eruptive degassing processes during a sub-plinian basaltic eruption

    NASA Astrophysics Data System (ADS)

    Jordan, Simone; Gurioli, Lucia; Colombier, Matthieu; Le Pennec, Jean-Luc; Roche, Olivier

    2015-04-01

    Degassing of the volatile phases is considered to have a major control on the eruption dynamics, particularly in controlling shifts between explosive and extrusive eruption styles. The sub-plinian eruption of the basaltic monogenetic La Vache and Lassolas cone complex in the Chaîne des Puys, France, about 8600 years ago, was an unusual large event that raises the question of the processes that controlled the explosivity of non-differentiated magma and the evolution of this sub-plinian event. This study combines the results of density, porosity, connectivity and permeability measurements of juvenile clasts to determine the state of vesiculation and the presence of open degassing pathways within the melt prior to fragmentation. The volume of connected vesicles is measured using a Helium-Pycnometer, while permeability measurements are conducted using a permeameter recently built at the Laboratoire Magma et Volcans, following Takeuchi et al. (2008). The permeameter has broad measurement ranges of pressure difference (101-105 Pa) and gas-flow rate (10-9-10-5 m3/s). These ranges enable us to measure viscous (Darcian) permeability in the range of 10-17-10-9 m2 for 1 centimetre-scale samples (such as scoria clasts) using the Forchheimer equation (Rust and Cashman, 2004) that accounts for inertial effects caused by non-laminar flow at high gas flow rates. This technique is a relatively new approach to determine the permeability of quenched samples. The integration of porosity and connectivity measurements provides information about the percentage of connected and isolated vesicles, with the connected vesicles forming potential degassing pathways. Our results show that the permeability and the vesicularity of the La Vache and Lassolas pyroclasts correlate very well, defining a trend that is also shown by the permeability data derived from the literature for the Cascades (Saar and Manga, 1999) and the Ambrym volcano (Polacci et al., 2012). The connectivity data of the

  13. Multicomponent CO2-Brine Simulations of Fluid and Heat Transfer in Sedimentary-Basin Geothermal Systems: Expanding Geothermal Energy Opportunities

    NASA Astrophysics Data System (ADS)

    Saar, M. O.; Randolph, J. B.

    2011-12-01

    In a carbon dioxide plume geothermal (CPG) system, carbon dioxide (CO2) is pumped into existing high-permeability geologic formations that are overlain by a low-permeability caprock. The resulting CO2 plume largely displaces native formation fluid and is heated by the natural in-situ heat and background geothermal heat flux. A portion of the heated CO2 is piped to the surface to produce power and/or to provide heat for direct use before being returned to the geologic reservoir. Non-recoverable CO2 in the subsurface is geologically sequestered, serving as a CO2 sink. As such, this approach results in a geothermal power plant with a negative carbon footprint. We present results of calculations concerning geothermal power plant efficiencies and energy production rates in both traditional reservoir-based systems and engineered geothermal systems (EGS) when CO2, rather than water, is used as the subsurface working fluid. While our previous studies have examined geologic systems with established CO2 plumes, we focus here on multicomponent (CO2 + brine) systems. Numerical simulations (e.g., Randolph and Saar, Geophysical Research Letters, 2011) indicate that CPG systems provide several times the heat energy recovery of similar water-based systems. Furthermore, the CPG method results in higher geothermal heat extraction efficiencies than both water- and CO2-based EGS. Therefore, CPG should further extend the applicability of geothermal energy utilization to regions with subsurface temperatures and heat flow rates that are even lower than those that may be added due to switching from water- to CO2-based EGS. Finally, simulations at present suggest that multicomponent effects - e.g., buoyant flow as CO2 rises over denser brine - may enhance heat extraction in CPG systems compared to traditional water-based geothermal approaches.

  14. Possible Role of a Cell Surface Carbohydrate in Evolution of Resistance to Viral Infections in Old World Primates

    PubMed Central

    Rodriguez, Idalia A.

    2013-01-01

    Due to inactivation of the α1,3-galactosyltransferase gene (GGTA1, or the α1,3GT gene) approximately 28 million years ago, the carbohydrate αGal (Galα1,3Galβ1,4GlcNAc) is not expressed on the cells of Old World monkeys and apes (including humans) but is expressed in all other mammals. The proposed selective advantage of this mutation for these primates is the ability to produce anti-Gal antibodies, which may be an effective immune component in neutralizing αGal-expressing pathogens. However, loss of α1,3GT expression may have been advantageous by providing natural resistance against viral pathogens that exploited the α1,3GT pathway or cell surface αGal for infection. Infections of paired cell lines with differential expression of α1,3GT showed that Sindbis viruses (SINV) preferentially replicate in α1,3GT-positive cells, whereas herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) preferentially grow in cells lacking α1,3GT. Viral growth and spread correlated with the ability of the different viruses to successfully initiate infection in the presence or absence of α1,3GT expression. GT knockout (KO) suckling mice infected with SINV strains (AR339 and S.A.AR86) experienced significant delay in onset of disease symptoms and mortality compared to wild-type (WT) B6 suckling mice. In contrast, HSV-2-infected GT KO mice had higher viral titers in spleen and liver and exhibited significantly more focal hepatic necrosis than WT B6 mice. This study demonstrates that α1,3GT activity plays a role in the course of infections for certain viruses. Furthermore, this study has implications for the evolution of resistance to viral infections in primates. PMID:23740988

  15. Borosilicate alteration associated with U-Mo-Zn and Ag-Au-Zn deposits in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Fuchs, Y.; Maury, R.

    1995-10-01

    Borosilicate alteration is developed in many uranium-molybdenum-zinc deposits in volcanic piles such as at Novazza (Italy), Novoveska Huta (Slovakia), Ben Lomond (Queensland, Australia), the Saar-Nahe basin (Germany), the Shengyuan district (China), and at many deposits in Russia. These uranium-molybdenum-zinc deposits share similar styles of alteration with silver-gold-zinc deposits in volcanic rocks, like those of the Humboldt Range (Nevada, USA), the Basin district (Montana, USA) and Equity Mine (British Columbia, Canada). In thick volcanic piles, fluid-rock interaction commonly develops under the influence of convective hydrothermal systems. In borosilicate-bearing systems the alteration is characterized by changes in borosilicate mineralogy and chemistry under mesothermal conditions. Zonal distribution of different compositions of tourmaline can be observed including regular increases of alkali deficiency in the X(3a) site from peripheral (chlorite-epidote-prehnite) to internal (sericite and/or pyrophyllite) alteration zones. In the central part of these systems tourmaline is absent and the alteration assemblage is characterized by an andalusitedumortierite-quartz association. Such changes in mineral assemblage are related to an increase in temperature from 250 to 350 400 °C and to decreases in pH and Eh, from the outer toward the inner parts of the hydrothermal system. The zonation of the borosilicate-bearing alteration systems is similar to that of aluminosilicate-bearing hydrothermal systems (muscovite, pyrophyllite, andalusite) developed in volcanic rocks. A kaolinite-alunitejasperoid assemblage is generally associated with the borosilicate alteration, and seems related to a late hydrothermal phase mainly located in graben structures.

  16. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  17. Cervical lymphadenopathy: study of 251 patients.

    PubMed

    Al Kadah, Basel; Popov, Hristo Hristov; Schick, Bernhard; Knöbber, Dirk

    2015-03-01

    Correct diagnosis of cervical lymphadenopathy is often a great challenge. The objective of this case study is to describe the distribution of the most common causes of unclear neck swellings presented in an ENT-Department and to evaluate the clinical history, examination and laboratory findings. In a retrospective study at the Department of Otorhinolaryngology, University Medical Center Homburg/Saar, 251 patients were enrolled with clinical and ultrasound signs of cervical lymphadenopathy as well as lymph node extirpation for histopathological evaluation. 127 patients (50.6 %) had a histological malignant finding. The distribution of the most common pathological conditions was as follows: Non-specific reactive hyperplasia n = 89 (35.5 %), metastases n = 86 (34.3 %), lymphoma n = 41 (16.3 %), granulomatous lesions n = 15 (6 %), abscess formations n = 5 (2 %), necrotic lymphadenitis and Castleman's disease one case of each, lymph node with normal architecture n = 7 (2.8 %), and neck masses mimicking lymphadenopathy n = 6 cases (2.4 %). The following factors identified by multivariate logistic regression were significantly associated to malignant lymphadenopathy: increasing age, generalized lymphadenopathy and history of malignant disorder, fixed neck masses and increasing diameter in ENT examination, bulky lesion, absence of hilus, blurred outer contour, protective role of the long form and decreasing Solbiati-index values by ultrasound B-Mode gray scale examination. Level II contained more benign lymphatic lesions, while the malignancy rate in level IV and V was enhanced. Laboratory parameters significantly associated to malignancies were CRP, LDH and thrombocytopenia. Patients with persisting cervical lymphadenopathy and over 3 weeks of antibiotic treatment should be considered for early biopsy, especially if some of the risk factors, pointed out in this study, are present. PMID:25294051

  18. Quantitative analysis of soil erosion in ecologically and conventionally cultivated vineyards

    NASA Astrophysics Data System (ADS)

    Adrian, Alexander; Brings, Christine; Rodrigo Comino, Jesús; Seeger, Manuel; Ries, Johannes B.

    2016-04-01

    Long term observations of soil erosion in vineyards showed that they are generally stable. But the soil erosion rates reach very varying dimensions by the increased occurrence of extreme rainfall events or under the influence of different soil and vineyard management. To identify the differences between an ecologically (with natural vegetation cover under and around the vines) and conventionally cultivated vineyard, in 2014 six sediment traps were installed on a south-west exposed slope of the Rhenish Slate Mountains, West Germany. The research area is part of Saar terrace (around 180 meter high above sea level), a tributary of the Moselle, so the substrate is made of clay stone and gravel sand. Sediment traps allow in-situ measurements during a natural rainfall event. By dint of them the overland flow and sediment can be collected. The sediment traps were placed in a row in the middle of the slope, in the steepest part (averaged 23°). They were emptied weekly. Runoff and sediments were divided by the gravimetric filtering method. The results show more collected runoff and sediment in the conventional vineyard than in the ecological. The sum of the runoffs amounts to 75 liter in the conventional vineyard, 29 liter for the ecological old and 0.73 liter for the ecological young vineyard. The amount of sediment of conventional vineyard (403 g) was five times higher than in the ecological one (79 g). The causes lay in the low vegetation cover and existing traffic lines in the conventional vineyard. But the highest sediment concentration has been detected in the ecological young vineyard.

  19. Benzotriazole UV stabilizers in sediments, suspended particulate matter and fish of German rivers: New insights into occurrence, time trends and persistency.

    PubMed

    Wick, Arne; Jacobs, Björn; Kunkel, Uwe; Heininger, Peter; Ternes, Thomas A

    2016-05-01

    Benzotriazole UV stabilizers (BUVSs) are widely applied in plastics to prevent discoloration and to enhance product stability. This study describes for the first time the occurrence of nine different lipophilic BUVSs (UV-326, UV-320, UV-329, UV-350, UV-328, UV-327, UV-928, UV-234 and UV-360) in sediment, suspended particulate matter (SPM) and bream liver samples of German rivers. All investigated BUVSs were detected in sediments and SPM at concentrations in the low ng/g dry weight (dw) range. The so far rarely analyzed compound UV-360 as well as UV-326 were the predominant BUVSs in sediments and SPM from the river Rhine reaching maximum concentrations of 62 and 44 ng/g dw, respectively. Five BUVSs were also confirmed to bioaccumulate in bream liver, but neither UV-360 nor UV-326 was detected above the limit of quantification (LOQ). In contrast, highest concentrations in bream liver were determined for UV-327 (65 ng/g dw) and UV-328 (40 ng/g dw). A retrospective time trend analysis of BUVSs in SPM from two sites (river Rhine, 2005 to 2013; river Saar, 2006 to 2013) revealed increasing contamination levels of UV-329 and decreasing levels of UV-320 and UV-350. At one site (river Rhine) time trends of BUVS concentrations were also investigated in bream liver (1995-2013) and supported a considerably reduced exposure to UV-350. A first assessment of the environmental fate of BUVSs by sediment-water batch systems revealed a rapid partitioning into the sediment and no considerable degradation within 100 d. PMID:26874322

  20. Rainfall simulation experiments in ecological and conventional vineyards.

    NASA Astrophysics Data System (ADS)

    Adrian, Alexander; Brings, Christine; Rodrigo Comino, Jesús; Iserloh, Thomas; Ries, Johannes B.

    2015-04-01

    In October 2014, the Trier University started a measurement series, which defines, compares and evaluates the behavior of runoff and soil erosion with different farming productions in vineyards. The research area is located in Kanzem, a traditional wine village in the Saar Valley (Rheinland-Palatinate, Germany). The test fields show different cultivation methods: ecological (with natural vegetation cover under and around the vines) and conventional cultivated rows of wine. By using the small portable rainfall simulator of Trier University it shall be proved if the assumption that there is more runoff and soil erosion in the conventional part than in the ecological part of the tillage system. Rainfall simulations assess the generation of overland flow, soil erosion and infiltration. So, a trend of soil erosion and runoff of the different cultivation techniques are noted. The objective of this work is to compare the geomorphological dynamics of two different tillage systems. Therefore, 30 rainfall simulations plots were evenly distributed on a west exposition hillside with different slope angels (8-25°), vegetation- and stone-covers. In concrete, the plot surface reaches from strongly covered soil across lithoidal surfaces to bare soil often with compacted lanes of typical using machines. In addition, by using the collected substrate, an estimation and distribution of the grain size of the eroded material shall be given. The eroded substrate is compared to soil samples of the test plots. The first results have shown that there is slightly more runoff and soil erosion in the ecological area than on the conventional part of the vineyard.

  1. Longwall mining of thin seams

    SciTech Connect

    Curth, E A

    1981-01-01

    Thin seam operations pose a challenge to the ingenuity of mining engineers to overcome the factor of human inconvenience in the restricted environment and associated high cost production. Surprisingly, low seam longwalls in the Federal Republic of Germany in an average thickness of 35 in. and dipping less than 18/sup 0/ come close to achieving the average production rate of all German longwall operations. They are all plow faces, and a consistent production of 3300 tons per day and a productivity of 40 tons per man shift are reported from one of the thin seam longwalls. These results were attained by reliable high-capacity equipment and roof support by shields that can be collapsed to as low as 22 inches. Maximum mining height for plow operated faces lies at 31.5 inches. Technology for mechanized mining of flat lying coalbeds less than 31.5 inches in thickness without rock cutting is not available, and firmness of coal, undulation of the strata, coalbed thickness variation, and the necessity of cutting rock, particularly through faults, set limits to plow application. The in-web shearer can be used in firm coal to a minimum mining height of 40 inches, and a daily production of 1650 to 2200 tons is reported from a longwall in the Saar district of Germany equipped with such a shearer and shields. Numerous in-web shearers are employed in the United Kingdom; reports as to their success are contradictory. Also, experience in the United States, though limited, has been negative. The steady increase in output from single drum shearer faces in Pennsylvania is a remarkable achievement, and occasional record breaking peaks in production indicate the potential of such mining. Technology development for the future is discussed.

  2. Neotectonic activity in and around the southwestern Rhenish shield (West Germany): indications of a levelling comparison

    NASA Astrophysics Data System (ADS)

    Demoulin, A.; Pissart, A.; Zippelt, K.

    1995-09-01

    Precise levelling data are re-examined in the southwestern Rhenish shield and its foreland by comparing them analytically along levelling profiles. Instead of generalizing regional vertical movement trends, this method emphasizes the activity of individual structural elements, which can be located with a high accuracy. It is shown that present-day vertical motions concentrate on fractures which cut the massif into a number of tectonic blocks. These undergo more or less independent movements. Significant measured displacements range from 1 to 3.5 cm over an average 20-year period and correspond mostly to aseismic slip. High displacements are found near pre-existing faults, sometimes also zones of joint concentration which are favourably oriented with respect to the current regional stress field. In the Mosel area, SW-NE-trending faults are predominantly reactivated as reverse faults. The motion inferred for the Hunsrück border fault is also consistent with the compressive regime presently observed in that area, with σ1 oriented to the northwest. The direction of vertical motions along the western border fault of the upper Rhine graben changes from south to north in relation to the different azimuths of the central and northern segments of the graben, inducing a S-N-oriented transition from compressional to extensional shear. Within the graben itself, some N160°E-trending normal faults are identified, one of them having probably ruptured in a swarm of microearthquaks not long before the second survey was performed. The western Saar-Nahe trough is characterized by N-S-oriented fractures which cannot be related to mapped faults but show a close connection with photolineaments.

  3. Development of Methodologies For The Analysis of The Efficiency of Flood Reduction Measures In The Rhine Basin On The Basis of Reference Floods (deflood)

    NASA Astrophysics Data System (ADS)

    Krahe, P.; Herpertz, D.; Buiteveld, H.; Busch, N.; Engel, H.; Helbig, A.; Naef, F.; Wilke, K.

    After some years of extreme flooding in the 1990s extended efforts were made to im- prove flood protection by means of an integrated river basin management. Part of this strategy is the implementation of decentralised flood reduction measures (FRM). With this in mind, the CHR/IRMA-SPONGE Project DEFLOOD was initiated. By estab- lishing a set of methodological tools this project aims at making a step further towards a quantitative hydrological evaluation of the effects of local FRM on flood generation in large river basins. The basin of the River Mosel and in particular, the basin of its tributary Saar served as case study area for testing the methodological approach. A framework for an integrated river basin modelling approach (FIRM U Flood Reduc- tion) based on generation of hydrometeorological reference conditions, precipitation- runoff modelling and flood routing procedures was set up. In this approach interfaces to incorporate the results of scenario calculations by meso-scale hydrological mod- elling are defined in order to study the downstream propagation of the effect of decen- tralised flood reduction measures including the potential retention along minor rivers in large rivers. Examples for scenario calculations are given. Based on the experience gained the strategy for the use of the methodological framework within the context of river basin management practice are identified. The application of the methodol- ogy requires a set of actions which has to be installed in the Rhine/Meuse basins. The recommendations suggest that - beside progress in hydrological modelling - a base of knowledge needs to be built up and administered which encompasses hydrologically relevant information on the actual state and prospected developments in the River Rhine basin. Furthermore, problem-oriented hydrological process studies in selected small-scale river basins ought to be carried out. Based on these studies conceptual meso-scale modelling approaches can be improved and

  4. DFT and DMFT: Implementations and applications to the study of correlated materials

    NASA Astrophysics Data System (ADS)

    Ylvisaker, Erik Ryan

    While DFT-LDA has enjoyed great success in describing many ground-state properties of solids, there is an ever increasing list of materials which are not described even qualitatively correct in DFT-LDA. Here I describe some applications of DFT and dynamical mean field theory. This dissertation is divided into two parts. Part I describes the theoretical background of DFT and DMFT, and the simplest extension to DFT to study correlated materials, LDA+U, is examined in detail. We find that the behavior of LDA+U can differ quite strongly between AMF and FLL, the two commonly used double-counting functionals. AMF has a strong energetic penalty for magnetic states, which roughly cancels the exchange splitting found in LSDA. In Part I, I also describe in detail the implementation of LDA+DMFT in the publicly available code FFLO. Part II focuses on applications. I describe the application of LDA to LiNbO2, where Wannier functions and effective tight-binding Hamiltonians are constructed for LiNbO2. We found that second neighbor hopping t2 is the largest, but the first neighbor hopping depends strongly on the Nb-O distance, so that with small variations of 0 position t1 varies by an order of magnitude. I also describe in part II the application of LDA in density functional perturbation theory (DFPT) to calculate phonons for Al, Na and diamond to compute melting curves using the Lindemann criteria. The resulting Tm( P) curves agree rather well with experiment in most conditions for these materials, including reproducing the drop of 300 K of T m in bcc-Na. Detailed calculations in LDA+DMFT using Hubbard I and QMC impurity solvers are used to describe the valence transition in Yb. The agreement with experimental XAES and RIXS measurements of nf is rather good, and even the highly approximate Hubbard I impurity solver gives reasonably good results. Finally, I discuss the application of LDA+U to molecular orbitals in RbO2 to examine the possibility of orbital ordering in the O pi

  5. Fourier-transform resonance Raman spectroscopy of intermediates of the phytochrome photocycle.

    PubMed

    Matysik, J; Hildebrandt, P; Schlamann, W; Braslavsky, S E; Schaffner, K

    1995-08-22

    The parent states of the 124-kDa phytochrome (phy A from Avena sativa) and intermediates of its photocycle were studied by low-temperature Fourier-transform resonance Raman spectroscopy. Spectra of the primary photoproducts I700 and lumi-F and of the thermal intermediate meta-F have been obtained for the first time. The spectra of the stable photochromic forms of photochrome, Pr and Pfr, presented in this work are significantly better in signal-to-noise ratio and resolution than previously published spectra, demonstrating the distinct advantages of our experimental approach. The high spectral quality allows for the identification of subtle details of the vibrational band pattern so that the resonance Raman spectra, which have been measured from samples in H2O and D2O, constitute a solid basis for the structural analysis of the various forms of phytochrome. Notwithstanding the current uncertainty in the vibrational assignment of many resonance Raman bands, the spectral changes of the tetrapyrrole chromophore can plausibly be interpreted in terms of conformational changes at two different methine bridges, i.e., torsions around two single bonds and the E/Z isomerization of a double bond. Within the framework of this interpretation, which is based on a vibrational analysis of biliverdin dimethyl ester (Smith, K. Matysik, J., Hlldebrandt, P., & Mark, F. (1993) J. Phys. Chem. 97, 11887-11900), a consistent model is proposed to describe the molecular events in the chromophore during the photocycle. The involvement of a proton transfer in the primary photoprocess of Pr can safely be ruled out. However, previous conclusions concerning the chromophore protonation in the individual states appear premature at the present state of the vibrational assignment. In particular, the attribution of a broad band at 1100 cm-1 to the N-H out-of-plane bending of the protonated pyrrolenin nitrogen (Hildebrandt, P., Hoffmann, A., Lindemann, P., Heibel, G., Braslavsky, S. E., Schaffner, K

  6. Development and validation of a predictive model of acute glucose response to exercise in individuals with type 2 diabetes

    PubMed Central

    2013-01-01

    Background Our purpose was to develop and test a predictive model of the acute glucose response to exercise in individuals with type 2 diabetes. Design and methods Data from three previous exercise studies (56 subjects, 488 exercise sessions) were combined and used as a development dataset. A mixed-effects Least Absolute Shrinkage Selection Operator (LASSO) was used to select predictors among 12 potential predictors. Tests of the relative importance of each predictor were conducted using the Lindemann Merenda and Gold (LMG) algorithm. Model structure was tested using likelihood ratio tests. Model accuracy in the development dataset was assessed by leave-one-out cross-validation. Prospectively captured data (47 individuals, 436 sessions) was used as a test dataset. Model accuracy was calculated as the percentage of predictions within measurement error. Overall model utility was assessed as the number of subjects with ≤1 model error after the third exercise session. Model accuracy across individuals was assessed graphically. In a post-hoc analysis, a mixed-effects logistic regression tested the association of individuals’ attributes with model error. Results Minutes since eating, a non-linear transformation of minutes since eating, post-prandial state, hemoglobin A1c, sulfonylurea status, age, and exercise session number were identified as novel predictors. Minutes since eating, its transformations, and hemoglobin A1c combined to account for 19.6% of the variance in glucose response. Sulfonylurea status, age, and exercise session each accounted for <1.0% of the variance. In the development dataset, a model with random slopes for pre-exercise glucose improved fit over a model with random intercepts only (likelihood ratio 34.5, p < 0.001). Cross-validated model accuracy was 83.3%. In the test dataset, overall accuracy was 80.2%. The model was more accurate in pre-prandial than postprandial exercise (83.6% vs. 74.5% accuracy respectively). 31/47 subjects had

  7. Mechanisms of phase transitions in sodium clusters: From molecular to bulk behavior

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Spiegelmann, F.

    2000-02-01

    The thermodynamics of sodium clusters is investigated by means of a classical empirical potential and a simple quantal tight-binding model. Neutral and singly charged clusters of sizes ranging from 8 to 147 atoms are considered. A very particular attention is paid to the optimization and sampling problems. We determine the lowest-energy structures (global minima) with the "basin-hopping" technique, and the finite-temperature simulations are improved by using the "q-jumping" method and put together with the multiple histogram method. The clusters geometries may be very different on the model used, but also on the ionic charge, up to the size of about 40 atoms. The thermodynamical analysis is performed near the solid-liquid transition by calculating the complete calorific curves (heat capacities) as well as some microscopic parameters to probe the dynamics on the energy landscapes, including the spectra of isomers found by periodic quenching, isomerization indexes and the Lindemann parameter δ. Up to the largest sizes, we find that the heat capacity generally displays several features within the two models, although structural differences in the lowest-energy isomers usually induce different calorific curves. These premelting phenomena are characteristic of isomerizations taking place in a limited part of the configuration space. The thermodynamics appears to be directly related to the lowest-energy structure, and melting by steps is favored by the presence of defects on its surface. We estimate the melting temperatures Tmelt(n) and latent heats of melting L(n), and we observe two very different behaviors of their variations with the size n. Below about 75 atoms, both Tmelt and L exhibit strong non-monotonic variations typical of geometric size effects. This "microscopic" behavior is caused by the dominating premelting effects, and is replaced by a more "macroscopic" behavior for sizes larger than about 93 atoms. The premelting phenomena become there less important

  8. Fritz London

    NASA Astrophysics Data System (ADS)

    Gavroglu, Kostas

    2005-11-01

    Preface; Acknowledgements; Part I. From Philosophy to Physics: The years that left nothing unaffected; 1. The appeal of ideas; 2. Goëthe as a scientist; 3. How absolute is our knowledge?; 4. How do we come to know things?; 5. London's teachers in philosophy; 6. Husserl's teachings; 7. Expectations of things to come; 8. The thesis in philosophy; 9. Tolman's principle of similitude; 10. The necessary clarifications; 11. Work on quantum theory; 12. Transformation theory; 13. Unsuccessful attempts at unification; Part II. The Years in Berlin and the Beginnings of Quantum Chemistry: The mysterious bond; 14. London in Zürich; 15. Binding forces; 16. The Pauli principle; 17. Reactions to the Heitler-London paper; 18. Polyelectronic molecules and the application of group theory to problems of chemical valence; 19. Chemists as physicists?; 20. London's first contacts in Berlin; 21. Marriage; 22. Job offers; 23. Intermolecular forces; 24. The book which could not be written; 25. Leningrad and Rome; 26. Difficulties with group theory; 27. Linus Pauling's resonance structures; 28. Robert Mulliken's molecular orbitals; Part III. Oxford and Superconductivity: The rise of the Nazis; 29. Going to Oxford; 30. Lindemann, Simon and Heinz London; 31. Electricity in the very cold; 32. The end of old certainties; 33. The thermodynamic treatment; 34. The theory of Fritz and Heinz London; 35. Initial reactions by von Laue; 36. The discussion at the Royal Society; 37. Termination of the ICI fellowship; Part IV. Paris and Superfluidity: The Front Populaire; 38. The article in Nature 1937 and 'Nouvelle Conception'; 39. Laue again; 40. The structure of solid helium; 41. The peculiar properties of helium; 42. Bose-Einstein condensation; 43. The note in Nature; 44. The two-fluid model; 45. The trip to Jerusalem; 46. Leaving again; 47. The observer in quantum mechanics; Part V. United States and the Typing up of Loose Ends: Duke University, North Carolina; 48. The Soviet Union, Kapitza and

  9. Theory of phase transitions in disordered crystal solids

    NASA Astrophysics Data System (ADS)

    Li, Huaming

    Solid-state amorphization of a crystalline solid to an amorphous phase is extensively studied as a first order phase transition at low temperature for almost thirty years. Many similarities between heat-induced melting and solid-state amorphization have been recognized and a generalized Lindemann melting criterion has been built by focusing on the total mean-square atomic displacement as a generic measure of crystalline disorder in metastable solid solutions. In this dissertation, we report the recent progress on phenomenological models employed for thermodynamic description of macroscopic systems and fluctuations and nucleation of mesoscopic inhomogeneous systems in binary solid solutions under polymorphic constraints with no long-range diffusion involved. Based on our understanding on atomic picture of solid-state amorphization in binary solid solutions, we propose a Landau free energy to describe amorphization as the first order phase transition. The order parameter is defined which represents the loss of long-range translational order. The elastic strain field induced by composition disorder plays the important role through the bilinear coupling with the order parameter. Elastic softening and amorphization happen simultaneously. From the similarity between the melting and amorphization, we use the temperature and composition as two external variables and treat solid-state amorphization as low temperature melting under polymorphic constraints. For homogeneous system, the phase diagrams for endothermic melting and exothermic melting are built separately and the corresponding thermodynamic quantities are presented. A microscopic homogeneous nucleation mechanism is proposed conceptually in binary solid solutions under polymorphic constraints. The formation of an amorphous embryo is initiated from the composition modulation in the crystal state and a subsequent polymorphous nucleation within the as-formed heterophase fluctuation. This homogeneous nucleation path is

  10. The Time Is Now: Bioethics and LGBT Issues.

    PubMed

    Powell, Tia; Foglia, Mary Beth

    2014-09-01

    Our goal in producing this special issue is to encourage our colleagues to incorporate topics related to LGBT populations into bioethics curricula and scholarship. Bioethics has only rarely examined the ways in which law and medicine have defined, regulated, and often oppressed sexual minorities. This is an error on the part of bioethics. Medicine and law have served in the past as society's enforcement arm toward sexual minorities, in ways that robbed many people of their dignity. We feel that bioethics has an obligation to discuss that history and to help us as a society take responsibility for it. We can address only a small number of topics in this special issue of the Hastings Center Report, and we selected topics we believe will stimulate discourse. Andrew Solomon offers an elegant overview of the challenges that bioethics faces in articulating a solid basis for LGBT rights. Timothy F. Murphy asks whether bioethics still faces issues related to lesbian, gay, and bisexual people, given the deletion of homosexuality as a disease and the progress toward same-sex marriage. Jamie Lindemann Nelson's essay addresses the search for identity for transgender persons and the role of science in that search. Two articles, those by Brendan S. Abel and by Jack Drescher and Jack Pula, take up the complex issue of medical treatment for children who reject their assigned birth gender. Celia B. Fisher and Brian Mustanski address the special challenges of engaging LGBT youth in research, balancing the need for better information about this vulnerable group against the existing restrictions on research involving children. Tia Powell and Edward Stein consider the merits of legal bans on psychotherapies intended to change sexual orientation, particularly in the light of current research on orientation. Mary Beth Foglia and Karen I. Fredricksen-Goldsen highlight health disparities and resilience among LGBT older adults and then discuss the role of nonconscious bias in perpetuating

  11. Nanothermodynamics of large iron clusters by means of a flat histogram Monte Carlo method

    SciTech Connect

    Basire, M.; Soudan, J.-M.; Angelié, C.

    2014-09-14

    The thermodynamics of iron clusters of various sizes, from 76 to 2452 atoms, typical of the catalyst particles used for carbon nanotubes growth, has been explored by a flat histogram Monte Carlo (MC) algorithm (called the σ-mapping), developed by Soudan et al. [J. Chem. Phys. 135, 144109 (2011), Paper I]. This method provides the classical density of states, g{sub p}(E{sub p}) in the configurational space, in terms of the potential energy of the system, with good and well controlled convergence properties, particularly in the melting phase transition zone which is of interest in this work. To describe the system, an iron potential has been implemented, called “corrected EAM” (cEAM), which approximates the MEAM potential of Lee et al. [Phys. Rev. B 64, 184102 (2001)] with an accuracy better than 3 meV/at, and a five times larger computational speed. The main simplification concerns the angular dependence of the potential, with a small impact on accuracy, while the screening coefficients S{sub ij} are exactly computed with a fast algorithm. With this potential, ergodic explorations of the clusters can be performed efficiently in a reasonable computing time, at least in the upper half of the solid zone and above. Problems of ergodicity exist in the lower half of the solid zone but routes to overcome them are discussed. The solid-liquid (melting) phase transition temperature T{sub m} is plotted in terms of the cluster atom number N{sub at}. The standard N{sub at}{sup −1/3} linear dependence (Pawlow law) is observed for N{sub at} >300, allowing an extrapolation up to the bulk metal at 1940 ±50 K. For N{sub at} <150, a strong divergence is observed compared to the Pawlow law. The melting transition, which begins at the surface, is stated by a Lindemann-Berry index and an atomic density analysis. Several new features are obtained for the thermodynamics of cEAM clusters, compared to the Rydberg pair potential clusters studied in Paper I.

  12. A social psychologic model of female adolescents' compliance with contraceptives.

    PubMed

    DuRant, R H; Jay, M S

    1987-06-01

    A theoretical model is proposed to help the clinician organize the multiple interrelationships between factors that may influence a female adolescent's compliance with her birth control method. 1 variable that has been found to be predictive for compliance in adults that was not included in the model is the quality of the patient-physician relationship. This variable was excluded because the model is a social psychological model that focuses on the attitudes and behavior of the female adolescent. The female adolescent's perception of the quality of her relationship with her health care provider can be accounted for under the component of the model discussing costs of acquiring birth control. A table contains a checklist of information the clinician may want to obtain from a patient to help determine if she may be at risk for noncompliance. Factors that influence contraceptive compliance are reviewed: frequency of sexual intercourse, perceived probability of pregnancy, premarital sexual standards and experiences, intimacy of sexual relationship, physical and emotional development, cognitive assessment of pregnancy, parental and peer support, and personality development. Lindemann and DeLamater argue that frequency of intercourse is the "prime mover" in the process of acquiring and using birth control. As the frequency of coitus increases or decreases, awareness of the possibility will increase or decrease. DeLamater hypothesizes that before assessing that pregnancy may be undesirable and thus initiating contraceptive use to prevent pregnancy, a woman 1st must perceive that she is at significant risk for becoming pregnant. Russ proposes that a major reason that sexually active female adolescents fail to use effective birth control is that they do not fully accept sexual intercourse as morally acceptable for themselves and thus are unable to rationally prepare for it. Rains argues that when a female adolescent initiates sexual activity, she is in a state of moral

  13. Thermoelasticity of Hexagonal Close-Packed Iron from the Phonon Density of States

    NASA Astrophysics Data System (ADS)

    Murphy, Caitlin A.

    This thesis explores the vibrational thermodynamic and thermoelastic properties of pure hexagonal close-packed iron (ε-Fe), in an effort to improve our understanding of the properties of a significant fraction of this remote region of the deep Earth and in turn, better constrain its composition. We determined the Debye sound velocity (vD) at each of our compression points from the low-energy region of the phonon DOS and our in situ measured volumes. In turn, vD is related to the compressional and shear sound velocities via our determined densities and the adiabatic bulk modulus. Our high-statistical quality dataset places a new tight constraint on the density dependence of ε-Fe's sound velocities to outer core pressures. Via comparison with existing data for iron alloys, we investigate how nickel and candidate light elements for the core affect the thermoelastic properties of iron. In addition, we explore the effects of temperature on ε-Fe's sound velocities by applying pressure- and temperature-dependent elastic moduli from theoretical calculations to a finite-strain model. Such models allow for direct comparisons with one-dimensional seismic models of Earth's solid inner core (e.g., the Preliminary Reference Earth Model). Next, the volume dependence of the vibrational free energy is directly related to the vibrational thermal pressure, which we combine with previously reported theoretical values for the electronic and anharmonic thermal pressures to find the total thermal pressure of ε-Fe. In addition, we found a steady increase in the Lamb-Mössbauer factor with compression, which suggests restricted thermal atomic motions at outer core pressures. This behavior is related to the high-pressure melting behavior of ε-Fe via Gilvarry's reformulation of Lindemann's melting criterion, which we used to obtain the shape of ε-Fe's melting curve up to 171 GPa. By anchoring our melting curve shape with experimentally determined melting points and considering thermal

  14. Equation of State and Structure of Electrostatic Colloidal Crystals: Osmotic Pressure and Scattering Study

    NASA Astrophysics Data System (ADS)

    Reus, V.; Belloni, L.; Zemb, T.; Lutterbach, N.; Versmold, H.

    1997-04-01

    Electrostatically stabilized aqueous suspensions of bromopolystyrene particles have been studied by scattering and osmotic pressure measurements. We investigated their structure and the interparticle interactions as a function of the volume fraction at very low salinity of the order of micromole/l. At slow crystallization speed we observe perfect crystals, body centrered cubic crystals by light scattering for volume fractions between 0.04 and 0.7% and face centrered cubic crystals by Ultra Small Angle X ray Scattering (USAXS) for higher volume fractions (2 12%). After shear the crystal displays other structures. At low volume fractions (0.1 0.3%), some reflexions disappear by light scattering whereas a strong diffuse “prepeak" appears before the first Bragg peak for higher concentrations (2 12%) evidenced by USAXS. This “prepeak" can be attributed to defects in the crystal. Osmotic pressures have been measured by difference between the hydrostatic pressure in the solution and in the reservoir separated by an hemipermeable membrane. The experimental data are very well reproduced by the Poisson Boltzmann Cell (PBC) theory which shows that the interaction between particles is purely repulsive. No attractive contribution has been experimentally detected. By calculating the mean square displacement of a particle inside its cage from the eccentric PBC model, we have verified that the Lindemann criterion for the existence of crystals (against melting) is satisfied. This study has allowed to determine the equation of state of an electrostatical colloidal crystal and is equivalent to an ultraprecise force/distance measurement between latex particles since the measured forces are of the order of 10^{-12} N for distances of the order of 4000 Å. Des suspensions aqueuses de particules de bromopolystyrène ont été caractérisées par diffusion de lumière, diffusion de rayons X aux petits angles et par des mesures de pression osmotique. Nous avons ainsi étudié leur

  15. Lost in the Dark: A proto-history of dark matter

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.; History 1

    2016-01-01

    Einasto, Kaasik, and Saar (published in Nature, in case you are thinking of more Meddelande). I feel enormous respect and affection for Vera Rubin and Fritz Zwicky, but the published papers as are they are.

  16. Hydrological Catchment Similarity Assessment in Geum River Catchments, Korea

    NASA Astrophysics Data System (ADS)

    Ko, Ara; Park, Kisoon; Lee, Hyosang

    2013-04-01

    Similarity measure of catchments is essential for regionalization studies, which provide in depth analysis in hydrological response and flood estimations at ungauged catchments. However, this similarity measure is often biased to the selected catchments and is notclearly explained in hydrological sense. This study applied a type of hydrological similarity distance measure-Flood Estimation Handbook to 25 Geum river catchments, Korea. Three Catchment Characteristics, Area (A)-Annual precipitation (SAAR)-SCS Curve Number (CN), are used in Euclidian distance measures. Furthermore, six index of Flow Duration Curve (ILow:Q275/Q185, IDrought:Q355/Q185, IFlood:Qmax/Q185, IAbundant:Q95/Q185, IFloodDuration:Q10/Q355 and IRiverRegime:Qmax/Qmin) are applied to clustering analysis of SPSS. The catchments' grouping of hydrological similarity measures suggests three groups: H1 (Cheongseong, Gidae, Bukil, Oksan, Seockhwa, Habgang and Sangyeogyo), H2 (Cheongju, Guryong, Ugon, Boksu, Useong and Seokdong) and H3 (Muju, Yangganggyo and YongdamDam). The four catchments (Cheoncheon, Donghyang, DaecheongDam and Indong) are not grouped in this study. The clustering analysis of FDC provides four Groups; CFDC1 (Muju, YongdamDam, Yangganggyo, DaecheongDam, Cheongseong, Gidae, Seokhwa, Bukil, Habgang, Cheongju, Oksan, Yuseong and Guryong), CFDC2 (Cheoncheon, Donghyang, Boksu, Indong, Nonsan, Seokdong, Ugon, Simcheon, Useong and Sangyeogyo), CFDC3 (Songcheon) and CFDC4 (Tanbu). The six catchments (out of seven) of H1 are grouped in CFDC1, while Sangyeogyo is grouped in CFDC2. The four catchments (out of six) of H2 are also grouped in CFDC2, while Cheongju and Guryong are grouped in CFDC1. The catchments of H3 are categorized in CFDC1. The authors examine the results (H1, H2 and H3) of similarity measure based on catchment physical descriptors with results (CFDC1 and CFDC2) of clustering based on catchment hydrological response. The results of hydrological similarity measures are supported by

  17. Solar and Stellar Flares over Time: Effects on Hosted Planets

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; DeWarf, Laurence E.; Engle, Scott G.; Gropp, Jeffrey

    2016-01-01

    The effects of flares from the Sun on Earth and other solar-system planets are presented. Also discussed are the flare properties of cooler, commonplace main-sequence K-M stars. Data from our "Sun in Time" program are used to study the flare properties of the Sun and solar-type stars from youth to old age. These studies are based on ground-based observations, UV and X-ray space missions (IUE & HST, ROSAT & Chandra) as well as a wealth of data from the Kepler Mission. The ultra-high precision photometry available from the Kepler Mission (and K2) has made it possible to study starspots, flare properties, and rotations of thousands of G, K, M stars. Superflares (defined as E > 10+33 ergs ~X-100 flares) on hundreds of mostly G and K stars have been found. (See e.g. Shibayama et al. 2013; Maehara et al. 2015; Notsu et al. 2013/15; Saar et al. 2015; Guinan et al. 2015). Using our Age-Rotation relations, we determine correlations of flares properties of the Sun and solar-type over a wide range of ages. We also compare these flare histories with the cooler, more common K- and M-type stars. The analysis of these datasets imply that the young Sun had numerous, very powerful flares that may have played major roles the evolution of the early atmospheres of Earth and other terrestrial planets. The strong X-UV fluxes and proton fluences from flares and associated plasmas from coronal mass ejection events can greatly affect the photochemistry of planetary atmospheres as well as ionizing and possibly eroding their atmospheres. Some examples are given. Also discussed are the effects of superflares from the present Sun on the Earth. Even though solar superflares are rarer (~1 per 300-500 yrs) than from the young Sun (> 1-2 per year), they could cause significant damage to our communication and satellite systems, electrical networks, and threaten the lives of astronauts in space..This research is supported by grants from NSF/RUI and NASA: NSF, AST 1009903; Chandra GO2-13020X, HST GO

  18. [Equestrian accidents in children].

    PubMed

    Giebel, G; Braun, K; Mittelmeier, W

    1993-11-01

    In a retrospective study we reviewed 262 horse riding related injuries in children younger than 16 which were treated between 1975 and 1989 at the Section of Traumatology in the Department of Surgery, University Hospital Homburg/Saar. In 155 of these accidents, detailed information was gained via a questionnaire. The typical patient profile was that of young female equestrians with little experience and little weekly riding practice, without practicing falling-exercises and warming up often using different horses. At the time of the accident only 59% were wearing a head protection. Most accidents happened in the summer months in the afternoon during leisure riding on a large familiar horse in the riding hall. Apart from the typical accidents like falling of the horse (64.9%) and falling with the horse (5.7%) accidents in handling the horse were of special significance: Kick by horse's hoof (11.8%), being stepped by horse (3.8%), horsebite (7.3%) and injuries of horse's bridle had their own pattern of injuries. Injuries of the distal parts of the upper extremity are preeminent in falling of the horse, whilst in falling with the horse head injuries and shoulder injuries are preeminent. Remarkably often injuries of kick by horse's hoof were causing sometimes even dangerous head injuries (41.6%). Overall in horse riding related injuries in childhood superficial soft tissue injuries (48.6%) and fractures (30.6%) were predominant. Fractures of the clavicle which are well known as a riding injury proved to be typical for a fall with the horse, whilst a fractured vertebra was only seen once amongst the 262 children treated. The severity of the injuries was lower than expected: In 85.1% of all the injuries only one body region was injured, 90.1% could be assigned to an injury severity score (ISS) of 1-3. Ponyriders had less severe injuries than riders of large horses. One fatal accident happened in handling a horse, in these situations preventive measures are often

  19. Mercury levels and trends (1993-2009) in bream (Abramis brama L.) and zebra mussels (Dreissena polymorpha) from German surface waters.

    PubMed

    Lepom, Peter; Irmer, Ulrich; Wellmitz, Jörg

    2012-01-01

    Mercury concentrations have been analysed in bream (Abramis brama L.) and zebra mussels (Dreissena polymorpha) collected at 17 freshwater sites in Germany from 1993-2009 and 1994-2009, respectively, within the German Environmental Specimen programme. Mercury concentrations in bream ranged from 21 to 881 ng g(-1) wet weight with lowest concentrations found at the reference site Lake Belau and highest in fish from the river Elbe and its tributaries. Statistical analysis revealed site-specific differences and significant decreasing temporal trends in mercury concentrations at most of the sampling sites. The decrease in mercury levels in bream was most pronounced in fish from the river Elbe and its tributary Mulde, while in fish from the river Saale mercury levels increased. Temporal trends seem to level off in recent years. Mercury concentrations in zebra mussels were much lower than those in bream according to their lower trophic position and varied by one order of magnitude from 4.1 to 42 ng g(-1) wet weight (33-336 ng g(-1) dry weight). For zebra mussels, trend analyses were performed for seven sampling sites at the rivers Saar and Elbe of which three showed significant downward trends. There was a significant correlation of the geometric mean concentrations in bream and zebra mussel over the entire study period at each sampling site (Pearson's correlation coefficient=0.892, p=0.00002). A comparison of the concentrations in bream with the environmental quality standard (EQS) of 20 ng g(-1) wet weight set for mercury in biota by the EU showed that not a single result was in compliance with this limit value, not even those from the reference site. Current mercury levels in bream from German rivers exceed the EQS by a factor 4.5-20. Thus, piscivorous top predators are still at risk of secondary poisoning by mercury exposure via the food chain. It was suggested focusing monitoring of mercury in forage fish (trophic level 3 or 4) for compliance checking with the EQS for

  20. Role of Yield Stress in Magma Rheology

    NASA Astrophysics Data System (ADS)

    Kurokawa, A.; Di Giuseppe, E.; Davaille, A.; Kurita, K.

    2012-04-01

    Magmas are essentially multiphase material composed of solid crystals, gaseous bubbles and silicate liquids. They exhibit various types of drastic change in rheology with variation of mutual volumetric fractions of the components. The nature of this variable rheology is a key factor in controlling dynamics of flowing magma through a conduit. Particularly the existence of yield stress in flowing magma is expected to control the wall friction and formation of density waves. As the volumetric fraction of solid phase increases yield stress emerges above the critical fraction. Several previous studies have been conducted to clarify this critical value of magmatic fluid both in numerical simulations and laboratory experiments ([Lejeune and Pascal, 1995], [Saar and Manga 2001], [Ishibashi and Sato 2010]). The obtained values range from 13.3 to 40 vol%, which display wide variation and associated change in rheology has not been clarified well. In this presentation we report physical mechanism of emergence of yield stress in suspension as well as the associated change in the rheology based on laboratory experiments using analog material. We utilized thermogel aqueous suspension as an analog material of multiphase magma. Thermogel, which is a commercial name for poly(N-isopropyl acrylamide) (PNIPAM) undergoes volumetric phase change at the temperature around 35C:below this temperature the gel phase absorbs water and swells while below this it expels water and its volume shrinks. Because of this the volumetric fraction of gel phase systematically changes with temperature and the concentration of gel powder. The viscosity measured at lower stress drastically decreases across this phase change with increasing temperature while the viscosity at higher stress does not exhibit large change across the transition. We have performed a series of rheological measurements focusing on the emergence of yield stress on this aqueous suspension. Since the definition of yield stress is not

  1. An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Chen, Shuang; Xiong, Wei; Zhou, Yun Shen; Lu, Yong Feng; Zeng, Xiao Cheng

    2016-05-01

    Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films. Our AIMD simulations suggest that the easy evaporation of surplus Ni with excess C is likely attributed to the formation of a viscous-liquid-like Ni-C solution within the temperature range of 900-1800 K and to the faster diffusion of C atoms than that of Ni atoms above 600 K. Even at room temperature, sp3-C atoms in a-C are quickly converted to sp2-C atoms in the course of the simulation, and the graphitic C formation can occur at low temperature. When the temperature is as high as 1200 K, the grown graphitic structures reversely dissolve into Ni. Because the rate of temperature increase is considerably faster in the AIMD simulations than in realistic experiments, defects in the grown graphitic structures are kinetically trapped. In this kinetic growth stage, the carbon structures grown from sp3-carbon or from sp2-carbon exhibit marked differences. Electronic supplementary information (ESI) available: Formation energies of Ni-Ni, Ni-C, and C-C atoms as a function of intermolecular distance in Fig. S1, the whole supercells with the vacuum layer of Models I and VII in Fig. S2, and the initial and final configurations (Fig. S3), MSD-time curves (Fig. S4), diffusion coefficients (Table S1), and Lindemann index (Fig. S5) of four new models (VIII-XI). See DOI: 10.1039/c5nr08614k

  2. Effect of Hydrogen and Carbon on the Melting Temperature of the Core

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Sakamaki, K.; Takahashi, E.; Fukai, Y.; Suzuki, T.; Funakoshi, K.

    2007-12-01

    , respectively. The melting temperatures of Fe3C determined by our experiments are >700 K lower than that of the previous estimation based on thermodynamic calculation (Wood, 1993). Our experimental results show a possibility that the hydrogen and carbon lower the melting temperature of iron (outer core) dramatically. The melting temperatures of γ-FeH and Fe3C at 20 GPa are already 500 K lower than that of pure iron estimated by Anderson and Isaak (2000). Extrapolating our experimental melting curves for FeH and Fe3C to core pressures using Lindemann's melting law, we obtained the melting temperatures to be ~2600 and ~2900 K at the core-mantle boundary (CMB), respectively. In the presence of both hydrogen and carbon, melting temperature of the Earth's outer core could be >1500 K lower than that of the previous estimates, implying that the temperature gap at CMB could be much smaller than the current estimates.

  3. Using geoinformatics and cultural anthropology to identify links between land change, driving forces and actors in the Okavango catchment

    NASA Astrophysics Data System (ADS)

    Röder, Achim; Stellmes, Marion; Pröpper, Michael; Schneibel, Anne

    2015-04-01

    central institutions and are implemented in different ways at subordinate levels. Commonly, communities make their own decisions regarding the use of natural resources within the framework of statutory and traditional governance and national legislation. The Permanent Okavango River Basin Water Commission (OKACOM) has been created between Angola, Namibia and Botswana to deal with transboundary subjects and facilitate informed policies. Developing such informed policies is even more urgent given demographic and climatological predictions. The African population is expected to almost double by the end of this century (Haub 2012), while climate predictions indicate an overall increase in average temperatures, added to by an increase in dry spells during the wet season and overall decreases in precipitation (IPCC 2013). This will result in increasing demands for food, paralleled by less favorable production conditions. The appropriation of resources in the wider region is therefore characterized by various, potentially conflicting demands that are likely to accumulate in space and time (Röder, Stellmes et al. 2013). A particular constraint draws from upstream-downstream issues, with a predicted increase in upstream water utilization for drinking and irrigation, while the Delta region relies on regular flood pulses of clean water to sustain its biodiversity, to which the tourist sector as a major source of national income is linked. This is threatened by the increasing concentrations of pesticides and herbicides used in the frame of irrigation schemes lowering water quality, and the change of flood pulse cycles through damming projects (Lindemann 2009). Besides national policies and regional planning programs, an equally important element in understanding the utilization of natural resources is the individual perspective of actors that may range from the conservation of traditions and cultures to stronger market integration and consumerism (Pröpper, Falk et al. 2013) that

  4. PREFACE: 3rd International Workshop on Infrared Plasma Spectroscopy

    NASA Astrophysics Data System (ADS)

    Davies, P. B.; Röpcke, Jürgen; Hempel, Frank

    2009-07-01

    the scientific committee felt that this time it would be useful to emphasise new spectroscopic developments as well as covering applications. This might serve as a guide as to where the subject of infrared spectroscopy in combination with plasma sources might be heading in the future i.e. to emphasize pure infrared spectroscopy developments. The first invited lecture (G Guelachvili and N Picque) and the last invited lecture (F K Tittel, Y Bakhirkin, R Curl, A Kosterev, R Lewicki, D Thomasz and S So) were chosen to set the scene and realise this objective. The second (R Engeln, R Zijlmans, S Welzel, O Gabriel, J-P van Helden, J Röpcke and D Schram) and third (X Aubert, C Lazzaroni, D Marinov, O Guaitella, S Welzel, A Pipa, J Röpcke and A Rousseau) invited talks focussed on the application of the IR laser techniques with particular emphasis on the role of surfaces in plasmas and the relevance of plasma surface interactions. Surface plasma interactions did not feature strongly in the two earlier meetings and so this topic too, along with the emphasis on novel infrared spectroscopy techniques, represents a new direction for the conference. Paul B Davies and Jürgen Röpcke International Scientific Committee P B Davies, Cambridge, UK: Chair J Röpcke, Greifswald, Germany: Co-Chair R Engeln, Eindhoven, Netherlands G Hancock, Oxford, U K M Hori, Nagoya, Japan H Linnartz, Leiden, Netherlands R Martini, New York, USA J Meichsner, Greifswald, Germany A Rousseau, Paris, France Local Organizing Committee J Röpcke (INP: Chair) F Hempel (INP: Secretary) J Meichsner (IfP, University of Greifswald) N Lang (INP) L Glawe (INP) C Krcka (INP) B Lindemann (INP) Conference photograph

  5. Outcrop analogue study of Permocarboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties

    NASA Astrophysics Data System (ADS)

    Aretz, Achim; Bär, Kristian; Götz, Annette E.; Sass, Ingo

    2015-11-01

    The Permocarboniferous siliciclastic formations represent the largest hydrothermal reservoir in the northern Upper Rhine Graben in SW Germany and have so far been investigated in large-scale studies only. The Cenozoic Upper Rhine Graben crosses the Permocarboniferous Saar-Nahe Basin, a Variscan intramontane molasse basin. Due to the subsidence in this graben structure, the top of the up to 2-km-thick Permocarboniferous is located at a depth of 600-2900 m and is overlain by Tertiary and Quaternary sediments. At this depth, the reservoir temperatures exceed 150 °C, which are sufficient for geothermal electricity generation with binary power plants. To further assess the potential of this geothermal reservoir, detailed information on thermophysical and hydraulic properties of the different lithostratigraphical units and their depositional environment is essential. Here, we present an integrated study of outcrop analogues and drill core material. In total, 850 outcrop samples were analyzed, measuring porosity, permeability, thermal conductivity and thermal diffusivity. Furthermore, 62 plugs were taken from drillings that encountered or intersected the Permocarboniferous at depths between 1800 and 2900 m. Petrographic analysis of 155 thin sections of outcrop samples and samples taken from reservoir depth was conducted to quantify the mineral composition, sorting and rounding of grains and the kind of cementation. Its influence on porosity, permeability, the degree of compaction and illitization was quantified. Three parameters influencing the reservoir properties of the Permocarboniferous were detected. The strongest and most destructive influence on reservoir quality is related to late diagenetic processes. An illitic and kaolinitic cementation and impregnation of bitumina document CO2- and CH4-rich acidic pore water conditions, which are interpreted as fluids that migrated along a hydraulic contact from an underlying Carboniferous hydrocarbon source rock. Migrating

  6. Outcrop analogue study of Permocarboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties

    NASA Astrophysics Data System (ADS)

    Aretz, Achim; Bär, Kristian; Götz, Annette E.; Sass, Ingo

    2016-07-01

    The Permocarboniferous siliciclastic formations represent the largest hydrothermal reservoir in the northern Upper Rhine Graben in SW Germany and have so far been investigated in large-scale studies only. The Cenozoic Upper Rhine Graben crosses the Permocarboniferous Saar-Nahe Basin, a Variscan intramontane molasse basin. Due to the subsidence in this graben structure, the top of the up to 2-km-thick Permocarboniferous is located at a depth of 600-2900 m and is overlain by Tertiary and Quaternary sediments. At this depth, the reservoir temperatures exceed 150 °C, which are sufficient for geothermal electricity generation with binary power plants. To further assess the potential of this geothermal reservoir, detailed information on thermophysical and hydraulic properties of the different lithostratigraphical units and their depositional environment is essential. Here, we present an integrated study of outcrop analogues and drill core material. In total, 850 outcrop samples were analyzed, measuring porosity, permeability, thermal conductivity and thermal diffusivity. Furthermore, 62 plugs were taken from drillings that encountered or intersected the Permocarboniferous at depths between 1800 and 2900 m. Petrographic analysis of 155 thin sections of outcrop samples and samples taken from reservoir depth was conducted to quantify the mineral composition, sorting and rounding of grains and the kind of cementation. Its influence on porosity, permeability, the degree of compaction and illitization was quantified. Three parameters influencing the reservoir properties of the Permocarboniferous were detected. The strongest and most destructive influence on reservoir quality is related to late diagenetic processes. An illitic and kaolinitic cementation and impregnation of bitumina document CO2- and CH4-rich acidic pore water conditions, which are interpreted as fluids that migrated along a hydraulic contact from an underlying Carboniferous hydrocarbon source rock. Migrating

  7. Late-Variscan rare metal ore deposition and plume-related magmatism in the eastern European Variscides (D, CZ)

    NASA Astrophysics Data System (ADS)

    Seifert, Thomas

    2014-05-01

    includes a range of mafic calc-alkaline and shoshonitic rock types, and lamprophyres (spessartites and camptonites) with age data between 300-270 Ma. The Mid-European Variscides show a large number of Permo-Carboniferous magmatic complexes with similar ages (Halle Volcanic Complex, Saar-Nahe Basin, Thuringian Forest, Harz Mts., Northwest-Saxonian Volcanic Complexes, bimodal volcanic rocks of the Sub-Erzgebirge basin and the Rhyolite Complex of Tharandt as well as Li-F-Sn small intrusion granites and lamprophyric intrusions in the Erzgebirge. It is important to note that the late-Variscan W-Mo, Sn-W-Mo, Ag-bearing Sn-In-base metal, Ag-Sb-base metal, and U mineralizations in the Erzgebirge-Krušné hory are spatially and temporal associated with intrusion centers of Permo-Carboniferous post-collisional mafic and rhyolitic (sub)volcanic bimodal magmatism (315-290 Ma) along deep-rooted NW-SE fault zones, especially at the intersections with NE-SW, E-W, and N-S major regional structural zones. The bimodal lamprophyre-rhyolite assemblage in the Erzgebirge / Sub-Erzgebirge basin area was formed during intracontinental rifting in a 'Fast Extension' setting by melting of a metasomatic enriched mantle source. The emplacement of fluid-enriched lamprophyres and F-rich rhyolitic intrusions at the same time is probably associated with decompression melting of updoming asthenosphere which is possibly associated with the above mentioned mantle plume.

  8. Quantitative analysis of gully erosion under forest conditions versus a windfall area

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Willger, Heribert; Bielen, Rainer; Ries, Johannes B.

    2013-04-01

    Along the eastern border of the Trier-Luxembourg basin, in the range of lower Saar River valley there are sandstone belonging to the middle and upper formations of Bunter Sandstein (Lower Triassic) form a cuesta scarp which is more than 100 m in height. The slope of the cuesta scarp is dissected by small valleys and up to ten meter deep gullies. It is assumed that these gullies are already developed in the 16th century by grinding wood and have deepened by the increased agricultural use. In the course of the reforestation in the 2nd half of the 19th century, they have stabilized again. In the winter of 2010/2011 a storm cut a path through the wooded area and laid bare the old gullies. After the event, the area has been arranged and cleared by Harvester. In the late summer of 2011, the reforestation with deciduous trees took place. Now the question arises whether the formerly stable gullies have become active? Observations show that sandstone slopes respond extraordinarily sensitive to human intervention and lead to relief changes. The aim of this investigation is a quantitative analysis of sheet and gully erosion under forest conditions versus a windfall area in the German low mountain range. Over two years, the surface runoff and soil erosion were measured on eight test plots with the application of sediment traps. For comparison, three sediment traps were applied under forest and five in the windthrow area. The sediment traps are located on the side slopes and at the head of each gully. The precipitation measurements were made with a totalisator with high-resolution electronic weighing system and integrated digital data collector. The results clearly show a higher runoff and soil erosion on the windthrow areas in contrast to the forest areas. Furthermore, an increase of instability of the windfall areas after machining by Harvester can be observed. In the years 2011 and 2012 the erosion and the runoff are on the forest land approximately constant, while runoff

  9. Using geoinformatics and cultural anthropology to identify links between land change, driving forces and actors in the Okavango catchment

    NASA Astrophysics Data System (ADS)

    Röder, Achim; Stellmes, Marion; Pröpper, Michael; Schneibel, Anne

    2015-04-01

    central institutions and are implemented in different ways at subordinate levels. Commonly, communities make their own decisions regarding the use of natural resources within the framework of statutory and traditional governance and national legislation. The Permanent Okavango River Basin Water Commission (OKACOM) has been created between Angola, Namibia and Botswana to deal with transboundary subjects and facilitate informed policies. Developing such informed policies is even more urgent given demographic and climatological predictions. The African population is expected to almost double by the end of this century (Haub 2012), while climate predictions indicate an overall increase in average temperatures, added to by an increase in dry spells during the wet season and overall decreases in precipitation (IPCC 2013). This will result in increasing demands for food, paralleled by less favorable production conditions. The appropriation of resources in the wider region is therefore characterized by various, potentially conflicting demands that are likely to accumulate in space and time (Röder, Stellmes et al. 2013). A particular constraint draws from upstream-downstream issues, with a predicted increase in upstream water utilization for drinking and irrigation, while the Delta region relies on regular flood pulses of clean water to sustain its biodiversity, to which the tourist sector as a major source of national income is linked. This is threatened by the increasing concentrations of pesticides and herbicides used in the frame of irrigation schemes lowering water quality, and the change of flood pulse cycles through damming projects (Lindemann 2009). Besides national policies and regional planning programs, an equally important element in understanding the utilization of natural resources is the individual perspective of actors that may range from the conservation of traditions and cultures to stronger market integration and consumerism (Pröpper, Falk et al. 2013) that

  10. Contrasting Permo - Carboniferous Evolution of Resita and Sirinia - Presacina Basins (South Carpathians, Romania); an overview.

    NASA Astrophysics Data System (ADS)

    Tatu, M.; Seghedi, I.; Nutu, L. M.; Nicolae, I.

    2009-04-01

    - sinistral shear fault system adjacent to the Tornquist - Teisseyre Line, which induced the fragmentation of Variscan fold belt. With this process was associated the formation of many transtensional pull-apart continental - lacustrian sedimentary basins and intra-continental rifts in which or in adjacent areas the intrusive - extrusive magmatism was widespread and where the deep crustal fractures were active. From climatic point of view the main consequence of continue convergence between Laurasia and Gondwana is the transition from relatively wet regime during Stephanian to arid during the Permian induced by the elevation of the equatorial highlands Variscan fold belt was acted as a precipitation barrier for the whole territory located to the north. Tacking into account of all these aspects, the Resita domain presents the similarities in the lithological composition with Autun Basin and the Sirinia - Presacina zone displays many common features with Saar - Nahe and Thuringian Forest Basins and North German/Polish Depression. This work started during PALEOCLIM project (grant ANCS - PN2, 31-063/2007), which is gratefully acknowledged. References Nastaseanu S. 1987. In: Flügel E., Sassi F. & Grecula P. (eds): Pre-Variscan and Variscan events in the Alpine-Mediterranean mountain belts. - Mineralia Slovaca. Alfa Bratislava, 371-378. Stollhofen H., Frommherz B., Stanistreet I. G. 1999. J. Geol. Soc. London 156, 801-808. Ziegler P. A. 1990. Shell Int. Petrol. Mij. Dist. Geol. Soc. Publ. House, Bath, 1-239.