Science.gov

Sample records for line region structure

  1. Line Emission from Radiation-pressurized H II Regions. I. Internal Structure and Line Ratios

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry C. C.; Verdolini, Silvia; Krumholz, Mark R.; Matzner, Christopher D.; Tielens, Alexander G. G. M.

    2013-05-01

    The emission line ratios [O III] λ5007/Hβ and [N II] λ6584/Hα have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these diagnostics requires calculations of the internal structure of the emitting H II regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper, we construct a grid of quasi-static H II region models to explore how choices about these parameters alter H II regions' emission line ratios. We find that when radiation pressure is included in our models, H II regions reach a saturation point beyond which further increase in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an H II region's line ratio. We also show that if stellar winds are assumed to be strong, the maximum possible ionization parameter is quite low. As a result of this effect, it is inconsistent to simultaneously assume that H II regions are wind-blown bubbles and that they have high ionization parameters; some popular H II region models suffer from this inconsistency. Our work in this paper provides a foundation for a companion paper in which we embed the model grids we compute here within a population synthesis code that enables us to compute the integrated line emission from galactic populations of H II regions.

  2. The structure of the broad-line region in the Seyfert galaxy Markarian 590

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Ali, Babar; Horne, Keith; Bertram, Ray; Lame, Nancy J.; Pogge, Richard W.; Wagner, R. M.

    1993-01-01

    We have undertaken a nine-month study of continuum and emission-line variability in the Seyfert galaxy Mrk 590 in order to determine the structure of the broad-line region. The H-beta variations are found to lag behind those of the optical continuum by about 19 days. We apply a maximum entropy method to solve for the transfer function which relates the line and continuum variability. This analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source, as in the case of NGC 5548, although these data do not allow us to reject with confidence models with significant line-of-sight response. We also show that the H-beta line variability is apparently confined to the core of the emission line, as suggested previously by Ferland, Korista, and Peterson (1990).

  3. Broad-line region structure and kinematics in the radio galaxy 3C 120

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Ulbrich, K.; Zetzl, M.; Kaspi, S.; Haas, M.

    2014-06-01

    Context. Broad emission lines originate in the surroundings of supermassive black holes in the centers of active galactic nuclei (AGN). These broad-line emitting regions are spatially unresolved even for the nearest AGN. The origin and geometry of broad-line region (BLR) gas and their connection with geometrically thin or thick accretion disks is of fundamental importance for the understanding of AGN activity. Aims: One method to investigate the extent, structure, and kinematics of the BLR is to study the continuum and line profile variability in AGN. We selected the radio-loud Seyfert 1 galaxy 3C 120 as a target for this study. Methods: We took spectra with a high signal-to-noise ratio of 3C 120 with the 9.2 m Hobby-Eberly Telescope between Sept. 2008 and March 2009. In parallel, we photometrically monitored the continuum flux at the Wise observatory. We analyzed the continuum and line profile variations in detail (1D and 2D reverberation mapping) and modeled the geometry of the line-emitting regions based on the line profiles. Results: We show that the BLR in 3C 120 is stratified with respect to the distance of the line-emitting regions from the center with respect to the line widths (FWHM) of the rms profiles and with respect to the variability amplitude of the emission lines. The emission line wings of Hα and Hβ respond much faster than their central region. This is explained by accretion disk models. In addition, these lines show a stronger response in the red wings. However, the velocity-delay maps of the helium lines show a stronger response in the blue wing. Furthermore, the He ii λ4686 line responds faster in the blue wing in contradiction to observations made one and a half years later when the galaxy was in a lower state. The faster response in the blue wing is an indication for central outflow motions when this galaxy was in a bright state during our observations. The vertical BLR structure in 3C 120 coincides with that of other AGN. We confirm the

  4. The Structure of the Broad-Line Region in Well-Studied AGNs

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Ferland, Gary J.

    1997-01-01

    Large amounts of high quality UV and optical data have been obtained in massive multi-wavelength monitoring campaigns on a small number of active galactic nuclei, and these data are changing our understanding of the central engines in these sources in a fundamental way. Preliminary analyses have shown that more comprehensive approaches will be necessary to make full use of these data. We propose to undertake a complete set of photoionization equilibrium calculations with a state-of-the-art computer code in order to determine the radial structure of the broad-line region in a way that is consistent with the emission-line fluxes, profiles, and transfer functions.

  5. A study of the structure and kinematics of the narrow-line region in Seyfert galaxies

    SciTech Connect

    Veilleux, S.

    1989-01-01

    The results of a high resolution study of the narrow emission line profiles of 16 Seyfert galaxies are presented. It is shown that the line profile parameters published in earlier low resolution studies are sometimes strongly influenced by resolution effects. In spite of these important systematic errors, many of the results derived from low resolution data are confirmed in the high resolution data. The narrow line profiles of Seyfert galaxies have a stronger base relative to core than a Gaussian. Most of the emission lines present a blueward asymmetry in the lower portion of their profile. In some galaxies, the line widths and/or line asymmetries are correlated with the ionization potential and/or critical density of the lines. There is a weak correlation between the line asymmetry and the dust content of the narrow line region (NLR). The large scatter in this relation, the absence of a similar correlation in Seyfert 1 to 1.5 galaxies, and the presence of a blue asymmetry in galaxies with dustfree line-emitting regions suggest that dust obscuration is not the only mechanism responsible for the line asymmetry in active galaxies. An optically-thick disk close to the nucleus is proposed as the other source of line asymmetry. An important result is that the host galaxy is probably playing a role in the kinematics of some of the gas in the NLR. A multicomponent model of the NLR is proposed to explain these results.

  6. The Broad-Line Region and Dust Torus Structure of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Pozo Nuñez, Francisco

    2014-06-01

    I present the results from optical and infrared multi-month monitoring campaigns at the Universitätssternwarte Bochum (USB) in Chile to explore the structure of the central engine in active galactic nuclei (AGN). I apply and test photometric reverberation mapping (PRM) for measuring the time delay between variations in the continuum and Hbeta, Halpha emission lines. This time delay is used to infer the size of the broad-line region (BLR) for three Seyfert 1 galaxies. I place the results in context of the known BLR size luminosity relationship from spectroscopic reverberation mapping (SRM) and discuss its potential application to constrain cosmological parameters. The BLR size and the velocity dispersion of the emission line are used to calculate the virial mass of the supermassive black hole (SMBH). Through the direct modelling of PRM data, I infer the geometry type of the BLR allowing the determination of the geometry scaling factor used to constrain the real black hole mass. I find strong evidence for a disk-like BLR geometry. If this result holds for Seyfert galaxies in general, then the determination of the geometry scaling factor and the black hole mass can be remarkably improved. I discuss deviations of Seyfert-1 galaxies from the SMBH-bulge velocity dispersion relation MBH - sigma* for quiescent galaxies. Finally, I perform dust-reverberation mapping to determine the dust-torus size for the Seyfert 1 galaxy WPVS48. The light curves in the optical and near-infrared revealed unexpected variations which allow to solve an old puzzle on the geometry of the dusttorus.

  7. A study of the structure and kinematics of the narrow-line region in Seyfert galaxies. III. Individual objects

    SciTech Connect

    Veilleux, S. )

    1991-03-01

    An individual analysis is presented of the narrow-line profiles of 16 Seyfert galaxies. Substructure is observed in all but one of the sample objects. A direct relationship between the radio structure and these emission-line components is proposed in about half of the objects. The emission-line components generally have flux ratios which are quite similar to the rest of the narrow-line gas. These results suggest that the radio-emitting plasma strongly affects the kinematics of the thermal gas of the narrow-line region (NLR), but not its ionization state. Evidence for ionization/density stratification of the gas in the NLR is found in 4(ionization)/5(density) of the 11 objects for which a multispecies analysis is possible. The stronger cases of stratification are found in the objects whose emission lines present a minimum of profile substructure. A multicomponent model of the NLR is proposed to explain the results of this paper and previous ones. 192 refs.

  8. Two-component Structure of the Hβ Broad-line Region in Quasars. I. Evidence from Spectral Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Hu, Chen; Wang, Jian-Min; Ho, Luis C.; Ferland, Gary J.; Baldwin, Jack A.; Wang, Ye

    2012-12-01

    We report on a spectral principal component analysis (SPCA) of a sample of 816 quasars, selected to have small Fe II velocity shifts with spectral coverage in the rest wavelength range 3500-5500 Å. The sample is explicitly designed to mitigate spurious effects on SPCA induced by Fe II velocity shifts. We improve the algorithm of SPCA in the literature and introduce a new quantity, the fractional-contribution spectrum, that effectively identifies the emission features encoded in each eigenspectrum. The first eigenspectrum clearly records the power-law continuum and very broad Balmer emission lines. Narrow emission lines dominate the second eigenspectrum. The third eigenspectrum represents the Fe II emission and a component of the Balmer lines with kinematically similar intermediate-velocity widths. Correlations between the weights of the eigenspectra and parametric measurements of line strength and continuum slope confirm the above interpretation for the eigenspectra. Monte Carlo simulations demonstrate the validity of our method to recognize cross talk in SPCA and firmly rule out a single-component model for broad Hβ. We also present the results of SPCA for four other samples that contain quasars in bins of larger Fe II velocity shift; similar eigenspectra are obtained. We propose that the Hβ-emitting region has two kinematically distinct components: one with very large velocities whose strength correlates with the continuum shape and another with more modest, intermediate velocities that is closely coupled to the gas that gives rise to Fe II emission.

  9. Albumin and alpha-fetoprotein gene transcription in rat hepatoma cell lines is correlated with specific DNA hypomethylation and altered chromatin structure in the 5' region.

    PubMed Central

    Tratner, I; Nahon, J L; Sala-Trepat, J M; Venetianer, A

    1987-01-01

    We examined DNA methylation and DNase I hypersensitivity of the alpha-fetoprotein (AFP) and albumin gene region in hepatoma cell lines which showed drastic differences in the level of expression of these genes. We assayed for methylation of the CCGG sequences by using the restriction enzyme isoschizomers HpaII and MspI. We found two methylation sites located in the 5' region of the AFP gene and one in exon 1 of the albumin gene for which hypomethylation is correlated with gene expression. Another such site, located about 4,000 base pairs upstream from the AFP gene, seems to be correlated with the tissue specificity of the cells. DNase I-hypersensitive sites were mapped by using the indirect end-labeling technique with cloned genomic DNA probes. Three tissue-specific DNase I-hypersensitive sites were mapped in the 5' flanking region of the AFP gene when this gene was transcribed. Similarly, three tissue-specific DNase I-hypersensitive sites were detected upstream from the albumin gene in producing cell lines. In both cases, the most distal sites were maintained after cessation of gene activity and appear to be correlated with the potential expression of the gene. Interestingly, specific methylation sites are localized in the same DNA region as DNase I hypersensitive sites. This suggests that specific alterations of chromatin structure and changes in methylation pattern occur in specific critical regulatory regions upstream from the albumin and AFP genes in rat hepatoma cell lines. Images PMID:2439898

  10. Zooming into the broad line region of the gravitationally lensed quasar QSO 2237 + 0305 ≡ the Einstein Cross. III. Determination of the size and structure of the C iv and C iii] emitting regions using microlensing

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Schmidt, R.; Courbin, F.; Hutsemékers, D.; Meylan, G.; Eigenbrod, A.; Anguita, T.; Agol, E.; Wambsganss, J.

    2011-04-01

    Aims: We aim to use microlensing taking place in the lensed quasar QSO 2237 + 0305 to study the structure of the broad line region (BLR) and measure the size of the region emitting the C iv and C iii] lines. Methods: Based on 39 spectrophotometric monitoring data points obtained between Oct. 2004 and Dec. 2007, we derived lightcurves for the C iv and C iii] emission lines. We used three different techniques to analyse the microlensing signal. Different components of the lines (narrow, broad, and very broad) were identified and studied. We built a library of the simulated microlensing lightcurves that reproduce the signal observed in the continuum and in the lines provided only the source size is changed. A Bayesian analysis scheme is then developed to derive the size of the various components of the BLR. Results: 1. The half-light radius of the region emitting the C iv line is found to be RC IV} ˜ 66+110-46} light-days = 0.06+0.09-0.04 pc = 1.7+2.8-1.1 × 1017 cm (at 68.3% CI). Similar values are obtained for C iii]. Relative sizes of the carbon-line and V-band continuum emitting-regions are also derived with median values of Rline/Rcont in the range 4 to 29, depending on the FWHM of the line component. 2. The size of the C iv emitting region agrees with the radius-luminosity relationship derived from reverberation mapping. Using the virial theorem, we derive the mass of the black hole in QSO 2237 + 0305 to be MBH ~ 108.3 ± 0.3 M⊙. 3. We find that the C iv and C iii] lines are produced in at least 2 spatially distinct regions, the most compact one giving rise to the broadest component of the line. The broad and narrow line profiles are slightly different for C iv and C iii]. 4. Our analysis suggests a different structure for the C iv and Fe ii+iii emitting regions, with the latter produced in the inner part of the BLR or in a less extended emitting region than C iv. Based on observations made with the ESO-VLT Unit Telescope # 2 Kueyen (Cerro Paranal, Chile

  11. Observations of the infrared fine-structure lines of S III at 18.71 and 33.47 microns in four H II regions

    NASA Technical Reports Server (NTRS)

    Herter, T.; Briotta, D. A., Jr.; Gull, G. E.; Shure, M. A.; Houck, J. R.

    1982-01-01

    Infrared fine-structure lines provide a particularly useful probe of ionized nebulae. The present investigation is concerned with measurements of the forbidden S III lines at 18.71 and 33.47 micrometers for four H II regions, S158A, S158G, G75.84+0.4, and W3 IRS 1. These lines are used to estimate densities, and comparisons are made with rms densities determined from radio observations to evaluate the importance of clumping. For the case of the optical H II region S158A, comparisons are made with both optical and forbidden O III line determinations of the density. The reported observations were made using a dual-grating, liquid-helium-cooled spectrometer containing a three-element Si:Sb detector array and a three-element Ge:Ga detector array. It is found that clumping is important in the cases of G75.84+0.4, W3 IRS 1, and M42. These three H II regions have filling factors of 0.024, 0.09, and 0.03, respectively.

  12. Structuring a service line.

    PubMed

    Zablocki, E

    1997-05-01

    In 1993, Community Hospitals Indianapolis created 10 service lines--each unique to the needs of the patients it serves. Two service line leaders talk about the factors critical to successful restructuring, the working relationships established, and the importance of clear communication to ensure understanding and get buy-in to the process. PMID:10167712

  13. THE STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. I. RECONSTRUCTED VELOCITY-DELAY MAPS

    SciTech Connect

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; De Rosa, G.; Martini, Paul; Kochanek, C. S.; Zu, Y.; Shappee, B.; Beatty, T. G.; Salvo, C. Araya; Bird, J. C.; Horne, Keith; Bentz, M. C.; Denney, K. D.; Siverd, R.; Sergeev, S. G.; Borman, G. A.; Bord, D. J.; Che, X.; and others

    2013-02-10

    We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C 120, and PG 2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the H{beta} emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C 120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II {lambda}4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG 2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C 120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.

  14. EUV SPECTRAL LINE FORMATION AND THE TEMPERATURE STRUCTURE OF ACTIVE REGION FAN LOOPS: OBSERVATIONS WITH HINODE/EIS AND SDO/AIA

    SciTech Connect

    Brooks, David H.; Young, Peter R.; Warren, Harry P.

    2011-04-01

    With the aim of studying active region fan loops using observations from the Hinode EUV Imaging Spectrometer (EIS) and Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA), we investigate a number of inconsistencies in modeling the absolute intensities of Fe VIII and Si VII lines, and address why spectroheliograms formed from these lines look very similar despite the fact that ionization equilibrium calculations suggest that they have significantly different formation temperatures: log(T{sub e} /K) = 5.6 and 5.8, respectively. It is important to resolve these issues because confidence has been undermined in their use for differential emission measure (DEM) analysis, and Fe VIII is the main contributor to the AIA 131 A channel at low temperatures. Furthermore, the strong Fe VIII 185.213 A and Si VII 275.368 A lines are the best EIS lines to use for velocity studies in the transition region, and for assigning the correct temperature to velocity measurements in the fans. We find that the Fe VIII 185.213 A line is particularly sensitive to the slope of the DEM, leading to disproportionate changes in its effective formation temperature. If the DEM has a steep gradient in the log(T{sub e} /K) = 5.6-5.8 temperature range, or is strongly peaked, Fe VIII 185.213 A and Si VII 275.368 A will be formed at the same temperature. We show that this effect explains the similarity of these images in the fans. Furthermore, we show that the most recent ionization balance compilations resolve the discrepancies in absolute intensities. With these difficulties overcome, we combine EIS and AIA data to determine the temperature structure of a number of fan loops and find that they have peak temperatures of 0.8-1.2 MK. The EIS data indicate that the temperature distribution has a finite (but narrow) width < log ({sigma}{sub Te}/K) = 5.5 which, in one detailed case, is found to broaden substantially toward the loop base. AIA and EIS yield similar results on the temperature, emission

  15. EUV Spectral Line Formation and the Temperature Structure of Active Region Fan Loops: Observations with Hinode/EIS and SDO/AIA

    NASA Astrophysics Data System (ADS)

    Brooks, David H.; Warren, Harry P.; Young, Peter R.

    2011-04-01

    With the aim of studying active region fan loops using observations from the Hinode EUV Imaging Spectrometer (EIS) and Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA), we investigate a number of inconsistencies in modeling the absolute intensities of Fe VIII and Si VII lines, and address why spectroheliograms formed from these lines look very similar despite the fact that ionization equilibrium calculations suggest that they have significantly different formation temperatures: log(Te /K) = 5.6 and 5.8, respectively. It is important to resolve these issues because confidence has been undermined in their use for differential emission measure (DEM) analysis, and Fe VIII is the main contributor to the AIA 131 Å channel at low temperatures. Furthermore, the strong Fe VIII 185.213 Å and Si VII 275.368 Å lines are the best EIS lines to use for velocity studies in the transition region, and for assigning the correct temperature to velocity measurements in the fans. We find that the Fe VIII 185.213 Å line is particularly sensitive to the slope of the DEM, leading to disproportionate changes in its effective formation temperature. If the DEM has a steep gradient in the log(Te /K) = 5.6-5.8 temperature range, or is strongly peaked, Fe VIII 185.213 Å and Si VII 275.368 Å will be formed at the same temperature. We show that this effect explains the similarity of these images in the fans. Furthermore, we show that the most recent ionization balance compilations resolve the discrepancies in absolute intensities. With these difficulties overcome, we combine EIS and AIA data to determine the temperature structure of a number of fan loops and find that they have peak temperatures of 0.8-1.2 MK. The EIS data indicate that the temperature distribution has a finite (but narrow) width < log (σ_{T_e}/K) = 5.5 which, in one detailed case, is found to broaden substantially toward the loop base. AIA and EIS yield similar results on the temperature, emission measure

  16. A Multi-Scale Continuum and Line Exploration of the Most Luminous Star Formation Region in the Milky Way. I. The Mass Structure of the Giant Molecular Cloud.

    NASA Astrophysics Data System (ADS)

    Galvan-Madrid, R.; Liu, H. B.; Zhang, Z.-Y.; Pineda, J. E.; Peng, T.-C.; Zhang, Q.; Keto, E. R.; Ho, P. T. P.; Rodriguez, L. F.; Zapata, L.; Peters, T.; De Pree, C. G.

    2013-07-01

    The Multi-Scale Continuum and Line Exploration of W49 (MUSCLE W49) is a comprehensive gas and dust survey of the parental giant molecular cloud (GMC) of W49A, the most luminous (L~10^7.2 Lsun) star-formation region in the Milky Way. The project has multiple components that cover the entire GMC at different scales and angular resolutions, from 0.1 to 100 pc. We present a new all-configuration SMA mosaic of the central 10 pc (known as W49N), plus PMO mapping of the full GMC up to scales of 110 pc. We derive the mass structure of the GMC at all scales, revealing that the central ~0.1% of the volume, which contains ~20% of the total GMC mass, is forming a system of young massive clusters (YMCs). We compare our results with other possible sites of YMC formation in the Galaxy.

  17. A bayesian approach to estimate the size and structure of the broad-line region in active galactic nuclei using reverberation mapping data

    SciTech Connect

    Li, Yan-Rong; Wang, Jian-Min; Du, Pu; Ho, Luis C.; Bai, Jin-Ming

    2013-12-20

    This is the first paper in a series devoted to the systematic study of the size and structure of the broad-line region (BLR) in active galactic nuclei (AGNs) using reverberation mapping (RM) data. We employ a recently developed Bayesian approach that statistically describes the variability as a damped random walk process and delineates the BLR structure using a flexible disk geometry that can account for a variety of shapes, including disks, rings, shells, and spheres. We allow for the possibility that the line emission may respond non-linearly to the continuum, and we detrend the light curves when there is clear evidence for secular variation. We use a Markov Chain Monte Carlo implementation based on Bayesian statistics to recover the parameters and uncertainties for the BLR model. The corresponding transfer function is obtained self-consistently. We tentatively constrain the virial factor used to estimate black hole masses; more accurate determinations will have to await velocity-resolved RM data. Application of our method to RM data with Hβ monitoring for about 40 objects shows that the assumed BLR geometry can reproduce quite well the observed emission-line fluxes from the continuum light curves. We find that the Hβ BLR sizes obtained from our method are on average ∼20% larger than those derived from the traditional cross-correlation method. Nevertheless, we still find a tight BLR size-luminosity relation with a slope of α = 0.55 ± 0.03 and an intrinsic scatter of ∼0.18 dex. In particular, we demonstrate that our approach yields appropriate BLR sizes for some objects (such as Mrk 142 and PG 2130+099) where traditional methods previously encountered difficulties.

  18. Molecular Hydrogen Line Emission from Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Chrysostomou, Antonio

    1993-01-01

    The work presented in this thesis is dedicated to the study of the physical properties of photodissociation regions (PDRs), the surface layers of molecular clouds which are irradiated by ultraviolet radiation. The structure of PDRs is investigated with the development of an anlytical model which incorporates the essential heating and cooling mechanisms in a PDR. The main parameters in the model are the density and the incident ulttraviolet radiation field (G0) impinging on the surface which dissociates the molecules in the PDR. It is demonstrated that when the ratio (n / G0) is high (> 100 cm-3) the attenuation of ultraviolet photons is dominated by H2 self shielding, which brings the Hi/H2 transition zone close to the surface of the cloud (Av < 1). When the ratio is of order unity then the attenuation of ultraviolet photons is dominated by dust grains in the PDR. In this case, the Hi / H2 transition zone occurs at a depth of Av ~2-3. Images of the PDR in the northern bar of M17 show that there is a spatial coincidence, accurate to ~1 arcsec, of the H2 and 3.28 micron emission regions (the 3.28 micron emission being a tracer of the hot edge of the PDR delineated by the Hii / Hi transition) placing a lower limit to the density in the clumps of 105 cm-3. This coincidence is also observed in other PDR sources (eg. NGC 2023) and can be readily explained if the sources are clumpy. It is not clear in the northern bar of M17, where G0 ~104, whether shielding by dust or H2 molecules is dominated the attenuation of ultraviolet photons. A uniform, high density PDR model is sufficient to reproduce the observed H2 line intensity, however the images clearly reveal structures at the 2 arcsec level suggesting that a clumpy model is a realistic solution. Long slit K band spectroscopy measurements were taken in the northern bar of M17, where up to 16 H2 lines were identified. Analysis of the data suggests that the emission can only be explained if the H2 molecules are being excited

  19. Giant Broad Line Regions in Dwarf Seyferts

    NASA Astrophysics Data System (ADS)

    Devereux, Nicholas A.

    2016-01-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, the relationship between velocity and radius may be established, given a kinematic model for the BLR gas. In this way, one can determine the inner and outer radii of the BLRs by modeling the shape of their broad emission line profiles. In the present contribution, high quality spectra obtained with the Space Telescope Imaging Spectrograph are used to constrain the size of the BLR in the dwarf Seyfert nuclei of M81, NGC 3998, NGC 4203, NGC 3227, NGC 4051, and NGC 3516.

  20. Giant Broad Line Regions in Dwarf Seyferts

    NASA Astrophysics Data System (ADS)

    Devereux, Nick

    2015-12-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope (HST) has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group, and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, the relationship between velocity and radius may be established, given a kinematic model for the BLR gas. In this way, one can determine the inner and outer radii of the BLRs by modeling the shape of their broad emission line profiles. In the present contribution, high quality spectra obtained with the Space Telescope Imaging Spectrograph (STIS) are used to constrain the size of the BLR in the dwarf Seyfert nuclei of M81, NGC 3998, NGC 4203, NGC 3227, NGC 4051 and NGC 3516.

  1. Carbon recombination lines as a diagnostic of photodissociation regions

    NASA Technical Reports Server (NTRS)

    Natta, A.; Walmsley, C. M.; Tielens, A. G. G. M.

    1994-01-01

    We have observed the C91 alpha radio recombination line toward the Orion H II region. This narrow (approximately 3-5 km per sec full width at half maximum (FWHM)) line is spatially very extended (approximately 8 arcmin or 1 pc). These charateristics compare well with the observed characteristics of the C II fine structure line at 158 microns. Thus, the C91 alpha line originates in the predominantly neutral photodissociation regions separating the H II region from the molecular cloud. We have developed theoretical models for the C II radio recombination lines from photodissociation regions. The results show that the I(C91 alpha)/I(C158) intensity ratio is a sensitive function of the temperature and density of the emitting gas. We have also extended theoretical models for photodissociation regions to include the C II recombination lines. Comparison with these models show that, in the central portion of the Orion region, the C91 alpha line originates in dense (10(exp 6) per cu cm), warm (500-1000 K) gas. Even at large projected distances (approximately 1 pc), the inferred density is still high (10(exp 5) per cu cm) and implies extremely high thermal pressures. As in the case of the (C II) 158 microns line, the large extent of the C91 alpha line shows that (FUV) photons can penetrate to large distances from the illuminating source. The decline of the intensity of the incident radiation field with distance from Theta(sup 1) C seems to be dominated by geometrical dilution, rather than dust extinction. Finally, we have used our models to calculate the intensity of the 9850 A recombination line of C II. The physical conditions inferred from this line are in good agreement with those determined from the radio recombination and the far-infrared fine-structure lines. We show that the ratio of the 9850 A to the C91 alpha lines is a very good probe of very high density clumps.

  2. VLT/ISAAC spectra of the Hβ region in intermediate-redshift quasars. III. Hβ broad-line profile analysis and inferences about BLR structure

    NASA Astrophysics Data System (ADS)

    Marziani, P.; Sulentic, J. W.; Stirpe, G. M.; Zamfir, S.; Calvani, M.

    2009-02-01

    Aims: We present new VLT ISAAC spectra for 30 quasars, which we combine with previous data to yield a sample of 53 intermediate-redshift (z ≈ 0.9-3.0) sources. The sample is used to explore properties of prominent lines in the hβ spectral region of these very luminous quasars. Methods: We compare this data with two large low-redshift (z < 0.8) samples in a search for trends over almost 6dex in source luminosity. Results: We find two major trends: (1) a systematic increase in minimum FWHM hβ with luminosity (discussed in a previous paper). This lower FWHM envelope is best fit by assuming that the narrowest sources radiate near the Eddington limit, show line emission from a virialized cloud distribution, and obey a well-defined broad line region size vs. luminosity relation. (2) A systematic decrease in equivalent width of [oiii]λλ4959, 5007 (from W ≈ 15 to ~1 Å) with increasing source bolometric luminosity (from log L_bol ≈ 43 to log L_bol ≈ 49). Other identified trends require differntiating between so-called Population A and Bsources. We generate median composite spectra in six luminosity bins to maximize S/N. Population A sources show reasonably symmetric Lorentzian hβ profiles at all luminosities, while Pop. B sources require two component fits involving an unshifted broad and a redshifted very broad component. Very broad hβ increases in strength with increasing log L_bol, while the broad component remains constant, resulting in an apparent “Baldwin effect” with equivalent width decreasing from W ~ 80 to ~20 Å over our sample luminosity range. The roughly constant equivalent width shown by the hβ very broad component implies production in optically-thick, photoionized gas. The onset of the redshifted very broad component appears to be a critical change that occurs near the Pop. A-B boundary at FWHM hβ ≈ 4000 km s-1, which we relate to a critical Eddington ratio (≈ 0.2±0.1). Based on observations made with ESO Telescopes at the Paranal

  3. Magnetohydrodynamic stability of broad line region clouds

    NASA Astrophysics Data System (ADS)

    Krause, Martin; Schartmann, Marc; Burkert, Andreas

    2012-10-01

    Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the supermassive black hole. If true, stabilization by thermal pressure alone becomes even more difficult. We further argue that if magnetic fields are present in such clouds at a level that could affect the stability properties, they need to be strong enough to compete with the radiation pressure on the cloud. This would imply magnetic field values of a few gauss for a sample of active galactic nuclei we draw from the literature. We then investigate the effect of several magnetic configurations on cloud stability in axisymmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which provides the dominant pressure support, the cloud first gets compressed by the opposing radiative and gravitational forces. The pressure inside the cloud then increases, and it expands vertically. Kelvin-Helmholtz and column density instabilities lead to a filamentary fragmentation of the cloud. This radiative dispersion continues until the cloud is shredded down to the resolution level. For a helical magnetic field configuration, a much more stable cloud core survives with a stationary density histogram which takes the form of a power law. Our simulated clouds develop sub-Alfvénic internal motions on the level of a few hundred km s-1.

  4. Changes in sinuosities of the rivers at geological structural lines in the Pannonian Basin - Mosaics to the neotectonic image of the region

    NASA Astrophysics Data System (ADS)

    Petrovszki, Judit

    2010-05-01

    In the central, flat area of the Pannonian Basin, there are just few topographic features for neotectonic investigations. However, a lot of meandering rivers flow here, and it is possible to reconstruct their natural, pre-regulation planforms. Using the map sheets of the Second Military Survey of the Habsburg Empire (mid-19th century; Timár et al., 2006), I digitized the meandering rivers on this area. Sinuosities at different sample section lengths were computed in a GIS environment, providing so-called 'sinuosity-spectra' (van Balen et al., 2008) for each point of the analyzed channels. The channel sinuosity of this river systems are analyzed in order to draw conclusions on the neotectonic activity of the Great Hungarian Plain and the other flat areas of the Pannonian Basin. Several points of sinuosity change were identified. To prove, that these are of neotectonic origin, seismic sections crossing the study area, were also analyzed as well as the geodinamical map of the area (Horváth et al., 2006). High sinuosity variations (low to high or high to low), spatially correlated to linear features identified in seismic survey sections, indicating their neotectonic activity (after Ouchi, 1985). We can see two significante sinuosity changes on the Hron/Garam River (Slovakia), one at Tekov and the one at Kéménd. There are faults on the neotectonic map at these points, crossing the river - they are the possible causes of the increasing of the sinuosity. The vertical activity of these structural lines is verified by the sinuosity changes. At the Maros/Mureş River (Romania/Hungary), a significant sinuosity change can also be identified near to the town of Aiud, where the phenomene is just the opposite like in the Hron/Garam river. There is a fault on the neotectonic map crossing the river. Upstream of the river has higher sinuosity values, and after crossing the fault, it decresed. Here also the fault caused the sinuosity changing, so this fault is also an active one

  5. DUSTY STRUCTURE AROUND TYPE-I ACTIVE GALACTIC NUCLEI: CLUMPY TORUS NARROW-LINE REGION AND NEAR-NUCLEUS HOT DUST

    SciTech Connect

    Mor, Rivay; Netzer, Hagai; Elitzur, Moshe

    2009-11-01

    We fitted Spitzer/IRS approx 2-35 mum spectra of 26 luminous quasi-stellar objects in an attempt to define the main emission components. Our model has three major components: a clumpy torus, dusty narrow-line region (NLR) clouds, and a blackbody-like dust. The models utilize the clumpy torus of Nenkova et al. and are the first to allow its consistent check in type-I active galactic nuclei (AGNs). Single torus models and combined torus-NLR models fail to fit the spectra of most sources, but three-component models adequately fit the spectra of all sources. We present torus inclination, cloud distribution, covering factor, and torus mass for all sources and compare them with bolometric luminosity, black hole mass, and accretion rate. The torus mass is found to be correlated with the bolometric luminosity of the sources. Torus-covering factor may also be (anti-)correlated, if some possibly anomalous points are omitted. We find that a substantial amount of the approx2-7 mum radiation originates from a hot dust component, which is likely situated in the innermost part of the torus. The luminosity radiated by this component and its covering factor are comparable to those of the torus. We quantify the emission by the NLR clouds and estimate their distance from the center. The distances are approx700 times larger than the dust sublimation radius, and the NLR-covering factor is about 0.07. The total covering factor by all components is in good agreement with the known AGN type-I:type-II ratio.

  6. Detecting pore-lining regions in transmembrane protein sequences

    PubMed Central

    2012-01-01

    Background Alpha-helical transmembrane channel and transporter proteins play vital roles in a diverse range of essential biological processes and are crucial in facilitating the passage of ions and molecules across the lipid bilayer. However, the experimental difficulties associated with obtaining high quality crystals has led to their significant under-representation in structural databases. Computational methods that can identify structural features from sequence alone are therefore of high importance. Results We present a method capable of automatically identifying pore-lining regions in transmembrane proteins from sequence information alone, which can then be used to determine the pore stoichiometry. By labelling pore-lining residues in crystal structures using geometric criteria, we have trained a support vector machine classifier to predict the likelihood of a transmembrane helix being involved in pore formation. Results from testing this approach under stringent cross-validation indicate that prediction accuracy of 72% is possible, while a support vector regression model is able to predict the number of subunits participating in the pore with 62% accuracy. Conclusion To our knowledge, this is the first tool capable of identifying pore-lining regions in proteins and we present the results of applying it to a data set of sequences with available crystal structures. Our method provides a way to characterise pores in transmembrane proteins and may even provide a starting point for discovering novel routes of therapeutic intervention in a number of important diseases. This software is freely available as source code from: http://bioinf.cs.ucl.ac.uk/downloads/memsat-svm/. PMID:22805427

  7. Hyperfine structure analysis in the intense spectral lines of the neutral Cu atom falling in the 353-809 nm wavelength region using a Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Ankush, B. K.; Deo, M. N.

    2014-02-01

    Hyperfine structure analyses have been performed in the high-resolution spectrum of the neutral copper atom covering the wavelength region of 353-809 nm using Fourier transform spectroscopy. A DC discharge of natural copper produced in a liquid nitrogen cooled hollow cathode lamp used as a light source and a photomultiplier tube as well as Si photodiodes were employed as the light detectors. The hfs studies in 17 transitions of the neutral copper atom originating from 17 energy levels for 63Cu have been reported here. The present investigation has provided the magnetic dipole coupling constant A and electric quadrupole coupling constant B for the first time for the following 6 even-parity levels lying at 49,935, 49,942 cm-1, of 3d104d configuration, 52,848 cm-1 of 3d106 s configuration, 55,387, 55,391 cm-1 3d105d configuration and 71,978 cm-1 of 3d104s4d configuration. The sign convention of the previously-reported hfs A value amounting to 1920 MHz for the level at 44,963 cm-1 of 3d94s4p configuration has been revised to -1920 MHz. Measurements reported earlier of A and B hfs constants for the 11 odd-parity energy levels also have been confirmed.

  8. First structures on RyantoRainbow Line. Hframe structure on Line 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    First structures on Ryan-to-Rainbow Line. H-frame structure on Line 1 (right) has historic porcelain suspension insulators and H-frame structure on Line 2 (center) has two historic porcelain insulators and one modern non-ceramic insulator. View to north - Ryan Hydroelectric Facility, Ryan-to-Rainbow 100 kV Transmission Line, West bank of Missouri River, northeast of Great Falls, Great Falls, Cascade County, MT

  9. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. III - Further observations of NGC 5548 at optical wavelengths

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Alloin, D.; Axon, D.; Balonek, T. J.; Bertram, R.; Boroson, T. A.; Christensen, J. A.; Clements, S. D.; Dietrich, M.; Elvis, M.

    1992-01-01

    The results of the second year of an intensive ground-based spectroscopic and photometric study of variability in the bright Seyfert 1 galaxy NGC 5548 are reported in order to study the relationship between continuum and emission-line variability. Relative to the first year of the monitoring program, the nucleus of NGC 5548 was considerably fainter and the continuum variations slower during the second year, but the continuum H-beta cross-correlation results for the two years are nearly identical. The variations in the broad H-beta emission-line lag behind those in the continuum by somewhat less than 20 days, as concluded from the first year's data.

  10. Fine-structure line deficit in S 140

    NASA Astrophysics Data System (ADS)

    Ossenkopf, V.; Koumpia, E.; Okada, Y.; Mookerjea, B.; van der Tak, F. F. S.; Simon, R.; Pütz, P.; Güsten, R.

    2015-08-01

    Aims: We try to understand the gas heating and cooling in the S 140 star-forming region by spatially and spectrally resolving the distribution of the main cooling lines with GREAT/SOFIA and combining our data with existing ground-based and Herschel observations that trace the energy input and the density and temperature structure of the source. Methods: We mapped the fine-structure lines of [O i] (63 μm) and [C ii] (158 μm) and the rotational transitions of CO 13-12 and 16-15 with GREAT/SOFIA and analyzed the spatial and velocity structure to assign the emission to individual heating sources. We measure the optical depth of the [C ii] line and perform radiative transfer computations for all observed transitions. By comparing the line intensities with the far-infrared continuum we can assess the total cooling budget and measure the gas heating efficiency. Results: The main emission of fine-structure lines in S 140 stems from a 8.3'' region close to the infrared source IRS 2 that is not prominent at any other wavelength. It can be explained by a photon-dominated region (PDR) structure around the embedded cluster if we assume that the [O i] line intensity is reduced by a factor of seven owing to self-absorption. The external cloud interface forms a second PDR at an inclination of 80-85 degrees illuminated by a UV field of 60 times the standard interstellar radiation field. The main radiation source in the cloud, IRS 1, is not prominent at all in the fine-structure lines. We measure line-to-continuum cooling ratios below 10-4, i.e. values lower than in any other Galactic source, actually matching the far-IR line deficit seen in ULIRGs. In particular, the low intensity of the [C ii] line can only be modeled by an extreme excitation gradient in the gas around IRS 1. We found no explanation for why IRS 1 shows no associated fine-structure line peak, while IRS 2 does. Conclusions: The inner part of S 140 mimics the far-IR line deficit in ULIRGs thereby providing a

  11. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 6: Variability of NGC 3783 from ground-based data

    NASA Technical Reports Server (NTRS)

    Stirpe, G. M.; Winge, C.; Altieri, B.; Alloin, D.; Aguero, E. L.; Anupama, G. C.; Ashley, R.; Bertram, R.; Calderon, J. H.; Catchpole, R. M.

    1994-01-01

    The Seyfert 1 galaxy NGC 3783 was intensely monitored in several bands between 1991 December and 1992 August. This paper presents the results from the ground-based observations in the optical and near-IR bands, which complement the data set formed by the International Ultraviolet Explorer (IUE) spectra, discussed elsewhere. Spectroscopic and photometric data from several observatories were combined in order to obtain well-sampled light curves of the continuum and of H(beta). During the campaign the source underwent significant variability. The light curves of the optical continuum and of H(beta) display strong similarities to those obtained with the IUE. The near-IR flux did not vary significantly except for a slight increase at the end of the campaign. The cross-correlation analysis shows that the variations of the optical continuum have a lag of 1 day or less with respect to those of the UV continuum, with an uncertainty of is less than or equal to 4 days. The integrated flux of H(beta) varies with a delay of about 8 days. These results confirm that (1) the continuum variations occur simultaneously or with a very small lag across the entire UV-optical range, as in the Seyfert galaxy NGC 5548; and (2) the emission lines of NGC 3783 respond to ionizing continuum variations with less delay than those of NGC 5548. As observed in NGC 5548, the lag of H(beta) with respect to the continuum is greater than those of the high-ionization lines.

  12. Plasma simulations of emission line regions in high energy environments

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.

    This dissertation focuses on understanding two different, but in each case extreme, astrophysical environments: the Crab Nebula and emission line galaxies. These relatively local objects are well constrained by observations and are test cases of phenomena seen at high-z where detailed observations are rare. The tool used to study these objects is the plasma simulation code known as Cloudy. The introduction provides a brief summary of relevant physical concepts in nebular astrophysics and presents the basic features and assumptions of Cloudy. The first object investigated with Cloudy, the Crab Nebula, is a nearby supernova remnant that previously has been subject to photoionization modeling to reproduce the ionized emission seen in the nebula's filamentary structure. However, there are still several unanswered questions: (1) What excites the H2 emitting gas? (2) How much mass is in the molecular component? (3) How did the H2 form? (4) What is nature of the dust grains? A large suite of observations including long slit optical and NIR spectra over ionized, neutral and molecular gas in addition to HST and NIR ground based images constrain a particularly bright region of H2 emission, Knot 51, which exhibits a high excitation temperature of ˜3000 K. Simulations of K51 revealed that only a trace amount of H2 is needed to reproduce the observed emission and that H2 forms through an uncommon nebular process known as associative detachment. The final chapters of this dissertation focus on interpreting the narrow line region (NLR) in low-z emission line galaxies selected by a novel technique known as mean field independent component analysis (MFICA). A mixture of starlight and radiation from an AGN excites the gas present in galaxies. MFICA separates galaxies over a wide range of ionization into subsets of pure AGN and pure star forming galaxies allowing simulations to reveal the properties responsible for their observed variation in ionization. Emission line ratios can

  13. Fine Structure and Optical Depth in the Solar Transition Region

    NASA Astrophysics Data System (ADS)

    Plovanic, Jacob; Kankelborg, C. C.; Williamson, K.

    2011-05-01

    Unresolved fine structure in the solar transition region (TR) has long been inferred from measurements of density-sensitive line pairs showing low filling factor (< 0.01). Low filling factor models for the structure of the He II source region, however, have not been well studied. We propose a highly structured model of the lower atmosphere in which He II is formed at low filling factors, leading to high emission measure and an optically thin He II line. This transparent TR material is juxtaposed with absorbing chromospheric structures, leading to the nearly uniform center to limb behavior of the He II line as observed.

  14. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 5: Variability of the ultraviolet continuum and emission lines of NGC 3783

    NASA Technical Reports Server (NTRS)

    Reichert, G. A.; Rodriguez-Pascual, P. M.; Alloin, D.; Clavel, J.; Crenshaw, D. M.; Kriss, G. A.; Krolik, J. H.; Malkan, M. A.; Netzer, H.; Peterson, B. M.

    1994-01-01

    We report on the results of intensive ultraviolet spectral monitoring of the Seyfert 1 galaxy NGC 3783. The nucleus of NGC 3783 was observed with the International Ultraviolet Explorer satellite on a regular basis for a total of 7 months, once every 4 days for the first 172 days and once every other day for the final 50 days. Significant variability was observed in both continuum and emission-line fluxes. The light curves for the continuum fluxes exhibited two well-defined local minima or 'dips,' the first lasting is less than or approximately 20 days and the second is less than or approximately 4 days, with additional episodes of relatively rapid flickering of approximately the same amplitude. As in the case of NGC 5548 (the only other Seyfert galaxy that has been the subject of such an intensive, sustained monitoring effort), the largest continuum variations were seen at the shortest wavelengths, so that the continuum became 'harder' when brighter. The variations in the continuum occurred simultaneously at all wavelengths (delta(t) is less than 2 days). Generally, the amplitude of variability of the emission lines was lower than (or comparable to) that of the continuum. Apart from Mg II (which varied little) and N V (which is relatively weak and badly blended with Ly(alpha), the light curves of the emission lines are very similar to the continuum light curves, in each case with a small systematic delay or 'lag.' As for NGC 5548, the highest ionization lines seem to respond with shorter lags than the lower ionization lines. The lags found for NGC 3783 are considerably shorter than those obtained for NGC 5548, with values of (formally) approximately 0 days for He II + O III), and approximately 4 days for Ly(alpha) and C IV. The data further suggest lags of approximately 4 days for Si IV + O IV) and 8-30 days for Si III + C III). Mg II lagged the 1460 A continuum by approximately 9 days, although this result depends on the method of measuring the line flux and may

  15. Fine-structure infrared lines from the Cassiopeia A knots

    NASA Astrophysics Data System (ADS)

    Docenko, D.; Sunyaev, R. A.

    2010-01-01

    Aims: Archival observations of infrared fine-structure lines of the young Galactic supernova remnant Cassiopeia A allow us to test existing models and determine the physical parameters of various regions of the fast-moving knots, which are metal-dominated clouds of material ejected by the supernova explosion. Methods: The fluxes of far-infrared [O i] and [O iii] lines are extracted from previously unpublished archival ISO data. The archival Spitzer data are used to determine the fluxes of the O, Ne, Si, S, Ar, and Fe ion fine-structure lines originating in the fast-moving knots. The ratios of these line fluxes are used as plasma diagnostics. We also determine the infrared line flux ratios with respect to the optical [O iii] 5007 Å line in the knots with previously measured reddening. Additionally, we analyze several optical and near-infrared observations of the fast-moving knots to obtain clearer insight into the post-shock photoionized region structure. Results: We show that the infrared oxygen line flux predictions of all existing theoretical models are correct only to within a factor of a several. Comparison of the model predictions shows that to reproduce the observations it is essential to include the effects of the electron conductivity and dust. Detailed analysis of the diagnostic line flux ratios of various ions allows us to qualitatively confirm the general model of fast-moving knot emission and determine observationally for the first time the physical conditions in the photoionized region after the shock. We infer from the [O iii] line flux ratios that the pre-shock cloud densities are higher than assumed in existing theoretical models and most probably correspond to several hundred particles per cm3. We also determine the Cas A luminosity in the infrared continuum and lines. We show that accounting for the charge exchange processes in the post-shock photoionized region allows us to reproduce most of the relevant spectral line ratios even in the frame of

  16. What Quasars Really Look Like: Unification of the Emission and Absorption Line Regions

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    We propose a simple unifying structure for the inner regions of quasars and AGN. This empirically derived model links together the broad absorption line (BALS), the narrow UV/X-ray ionized absorbers, the BELR, and the 5 Compton scattering/fluorescing regions into a single structure. The model also suggests an alternative origin for the large-scale bi-conical outflows. Some other potential implications of this structure are discussed.

  17. Structure and form of grounding lines of modern ice sheets

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Bell, R. E.; Cochran, J. R.; Boghosian, A.; Porter, D. F.

    2015-12-01

    The form of the bed at the grounding line of a glacier and the character of the underlying rock can be critical to the stability of the glacier. Aerogravity measurements offer a unique insight in to the character of the grounding line environment. By combining depth measurements from further onshore radar and geological information from magnetic surveys, gravity-based models can reveal both the depth and slope of the bed at the grounding line. Where bed elevation is known at the grounding line, gravity models can show the density structure of the underlying rock. Operation IceBridge has flown coincident radar, lidar, photography, gravity and magnetic airborne surveys along fjords and over ice shelves in both Greenland and Antarctica. Aerogravity measurements have been used extensively to model the bathymetry of the sea floor in front of the grounding line, and to identify the depth of the grounding line in areas where radar measurements have proven challenging. These models have also been used to reveal the range of conditions at present day grounding lines, as well as those experienced in the past and predicted for future grounding line positions. In some regions, we have identified low-density sediment accumulations, at both present day grounding lines and within fjords, that we interpret to be terminal moraines deposited by the glacier itself during hiatuses in retreat. In other regions, we find that the present day grounding line is stalled on a ridge of high-density rock. Ridges such as these remain in the same position through many cycles of advance and retreat of the glacier. Our synthesis of gravity data from a wide range of glacial environments can be used to identify likely drivers of change at the grounding line, whether this is the depth, the slope, or the geological character of the glacier bed.

  18. Neutral line chaos and phase space structure

    NASA Technical Reports Server (NTRS)

    Burkhart, Grant R.; Speiser, Theodore W.; Martin, Richard F., Jr.; Dusenbery, Paul B.

    1991-01-01

    Phase space structure and chaos near a neutral line are studied with numerical surface-of-section (SOS) techniques and analytic methods. Results are presented for a linear neutral line model with zero crosstail electric field. It was found that particle motion can be divided into three regimes dependening on the value of the conserved canonical momentum, Py, and the conserved Hamiltonian, h. The phase space structure, using Poincare SOS plots, is highly sensitive to bn = Bn/B0 variations, but not to h variations. It is verified that the slow motion preserves the action, Jz, as evaluated by Sonnerup (1971), when the period of the fast motion is smaller than the time scale of the slow motion. Results show that the phase space structure and particle chaos depend sensitively upon Py and bn, but are independent of h.

  19. SOLAR TRANSITION REGION LINES OBSERVED BY THE INTERFACE REGION IMAGING SPECTROGRAPH: DIAGNOSTICS FOR THE O IV AND Si IV LINES

    SciTech Connect

    Dudík, J.; Del Zanna, G.; Mason, H. E.; Dzifčáková, E.; Golub, L.

    2014-01-01

    The formation of the transition region O IV and Si IV lines observable by the Interface Region Imaging Spectrograph (IRIS) is investigated for both Maxwellian and non-Maxwellian conditions characterized by a κ-distribution exhibiting a high-energy tail. The Si IV lines are formed at lower temperatures than the O IV lines for all κ. In non-Maxwellian situations with lower κ, the contribution functions are shifted to lower temperatures. Combined with the slope of the differential emission measure, it is possible for the Si IV lines to be formed at very different regions of the solar transition region than the O IV lines; possibly close to the solar chromosphere. Such situations might be discernible by IRIS. It is found that photoexcitation can be important for the Si IV lines, but is negligible for the O IV lines. The usefulness of the O IV ratios for density diagnostics independently of κ is investigated and it is found that the O IV 1404.78 Å/1399.77 Å ratio provides a good density diagnostics except for very low T combined with extreme non-Maxwellian situations.

  20. Line Emission from Radiation-pressurized H II Regions. II. Dynamics and Population Synthesis

    NASA Astrophysics Data System (ADS)

    Verdolini, Silvia; Yeh, Sherry C. C.; Krumholz, Mark R.; Matzner, Christopher D.; Tielens, Alexander G. G. M.

    2013-05-01

    Optical and infrared emission lines from H II regions are an important diagnostic used to study galaxies, but interpretation of these lines requires significant modeling of both the internal structure and dynamical evolution of the emitting regions. Most of the models in common use today assume that H II region dynamics are dominated by the expansion of stellar wind bubbles, and have neglected the contribution of radiation pressure to the dynamics, and in some cases also to the internal structure. However, recent observations of nearby galaxies suggest that neither assumption is justified, motivating us to revisit the question of how H II region line emission depends on the physics of winds and radiation pressure. In a companion paper we construct models of single H II regions including and excluding radiation pressure and winds, and in this paper we describe a population synthesis code that uses these models to simulate galactic collections of H II regions with varying physical parameters. We show that the choice of physical parameters has significant effects on galactic emission line ratios, and that in some cases the line ratios can exceed previously claimed theoretical limits. Our results suggest that the recently reported offset in line ratio values between high-redshift star-forming galaxies and those in the local universe may be partially explained by the presence of large numbers of radiation-pressure-dominated H II regions within them.

  1. The 2mrad Crossing Angle Interaction Region and Extraction Line

    SciTech Connect

    Appleby, R.; U., Manchester; Angal-Kalinin, D.; Dadoun, O.; Bambade, P.; Parker, B.; Keller, L.; Moffeit, K.; Nosochkov, Y.; Seryi, A.; Spencer, C.; Carter, J.; Royal Holloway, U.of London; Napoly, O.; /DAPNIA, Saclay

    2006-07-12

    A complete optics design for the 2mrad crossing angle interaction region and extraction line was presented at Snowmass 2005. Since this time, the design task force has been working on developing and improving the performance of the extraction line. The work has focused on optimizing the final doublet parameters and on reducing the power losses resulting from the disrupted beam transport. In this paper, the most recent status of the 2mrad layout and the corresponding performance are presented.

  2. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    SciTech Connect

    Guerras, E.; Mediavilla, E.; Kochanek, C. S.; Munoz, J. A.; Falco, E.; Motta, V.

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s} = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.

  3. The HST view of the innermost narrow line region

    NASA Astrophysics Data System (ADS)

    Balmaverde, Barbara; Capetti, Alessandro; Moisio, Daria; Baldi, Ranieri D.; Marconi, Alessandro

    2016-02-01

    We analyze the properties of the innermost narrow line region in a sample of low-luminosity AGN. We select 33 LINERs (bona fide AGN) and Seyfert galaxies from the optical spectroscopic Palomar survey observed by HST/STIS. We find that in LINERs the [ N II ] and [ O I ] lines are broader than the [ S II ] line and that the [ N II ] /[ S II ] flux ratio increases when moving from ground-based to HST spectra. This effect is more pronounced considering the wings of the lines. Our interpretation is that, as a result of superior HST spatial resolution, we isolate a compact region of dense ionized gas in LINERs, located at a typical distance of ~3 pc and with a gas density of ~104-105 cm-3, which we identify with the outer portion of the intermediate line region (ILR). Instead, we do not observe these kinds of effects in Seyferts; this may be the result of a stronger dilution from the NLR emission, since the HST slit maps a larger region in these sources. Alternatively, we argue that the innermost, higher density component of the ILR is only present in Seyferts, while it is truncated at larger radii because of the presence of the circumnuclear torus. The ILR is only visible in its entirety in LINERs because the obscuring torus is not present in these sources.

  4. The coronal field lines of an evolving bipolar magnetic region

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.

    1982-01-01

    A simple potential field model is presented to illustrate that loops of magnetic flux rise upward through the corona during the relatively short growth phase of a bipolar magnetic region but contract back to the sun's surface during the much longer decay phase of the photospheric region. To reconcile this behavior with the unidirectional, solar-wind-driven convection of flux outward from the sun, one must postulate the existence of an X-type neutral line in the middle corona where open field lines can be converted back to closed ones.

  5. Accretion disk wind in the AGN broad-line region: Spectroscopically resolved line profile variations in Mrk 110

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.

    2003-08-01

    Detailed line profile variability studies of the narrow line Seyfert 1 galaxy Mrk 110 are presented. We obtained the spectra in a variability campaign carried out with the 9.2 m Hobby-Eberly Telescope at McDonald Observatory. The integrated Balmer and helium (He I, II) emission lines are delayed by 3 to 33 light days to the optical continuum variations respectively. The outer wings of the line profiles respond much faster to continuum variations than the central regions. The comparison of the observed profile variations with model calculations of different velocity fields indicates an accretion disk structure of the broad line emitting region in Mrk 110. Comparing the velocity-delay maps of the different emission lines among each other a clear radial stratification in the BLR can be recognized. Furthermore, delays of the red line wings are slightly shorter than those of the blue wings. This indicates an accretion disk wind in the BLR of Mrk 110. We determine a central black hole mass of M = 1.8x 107 Msun. Because of the poorly known inclination angle of the accretion disk this is a lower limit only. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  6. Impurity Line Emissions in VUV Region of TCABR Tokamak

    SciTech Connect

    Machida, M.; Daltrini, A. M.; Severo, J. H. F.; Nascimento, I. C.; Sanada, E. K.; Elizondo, J. I.; Kuznetsov, Y. K.; Galvao, R. M. O.

    2008-04-07

    Spectral emissions in the vacuum ultraviolet region from 50 nm to 320 nm have been measured on TCABR tokamak using an one meter VUV spectrometer and a MCP coupled to a CCD detector. Among the 98 emissions classified, 37 are from first order diffraction, 29 are from second order, 24 are from third order, 7 from fourth order, and one from fifth order diffraction. Main impurity lines are OII to OVII, CII to CIV, NIII to N V, FVII, besides working gas plasma hydrogen Lyman lines.

  7. Investigation of ionization mechanism of extended narrow line region.

    NASA Astrophysics Data System (ADS)

    Hashimoto, T. H.; Iye, M. I.; Aoki, K. A.

    2006-08-01

    The narrow line regions of active galaxies have the potential to provide key information about the nature of the central energy sources, the triggering and fueling of the activity, and the dynamical and/or chemical evolution of the narrow line region (NLR). However, if we are to use them in this way, it is crucial to understand the dominant physical mechanism of emission line region. Since Dopita et al.1995,1996 suggested that their radiative shock model is capable of explaining to some extent the spectrum of Seyfert 2 galaxies, detailed observations of individual NLR or extended narrow line region (ENLR) have been performed to clarify the actual ionization mechanism for individual object. It is probably fair to say that at present time, although individual studies may favor gas models photoionized by nonthermal power law photons or other ionization scenario, no clear-cut answer has yet emerged. For the purpose of investigating the importance of shock ionization around NLR we performed optical long-slit spectroscopic observation of Seyfert 2 galaxy, NGC7319, using Subaru telescope during guaranteed time of Faint Object Camera And Spectrograph (FOCAS). We confirmed that NGC7319 has the ENLR (~4kpc) with relatively good alignment with radio components and found the distribution of observed regions in the "diagnostic diagrams"(line ratio versus line ratio plot) are approximately consistent with radiative shock ionization models which assumed about shock front velocity of 500km/s. In addition we discovered the clear anti-corelation between the indicators of gas excitation ([OIII]5007/ Hbeta and [SII](6716+6731)/Halpha) and velocity dispersion over whole observed ENLR. Any other photoionization model could not explain gas kinematics-excitation relation and this anti-corelation is strong evidence of radiative shock ionization, which is probably induced by interaction between jet plasma and NLR clouds. The evidence of the importance of jet-induced shock ionization even

  8. Cloudy 94 and Applications to Quasar Emission Line Regions

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    2000-01-01

    This review discusses the most recent developments of the plasma simulation code Cloudy and its application to the, emission-line regions of quasars. The longterm goal is to develop the tools needed to determine the chemical composition of the emitting gas and the luminosity of the central engine for any emission line source. Emission lines and the underlying thermal continuum are formed in plasmas that are far from thermodynamic equilibrium. Their thermal and ionization states are the result of a balance of a vast set of microphysical processes. Once produced, radiation must, propagate out of the (usually) optically thick source. No analytic solutions are possible, and recourse to numerical simulations is necessary. I am developing the large-scale plasma simulation code Cloudy as an investigative tool for this work, much as an observer might build a spectrometer. This review describes the current version of Cloudy, version 94. It describes improvements made since the, release of the previous version, C90. The major recent, application has been the development of the "Locally Optimally-Emitting Cloud" (LOC) model of AGN emission line regions. Powerful selection effects, introduced by the atomic physics and line formation process, permit individual lines to form most efficiently only near certain selected parameters. These selection effects, together with the presence of gas with a wide range of conditions, are enough to reproduce the spectrum of a typical quasar with little dependence on details. The spectrum actually carries little information to the identity of the emitters. I view this as a major step forward since it provides a method to handle accidental details at the source, so that we can concentrate on essential information such as the luminosity or chemical composition of the quasar.

  9. MUSCLE W49: A Multi-Scale Continuum and Line Exploration of the Most Luminous Star Formation Region in the Milky Way. I. Data and the Mass Structure of the Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Galván-Madrid, R.; Liu, H. B.; Zhang, Z.-Y.; Pineda, J. E.; Peng, T.-C.; Zhang, Q.; Keto, E. R.; Ho, P. T. P.; Rodríguez, L. F.; Zapata, L.; Peters, T.; De Pree, C. G.

    2013-12-01

    The Multi-scale Continuum and Line Exploration of W49 is a comprehensive gas and dust survey of the giant molecular cloud (GMC) of W49A, the most luminous star-formation region in the Milky Way. The project covers, for the first time, the entire GMC at different scales and angular resolutions. In this paper, we present (1) an all-configuration Submillimeter Array mosaic in the 230 GHz (1.3 mm) band covering the central ~3' × 3' (~10 pc, known as W49N), where most of the embedded massive stars reside and (2) Purple Mountain Observatory 14 m telescope observations in the 90 GHz band, covering the entire GMC with maps of up to ~35' × 35' in size, or ~113 pc. We also make use of archival data from the Very Large Array, JCMT-SCUBA, the IRAM 30 m telescope, and the Caltech Submillimeter Observatory BOLOCAM Galactic Plane Survey. We derive the basic physical parameters of the GMC at all scales. Our main findings are as follows. (1) The W49 GMC is one of the most massive in the Galaxy, with a total mass M gas ~ 1.1 × 106 M ⊙ within a radius of 60 pc. Within a radius of 6 pc, the total gas mass is M gas ~ 2 × 105 M ⊙. At these scales, only ~1% of the material is photoionized. The mass reservoir is sufficient to form several young massive clusters (YMCs) as massive as a globular cluster. (2) The mass of the GMC is distributed in a hierarchical network of filaments. At scales <10 pc, a triple, centrally condensed structure peaks toward the ring of HC H II regions in W49N. This structure extends to scales from ~10 to 100 pc through filaments that radially converge toward W49N and its less-prominent neighbor W49S. The W49A starburst most likely formed from global gravitational contraction with localized collapse in a "hub-filament" geometry. (3) Currently, feedback from the central YMCs (with a present mass M cl >~ 5 × 104 M ⊙) is still not enough to entirely disrupt the GMC, but further stellar mass growth could be enough to allow radiation pressure to clear the

  10. MUSCLE W49: A multi-scale continuum and line exploration of the most luminous star formation region in the Milky Way. I. Data and the mass structure of the giant molecular cloud

    SciTech Connect

    Galván-Madrid, R.; Pineda, J. E.; Peng, T.-C.; Liu, H. B.; Ho, P. T. P.; Zhang, Z.-Y.; Zhang, Q.; Keto, E. R.; Rodríguez, L. F.; Zapata, L.; Peters, T.; De Pree, C. G.

    2013-12-20

    The Multi-scale Continuum and Line Exploration of W49 is a comprehensive gas and dust survey of the giant molecular cloud (GMC) of W49A, the most luminous star-formation region in the Milky Way. The project covers, for the first time, the entire GMC at different scales and angular resolutions. In this paper, we present (1) an all-configuration Submillimeter Array mosaic in the 230 GHz (1.3 mm) band covering the central ∼3' × 3' (∼10 pc, known as W49N), where most of the embedded massive stars reside and (2) Purple Mountain Observatory 14 m telescope observations in the 90 GHz band, covering the entire GMC with maps of up to ∼35' × 35' in size, or ∼113 pc. We also make use of archival data from the Very Large Array, JCMT-SCUBA, the IRAM 30 m telescope, and the Caltech Submillimeter Observatory BOLOCAM Galactic Plane Survey. We derive the basic physical parameters of the GMC at all scales. Our main findings are as follows. (1) The W49 GMC is one of the most massive in the Galaxy, with a total mass M {sub gas} ∼ 1.1 × 10{sup 6} M {sub ☉} within a radius of 60 pc. Within a radius of 6 pc, the total gas mass is M {sub gas} ∼ 2 × 10{sup 5} M {sub ☉}. At these scales, only ∼1% of the material is photoionized. The mass reservoir is sufficient to form several young massive clusters (YMCs) as massive as a globular cluster. (2) The mass of the GMC is distributed in a hierarchical network of filaments. At scales <10 pc, a triple, centrally condensed structure peaks toward the ring of HC H II regions in W49N. This structure extends to scales from ∼10 to 100 pc through filaments that radially converge toward W49N and its less-prominent neighbor W49S. The W49A starburst most likely formed from global gravitational contraction with localized collapse in a 'hub-filament' geometry. (3) Currently, feedback from the central YMCs (with a present mass M {sub cl} ≳ 5 × 10{sup 4} M {sub ☉}) is still not enough to entirely disrupt the GMC, but further stellar

  11. Microlensing of the broad line region in 17 lensed quasars

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemékers, D.; Courbin, F.; Meylan, G.; Wambsganss, J.

    2012-08-01

    When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be observed in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars with bolometric luminosities between 1044.7 - 47.4 erg/s and black hole masses 107.6 - 9.8 M⊙. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a simple spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% show microlensing of the broad emission lines. Focusing on the most common emission lines in our spectra (C III] and Mg II) we detect microlensing of either the blue or the red wing, or of both wings with the same amplitude. This observation implies that the broad line region is not in general spherically symmetric. In addition, the frequent detection of microlensing of the blue and red wings independently but not simultaneously with a different amplitude, does not support existing microlensing simulations of a biconical outflow. Our analysis also provides the intrinsic flux ratio between the lensed images and the magnitude of the microlensing affecting the continuum. These two quantities are particularly relevant for the determination of the fraction of matter in clumpy form in galaxies and for the detection of dark matter substructures via the identification

  12. Reverberation Mapping of the Broad Line Region: Application to a Hydrodynamical Line-driven Disk Wind Solution

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny

    2016-08-01

    The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (i≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .

  13. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  14. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    SciTech Connect

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-10-20

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad H{beta} line and place tight upper limits on the strengths of their [O III] lines. Virial, H{beta}-based black hole mass determinations indicate normalized accretion rates of L/L {sub Edd}=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of {Gamma} = 1.91{sup +0.24} {sub -0.22}, which supports the virial L/L {sub Edd} determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  15. Seafloor geology of the U.S. Line Islands region

    NASA Astrophysics Data System (ADS)

    Jones, M.; Eakins, B.; Barth, G. A.

    2013-12-01

    Marine geophysical surveys of the U.S. Extended Continental Shelf and Exclusive Economic Zone in the U.S. portion of the Line Islands (Kingman Reef and Palmyra Atoll) have permitted the creation of a geologic map of the seafloor surrounding the islands. Source data include modern multibeam swath sonar surveys, GLORIA sidescan sonar imagery, and seismic reflection profiles. The region is principally comprised of a high bathymetric ridge that the islands sit atop, which is the source of significant sediment found in the region, and a seamount province to the northwest; the entire area is elevated above nearby abyssal plains. Analysis of seamount summit depths in the area show that flat-topped seamounts ('guyots') are found down to 1650 meters below sea level, while the summits of peaked seamounts are principally, though not exclusively, found at deeper depths. Landslide deposits, sediment channels and other bedforms are also identified.

  16. View facing north, Structure 162 in foreground, as Transmission Line ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing north, Structure 16-2 in foreground, as Transmission Line turns at intersection of Powerline Road and US 87 - Havre Rainbow Transmission Line, Havre City to Great Falls vicinity, Montana, Great Falls, Cascade County, MT

  17. View facing south, near Structure 515, of Transmission Line rising ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing south, near Structure 51-5, of Transmission Line rising out of Marias River Valley - Havre Rainbow Transmission Line, Havre City to Great Falls vicinity, Montana, Great Falls, Cascade County, MT

  18. LINE-OF-SIGHT SHELL STRUCTURE OF THE CYGNUS LOOP

    SciTech Connect

    Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru; Kimura, Masashi; Kosugi, Hiroko; Takahashi, Hiroaki

    2009-11-10

    We conducted a comprehensive study on the shell structure of the Cygnus Loop using 41 observation data obtained by the Suzaku and the XMM-Newton satellites. To investigate the detailed plasma structure of the Cygnus Loop, we divided our fields of view into 1042 box regions. From the spectral analysis, the spectra obtained from the limb of the Loop are well fitted by the single-component non-equilibrium ionization plasma model. On the other hand, the spectra obtained from the inner regions are well fitted by the two-component model. As a result, we confirmed that the low-temperature and high-temperature components originated from the surrounding interstellar matter (ISM) and the ejecta of the Loop, respectively. From the best-fit results, we showed a flux distribution of the ISM component. The distribution clearly shows the limb-brightening structure, and we found out some low-flux regions. Among them, the south blowout region has the lowest flux. We also found other large low-flux regions at slightly west and northeast from the center. We estimated the former thin shell region to be approx1.{sup 0}3 in diameter and concluded that there exists a blowout along the line of sight in addition to the south blowout. We also calculated the emission measure distribution of the ISM component and showed that the Cygnus Loop is far from the result obtained by a simple Sedov evolution model. From the results, we support that the Cygnus Loop originated from a cavity explosion. The emission measure distribution also suggests that the cavity-wall density is higher in the northeast than that in the southwest. These results suggest that the thickness of the cavity wall surrounding the Cygnus Loop is not uniform.

  19. Line profiles and the kinematics of the narrow-line region in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    De Robertis, M. M.; Shaw, Richard A.

    1990-01-01

    High signal-to-noise ratio and long-slit CCD spectra at about 100 km/sec resolution have been obtained for six high-ionization Seyfert galaxies. By subtracting the stellar absorption features with the aid of continuum templates, and using deblending techniques, the asymmetry indices of a number of optical emission-line profiles were measured, spanning a wide range in both ionization potential and critical density in each galaxy. The fundamental problem of the cloud-motion direction in the narrow-line region (NLR) has been studied, using these measurements and on the assumption that the preponderance of blueward profile asymmetries requires radial motion as well as a source of extinction. Simple and spherically symmetric NLR simulations are performed to demonstrate that infall and outflow models can be distinguished by comparing asymmetry indices as a function of ionization potential and critical density.

  20. Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei XVI: A 13 Year Study of Spectral Variability in NGC 5548

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.

    2002-01-01

    We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).

  1. Line profile studies of hydrodynamical models of cometary compact H II regions

    NASA Astrophysics Data System (ADS)

    Zhu, Feng-Yao; Zhu, Qing-Feng

    2015-06-01

    We simulate the evolution of cometary H II regions based on several champagne flow models and bow shock models, and calculate the profiles of the [Ne II] fine-structure line at 12.81 μm, the H30α recombination line and the [Ne III] fine-structure line at 15.55 μm for these models at different inclinations of 0°, 30° and 60°. We find that the profiles in the bow shock models are generally different from those in the champagne flow models, but the profiles in the bow shock models with lower stellar velocity (≤ 5 km s-1) are similar to those in the champagne flow models. In champagne flow models, both the velocity of peak flux and the flux weighted central velocities of all three lines point outward from molecular clouds. In bow shock models, the directions of these velocities depend on the speed of stars. The central velocities of these lines are consistent with the stellar motion in the high stellar speed cases, but they are opposite directions from the stellar motion in the low speed cases. We notice that the line profiles from the slit along the symmetrical axis of the projected 2D image of these models are useful for distinguishing bow shock models from champagne flow models. It is also confirmed by the calculation that the flux weighted central velocity and the line luminosity of the [Ne III] line can be estimated from the [Ne II] line and the H30α line.

  2. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  3. Physical Conditions in the Source Region of a Zebra Structure

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.; Stupishin, A. G.

    2016-07-01

    We analyze the physical conditions in the source region of a zebra structure, observed with the Ondřejov radiospectrograph during the 1 August 2010 solar flare. To determine the gyro-frequency harmonic numbers of the observed zebra lines, we compute the magnetic field strength, the electron density, and their spatial scales in the source region of the zebra structure. The region where the flare occurred is analyzed using EUV (171 Å and 335 Å) observations. To determine the conditions in the zebra source region, the magnetic field structure is reconstructed using observed photospheric magnetic field data. By computing the dependence of the magnetic field vs. height in this reconstruction and by comparing the magnetic field strength derived from the zebra structure, we determine the dependence of the electron density vs. height in the zebra source-region. We identify the loops where the zebra structure was generated at heights of about 2.5 - 3.3 Mm. Assuming the barometric law for the electron density, we determine the temperature in the zebra source-region to be T ≈ 2.0 × 104 K. Comparing the obtained values of the temperature and electron density in the zebra source-region with a model of the solar atmosphere, we find that the zebra structure was generated in the transition region, in agreement with our previous results.

  4. Physical Conditions in the Source Region of a Zebra Structure

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.; Stupishin, A. G.

    2016-08-01

    We analyze the physical conditions in the source region of a zebra structure, observed with the Ondřejov radiospectrograph during the 1 August 2010 solar flare. To determine the gyro-frequency harmonic numbers of the observed zebra lines, we compute the magnetic field strength, the electron density, and their spatial scales in the source region of the zebra structure. The region where the flare occurred is analyzed using EUV (171 Å and 335 Å) observations. To determine the conditions in the zebra source region, the magnetic field structure is reconstructed using observed photospheric magnetic field data. By computing the dependence of the magnetic field vs. height in this reconstruction and by comparing the magnetic field strength derived from the zebra structure, we determine the dependence of the electron density vs. height in the zebra source-region. We identify the loops where the zebra structure was generated at heights of about 2.5 - 3.3 Mm. Assuming the barometric law for the electron density, we determine the temperature in the zebra source-region to be T ≈ 2.0 × 104~K. Comparing the obtained values of the temperature and electron density in the zebra source-region with a model of the solar atmosphere, we find that the zebra structure was generated in the transition region, in agreement with our previous results.

  5. HST/FOC imaging of the narrow-line region of NGC 1068

    NASA Technical Reports Server (NTRS)

    Macchetto, F.; Capetti, A.; Sparks, W. B.; Axon, D. J.; Boksenberg, A.

    1994-01-01

    We present imaging observations of NGC 1068 taken with the COSTAR-corrected (Corrective-Optics Space Telescope Axial Replacement) Faint Object Camera (FOC) on board the Hubble Space Telescope (HST) in the UV and optical continuum and (O III) emission lines. From these observations the structure of the nuclear region of NGC 1068 is shown to be very complex. Bright filamentary and patchy structures are intermingled with dark lanes. Other interesting features are identified, including the location of the UV peak with respect to the peak of line emission, the existence of an unusual 'twin-crescent' object near the nucleus, and point sources in the field. In the UV to optical flux ratio image, an extended conical region stands out for its blue color which may be tracing reflected nuclear light.

  6. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    NASA Technical Reports Server (NTRS)

    Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1994-01-01

    , with any lag between the 1350 A continuum and the 5100 A continuum amounting to less than about one day; (2) that the variations in the highest ionization lines observed, He II lambda 1640 and N V lambda 1240, lag behind the continuum variations by somewhat less than 2 days, and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are preliminary and quite uncertain, but there are some weak indications that the emission-line (wings absolute value of Delta upsilon is greater than or equal to 3000 km/s) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad H beta line flux follow the continuum variations with a time lag of around two weeks, about twice the lag for Ly alpha and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Ly alpha, C IV, and H Beta are each slightly smaller than previously determined. We confirm two trends reported earlier, namely (1) that the UV/optical continuum becomes 'harder' as it gets brighter, and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratificatin of a broad-line region that spans over an order of magnitude range in radius.

  7. Fe K LINE COMPLEX IN THE NUCLEAR REGION OF NGC 253

    SciTech Connect

    Mitsuishi, Ikuyuki; Yamasaki, Noriko Y.; Takei, Yoh

    2011-12-15

    A bright, nearby edge-on starburst galaxy, NGC 253, was studied using the Suzaku, XMM, and Chandra X-ray observatories. With Suzaku and XMM we detected complex line structure of Fe K, which is resolved into three lines (Fe I at 6.4 keV, Fe XXV at 6.7 keV, and Fe XXVI at 7.0 keV) around the center of NGC 253. Especially, the Fe I and Fe XXVI lines are the first clear detections, with a significance of >99.99% and 99.89% estimated by a Monte Carlo procedure. Imaging spectroscopy with Chandra revealed that the emission is distributed in {approx}60 arcsec{sup 2} region around the nucleus, which suggests that the source is not only the buried active galactic nucleus. The flux of highly ionized Fe lines can be explained by the accumulation of 10-1000 supernova remnants that are the result of high star-forming activity, while the Fe I line flux is consistent with the fluorescent line emission expected with the molecular clouds in the region.

  8. Harnessing natural product assembly lines: structure, promiscuity, and engineering.

    PubMed

    Ladner, Christopher C; Williams, Gavin J

    2016-03-01

    Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies has been developed that enables the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and non-ribosomal peptide analogues. PMID:26527577

  9. Inspection of composite structures using line scanning thermography

    NASA Astrophysics Data System (ADS)

    Ley, Obdulia; Butera, Manny; Godinez, Valery

    2012-06-01

    This work deals with the non destructive analysis of different composite parts and structures using Line Scanning Thermography (LST), a non-contact inspection method based in dynamic thermography. The LST technique provides a quick and efficient methodology to scan wide areas rapidly; the technique has been used on the inspection of composite propellers, sandwich panels, motor case tubes and wind turbine blades, among others. In LST a line heat source is used to thermally excite the surface under study while an infrared detector records the transient surface temperature variation of the heated region. Line Scanning Thermography (LST), has successfully been applied to determine the thickness of metallic plates and to assess boiler tube thinning. In this paper the LST protocols developed for the detection of sub-surface defects in different composite materials commonly used in aerospace applications, plates will be presented. In most cases the thermal images acquired using LST will be compared with ultrasonic c-scans. The fundamentals of LST will be discussed, as well as the limitations of this technique for NDT inspection.

  10. Exotic structures near the drip lines

    SciTech Connect

    Sharma, M. M.; Saldanha, A. A.; Sharma, J. K.

    2011-10-28

    In our recent study of the isotope shifts of Kr isotopes near rp-process path in the framework of the RMF theory, we have found that due to large shell gaps in the deformed space, several N = Z nuclei exhibit the double magicity of protons and neutrons. These nuclei are known to contribute to large abundances in the rp-process nucleosynthesis and have been shown to be the waiting-point nuclei. In another study of the shell effects at N = 126 near the neutron drip line, we have found that nuclei exhibit additional stability beyond the neutron drip line.

  11. Untangling the Recombination Line Emission from H II Regions with Multiple Velocity Components

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Hough, L. A.; Wenger, Trey V.; Bania, T. M.; Balser, Dana S.

    2015-09-01

    H ii regions are the ionized spheres surrounding high-mass stars. They are ideal targets for tracing Galactic structure because they are predominantly found in spiral arms and have high luminosities at infrared and radio wavelengths. In the Green Bank Telescope H ii Region Discovery Survey (GBT HRDS), we found that \\gt 30% of first Galactic quadrant H ii regions have multiple hydrogen radio recombination line (RRL) velocities, which makes determining their Galactic locations and physical properties impossible. Here we make additional GBT RRL observations to determine the discrete H ii region velocity for all 117 multiple-velocity sources within 18^\\circ \\lt {\\ell }\\lt 65^\\circ . The multiple-velocity sources are concentrated in the zone 22^\\circ \\lt {\\ell }\\lt 32^\\circ , coinciding with the largest regions of massive star formation, which implies that the diffuse emission is caused by leaked ionizing photons. We combine our observations with analyses of the electron temperature, molecular gas, and carbon recombination lines to determine the source velocities for 103 discrete H ii regions (88% of the sample). With the source velocities known, we resolve the kinematic distance ambiguity for 47 regions, and thus determine their heliocentric distances.

  12. The line-emitting regions of the exceptional Seyfert galaxy Markarian 359

    SciTech Connect

    Veilleux, S. )

    1991-02-01

    The results of a kinematic study of the narrow- and broad-line regions in Mrk 359 are presented. The emission-line profiles between 4600 and 7500 A are used to derive the physical characteristics of the line-emitting gas. Many aspects of the emission-line profiles of Mrk 359 make this object an exceptional Seyfert galaxy: extremely small widths of both the forbidden lines and the broad component of the permitted lines, absence of profile substructure, large blueward asymmetry of the high-ionization forbidden lines despite the apparent absence of reddening in the narrow-line region. Various scenarios are proposed to explain these results. 65 refs.

  13. SMILES (SIMPLIFIED MOLECULAR IDENTIFICATION AND LINE ENTRY SYSTEM): A LINE NOTATION AND COMPUTERIZED INTERPRETER FOR CHEMICAL STRUCTURES

    EPA Science Inventory

    A line notation syntax and software interpreter for specifying chemical structures on small and large computers is presented. The Simplified Molecular Identification and Line Entry System, SMILES, contains the advantages of line notations for specifying structures but avoids the ...

  14. Emission line spectropolarimetry and circumstellar structures

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.

    2015-10-01

    We discuss the role of linear emission-line polarimetry in a wide set of stellar environments, involving the accretion disks around young pre-main sequence stars, to the aspherical outflows from O stars, luminous blue variables and Wolf-Rayet stars, just prior to explosion as a supernova or a gamma-ray burst. We predict subtle QU line signatures, such as single/double QU loops for un/disrupted disks. Whilst there is plenty of evidence for single QU loops, suggesting the presence of disrupted disks around young stars, current sensitivity (with S/N of order 1000) is typically not sufficient to allow for quantitative 3D Monte Carlo modeling. However, the detection of our predicted signatures is expected to become feasible with the massive improvement in sensitivity of extremely large mirrors.

  15. The Diagnostic Potential of Transition Region Lines Undergoing Transient Ionization in Dynamic Events

    NASA Astrophysics Data System (ADS)

    Doyle, J. G.; Giunta, A.; Singh, A.; Madjarska, M. S.; Summers, H.; Kellett, B. J.; O'Mullane, M.

    2012-09-01

    We discuss the diagnostic potential of high cadence UV spectral data when transient ionization is considered. For this we use high cadence UV spectra taken during the impulsive phase of a solar flare (observed with instruments on-board the Solar Maximum Mission) which showed excellent correspondence with hard X-ray pulses. The ionization fraction of the transition region ion O v and, in particular, the contribution function for the O v 1371 Å line are computed within the Atomic Data and Analysis Structure, which is a collection of fundamental and derived atomic data and codes to manipulate them. Due to transient ionization, the O v 1371 Å line is enhanced in the first fraction of a second with the peak in the line contribution function occurring initially at a higher electron temperature than in ionization equilibrium. The rise time and enhancement factor depend mostly on the electron density. The fractional increase in the O v 1371 Å emissivity due to transient ionization can reach a factor of two-four and can explain the fast response in the line flux of transition regions ions during the impulsive phase of flares solely as a result of transient ionization. This technique can be used to diagnose the electron temperature and density of solar flares observed with the forthcoming Interface Region Imaging Spectrograph.

  16. Ig Constant Region Effects on Variable Region Structure and Function.

    PubMed

    Janda, Alena; Bowen, Anthony; Greenspan, Neil S; Casadevall, Arturo

    2016-01-01

    The adaptive humoral immune response is responsible for the generation of antimicrobial proteins known as immunoglobulin molecules or antibodies. Immunoglobulins provide a defense system against pathogenic microbes and toxins by targeting them for removal and/or destruction. Historically, antibodies have been thought to be composed of distinct structural domains known as the variable and constant regions that are responsible for antigen binding and mediating effector functions such as opsonization and complement activation, respectively. These domains were thought to be structurally and functionally independent. Recent work has revealed however, that in some families of antibodies, the two regions can influence each other. We will discuss the body of work that led to these observations, as well as the mechanisms that have been proposed to explain how these two different antibody regions may interact in the function of antigen binding. PMID:26870003

  17. Ig Constant Region Effects on Variable Region Structure and Function

    PubMed Central

    Janda, Alena; Bowen, Anthony; Greenspan, Neil S.; Casadevall, Arturo

    2016-01-01

    The adaptive humoral immune response is responsible for the generation of antimicrobial proteins known as immunoglobulin molecules or antibodies. Immunoglobulins provide a defense system against pathogenic microbes and toxins by targeting them for removal and/or destruction. Historically, antibodies have been thought to be composed of distinct structural domains known as the variable and constant regions that are responsible for antigen binding and mediating effector functions such as opsonization and complement activation, respectively. These domains were thought to be structurally and functionally independent. Recent work has revealed however, that in some families of antibodies, the two regions can influence each other. We will discuss the body of work that led to these observations, as well as the mechanisms that have been proposed to explain how these two different antibody regions may interact in the function of antigen binding. PMID:26870003

  18. A far-infrared molecular and atomic line survey of the Orion KL region

    NASA Astrophysics Data System (ADS)

    Lerate, M. R.; Barlow, M. J.; Swinyard, B. M.; Goicoechea, J. R.; Cernicharo, J.; Grundy, T. W.; Lim, T. L.; Polehampton, E. T.; Baluteau, J.-P.; Viti, S.; Yates, J.

    2006-08-01

    We have carried out a high spectral resolution (λ/Δλ ~ 6800-9700) line survey towards the Orion Kleinmann-Low (KL) cluster from 44 to 188 μm. The observations were taken with the Long Wavelength Spectrometer (LWS) in Fabry-Pérot mode, on board the Infrared Space Observatory (ISO). A total of 152 lines are clearly detected and a further 34 features are present as possible detections. The spectrum is dominated by the molecular species H2O, OH and CO, along with [OI] and [CII] lines from photodissociation region (PDR) or shocked gas and [O III] and [NIII] lines from the foreground M42 HII region. Several isotopic species, as well as NH3, are also detected. HDO and H3O+ are tentatively detected for the first time in the far-infrared (FIR) range towards Orion KL. A basic analysis of the line observations is carried out, by comparing with previous measurements and published models and deriving rotational temperatures and column densities in the case of the molecular species. Analysis of the [OI] and [CII] fine structure lines indicates that although a shock model can reproduce the observed [OI] surface brightness levels, it falls short of the observed [CII] level by more than a factor of 30. A PDR model can reproduce the [OI] 63.2 μm and [CII] surface brightness levels within 35 per cent, although overpredicting the LWS [OI] 145.5 μm-emission by a factor of 2.7. The 70 water lines and 22 OH lines detected by the survey appear with mainly P Cygni profiles at the shortest survey wavelengths and with mainly pure emission profiles at the longest survey wavelengths. The emission and absorption velocity peaks of the water and OH lines indicate that they are associated with gas expanding in the outflow from the KL cluster. The estimated column densities are (2-5) × 1014 cm-2 for H2O and (2.5-5.1) × 1016 cm-2 for OH. The 26 detected CO lines confirm the presence of three distinct components, with temperature and column density combinations ranging from 660 K, 6 × 1017

  19. Properties of solar coronal active regions deduced from X-ray line spectra

    NASA Astrophysics Data System (ADS)

    McKenzie, D. L.

    1987-11-01

    Spectra from the SOLEX B RAP spectrometer have been used to analyze the temperature and density structure of over 100 nonflaring solar active regions. Density measurements that used the R ratio of O VII indicated that few regions have electron densities higher than ≡3×109cm-3. In a few cases, flare-productive regions had measured densities approximately twice this high. Temperature-sensitive line ratios in the helium-like ions O VII, Ne IX, and Mg XI were used to decude the general properties of the differential emission-measure function B(T) for nonflaring regions. B(T) falls off with increasing temperature above a peak temperature that is almost always lower than Tm(O VII) = 1.8×106K.

  20. Regions of Generation and Optical Thicknesses of dm-Zebra Lines

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.

    2015-07-01

    Using a new model based on the double plasma resonance (DPR), we show that the zebra structure seen in solar radio bursts is generated in the transition region and at the tops of the magnetic arcade. The magnetic field in zebra sources is probably weaker than 150 gauss. According to this model, a generation of zebras in stronger magnetic fields is improbable. The high-frequency boundary of decimetric zebras depends on the background electron plasma density, but not on the magnetic field strength in the generation regions. The bremsstrahlung absorption in atmospheric layers above the DPR zebra generation region and the cyclotron absorption in the DPR region and in the gyroresonance layers at higher altitudes limit the spectrum of zebras from both high-frequency and low-frequency sides. While the bremsstrahlung reduces the emission from the high-frequency side, the cyclotron absorption limits the low-frequency side. The observed frequency range and the number of observed zebra lines are determined not only by these absorptions, but also by appropriate distribution functions of superthermal electrons and plasma conditions in this region. Low-frequency (metric) zebra emissions can be generated at high altitudes. Computations show that such emissions can escape from the DPR generation region only at high gyro-harmonics () and with many zebra lines.

  1. Flux Line Lattice Structure in YNi2B2C

    NASA Astrophysics Data System (ADS)

    Kawano-Furukawa, Hazuki; Ohira-Kawamura, Seiko; Tsukagoshi, Hitomi; Kobayashi, Chiyako; Nagata, Takashi; Sakiyama, Naoki; Yoshizawa, Hideki; Yethiraj, Mohana; Suzuki, Jun-ichi; Takeya, Hiroyuki

    2008-10-01

    Recently Nakai et al. reported a theoretical H-T phase diagram of flux line lattice (FLL) structure in which successive transitions from a triangular, a square (\\squarev), a triangular and another square (\\squareg) occur with increasing a magnetic field. Here \\squarev and \\squareg indicate the FLL structures reflecting anisotropies in the Fermi velocity and the superconducting gap, respectively. In the case of YNi2B2C, \\squarev and \\squareg should rotate by 45°. The low field transition from triangular to \\squarev is observed in RENi2B2C (\\textit{RE}=Er, Tm, Lu, and Y). However, there is no experimental evidence for the appearance of \\squareg phase so far. We studied the FLL structure of YNi2B2C in the higher field region by small-angle neutron scattering. Our results show that a large area of the H-T phase diagram is occupied by \\squarev phase and there is no evidence for the appearance of \\squareg lattice.

  2. Resolving the coronal line region of NGC 1068 with near-infrared integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Mazzalay, X.; Rodríguez-Ardila, A.; Komossa, S.; McGregor, Peter J.

    2013-04-01

    We present adaptive optics-assisted J- and K-band integral field spectroscopy of the inner 300 × 300 pc of the Seyfert 2 galaxy NGC 1068. The data were obtained with the Gemini Near-infrared Integral-Field Spectrograph integral field unit spectrometer, which provided us with high-spatial and high-spectral resolution sampling. The wavelength range covered by the observations allowed us to study the [Ca VIII], [Si VI], [Si VII], [Al IX] and [S IX] coronal line (CL) emission, covering ionization potentials up to 328 eV. The observations reveal very rich and complex structures, both in terms of velocity fields and emission-line ratios. The CL emission is elongated along the NE-SW direction, with the stronger emission preferentially localized to the NE of the nucleus. CLs are emitted by gas covering a wide range of velocities, with maximum blueshifts/redshifts of ˜ -1600/1000 km s-1. There is a trend for the gas located on the NE side of the nucleus to be blueshifted while the gas located towards the SW is redshifted. The morphology and the kinematics of the near-infrared CLs are in very good agreement with the ones displayed by low-ionization lines and optical CLs, suggesting a common origin. The line flux distributions, velocity maps, ionization structure (traced by the [Si VII]/[Si VI] emission-line ratio) and low-ionization emission-line ratios (i.e. [Fe II]/Paβ and [Fe II]/[P II]) suggest that the radio jet plays an important role in the structure of the CL region of this object, and possibly in its kinematics.

  3. Analysis of magnesium XI line profiles from solar active regions

    NASA Technical Reports Server (NTRS)

    Blake, R. L.; Cowan, R. D.; Felthauser, H.; Fenimore, E. E.; Hockaday, M. P.; Bely-Dubau, F.; Faucher, P.; Steenman-Clark, L.

    1984-01-01

    High-resolution solar spectra of the Mg XI 1s2 1S0-1s2p 1P1 resonance line at 9.169 A and the associated nearby satellite lines obtained from two rocket-borne crystal spectrometer measurements are presented. Comparisons with two independent sets of theoretical calculations for the 1s2nl-1s2pnl dielectronic satellite lines with n = 3-7 indicate electron temperatures of 4-4.5 million K. Measured line widths indicate either that the ion temperature exceeds the electron temperature by about a million K or that about 28 km/s of turbulence is present.

  4. Potential structures and particle acceleration on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gorney, D. J.

    Observations of plasmas and electric field activity within regions of auroral particle acceleration have verified the existence of electric fields with components parallel to the magnetic field over large altitude regions. Evidence is presented which indicates that small-ampliatude double layers along the auroral magnetic field lines may provide a mechanism for the maintenance of auroral ion potential. Evidence is also presented of downward-directed parallel electric fields along the magnetic field lines in the return current region. It is suggested that the downward electric fields may have significant effects on ion trajectories, and further theoretical investigation of the effects of downward parallel electric fields on ion conic formation is recommended.

  5. Detail of insulator array at first line structure showing historic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of insulator array at first line structure showing historic porcelain suspension insulators in strings of eight, porcelain jumper support insulators in strings of six, arch rings and ball weights - Morony Hydroelectric Facility, Morony-to-Rainbow 100 kV Transmission Line, West bank of the Missouri River, Great Falls, Cascade County, MT

  6. Fine structure line emission from supergiants

    NASA Astrophysics Data System (ADS)

    Haas, Michael R.; Glassgold, Alfred E.; Tielens, Alexander G. G. M.

    We have detected (O I) 63 micron and (Si II) 35 micron emission from the oxygen-rich, M supergiants alpha Orionis (Betelgeuse), alpha Scorpii (Antares), and alpha Herculis (Rasalgethi). The measured fluxes indicate that the emission originates in dense, warm gas in the inner envelope or transition region where molecules and dust are expected to form and the acceleration of the wind occurs. Mass-loss rates are derived, evidence for time variability is presented, and results for other evolved stars are included.

  7. Fine structure line emission from supergiants

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; Glassgold, Alfred E.; Tielens, Alexander G. G. M.

    1995-01-01

    We have detected (O I) 63 micron and (Si II) 35 micron emission from the oxygen-rich, M supergiants alpha Orionis (Betelgeuse), alpha Scorpii (Antares), and alpha Herculis (Rasalgethi). The measured fluxes indicate that the emission originates in dense, warm gas in the inner envelope or transition region where molecules and dust are expected to form and the acceleration of the wind occurs. Mass-loss rates are derived, evidence for time variability is presented, and results for other evolved stars are included.

  8. 53. LAYOUT OF POWER CANAL LINE, LIST OF STRUCTURES Courtesy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. LAYOUT OF POWER CANAL LINE, LIST OF STRUCTURES Courtesy of Reclamation Service, Salt River Project, Arizona - Roosevelt Power Canal & Diversion Dam, Parallels Salt River, Roosevelt, Gila County, AZ

  9. Broad-line region at the center of the Galaxy

    SciTech Connect

    Geballe, T.R.; Wade, R.; Krisciunas, K.; Gatley, I.; Bird, M.C.

    1987-09-01

    The high-velocity wings of the Br-alpha (405 micron) line at the Galactic center have been mapped with a 2.5 arcsec beam and at a velocity resolution of 400 km/s. The peak intensity of the high-velocity line emission is coincident with the position of the source IRS 16 Center. It is suggested that the broad-line emission either is from more than one compact wind source or is the result of an interaction between an ultrahigh velocity wind and slower moving ionized gas in the bar whose trajectory brings it close to the wind source. 31 references.

  10. Line-of-sight structure toward strong lensing galaxy clusters

    SciTech Connect

    Bayliss, Matthew B.; Johnson, Traci; Sharon, Keren; Gladders, Michael D.; Oguri, Masamune

    2014-03-01

    We present an analysis of the line-of-sight structure toward a sample of 10 strong lensing cluster cores. Structure is traced by groups that are identified spectroscopically in the redshift range, 0.1 ≤ z ≤ 0.9, and we measure the projected angular and comoving separations between each group and the primary strong lensing clusters in each corresponding line of sight. From these data we measure the distribution of projected angular separations between the primary strong lensing clusters and uncorrelated large-scale structure as traced by groups. We then compare the observed distribution of angular separations for our strong lensing selected lines of sight against the distribution of groups that is predicted for clusters lying along random lines of sight. There is clear evidence for an excess of structure along the line of sight at small angular separations (θ ≤ 6') along the strong lensing selected lines of sight, indicating that uncorrelated structure is a significant systematic that contributes to producing galaxy clusters with large cross sections for strong lensing. The prevalence of line-of-sight structure is one of several biases in strong lensing clusters that can potentially be folded into cosmological measurements using galaxy cluster samples. These results also have implications for current and future studies—such as the Hubble Space Telescope Frontier Fields—that make use of massive galaxy cluster lenses as precision cosmological telescopes; it is essential that the contribution of line-of-sight structure be carefully accounted for in the strong lens modeling of the cluster lenses.

  11. A yield line evaluation methodology for reinforced concrete structures

    SciTech Connect

    Mertz, G.E.

    1997-03-01

    Yield line theory is an analytical technique that can be used to determine the ultimate bending capacity of flat reinforced concrete plates. Alternately, yield line theory, combined with rotation limits, can be used to determine the energy absorption capacity of plates subjected to impulsive and impact loadings. Typical components analyzed by yield line theory are basements, floor and roof slabs subjected to vertical loads, and walls subjected to out of plane loadings. Yield line theory equates plastic strain energy to external work for postulated collapse mechanisms. Multiple collapse mechanisms are evaluated and the mechanism with the minimum strain energy corresponds to the collapse load. Numerous investigators have verified yield line theory by experiment. Analysis by yield line theory is currently accepted by the ACI-318 Building Code Requirements for Reinforced Concrete and ACI-349 Code Requirements for Nuclear Safety Related Concrete Structures. One limitation of yield line theory is that it is computational difficult to evaluate some collapse mechanism. This problem is aggravated by the complex geometry nd reinforcing layouts commonly found in practice. The Yield Line Evaluator (YLE) is a computer program which was developed to solve computationally tedious yield line mechanisms. The program has the capability to either evaluate a single user-defined mechanism or to iterate over a range of mechanisms to determine the minimum ultimate capacity. The program is verified by comparison to a series of yield line mechanisms with known solutions.

  12. Flexible gas insulated transmission line having regions of reduced electric field

    DOEpatents

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  13. TEMPERATURE STRUCTURE AND METALLICITY IN H II REGIONS

    SciTech Connect

    Rodriguez, Monica; GarcIa-Rojas, Jorge E-mail: jogarcia@iac.e

    2010-01-10

    The metallicities implied by collisionally excited lines (CELs) of heavy elements in H II regions are systematically lower than those implied by recombination lines (RLs) by factors of approx2, introducing uncertainties of the same order in the metallicities inferred for the interstellar medium of any star-forming galaxy. Most explanations of this discrepancy are based on the different sensitivities of CELs and RLs to electron temperature, and invoke either some extra heating mechanism producing temperature fluctuations in the ionized region or the addition of cold gas in metal-rich inclusions or ionized by cosmic rays or X-rays. These explanations will change the temperature structure of the ionized gas from the one predicted by simple photoionization models, and depending on which one is correct, will imply different metallicities for the emitting gas. We select nine H II regions with observed spectra of high quality and show that simple models with metallicities close to the ones implied by oxygen CELs reproduce easily their temperature structure, measured with T{sub e}([N II])/T{sub e}([O III]), and their oxygen CELs emission. We discuss the strong constraints that this agreement places on the possible explanations of the discrepancy and suggest that the simplest explanation, namely errors in the line recombination coefficients by factors approx2, might be the correct one. In such case, CELs will provide the best estimates of metallicity.

  14. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I - An 8 month campaign of monitoring NGC 5548 with IUE

    NASA Technical Reports Server (NTRS)

    Clavel, J.; Wamsteker, W. A.; Reichert, G. A.; Crenshaw, D. M.; Alloin, D.

    1991-01-01

    Emission-line and UV continuum observations of the type I Seyfert galaxy NGC 5548 were carried out for a period of 8 months with the IUE satellite. It was found that both the continuum shape and the line ratios of NGC 5548, while being not unusual for type I Seyfert galaxies, are strongly variable. The UV continuum flux and broad emission line fluxed went through three large maxima and three deep minima; the ratio of miximum to minimum flux was about 4.5 for the continuum at 1350 A. The N V and the He II emission lines exhibited maximum-to-minimum flux ratios as high as those of the continuum; other ionization lines (Ly-alpha, C IV, and C III) exhibited smaller amplitude fluctuations, with the smallest being recorded for the Mg II line (about 1.3). It was found that, except for Mg II, the emission-line variations correlated extremely well with those of the 1350-A continuum.

  15. The Regional Structure of Technical Innovation

    NASA Astrophysics Data System (ADS)

    O'Neale, Dion

    2014-03-01

    There is strong evidence that the productivity per capita of cities and regions increases with population. One likely explanation for this phenomenon is that densely populated regions bring together otherwise unlikely combinations of individuals and organisations with diverse, specialised capabilities, leading to increased innovation and productivity. We have used the REGPAT patent database to construct a bipartite network of geographic regions and the patent classes for which those regions display a revealed comparative advantage. By analysing this network, we can infer relationships between different types of patent classes - and hence the structure of (patentable) technology. The network also provides a novel perspective for studying the combinations of technical capabilities in different geographic regions. We investigate measures such as the diversity and ubiquity of innovations within regions and find that diversity (resp. ubiquity) is positively (resp. negatively) correlated with population. We also find evidence of a nested structure for technical innovation. That is, specialised innovations tend to occur only when other more general innovations are already present.

  16. A note on chromospheric fine structure at active region polarity boundaries.

    NASA Technical Reports Server (NTRS)

    Prata, S. W.

    1971-01-01

    High resolution H-alpha filtergrams from Big Bear Solar Observatory reveal that some filamentary features in active regions have fine structure and hence magnetic field transverse to the gross structure and the zero longitudinal field line. These features are distinct from the usual active region filament, in which fine structure, magnetic field, and filament are all parallel to the zero longitudinal field line. The latter occur on boundaries between regions of weaker fields, while the former occur at boundaries between regions of stronger field.

  17. Fine-structure Constancy Measurements in QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Whitmore, Jonathan B.

    2013-01-01

    The ESO Large Programme 185.A-0745 has awarded 10 nights on the VLT-UVES spectrograph for the study of the possible variation in the fine structure constant. We will present the fine-structure measurements from two lines of sight and several absorption systems. We will also present updated systematic error analyses.

  18. Physical parameters of the Orion Bar photodissociation region from radio recombination line observations at 8 mm.

    NASA Astrophysics Data System (ADS)

    Tsivilev, A. P.

    2014-10-01

    Observations of carbon (C), hydrogen and helium (H, He) radio recombination lines (RRLs) at four positions in the Orion Bar photodissociation region (PDR) and toward the center of Orion A have been performed with the RT-22 radio telescope (Pushchino) at 8 mm. The physical parameters of the PDR at these points have been estimated by comparing the carbon RRLs and infrared CII and OI lines. A hydrogen number density in the range 1.2-3.1 × 10^5 cm^-3 and a mean size of the region along the line of sight (L) in the range 0.006-0.04 pc have been derived. The PDR temperature decreases with increasing distance from the exciting star (θ 1 C Ori) from 210-230 to 140-150 K (a distance of ≃5'). The data obtained confirm the increase in the PDR size along the line of sight toward the Orion Bar, where, however, L has turned out to be less than the available values in the literature, which can be explained by the presence of clumps in the PDR. A density jump is evident in the Orion Bar region. The PDR zone encompasses the core of the HII region by a thin layer and extends farther, delineating the boundary and the ionization front of the core of the HII region in the Orion Bar and further out the boundary between the halo of the HII region and the molecular cloud. The derived emission measure (EM) toward the Orion Bar has been compared with other C RRL observations. The EM measured from carbon RRLs is EM ≃ 100(±50%) pc cm^-6, imposing constraints on the possible two-component PDR structure. Estimates show that the star θ 1 C Ori is quite sufficient as a carbon ionization source in the Orion Bar PDR. Some of the data on the ionized hot gas (HII) in this direction have been obtained from H and He RRLs. In particular, the radial velocities (V lsr) of the HII region are blueshifted with respect to V lsr of the PDR by 10-17 km s^-1, while the relative ionized helium abundance decreases with increasing distance from the star, indicating that the helium ionization zone is smaller

  19. Evidence for Broad-Line Region Outflows and Their Impact on Black Hole Mass Measurements

    NASA Astrophysics Data System (ADS)

    Denney, K. D.; Assef, R. J.; Horne, K.; Peterson, B. M.; Vestergaard, M.

    2012-08-01

    Recent velocity-resolved reverberation mapping results have shown indications of possible outflowing gas from the Hβ emitting region of the broad-line region (BLR) in NGC 3227 (Denney et al. 2009, 2010). We show a preliminary velocity-delay map (VDM) from these data that suggests the 2D gas motions could not be fully and accurately interpreted from the 1D velocity-resolved reverberation signal. From the VDM, an outflow component to the emission remains possible but appears to be in addition to an underlying, disk-like BLR structure consistent in size with the measured reverberation lag. The black hole (BH) mass derived from this data is therefore secure from any uncertainties possibly derived from gravitationally unbound gas contributing to the emission. Additionally, we demonstrate that BLR emission from the C IV λ1549 broad emission line can reliably be used as a virial BH mass estimator. The presence of self-absorption, blueshifts, and asymmetries observed in C IV, and possibly connected with outflows, has raised questions in the literature regarding the reliability of using this line for mass estimates. However, our new results (Assef et al. 2011) show that C IV-based masses are in agreement with those of Hβ when (1) data quality is a priority and (2) a color-correction is applied to the luminosity used to compute the mass estimates.

  20. Radiation pressure confinement - II. Application to the broad-line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Stern, Jonathan

    2014-02-01

    Active galactic nuclei (AGN) are characterized by similar broad emission lines properties at all luminosities (1039 - 1047 erg s-1). What produces this similarity over a vast range of 108 in luminosity? Photoionization is inevitably associated with momentum transfer to the photoionized gas. Yet, most of the photoionized gas in the broad-line region (BLR) follows Keplerian orbits, which suggests that the BLR originates from gas with a large enough column for gravity to dominate. The photoionized surface layer of the gas must develop a pressure gradient due to the incident radiation force. We present solutions for the structure of such a hydrostatic photoionized gas layer in the BLR. The gas is stratified, with a low-density highly ionized surface layer, a density rise inwards and a uniform-density cooler inner region, where the gas pressure reaches the incident radiation pressure. This radiation pressure confinement (RPC) of the photoionized layer leads to a universal ionization parameter U ˜ 0.1 in the inner photoionized layer, independent of luminosity and distance. Thus, RPC appears to explain the universality of the BLR properties in AGN. We present predictions for the BLR emission per unit covering factor, as a function of distance from the ionizing source, for a range of ionizing continuum slopes and gas metallicity. The predicted mean strength of most lines (excluding H β), and their different average-emission radii, are consistent with available observations.

  1. Capillary electrophoresis-fluorescence line-narrowing system for on-line structural characterization of molecular analytes

    SciTech Connect

    Jankowiak, R.; Zamzow, D.; Ding, W.; Small, G.J.

    1996-08-01

    We have demonstrated, for the first time, that capillary electrophoresis (CE) can be interfaced with low-temperature fluorescence line-narrowing (FLN) spectroscopy for on-line structural characterization. Detection by laser-induced fluorescence spectroscopy, under fluorescence non-line-narrowing and line-narrowing conditions, provides three-dimensional electropherograms and FLN spectra, which lead to significantly improved overall resolution and allow for structural characterization (`fingerprinting`) of molecular analytes. This novel CE-FLN system consists of a modular CE system, instrumentation for FLN spectroscopy, and a specially designed capillary cryostat (CC). An absorbance detector serves to determine the migration rates of analytes. After the 77 K fluorescence-based electropherogram is generated, the temperature of the capillary is lowered to 4.2 K for high-resolution FLN characterization. Automated translation of the CC and capillary in the direction of the capillary axis allows the separated analytes to be sequentially characterized by fluorescence spectroscopy as the capillary is translated through the laser excitation region. Detection of fluorescence from stationary CE-separated analytes significantly improves the accuracy of quantitation and structural characterization. 41 refs., 4 figs.

  2. Regional crustal structures of Pacific Northwest

    SciTech Connect

    Connard, G.; Couch, R.; Farooqui, S.; Pitts, G.S.; O'Malley, R.

    1986-04-01

    Long-wavelength gravity anomalies combined with regional seismic refraction data, obtained during the last two decades, allow a regional mapping of crustal thickness variations in the Pacific Northwest and the adjacent continental margin. When the effects of these variations in crustal thickness are removed from the gravity data, the residual gravity anomalies outline major upper crustal structures in the Pacific Northwest. Residual gravity anomalies show that the Cascade Range in Oregon fills a major north-south-trending graben. The graben is approximately 60 km wide and 160 km long, and is oriented approximately N10/sup 0/E. Its well-developed western wall exhibits a throw of 2-3 km. The Cascade Range and its associated graben overlie a prominent northeast-southwest structural trend that demarks a Mesozoic orocline. The oroclinal structure extends from the continental margin northwest of the Klamath Mountains in southwestern Oregon through the Blue Mountains in northeastern Oregon, and separates the late Mesozoic to early Tertiary basins of central Oregon and central Washington. A large regional gravity high observed over the Columbia basin in central Washington is attributed to both the thick surface layer of flood basalts and an anomalous lower crust. Gravity data integrated with seismic refraction and geologic data yield a computed model of the crustal structure of the Columbia Plateau. Removing the basalt layer of the model reveals a rift topography or complex graben structure that connects with or adjoins the Cascade graben on the southwest side of the basin and the Chiwaukun, Methow, and Republic grabens on the north side of the basin. These structures in the Pacific Northwest reflect generally east-west extension and wrench tectonics.

  3. Ultraviolet observations of the structure and dynamics of an active region at the limb

    NASA Technical Reports Server (NTRS)

    Korendyke, C. M.; Dere, K. P.; Socker, D. G.; Brueckner, G. E.; Schmieder, B.

    1995-01-01

    The structure and dynamics of active region NOAA 7260 at the limb have been studied using ultraviolet spectra and spectroheliograms obtained during the eighth rocket flight of the Naval Research Laboratory's High Resolution Telescope an Spectrograph (HRTS). The instrument configuration included a narrow-bandpass spectroheliograph to observe the Sun in the lines of C IV lambda 550 and a tandem-Wadsworth mount spectrograph to record the profiles of chromospheric transition region and coronal lines in the 1850-2670 A region. The combination of high spatial resolution and high spectral purity C IV slit jaw images with ultraviolet emission-line spectra corresponding allows examination of a variety of active region phenomena. A time series of spectroheliograms shows large-scale loop systems composed of fine-scale threads with some extending up to 100 Mm above the limb. The proper motion of several supersonic features, including a surge were measured. The accelerated plasmas appear in several different geometries and environments. Spectrograph exposures were taken with the slit positioned at a range of altitudes above the limb and provide a direct comparison between coronal, transition region and chromospheric emission line profiles. The spectral profiles of chromospheric and transition region emission lines show line-of-sight velocities up to 70 km/s. These lower temperature, emission-line spectra show small-scale spatial and velocity variations which are correlated with the threadlike structures seen in C IV. Coronal lines of Fe XII show much lower velocities and no fine structure.

  4. COEXISTENCE OF GRAVITATIONALLY-BOUND AND RADIATION-DRIVEN C IV EMISSION LINE REGIONS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wang Huiyuan; Wang Tinggui; Zhou Hongyan; Liu Bo; Dong Xiaobo; Wang Jianguo

    2011-09-01

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g., C IV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally-bound BELR, which are supported, respectively, by blueshift of the C IV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the C IV and Mg II lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the C IV region is different from that of Mg II, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the C IV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the C IV line region is largely dominated by outflow at high Eddington ratios, while it is primarily gravitationally-bounded at low Eddington ratios. Our results indicate that these two emitting regions coexist in most AGNs. The emission strength from these two gases varies smoothly with Eddington ratio in opposite ways. This explanation naturally reconciles the apparently contradictory views proposed in previous studies. Finally, candidate models are discussed which can account for both the enhancement of outflow emission and suppression of normal BEL in AGNs with high Eddington ratios.

  5. Prospection of genomic regions divergently selected in racing line of Quarter Horses in relation to cutting line.

    PubMed

    Meira, C T; Curi, R A; Farah, M M; de Oliveira, H N; Béltran, N A R; Silva, J A V; Mota, M D S da

    2014-11-01

    Selection of Quarter Horses for different purposes has led to the formation of lines, including racing and cutting horses. The objective of this study was to identify genomic regions divergently selected in racing line of Quarter Horses in relation to cutting line applying relative extended haplotype homozygosity (REHH) analysis, an extension of extended haplotype homozygosity (EHH) analysis, and the fixation index (F ST) statistic. A total of 188 horses of both sexes, born between 1985 and 2009 and registered at the Brazilian Association of Quarter Horse Breeders, including 120 of the racing line and 68 of the cutting line, were genotyped using single nucleotide polymorphism arrays. On the basis of 27 genomic regions identified as selection signatures by REHH and F ST statistics, functional annotations of genes were made in order to identify those that could have been important during formation of the racing line and that could be used subsequently for the development of selection tools. Genes involved in muscle growth (n=8), skeletal growth (n=10), muscle energy metabolism (n=15), cardiovascular system (n=14) and nervous system (n=23) were identified, including the FKTN, INSR, GYS1, CLCN1, MYLK, SYK, ANG, CNTFR and HTR2B. PMID:25032727

  6. Cosmic rays and the emission line regions of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Ferland, G. J.; Mushotzky, R. F.

    1984-01-01

    The effects that the synchrotron emitting relativistic electrons could have on the emission line regions which characterize active nuclei are discussed. Detailed models of both the inner, dense, broad line region and the outer, lower density, narrow line region are presented, together with the first models of the optically emitting gas often found within extended radio lobes. If the relativistic gas which produces the synchrotron radio emission is mixed with the emission line region gas then significant changes in the emission line spectrum will result. The effects of the synchrotron emitting electrons on filaments in the Crab Nebula are discussed in an appendix, along with a comparison between the experimental calculations, which employ the mean escape probability formalism, and recent Hubbard and Puetter models.

  7. An investigation of the convective region of numerically simulated squall lines

    NASA Astrophysics Data System (ADS)

    Bryan, George Howard

    High resolution numerical simulations are utilized to investigate the thermodynamic and kinematic structure of the convective region of squall lines. A new numerical modeling system was developed for this purpose. The model incorporates several new and/or recent advances in numerical modeling, including: a mass- and energy-conserving equation set, based on the compressible system of equations; third-order Runge-Kutta time integration, with high (third to sixth) order spatial discretization; and a new method for conserved-variable mixing in saturated environments, utilizing an exact definition for ice-liquid water potential temperature. A benchmark simulation for moist environments was designed to evaluate the new model. It was found that the mass- and energy-conserving equation set was necessary to produce acceptable results, and that traditional equation sets have a cool bias that leads to systematic underprediction of vertical velocity. The model was developed to run on massively-parallel distributed memory computing systems. This allows for simulations with very high resolution. In this study, squall lines were simulated with grid spacing of 125 m over a 300 km x 60 km x 18 km domain. Results show that the 125 m simulations contain sub-cloud-scale turbulent eddies that stretch and distort plumes of high equivalent potential temperature (thetae) that rise from the pre-squall-line boundary layer. In contrast, with 1 km grid spacing the high thetae plumes rise in a laminar manner, and require parameterized subgrid terms to diffuse the high theta e air. The high resolution output is used to refine the conceptual model of the structure and lifecycle of moist absolutely unstable layers (MAULs). Moist absolute instability forms in the inflow region of the squall line and is subsequently removed by turbulent processes of varying scales. Three general MAUL regimes (MRs) are identified: a laminar MR, characterized by deep (˜2 km) MAULs that extend continuously in both

  8. Singular surfaces in the open field line region of a diverted tokamak

    SciTech Connect

    Reiman, A.

    1995-05-01

    The structure of the open field lines of a slightly nonaxisymmetric, poloidally diverted tokamak is explored by numerical integration of the field line equations for a simple model field. In practice, the nonaxisymmetry could be produced self-consistently by the nonlinear evolution of a free-boundary MHD mode, or it could be produced by field errors, or it could be imposed externally by design. In the presence of a nonaxisymmetric perturbation, the tokamak is shown to develop open field line regions of differing topology separated by singular surfaces. It is argued that the singular surfaces can be expected to play a role analogous to that of rational toroidal flux surfaces, in terms of constraining ideal MHD perturbations and thus constraining the free-energy that can be tapped by ideal MHD instabilities. The possibility of active control of free-boundary instabilities by means of currents driven on the open singular surfaces, which are directly accessible from the divertor plates, is discussed. Also discussed is the possibility of early detection of imminent disruptions through localized measurement of the singular surface currents.

  9. Line parameters for ozone hot bands in the 4.8-micron spectral region

    NASA Technical Reports Server (NTRS)

    Camy-Peyret, Claude; Flaud, Jean-Marie; Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy

    1990-01-01

    Line positions, intensities, and lower-state energies have been calculated for nine hot bands of (O-16)3 in the 4.8-micron spectral region using improved spectroscopic parameters deduced in recent high-resolution laboratory studies. The good quality of the hot-band parameters has been verified through comparisons of line-by-line simulations with 0.005/cm-resolution laboratory spectra of ozone. The present work and the line parameters calculated for the main bands by Pickett et al. (1988) provide a complete update of ozone spectroscopic parameters in the 4.8 micron region.

  10. Doppler wavelength shifts of ultraviolet spectral lines in solar active regions

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Cohen, L.

    1982-01-01

    Doppler shifts are measured for solar UV emission lines formed in the lower transition region of active regions. Doppler shifts in different regions at the same solar location, variations of Doppler shift with position of an active region on the disk, and variations of Doppler shift with time at the same solar location in the same active region were studied. Observations were made with the NRL slit spectrograph on Skylab. Excluding flare and flare-related phenomena, only redshifts are found whose magnitudes correspond to downflow velocities between about 4 and 17 km/s. Shifts are largest for lines formed between about 50,000 and 100,000 K, and are distinctly less for lines formed above 100,000 K. The shifts persist out to the limb, but not above it. There is no obvious change in redshift for lines measured at the same solar location over time intervals of about 20 minutes.

  11. Results and implications of new regional seismic lines in the Malay Basin

    SciTech Connect

    Leslie, W.; Ho, W.K.; Ghani, M.A. )

    1994-07-01

    Regional seismic data, which was previously acquired between 1968 and 1971 by early operators in the Malay Basin, has limitations because the sophisticated modern-day acquisition and processing techniques were not available. These old data do not permit confident mapping below 3 s (TWT), equivalent to approximately 3000 m subsea, but aeromagnetic data indicate that the total sedimentary thickness exceeds 13,000 m. Hence, existing regional seismic data with a record length of 5 s (TWT) is neither adequate to map deeper play opportunities nor able to aid in understanding the geological history of the basin. New plays at deeper levels may exist. (1) Geochemical modeling results now predict the top of the oil generation window at depths greater than previously thought. (2) Existing gas fields occur in the upper section in areas of thickest sedimentary fill but underlying targets have not been tested. (3) Past exploration has been focused on oil and not gas in deeper structures. Because of Malaysia's rapid development and its dedication to the protection of the environment, gas is becoming an increasingly important energy source. Hence, ample internal markets for additional gas discoveries are being created. A better understanding of the Malay Basin geological history will assist in locating these potential plays. To do this, Petronas acquired approximately 3000 line km of high-quality regional seismic data to further exploration efforts in this prospective region.

  12. Regional anaesthesia and analgesia on the front line.

    PubMed

    Scott, D M

    2009-11-01

    Deployment to a combat zone with the military poses many challenges to the anaesthetist. One of these challenges is the safe, rapid and comfortable initial wound management and repatriation of wounded combat soldiers to their home country or tertiary treatment facility for definitive care and rehabilitation. The current conflict in Afghanistan is associated with injury patterns that differ from wars such as Vietnam or Korea. This report describes the experience of an Australian military anaesthetist and the value of regional anaesthesia and analgesia for the care of the wounded combat soldier PMID:20014611

  13. Genomic Heterogeneity and Structural Variation in Soybean Near Isogenic Lines

    PubMed Central

    Stec, Adrian O.; Bhaskar, Pudota B.; Bolon, Yung-Tsi; Nolan, Rebecca; Shoemaker, Randy C.; Vance, Carroll P.; Stupar, Robert M.

    2013-01-01

    Near isogenic lines (NILs) are a critical genetic resource for the soybean research community. The ability to identify and characterize the genes driving the phenotypic differences between NILs is limited by the degree to which differential genetic introgressions can be resolved. Furthermore, the genetic heterogeneity extant among NIL sub-lines is an unaddressed research topic that might have implications for how genomic and phenotypic data from NILs are utilized. In this study, a recently developed high-resolution comparative genomic hybridization (CGH) platform was used to investigate the structure and diversity of genetic introgressions in two classical soybean NIL populations, respectively varying in protein content and iron deficiency chlorosis (IDC) susceptibility. There were three objectives: assess the capacity for CGH to resolve genomic introgressions, identify introgressions that are heterogeneous among NIL sub-lines, and associate heterogeneous introgressions with susceptibility to IDC. Using the CGH approach, introgression boundaries were refined and previously unknown introgressions were revealed. Furthermore, heterogeneous introgressions were identified within seven sub-lines of the IDC NIL “IsoClark.” This included three distinct introgression haplotypes linked to the major iron susceptible locus on chromosome 03. A phenotypic assessment of the seven sub-lines did not reveal any differences in IDC susceptibility, indicating that the genetic heterogeneity among the lines does not have a significant impact on the primary NIL phenotype. PMID:23630538

  14. Proton Spin Structure in the Resonance Region

    SciTech Connect

    F. R. Wesselmann; K. Slifer; S. Tajima; A. Aghalaryan; A. Ahmidouch; R. Asaturyan; F. Bloch; W. Boeglin; P. Bosted; C. Carasco; R. Carlini; J. Cha; J. P. Chen; M. E. Christy; L. Cole; L. Coman; D. Crabb; S. Danagoulian; D. Day; J. Dunne; M. Elaasar; R. Ent; H. Fenker; E. Frlez; L. Gan; D. Gaskell; J. Gomez; B. Hu; M. K. Jones; J. Jourdan; C. Keith; C. E. Keppel; M. Khandaker; A. Klein; L. Kramer; Y. Liang; J. Lichtenstadt; R. Lindgren; D. Mack; P. McKee; D. McNulty; D. Meekins; H. Mkrtchyan; R. Nasseripour; I. Niculescu; K. Normand; B. Norum; D. Pocanic; Y. Prok; B. Raue; J. Reinhold; J. Roche; D. Rohe; O. A. Rondon; N. Savvinov; B. Sawatzky; M. Seely; I. Sick; C. Smith; G. Smith; S. Stepanyan; L. Tang; G. Testa; W. Vulcan; K. Wang; G. Warren; S. Wood; C. Yan; L. Yuan; Junho Yun; Markus Zeier; Hong Guo Zhu

    2006-10-11

    The RSS collaboration has measured the spin structure functions g{sub 1} and g{sub 2} of the proton at Jefferson Lab using the lab's polarized electron beam, the Hall C HMS spectrometer and the UVa polarized solid target. The asymmetries A{sub parallel} and A{sub perp} were measured at the elastic peak and in the region of the nucleon resonances (1.085 GeV < W < 1.910 GeV) at an average four momentum transfer of Q{sup 2} = 1.3 GeV{sup 2}. The extracted spin structure functions and their kinematic dependence make a significant contribution in the study of higher-twist effects and polarized duality tests.

  15. Physical conditions in the narrow-line regions of M51 and NGC 4151

    NASA Astrophysics Data System (ADS)

    Bradley, Larry Daniel

    2004-04-01

    The relative proximity and luminosity of Seyfert galaxies allows for detailed studies of their spatially extended narrow-line regions (NLR), which are the largest structures in these active galactic nuclei (AGN) powered by the active nucleus. In this dissertation, I have used the high spatial resolution of the Hubble Space Telescope ( HST) and Very Large Array (VLA) to examine the physical conditions producing the kinematic and ionization structure observed in the NLR of two Seyfert galaxies, namely NGC 4151 and M51. The physical conditions in the NLR of NGC 4151 were investigated using medium spectral resolution HST/STIS slitless spectra and HST/Wide Field and Planetary Camera 2 (WFPC2) images. The slitless data allowed us to spatially map the velocity field of the complete inner NLR of NGC 4151. The observations show a biconical distribution of emission- line clouds with blueshifted radial velocities to the southwest of the nucleus and redshifted clouds to the northeast of the nucleus. The NLR clouds are distributed in at least two kinematic components, including a population of low-velocity (|v| < 400 km s-1), low-velocity dispersion (Δv < 130 km s-1 ) clouds and high-velocity (400 < |v| < 1700 km s-1), high-velocity dispersion (Δv ≥ 130 km s-1) clouds. Our results suggest that a wind-driven outflow is responsible for the acceleration of the NLR clouds. Within 3.'' 2 (˜200 pc) of the nucleus, the [O III] λ5007/Hβ emission-line ratio decreases approximately as r-0.3 . Because the ionization parameter is proportional to r -2 n-1, it appears that the density, n, of these NLR clouds falls off approximately as r-1.7. The physical conditions in the NLR of M51 were explored using long-slit spectra obtained with the Space Telescope Imaging Spectrograph (STIS) aboard HST and 8.4 GHz (3.6 cm) radio continuum observations obtained with the VLA. Emission-line diagnostics were employed for nine NLR clouds, which extend 2.'' 5 (102

  16. On the emitting region of X-ray fluorescent lines around Compton-thick AGN

    NASA Astrophysics Data System (ADS)

    Liu, Jiren

    2016-06-01

    X-ray fluorescent lines are unique features of the reflection spectrum of the torus when irradiated by the central active galactic nuclei (AGN). Their intrinsic line width can be used to probe the line-emitting region. Previous studies have focused on the Fe K α line at 6.4 keV, which is the most prominent fluorescent line. These studies, however, are limited by the spectral resolution of currently available instruments, the best of which is ˜1860 km s-1 afforded by the Chandra High-Energy Grating (HEG). The HEG spectral resolution is improved by a factor of 4 at 1.74 keV, where the Si K α line is located. We measured the full width at half-maximum of the Si K α line for Circinus, Mrk 3, and NGC 1068, which are 570 ± 240, 730 ± 320, and 320 ± 280 km s-1, respectively. They are 3-5 times smaller than those measured with the Fe K α line previously. It shows that the intrinsic widths of the Fe K α line are most likely to be overestimated. The measured widths of the Si K α line put the line-emitting region outside the dust sublimation radius in these galaxies. It indicates that for Compton-thick AGN, the X-ray fluorescence material are likely to be the same as the dusty torus emitting in the infrared band.

  17. Behaviour of oscillations in loop structures above active regions

    NASA Astrophysics Data System (ADS)

    Kolobov, D. Y.; Kobanov, N. I.; Chelpanov, A. A.; Kochanov, A. A.; Anfinogentov, S. A.; Chupin, S. A.; Myshyakov, I. I.; Tomin, V. E.

    2015-12-01

    In this study we combine the multiwavelength ultraviolet-optical (Solar Dynamics Observatory, SDO) and radio (Nobeyama Radioheliograph, NoRH) observations to get further insight into space-frequency distribution of oscillations at different atmospheric levels of the Sun. We processed the observational data on NOAA 11711 active region and found oscillations propagating from the photospheric level through the transition region upward into the corona. The power maps of low-frequency (1-2 mHz) oscillations reproduce well the fan-like coronal structures visible in the Fe IX 171 Å line. High frequency oscillations (5-7 mHz) propagate along the vertical magnetic field lines and concentrate inside small-scale elements in the umbra and at the umbra-penumbra boundary. We investigated the dependence of the dominant oscillation frequency upon the distance from the sunspot barycentre to estimate inclination of magnetic tubes in higher levels of sunspots where it cannot be measured directly, and found that this angle is close to 40° above the umbra boundaries in the transition region.

  18. REDSHIFTS, WIDTHS, AND RADIANCES OF SPECTRAL LINES EMITTED BY THE SOLAR TRANSITION REGION

    SciTech Connect

    Feldman, U.; Dammasch, I. E.; Doschek, G. A.

    2011-12-20

    A long-standing problem in understanding the physics of the transition region has been the ubiquitous redshifts of transition region ultraviolet spectral lines relative to chromospheric emission lines, a result known since the Skylab era. Extended spectral scans performed for various regions of the solar disk by the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory contain thousands of line profiles per study and allow a thorough investigation of the redshift phenomenon. In using these data from seven distinct disk areas made in lines spanning the chromosphere to coronal temperature range, we derive a relationship between Doppler wavelength shifts and radiances and a relationship between line widths and radiances. While chromospheric and coronal lines emitted by very bright plasmas may in some cases show pronounced redshifts, transition-region lines predominantly show redshifts everywhere in the quiet Sun and in active regions. In coronal holes, however, they display a reduced shift, which at times altogether disappears. The observations and the findings will be described, and possible explanations will be considered.

  19. Himalayan Sackung and Associations to Regional Structure

    NASA Astrophysics Data System (ADS)

    Shroder, J. F.; Bishop, M. P.; Olsenholler, J.

    2003-12-01

    Recognition of sackung slope failure or deep-seated, rock-slope deformation in the Himalaya has been rather limited, in part because: (1) many geoscientists do not recognize its characteristics; (2) large-scale aerial photographs and topographic maps used to identify the characteristic surficial, topographic manifestations of the failure type are commonly low-level state secrets in that region; and (3) no systematic survey for sackung has ever been made in the Himalaya. In the Pakistani-controlled, western Himalaya, some unconventional access to aerial photographs in the Kaghan and Nanga Parbat areas allowed first recognition of several characteristic ridge-top grabens and anti-slope scarps. Later release of declassified, stereo imagery from the CORONA and KEYHOLE satellite series enabled discovery of other examples in the K2 region. Comparison of mapped sackung failures with geologic base maps has demonstrated some coincidence of sackung with various structural trends, including synformal structures in upper thrust plates or along the traces of high-angle faults. In all probability these structural trends have provided plentiful ancillary planes of weakness along which gravitationally driven sackung is facilitated. Sackung failure in the Himalaya appears to be a spatially scale-dependent manifestation of a gravitational-collapse continuum of the brittle, upper crust, mainly involving mountain ridges. In contrast, gravitational collapse of the whole range may involve some similar failures but also include listric faulting, as well as subsidence movement into zones of ductility at depth. Temporal scale dependence of sackung may also be threshold dominated, wherein initial long-continued, slow failure ultimately leads to the commonly catastrophic rock-slope collapses recently recognized throughout the western Himalaya and now differentiated from their original mismapping as glacial moraines. Such sackung in Himalayan terrain undergoing active deglaciation from global

  20. Applied region restriction and noncausal algorithm for line process of image sequence

    NASA Astrophysics Data System (ADS)

    Kohno, Yasuhisa; Ebine, Takumi; Hamada, Nozomu

    2000-12-01

    The precise estimation of optical flow is a key technology in computer vision and moving image processing. Due to the inherent feature of apparent motion occlusion and uncovered phenomena, flow estimation is erroneous at moving object's boundary. The line field lattice process(i.e. Gibbs/Markov random field model of discontinuity) is a well-known solution to this problem.The binary-valued line is used to separate regions with respect to motion. This paper proposes two improvements to the conventional line field estimation process. One is to reduce the computational burden by the following idea. At the MAP estimation algorithm for region segmentation, the applied region of line setting is restricted solely within motion boundary area which is specified by thresholding the residue of optical flow constraints. The second improvement is to refine the estimation accuracy at the recursive minimization of energy function. Since the previous pel-recursive line estimation procedure uses causal scanning, it tends to give undesirable lines such as cracked or isolated lines.Our proposal algorithm adopts non-causal scan process. The effect of the proposed methods are examined for artificial and a real moving image. In consequence, only 14 of computational time of previous method is necessary to generate the line. In addition, undesirable line setting is effectively omitted.

  1. Three dimensional crustal structure beneath the Gulf of Aqaba region from regional earthquake tomography

    NASA Astrophysics Data System (ADS)

    El Khrepy, Sami; Koulakov, ivan; al-arifi, Nassir; Petrunin, Alexey

    2016-04-01

    Gulf of Aqaba is tectonically and seismically active according to up to date earthquake activity recorded by the National seismic network of Egypt and ISC. Aqaba Gulf is located at the southern part of the Dead Sea Rift at the Northern Red Sea Rift as a major component of the Sinai triple junction where the plate boundaries play an important role in the tectonic activity of this region. In this work we apply the regional earthquake tomography technique of Koulakov (2009) to the P and S waves arrival times . Checkerboard resolution test has been performed to estimate the resolution of the data used in the inversion. The synthetic tests reveled reasonable resolving for the main geologic structures. The results revealed three dimensional seismic structures of P and S waves beneath the Gulf of Ababa region for the first time. Consistent seismic velocity pattern is obtained for P and S seismic phases. Strong anomalies of high-velocity with abrupt change are observed coinciding with the northern Red sea coast lines. This new results indicate new perspective suggesting oceanic nature of the crust in the northern part of the Red Sea disagreeing with the Hypothesis of gradual stretching of the continental crust. Key words: Regional Seismic tomography, Gulf of Aqaba, Dead Sea Transform Fault, Northern Red Sea

  2. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  3. A structural model for multimodular NRPS assembly lines.

    PubMed

    Marahiel, Mohamed A

    2016-02-01

    This viewpoint article focuses on the structures of the dissected catalytic domains of non-ribosomal peptide synthetases (NRPSs) associated with substrate selection and activation (A domain), substrate shuttling among the active sites (PCP domain), peptide bond formation (C domain) and product release (TE domain). Structural details of these essential components of the NRPS machinery, integrated in a didomain (PCP-C) and an elongation module (C-A-PCP), were used to generate a model for a multimodular NRPS assembly line. PMID:26429504

  4. Seismogenic Structures in Hualien Region, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Kuochen, H.; Wu, Y.; Chen, Y.; Chen, R.; Kuo, Y.

    2004-12-01

    Due to extremely high seismicity and abundant tectonic-influenced geomorphic features, eastern Taiwan has long been known as a tectonically active region. The geological model of an on-going arc-continent collision was successfully proposed to explain the arrangement of the tectonic entities and their interaction. The convergent situation between Eurasia plate and Philippine Sea plate is believed still being existing because of no geomorphic evidence directly related to significant subsidence of the backbone mountain range. However, in the north of the Coastal Range, the Philippine Sea plate is moving northerly downward by the subduction mechanism. Accordingly the fault systems on-land and offshore should be significantly different. With an attempt to answer the puzzle mentioned above we therefore analyze the seismogenic structures in northern part of eastern Taiwan. We adopt the double difference (hypoDD) method to relocate earthquakes, apply the GOCAD (Geologic Computer Aided Design) to visually image the 3D subsurface structures, and determine the rupture plane by the Finite Dimension Source Model (FDSM) from first motion focal mechanisms. Selected earthquakes are (1) located within region between 121.2 ˜122° E and 23.5 ˜24.5° N; (2) M{ L }≥3; (3) and showing clearly P or S arrived time at least 6 recorded stations. Additionally, we determine the M { L } ≥4 focal mechanisms by using the first P wave polarities to examine the reliability of rupture planes determined above. A few of seismogenic structures are clearly identified in this study. Looking at the E-W profile, a major reverse fault dipping 60° to the east is found in depth of 20-40 km beneath the Coastal Range, which is probably the subsurface image of the plate boundary. On the other hand, within the Central Range several N-S oriented high-angle normal faults are found near the surface in the western part of the study area. The second one from the west reflects the subsurface extension of

  5. A contour-line color layer separation algorithm based on fuzzy clustering and region growing

    NASA Astrophysics Data System (ADS)

    Liu, Tiange; Miao, Qiguang; Xu, Pengfei; Tong, Yubing; Song, Jianfeng; Xia, Ge; Yang, Yun; Zhai, Xiaojie

    2016-03-01

    The color layers of contour-lines separated from scanned topographic map are the basis of contour-line extraction, but it is difficult to separate them well due to the color aliasing and mixed color problems. This paper will focus us on contour-line color layer separation and presents a novel approach for it based on fuzzy clustering and Single-prototype Region Growing for Contour-line Layer (SRGCL). The purpose of this paper is to provide a solution for processing scanned topographic maps on which contour-lines are abundant and densely distributed, for example, in the condition similar to hilly areas and mountainous regions, the contour-lines always occupy the largest proportion in linear features and the contour-line separation is the most difficult task. The proposed approach includes steps as follows. First step, line features are extracted from the map to reduce the interference from area features in fuzzy clustering. Second step, fuzzy clustering algorithm is employed to obtain membership matrix of pixels in the line map. Third step, based on the membership matrix, we obtain the most-similar prototype and the second-similar prototype of each pixel as the indicators of the pixel in SRGCL. The spatial relationship and the fuzzy similarity of color features are used in SRGCL to overcome the inaccurate classification of ambiguous pixels. The procedure focusing on single contour-line layer will improve the accuracy of contour-line segmentation result of SRGCL relative to general segmentation methods. We verified the algorithm on several USGS historical maps, the experimental results show that our algorithm produces contour-line color layers with good continuity and few noises, which verifies the improvement in contour-line color layer separation of our algorithm relative to two general segmentation methods.

  6. Mapping the Innermost Regions of Massive Stars in Formation through Millimeter Recombination Lines

    NASA Astrophysics Data System (ADS)

    Galván-Madrid, R.; Liu, H. B.; Hernández-Gómez, A.; Carrasco-González, C.

    2015-12-01

    Millimeter (mm) recombination lines (RLs) are intrinsically brighter than centimeter RLs and are free of pressure broadening. Mapping mm RLs in massive star formation (MSF) regions would trace the dynamics of the innermost volume where stars more massive than 10 or 20 ⊙ are forming. We report on our search using ALMA for mm RL emission in two MSF regions.

  7. VLBA Surveys of OH Masers in Star-forming Regions. I. Satellite Lines

    NASA Astrophysics Data System (ADS)

    Ruiz-Velasco, A. E.; Felli, D.; Migenes, V.; Wiggins, B. K.

    2016-05-01

    Using the Very Long Baseline Array we performed a high-resolution OH maser survey in Galactic star-forming regions (SFRs). We observed all the ground state spectral lines: the main lines at 1665 and 1667 MHz and the satellite lines at 1612 and 1720 MHz. Due to the exceptionality of finding satellite lines in SFRs, we will focus our discussion on those lines. In our sample of 41 OH maser sources, five (12%) showed the 1612 MHz line and ten (24%) showed the 1720 MHz line, with only one source showing both lines. We find that 1720 MHz emission is correlated with the presence of H ii regions, suggesting that this emission could be used to diagnose or trace high-mass star formation. We include an analysis of the possible mechanisms that could be causing this correlation as well as assessing the possible relationships between lines in our sample. In particular, the presence of magnetic fields seems to play an important role as we found Zeeman splitting in four of our sources (W75 N, W3(OH), W51 and NGC 7538). Our results have implications for current understanding of the formation of high-mass stars as well as on the masing processes present in SFRs.

  8. Medial Temporal Lobe Structures Contribute to On-Line Processing

    ERIC Educational Resources Information Center

    Warren, David

    2009-01-01

    For the last five decades, the medial temporal lobes have been generally understood to facilitate enduring representation of certain kinds of information. In particular, knowledge about the relations among items and concepts appears to rely on that region of the brain. Recent results suggest that those same structures also play a subtle role in…

  9. On Line Asymmetries in Quiet and Plage Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Brandt, P. N.; Schroter, E. H.

    The centre-to-limb variation of the bisector shapes of the Fe I lines λ5576.1 Å and λ5250.2 Å is measured in quiet and plage regions on the sun. At disk centre the smaller curvature of the bisector in plage regions found in λ5576.1 Å and other lines by Kaisig and Schröter (1983) and in λ5250.6 Å by Livingston (1982) are essentially confirmed. While for λ5576.1 Å the differences in bisector shapes tend to decrease towards the limb they increase for λ5250.2 Å. Due to the lack of a wavelength reference no discrimination can be made between the red-shift of biscectors in the line-centres in plage-regions compared to non-active regions as found by Livingston (1982) and the corresponding relative blue-shift as reported by Kaisig and Schröter (1983).

  10. Electromagnetic response of buried cylindrical structures for line current excitation

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Ponti, Cristina

    2013-04-01

    The Cylindrical-Wave Approach (CWA) rigorously solves, in the spectral domain, the electromagnetic forward scattering by a finite set of buried two-dimensional perfectly-conducting or dielectric objects [1]-[2]. In this technique, the field scattered by underground objects is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum [1] to take into account the interaction of such waves with the planar interface between air and soil, and between different layers eventually present in the ground [3]. Obstacles of general shape can be simulated through the CWA with good results, by using a suitable set of small circular-section cylinders [4]. Recently, we improved the CWA by facing the fundamental problem of losses in the ground [5]: this is of significant importance in remote-sensing applications, since real soils often have complex permittivity and conductivity, and sometimes also a complex permeability. While in previous works concerning the CWA a monochromatic or pulsed plane-wave incident field was considered, in the present work a different source of scattering is present: a cylindrical wave radiated by a line source. Such a source is more suitable to model the practical illumination field used in GPR surveys. The electric field radiated by the line current is expressed by means of a first-kind Hankel function of 0-th order. The theoretical solution to the scattering problem is developed for both dielectric and perfectly-conducting cylinders buried in a dielectric half-space. The approach is implemented in a Fortran code; an accurate numerical evaluation of the involved spectral integrals is performed, the highly-oscillating behavior of the homogeneous waves is correctly followed and evanescent contributions are taken into account. The electromagnetic field scattered in both air and ground can be obtained, in near- and far-field regions, for arbitrary radii and permittivity of the buried cylinders, as well as for

  11. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources

    NASA Astrophysics Data System (ADS)

    Reale, D. V.; Parson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2016-03-01

    A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.

  12. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources.

    PubMed

    Reale, D V; Parson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-03-01

    A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW. PMID:27036802

  13. SERTS-95 Measurements of Wavelength Shifts in Coronal Emission Lines Across a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffery W.; Thomas, Roger; Davila, Joseph

    1999-01-01

    We used slit spectra from the 1995 flight of Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS-95) to measure wavelength shifts of coronal emission lines in the core of NOAA active region 7870 relative to its immediate surroundings (its "edge"). This method circumvents the unavailability of reliable laboratory rest wavelengths for the observed lines by using wavelengths from the edge spectrum as references. We derived the, SERTS-95 wavelength calibration from measurements of a post-flight laboratory spectrum containing 28 He II and Ne II EUV standard wavelengths known to high accuracy. Wavelength measurements for lines of He I, Ne III, and additional lines of Ne II in the laboratory calibration spectrum provide more accurate values than were previously available, enabling these lines also to serve as future calibration standards. Six solar lines were chosen for this study, namely, He II at 303.78 A, Fe XII at 193.51 A, Fe XIII at 202.05 A, Fe XIV at 211.33 A, Fe XV at 284.15 A, and Fe XVI at 335.41 A. Because these lines are free from known blends in the SERTS-95 spectra and are either intrinsically strong or near the SERTS-95 peak sensitivity, they are our most reliable lines for measuring relative wavelength shifts in the spatially resolved active region core spectra. The iron ions are the hottest ions ever used for this type of analysis. All six lines reveal statistically significant spatial variations in their measured relative wavelength shifts in the active region core, including mixtures of blueshifts and redshifts (each with maximum values corresponding to relative Doppler velocities approximately 15 km/s), indicating a dynamic, turbulent corona. For each of these lines we calculated weighted-average relative Doppler velocities from the wavelength shifts in the spatially resolved core spectra by weighting the shifts in the individual spatial pixels with their respective measurement uncertainties.

  14. Doppler shift of hot coronal lines in a moss area of an active region

    NASA Astrophysics Data System (ADS)

    Dadashi, N.; Teriaca, L.; Tripathi, D.; Solanki, S. K.; Wiegelmann, T.

    2012-12-01

    The moss is the area at the footpoint of the hot (3 to 5 MK) loops forming the core of the active region where emission is believed to result from the heat flux conducted down to the transition region from the hot loops. Studying the variation of Doppler shift as a function of line formation temperatures over the moss area can give clues on the heating mechanism in the hot loops in the core of the active regions. We investigate the absolute Doppler shift of lines formed at temperatures between 1 MK and 2 MK in a moss area within active region NOAA 11243 using a novel technique that allows determining the absolute Doppler shift of EUV lines by combining observations from the SUMER and EIS spectrometers. The inner (brighter and denser) part of the moss area shows roughly constant blue shift (upward motions) of 5 km s-1 in the temperature range of 1 MK to 1.6 MK. For hotter lines the blue shift decreases and reaches 1 km s-1 for Fe xv 284 Å (~2 MK). The measurements are discussed in relation to models of the heating of hot loops. The results for the hot coronal lines seem to support the quasi-steady heating models for nonsymmetric hot loops in the core of active regions.

  15. Application of line scanning thermography for the detection of interlaminar disbonds in sandwich composite structures

    NASA Astrophysics Data System (ADS)

    Ley, Obdulia; Chung, Simon; Schutte, Jaco; Caiazzo, Anthony; Godinez, Valery; Bandos, Bruce

    2010-04-01

    An innovative Line Scanning Thermography (LST) inspection method is being developed as part of a Structural Damage Assessment System to access the health of in-service composite structures. The system utilizes a line heat source to thermally excite the surface inspected and an infrared detector to record the transient surface temperature variation and to detect regions of increased heat resistance associated to interlaminar disbonds, cracks and other imperfections found in composites structures. In this study our efforts towards the applications of LST for the analysis of carbon fiber sandwich composites will be discussed. The LST technique provides a quick and efficient methodology to scan wide areas rapidly. The scanning protocols developed for the detection of sub-surface disbonds (delamination) in composite sandwich parts will be presented. The results presented correspond to scans of test coupons with manufactured defects.

  16. Understanding the Physical Conditions that Drive Line Emission in Nebular Regions of High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Zeimann, Gregory; Gebhardt, H.; Ciardullo, R.; Gronwall, C.; Hagen, A.

    2014-01-01

    We use the 3D-HST near-IR grism survey to study the physical conditions of the nebular regions within a statistically complete sample of ~ 300 emission-line selected star forming galaxies in the redshift range of 2.0 < z < 2.3. These spectra include the emission lines of oxygen ([O II] 3727, [O III] 5007), neon ([Ne III] 3869), and hydrogen (H-beta, H-gamma); when coupled with constraints on reddening and stellar mass derived from the objects' spectral energy distributions, these data allow us to explore parameters such as the systems' alpha-element abundances and ionization parameters. We try to reproduce these line ratios using theoretical models, such as CLOUDY, and compare line ratios with that of possible local analogs like Green Pea galaxies and Blue Compact Dwarfs. With our sample we can study any possible evolution in the physical conditions of star formation regions.

  17. Spectral Line Profile Analysis Using Higher Diffraction Order in Vacuum Ultraviolet Region

    SciTech Connect

    Machida, M.; Daltrini, A. M.; Severo, J. H. F.; Nascimento, I. C.; Sanada, E. K.; Elizondo, J. I.; Kuznetsov, Y. K.; Galvao, R. M. O.

    2008-04-07

    Using a one meter VUV spectrometer and a MCP coupled to a CCD detector on TCABR tokamak, ion temperatures from impurity species have been measured and much better spectral resolution was obtained using higher order diffraction lines. Due to very small Doppler effect in the VUV region compared to large instrumental broadening, ion temperatures obtained from first order diffraction present large errors. The use of second, third and fourth order diffraction emissions increases the line broadening and results in lower error temperature measurements.

  18. Emission Line Spectra in the Soft X-ray Region 20 - 75 Angstroms

    NASA Technical Reports Server (NTRS)

    Lepson, J. K.; Beiersdorfer, P.; Chen, H.; Behar, E.; Kahn, S. M.

    2002-01-01

    As part of a project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EDIT-II, emission lines of argon and sulfur in the soft X-ray and extreme ultraviolet region were studied. Observations of Ar IX through Ar XVI and S VII through S XIV between 20 and 75 Angstrom are presented to illustrate our work.

  19. Emission Line Spectra in the Soft X-Ray Region 20-75 (Angstrom)

    SciTech Connect

    Lepson, J K; Beiersdorfer, P; Chen, H; Behar, E; Kahn, S M

    2002-06-18

    As part of a project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EBIT-II, we studied emission lines of argon and sulfur in the soft X-ray and extreme ultraviolet region. Here we present observations of Ar IX through Ar XVI and S VII through S XIV between 20 and 75 {angstrom} to illustrate our work.

  20. Improved line parameters for ozone bands in the 10-micron spectral region

    NASA Technical Reports Server (NTRS)

    Flaud, Jean-Marie; Camy-Peyret, Claude; Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, Malathy V.

    1990-01-01

    A complete update of spectroscopic line parameters for the 10-micron bands of ozone is reported. The listing contains calculated positions, intensities, lower state energies, and air- and self-broadened halfwidths of more than 53,000 lines. The results have been generated using improved spectroscopic parameters obtained in a number of recent high resolution laboratory studies. A total of eighteen bands of (O-16)3 (sixteen hot bands plus the nu(1) and nu(3) fundamentals) are included along with the nu(1) and nu(3) fundamentals of both (O-16)(O-16)(O-18) and (O-16)(O-18)(O-16). As shown by comparisons of line-by-line simulations with 0.003/cm resolution balloon-borne stratospheric solar spectra, the new parameters greatly improve the accuracy of atmospheric calculations in the 10-micron region, especially for the isotopic (O-16)(O-16)(O-18) and (O-16)(O-18)(O-16) lines.

  1. Silicon X-ray line emission from solar flares and active regions

    NASA Technical Reports Server (NTRS)

    Parkinson, J. H.; Wolff, R. S.; Kestenbaum, H. L.; Ku, W. H.-M.; Lemen, J. R.; Long, K. S.; Novick, R.; Suozzo, R. J.; Weisskopf, M. C.

    1978-01-01

    New observations of solar flare and active region X-ray spectra obtained with the Columbia University instrument on OSO-8 are presented and discussed. The high sensitivity of the graphite crystal panel has allowed both line and continuum spectra to be served with moderate spectral resolution. Observations with higher spectral resolution have been made with a panel of pentaerythritol crystals. Twenty-nine lines between 1.5 and 7.0 A have been resolved and identified, including several dielectronic recombination satellite lines to Si XIV and Si XIII lines which have been observed for the first time. It has been found that thermal continuum models specified by single values of temperature and emission measure have fitted the data adequately, there being good agreement with the values of these parameters derived from line intensity ratios.

  2. Consequences of hot gas in the broad line region of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Mushotzky, R.

    1985-01-01

    Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed.

  3. The continuum and narrow-line region of the narrow-line Seyfert 1 galaxy Mrk 766

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Contini, M.; Viegas, S. M.

    2005-02-01

    We present the first spectroscopic observations in the interval 0.8-4.0 μm, complemented with existing Hubble Space Telescope ultraviolet (UV) and optical spectroscopy, of the narrow-line Seyfert 1 galaxy Mrk 766. The near-infrared spectrum is characterized by numerous permitted lines of HI, HeI, HeII and FeII, and forbidden lines of [SII], [SIII] and [FeII] among others. Highly ionized species such as [SiIX], [SiX], [SIX] and [MgVII] are also observed. The continuum emission has a complex shape, with contributions from the central engine, circumnuclear stellar population and dust. This last component is demonstrated by the presence of an excess of emission peaking at 2.25 μm, well fitted by a blackbody function with Tbb= 1200 K. That temperature is close to the evaporation temperature of graphite grains. As such, it provides strong evidence of hot dust, probably very close to the nucleus. Consistent modelling of the line spectrum and the broad-band continuum by composite models, which account for the photoionizing flux of the central engine and shocks, shows that shock velocities range between 100 and 500 km s-1, the pre-shock densities between 100 and 1000 cm-3 and the radiation fluxes from the active centre between 109 and 5 × 1012 photon cm-2 s-1 eV-1 at 1 Ryd with spectral indices αUV=-1.5 and αX=-0.4. Adopting silicate grains, dust-to-gas ratios are between 10-6 and 4 × 10-4 by mass. The emitting clouds are at an average distance of 160 pc from the centre, with high-velocity clouds closer and low-velocity clouds further from the centre. The N/H relative abundance deduced from the fit of the [NII] 6548+/[OIII] 5007+ line ratio could be twice the solar value. On the other hand, Fe is depleted from the gaseous phase by a factor >2, most probably trapped into grains. Ratios of calculated to observed line ratios to Hβ indicate an average contribution of the broad-line region to the observed Hβ of approximately 40 per cent.

  4. Constraining UV continuum slopes of active galactic nuclei with cloudy models of broad-line region extreme-ultraviolet emission lines

    SciTech Connect

    Moloney, Joshua; Michael Shull, J. E-mail: michael.shull@colorado.edu

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ≤ z ≤ 0.64, two AGNs with 0.32 ≤ z ≤ 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ≥ 10{sup 12} cm{sup –3}) and hydrogen ionizing photon fluxes (Φ{sub H} ≥ 10{sup 22} cm{sup –2} s{sup –1}).

  5. Diagnostics of the κ-distribution using Si III lines in the solar transition region

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Kulinová, A.

    2011-07-01

    Aims: The solar transition region satisfies the conditions for appearance of the non-thermal κ-distribution. We aim to prove the occurrence of the non-thermal κ-distribution in the solar transition region and diagnose its parameters. Methods: The intensity ratios of Si iii lines observed by SUMER in 1100-1320 Å region do not correspond to the line ratios computed under the assumption of the Maxwellian electron distribution. We computed a set of synthetic Si iii spectra for the electron κ-distributions with different values of the parameter κ. We had to include the radiation field in our calculations to explain the observed line ratios. We propose diagnostics of the parameter κ and other plasma parameters and analyze the effect of the different gradient of differential emission measures (DEM) on the presented calculations. Results: The used line ratios are sensitive to T, density and the parameter κ. All these parameters were determined from the SUMER observations for the coronal hole (CH), quiet Sun (QS) and active region (AR) using our proposed diagnostics. A strong gradient of DEM influences the diagnosed parameters of plasma. The essential contributions to the total line intensities do not correspond to single T but a wider range of T, and they originate in different atmospheric layers. The amount of the contributions from these atmospheric layers depends on the gradient of DEM and the shape of the electron distribution function. Conclusions: The κ-distribution is able to explain the observed Si iii line spectrum in the transition region. The degree of non-thermality increases with the activity of the solar region, it is lower for CH and higher for the AR. The DEM influences the diagnosed T and Ne but it has only little effect on the diagnostics of the parameter κ.

  6. A Line Defect Structure in Soft-Mode Turbulence

    NASA Astrophysics Data System (ADS)

    Nur Qomaru Zaman, Rinto A.; Ueki, Tatsuhiro; Hidaka, Yoshiki; Tribelsky, Michael I.; Kai, Shoichi

    2010-03-01

    Defects have been much investigated in various physical systems. The property and symmetry in a system can be reflected by the existence of defects. For example in spin models, symmetries in the 2D XY and 2D Ising models generate point and line defects, respectively. In the soft-mode turbulence (SMT) in electroconvection of homeotropic nematic systems which is a kind of spatiotemporal chaos induced by nonlinear interaction between the Nambu-Goldstone modes and the convective modes, a curious line structure called blackline has been discovered. We measured the density of the blackline as a function of control parameters, ac voltage and frequency. By detailed observations and analysis, it is clarified that the blackline is a structure of the nematic director in the x-y plane and includes a sequence of point defects. We discussed similarity with the density of the blackline and that of the point defect in the conventional 2D XY model. The occurrence of this type of defects is only due to the symmetry in the SMT and independent of the properties of fluctuations.

  7. Kinetic signatures of the region surrounding the X line in asymmetric (magnetopause) reconnection

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Phan, T. D.; Haggerty, C. C.; Fujimoto, M.; Drake, J. F.; Malakit, K.; Cassak, P. A.; Swisdak, M.

    2016-05-01

    Kinetic particle-in-cell simulations are used to identify signatures of the electron diffusion region (EDR) and its surroundings during asymmetric magnetic reconnection. A "shoulder" in the sunward pointing normal electric field (EN > 0) at the reconnection magnetic field reversal is a good indicator of the EDR and is caused by magnetosheath electron meandering orbits in the vicinity of the X line. Earthward of the X line, electrons accelerated by EN form strong currents and crescent-shaped distribution functions in the plane perpendicular to B. Just downstream of the X line, parallel electric fields create field-aligned crescent electron distribution functions. In the immediate upstream magnetosheath, magnetic field strength, plasma density, and perpendicular electron temperatures are lower than the asymptotic state. In the magnetosphere inflow region, magnetosheath ions intrude resulting in an Earthward pointing electric field and parallel heating of magnetospheric particles. Many of the above properties persist with a guide field of at least unity.

  8. A region of intense plasma wave turbulence on auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1976-01-01

    This report presents a detailed study of the plasma wave turbulence observed by HAWKEYE-1 and IMP-6 on high latitude auroral field lines and investigates the relationship of this turbulence to magnetic field and plasma measurements obtained in the same region.

  9. NUTRITIONAL VALUES OF SOYBEAN BREEDING LINES GROWN IN THE DELMARVA REGION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is an important crop grown in the Delaware, Maryland, and Virginia (Delmarva) region for its protein and oil contents. Fifteen breeding lines and cultivars of soybean were evaluated for their seed yield, protein and oil content. Genotypes D358B4009, M3583009 and Stalwart provided 3,295, 2,...

  10. 3D Modeling of Forbidden Line Emission in the Binary Wind Interaction Region of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Madura, Thomas; Gull, T. R.; Owocki, S.; Okazaki, A. T.; Russell, C. M. P.

    2010-01-01

    We present recent work using three-dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations to model the high ([Fe III], [Ar III], [Ne III] and [S III]) and low ([Fe II], [Ni II]) ionization forbidden emission lines observed in Eta Carinae using the HST/STIS. These structures are interpreted as the time-averaged, outer extensions of the primary wind and the wind-wind interaction region directly excited by the FUV of the hot companion star of this massive binary system. We discuss how analyzing the results of the 3D SPH simulations and synthetic slit spectra and comparing them to the spectra obtained with the HST/STIS helps us determine the absolute orientation of the binary orbit and helps remove the degeneracy inherent to models based solely on the observed RXTE X-ray light curve. A key point of this work is that spatially resolved observations like those with HST/STIS and comparison to 3D models are necessary to determine the alignment or misalignment of the orbital angular momentum axis with the Homunculus, or correspondingly, the alignment of the orbital plane with the Homunculus skirt.

  11. Evaporation, viscous flow, and electrostatic interaction of charged interfaces in the apparent contact line region

    NASA Astrophysics Data System (ADS)

    Ketelaar, Christiaan; Ajaev, Vladimir S.

    2015-11-01

    We consider evaporation of an aqueous solution near an apparent contact line separating a macroscopically dry area of a heated solid substrate and a constant-curvature meniscus far away from the substrate. Viscous flow, described by a lubrication-type model, is coupled to the interaction of electrical double layers formed near the solid-liquid and liquid-vapor interfaces. The electrostatic interaction is described using the nonlinear Poisson-Boltzmann equation and is shown to affect both normal and shear stress balances at the deformable interface. For steady configurations, we find that the apparent contact line region becomes wider and the total evaporation rate there increases as the substrate potential is increased. Motion of the apparent contact line in response to changes in the substrate temperature is also investigated. The contact line speed is found to increase when the electrostatic effects are incorporated into the model.

  12. Emission line spectra of S VII ? S XIV in the 20 ? 75 ? wavelength region

    SciTech Connect

    Lepson, J K; Beiersdorfer, P; Behar, E; Kahn, S M

    2004-08-06

    As part of a larger project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EBIT-II, the authors present observations of sulfur lines in the soft X-ray and extreme ultraviolet regions. The database includes wavelength measurements with standard errors, relative intensities, and line assignments for 127 transitions of S VII through S XIV between 20 and 75 {angstrom}. The experimental data are complemented with a full set of calculations using the Hebrew University Lawrence Livermore Atomic Code (HULLAC). A comparison of the laboratory data with Chandra measurements of Procyon allows them to identify S VII-S XI lines.

  13. The 51.8 micron (0 3) line emission observed in four galactic H 2 regions

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.

    1978-01-01

    The (0 III) 51.8 microns line from four H II regions, M42, M17, W51 and NGC 6375A was detected. Respective line strengths are 7 x 10 to the minus 15 power, 1.0 x 10 to the minus 14 power, 2.1 x 10 to the minus 15 power and 2.6 x 10 to the minus 15 power watt cm/2. Observations are consistent with previously reported line position and place the line at 51.80 + or 0.05 micron. When combined with the 88.35 microns (0 III) reported earlier, clumping seems to be an important factor in NGC 6375A and M42 and to a lesser extent in W51 and M17. The combined data also suggest an (0 III) abundance of approximately 3 x 0.0001 sub n e' a factor of 2 greater than previously assumed.

  14. 51.8 micron forbidden O III line emission observed in four galatic H II regions

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.

    1979-01-01

    The 51.8-micron forbidden O III line has been detected in four H II regions: M42, M17, W51, and NGC 6357A. The respective line strengths are 7 x 10 to the -15th, 1.0 x 10 to the -14th, 2.1 x 10 to the -15th, and 2.6 x 10 to the -15th W/sq cm. The observations are consistent with a previously reported line position and place the line at 51.80 + or - 0.05-micron. When combined with the 88.35-micron forbidden O III observations reported earlier, clumpiness is found to be an important factor in NGC 6357A and M42 and nonnegligible in W51 and M17. The combined data also suggest an O III abundance of about 0.0003 times the electron density, which is a factor of 2 greater than a number of investigators have reported.

  15. Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities

    NASA Astrophysics Data System (ADS)

    Fludra, A.; Ireland, J.

    2008-05-01

    Context: The relationships between the photospheric magnetic flux and either the X-ray or extreme ultraviolet emission from the solar atmosphere have been studied by several authors. Power-law relations have been found between the total magnetic flux and X-ray flux or intensities of the chromospheric, transition region, and coronal emission lines in solar active regions. These relations were then used to infer the mechanism of the coronal heating. Aims: We derive accurate power laws between EUV line intensities and the total magnetic flux in solar active regions and discuss their applications. We examine whether these global power laws are capable of providing the diagnostics of the coronal heating mechanism. Methods: This analysis is based on EUV lines recorded by the Coronal Diagnostic Spectrometer (CDS) on SOHO for 48 solar active regions, as they crossed the central meridian in years 1996-1998. Four spectral lines are used: He I 584.3 Å (3×104 K), O V 629.7 Å (2.2×105 K), Mg IX 368.06 Å (9.5×105 K), and Fe XVI 360.76 Å (2.0×106 K). In particular, the Fe XVI 360.76 Å line, seen only in areas of enhanced heating in active regions or bright points, has not been used before for this analysis. Results: Empirical power laws are established between the total active region intensity in the lines listed above and the total magnetic flux. We demonstrate the usefulness of some spatially integrated EUV line intensities, I_T, as a proxy for the total magnetic flux, Φ, in active regions. We point out the approximate, empirical nature of the I_T-Φ relationships and discuss the interpretation of the global power index. Different power index values for transition region and coronal lines are explained by their different dependence on pressure under the assumption of hydrostatic loop models. However, the global power laws are dominated by the size of the active regions, and we demonstrate for the first time the difficulties in uniquely relating the power index in the

  16. Highlight: Structural Insights into Nonribosomal Peptide Enzymatic Assembly Lines

    PubMed Central

    Koglin, Alexander

    2009-01-01

    Nonribosomal peptides have a variety of medicinal activities including activity as antibiotics, antitumor drugs, immunosuppressives, and toxins. Their biosynthesis on multimodular assembly lines as a series of covalently tethered thioesters, in turn covalently attached on pantetheinyl arms on carrier protein way stations, reflects similar chemical logic and protein machinery to fatty acid and polyketide biosynthesis. While structural information on excised or isolated catalytic adenylation (A), condensation (C), peptidyl carrier protein (PCP) and thioesterase (TE) domains had been gathered over the past decade, little was known about how the NRPS catalytic and carrier domains interact with each other both within and across elongation or termination modules. This highlight reviews recent breakthrough achievements in both X-ray and NMR spectroscopic studies that illuminate the architecture of NRPS PCP domains, PCP-containing didomain-fragments and of a full termination module (C-A-PCP-TE). PMID:19636447

  17. Improved spectroscopic line list of methyl chloride in the 1900-2600 cm-1 spectral region

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Dmitrieva, T. A.; Gordon, I. E.

    2016-07-01

    Parameters of line positions and line intensities up to 2×10-25 cm-1/(molecule cm-2) for 12CH335Cl and 12CH337Cl were retrieved from the Fourier transform spectra in the range of 1900-2600 cm-1. Line intensities were scaled with measurements from literature. Measured line positions and intensities were treated using global effective Hamiltonian and dipole moment model. The RMS of intensity fitting was 7.4% for 12CH335Cl and 6.6% for 12CH337Cl. List of positions and intensities were calculated for 22,098 and 21,014 lines between 1900 and 2600 cm-1 for 12CH335Cl and 12CH337Cl, respectively. Updated intensities allow extending assignments. The new line list of positions and intensities for both isotopologues in this spectral region was calculated. The calculations from the line list of this work have been compared with values from the HITRAN2012 database and PNNL spectra.

  18. Comparative analysis of the 100 kb region containing the Pi-k(h) locus between indica and japonica rice lines.

    PubMed

    Kumar, S P; Dalai, V; Singh, N K; Sharma, T R

    2007-02-01

    We have recently cloned a pathogen inducible blast resistance gene Pi-k(h) from the indica rice line Tetep using a positional cloning approach. In this study, we carried out structural organization analysis of the Pi-k(h) locus in both indica and japonica rice lines. A 100 kb region containing 50 kb upstream and 50 kb downstream sequences flanking to the Pi-k(h) locus was selected for the investigation. A total of 16 genes in indica and 15 genes in japonica were predicted and annotated in this region. The average GC content of indica and japonica genes in this region was 53.15% and 49.3%, respectively. Both indica and japonica sequences were polymorphic for simple sequence repeats having mono-, di-, tri-, tetra-, and pentanucleotides. Sequence analysis of the specific blast resistant Pi-k(h) allele of Tetep and the susceptible Pi-k(h) allele of the japonica rice line Nipponbare showed differences in the number and distribution of motifs involved in phosphorylation, resulting in the resistance phenotype in Tetep. PMID:17572362

  19. The inner region of the moving contact line - diffusive and nanoscale models

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Sibley, David N.; Goddard, Ben D.; Kalliadasis, Serafim

    2015-11-01

    Much of the work within the Complex Multiphase Systems group at Imperial College London for the last number of years has been to understand the moving contact line problem. In, it was shown that contrary to the classical asymptotic theory at the moving contact line, the intermediate region is in fact an overlap region between the inner and the outer regions. Here, we investigate the inner region independently for the Navier-Stokes/ Cahn-Hilliard (NS/CH) model for binary fluids, as well as dynamic density functional theory (DDFT) for a simple fluid. We show that in the NS/CH model, the overlap region is recovered in the sharp-interface limit, and we link the slip length to the mobility of the system. In contrast, DDFT, which is based on statistical mechanics of fluids, allows to incorporate nanoscale details. Results are presented for advancing and receding contact lines for a wide range of contact angles. The numerical method employs spectral methods in an unbounded domain along the surface. Advantages are discussed, both for differential and integral DDFT equations. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  20. Structure Prediction and Analysis of DNA Transposon and LINE Retrotransposon Proteins*

    PubMed Central

    Abrusán, György; Zhang, Yang; Szilágyi, András

    2013-01-01

    Despite the considerable amount of research on transposable elements, no large-scale structural analyses of the TE proteome have been performed so far. We predicted the structures of hundreds of proteins from a representative set of DNA and LINE transposable elements and used the obtained structural data to provide the first general structural characterization of TE proteins and to estimate the frequency of TE domestication and horizontal transfer events. We show that 1) ORF1 and Gag proteins of retrotransposons contain high amounts of structural disorder; thus, despite their very low conservation, the presence of disordered regions and probably their chaperone function is conserved. 2) The distribution of SCOP classes in DNA transposons and LINEs indicates that the proteins of DNA transposons are more ancient, containing folds that already existed when the first cellular organisms appeared. 3) DNA transposon proteins have lower contact order than randomly selected reference proteins, indicating rapid folding, most likely to avoid protein aggregation. 4) Structure-based searches for TE homologs indicate that the overall frequency of TE domestication events is low, whereas we found a relatively high number of cases where horizontal transfer, frequently involving parasites, is the most likely explanation for the observed homology. PMID:23530042

  1. Kinetic Structure of the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri

    2016-04-01

    We present high-resolution multi-spacecraft observations of electromagnetic fields and particle distributions by Magnetospheric Multiscale (MMS) mission throughout a reconnection layer at the sub-solar magnetopause. We study which terms in the generalized Ohm's law balance the observed electric field throughout the region. We also study waves and particle distribution functions in order to identify kinetic boundaries created due to acceleration and trapping of electrons and ions as well as mixing of electron populations from different sides of the reconnecting layer. We discuss the interplay between particles, waves, and DC electric and magnetic fields, which clearly demonstrates kinetic and multi-scale nature of the reconnection diffusion region.

  2. Radial transmission line analysis of multi-layer structures

    SciTech Connect

    Hahn, H.; Hammons, L.

    2011-03-28

    The analysis of multi-layer beam tubes is a standard problem and involves axially propagating waves. This treatment is ill suited to a short multi-layer structure such as the present example of a ferrite covered ceramic break in the beam tube at the ERL photo-cathode electron gun. This paper demonstrates that such structure can better be treated by radial wave propagation. The theoretical method is presented and numerical results are compared with measured network analyser data and Microwave Studio generated simulations. The results confirm the concept of radial transmission lines as a valid analytical method. An Energy Recovery Linac (ERL) is being constructed at this laboratory for the purpose of research towards an envisioned Electron Ion Collider. One of the pertinent topics is damping of Higher Order Modes (HOM). In this ERL, the damping is provided by ferrite absorbers in the beam tube. A modified version thereof, a ceramic break surrounded by ferrite, is planed for the superconducting electron gun. The damper here is located at room temperature just outside of the gun. If used in a cavity chain, the ceramic break is in the vacuum tube at helium temperature whereas the ferrite is moved into the cryostat insulating vacuum allowing higher temperatures. The general properties of the ferrite HOM dampers have been published but are more detailed in this paper.

  3. Line Parameters of Carbon Dioxide in the 4850 CM-1 Region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Nugent, Emily; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Toth, Robert A.

    2011-06-01

    The spectral region near 4850 Cm-1 is used to monitor atmospheric carbon dioxide, but current accuracies of the line intensities and line shape coefficients do not permit carbon dioxide mixing ratios to be obtained to 1 ppm (about one part in 400). To improve the line parameters, we are remeasuring the prominent CO2 bands in this region specifically to characterize the non-Voigt effects of line mixing and speed dependence at room temperature. The laboratory spectra of air- and self-broadened CO2 have been recorded at a variety of pressures, path lengths, mixing ratios and resolutions (0.005 to 0.01 Cm-1) with two different Fourier transform spectrometers (the McMath-Pierce FTS at Kitt Peak and a Bruker 125 HR FTS at JPL). The line parameters of some 2000 transitions are being derived by simultaneous multispectrum fitting using a few dozen spectra encompassing a 230 Cm-1 wide spectral interval. The rovibrational constants for line positions and the band intensities and Herman-Wallis coefficients are being retrieved directly from the spectra, rather than floating positions and intensities individually. Self and foreign Lorentz widths and pressure shifts are being determined for the stronger bands while non-Voigt coefficients describing line mixing and speed dependence are being obtained for at least one of the strongest bands. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. A. Atkins, JQSRT 1995;53:705-21. V. M. Devi, D. Chris Benner, L. R. Brown, C. E. Miller, and R. A. Toth, J. Mol. Spectrosc. 2007;245:52-80. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. Support for the work at William and Mary was provided by contracts with JPL.

  4. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our

  5. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Astrophysics Data System (ADS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-10-01

    We present line profiles and profile parameters for the narrow-line regions (NLRs) of six Seyfert I galaxies with high-ionization lines: MCG 8-11-I1, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] λ6087 and, when possible, [Fe X] λ6374 profiles to determine if these lines are more likely formed in a physically distinct coronal line region" or are formed throughout the NLR along with lines of lower critical density (n_cr_) and/or ionization potential (IP). We discuss correlations of velocity shift and width with n_cr_ and IP. In some objects, lines of high IP and/or n_cr_ are systematically broader than those of low IP/n_cr_. Of particular interest, however, are objects that show no correlations of line width with either IP or n_cr_ In these objects, lines of high and low IP/n_cr_ are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n_cr_ are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper (Paper II), we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n_cr_ can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the full width at half- maximum (FWHM) and IP and/or n_cr_. The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. In Paper II, we present models in which FWHM correlations with IP and/or n_cr_ result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our observational study produce line

  6. Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios

    NASA Technical Reports Server (NTRS)

    Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.

    2003-01-01

    UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic

  7. THE LICK AGN MONITORING PROJECT: ALTERNATE ROUTES TO A BROAD-LINE REGION RADIUS

    SciTech Connect

    Greene, Jenny E.; Hood, Carol E.; Barth, Aaron J.; Bentz, Misty C.; Walsh, Jonelle L.; Bennert, Vardha N.; Treu, Tommaso; Filippenko, Alexei V.; Gates, Elinor; Malkan, Matthew A.; Woo, Jong-Hak

    2010-11-01

    It is now possible to estimate black hole (BH) masses across cosmic time, using broad emission lines in active galaxies. This technique informs our views of how galaxies and their central BHs coevolve. Unfortunately, there are many outstanding uncertainties associated with these 'virial' mass estimates. One of these comes from using the accretion luminosity to infer a size for the broad-line region (BLR). Incorporating the new sample of low-luminosity active galaxies from our recent monitoring campaign at Lick Observatory, we recalibrate the radius-luminosity relation with tracers of the accretion luminosity other than the optical continuum. We find that the radius of the BLR scales as the square root of the X-ray and H{beta} luminosities, in agreement with recent optical studies. On the other hand, the scaling appears to be marginally steeper with narrow-line luminosities. This is consistent with a previously observed decrease in the ratio of narrow-line to X-ray luminosity with increasing total luminosity. The radius of the BLR correlates most tightly with H{beta} luminosity, while the X-ray and narrow-line relations both have comparable scatter of a factor of 2. These correlations provide useful alternative virial BH masses in objects with no detectable optical/UV continuum emission, such as high-redshift galaxies with broad emission lines, radio-loud objects, or local active galaxies with galaxy-dominated continua.

  8. Seyfert galaxy narrow-line regions. I - Observations of forbidden O III lambda 5007

    NASA Technical Reports Server (NTRS)

    Vrtilek, J. M.; Carleton, N. P.

    1985-01-01

    High-resolution (23 km/s) spectra of the forbidden O III emission line at 500.7 nm from the nuclear regions of 32 Seyfert galaxies and low-redshift QSOs have been obtained at the Smithsonian Institution/University of Arizona Multiple Mirror Telescope. The properties of the data are summarized by a group of measures which efficiently describe the entire line profiles, are stable in the presence of noise, and have easily visualized geometric meaning. The distributions of line profile measures are shown. In particular, typical forbidden O III FWHM values of 200-520 km/s (mean + or - 1 sigma) and a highly significant tendency for the lines to fall off more slowly on the blue than on the red side of the peak have been found, in agreement with previous work. Using galaxian system velocities obtained from absorption-line measurements, the distribution of differences between forbidden O III emission-line velocities and galaxian system velocities has been determined; in disagreement with previous work, this distribution has been found to be consistent with symmetry about zero difference velocity.

  9. High-resolution laboratory measurements of coronal lines in the 198-218 å region

    SciTech Connect

    Beiersdorfer, Peter; Träbert, Elmar; Lepson, Jaan K.; Brickhouse, Nancy S.; Golub, Leon

    2014-06-10

    We present high-resolution laboratory measurements of the emission from various ions of C, N, O, F, Ne, S, Ar, Fe, and Ni in the extreme ultraviolet wavelength band centered around the λ211 Fe XIV channel of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. While all of the strong iron lines in this region are well known, we note many weaker lines of iron that are not yet identified. The high resolution of our measurements also allows us to resolve several lines in Fe XI, Fe XII, and Fe XIII between 200 and 205 Å, whose identities were in question based on a disagreement between different databases. The spectra of the elements other than iron are much less known, and we find a multitude of lines that are not yet in the databases. For example, the CHIANTI database clearly disagrees with the NIST data listings on several of the argon lines we observe and also it contains only about half of the observed sulfur lines.

  10. An Observational Test of Transition Region Lines as a Pressure Gauge

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.

    1999-01-01

    The objective of this research project was to use high resolution spectroscopic observations from the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) instrument on SOHO (Solar and Heliospheric Observatory) to study the structure of the solar transition region. Our main focus in this grant was to study the variation in density and emission across the quiet Sun transition region.

  11. H-T Phase Diagram of Flux Line Lattice Structure in YNi2B2C

    NASA Astrophysics Data System (ADS)

    Sakiyama, N.; Tsukagoshi, H.; Yano, F.; Nagata, T.; Kawano-Furukawa, H.; Yoshizawa, H.; Yethiraj, M.; Takeya, H.; Suzuki, J.

    2006-09-01

    The detailed flux line lattice (FLL) structure in YNi2B2C was investigated using small angle neutron scattering and the complete H-T phase diagram was determined. The FLL in YNi2B2C shows a change of symmetry only in the low magnetic field region between 0.05 to 0.2 T. The observed square lattice is governed by an anisotropic Fermi velocity. Contrary to the theoretical prediction, a square lattice driven by an anisotropic superconducting gap does not appear below 5 T.

  12. The case for inflow of the broad-line region of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin; Goosmann, René W.

    2016-02-01

    The high-ionization lines of the broad-line region (BLR) of thermal active galactic nuclei (AGNs) show blueshifts of a few hundred km/s to several thousand km/sec with respect to the low-ionization lines. This has long been thought to be due to the high-ionization lines of the BLR arising in a wind of which the far side of the outflow is blocked from our view by the accretion disc. Evidence for and against the disc-wind model is discussed. The biggest problem for the model is that velocity-resolved reverberation mapping repeatedly fails to show the expected kinematic signature of outflow of the BLR. The disc-wind model also cannot readily reproduce the red side of the line profiles of high-ionization lines. The rapidly falling density in an outflow makes it difficult to obtain high equivalent widths. We point out a number of major problems with associating the BLR with the outflows producing broad absorption lines. An explanation which avoids all these problems and satisfies the constraints of both the line profiles and velocity-resolved reverberation-mapping is a model in which the blueshifting is due to scattering off material spiraling inwards with an inflow velocity of half the velocity of the blueshifting. We discuss how recent reverberation mapping results are consistent with the scattering-plus-inflow model but do not support a disc-wind model. We propose that the anti-correlation of the apparent redshifting of Hβ with the blueshifting of C iv is a consequence of contamination of the red wings of Hβ by the broad wings of [O iii].

  13. Modeling the spectral energy distribution of 3C 454.3 in a "flat" broad-line region scenario

    NASA Astrophysics Data System (ADS)

    Lei, Maichang; Wang, Jiancheng

    2014-10-01

    The broad-line region (BLR) of flat-spectrum radio quasars (FSRQs) could have a "flat" geometrical structure to allow GeV gamma-ray photons to escape, to produce the observed gamma-ray flares with short timescales. In this paper, we collect the quasi-simultaneous spectral energy distributions (SEDs) of the FSRQ 3C 454.3 obtained by the multi-wavelength campaigns spanning from 2007 July to 2011 January, and use a model with a "flat" structure BLR, an accretion disc and a dust torus to explain the SEDs of gamma-ray outbursts. We obtain the following results: (i) the jet is almost in equipartition between magnetic and particle energy densities during the outbursts; (ii) when the emitting region is located inside the cavity of the BLR, the covering factor fBLR of the BLR is very small-as the emitting region goes into the BLR structure, fBLR increases; (iii) the aperture angle α describing the BLR structure is about 45°; (iv) the central black hole mass is about 5 × 108 M⊙ rather than 4.4 × 109 M⊙.

  14. Genome structure of introgressive lines Triticum aestivum/Aegilops sharonensis.

    PubMed

    Antonyuk, M Z; Bodylyova, M V; Ternovskaya, T K

    2009-01-01

    The lines Triticum aestivum/Aegilops sharonensis were explored in regard to the presence of introgressions in the line genomes, their amount and belonging to definite homoeologic group. The results of studying of chromosome associations in M1 of pollen mother celles in the hybrids between the lines with each other and with recurrent common wheat genotype Avrora were compared with the data of the line assessment for the chromosomal biochemical and morphological markers. 26 lines were distinguished between six groups with specific genome rearrangement regard to recurrent genotype. PMID:20458978

  15. An Analysis of Water Line Profiles in Star Formation Regions Observed by SWAS

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew L. N.; Bergin, Edwin A.; Plume, Rene; Carpenter, John M.; Neufeld, David A.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, J. E.

    2000-01-01

    We present spectral line profiles for the 557 GHz 1(sub 1,0) yields 1(sub 0,1) ground-state rotational transition of ortho-H2(16)O for 18 galactic star formation regions observed by SWAS. 2 Water is unambiguously detected in every source. The line profiles exhibit a wide variety of shapes, including single-peaked spectra and self-reversed profiles. We interpret these profiles using a Monte Carlo code to model the radiative transport. The observed variations in the line profiles can be explained by variations in the relative strengths of the bulk flow and small-scale turbulent motions within the clouds. Bulk flow (infall, outflow) must be present in some cloud cores, and in certain cases this bulk flow dominates the turbulent motions.

  16. Embedded star formation in the extended narrow line region of Centaurus A: Extreme mixing observed by MUSE

    NASA Astrophysics Data System (ADS)

    Santoro, F.; Oonk, J. B. R.; Morganti, R.; Oosterloo, T. A.; Tadhunter, C.

    2016-05-01

    We present a detailed study of the complex ionization structure in a small (~250 pc) extended narrow line region (ENLR) cloud near Centaurus A using the Multi Unit Spectroscopic Explorer. This cloud is located in the so-called outer filament of ionized gas (about 15 kpc from the nucleus) where jet-induced star formation has been suggested to occur by different studies. We find that, despite the small size, a mixture of ionization mechanisms is operating, resulting in considerable complexity in the spatial ionization structure. The area includes two H ii regions where star formation is occurring and another location where star formation must have ceased very recently. Interestingly, the extreme Balmer decrement of one of the star forming regions (Hα/Hβobs ~ 6) indicates that it is still heavily embedded in its natal cocoon of gas and dust. At all three locations a continuum counterpart is found with spectra matching those of O/B stars local to Centaurus A. The H ii regions are embedded in a larger gas complex which is photoionized by the radiation of the central active galactic nucleus (AGN), but the O/B stars affect the spatial ionization pattern in the ENLR cloud very locally. In particular, in the surroundings of the youngest star forming region, we can isolate a tight mixing sequence in the diagnostic diagram going from gas with ionization due to a pure stellar continuum to gas only photoionized by the AGN. These results emphasize the complexity and the mixture of processes occurring in star forming regions under the influence of an AGN radiation. This is relevant for our understanding of AGN-induced star formation suggested to occur in a number of objects, including this region of Centaurus A. They also illustrate that these young stars influence the gas over only a limited region.

  17. Broad-line region physical conditions along the quasar eigenvector 1 sequence

    NASA Astrophysics Data System (ADS)

    Marziani, P.; Sulentic, J. W.; Negrete, C. A.; Dultzin, D.; Zamfir, S.; Bachev, R.

    2010-12-01

    We compare broad emission-line profiles and estimate line ratios for all major emission lines between Lyα and Hβ in a sample of six quasars. The sources were chosen with two criteria in mind: the existence of high-quality optical and ultraviolet spectra and the possibility of sampling the spectroscopic diversity in the 4D eigenvector 1 (4DE1) context. In the latter sense, each source occupies a region (bin) in the full width at half-maximum (FWHM)(Hβ) versus Fe IIopt strength plane that is significantly different from the others. High signal-to-noise ratio Hβ emission-line profiles are used as templates for modelling the other lines (Lyα, C IV λ1549, He II λ1640, Al III λ1860, Si III] λ1892 and Mg II λ2800). We can adequately model all broad lines assuming the existence of three components distinguished by blueshifted, unshifted and redshifted centroids [indicated as a blue component (BLUE), broad component (BC) and very broad component (VBC), respectively]. BC (electron density ne˜ 1012 cm-3, ionization parameter U˜ 10-2 and column density Nc≳ 1023 cm-2) is present in almost all type-1 quasars and therefore corresponds most closely to the classical broad-line emitting region (the reverberating component). The bulk of Mg II λ2800 and Fe II emission also arises in this region. The BLUE emission (log ne˜ 10, log U˜-1 and log Nc < 23) arises in less optically thick gas; it is often thought to arise in an accretion disc wind. The least understood component involves the VBC (high ionization and large column density), which is found in no more than half (but almost all radio-loud) type-1 quasars and luminous Seyfert nuclei. It is perhaps the most distinguishing characteristic of quasars with FWHM (Hβ) ≳ 4000 km s-1 that belong to the so-called population B of our 4DE1 space. Population A quasars [FWHM (Hβ) ≲ 4000 km s-1] are dominated by BC emission in Hβ and BLUE component emission in C IV λ1549 and other high ionization lines. 4DE1 appears to

  18. Climate Services for Adaptation Support: Sectors, Regions, and Product Lines (Invited)

    NASA Astrophysics Data System (ADS)

    Owen, T.; Shea, E. E.

    2009-12-01

    Environmental information for decision support must be user-focused, accurate, and actionable. As the deleterious impacts of a non-stationary climate system manifest themselves through loss of civil infrastructure, cultural, and natural resources, NOAA and other science agencies are restructuring their approach to decision support, moving from a climate perspectives-centric model to one that offers more nimble, granular, and timely product lines supporting a breadth of sectoral- and regionally-focused decisions. This talk outlines NOAA’s efforts to this end, including its framing of sectors and regions, its development of emerging product lines, and its reliance on technological advances to better disseminate information. Through its climate services efforts, NOAA’s climate data resources can be leveraged to support sound adaptation decision making for societal infrastructure development and in the stewardship of marine, ocean, coastal, and terrestrial natural resources.

  19. Near-infrared dust and line emission from the central region of Mrk1066: constraints from Gemini NIFS

    NASA Astrophysics Data System (ADS)

    Riffel, Rogemar A.; Storchi-Bergmann, Thaisa; Nagar, Neil M.

    2010-05-01

    β/Brγ line ratio ranges from E(B - V) ~ 0 to 1.7 with the highest values defining a S-shaped structure along PA ~ 135°/315°. The emission-line ratios are Seyfert-like within the ionization cone indicating that the line emission is powered by the central active nucleus in these locations. Low ionization regions are observed away from the ionization cone, and may be powered by the diffuse radiation field which filters through the ionization cone walls. Two regions at 0.5arcsec south-east and at 1arcsec north-west of the nucleus show starburst-like line ratios, co-spatial with an enhancement in the emission of the H lines. We attribute this change to additional emission from star-forming regions. The mass of ionized gas is MHII ~ 1.7 × 107Msolar and that of hot molecular gas is .

  20. Formation of inner structure of a reconnection separatrix region.

    PubMed

    Khotyaintsev, Yu V; Vaivads, A; Retinò, A; André, M; Owen, C J; Nilsson, H

    2006-11-17

    We present multipoint spacecraft observations at the dayside magnetopause of a magnetic reconnection separatrix region. This region separates two plasmas with significantly different temperatures and densities, at a large distance from the X line. We identify which terms in the generalized Ohm's law balance the observed electric field throughout the separatrix region. The electric field inside a thin approximately c/omega pi Hall layer is balanced by the j x B/ne term while other terms dominate elsewhere. On the low density side of the region we observe a density cavity which forms due to the escape of magnetospheric electrons along the newly opened field lines. The perpendicular electric field inside the cavity constitutes a potential jump of several kV. The observed potential jump and field aligned currents can be responsible for strong aurora. PMID:17155688

  1. Formation of Inner Structure of a Reconnection Separatrix Region

    SciTech Connect

    Khotyaintsev, Yu. V.; Vaivads, A.; Retino, A.; Andre, M.; Owen, C. J.; Nilsson, H.

    2006-11-17

    We present multipoint spacecraft observations at the dayside magnetopause of a magnetic reconnection separatrix region. This region separates two plasmas with significantly different temperatures and densities, at a large distance from the X line. We identify which terms in the generalized Ohm's law balance the observed electric field throughout the separatrix region. The electric field inside a thin {approx}c/{omega}{sub pi} Hall layer is balanced by the jxB/ne term while other terms dominate elsewhere. On the low density side of the region we observe a density cavity which forms due to the escape of magnetospheric electrons along the newly opened field lines. The perpendicular electric field inside the cavity constitutes a potential jump of several kV. The observed potential jump and field aligned currents can be responsible for strong aurora.

  2. Line identification and lifetime measurements in the XUV and soft X-ray regions

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.

    1979-01-01

    A summary of the data acquired concerning line identification and lifetime measurements in the xuv and soft X-ray regions for a variety of both resonance transitions and forbidden transitions in ions of astrophysical interest is provided. Particular attention is called to a few papers which appeared in the Astrophysical Journal. These are of special relevance to specific astrophysical data needs. The many experiments completed in areas related to but somewhat outside the confines of the project title are mentioned.

  3. ISO-LWS observations of Herbig Ae/Be stars. I. Fine structure lines

    NASA Astrophysics Data System (ADS)

    Lorenzetti, D.; Tommasi, E.; Giannini, T.; Nisini, B.; Benedettini, M.; Pezzuto, S.; Strafella, F.; Barlow, M.; Clegg, P. E.; Cohen, M.; di Giorgio, A. M.; Liseau, R.; Molinari, S.; Palla, F.; Saraceno, P.; Smith, H. A.; Spinoglio, L.; White, G. J.

    1999-06-01

    We present the results of the first spectrophotometric survey of a sample of eleven Herbig Ae/Be stars (HAEBE) obtained with the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO). The [OI] 63mu m and the [CII] 158mu m lines are observed in all the investigated sources, while the [OI] 145mu m transition, due to its relative faintness, sometimes remains undetected. By comparing line intensity ratios with model predictions, photodissociation, due to the UV photons from the central star, results the dominating excitation mechanism although contributions of C-shocks to the [OI] emission cannot be ruled out. A clear example for the presence of a photodissociation region (PDR) illuminated by an HAEBE is shown by LWS spectroscopic mapping of NGC 7129. Some diagnostic probes of the radiation field and density are provided for the objects in our sample: these substantially agree with the known characteristics of both the star and its circumstellar environment, although the observed ratio [OI]63/[OI]145 tends to be smaller than predicted by PDR models. The most likely explanation for this behaviour is self-absorption at 63mu m by cold atomic oxygen. Fine structure lines of the ionised species [OIII], [NII] were detected whenever the star had a spectral type of B0 or earlier; in particular, around the star CoD-42(deg) 11721, besides a compact HII region, evidence is given for an extended low electron density ionised region. Finally, molecular line emission is associated with stars powering a CO outflow, and clumpy PDR models, better than C-shock models, predict for them relative cooling (CO vs OI and CO vs OH) similar to the observed ones. Based on observations with ISO, an ESA project with instruments funded by ESA Member States and with the participation of ISAS and NASA}

  4. Tracing planet-induced structures in circumstellar disks using molecular lines

    NASA Astrophysics Data System (ADS)

    Ober, F.; Wolf, S.; Uribe, A. L.; Klahr, H. H.

    2015-07-01

    Context. Circumstellar disks are considered to be the birthplace of planets. Specific structures like spiral arms, gaps, and cavities are characteristic indicators of planet-disk interaction. Investigating these structures can provide insights into the growth of protoplanets and the physical properties of the disk. Aims: We investigate the feasibility of using molecular lines to trace planet-induced structures in circumstellar disks. Methods: Based on 3D hydrodynamic simulations of planet-disk interactions obtained with the PLUTO code, we perform self-consistent temperature calculations and produce N-LTE molecular line velocity-channel maps and spectra of these disks using our new N-LTE line radiative transfer code Mol3D. Subsequently, we simulate ALMA observations using the CASA simulator. We consider two nearly face-on inclinations, five disk masses, seven disk radii, and two different typical pre-main-sequence host stars (T Tauri, Herbig Ae) at a distance of 140 pc. We calculate up to 141 individual velocity-channel maps for five molecules/isotopoloques (12C16O, 12C18O, HCO+, HCN, and CS) in a total of 32 rotational transitions to investigate the frequency dependence of the structures indicated above. Results: We find that the majority of protoplanetary disks in our parameter space could be detected in the molecular lines considered. However, unlike the continuum case, gap detection is not straightforward in lines. For example, gaps are not seen in symmetric rings but are masked by the pattern caused by the global (Keplerian) velocity field. By comparison with simulated observations of undisturbed disks we identify specific regions in the velocity-channel maps that are characteristic of planet-induced structures. Conclusions: Simulations of high angular resolution molecular line observations demonstrate the potential of ALMA to provide complementary information about the planet-disk interaction as compared to continuum observations. In particular, the detection

  5. Reverberation Mapping of the Broad-line Region in NGC 5548: Evidence for Radiation Pressure?

    NASA Astrophysics Data System (ADS)

    Lu, Kai-Xing; Du, Pu; Hu, Chen; Li, Yan-Rong; Zhang, Zhi-Xiang; Wang, Kai; Huang, Ying-Ke; Bi, Shao-Lan; Bai, Jin-Ming; Ho, Luis C.; Wang, Jian-Min

    2016-08-01

    NGC 5548 is the best-observed reverberation-mapped active galactic nucleus with long-term, intensive monitoring. Here we report results from a new observational campaign between 2015 January and July. We measure the centroid time lag of the broad Hβ emission line with respect to the 5100 Å continuum and obtain {τ }{{cent}}={7.20}-0.35+1.33 days in the rest frame. This yields a black hole mass of {M}\\bullet ={8.71}-2.61+3.21× {10}7{M}ȯ using a broad Hβ line dispersion of 3124 ± 302 km s‑1 and a virial factor of {f}{{{BLR}}}=6.3+/- 1.5 for the broad-line region (BLR), consistent with the mass measurements from previous Hβ campaigns. The high-quality data allow us to construct a velocity-binned delay map for the broad Hβ line, which shows a symmetric response pattern around the line center, a plausible kinematic signature of virialized motion of the BLR. Combining all the available measurements of Hβ time lags and the associated mean 5100 Å luminosities over 18 campaigns between 1989 and 2015, we find that the Hβ BLR size varies with the mean optical luminosity, but, interestingly, with a possible delay of {2.35}-1.25+3.47 years. This delay coincides with the typical BLR dynamical timescale of NGC 5548, indicating that the BLR undergoes dynamical changes, possibly driven by radiation pressure.

  6. The lick AGN monitoring project 2011: Fe II reverberation from the outer broad-line region

    SciTech Connect

    Barth, Aaron J.; Cooper, Michael C.; Pancoast, Anna; Treu, Tommaso; Bennert, Vardha N.; Brewer, Brendon J.; Canalizo, Gabriela; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Clubb, Kelsey I.; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Sand, David J.; Stern, Daniel; Assef, Roberto J.; Woo, Jong-Hak; Bae, Hyun-Jin; Buehler, Tabitha; and others

    2013-06-01

    The prominent broad Fe II emission blends in the spectra of active galactic nuclei have been shown to vary in response to continuum variations, but past attempts to measure the reverberation lag time of the optical Fe II lines have met with only limited success. Here we report the detection of Fe II reverberation in two Seyfert 1 galaxies, NGC 4593 and Mrk 1511, based on data from a program carried out at Lick Observatory in Spring 2011. Light curves for emission lines including Hβ and Fe II were measured by applying a fitting routine to decompose the spectra into several continuum and emission-line components, and we use cross-correlation techniques to determine the reverberation lags of the emission lines relative to V-band light curves. In both cases, the measured lag (τ{sub cen}) of Fe II is longer than that of Hβ, although the inferred lags are somewhat sensitive to the choice of Fe II template used in the fit. For spectral decompositions done using the Fe II template of Véron-Cetty et al., we find τ{sub cen}(Fe II)/τ{sub cen}(Hβ) = 1.9 ± 0.6 in NGC 4593 and 1.5 ± 0.3 in Mrk 1511. The detection of highly correlated variations between Fe II and continuum emission demonstrates that the Fe II emission in these galaxies originates in photoionized gas, located predominantly in the outer portion of the broad-line region.

  7. Laboratory Calibration of Density-Dependent Lines in the EUV and Soft X-Ray Regions

    SciTech Connect

    Lepson, J K; Beiersdorfer, P; Gu, M F; Desai, P

    2010-12-09

    We analyzed spectral data of Fe XXII and Ar XIV from laboratory sources in which the electron density varies by several orders of magnitude to help benchmark density-sensitive emission lines useful for astrophysics and to test the atomic models underlying the diagnostic line ratios. We found excellent agreement for Fe XXII, but poorer agreement for Ar XIV. A number of astrophysically important emission lines are sensitive to electron density in the EUV and soft X-ray regions. Lines from Fe XXII, for example, have been used in recent years as diagnostics of stellar coronae, such as the active variable AB Dor, Capella, and EX Hya (Sanz-Forcada et al. 2003, Mewe et al. 2001, Mauche et al. 2003). Here we report spectral data of Fe XXII and Ar XIV from laboratory sources in which the electron density is known from either K-shell density diagnostics (for electron beam ion traps) or from non-spectroscopic means (tokamaks), ranging from 5 x 10{sup 10} cm{sup -3} to 5 x 10{sup 14} cm{sup -3}. These measurements were used to test the atomic data underlying the density diagnostic line ratios, complementing earlier work (Chen et al. 2004).

  8. View facing northeast (60°) of Structure 259, other transmission lines ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing northeast (60°) of Structure 25-9, other transmission lines and small farmstead visible in background - Havre Rainbow Transmission Line, Havre City to Great Falls vicinity, Montana, Great Falls, Cascade County, MT

  9. Deconstructing the narrow-line region of the nearest obscured quasar

    NASA Astrophysics Data System (ADS)

    Villar Martín, M.; Bellocchi, E.; Stern, J.; Ramos Almeida, C.; Tadhunter, C.; González Delgado, R.

    2015-11-01

    We study the physical and kinematic properties of the narrow-line region (NLR) of the nearest obscured quasar MRK 477 (z = 0.037), using optical and near-infrared (NIR) spectroscopy. About 100 emission lines are identified in the optical+NIR spectrum (90 in the optical), including several narrow optical Fe+ lines. To our knowledge, this is the first type 2 active galactic nucleus (AGN) with such a detection. The Fe+ lines can be explained as the natural emission from the NLR photoionized by the AGN. Coronal line emission can only be confirmed in the NIR spectrum. As in many other AGNs, a significant correlation is found between the lines' full width at half-maximum and the critical density log(ncrit). We propose that it is caused by the outflow. This could be the case in other AGNs. The nuclear jet-induced ionized outflow has been kinematically isolated in many emission lines covering a broad range of ionization potentials and critical densities. It is concentrated within R ˜few×100 pc from the central engine. The outflowing gas is denser (n ≳ 8000 cm-3) than the ambient non-perturbed gas (n ˜ 400-630 cm-3). This could be due to the compression effect of the jet-induced shocks. Alternatively, we propose that the outflow has been triggered by the jet at R ≲ 220 pc (possibly at ≲ 30 pc), and we trace how the impact weakens as it propagates outwards following the radiation-pressure-dominated density gradient. The different kinematic behaviour of [Fe II] λ1.644 μm suggests that its emission is enhanced by shocks induced by the nuclear outflow/jet and is preferentially emitted at a different, less reddened spatial location.

  10. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, K. S.; Moen, J. I.; Pedersen, A.

    2010-10-01

    Cluster data have been examined for quasi-stationary electric field structures and field-aligned currents (FACs) in the vicinity of the dayside cusp region. We have related the measurements to the Region 1/Region 2 (R1/R2) current system and the cusp current system. It has been theoretically proposed that the dayside R1 current may be located on open field lines, and experimental evidence has been shown for R1 currents partially on open field lines. We document that R1 currents may flow entirely on open field lines. The electric field structures are found to occur at plasma density gradients in the cusp. They are associated with strong FACs with current directions that are consistent with the cusp currents. This indicates that the electric field structures are closely coupled to the cusp current system. The electric equipotential structures linking the perpendicular electric fields seen at Cluster altitudes to field-aligned electric fields at lower altitudes fall into one of two categories: S shape or U shape. Both types are found at both the equatorward edge of the cusp ion dispersion and at the equatorward edge of injection events within the cusp. Previous studies in the nightside auroral region attributed the S-shaped potential structures to the boundary transition between the low-density polar cap and the high-density plasma sheet, concluding that the shape of the electric potential structure depends on whether the plasma populations on each side of the structure can support intense currents. This explanation is not applicable for the S-shaped structures observed in the dayside cusp region.

  11. Physical properties of emitting plasma near massive black holes: the Broad Line Region

    NASA Astrophysics Data System (ADS)

    Ilić, D.; Mura, G. La; Popović, L. Č.; Shapovalova, A. I.; Ciroi, S.; Chavushyan, V. H.; Rafanelli, P.; Burenkov, A. N.; Marcado, A.

    2007-04-01

    The dominant emission in Active Galactic Nuclei (AGN) spectra comes from the Broad Emission Lines (BEL) which originate in the Broad Line Region (BLR). The BLR can potentially provide a useful probe of the central part of an AGN, and consequently of the characteristics of the massive Black Hole (BH) that is assumed to be in the center of these objects. The understanding of the physics and kinematics of the BLR is crucial because of the following three reasons: (i) kinematics of the BLR is probably determined by the massive BH, with the competing effects of gravity and radiation pressure, (ii) the BLR reprocesses the UV energy emitted by the continuum source, consequently BEL can provide indirect information about the continuum source, (iii) there is indication that the physical and kinematical parameters of the BEL can be connected with the general characteristics of an AGN (e.g. mass of the BH). In order to connect the physical and kinematical parameters of the BLR, in this work we consider the intensities and widths of Balmer lines of a sample of 90 AGN from Sloan Digital Sky Survey (SDSS). Additionally, we consider the variation of the intensities and widths of Balmer lines from the BLR of NGC 5548 observed from 1996 till 2004. We apply the Boltzmann-Plot method (Popovic 2003, Popovic et al. 2006) to the Balmer line intensities and estimated the electron temperature of a typical BLR. Moreover, we discuss the possibility that the BLR is in general composed from two emitting regions: one that is closer to the BH and contributes to the BEL's wings, and another that is further from the central BH and contributes to the BEL's core.

  12. On the observability of optically thin coronal hyperfine structure lines

    SciTech Connect

    Chatzikos, M.; Ferland, G. J.; Williams, R. J. R.; Fabian, A. C.

    2014-06-01

    We present CLOUDY calculations for the intensity of coronal hyperfine lines in various environments. We model indirect collisional and radiative transitions, and quantify the collisionally excited line emissivity in the density-temperature phase space. As an observational aid, we also express the emissivity in units of that in the 0.4-0.7 keV band. For most hyperfine lines, knowledge of the X-ray surface brightness and the plasma temperature is sufficient for rough estimates. We find that the radiation fields of both Perseus A and Virgo A can enhance the populations of highly ionized species within 1 kpc. They can also enhance line emissivity within the cluster core. This could have implications for the interpretation of spectra around bright active galactic nuclei. We find the intensity of the {sup 57}Fe XXIV λ3.068 mm line to be about two orders of magnitude fainter than previously thought, at ∼20 μK. Comparably bright lines may be found in the infrared. Finally, we find the intensity of hyperfine lines in the Extended Orion Nebula to be low, due to the shallow sightline. Observations of coronal hyperfine lines will likely be feasible with the next generation of radio and submillimeter telescopes.

  13. Yield Line Evaluation Methodology for Reinforced Concrete Structures

    Energy Science and Technology Software Center (ESTSC)

    1998-12-30

    Yield line theory is an analytical technique that can be used to determine the ultimate bending capacity of flat reinforced concrete plates subject to distributed and concentrated loadings. Alternately, yield line theory, combined with rotation limits can be used to determine the energy absorption capacity of plates subject to impulsive and impact loadings. Typical components analyzed by yield line theory are basemats, floor and roof slabs subject to vertical loads along with walls subject tomore » out of plane loadings. One limitation of yield line theory is that it is computationally difficult to evaluate some mechanisms. This problem is aggravated by the complex geometry and reinforcing layouts commonly found in practice. The program has the capability to either evaluate a single user defined mechanism or to iterate over a range of mechanisms to determine the minimum ultimate capacity. The program is verified by comparison to a series of yield line mechanisms with known solutions.« less

  14. Yield Line Evaluation Methodology for Reinforced Concrete Structures

    SciTech Connect

    1998-12-30

    Yield line theory is an analytical technique that can be used to determine the ultimate bending capacity of flat reinforced concrete plates subject to distributed and concentrated loadings. Alternately, yield line theory, combined with rotation limits can be used to determine the energy absorption capacity of plates subject to impulsive and impact loadings. Typical components analyzed by yield line theory are basemats, floor and roof slabs subject to vertical loads along with walls subject to out of plane loadings. One limitation of yield line theory is that it is computationally difficult to evaluate some mechanisms. This problem is aggravated by the complex geometry and reinforcing layouts commonly found in practice. The program has the capability to either evaluate a single user defined mechanism or to iterate over a range of mechanisms to determine the minimum ultimate capacity. The program is verified by comparison to a series of yield line mechanisms with known solutions.

  15. Fine structure of the solar transition region - Observations and interpretation

    NASA Technical Reports Server (NTRS)

    Cook, J. W.; Brueckner, G. E.

    1991-01-01

    An evaluation is conducted of recent high spatial resolution observations of the solar transition region and temperature minimum, in the form of UV spectra and spectroheliographs from both sounding rockets and the Spacelab 2 flights of the High Resolution Telescope and Spectrograph (HRTS). Attention is given to the solar atmosphere structure implications of the HRST's observational results. The inclusion of fine structure in conjectures concerning the transition region affects the plausibility of 1D average models of the solar atmosphere, as well as the determination of temperature gradients, possible nonradiative-heating mechanisms, and the comparison of transition region structures with corresponding observations of the photosphere and corona.

  16. Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.

    1996-01-01

    We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in

  17. A NEW RADIO RECOMBINATION LINE MASER OBJECT TOWARD THE MonR2 H II REGION

    SciTech Connect

    Jimenez-Serra, I.; Zhang, Q.; Dierickx, M.; Patel, N.; Baez-Rubio, A.; Rivilla, V. M.; Martin-Pintado, J. E-mail: qzhang@cfa.harvard.edu E-mail: npatel@cfa.harvard.edu E-mail: jmartin@cab.inta-csic.es

    2013-02-10

    We report the detection of a new radio recombination line (RRL) maser object toward the IRS2 source in the MonR2 ultracompact H II region. The continuum emission at 1.3 mm and 0.85 mm and the H30{alpha} and H26{alpha} lines were observed with the Submillimeter Array (SMA) at angular resolutions of {approx}0.''5-3''. The SMA observations show that the MonR2-IRS2 source is very compact and remains unresolved at spatial scales {<=}400 AU. Its continuum power spectrum at millimeter wavelengths is almost flat ({alpha} = -0.16, with S{sub {nu}}{proportional_to}{nu}{sup {alpha}}), indicating that this source is dominated by optically thin free-free emission. The H30{alpha} and H26{alpha} RRL emission is also compact and peaks toward the position of the MonR2-IRS2 source. The measured RRL profiles are double peaked with the H26{alpha} line showing a clear asymmetry in its spectrum. Since the derived line-to-continuum flux ratios ({approx}80 and 180 km s{sup -1} for H30{alpha} and H26{alpha}, respectively) exceed the LTE predictions, the RRLs toward MonR2-IRS2 are affected by maser amplification. The amplification factors are, however, smaller than those found toward the emission-line star MWC349A, indicating that MonR2-IRS2 is a weakly amplified maser. Radiative transfer modeling of the RRL emission toward this source shows that the RRL masers arise from a dense and collimated jet embedded in a cylindrical ionized wind, oriented nearly along the direction of the line of sight. High-angular resolution observations at submillimeter wavelengths are needed to unveil weakly amplified RRL masers in very young massive stars.

  18. Line Parameters of the PH_3 Pentad in the 4-5 μm Region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Kleiner, I.; Sams, R. L.; Blake, T. A.; Brown, Linda R.; Fletcher, L. N.

    2012-06-01

    Line positions, intensities and line shape parameters are reported for four bands of phosphine between 2150 and 2400 cm-1 in order to improve the spectroscopic database for remote sensing of the giant planets. Knowledge of PH_3 in this spectral region is important for Cassini/VIMS exploration of dynamics and chemistry on Saturn, as well as for interpreting the near-IR data from Juno and ESA's proposed Jupiter mission. For this study, five high-resolution (0.0023 cm-1), high signal-to-noise (>2000) spectra of pure PH_3 were recorded at room temperature (298.2 K) with the Bruker IFS 125HR Fourier transform spectrometer at Pacific Northwest National Laboratory. Individual line parameters were retrieved by multispectrum fitting of all five spectra simultaneously. Positions and intensities were measured for over 3100 transitions. The rotational quantum numbers of measured lines go as high as J''=16 and K''=15 in the ν_3 and ν_1 bands; some lines of the weaker bands 2ν_4 and ν_2+ν_4 are also reported. The measured positions and intensities are compared to new theoretical calculations of the pentad. Lorentz self-broadened width and pressure-induced shift coefficients of many transitions were also obtained, along with speed dependence parameters. Line mixing coefficients were determined for several A+A- pairs of transitions for K''=3, 6, and 9. Research described in this paper was performed at the College of William and Mary and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. L. Fletcher acknowledges support from a Glasstone Science Fellowship. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721.

  19. Ultraviolet imaging telescope and optical emission-line observations of H II regions in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Cheng, K.-P.; Bohlin, Ralph C.; Cornett, Robert H.; Hintzen, P. M. N.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1995-01-01

    Images of the type Sab spiral galaxy M81 were obtained in far-UV and near-UV bands by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission of 1990 December. Magnitudes in the two UV bands are determined for 52 H II regions from the catalog of Petit, Sivan, & Karachentsev (1988). Fluxes of the H-alpha and H-beta emission lines are determined from CCD images. Extinctions for the brightest H II regions are determined from observed Balmer decrements. Fainter H II regions are assigned the average of published radio-H-alpha extinctions for several bright H II regions. The radiative transfer models of Witt, Thronson, & Capuano (1992) are shown to predict a relationship between Balmer Decrement and H-alpha extinction consistent with observed line and radio fluxes for the brightest 7 H II regions and are used to estimate the UV extinction. Ratios of Lyman continuum with ratios predicted by model spectra computed for initial mass function (IMF) slope equal to -1.0 and stellar masses ranging from 5 to 120 solar mass. Ages and masses are estimated by comparing the H-alpha and far-UV fluxes and their ratio with the models. The total of the estimated stellar masses for the 52 H II regions is 1.4 x 10(exp 5) solar mass. The star-formation rate inferred for M81 from the observed UV and H-alpha fluxes is low for a spiral galaxy at approximately 0.13 solar mass/yr, but consistent with the low star-formation rates obtained by Kennicutt (1983) and Caldwell et al. (1991) for early-type spirals.

  20. Synthesis of regional crust and upper-mantle structure from seismic and gravity data

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Lavin, P. M.

    1979-01-01

    Available seismic and ground based gravity data are combined to infer the three dimensional crust and upper mantle structure in selected regions. This synthesis and interpretation proceeds from large-scale average models suitable for early comparison with high-altitude satellite potential field data to more detailed delineation of structural boundaries and other variations that may be significant in natural resource assessment. Seismic and ground based gravity data are the primary focal point, but other relevant information (e.g. magnetic field, heat flow, Landsat imagery, geodetic leveling, and natural resources maps) is used to constrain the structure inferred and to assist in defining structural domains and boundaries. The seismic data consists of regional refraction lines, limited reflection coverage, surface wave dispersion, teleseismic P and S wave delay times, anelastic absorption, and regional seismicity patterns. The gravity data base consists of available point gravity determinations for the areas considered.

  1. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig

    SciTech Connect

    Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P.; Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M.; Hsiao, Eric Y.; Brown, Peter J.; Filippenko, Alexei V.; Garnavich, Peter; Landsman, Wayne B.; Parrent, Jerod T.; Pritchard, Tyler A.; Roming, Peter W. A.; Wang, Xiaofeng

    2013-11-01

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s{sup –1}) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between –14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M{sub B} = –19.46 mag and Δm{sub 15}(B) = 0.90 mag). Similarly, the Si II λ6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v{sub Si} = 13,400 km s{sup –1}). The –14 days and –13 days spectra clearly resolve HVF from Si II λ6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From –12 days to –6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s{sup –1}. After –6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before –10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II λ6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF.

  2. Evaluating Possible Heating Mechanisms Using the Transition Region Line Profiles of Late-Type Stars

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Linsky, Jeffrey L.; Ayres, Thomas R.

    1997-01-01

    Our analysis of high-resolution Goddard High-Resolution Spectrograph (GHRS) spectra of late-type stars shows that the Si IV and C IV lines formed near 10(exp 5) K can be decomposed into the sum of two Gaussians, a broad component and a narrow component. We find that the flux contribution of the broad components is correlated with both the C IV and X-ray surface fluxes. For main-sequence stars, the widths of the narrow components suggest subsonic nonthermal velocities, and there appears to be a tight correlation between these nonthermal velocities and stellar surface gravity [xi(sub nc) varies as g(sup (-.68 +/-.07))]. For evolved stars with lower surface gravities, the nonthermal velocities suggested by the narrow components are at or just above the sound speed. Nonthermal velocities computed from the widths of the broad components are always highly supersonic. We propose that the broad components are diagnostics for microflare heating. Turbulent dissipation and Alfven waves are both viable candidates for the narrow component heating mechanism. A solar analog for the broad components might be the 'explosive events' detected by the High-Resolution Telescope and Spectrograph (HRTS) experiment. The broad component we observe for the Si IV lambda 1394 line of alpha Cen A, a star that is nearly identical to the Sun, has a FWHM of 109 +/- 10 km/s and is blueshifted by 9 +/- 3 km/s relative to the narrow component. Both of these properties are consistent with the properties of the solar explosive events. However, the alpha Cen A broad component accounts for 25% +/- 4% of the total Si IV line flux, while solar explosive events are currently thought to account for no more than 5% of the Sun's total transition region emission. This discrepancy must be resolved before the connection between broad components and explosive events can be positively established. In addition to our analysis of the Si IV and C IV lines of many stars, we also provide a more thorough analysis of all

  3. Hα emission-line stars in molecular clouds. II. The M 42 region

    NASA Astrophysics Data System (ADS)

    Pettersson, Bertil; Armond, Tina; Reipurth, Bo

    2014-10-01

    We present a deep survey of Hα emission-line stars in the M 42 region using wide-field objective prism films. A total of 1699 Hα emission-line stars were identified, of which 1025 were previously unknown, within an area of 5.̊5 × 5.̊5 centred on the Trapezium Cluster. We present Hα strength estimates, positions, and JHKs photometry extracted from 2MASS, and comparisons to previous surveys. The spatial distribution of the bulk of the stars follows the molecular cloud as seen in CO and these stars are likely to belong to the very young population of stars associated with the Orion Nebula Cluster. Additionally, there is a scattered population of Hα emission-line stars distributed all over the region surveyed, which may consist partly of foreground stars associated with the young NGC 1980 cluster, as well as some foreground and background dMe or Be stars. The present catalogue adds a large number of candidate low-mass young stars belonging to the Orion population, selected independently of their infrared excess or X-ray emission. Full Table 2 is only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A30

  4. The origin of broad emission lines in the extragalactic giant H II region NGC 2363

    NASA Technical Reports Server (NTRS)

    Roy, Jean-Rene; Aube, Martin; Mccall, Marshall L.; Dufour, R. J.

    1992-01-01

    High signal-to-noise long-slit spectra have been obtained of the giant H II region NGC 2363 located in the dwarf SBm galaxy NGC 2366. A discovery of low-intensity broad spectral components (FWHM is approximately equal to 40 A or 2400 km/s) in the bright nebular lines H-alpha, H-beta, and forbidden O III is reported. The broad spectral components are detected over a large spatial extent (not less than 500 pc) centered on the nebula. Several mechanisms for broadening nebular lines are explored: stellar winds, Thomson scattering by hot gas, supernova remnants, and superbubble blowout. All mechanisms have problems. Superbubble blowout, which is the only known mechanism capable of accelerating interstellar gas over such a volume of space, does not appear consistent with the physical properties of the H II region NGC 2363 or with the nature of the host galaxy. It is concluded that the broad nebular lines are probably due to very high velocity gas whose origin is, at present, unknown.

  5. FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect

    Farrah, D.; Petty, S. M.; Harris, K.; Lebouteiller, V.; Spoon, H. W. W.; Bernard-Salas, J.; Pearson, C.; Rigopoulou, D.; Smith, H. A.; González-Alfonso, E.; Clements, D. L.; Efstathiou, A.; Cormier, D.; Afonso, J.; Hurley, P.; Borys, C.; Verma, A.; Cooray, A.; Salvatelli, V.

    2013-10-10

    We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 μm, [N III]57 μm, [O I]63 μm, [N II]122 μm, [O I]145 μm, and [C II]158 μm, are mostly single Gaussians with widths <600 km s{sup –1} and luminosities of 10{sup 7}-10{sup 9} L{sub ☉}. There are deficits in the [O I]63/L{sub IR}, [N II]/L{sub IR}, [O I]145/L{sub IR}, and [C II]/L{sub IR} ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10{sup 1} < n < 10{sup 2.5} and 10{sup 2.2} < G{sub 0} < 10{sup 3.6}, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.

  6. Effect of a partial coverage of quasar broad-line regions by intervening -bearing clouds

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Balashev, S. A.; Ivanchik, A. V.; Kaminker, A. D.; Klimenko, V. V.

    2015-09-01

    We consider the effect of a partial coverage of quasar broad-line regions (QSO BLRs) by intervening -bearing clouds when a part of quasar (QSO) radiation passes by a cloud not taking part in absorption-line system formation of the QSO spectrum. That leads to modification of observable absorption line profiles and consequently to a bias in physical parameters derived from standard absorption line analysis. In application to the absorption systems the effect has been revealed in the analysis of absorption system in the spectrum of Q 1232+082 (see Ivanchik et al. in Mon. Not. R. Astron. Soc. 404:1583, 2010, Balashev et al. in Mon. Not. R. Astron. Soc. 418:357, 2011). We estimate a probability of the effect to be detected in QSO spectra. To do this we derive distribution of BLR sizes of high-z QSOs from Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9) catalogue and assume different distributions of cloud sizes. We conclude that the low limit of the probability is about 11 %. The latest researches shows that about a fifth of observed absorption systems can be partially covered. Accounting of the effect may allow to revise significantly physical parameters of interstellar clouds obtained by the spectral analysis.

  7. The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Du, Pu; Wang, Jian-Min; Hu, Chen; Ho, Luis C.; Li, Yan-Rong; Bai, Jin-Ming

    2016-02-01

    Broad emission lines in active galactic nuclei (AGNs) mainly arise from gas photoionized by continuum radiation from an accretion disk around a central black hole. The shape of the broad-line profile, described by {{ D }}{{H}β }={{FWHM}}/{σ }{{H}β }, the ratio of full width at half maximum to the dispersion of broad Hβ, reflects the dynamics of the broad-line region (BLR) and correlates with the dimensionless accretion rate (\\overset{\\quad \\cdot }{{M}}) or Eddington ratio ({L}{{bol}}/{L}{{Edd}}). At the same time, \\overset{\\quad \\cdot }{{M}} and {L}{{bol}}/{L}{{Edd}} correlate with {{ R }}{{Fe}}, the ratio of optical Fe ii to Hβ line flux emission. Assembling all AGNs with reverberation mapping measurements of broad Hβ, both from the literature and from new observations reported here, we find a strong bivariate correlation of the form {log}(\\overset{\\quad \\cdot }{{M}},{L}{{bol}}/{L}{{Edd}})=α +β {{ D }}{{H}β }+γ {{ R }}{{Fe}}, where α = (2.47, 0.31), β = -(1.59, 0.82), and γ = (1.34, 0.80). We refer to this as the fundamental plane of the BLR. We apply the plane to a sample of z < 0.8 quasars to demonstrate the prevalence of super-Eddington accreting AGNs are quite common at low redshifts.

  8. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    SciTech Connect

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S.; Bentz, M. C.; Vestergaard, M.; Kilerci-Eser, E.; Dalla Bontà, E.; Ciroi, S.

    2013-12-20

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n {sub e} ∼ 10{sup 5} cm{sup –3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  9. Fine Structure of the R Absorption Lines of Cr3+ in Antiferromagnetic Dysprosium Aluminum Garnet

    NASA Astrophysics Data System (ADS)

    Aoyagi, Kiyoshi; Kajiura, Masako; Sugano, Satoru

    1981-11-01

    The absorption spectrum of a Cr3+ ion in an antiferromagnetic disprosium aluminum garnet with the Néel temperature TN of 2.5 K, is measured in the red region between 1.7 K and 4.2 K. It is shown that the fine structure of the R1 and R2 lines at 1.7 K can be explained by using an effective Hamiltonian for the t2g3 2E excited state of Cr3+ in the surrounding of the ordered Dy3+ spins. The gross feature of the observed temperature dependence of the fine structure is shown to be reproduced by assuming appropriate exchange interactions of Cr3+ with Dy3+.

  10. Constraining the geometry, size scale and physical conditions of outflowing broad absorption line regions in quasars

    NASA Astrophysics Data System (ADS)

    Woo, Sui Chi

    Quasars are known for generating luminosities of up to 1047 erg s--1 in volumes of scales smaller than 2 x 10 15 cm. The optical/UV continuum emission is generally believed to arise from a rotating accretion disk (AD) surrounding a supermassive black hole (SMBH) of ˜ 108 M⊙ . Such emission can be calculated by treating the AD as a multi-temperature blackbody. While the continuum emitting region is well defined, the properties, location and kinematics of the broad emission line regions (BELRs) and broad absorption line regions (BALRs) remain unclear. On one hand, the reverberation mapping technique can give constraints on the location of the BELRs, but not the kinematics. On the other hand, the line-of-sight kinematics of the BALRs is directly observable, but their locations are not well constrained, resulting in a large range of inferred distances, from 0.01 pc to tens of kpc. Therefore, I combined observational results to investigate the geometry, size, and physical conditions of the BELRs and BALRs. I verified that the Lyalpha and CIV BELRs are located at a similar distance. Using these findings, I was able to constrain the size of the Lyalpha BELR and place a lower limit on the size of the N V BALR. I built an empirical model with the optical/UV continuum emission from the AD, the BELR from the chromosphere of the AD, and the outflowing BALR. In the continuum region, I found that over 95 percent of the total flux comes from the region at ~ 125rg, where rg is the gravitational radius of the SMBH. For the BELRs, I computed a disk-wind model with relativistic effects to explain the often-observed single-peaked BEL profiles. However, I show that such a model cannot explain the observed blue asymmetries in the high-ionization BELs or their blueshifted peaks relative to low-ionization BELs. Using results on time variability of BALR gas, and assuming the variability is caused by the gas moving perpendicular across the line-of-sight over a time scale of about a year

  11. Absolute redshifts in the CIV 1548 A line in the transition region of the quiet sun

    NASA Technical Reports Server (NTRS)

    Henze, William; Engvold, Oddbjorn

    1992-01-01

    Observations with the Ultraviolet Spectrometer and Polarimeter instrument on the SMM spacecraft were made at the polar limb and disk center for the accurate determination of Doppler shifts of the CIV 1548 A emission line formed at 10 exp -5 K in the transition region of the quiet sun. Individual data points representing 3 arcsec square pixels yield both redshifts and blueshifts, but the mean values from four different days of observations are toward the red. The mean redshifts are in the range 4-8 km/s and are produced by nearly vertically directed flows; the uncertainty associated with the mean values corresponds to +/- 0.5 km/s. The redshift increases with brightness of the CIV line.

  12. MEASUREMENT OF THE BROAD-LINE REGION SIZE IN A LUMINOUS MACHO QUASAR

    SciTech Connect

    Chelouche, Doron; Daniel, Eliran; Kaspi, Shai E-mail: shai@wise.tau.ac.il

    2012-05-10

    We measure the broad emission line region (BLR) size of a luminous, L {approx} 10{sup 47} erg s{sup -1}, high-z quasar using broadband photometric reverberation mapping. To this end, we analyze {approx}7.5 years of photometric data for MACHO 13.6805.324 (z {approx_equal} 1.72) in the B and R MACHO bands and find a time delay of 180 {+-} 40 days in the rest frame of the object. Given the spectral-variability properties of high-z quasars, we associate this lag with the rest-UV iron emission blends. Our findings are consistent with a simple extrapolation of the BLR size-luminosity relation in local active galactic nuclei to the more luminous, high-z quasar population. Long-term spectroscopic monitoring of MACHO 13.6805.324 may be able to directly measure the line-to-continuum time delay and test our findings.

  13. On the Correlation between Coronal and Lower Transition Region Structures at Arcsecond Scales

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Klimchuk, J. A.; Korendyke, C. M.; Tarbell, T. D.; Handy, B. N.

    2001-12-01

    We compare the morphology of active region structures observed in the 171 Å (T~9×105 K) and Lyα (T~2×104 K) lines. The coronal data were obtained by the Transition Region and Coronal Explorer (TRACE) in support of the Very High Angular Resolution Ultraviolet Telescope (VAULT) sounding rocket launch, which acquired subarcsecond resolution images of an active region in the Lyα line, on 1999 May 7. Using a pair of calibrated, nearly simultaneous images, we find that: (i) a very good correlation exists between the Lyα and 171 Å intensities in the TRACE moss regions, (ii) we can identify several identical structures in some (but not all) moss areas, and (iii) the correlations are greatly reduced at the footpoints of the 171 Å large-scale loops. We derive a lower limit for the Lyα emission measure, under the assumption of effectively optically thin emission, and compare it to the 171 Å emission measure. As in previous studies, we find an excess of Lyα material compared to the amount expected for a thermal conduction-dominated corona-chromosphere transition region, even for structures that appear to be identical in the two wavelengths. This result implies that some other mechanism besides classical heat conduction from the corona must contribute to the observed Lyα intensities. The observations do not support the idea of a physically distinct cool loop component within active regions.

  14. Effect of the Drag Force on the Orbital Motion of the Broad-line Region Clouds

    NASA Astrophysics Data System (ADS)

    Khajenabi, Fazeleh

    2016-09-01

    We investigate the orbital motion of cold clouds in the broad-line region of active galactic nuclei subject to the gravity of a black hole, a force due to a non-isotropic central source, and a drag force proportional to the velocity square. The intercloud is described using the standard solutions for the advection-dominated accretion flows. The orbit of a cloud decays because of the drag force, but the typical timescale of clouds falling onto the central black hole is shorter compared to the linear drag case. This timescale is calculated when a cloud moves through a static or rotating intercloud. We show that when the drag force is a quadratic function of the velocity, irrespective of the initial conditions and other input parameters, clouds will generally fall onto the central region much faster than the age of whole system, and since cold clouds present in most of the broad-line regions, we suggest that mechanisms for the continuous creation of the clouds must operate in these systems.

  15. The nuclear region of low luminosity flat radio spectrum sources. II. Emission-line spectra

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Serote Roos, M.

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marchã's et al. (\\cite{March96}) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. The fact that we observe a LINER-type spectrum in LL FRS sources supports the idea that some of these objects could be undergoing an ADAF phase; in addition, such a low ionization emission-line spectrum is in agreement with the black hole mass values and sub-Eddington accretion rates published for some FRS sources. Based on observations collected at the Multiple Mirror Telescope on Mt. Hopkins. Full Fig. 1 is only available in electronic form at http://www.edpsciences.org

  16. On BWR regional oscillations with rotational symmetry line using SIMULATE-3K

    SciTech Connect

    Dokhane, A.; Ferroukhi, H.; Pautz, A.

    2013-07-01

    A new stability analysis methodology is being developed at the Paul Scherrer Institute (PSI) using the best-estimate coupled neutronic/thermal- hydraulics code, SIMULATE-3K (S3K). This methodology has so far been validated against Leibstadt NPP (KKL) stability tests of C10, C13 and C19, which all show global (in-phase) oscillations. However, the methodology has not yet been validated for regional instabilities and to that aim, a special KKL cycle 07 stability test was selected. Indeed, during this test, the core not only showed growing power oscillation amplitudes in an out-of-phase regime but also an oscillating and rotating symmetry line. Thereby, it was selected in order to verify the S3K capability to predict regional instabilities and on that basis, obtain more insights towards understanding the causes for the oscillatory and rotational behaviour of symmetry lines. The results obtained so far are presented in this paper. First, it is found that the S3K results are in good agreement with measurements both qualitatively and quantitatively, although the resonance frequency is slightly over-predicted. Secondly, the excitation of the out-of-phase mode with oscillations as well as rotation of the symmetry line is also well captured i.e. in accordance to the experimental observations. Related to this, an in-depth analysis of LPRM signals indicates that two out-of-phase oscillation modes associated to two azimuthal neutronic modes are simultaneously excited. Furthermore, it is found that a superposition of these two modes will trigger the symmetry line dynamics and that the behaviour will be guided by the dominance ratio between these two modes. More precisely, the oscillatory behaviour is due to the superposition of the two azimuthal modes but with one dominant mode. The rotational behaviour is however due to the superposition of the two modes with comparable strengths. (authors)

  17. Mechanical behavior and shape optimization of lining structure for subsea tunnel excavated in weathered slot

    NASA Astrophysics Data System (ADS)

    Li, Peng-fei; Zhou, Xiao-jun

    2015-12-01

    Subsea tunnel lining structures should be designed to sustain the loads transmitted from surrounding ground and groundwater during excavation. Extremely high pore-water pressure reduces the effective strength of the country rock that surrounds a tunnel, thereby lowering the arching effect and stratum stability of the structure. In this paper, the mechanical behavior and shape optimization of the lining structure for the Xiang'an tunnel excavated in weathered slots are examined. Eight cross sections with different geometric parameters are adopted to study the mechanical behavior and shape optimization of the lining structure. The hyperstatic reaction method is used through finite element analysis software ANSYS. The mechanical behavior of the lining structure is evidently affected by the geometric parameters of crosssectional shape. The minimum safety factor of the lining structure elements is set to be the objective function. The efficient tunnel shape to maximize the minimum safety factor is identified. The minimum safety factor increases significantly after optimization. The optimized cross section significantly improves the mechanical characteristics of the lining structure and effectively reduces its deformation. Force analyses of optimization process and program are conducted parametrically so that the method can be applied to the optimization design of other similar structures. The results obtained from this study enhance our understanding of the mechanical behavior of the lining structure for subsea tunnels. These results are also beneficial to the optimal design of lining structures in general.

  18. Study of NH3 Line Intensities in the THz and Far-IR Region

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan

    Ammonia (NH3) exists in the interstellar medium, late-type stars and giant planets of our solar system. Its temperature and abundance profiles in these environments, which are derived with its line parameters as fixed input , are commonly used to provide constraints on retrieving minor species. Therefore NH3 line parameters are essential for interpreting astrophysical and planetary spectra from Herschel, SOFIA, ALMA and JWST. However, our work under a predecessor grant with the APRA program revealed significant deficiencies in NH3 intensities in the terahertz and FIR region, including some weak Delta(K)=3 forbidden transitions predicted to be 100 times stronger. The Delta(K)=3 transitions are the ones connecting levels with different K values and therefore the only way other than collisions and l-doubled states to excite NH3 to K>0 levels. Their intensities have to be corrected to explain the observed high K excitation, such as the detection of NH3 (J,K) = (1,1), (2,2)&(14,14) and (18,18) transitions toward the galactic center star forming region Sgr B2, and to provide insights into the radiative- transfer vs. collision excitation mechanics of interstellar NH3. This proposal will remedy the serious deficiencies in the current databases involving NH3 line parameters in the terahertz and FIR region. We will target transitions with intensities greater than 10^{-23} cm-1/ (molecule/cm2) at 296 K, which will be among new astrophysical detections made by SOFIA, ALMA and JWST, and are 1000 times weaker than the strongest ground state transitions. We will retrieve new positions and intensities from existing laboratory spectra, use them to evaluate the current databases and ab initio calculations, and repair the line positions and intensities by replacing poorly calculated values with our new measurements. The proposed research will result in (1) a validated linelist containing the positions, intensities and lower state energies for the very important Delta(K)=3 NH3 FIR

  19. Keck HIRES Spectroscopy of Extragalactic H II Regions: C and O Abundances from Recombination Lines

    NASA Astrophysics Data System (ADS)

    Esteban, César; Bresolin, Fabio; Peimbert, Manuel; García-Rojas, Jorge; Peimbert, Antonio; Mesa-Delgado, Adal

    2009-07-01

    We present very deep spectrophotometry of 14 bright extragalactic H II regions belonging to spiral, irregular, and blue compact galaxies. The data for 13 objects were taken with the High Resolution Echelle Spectrometer on the Keck I telescope. We have measured C II recombination lines in 10 of the objects and O II recombination lines in eight of them. We have determined electron temperatures from line ratios of several ions, especially those of low ionization potential. We have found a rather tight linear empirical relation between T e([N II]) and T e([O III]). We have found that O II lines give always larger abundances than [O III] lines. Moreover, the difference of both O++ abundance determinations—the so-called abundance discrepancy factor—is very similar in all the objects, with a mean value of 0.26 ± 0.09 dex, independent of the properties of the H II region and of the parent galaxy. Using the observed recombination lines, we have determined the O, C, and C/O radial abundance gradients for three spiral galaxies: M33, M101, and NGC 2403, finding that C abundance gradients are always steeper than those of O, producing negative C/O gradients across the galactic disks. This result is similar to that found in the Milky Way and has important implications for chemical evolution models and the nucleosynthesis of C. Most of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Part of the observations were made with the 4.2 m William Herschel Telescope (WHT), operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  20. The Mechanosensory Lateral Line System Mediates Activation of Socially-Relevant Brain Regions during Territorial Interactions

    PubMed Central

    Butler, Julie M.; Maruska, Karen P.

    2016-01-01

    Animals use multiple senses during social interactions and must integrate this information in the brain to make context-dependent behavioral decisions. For fishes, the largest group of vertebrates, the mechanosensory lateral line system provides crucial hydrodynamic information for survival behaviors, but little is known about its function in social communication. Our previous work using the African cichlid fish, Astatotilapia burtoni, provided the first empirical evidence that fish use their lateral line system to detect water movements from conspecifics for mutual assessment and behavioral choices. It is unknown, however, where this socially-relevant mechanosensory information is processed in the brain to elicit adaptive behavioral responses. To examine for the first time in any fish species which brain regions receive contextual mechanosensory information, we quantified expression of the immediate early gene cfos as a proxy for neural activation in sensory and socially-relevant brain nuclei from lateral line-intact and -ablated fish following territorial interactions. Our in situ hybridization results indicate that in addition to known lateral line processing regions, socially-relevant mechanosensory information is processed in the ATn (ventromedial hypothalamus homolog), Dl (putative hippocampus homolog), and Vs (putative medial extended amygdala homolog). In addition, we identified a functional network within the conserved social decision-making network (SDMN) whose co-activity corresponds with mutual assessment and behavioral choice. Lateral line-intact and –ablated fight winners had different patterns of co-activity of these function networks and group identity could be determined solely by activation patterns, indicating the importance of mechanoreception to co-activity of the SDMN. These data show for the first time that the mechanosensory lateral line system provides relevant information to conserved decision-making centers of the brain during

  1. The Mechanosensory Lateral Line System Mediates Activation of Socially-Relevant Brain Regions during Territorial Interactions.

    PubMed

    Butler, Julie M; Maruska, Karen P

    2016-01-01

    Animals use multiple senses during social interactions and must integrate this information in the brain to make context-dependent behavioral decisions. For fishes, the largest group of vertebrates, the mechanosensory lateral line system provides crucial hydrodynamic information for survival behaviors, but little is known about its function in social communication. Our previous work using the African cichlid fish, Astatotilapia burtoni, provided the first empirical evidence that fish use their lateral line system to detect water movements from conspecifics for mutual assessment and behavioral choices. It is unknown, however, where this socially-relevant mechanosensory information is processed in the brain to elicit adaptive behavioral responses. To examine for the first time in any fish species which brain regions receive contextual mechanosensory information, we quantified expression of the immediate early gene cfos as a proxy for neural activation in sensory and socially-relevant brain nuclei from lateral line-intact and -ablated fish following territorial interactions. Our in situ hybridization results indicate that in addition to known lateral line processing regions, socially-relevant mechanosensory information is processed in the ATn (ventromedial hypothalamus homolog), Dl (putative hippocampus homolog), and Vs (putative medial extended amygdala homolog). In addition, we identified a functional network within the conserved social decision-making network (SDMN) whose co-activity corresponds with mutual assessment and behavioral choice. Lateral line-intact and -ablated fight winners had different patterns of co-activity of these function networks and group identity could be determined solely by activation patterns, indicating the importance of mechanoreception to co-activity of the SDMN. These data show for the first time that the mechanosensory lateral line system provides relevant information to conserved decision-making centers of the brain during territorial

  2. THE GREEN BANK TELESCOPE H II REGION DISCOVERY SURVEY. IV. HELIUM AND CARBON RECOMBINATION LINES

    SciTech Connect

    Wenger, Trey V.; Bania, T. M.; Balser, Dana S.; Anderson, L. D.

    2013-02-10

    The Green Bank Telescope H II Region Discovery Survey (GBT HRDS) found hundreds of previously unknown Galactic regions of massive star formation by detecting hydrogen radio recombination line (RRL) emission from candidate H II region targets. Since the HRDS nebulae lie at large distances from the Sun, they are located in previously unprobed zones of the Galactic disk. Here, we derive the properties of helium and carbon RRL emission from HRDS nebulae. Our target sample is the subset of the HRDS that has visible helium or carbon RRLs. This criterion gives a total of 84 velocity components (14% of the HRDS) with helium emission and 52 (9%) with carbon emission. For our highest quality sources, the average {sup 4}He{sup +}/H{sup +} abundance ratio by number, (y {sup +}), is 0.068 {+-} 0.023(1{sigma}). This is the same ratio as that measured for the sample of previously known Galactic H II regions. Nebulae without detected helium emission give robust y {sup +} upper limits. There are 5 RRL emission components with y {sup +} less than 0.04 and another 12 with upper limits below this value. These H II regions must have either a very low {sup 4}He abundance or contain a significant amount of neutral helium. The HRDS has 20 nebulae with carbon RRL emission but no helium emission at its sensitivity level. There is no correlation between the carbon RRL parameters and the 8 {mu}m mid-infrared morphology of these nebulae.

  3. Interfacial structure and rearrangement of nonionic surfactants near a receding contact line

    NASA Astrophysics Data System (ADS)

    Luokkala, Barry B.

    Surfactant solutions exhibit a wide variety of wetting and dewetting behaviors on high energy surfaces. These behaviors are driven by surfactant self-assemblies at the moving contact line. To probe these self-assemblies, we have undertaken a study of surfactant structure at the three interfaces near a receding contact line. We immerse a hydrophilic silica surface in aqueous solutions of polyethyleneglycol monododecyl ether (C12En, 1 ≤ n ≤ 8) below the critical micelle concentration. The substrate is withdrawn from solution at a speed, U < Ucrit, the critical velocity for pulling a macroscopic film on the solid surface, so that a receding contact line moves across the surface. We determine the area per molecule adsorbed at the solid-liquid and liquid-vapor interfaces, and the structural details of the monolayer deposited to the solid-vapor interface at the receding contact line. We also describe in detail a new technique which we have developed for objectively interpreting data from x-ray reflectivity measurements, our primary tool for probing structure at the solid-vapor interface. We find that the adsorbed amount at the solid-liquid interface is a small-to-negligible contribution to the monolayer deposited at the solid-vapor interface for all n. The primary source of the deposited surfactant is the self-assembled layer at the liquid-vapor interface. The density of the deposited monolayer is substantially less than the density at the liquid-vapor interface. Conservation of mass demands a dividing streamline in the bulk, along which surfactant from the liquid-vapor interface is returned to solution. We note a transition at n = 6 from reversible to partially irreversible adsorption, suggesting the ethylene oxide (EO) head groups begin to behave like PEO polymer for n ≥ 6. At the liquid-vapor interface the area per molecule increases monotonically with n, suggesting increasing disorder in the head group region. The deposited monolayer at the solid

  4. Far-infrared lines from H II regions: Abundance variations in the galaxy

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Colgan, Sean W. J.; Rubin, Robert H.; Erickson, Edwin F.; Haas, Michael R.

    1995-01-01

    Far-infrared lines of (N III) (57 microns), (O III) (52, 88 microns), (Ne III) (36 microns), and (S III) (19, 33 microns) have been measured in the H II regions G1.13 - 0.11, W31B, G23.95 + 0.15, G25.38 - 0.18, G29.96 - 0.02, W43, W51e, S156, S158, NGC 3576, NGC 3603, and G298.22-0.34. These observations were made with the facility Cryogenic Grating Spectrometer on the Kuiper Airborne Observatory to examine variations in abundances throughout the Galaxy. Previously published observations of G0.095 + 0.012, G333.60 - 0.21, G45.13 + 0.14A, K3-50, and M17 are also discussed. The giant H II region 30 Doradus in the Large Magellanic Cloud (LMC) was observed for comparison. Fluxes for (Ne II) (12.8 microns), (S IV) (10.5 microns), and the radio free-free continuum were collected from the literature for those sources. Electron densities were estimated from FIR line-pair ratios, and ionic abundances were estimated from the FIR line and radio fluxes. The excitation was estimated from the O(2+)/S(2+) ratio. Corrections for unseen ionization stages were calculated with the use of constnat-density H II region models. The validity and range of applicability of such semiempirical ionization correction schemes are discussed. The abundances with respect to hydrogen exhibit gradients with R(sub G) comparable to those previously measured for our Galaxy and for other galaxies. The overall gradients are d (log N/H)/dR = -0.10 +/- 0.02 dex/kpc, d(log Ne/H)/dR = -0.08 +/- 0.02 dex/kpc and d(log S/H)/dR = 0.07 +/- 0.02 dex/kpc. Compared to the Orion Nebula, the intermediate R(sub G) H II regions with 6 is less than R(sub G) is less than 11 kpc have similar or lower S/H and N/O ratios. The N/O ratios in the inner Galaxy are more than twice those observed in the Orion Nebula and intermediate R(sub G) H II regions. In fact, all the abundance ratios are as well or better fitted by a step fit with two levels than by a linear gradient. As has been noted in previous studies, the N/O ratio

  5. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs

    NASA Astrophysics Data System (ADS)

    Aleman, I.; Gruenwald, R.

    2011-05-01

    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  6. Line strengths of N2O in the 1120-1440/cm region

    NASA Astrophysics Data System (ADS)

    Toth, R. A.

    1984-06-01

    Line strengths of N2O and its isotopic derivatives in the 1120-1440/cm region were measured at low pressure and high resolution (0.0054/cm). The band strength, rotationless dipole moment matrix elements, and F factor coefficients were considered. First-order nondegenerate perturbation theory was employed to derive explicit expressions for the rotationless dipole moment matrix elements and F factor coefficients. This made it possible to obtain general expressions for the F factor. The derived expressions were also applicable to CO2 bands.

  7. Line strengths of N2O in the 1120-1440/cm region

    NASA Technical Reports Server (NTRS)

    Toth, R. A.

    1984-01-01

    Line strengths of N2O and its isotopic derivatives in the 1120-1440/cm region were measured at low pressure and high resolution (0.0054/cm). The band strength, rotationless dipole moment matrix elements, and F factor coefficients were considered. First-order nondegenerate perturbation theory was employed to derive explicit expressions for the rotationless dipole moment matrix elements and F factor coefficients. This made it possible to obtain general expressions for the F factor. The derived expressions were also applicable to CO2 bands.

  8. Integral Field Spectroscopy of the Extended Emission-Line Region of 4C 37.43

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Stockton, Alan

    2007-09-01

    We present Gemini integral field spectroscopy and Keck II long-slit spectroscopy of the extended emission-line region (EELR) around the quasar 4C 37.43. The velocity structure of the ionized gas is complex and cannot be explained globally by a simple dynamical model. The spectra from the clouds are inconsistent with shock or ``shock + precursor'' ionization models, but they are consistent with photoionization by the quasar nucleus. The best-fit photoionization model requires a low-metallicity [12+log(O/H)<~8.7] two-phase medium, consisting of a matter-bounded diffuse component with a unity filling factor (N~1 cm-3, T~15,000 K), in which are embedded small, dense clouds (N~400 cm-3, T~104 K). The high-density clouds are transient and can be regenerated through compressing the diffuse medium by low-speed shocks (VS<~100 km s-1). Our photoionization model gives a total mass for the ionized gas of about 3×1010 Msolar, and the total kinetic energy implied by this mass and the observed velocity field is ~2×1058 erg. The fact that luminous EELRs are confined to steep-spectrum radio-loud QSOs, yet show no morphological correspondence to the radio jets, suggests that the driving force producing the 4C 37.43 EELR was a roughly spherical blast wave initiated by the production of the jet. That such a mechanism seems capable of ejecting a mass comparable to that of the total interstellar medium of the Milky Way suggests that ``quasar-mode'' feedback may indeed be an efficient means of regulating star formation in the early universe. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq

  9. Virilization of the Broad Line Region in Active Galactic Nuclei—connection between shifts and widths of broad emission lines

    NASA Astrophysics Data System (ADS)

    Jonić, S.; Kovačević-Dojčinović, J.; Ilić, D.; Popović, L. Č.

    2016-03-01

    We investigate the virilization of the emission lines {Hβ } and Mg II in the sample of 287 Type 1 Active Galactic Nuclei taken from the Sloan Digital Sky Survey database. We explore the connections between the intrinsic line shifts and full widths at different levels of maximal intensity. We found that: (i) {Hβ} seems to be a good virial estimator of black hole masses, and an intrinsic redshift of {Hβ} is dominantly caused by the gravitational effect, (ii) there is an anti-correlation between the redshift and width of the wings of the Mg II line, (iii) the broad Mg II line can be used as virial estimator only at 50 % of the maximal intensity, while the widths and intrinsic shifts of the line wings cannot be used for this purpose.

  10. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  11. A DEEP CHANDRA ACIS STUDY OF NGC 4151. II. THE INNERMOST EMISSION LINE REGION AND STRONG EVIDENCE FOR RADIO JET-NLR CLOUD COLLISION

    SciTech Connect

    Wang Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.

    2011-07-20

    We have studied the X-ray emission within the inner {approx}150 pc radius of NGC 4151 by constructing high spatial resolution emission line images of blended O VII, O VIII, and Ne IX. These maps show extended structures that are spatially correlated with the radio outflow and optical [O III] emission. We find strong evidence for jet-gas cloud interaction, including morphological correspondences with regions of X-ray enhancement, peaks of near-infrared [Fe II] emission, and optical clouds. In these regions, moreover, we find evidence of elevated Ne IX/O VII ratios; the X-ray emission of these regions also exceeds that expected from nuclear photoionization. Spectral fitting reveals the presence of a collisionally ionized component. The thermal energy of the hot gas suggests that {approx}> 0.1% of the estimated jet power is deposited into the host interstellar medium through interaction between the radio jet and the dense medium of the circumnuclear region. We find possible pressure equilibrium between the collisionally ionized hot gas and the photoionized line-emitting cool clouds. We also obtain constraints on the extended iron and silicon fluorescent emission. Both lines are spatially unresolved. The upper limit on the contribution of an extended emission region to the Fe K{alpha} emission is {approx}< 5% of the total, in disagreement with a previous claim that 65% of the Fe K{alpha} emission originates in the extended narrow line region.

  12. Analysis of line structure in handwritten documents using the Hough transform

    NASA Astrophysics Data System (ADS)

    Ball, Gregory R.; Kasiviswanathan, Harish; Srihari, Sargur N.; Narayanan, Aswin

    2010-01-01

    In the analysis of handwriting in documents a central task is that of determining line structure of the text, e.g., number of text lines, location of their starting and end-points, line-width, etc. While simple methods can handle ideal images, real world documents have complexities such as overlapping line structure, variable line spacing, line skew, document skew, noisy or degraded images etc. This paper explores the application of the Hough transform method to handwritten documents with the goal of automatically determining global document line structure in a top-down manner which can then be used in conjunction with a bottom-up method such as connected component analysis. The performance is significantly better than other top-down methods, such as the projection profile method. In addition, we evaluate the performance of skew analysis by the Hough transform on handwritten documents.

  13. Verbal Working Memory Performance Correlates with Regional White Matter Structures in the Frontoparietal Regions

    ERIC Educational Resources Information Center

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2011-01-01

    Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Previous imaging studies have suggested that the frontoparietal regions are activated during working memory tasks; a putative association between the structure of the frontoparietal regions and working…

  14. Line-Integral Projection Reconstruction (LPR) with Slice Encoding Techniques: Multislice Regional Imaging in NMR Tomography.

    PubMed

    Oh, C H; Park, H W; Cho, Z H

    1984-01-01

    Line-integral projection reconstruction (LPR) in NMR imaging was found to be useful and has several advantages such as the imaging capability of objects having short T2 and compensation of phase fluctuations arising from the system instability. Although single slice LPR is found to be inefficient and poor in signal-to-noise ratio (SNR), the multislice encoded LPR method is of interest since it has a high SNR and also the capability of selected regional volume or multislice imaging. The latter, i.e., regional volume imaging capability, is a unique property of NMR imaging and offers a variety of imaging capabilities such as simultaneous multislice imaging of sagittal, transaxial, or coronal views. In this paper, we have investigated two basic forms of the multislice encoded imaging methods using LPR, i.e., Fourier and Hadamard-like encoding matrices. Applications of the methods to the experimented NMR imaging show good agreement with predicted behavior. PMID:18234626

  15. Rendering Three-Dimensional Solar Coronal Structures of Active Region 8227

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Alexander, D. A.

    1999-01-01

    Coronal X-ray and EUV synthesized images are constructed of Active Region 8227 (May-June 1996) and are compared with Yohkoh/SXT, SOHO/EIT, and TRACE observations. Using the rendering technique of Gary (1997) and Alexander, Gary, and Thompson (1998), specific geometric and physical models are used to integrated the plasma emission along the line of sight to obtain a rendered image. The specific instrumental profiles are convolved in the integration process as well as specific heating functions. We analyze coronal X-ray and EUV structures by constructing synthesized image and comparison with observations provide test of specific physical models. We investigate how different pressure distributions within the active region loop system affect the emission characteristics and compare the various results with coronal observations. We investigate how the different heating functions in the active region are reflected in the effect of overall structure of the region. Specific heating rates are tested.

  16. Radiative Transfer and Absorbing Structures in the Transition Region

    NASA Astrophysics Data System (ADS)

    Plovanic, Jacob; Kankelborg, C. C.

    2012-05-01

    A fully satisfactory explanation for the anomalous He II 304 Å intensity in the solar transition region has yet to be offered. As an extension of previous work, we use a full radiative transfer code to build a more consistent model of the transition region that allows the He II line to form with low filling factor and low opacity. Our results are constrained by the quiet sun center-to-limb profile of He II 304 Å obtained from the MOSES sounding rocket mission and by AIA full-disk data.

  17. Helium abundance and ionization structure in the Orion nebula: radio recombination lines observations

    NASA Astrophysics Data System (ADS)

    Poppi, S.; Tsivilev, A. P.; Cortiglioni, S.; Palumbo, G. G. C.; Sorochenko, R. L.

    2007-03-01

    Results of the Ori A HII region mapping based on hydrogen (H), helium (He) and carbon (C) Radio Recombination lines (RRL) are presented. Observations were made with the same angular resolution (2') using the 32 m VLBI dish of Medicina (Italy, 22.4 GHz) and the Pushchino RT-22 dish (Russia, 36.5 GHz). The behaviour of the ionized helium abundance, y^+, with distance from the center shows that the He+ zone size is smaller than that of H^+. Such a behaviour is different for the core and for the envelope, as well as for different directions from the center. The helium abundance, N(He)/N(H)=10.0(± 0.8)%, is measured. Derived line radial velocities, their widths and y+ data support the well-known "blister-type" structure of this HII region. LTE electron temperatures (7800-9600 K) are also measured. Appendices (Figs. 15, 16 and Sect. 4.1 "Carbon RRLs") are only available in electronic form at http://www.aanda.org

  18. WHY IS NON-THERMAL LINE BROADENING OF SPECTRAL LINES IN THE LOWER TRANSITION REGION OF THE SUN INDEPENDENT OF SPATIAL RESOLUTION?

    SciTech Connect

    De Pontieu, B.; Martinez-Sykora, J.; McIntosh, S.; Peter, H.; Pereira, T. M. D.

    2015-01-20

    Spectral observations of the solar transition region (TR) and corona show broadening of spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (5–30 km s{sup −1}) and correlated with intensity. Here we study spectra of the TR Si iv 1403 Å line obtained at high resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.″33) of IRIS compared to previous spectrographs (2″) does not resolve the non-thermal line broadening which, in most regions, remains at pre-IRIS levels of about 20 km s{sup −1}. This invariance to spatial resolution indicates that the processes behind the broadening occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the TR and can lead to significant non-thermal line broadening. This scenario is supported by MHD simulations. While these do not show enough non-thermal line broadening, they do reproduce the long-known puzzling correlation between non-thermal line broadening and intensity. This correlation is caused by the shocks, but only if non-equilibrium ionization is taken into account. In regions where the LOS is more perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and correlation with intensity. (letters)

  19. SEMICONDUCTOR DEVICES: Trench gate IGBT structure with floating P region

    NASA Astrophysics Data System (ADS)

    Mengliang, Qian; Zehong, Li; Bo, Zhang; Zhaoji, Li

    2010-02-01

    A new trench gate IGBT structure with a floating P region is proposed, which introduces a floating P region into the trench accumulation layer controlled IGBT (TAC-IGBT). The new structure maintains a low on-state voltage drop and large forward biased safe operating area (FBSOA) of the TAC-IGBT structure while reduces the leakage current and improves the breakdown voltage. In addition, it enlarges the short circuit safe operating area (SCSOA) of the TAC-IGBT, and is simple in fabrication and design. Simulation results indicate that, for IGBT structures with a breakdown voltage of 1200 V, the leakage current of the new trench gate IGBT structure is one order of magnitude lower than the TAC-IGBT structure and the breakdown voltage is 150 V higher than the TAC-IGBT.

  20. THE EXTENDED NARROW-LINE REGION OF TWO TYPE-I QUASI-STELLAR OBJECTS

    SciTech Connect

    Oh, Semyeong; Woo, Jong-Hak; Bennert, Vardha N.; Jungwiert, Bruno; Leipski, Christian; Albrecht, Marcus E-mail: woo@astro.snu.ac.kr E-mail: bruno@ig.cas.cz E-mail: leipski@mpia-hd.mpg.de

    2013-04-20

    We investigate the narrow-line region (NLR) of two radio-quiet QSOs, PG1012+008 and PG1307+085, using high signal-to-noise spatially resolved long-slit spectra obtained with FORS1 at the Very Large Telescope. Although the emission is dominated by the point-spread function of the nuclear source, we are able to detect extended NLR emission out to several kiloparsec scales in both QSOs by subtracting the scaled central spectrum from outer spectra. In contrast to the nuclear spectrum, which shows a prominent blue wing and a broad line profile of the [O III] line, the extended emission reveals no clear signs of large-scale outflows. Exploiting the wide wavelength range, we determine the radial change of the gas properties in the NLR, i.e., gas temperature, density, and ionization parameter, and compare them with those of Seyfert galaxies and type-II QSOs. The QSOs have higher nuclear temperature and lower electron density than Seyferts, but show no significant difference compared to type-II QSOs, while the ionization parameter decreases with radial distance, similar to the case of Seyfert galaxies, For PG1012+008, we determine the stellar-velocity dispersion of the host galaxy. Combined with the black hole mass, we find that the luminous radio-quiet QSO follows the local M{sub BH}-{sigma}{sub *} relation of active galactic nuclei.

  1. Relationship between interphasic nucleolar organizer regions and growth rate in two neuroblastoma cell lines.

    PubMed Central

    Derenzini, M.; Pession, A.; Farabegoli, F.; Trerè, D.; Badiali, M.; Dehan, P.

    1989-01-01

    The relationship between the quantity of silver-stained interphasic nucleolar organizer regions (NORs) and nuclear synthetic activity, caryotype, and growth rate was studied in two established neuroblastoma cell lines (CHP 212 and HTB 10). Statistical analysis of silver-stained NORs revealed four times as many in CHP 212 cells compared with HTB 10 cells. No difference was observed in the ribosomal RNA synthesis between the two cell lines. The caryotype index was 1.2 for CHP 212 and 1.0 for HTB 10 cells. The number of chromosomes carrying NORs and the quantity of ribosomal genes was found to be the same for the two cell lines. Doubling time of CHP 212 cells was 20 hours compared with 54 hours for HTB 10 cells. In CHP 212 cells bindering of cell duplication by serum deprivation induced a progressive lowering (calculated at 48, 72, and 96 hours) of the quantity of silver-stained interphasic NORs. Recovery of duplication by new serum addition induced, after 24 hours, an increase of the quantity of silver-stained interphasic NORs up to control levels. In the light of available data, these results indicate that the quantity of interphasic NORs is strictly correlated only to the growth rate of the cell. Images Figure 2 Figure 3 Figure 4 PMID:2705511

  2. High-Sensitivity Broadband Spectral Line Surveys of Star Forming Regions with the CSO

    NASA Astrophysics Data System (ADS)

    Weaver, Susanna L. Widicus; Sumner, Matthew C.; Rice, Frank; Zmuidzinas, Jonas; Blake, Geoffrey A.

    2009-06-01

    Spectral line surveys are powerful tools for astrochemistry because they circumvent the one-line-at-a-time approach that has historically hampered new molecule identification. Until recently, line surveys were typically motivated by the need to characterize the major components of interstellar clouds, i.e. the so-called ``interstellar weeds." Previously reported surveys therefore often do not provide the sensitivity levels required for identification of new molecules with weak spectral signatures. The goal of our recent observations with the Caltech Submillimeter Observatory (CSO) is to shift the focus of spectral line surveys away from the interstellar weeds and toward detection of new interstellar molecules. We have obtained broadband, high-sensitivity spectra toward several star forming regions with the new λ=1 mm receiver at the CSO. When used with the facility AOS's, this receiver affords 4 GHz of DSB spectral coverage for each LO setting. We have employed a stepped frequency-offset approach to allow for full spectral deconvolution. The noise temperature of this receiver is ˜100 K (SSB), resulting in spectral RMS levels that far surpass those reported in similar previous studies. Our initial observations targeted the Orion and Sagittarius B2(N-LMH) hot cores and a collection of Class 0 sources. We have now completed our coverage of these initial targets, and upcoming observing time has been allocated for similar surveys of the hot cores W51 e1/e2 and G34.3+0.2. We have fully deconvolved 28 GHz of spectra on Orion with RMS levels of T_A^*˜20 mK. Our coverage on Sgr was more limited, yielding ˜8 GHz of fully-deconvolved spectra to the same RMS level. In this talk, we will report on the data analysis for the Orion and Sgr observations, discuss our progress on line surveys of other star-forming regions, and discuss the implications of these results in the context of recent hot core astrochemical models.

  3. 76 FR 21847 - Defense Federal Acquisition Regulation Supplement (DFARS), Alternative Line-Item Structure (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... Acquisition Regulation Supplement (DFARS), Alternative Line-Item Structure (DFARS Case 2010-D017) AGENCY... standard procedure for offerors to propose an alternative line-item structure that reflects the offeror's business practices for selling and billing commercial items and initial provisioning spares for...

  4. 76 FR 58138 - Defense Federal Acquisition Regulation Supplement (DFARS); Alternative Line Item Structure (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... Register at 76 FR 21847 on April 19, 2011, to add DFARS language that provides offerors the opportunity to... Acquisition Regulation Supplement (DFARS); Alternative Line Item Structure (DFARS Case 2010-D017) AGENCY... standard procedure for offerors to propose an alternative line item structure that reflects the...

  5. On-line Education Initiatives to Galvanize Climate Mitigation in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Mooney, M. E.; Ackerman, S. A.

    2014-12-01

    The Cooperative Institute for Meteorological Satellite Studies (CIMSS) is supporting two different on-line education initiatives that teach about climate change while emphasizing informed and effective responses. The first is an on-line introductory level course for undergraduate students (http://c3.ssec.wisc.edu/) offered through the University of Wisconsin-Madison Atmospheric and Oceanic Sciences (AOS) department. Along with a lighter carbon footprint and the convenience of web-based access, students interact via Drupal forums, Google hangouts and twitter. Activities include several pedagogical tools with sustainability-related content and a final project requiring a discussion of regionally relevant mitigation responses to achieve low emission scenarios for assigned locations. The other initiative is a MOOC (massive open online course) focusing on the changing weather and climate in the Great Lakes Region. This 4-week course is set to launch February 23 2015. One of the primary goals of this MOOC will be having participants change four habits, one per week. Each behavior change will provide a personal benefit to participating individuals while also helping to mitigate the collective impacts of climate change. This presentation will share strategies and insights from both projects.

  6. Line segment confidence region-based string matching method for map conflation

    NASA Astrophysics Data System (ADS)

    Huh, Yong; Yang, Sungchul; Ga, Chillo; Yu, Kiyun; Shi, Wenzhong

    2013-04-01

    In this paper, a method to detect corresponding point pairs between polygon object pairs with a string matching method based on a confidence region model of a line segment is proposed. The optimal point edit sequence to convert the contour of a target object into that of a reference object was found by the string matching method which minimizes its total error cost, and the corresponding point pairs were derived from the edit sequence. Because a significant amount of apparent positional discrepancies between corresponding objects are caused by spatial uncertainty and their confidence region models of line segments are therefore used in the above matching process, the proposed method obtained a high F-measure for finding matching pairs. We applied this method for built-up area polygon objects in a cadastral map and a topographical map. Regardless of their different mapping and representation rules and spatial uncertainties, the proposed method with a confidence level at 0.95 showed a matching result with an F-measure of 0.894.

  7. An on-line regional overpower surveillance system for Candu reactors

    SciTech Connect

    Wallace, D. J.; Caxaj, V.; Seidu, A. S.; Hartmann, W.; Sur, B.; McDonald, A.

    2006-07-01

    The current methodology for establishing Regional Overpower Protection (ROP) trip set-points for Canada Deuterium Uranium (Candu{sup R} reactors requires an extensive and detailed assessment of the plant based on a distribution of channel and bundle powers (flux shapes) calculated from a range of device configurations (e.g., zone controller levels, adjuster bank movements, mechanical control absorber movements, shut-off rod insertions) and a set of thermalhydraulic plant data (channel flows, reactor inlet-header temperatures, channel differential pressure). An on-line approach would provide an interface to assist operators in routine monitoring, diagnostic and maintenance activities by providing Critical Channel Powers (CCP) and ROP set points from instantaneous flux shapes derived from real-time detector readings and associated thermalhydraulic conditions. This paper describes an Advanced On-Line Regional Overpower Surveillance (AOL-ROS) system currently under development at Atomic Energy of Canada Limited (AECL) for Candu reactors. Development has been based on an assessment using instantaneous operating data for the period February to April 2004 from a Candu 6 reactor located at Point Lepreau, New Brunswick (Canada). (authors)

  8. Analysis of Transition-Region Emission-Line Profiles from Full-Disk Scans of the Sun Using the SUMER Instrument on SOHO

    NASA Astrophysics Data System (ADS)

    Peter, H.

    1999-05-01

    We examine statistical properties of line profiles seen in full-disk observations with the UV spectrograph SUMER on board SOHO. In the SUMER data archive, full-disk data with complete spectral information are available only for wavelength regions including the He I (584 Å), Ne VIII (770 Å), C III (977 Å) and C IV (1548 Å) emission lines. In this paper we will concentrate on C IV and Ne VIII. Collectively these data provide us with the unique opportunity to study the properties of line profiles in the lower and upper solar transition-region beyond what could be achieved with earlier instruments. In particular, these data reveal the center-to-limb behavior of line shifts and line widths for the first time in a statistically meaningful way. For C IV these data show the well-known redshift of the transition-region lines in the quiet Sun and a clear correlation of the Doppler shift and the nonthermal broadening to the intensity as a characteristic of the network structure. This correlation is not found in the coronal holes. No indications for the network can be found in Ne VIII. For Ne VIII we find a center-to-limb variation of the line shift opposite to C IV, which leads to the conclusion that Ne VIII must be blueshifted at disk center. This also shows the need for a remeasurement of the wavelength of Ne VIII in the laboratory. The center-to-limb variation of the line width leads to the conclusion that the nonresolved motions are not isotropic with a preference for the vertical component. Both lines show a clear signal for an outflow in the polar coronal holes. We discuss the implications of these and other observations for models of the transition-region and corona. The line shift behavior of Ne VIII and other lines from the upper transition-region deserves deeper investigation and probably has pivotal importance in our understanding of the solar transition-region. We are pursuing such work.

  9. Sensitivity of bandpass filters using recirculating delay-line structures

    NASA Astrophysics Data System (ADS)

    Heyde, Eric C.

    1996-12-01

    Recirculating delay lines have value notably as sensors and optical signal processors. Most useful applications depend on a high-finesse response from a network. A proof that, with given response parameters, more complex systems can produce behavior that is more stable to the effects of nonidealities than a single recirculating loop is presented.

  10. Genomic heterogeneity and structural variation in soybean near isogenic lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-isogenic lines (NILs) are a critical genetic resource for the soybean research community. The ability to identify and characterize the genes driving the phenotypic differences between NILs is limited by the degree to which differential genetic introgressions can be resolved. Furthermore, the ge...

  11. A Gravity data along LARSE (Los Angeles Regional Seismic Experiment) Line II, Southern California

    USGS Publications Warehouse

    Wooley, R.J.; Langenheim, V.E.

    2001-01-01

    The U.S. Geological Survey conducted a detailed gravity study along part of the Los Angeles Regional Seismic Experiment (LARSE) transect across the San Fernando Basin and Transverse Ranges to help characterize the structure underlying this area. 249 gravity measurements were collected along the transect and to augment regional coverage near the profile. An isostatic gravity low of 50-60 mGal reflects the San Fernando-East Ventura basin. Another prominent isostatic gravity with an amplitude of 30 mGal marks the Antelope Valley basin. Gravity highs occur over the Santa Monica Mountains and the Transverse Ranges. The highest isostatic gravity values coincide with outcrops of Pelona schist.

  12. The ionization structure of helium in H II region complexes

    NASA Astrophysics Data System (ADS)

    Pena, Miriam

    1986-10-01

    Ionization structure models of H II regions are constructed to analyze the behavior of the helium ionization correction factor, icf, for combinations of different stellar radiation fields as well as for mixtures of individual H II regions of different degrees of ionization. It is found that the amount of neutral He is less than 3 percent and that icf is between 0.98 and 1.00, for H II region coomplexes ionized by OB associations where the hottest stars are earlier than O6, if the ionizing stars are distributed according to a normal IMF. This result applies for a single H II region or for a mixture of unconnected H II regions. This result implies that the He(+)/H(+) ratio observed in extragalactic H II regions of high degree of ionization corresponds to the true He/H abundance ratios.

  13. Radiative Transfer Models of Mid-Infrared H2O Lines in the Planet-Forming Region of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Meijerink, R.; Pontoppidan, K. M.; Blake, G. A.; Poelman, D. R.; Dullemond, C. P.

    2009-10-01

    The study of warm molecular gas in the inner regions of protoplanetary disks is of key importance for the study of planet formation and especially for the transport of H2O and organic molecules to the surfaces of rocky planets/satellites. Recent Spitzer observations have shown that the mid-infrared spectra of protoplanetary disks are covered in emission lines due to water and other molecules. Here, we present a non-local thermodynamic equilibrium (LTE) two-dimensional radiative transfer model of water lines in the 10-36 μm range that can be used to constrain the abundance structure of water vapor, given an observed spectrum, and show that an assumption of LTE does not accurately estimate the physical conditions of the water vapor emission zones, including temperatures and abundance structures. By applying the model to published Spitzer spectra we find that: (1) most water lines are subthermally excited, (2) the gas-to-dust ratio must be as much as 1-2 orders of magnitude higher than the canonical interstellar medium ratio of 100-200, (3) the gas temperature must be significantly higher than the dust temperature, in agreement with detailed heating/cooling models, and (4) the water vapor abundance in the disk surface must be significantly truncated beyond ~1 AU. A low efficiency of water formation below T ~ 300 K may naturally result in a lower water abundance beyond a certain radius. However, we find that chemistry, although not necessarily ruled out, may not be sufficient to produce a sharp abundance drop of many orders of magnitude and speculate that the depletion may also be caused by vertical turbulent diffusion of water vapor from the superheated surface to regions below the snow line, where the water can freeze out and be transported to the midplane as part of the general dust settling. Such a vertical cold finger effect is likely to be efficient due to the lack of a replenishment mechanism of large, water-ice coated dust grains to the disk surface.

  14. The 4850 cm^{-1} Spectral Region of CO_2: Constrained Multispectrum Nonlinear Least Squares Fitting Including Line Mixing, Speed Dependent Line Profiles and Fermi Resonance

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Nugent, Emily; Brown, Linda R.; Miller, Charles E.; Toth, Robert A.; Sung, Keeyoon

    2009-06-01

    Room temperature spectra of carbon dioxide were obtained with the Fourier transform spectrometers at the National Solar Observatory's McMath-Pierce telescope and at the Jet Propulsion Laboratory. The multispectrum nonlinear least squares fitting technique is being used to derive accurate spectral line parameters for the strongest CO_2 bands in the 4700-4930 cm^{-1} spectral region. Positions of the spectral lines were constrained to their quantum mechanical relationships, and the rovibrational constants were derived directly from the fit. Similarly, the intensities of the lines within each of the rovibrational bands were constrained to their quantum mechanical relationships, and the band strength and Herman-Wallis coefficients were derived directly from the fit. These constraints even include a pair of interacting bands with the interaction coefficient derived directly using both the positions and intensities of the spectral lines. Room temperature self and air Lorentz halfwidth and pressure induced line shift coefficients are measured for most lines. Constraints upon the positions improve measurement of pressure-induced shifts, and constraints on the intensities improve the measurement of the Lorentz halfwidths. Line mixing and speed dependent line shapes are also required and characterized. D. Chris Benner, C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, and D. Atkins, J. Quant. Spectrosc. Radiat. Transfer 53, 705-721 (1995)

  15. Laser structuring of ultra-fine circuit lines in printed circuit boards: Laser structuring, neodymium-doped yttrium aluminium garnet laser, fine circuit lines

    NASA Astrophysics Data System (ADS)

    Zhang, Bin

    Laser structuring technique emerged in recent years for the need of fabricating fine circuit lines and spaces in printed circuit board. Most of the previous work only introduced laser structuring as a new method in the fabrication of fine circuit lines and mentioned that the width of circuit line can be reduced under 50 pin or helox with this technique. Laser structuring technique will have a prosperous future only when the relationship between process parameters and fabrication results are deeply understood. This study focuses on the control, prediction and optimization of circuit geometry by studying relations between the process parameters and fabrication results in laser structuring technology. The effects of laser parameters (Frequency-tripled Nd:YAG laser) on the geometry of circuits were carried out by experiments and analyzed by mathematical method. The geometry of circuit space can efficiently be controlled by investigating the main factors that influence the characteristic parameters of circuit space with Taguchi methodology. ANN was firstly used in the study of laser structuring technique. With ANN models, the optimization of process parameters in laser writing step can be realized and the 2-D cross-sectional profile of circuit space can be calculated with the combination of ANN model and mathematical method. At last, the final circuit lines and circuit spaces fabricated were tested using the quality and reliability tests---electrical open/short test, peel test and surface insulation resistance test (SIR test). The minimum widths of circuit lines and circuit spaces with good quality and reliability fabricated by laser structuring were 25 mum and 45 mum respectively. The project is significant for both applied and academic fields. This study contributes to the understanding of the laser structuring technology and is of benefit in the fabrication of very fine line circuits in advanced printed circuit board industry.

  16. Probing the physics of Seyfert galaxies using their emission-line regions

    SciTech Connect

    Shastri, P. Kharb, P.; Jose, J.; Ramya, S.; Bhatt, H. C.; Gupta, M.; Dopita, M.; Kewley, L.; Davies, R.; Sutherland, R.; Hampton, E.; Scharwächter, J.; Banfield, J.; Srivastava, S.; Jin, J.; Basurah, H.; Fischer, S.; Panda, S.; Sundar, M. N.; Radhakrishnan, V.

    2015-12-31

    Active galaxies have powerhouses of radiation in their nuclear regions that are driven by accreting super-massive black holes. The accretion system also generates outflows of ionized gas and synchrotron-emitting bipolar jets of plasma, which could have a significant impact on the host galaxy. We have initiated an investigation into the physics of nearby active galaxies by studying the morphology, kinematics, excitation abundance structure, and radio structure of about 120 nearby targets. We present a few early results from this investigation.

  17. Gamma–Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Els, Paul

    2016-04-01

    The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ-ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ-rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ-ray emission region must therefore be located near the outer boundary of the BLR.

  18. First Detection of the [O(sub III)] 88 Micrometers Line at High Redshifts: Characterizing the Starburst and Narrow-Line Regions in Extreme Luminosity Systems

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.; Benford, D. J.; Staguhn, J. G.

    2010-01-01

    We have made the first detections of the 88 micrometers [O(sub III)] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities approx.10(exp 11) Solar Luminosity, For APM 08279, the [O(sub III)] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T(sub eff) > 36,000 K, similar to the starburst found in M82. The model implies approx.35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 881,tm line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cu cm. For SMM J02399, the [O(sub III)] line likely arises from HII regions formed by hot (T(sub eff) > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O(sub III)] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.s

  19. Measurements of Non-thermal Line Widths in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Brooks, David H.; Warren, Harry P.

    2016-03-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1-4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s-1, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  20. Still Raining in Quasars: An Origin for the Broad Emission Line Region

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2016-01-01

    The strong broad emission lines (BELs) characteristic of quasars do not have an agreed-upon physical explanation. Why is there dense gas at hundreds to thousands of Schwarzchild radii around all* accreting super-massive black holes?I propose that dense cool clouds naturally form (Krolik et al. 1981) in the accretion disk winds of quasars and AGNs (Murray et al. 1995) before the wind reaches escape velocity. X-ray variability causes the gas to accumulate in the stable regions on the thermal equilibrium curve. These clouds have the density and temperature of BEL clouds. The narrow range of density at which the BEL clouds form in pressure equilibrium with the warm wind may explain the simple L1/2 scaling of BEL region radius. The clouds are self-shielding and can no longer accelerate; so they rain back on elliptical orbits. They are then destroyed by Kelvin-Helmholtz instabilities as they move at Mach ~ 30 through the warm disk wind. The timescales for all these processes fit with this picture.Observationally this "quasar rain" model agrees with the Pancoast et al. (2014) kinematics of the BEL region, with the cool phase of the warm absorber wind seen in X-rays (e.g. Krongold et al. 2005), and with the "cometary" tails seen in a few AGN X-ray eclipses (Maiolino et al. 2010).[* unobscured, non-jet-dominated.

  1. Abundances of argon, sulfur, and neon in six galactic H II regions from infrared forbidden lines

    NASA Technical Reports Server (NTRS)

    Herter, T.; Helfer, H. L.; Forrest, W. J.; Mccarthy, J.; Houck, J. R.; Willner, S. P.; Puetter, R. C.; Rudy, R. J.; Soifer, B. T.; Pipher, J. L.

    1981-01-01

    Airborne measurements of the Ar II (6.99 micron) and S III (18.71 micron) forbidden lines for six compact H II regions are presented, as well as ground-based 2-4 micron and 8-13 micron spectroscopy if not already published. From these data and radio data, lower limits to the elemental abundances of Ar, Ne, and S are deduced. G29.9-0.0, at 5 kpc from the galactic center, is overabundant in all these elements. The other five regions (at distances 6-13 kpc from the center) mainly appear to be consistent with standard abundances, with the exception of G75.84 + 0.4 at 10 kpc from the galactic center, which is overabundant in S. However, preliminary results on G12.8-0.2 at 6 kpc from the galactic center suggest a possible underabundance. A large statistical sample of H II regions is required in order to determine if there is a radial gradient in the heavy element abundances of the Galaxy.

  2. Structure and evolution of a squall line in northern China: A case study

    NASA Astrophysics Data System (ADS)

    Yang, Hui-Ling; Xiao, Hui; Guo, Chun-Wei

    2015-05-01

    The dynamical, thermodynamical and microphysical structures of convective cells associated with a squall line that occurred on 23 June 2011 in northern China are investigated using observational data and the Regional Atmospheric Modeling System (RAMS). The results suggest that: 1) The squall line appears in the front of the upper-level trough with moderate vertical wind shear at the low levels. 2) The cold pool is formed mainly by rainfall in the initial developing stage. During both the developing and mature stages, the cold pool locates behind the leading edge of the storm. The convergence of the cold air diverged from the cold pool and the warm-moist air transported from the southeast environment is the major mechanism that maintains momentum for the squall line development. Meanwhile, the front-to-rear flow forms systematically in the squall line system. During the dissipation stage, the front-to-rear flow fades away and the air flow passes through the storm at the high level. The cold pool moves ahead of the storm and cuts off the supply of the warm-moist air to the updraft of the storm, leading to demise of the storm. 3) The location of the squall line leading edge is closed to the location where the wind speed and direction at 1 km altitude suddenly occurs to be changed. 4) The total warming effect during all the stages processes similar trends of change with height. During the developing stage, the total cooling effect mainly comes from evaporation of cloud water. During the mature and dissipation stages, the melting of hail dominates the total cooling effect in the lower layer. 5) In the developing stage, the growth of hail primarily comes from the processes accreting with raindrops and cloud droplets. During the mature and dissipation stages, the hail particles grow mainly through their accreting with raindrops. Correspondingly, during the initial developing stage, the rainwater comes mainly from cloud water by accreting process near the freezing level

  3. The thermal structure of the magnetized solar transition region

    NASA Technical Reports Server (NTRS)

    Mok, Y.; Van Hoven, G.

    1993-01-01

    The detailed thermal structure of the magnetized solar transition region, as measured by its differential emission measure DEM(T), is unknown. Proposals have been made that envision a significant lower-temperature contribution to the energy balance from cross-field (ion) heat flux. In this paper, we describe a self-consistent 2D MHD simulation (including the full effects of anisotropic thermal conduction) of a conceptual model due to Athay (1990). We display the detailed irregular thermal and magnetic structure of the transition region and demonstrate that the predicted DEM agrees with observations, particularly in the T less than 10 exp 5 K regime where previous theories had difficulty.

  4. Evolution and Structure of Tropical Squall Line Elements within a Moderate CAPE and Strong Low-Level Jet Environment.

    NASA Astrophysics Data System (ADS)

    Chin, Hung-Neng S.; Wilhelmson, Robert B.

    1998-10-01

    multicells above. A rear-inflow jet does not accompany these features and the winds in the downdraft are oblique too and nonuniform along the associated gust front. Finally, on the southernmost or left flank of the line element, cells with both long and short lifetimes develop.Sensitivity tests indicate that once the early line structure has developed, its evolution and structure are not seriously altered by the removal of large-scale forcing. Further, the formation of the cold pool and gust front between the initial separating (splitting) cells is crucial to the filling in of the line. Changes in the thermodynamic profile consistent with nonsquall observations one-half day earlier result in only modest differences. Changes in the wind profile (based on the same observations) led to significant differences, such as the lack of convection between the initial separating cells and the merger taking place to the north of the right flank creating a convective complex in this region.

  5. Electron production by solar Ly-α line radiation in the ionospheric D-region

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Čadež, Vladimir M.

    2014-10-01

    The hydrogen Ly-α line has a dominant influence in photo-ionization processes in the unperturbed terrestrial ionospheric D region. In this paper, we present a procedure of calculating the rate of photo-ionization induced by Ly-α photons based on relaxation of electron density after intensive perturbations like those caused by solar X flares. This theory is applied to the ends of relaxation periods following three cases of solar X flares from May 5, 2010, February 18, 2011 and March 24, 2011. The necessary data on low ionospheric plasma parameters were collected by the very low frequency (VLF) radio-wave techniques. The electron concentration is calculated from the amplitude and phase of the VLF signal emitted by the DHO transmitter in Germany and recorded by a receiver located in Serbia.

  6. THE DIFFERENT NATURE OF SEYFERT 2 GALAXIES WITH AND WITHOUT HIDDEN BROAD-LINE REGIONS

    SciTech Connect

    Wu Yuzhong; Zhang Enpeng; Liang Yanchun; Zhang Chengmin; Zhao Yongheng E-mail: yzhao@nao.cas.cn

    2011-04-01

    We compile a large sample of 120 Seyfert 2 galaxies (Sy2s) which contains 49 hidden broad-line region (HBLR) Sy2s and 71 non-HBLR Sy2s. From the difference in the power sources between two groups, we test whether HBLR Sy2s are dominated by active galactic nuclei (AGNs) and whether non-HBLR Sy2s are dominated by starbursts. We show that (1) HBLR Sy2s have larger accretion rates than non-HBLR Sy2s; (2) HBLR Sy2s have larger [Ne V] {lambda}14.32/[Ne II] {lambda}12.81 and [O IV] {lambda}25.89/[Ne II] {lambda}12.81 line ratios than non-HBLR Sy2s; and (3) HBLR Sy2s have smaller IRAS f{sub 60}/f{sub 25} flux ratios, which show the relative strength of the host galaxy and nuclear emission, than non-HBLR Sy2s. Consequently, we suggest that HBLR Sy2s and non-HBLR Sy2s are AGN dominated and starburst dominated, respectively. In addition, non-HBLR Sy2s can be classified into luminous (L{sub [OIII]}>10{sup 41} erg s{sup -1}) and less luminous (L{sub [OIII]} < 10{sup 41} erg s{sup -1}) samples, when considering only their obscuration. We suggest that (1) the invisibility of polarized broad lines (PBLs) in the luminous non-HBLR Sy2s depends on the obscuration and (2) the invisibility of PBLs in the less luminous non-HBLR Sy2s depends on the very low Eddington ratio rather than the obscuration.

  7. Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemékers, D.; Anguita, T.; Braibant, L.; Riaud, P.

    2015-10-01

    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 Å. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as T ∝ R-1/ν. We find a most likely source half-light radius of R1/2 = 0.61 × 1016cm (i.e., 0.002 pc) at 0.18 μm, and a most-likely index of ν = 0.4. The standard disc (ν = 4/3) model is not ruled out by our data, and is found within the 95% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature. Based on observations made with ESO Telescopes at the Paranal Observatory (Chile). ESO program ID: 386.B-0337.Appendices A and B are available in electronic form

  8. DETERMINING INCLINATIONS OF ACTIVE GALACTIC NUCLEI VIA THEIR NARROW-LINE REGION KINEMATICS. I. OBSERVATIONAL RESULTS

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.

    2013-11-01

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight (LOS). However, except for a few special cases, the specific inclinations of individual AGNs are unknown. We have developed a promising technique for determining the inclinations of nearby AGNs by mapping the kinematics of their narrow-line regions (NLRs), which are often easily resolved with Hubble Space Telescope [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph. Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our LOS. We present NLR analysis of 53 Seyfert galaxies and the resulting inclinations from models of 17 individual AGNs with clear signatures of biconical outflows. Our model results agree with the unified model in that Seyfert 1 AGNs have NLRs inclined further toward our LOS than Seyfert 2 AGNs. Knowing the inclinations of these AGN NLRs, and thus their accretion disk and/or torus axes, will allow us to determine how their observed properties vary as a function of polar angle. We find no correlation between the inclinations of the AGN NLRs and the disks of their host galaxies, indicating that the orientation of the gas in the torus is independent of that of the host disk.

  9. Echo mapping of active galactic nuclei broad-line regions: Fundamental algorithms

    NASA Technical Reports Server (NTRS)

    Vio, Roberto; Horne, Keith; Wamsteker, Willem

    1994-01-01

    We formulate and test a series of algorithms for echo mapping the emission-line regions near active galactic nuclei from measurements of correlated variability in their line and continuum light curves. The linear regularization method (LRM) employs a direct inversion of evenly spaced light-curve data, with a regularization parameter that can be used to control the trade-off between noise and resolution. Matrix formulas express the formal solution as well as its variance and covariance in terms of uncertainties in the measurements. Unlike the maximum-entropy method (MEM), LRM applies to kernels with both positive and negative values, but the results are somewhat limited by ringing effects. A positivity constraint proves effective in controlling the ringing. MEM combines regularization and positivity in a natural way, but similar results are also found using positivity constraints with nonentropic regularization functions. Direct inversions of unevenly sampled light curves require interpolating the noisy data. In this case better results are found by solving for both the continuum light curve and kernel function in a simultaneous fit to the data. Our conclusion is that while echo mapping currently gives ambiguous results, the algorithms are not the limiting factor. Progress depends on efforts to increase the accuracy and completeness of sampling of the observed light curves.

  10. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to ‑3.2 ≲ log U ≲ ‑3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  11. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers

    PubMed Central

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F.

    2015-01-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. PMID:22277302

  12. Height changes along selected lines through the Death Valley region, California and Nevada, 1905-1984

    USGS Publications Warehouse

    Castle, Robert O.; Gilmore, Thomas D.; Walker, James P.; Castle, Susan A.

    2005-01-01

    Comparisons among repeated levelings along selected lines through the Death Valley region of California and adjacent parts of Nevada have disclosed surprisingly large vertical displacements. The vertical control data in this lightly populated area is sparse; moreover, as much as a third of the recovered data is so thoroughly contaminated by systematic error and survey blunders that no attempt was made to correct these data and they were simply discarded. In spite of these limitations, generally episodic, commonly large vertical displacements are disclosed along a number of lines. Displacements in excess of 0.4 m, with respect to our selected control point at Beatty, Nevada, and differential displacements of about 0.7 m apparently occurred during the earlier years of the 20th century and continued episodically through at least 1943. While this area contains abundant evidence of continuing tectonic activity through latest Quaternary time, it is virtually devoid of historic seismicity. We have detected no clear connection between the described vertical displacements and fault zones reportedly active during Holocene time, although we sense some association with several more broadly defined tectonic features.

  13. A new method to obtain the broad line region size of high redshift quasars

    SciTech Connect

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W. E-mail: deborah@astro.unam.mx E-mail: sulentic@iaa.es

    2014-10-10

    We present high signal-to-noise ratio UV spectra for eight quasars at z ∼ 3 obtained with Very Large Telescope/FORS. The spectra enable us to analyze in detail the strong and weak emission features in the rest frame range 1300-2000 Å of each source (C III] λ1909, Si III] λ1892, Al III λ1860, Si II λ1814, C IV λ1549 and blended Si IV λ1397+O IV] λ1402). The flux ratios Al III λ1860/Si III] λ1892, C IV λ1549/Al III λ1860, Si IV λ1397+O IV] λ1402/Si III] λ1892 and Si IV λ1397+O IV] λ1402/C IV λ1549 strongly constrain ionizing photon flux and metallicity through the use of diagnostic maps built from CLOUDY simulations. The radius of the broad line region is then derived from the ionizing photon flux applying the definition of the ionization parameter. The r {sub BLR} estimate and the width of a virial component isolated in prominent UV lines yields an estimate of black hole mass. We compare our results with previous estimates obtained from the r {sub BLR}-luminosity correlation customarily employed to estimate the black hole masses of high redshift quasars.

  14. A New Method to Obtain the Broad Line Region Size of High Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W.

    2014-10-01

    We present high signal-to-noise ratio UV spectra for eight quasars at z ~ 3 obtained with Very Large Telescope/FORS. The spectra enable us to analyze in detail the strong and weak emission features in the rest frame range 1300-2000 Å of each source (C III] λ1909, Si III] λ1892, Al III λ1860, Si II λ1814, C IV λ1549 and blended Si IV λ1397+O IV] λ1402). The flux ratios Al III λ1860/Si III] λ1892, C IV λ1549/Al III λ1860, Si IV λ1397+O IV] λ1402/Si III] λ1892 and Si IV λ1397+O IV] λ1402/C IV λ1549 strongly constrain ionizing photon flux and metallicity through the use of diagnostic maps built from CLOUDY simulations. The radius of the broad line region is then derived from the ionizing photon flux applying the definition of the ionization parameter. The r BLR estimate and the width of a virial component isolated in prominent UV lines yields an estimate of black hole mass. We compare our results with previous estimates obtained from the r BLR-luminosity correlation customarily employed to estimate the black hole masses of high redshift quasars. Based on observations made with ESO Telescopes at Paranal Observatory under program ID 078.B-0109(A).

  15. Constraints on the broad line region from regularized linear inversion: velocity-delay maps for five nearby active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Skielboe, Andreas; Pancoast, Anna; Treu, Tommaso; Park, Daeseong; Barth, Aaron J.; Bentz, Misty C.

    2015-11-01

    Reverberation mapping probes the structure of the broad emission-line region (BLR) in active galactic nuclei (AGN). The kinematics of the BLR gas can be used to measure the mass of the central supermassive black hole. The main uncertainty affecting black hole mass determinations is the structure of the BLR. We present a new method for reverberation mapping based on regularized linear inversion (RLI) that includes modelling of the AGN continuum light curves. This enables fast calculation of velocity-resolved response maps to constrain BLR structure. RLI allows for negative response, such as when some areas of the BLR respond in inverse proportion to a change in ionizing continuum luminosity. We present time delays, integrated response functions, and velocity-delay maps for the H β broad emission line in five nearby AGN, as well as for H α and H γ in Arp 151, using data from the Lick AGN Monitoring Project 2008. We find indications of prompt response in three of the objects (Arp 151, NGC 5548, and SBS 1116+583A) with additional prompt response in the red wing of H β. In SBS 1116+583A we find evidence for a multimodal broad prompt response followed by a second narrow response at 10 d. We find no clear indications of negative response. The results are complementary to, and consistent with, other methods such as cross-correlation, maximum entropy, and dynamical modelling. RLI with continuum light-curve modelling provides a fast, complementary method for velocity-resolved reverberation mapping and is suitable for use on large data sets.

  16. Hydrogen Emission Line n110 rarr n109: Detection at 5009 Megahertz in Galactic H II Regions.

    PubMed

    Höglund, B; Mezger, P G

    1965-10-15

    The hydrogen emission line n(1l0) --> n(109) at the frequency 5009 megahertz which was predicted by Kardashev has been detected in M 17, Orion, and nine other galactic H II regions with the 42.7-m (140-foot) telescope and a 20-channel receiver at the National Radio Astronomy Observatory. The measured product of the half-power width of the line times the ratio of line-to-continuum brightness temperature is larger than that predicted by Kardashev's theory. The radial velocity obtained for M 17 and Orion agrees well with optical measurements. The search for a similar line of excited helium was without success. PMID:17742362

  17. [Structural conditions for regionalization in health care: typology of Regional Management Boards].

    PubMed

    d'Avila Viana, Ana Luiza; de Lima, Luciana Dias; Ferreira, Maria Paula

    2010-08-01

    An explanation is required for the delay in implementing the regionalization strategy and the fragile nature of the combined decentralization and regionalization initiatives in Brazil. The article raises some hypotheses to clarify this intricate issue and reviews the structural conditioning factors of the regionalization process ongoing in the states. A national typology of the health care regions is prepared, differentiating them according to the degree of socio-economic development and the characteristics of the health care network and of the municipalities that form the Regional Management Boards (CGR), formally implanted by January 2010. Factorial and cluster analysis models were used to build the typology. Five major socio-economic groups of CGRs were identified, described according to their regional distribution, population, health care spending, profile of services offered (including the public-private sector mix) and health service coverage. The results obtained serve as guidelines for the constitution of health care networks and new initiatives at the regional level, in order to improve the regionalization policy and favour the construction of diverse and flexible regulatory instruments that are more in tune with the regional state of affairs. PMID:20802865

  18. OPC model space approach to in-line process monitoring structures

    NASA Astrophysics Data System (ADS)

    Sabatier, Romuald; Di Giacomo, Antonio; Fossati, Caroline; Bourennane, Salah

    2009-10-01

    With shrinking technology nodes and increasing geometries criticity, it has become more and more difficult to conceive fast and accurate in-line check to insure process quality for each lithography level. Time and costs limit metrology options. A commonly accepted solution consists in some CD measurement on high contrast structure for each critical level. However, the RET complexity of current layouts makes this solution no longer fully reliable and allows non-conform materials to pass through the check. The idea behind this article (patent pending) is to add a second verification by creating a set of small structures layouted to cover specific coordinates in the model parameters space. Extrapolated model parameters allow to layout geometries encircling the OPC space region occupied by the production device. Those structures shall bridge or pinch for litho or process deviations before any detectable impact on the most sensitive shapes present in the product. Total size of few square microns is required to stay within a single SEM picture. The use of image processing based on pattern recognition on SEM pictures to assess their sensitivity to process variations permits a fast analysis. As a matter of fact, this approach will allow getting reliability by watching the whole model space and economic compatibility as the procedure is fast and cost-effective.

  19. Marginal Structural Models to Assess Delays in Second-Line HIV Treatment Initiation in South Africa

    PubMed Central

    Ive, Prudence; Horsburgh, C. Robert; Berhanu, Rebecca; Shearer, Kate; Maskew, Mhairi; Long, Lawrence; Sanne, Ian; Bassett, Jean; Ebrahim, Osman; Fox, Matthew P.

    2016-01-01

    Background South African HIV treatment guidelines call for patients who fail first-line antiretroviral therapy (ART) to be switched to second-line ART, yet logistical issues, clinician decisions and patient preferences make delay in switching to second-line likely. We explore the impact of delaying second-line ART after first-line treatment failure on rates of death and virologic failure. Methods We include patients with documented virologic failure on first-line ART from an observational cohort of 9 South African clinics. We explored predictors of delayed second-line switch and used marginal structural models to analyze rates of death following first-line failure by categorical time to switch to second-line. Cox proportional hazards models were used to examine virologic failure on second-line ART among patients who switched to second-line. Results 5895 patients failed first-line ART, and 63% switched to second-line. Among patients who switched, median time to switch was 3.4 months (IQR: 1.1–8.7 months). Longer time to switch was associated with higher CD4 counts, lower viral loads and more missed visits prior to first-line failure. Worse outcomes were associated with delay in second-line switch among patients with a peak CD4 count on first-line treatment ≤100 cells/mm3. Among these patients, marginal structural models showed increased risk of death (adjusted HR for switch in 6–12 months vs. 0–1.5 months = 1.47 (95% CI: 0.94–2.29), and Cox models showed increased rates of second-line virologic failure despite the presence of survivor bias (adjusted HR for switch in 3–6 months vs. 0–1.5 months = 2.13 (95% CI: 1.01–4.47)). Conclusions Even small delays in switch to second-line ART were associated with increased death and second-line failure among patients with low CD4 counts on first-line. There is opportunity for healthcare providers to switch patients to second-line more quickly. PMID:27548695

  20. Radio Structures of Compact Quasars with Broad Absorption Lines

    NASA Astrophysics Data System (ADS)

    Kunert-Bajraszewska, Magdalena; Gawroński, Marcin P.

    2010-05-01

    Broad absorption lines (BALs), seen in a small fraction of both the radio-quiet and radio-loud quasar populations, are probably caused by the outflow of gas with high velocities and are part of the accretion process. The presence of BALs is due to a geometrical effect and/or it is connected with the quasar evolution. Using the final release of FIRST survey combined with a catalog of BAL QSOs from SDSS/DR3, we have constructed a new sample of compact radio-loud BAL QSOs, which constitutes the majority of radio-loud BAL QSOs. The main goal of this project is to study the origin of BALs by analysis of the BAL QSOs radio morphology, orientation, and jet evolution using the European VLBI Network (EVN) at 1.6 GHz and the Very Long Baseline Array (VLBA) at 5 and 8.4 GHz.

  1. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  2. The structure of Airy's stress function in multiply connected regions

    NASA Technical Reports Server (NTRS)

    Grioli, Giusippe

    1951-01-01

    In solving two-dimensional problems using Airy's stress function for multiply connected regions, the form of the function depends on the dislocations and boundary forces present. The structure of Airy's function is shown to consist of a part expressible in terms of boundary forces and a part expressible in the manner of Poincare. Meanings of the constants occurring in Poincare's expression are discussed.

  3. Quasar emission lines, radio structures and radio unification

    NASA Astrophysics Data System (ADS)

    Jackson, Neal; Browne, I. W. A.

    2013-02-01

    Unified schemes of radio sources, which account for different types of radio active galactic nucleus in terms of anisotropic radio and optical emission, together with different orientations of the ejection axis to the line of sight, have been invoked for many years. Recently, large samples of optical quasars, mainly from the Sloan Digital Sky Survey (SDSS), together with large radio samples, such as Faint Images of the Radio Sky at Twenty cm (FIRST), have become available. These hold the promise of providing more stringent tests of unified schemes but, compared to previous samples, lack high-resolution radio maps. Nevertheless, they have been used to investigate unified schemes, in some cases yielding results which appear inconsistent with such theories. Here we investigate using simulations how the selection effects to which such investigations are subject can influence the conclusions drawn. In particular, we find that the effects of limited resolution do not allow core-dominated radio sources to be fully represented in the samples, that the effects of limited sensitivity systematically exclude some classes of sources and the lack of deep radio data make it difficult to decide to what extent closely separated radio sources are associated. Nevertheless, we conclude that relativistic unified schemes are entirely compatible with the current observational data. For a sample selected from SDSS and FIRST which includes weak-cored triples we find that the equivalent width of the [O III] emission line decreases as core dominance increases, as expected, and also that core-dominated quasars are optically brighter than weak-cored quasars.

  4. Potential structures and particle acceleration on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gorney, D. J.

    1985-05-01

    In the 1970's major advances in the understanding of auroral processes were brought about by observations of plasmas and electric fields within the regions of space responsible for auroral particle acceleration. The major contribution of these observations was the verification of the existence of electric fields with components parallel to the magnetic field over large regions of altitude (1000 to 20000 kilometers). These electric fields constitute potential drops of several kilovolts, accelerating magnetospheric electrons downward to form the aurora and ionospheric ions upward, where they contribute significantly to the magnetospheric hot ion population. Perpendicular spatial scales of about 100 kilometers are most common, although finer scales have been observed embedded, and individual small amplitude double layers occur on much smaller parallel spatial scales. More recently, the same data sets have revealed the existance of about 100 V electric potential drops directed downward in return current regions. Downward electric fields are in a direction to accelerate electrons out of the ionsphere and tend to retard the propagation of ions upward. An association between upflowing electron beams and transversely heated ions at low altitude has been noted, and a casual relationship between downward electric fields and ion conics is suggested.

  5. Dielectric-Lined High-Gradient Accelerator Structure

    SciTech Connect

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS

  6. Experimental phase determination of the structure factor from Kossel line profile

    PubMed Central

    Faigel, G.; Bortel, G.; Tegze, M.

    2016-01-01

    Kossel lines are formed when radiation from point x-ray sources inside a single crystal are diffracted by the crystal itself. In principle, Kossel line patterns contain full information on the crystalline structure: phase and magnitude of the structure factors. The phase is coded into the profile of the lines. Although this was known for a long time, experimental realization has not been presented. In this work we demonstrate experimentally that phases can be directly determined from the profile of the Kossel lines. These measurements are interesting not only theoretically, but they would facilitate structure solution of samples within extreme conditions, such as high pressure, high and low temperatures, high magnetic fields and extremely short times. The parallel measurement of many diffraction lines on a stationary sample will allow a more efficient use of the new generation of x-ray sources the X-ray free electron lasers (XFELs). PMID:26965321

  7. Experimental phase determination of the structure factor from Kossel line profile.

    PubMed

    Faigel, G; Bortel, G; Tegze, M

    2016-01-01

    Kossel lines are formed when radiation from point x-ray sources inside a single crystal are diffracted by the crystal itself. In principle, Kossel line patterns contain full information on the crystalline structure: phase and magnitude of the structure factors. The phase is coded into the profile of the lines. Although this was known for a long time, experimental realization has not been presented. In this work we demonstrate experimentally that phases can be directly determined from the profile of the Kossel lines. These measurements are interesting not only theoretically, but they would facilitate structure solution of samples within extreme conditions, such as high pressure, high and low temperatures, high magnetic fields and extremely short times. The parallel measurement of many diffraction lines on a stationary sample will allow a more efficient use of the new generation of x-ray sources the X-ray free electron lasers (XFELs). PMID:26965321

  8. Extracting Neutron Structure Functions in the Resonance Region

    SciTech Connect

    Yonatan Kahn

    2009-07-01

    A new iterative method is presented for extracting neutron structure functions from inclusive structure functions of nuclei, focusing specifically on the resonance region. Unlike earlier approaches, this method is applicable to both spin-averaged and spin-dependent structure functions. We show that in numerical tests, this method is able to reproduce known input functions of nearly arbitrary shape after only 5–10 iterations. We illustrate the method on extractions of F2n and g1,2n from data, and discuss the treatment of systematic errors from this extraction procedure.

  9. Estimates of Regional Equilibrium Line Altitudes and Net Mass Balance from MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Shea, J. M.; Menounos, B.; Moore, R. D.

    2011-12-01

    Glacier mass balance is a key variable used to assess the health of glaciers and ice sheets. Estimates of glacier mass balance are required to model the dynamic response of glaciers and ice sheets to climate change, estimate sea-level contribution from surface melt, and document the response of glaciers to climate forcing. Annually resolved estimates of regional mass balance for mountain ranges is often inferred from a sparse network of ground-based measurements of mass balance for individual glaciers. Given that net mass balance is highly correlated with the annual equilibrium line altitude (ELA), we develop an automated approach to estimate the ELA, and by inference net mass balance, on large glaciers and icefields using MODIS 250 m imagery (MOD02QKM). We discriminate areas of bare ice and snow/firn using the product of MODIS' red (0.620 - 0.670 μ m) and near infrared (0.841 - 0.876 μ m) bands. To assess the skill in estimating glacier ELAs, we compare ELAs derived from (1) manual delineation and (2) unsupervised classification of the band product to ground-based observations of ELA and net mass balance at seven long term mass-balance monitoring sites in western North America (Gulkana, Wolverine, Lemon Creek, Taku, Place, Peyto, and South Cascade). Spatial and temporal variations in MODIS-derived ELAs provide an opportunity to validate regional mass-balance models, estimate surface melt contributions to sea-level rise, and examine the cryospheric response to climate change.

  10. On the orbital motion of cold clouds in broad-line regions

    NASA Astrophysics Data System (ADS)

    Shadmehri, Mohsen

    2015-08-01

    We study the orbit of a pressure-confined cloud in the broad-line region (BLR) of active galactic nuclei when the combined effects of the central gravity and anisotropic radiation pressure and the drag force are considered. The physical properties of the intercloud gas, such as its pressure and dynamic viscosity, are defined as power-law functions of the radial distance. For a drag force proportional to the relative velocity of a cloud and the background gas, a detailed analysis of the orbits is performed for different values of the input parameters. We also present analytical solutions for when the intercloud pressure is uniform and the viscosity is proportional to the inverse square of the radial distance. Our analytical and numerical solutions demonstrate decay of the orbits due to the drag force, so that a cloud will eventually fall on to the central region after the so-called time-of-flight. We found that the time-of-flight of a BLR cloud is proportional to the inverse of the dimensionless drag coefficient. If the time-of-flight becomes shorter than the lifetime of the whole system, then mechanisms for continually forming BLR clouds are needed.

  11. Target hepatic artery regional chemotherapy and bevacizumab perfusion in liver metastatic colorectal cancer after failure of first-line or second-line systemic chemotherapy.

    PubMed

    Chen, Hui; Zhang, Ji; Cao, Guang; Liu, Peng; Xu, Haifeng; Wang, Xiaodong; Zhu, Xu; Gao, Song; Guo, Jianhai; Zhu, Linzhong; Zhang, Pengjun

    2016-02-01

    Colorectal cancer liver metastasis (CRLM) is a refractory disease after failure of first-line or second-line chemotherapy. Bevacizumab is recommended as first-line therapy for advanced colorectal cancer, but is unproven in CRLM through the hepatic artery. We report favorable outcomes with targeted vessel regional chemotherapy (TVRC) for liver metastatic gastric cancer. TVRC with FOLFOX and bevacizumab perfusion through the hepatic artery was attempted for CRLM for efficacy and safety evaluation. In a single-institution retrospective observational study, 246 patients with CRLM after at least first-line or second-line failure of systemic chemotherapy received TVRC with FOLFOX (i.e. oxaliplatin, leucovorin, and 5-fluorouracil). Of 246 patients, 63 were enrolled into two groups: group 1 (n=30) received bevacizumab and TVRC following tumor progression during previous TVRC treatments; group 2 (n=33) received TVRC plus bevacizumab for CRLM on initiating TVRC. There were no significant differences in the median survival time (14.7 vs. 13.2 months, P=0.367), although the median time to progression was significant (3.3 vs. 5.5 months, P=0.026) between groups. No severe adverse events related to TVRC plus bevacizumab perfusion occurred. Target vessel regional chemotherapy with FOLFOX plus bevacizumab perfusion through the hepatic artery was effective and safe in CRLM. The optimal combination of TVRC and bevacizumab needs further confirmation in future phase II-III clinical trials. PMID:26566233

  12. The origin of N III lambda 990 and C III lambda 977 emission in AGN narrow-line region gas

    NASA Technical Reports Server (NTRS)

    Ferguson, J. W.; Ferland, G. J.; Pradhan, A. K.

    1995-01-01

    We discuss implications of Hopkins Ultraviolet Telescope (HUT) detections of C III lambda 977 and N III lambda 990 emission from the narrow-line region of the Seyfert 2 galaxy NGC 1068. In their discovery paper Kriss et al. showed that the unexpectedly great strength of these lines implies that the emitting gas must be shock-heated if the lines are collisionally excited. Here we investigate other processes which excite these lines in photoionization equilibrium. Recombination, mainly dielectronic, and continuum fluorescence are strong contributors to the line. The resulting intensities are sensitive to the velocity field of the emitting gas and require that the turbulence be of the same order of magnitude as the observed line width. We propose optical observations that will decide whether the gas is collisionally or radiatively heated.

  13. The optical depth of the 158 micrometer (C-12 II) line: Detection of the F=1 yields 0 (C-13 III) hyperfine-structure component

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Poglitsch, A.; Madden, S. C.; Jackson, J. M.; Herrmann, F.; Genzel, R.; Geis, N.

    1991-01-01

    The first detection of the F = 1 yields 0 hyperfine component of the 158 micrometer (C-13 II) fine structure line in the interstellar medium is reported. A twelve point intensity map was obtained of the (C-13 II) distribution over the inner 190 inch (right ascension) by 190 inch (declination) regions of the Orion nebula using an imaging Fabry-Perot interferometer. The (C-12 II)/(C-13 II) line intensity ratio varied significantly over the region mapped. It is highest (86 plus or minus 9) in the core of the Orion H II region and significantly lower (62 plus or minus 7) in the outer regions of the map, reflecting higher optical depth in the (C-12 II) line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin (C-13 II) line at the edges of the bowl-shaped H II region blister. If the C-12/C-13 abundance ratio is 43, the (C-12 II) line in the inner regions of the Orion nebula, has a low optical depth: tau sub 12 approximately = 0.75 plus or minus 0.25. The optical depth together with the large brightness temperature of the (C-12 II) line (approximately 160 K) requires that the excitation temperature of the P-2 sub 3/2 level be approximately 310 K, in very good agreement with the previous analysis of the physical conditions of the Orion interface region based on fine structure line intensity ratios and photodissociation region models. If the C-12/C-13 abundance ratio is 67, the line optical depth is somewhat larger (tau sub 12 approximately = 1.85), and the transition excitation temperature is somewhat smaller (approximately 190 K) than that predicted by these models. The present results therefore support values approximately = 43 for the C-12/C-13 abundance ratio in the Orion nebula.

  14. STRUCTURAL VARIATION OF MOLECULAR GAS IN THE SAGITTARIUS ARM AND INTERARM REGIONS

    SciTech Connect

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Sugimoto, Masahiro; Koda, Jin; Handa, Toshihiro

    2012-06-20

    We have carried out survey observations toward the Galactic plane at l Almost-Equal-To 38 Degree-Sign in the {sup 12}CO and {sup 13}CO J = 1-0 lines using the Nobeyama Radio Observatory 45 m telescope. A wide area (0.{sup 0}8 Multiplication-Sign 0.{sup 0}8) was mapped with high spatial resolution (17''). The line of sight samples the gas in both the Sagittarius arm and the interarm regions. The present observations reveal how the structure and physical conditions vary across a spiral arm. We classify the molecular gas in the line of sight into two distinct components based on its appearance: the bright and compact B component and the fainter and diffuse (i.e., more extended) D component. The B component is predominantly seen at the spiral arm velocities, while the D component dominates at the interarm velocities and is also found at the spiral arm velocities. We introduce the brightness distribution function and the brightness distribution index (BDI, which indicates the dominance of the B component) in order to quantify the map's appearance. The radial velocities of BDI peaks coincide with those of high {sup 12}CO J = 3-2/{sup 12}CO J = 1-0 intensity ratio (i.e., warm gas) and H II regions, and tend to be offset from the line brightness peaks at lower velocities (i.e., presumably downstream side of the arm). Our observations reveal that the gas structure at small scales changes across a spiral arm: bright and spatially confined structures develop in a spiral arm, leading to star formation at the downstream side, while extended emission dominates in the interarm region.

  15. Two-Year-Olds Compute Syntactic Structure On-Line

    ERIC Educational Resources Information Center

    Bernal, Savita; Dehaene-Lambertz, Ghislaine; Millotte, Severine; Christophe, Anne

    2010-01-01

    Syntax allows human beings to build an infinite number of new sentences from a finite stock of words. Because toddlers typically utter only one or two words at a time, they have been thought to have no syntax. Using event-related potentials (ERPs), we demonstrated that 2-year-olds do compute syntactic structure when listening to spoken sentences.…

  16. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  17. Building Roof Segmentation from Aerial Images Using a Line-and Region-Based Watershed Segmentation Technique

    PubMed Central

    Merabet, Youssef El; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-01-01

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706

  18. Detail of insulator array at Hframe structure on RyantoRainbow Line ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of insulator array at H-frame structure on Ryan-to-Rainbow Line 2 about three and one-fourth miles southwest of Ryan Dam. Array has three historic porcelain suspension insulators - Ryan Hydroelectric Facility, Ryan-to-Rainbow 100 kV Transmission Line, West bank of Missouri River, northeast of Great Falls, Great Falls, Cascade County, MT

  19. Detail of insulator array at Hframe structure on RyantoRainbow Line ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of insulator array at H-frame structure on Ryan-to-Rainbow Line 1 about three miles southwest of Ryan Dam. Array has one historic porcelain suspension insulator and two non-ceramic insulators - Ryan Hydroelectric Facility, Ryan-to-Rainbow 100 kV Transmission Line, West bank of Missouri River, northeast of Great Falls, Great Falls, Cascade County, MT

  20. Structure and evolution of the Phasianidae mitochondrial DNA control region.

    PubMed

    Huang, Zuhao; Ke, Dianhua

    2016-01-01

    The mitochondrial DNA control region is an area of the mitochondrial genome which is non-coding DNA. To infer the structural and evolutionary characteristics of Phasianidae mitochondrial DNA control region, the entire control region sequences of 34 species were analyzed. The length of the control region sequences ranged from 1144 bp (Phasianus colchicus) to 1555 bp (Coturnix japonica) and can be separated into three domains. The average genetic distances among the species within the genera varied from 1.96% (Chrysolophus) to 12.05% (Coturnix). The average genetic distances showed significantly negative correlation with ts/tv. In most genera (except Coturnix), domain I is the most variable among the three domains. However, the first 150 nucleotides apparently evolved at unusually low rates. Four conserved sequence boxes in the domain II of Phasianidae sequences were identified. The alignment of the Phasianidae four boxes and CSB-1 sequences showed considerable sequence variation. PMID:24617466

  1. How do disordered regions achieve comparable functions to structured domains?

    PubMed Central

    Latysheva, Natasha S; Flock, Tilman; Weatheritt, Robert J; Chavali, Sreenivas; Babu, M Madan

    2015-01-01

    The traditional structure to function paradigm conceives of a protein's function as emerging from its structure. In recent years, it has been established that unstructured, intrinsically disordered regions (IDRs) in proteins are equally crucial elements for protein function, regulation and homeostasis. In this review, we provide a brief overview of how IDRs can perform similar functions to structured proteins, focusing especially on the formation of protein complexes and assemblies and the mediation of regulated conformational changes. In addition to highlighting instances of such functional equivalence, we explain how differences in the biological and physicochemical properties of IDRs allow them to expand the functional and regulatory repertoire of proteins. We also discuss studies that provide insights into how mutations within functional regions of IDRs can lead to human diseases. PMID:25752799

  2. Use of GRACE Line-Of-Sight Gravity Difference Observations for Regional Geophysical Signal Recovery

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Han, S.; Schaffrin, B.; Shum, C.

    2006-12-01

    GRACE spaceborne gravimetry provides a unique opportunity for quantifying geophysical signals including continental water storage change for a wide variety of climate change and geophysical studies. The contemporary methodology to process GRACE data for temporal gravity field solutions is based on monthly estimates of the mean geopotential field with a spatial resolution longer than 800 km (the Level-2 or L2 data products), after appropriate Gaussian smoothing. Alternate methods include the direct processing of the low- low satellite-to-satellite tracking data over a region of interest, leading to improved or finer spatial and temporal resolutions of the resulting local gravity signals. These methods include the mascon approach and downward continuation based on some suitable integral equations (from energy conservation for the gravitational potential, or from Fredholm's alternative for gravity), and have been formulated for or applied to GRACE data processing by Rowlands et al. (2004), Han et al. (2005), Ilk et al. (2005), and Yuan et al., (2006), among others. In this study we conduct a simulation for the use of GRACE's in situ Line¨COf-Sight (LOS) gravity differences based on the KBR range rate rate, accelerometer, and other data for the potentially improved recovery of continental water storage in the Amazon river basin study region. Various regularization methods, which are necessary to stabilize the downward continuation solutions, have been investigated to identify the optimal estimate for water storage from LOS gravity difference observations in the study region. Results from various integral and regularization methods will be compared, and corresponding accuracy of each method will be assessed.

  3. Defining and predicting structurally conserved regions in protein superfamilies

    PubMed Central

    Huang, Ivan K.; Grishin, Nick V.

    2013-01-01

    Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics

  4. Influence of mask manufacturing process on printing behavior of angled line structures

    NASA Astrophysics Data System (ADS)

    Teuber, Silvio; Dürr, Arndt C.; Herguth, Holger; Kunkel, Gerhard; Wandel, Timo; Zell, Thomas

    2006-03-01

    For the successful reduction of chip production costs, the usage of more advanced designs with lower area consumption by manufacturing angled line structures is one possibility. The usage of conventional vector shaped electron beam writers does only allow writing Manhattan-like structures as well as 45 degree angled structures. There are several approximation possibilities for writing any angled lines, e.g. they could be approximated by writing only small rectangles or small rectangles in combination with small 45 degree triangles. This method introduces a very pronounced line edge roughness due to the written uneven edges. The critical dimension uniformity on the mask and the printing behavior are directly influenced by this synthesized line edge roughness. This paper addresses the investigation of critical dimension of the angled mask structures as well as the influence on the printing behavior. The different masks used in the experiment were patterned at the Advanced Mask Technology Center (AMTC). Measurements of pattern line widths were performed by using scanning electron microscopy techniques. The printing behavior of different structures was investigated by running AIMS measurements and performing exposure experiments. Comparing the mask structures and the final printed wafer structures, estimations on the transfer function of the synthesized line edge roughness could be performed.

  5. Photospheric models of solar active regions and the network based on the Mg II h and k line wings

    NASA Technical Reports Server (NTRS)

    Morrison, N. D.; Linsky, J. L.

    1978-01-01

    From a comparison between observed and computed wings of the Mg II resonance lines, distributions of temperature versus mass column density for solar photospheric layers in plages and in the chromospheric network are derived. The theoretical profiles are computed assuming partial coherent scattering. In the active regions, temperatures exceed those in the quiet sun by up to 200 K near the temperature minimum and up to 400 K in deeper layers. In the observed network structure, the temperature is enhanced by 200 K at the temperature minimum but is the same as that in the quiet sun at greater depths. The difference in the slope of the temperature distribution between the network and plages is real, but may refer only to long elements of the network rather than to the brightest portions. Adjacent to the network is a region in which the temperatures are similar to those in the quiet sun, except immediately below the temperature minimum, where the temperatures are depressed by 150 K.

  6. First structure on MoronytoRainbow 100kV Transmission Line below Morony Dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    First structure on Morony-to-Rainbow 100kV Transmission Line below Morony Dam and Power House. Three-pole H-frame structure with historic porcelain suspension insulators, jumper supports insulators, overhead ground wires, and pole stubs. View to east-northeast - Morony Hydroelectric Facility, Morony-to-Rainbow 100 kV Transmission Line, West bank of the Missouri River, Great Falls, Cascade County, MT

  7. Photospheric and chromospheric active regions on three single-lined RS CVn binaries

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; Frasca, A.; Catalano, S.; Marilli, E.

    2006-02-01

    A monitoring of three active RS CVn binaries has been performed with medium resolution spectroscopy with the aim of investigating the behavior of chromospheric and photospheric inhomogeneities. Surface temperature, as recovered from line-depth ratios (LDRs), allowed us to map the photospheric spots, while the Hα emission has been used as an indicator of chromospheric inhomogeneities. We have found that the rotational modulation of the Hα emission is always in anti-phase with the temperature wave, i.e. at the time of our observations active regions at chromospheric and photospheric levels are closely spatially associated in these active stars. The residual Hα profiles, obtained as the difference between the observed spectra and non-active templates, are well reproduced by a two Gaussian fitting. The broad emission component, responsible for the wide emission wings in near all the spectra, is often blue-shifted with respect to the center of the stellar disk. The narrow Hα emission displays a phase-dependent variation in all stars and is anti-correlated with the photospheric diagnostics, while the broad one displays no or little rotational modulation. We suggest that the broad emission component is mainly related to physical phenomena, like micro-flaring or strong chromospheric velocity fields, occurring all over the star disk, while the central narrow emission is more affected by chromospheric plages. We have also detected a modulation of the intensity of the He I D3 line with the star rotation, suggesting surface features also in the upper chromosphere of these stars.

  8. Threaded-Field-Line Model for the Transition Region and Solar Corona

    NASA Astrophysics Data System (ADS)

    Sokolov, I.; van der Holst, B.; Gombosi, T. I.

    2014-12-01

    In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ("thread"), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to forlmulate the boundary condition for the global solar corona model which traces the connection of each boundary point to the cromosphere along the threads.

  9. Water Structure Studied by Far Infrared Spectroscopy in FTIR Beam Line of MIRRORCLE 20

    SciTech Connect

    Miura, Nobuhiro; Moon, Ahsa; Kitagawa, Toshimichi; Yamada, Hironari

    2007-03-30

    Far infrared vibrational Spectroscopy for distilled water was performed by Fourier Transform Infrared Spectroscopy (FT-IR) in the FTIR beam line of MIRRORCLE 20. Synchrotron radiation was utilized as a light source for the absorption Spectroscopy in the frequency range from 100cm-1 to 20cm-1. Off-line measurements by black body radiation of ceramic heater were also examined in the range from 400cm-1 to 50cm-1. Wide range spectrum was obtained after the SR data merged the off-line data. We report the recent development in the beam line and the examples of spectra related to the water structure.

  10. Water Structure Studied by Far Infrared Spectroscopy in FTIR Beam Line of MIRRORCLE 20

    NASA Astrophysics Data System (ADS)

    Miura, Nobuhiro; Moon, Ahsa; Yamada, Hironari; Kitagawa, Toshimichi

    2007-03-01

    Far infrared vibrational Spectroscopy for distilled water was performed by Fourier Transform Infrared Spectroscopy (FT-IR) in the FTIR beam line of MIRRORCLE 20. Synchrotron radiation was utilized as a light source for the absorption Spectroscopy in the frequency range from 100cm-1 to 20cm-1. Off-line measurements by black body radiation of ceramic heater were also examined in the range from 400cm-1 to 50cm-1. Wide range spectrum was obtained after the SR data merged the off-line data. We report the recent development in the beam line and the examples of spectra related to the water structure.

  11. Nuclear structure studies far from the line of beta stability

    SciTech Connect

    Avignone, F.T. III

    1986-04-15

    This report includes research activities concerning nuclear structure research of neutron rich and neutron deficient isotopes. Individual sections deal with Coulomb interactions; lifetime measurements of nuclei; calculations and Monte Carlo simulations for predicting responses of Ge and NaI(Tl) detectors to gamma radiation; and beta decay, energy levels, and mass measurements of selected isotopes. The research program features the discovery of new isotopes via their delayed proton decay and the detailed investigation of the beta-delayed, proton spectra. This report covers activities through the contract period from 1979 through 1985. 10 refs. (DWL)

  12. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    PubMed Central

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.

    2009-01-01

    The subfragment 2/light meromyosin “hinge” region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length. PMID:19450484

  13. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    SciTech Connect

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  14. Size and physical conditions of the coronal line region in a nearby Seyfert 2: the Circinus galaxy

    NASA Astrophysics Data System (ADS)

    Oliva, E.; Salvati, M.; Moorwood, A. F. M.; Marconi, A.

    1994-08-01

    We present observations of visible ([FeVII], [FeX], [FeXI], [SVIII]) and near infrared ([SIX], [SiVI], [CaVIII], [SiVII], [SiIX]) coronal lines in the Circinus galaxy. The number of detected lines, their velocity profiles, and their spatial distribution pose tight constraints on models of the coronal line region (CLR), and lead to several important conclusions. We can exclude fast shocks and hot stars (warmers) as the origin of the coronal line emission, and find convincing (although not conclusive) evidence against a hot, collisionally ionized plasma. The CLR appears to be a dense (N_e_=~250cm^-3^), compact (diameter=~10pc), dustless region photoionized by the nuclear continuum which must be remarkably flat (Lnu_=~ν^-0.5^) around 300eV.

  15. Determining inclinations of active galactic nuclei via their narrow-line region kinematics. II. Correlation with observed properties

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Turner, T. J.

    2014-04-10

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight, yet the specific inclinations of all but a few AGNs are generally unknown. By determining the inclinations and geometries of nearby Seyfert galaxies using the kinematics of their narrow-line regions (NLRs) and comparing them with observed properties, we find strong correlations between inclination and total hydrogen column density, infrared color, and Hβ FWHM. These correlations provide evidence that the orientation of AGNs with respect to our line of sight affects how we perceive them beyond the Seyfert 1/2 dichotomy. They can also be used to constrain three-dimensional models of AGN components such as the broad-line region and torus. Additionally, we find weak correlations between AGN luminosity and several modeled NLR parameters, which suggests that the NLR geometry and kinematics are dependent to some degree on the AGN's radiation field.

  16. Isolating influential regions of electrostatic focusing in protein and DNA structure.

    PubMed

    Blumenthal, Seth; Tang, Yisheng; Yang, Wenjie; Chen, Brian Y

    2013-01-01

    Electrostatic focusing is a general phenomenon that occurs in cavities and grooves on the molecular surface of biomolecules. Narrow surface features can partially shield charged atoms from the high-dielectric solvent, enhancing electrostatic potentials inside the cavity and projecting electric field lines outward into the solvent. This effect has been observed in many instances and is widely considered in the human examination of molecular structure, but it is rarely integrated into the digital representations used in protein structure comparison software. To create a computational representation of electrostatic focusing, that is compatible with structure comparison algorithms, this paper presents an approach that generates three-dimensional solids that approximate regions where focusing occurs. We verify the accuracy of this representation against instances of focusing in proteins and DNA. Noting that this representation also identifies thin focusing regions on the molecular surface that are unlikely to affect binding, we describe a second algorithm that conservatively isolates larger focusing regions. The resulting 3D solids can be compared with Boolean set operations, permitting a new range of analyses on the regions where electrostatic focusing occurs. They also represent a novel integration of molecular shape and electrostatic focusing into the same structure comparison framework. PMID:24384707

  17. A REVERBERATION LAG FOR THE HIGH-IONIZATION COMPONENT OF THE BROAD-LINE REGION IN THE NARROW-LINE SEYFERT 1 Mrk 335

    SciTech Connect

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Denney, K. D.; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Bord, D. J.; Che, X.; Chen, C.; Cohen, S. A.; and others

    2012-01-15

    We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He II {lambda}4686 broad emission line relative to the optical continuum to be 2.7 {+-} 0.6 days and the lag in the H{beta}{lambda}4861 broad emission line to be 13.9 {+-} 0.9 days. Combined with the line width, the He II lag yields a black hole mass M{sub BH} = (2.6 {+-} 0.8) Multiplication-Sign 10{sup 7} M{sub Sun }. This measurement is consistent with measurements made using the H{beta}{lambda}4861 line, suggesting that the He II emission originates in the same structure as H{beta}, but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in an NLS1 galaxy and supports a scenario in which the He II emission originates from gas in virial motion rather than outflow.

  18. A Near-Infrared Search for Hidden Broad-Line Regions in Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain; Sanders, D. B.; Kim, D.-C.

    1997-07-01

    We report the results of a sensitive new near-infrared search for hidden broad-line regions (BLRs: ΔVFWHM >~ 2000 km s-1) in a sample of 25 ultraluminous infrared galaxies (ULIGs) selected for their lack of BLRs at optical wavelengths. These objects constitute a representative subset of the (non-Seyfert 1) 1 Jy sample of 111 ULIGs (Kim & Sanders), both in terms of their redshift and infrared luminosity distributions. In contrast to previous studies of ULIGs at lower redshift, the redshifts for our current subsample (z ~ 0.1-0.2) allow us to search for broad-line emission from the strong Paα λ1.8751 μm and [Si VI] λ1.962 μm emission lines, two powerful AGN diagnostic lines which are generally inaccessible in lower redshift objects. Broad Paα emission is detected for the first time in two sources--PKS 1345+12, F23499+2423 (object names that begin with ``F'' are sources identified in the IRAS Faint Source Catalog, Version 2), and the presence of a hidden BLR is confirmed in two additional sources--F20460+1925, F23060+0505. Broad Paα emission may also be present in three other sources--F08559+1053, F17179+5444, F23233+2817--but new data are needed to make sure that H2 λλ1.8665, 1.8721 is not contributing to this excess emission. In addition, the [Si VI] feature appears to be present in three objects--F12072-0444, PKS 1345+12, F23233+2817--and perhaps also in F17179+5444. Combining our new data with previously published spectra for Mrk 463E, we find that all of the galaxies with evidence for a hidden BLR at near-infrared wavelengths present an optical Seyfert 2 spectrum. Overall, seven (and perhaps nine) of the 10 optical Seyfert 2 galaxies in our sample present either a BLR or strong [Si VI] emission. Also, galaxies with ``warm'' IRAS colors (f25/f60 > 0.2) (the quantities f25, f60 are the IRAS flux densities in Jy at 25 and 60 μm, respectively) show a tendency to harbor obscured BLRs in the near-infrared and to have large Paα-to-infrared luminosity ratios

  19. Gamma-ray spectroscopy of the galactic center region: Confirmation of the time-variability of the positron annihilation line

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Cline, T. L.; Teegarden, B. J.; Tueller, J.; Durouchoux, P.; Hameury, J. M.

    1982-01-01

    The GSFC Low-Energy Gamma-Ray Spectrometer observed the region of the galactic center during a balloon flight from Alice Springs, Australia, on 1981 November 20. No significant excess over background was evident in the 511 keV annihilation line. A 98 percent confidence upper limit is derived for this line of 1.2 x .001 photons/sq. cm-s. Continuum emission was detected above 100 keV with a best-fitting power law spectrum.

  20. Line profiles variations from atmospheric eclipses: Constraints on the wind structure in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Koenigsberger, G.

    1994-01-01

    Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.

  1. The pore-lining region of shaker voltage-gated potassium channels: comparison of beta-barrel and alpha-helix bundle models.

    PubMed Central

    Kerr, I D; Sansom, M S

    1997-01-01

    Although there is a large body of site-directed mutagenesis data that identify the pore-lining sequence of the voltage-gated potassium channel, the structure of this region remains unknown. We have interpreted the available biochemical data as a set of topological and orientational restraints and employed these restraints to produce molecular models of the potassium channel pore region, H5. The H5 sequence has been modeled either as a tetramer of membrane-spanning beta-hairpins, thus producing an eight-stranded beta-barrel, or as a tetramer of incompletely membrane-spanning alpha-helical hairpins, thus producing an eight-staved alpha-helix bundle. In total, restraints-directed modeling has produced 40 different configurations of the beta-barrel model, each configuration comprising an ensemble of 20 structures, and 24 different configurations of the alpha-helix bundle model, each comprising an ensemble of 24 structures. Thus, over 1300 model structures for H5 have been generated. Configurations have been ranked on the basis of their predicted pore properties and on the extent of their agreement with the biochemical data. This ranking is employed to identify particular configurations of H5 that may be explored further as models of the pore-lining region of the voltage-gated potassium channel pore. Images FIGURE 7 FIGURE 12 PMID:9251779

  2. Structural Analysis of Pressurized Small Diameter Lines in a Random Vibration Environment

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Ridnour, Andrew; Brethen, Mark

    2011-01-01

    The pressurization and propellant feed lines for the Ares 1 Upper Stage Reaction and Roll Control Systems (ReCS and RoCS) were required to be in a high g-load random vibration flight environment. The lines connected the system components and were filled with both liquid hydrazine and gaseous helium. They are considered small and varied between one fourth to one inch in diameter. The random vibration of the lines was considered to be base excitation through the mating components and mounting hardware. It was found that reducing the amount of support structure for the lines added flexibility to the system and improved the line stresses from random vibration, but caused higher stresses from the static g-loads. The locations and number of brackets were optimized by analyzing the mode shapes of the lines causing high stresses. The use of brackets that only constrain motion in the direction of concern further reduced the stresses in the lines. Finite element analysis was used to perform the analysis. The lines were pre-stressed by temperature and internal pressure with fluid and insulation included as non-structural mass. Base excitation was added to the model using Power Spectral Density (PSD) data for the expected flight loads. The random vibration and static g-load cases were combined to obtain the total stress in the lines. This approach advances the state of the art in line analysis by using FEA to predict the stresses in the lines and to optimize the entire system based on the expected flight environment. Adding flexibility to lines has been used in piping system for temperature loads, but in flight environments flexibility has been limited for the static stresses. Adding flexibility to the system in a flight environment by reducing brackets has the benefit of reducing stresses and weight

  3. Gravitational microlensing of a reverberating quasar broad-line region - I. Method and qualitative results

    NASA Astrophysics Data System (ADS)

    Garsden, H.; Bate, N. F.; Lewis, G. F.

    2011-12-01

    The kinematics and morphology of the broad emission-line region (BELR) of quasars are the subject of significant debate. The two leading methods for constraining BELR properties are microlensing and reverberation mapping. Here we combine these two methods with a study of the microlensing behaviour of the BELR in Q2237+0305, as a change in continuum emission (a 'flare') passes through it. Beginning with some generic models of the BELR - sphere, bicones, disc - we slice in velocity and time to produce brightness profiles of the BELR over the duration of the flare. These are numerically microlensed to determine whether microlensing of reverberation mapping provides new information about the properties of BELRs. We describe our method and show images of the models as they are flaring, and the unlensed and lensed spectra that are produced. Qualitative results and a discussion of the spectra are given in this paper, highlighting some effects that could be observed. Our conclusion is that the influence of microlensing, while not strong, can produce significant observable effects that will help in differentiating the properties of BELRs. Research undertaken as part of the Commonwealth Cosmology Initiative (CCI: ), an international collaboration supported by the Australian Research Council.

  4. Absolute intensities of CO2 lines in the 3140-3410/cm spectral region

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Devi, V. Malathy; Ferry-Leeper, Penelope S.; Rinsland, Curtis P.

    1988-01-01

    Absolute intensities for 430 transitions belonging to eleven rotation-vibration bands of (C-12)(O-16)2, (C-13)(O-16)2, and (O-16)(C-18)(O-18) in the 3140-3410/cm spectral region have been determined by analyzing spectra recorded at 0.01/cm resolution with the Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory on Kitt Peak. The data were recorded at room temperature and low pressures (less than 10 torr) using a natural sample of carbon dioxide. Intensities were derived using a nonlinear least-squares spectral fitting procedure, and the values obtained for each band have been analyzed to determine the vibrational band intensity and nonrigid rotor coefficients. An alternative mathematical formulation is shown in the case of bands for which the Coriolis effect is large and the Q-branch line intensities were not determinable either because they were severely blended or absent from the spectra. Comparison are made between the results obtained in this study and other published values.

  5. Isomer Studies for Nuclei near the Proton Drip Line in the Mass 130-160 Region

    SciTech Connect

    Cullen, D. M.; Mason, P. J. R.; Khan, S.; Kishada, A. M.; Varley, B. J.; Rigby, S. V.; Scholey, C.; Greenlees, P.; Rahkila, P.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppaenen, A. P.; Nyman, M.; Uusitalo, J.; Grahn, T.; Nieminen, P.; Pakarinen, J.

    2007-11-30

    This report details the status of an experimental research programme which has studied isomeric states in the mass 130-160 region of the nuclear chart. Several new isomers have been established and characterised near the proton drip line using a recoil isomer tagging technique at the University of Jyvaeskylae, Finland. The latest experiments have been performed with a modified setup where the standard GREAT focal-plane double-sided silicon-strip detector was changed to a dual multi-wire proportional-counter arrangement. This new setup has improved capability for short-lived isomer studies where high focal-plane rates can be tolerated. The results of key recent experiments for nuclei situated above ({sup 153}Yb,{sup 152}Tm) and below ({sup 136}Pm,{sup 142}Tb) the N = 82 shell gap were presented along with an interpretation for the isomers. Finally, the future prospects of the technique, using an isomer-tagged differential-plunger setup, were discussed. This technique will be capable of establishing the deformation of the states above the isomers and will aid in the process of assigning underlying single-particle configurations to the isomeric states.

  6. Quasar cartography: From black hole to broad-line region scales

    SciTech Connect

    Chelouche, Doron; Zucker, Shay E-mail: shayz@post.tau.ac.il

    2013-06-01

    A generalized approach to reverberation mapping (RM) is presented, which is applicable to broad- and narrowband photometric data, as well as to spectroscopic observations. It is based on multivariate correlation analysis techniques and, in its present implementation, is able to identify reverberating signals across the accretion disk and the broad-line region (BLR) of active galactic nuclei (AGNs). Statistical tests are defined to assess the significance of time-delay measurements using this approach, and the limitations of the adopted formalism are discussed. It is shown how additional constraints on some of the parameters of the problem may be incorporated into the analysis thereby leading to improved results. When applied to a sample of 14 Seyfert 1 galaxies having good-quality high-cadence photometric data, accretion disk scales and BLR sizes are simultaneously determined, on a case-by-case basis, in most objects. The BLR scales deduced here are in good agreement with the findings of independent spectroscopic RM campaigns. Implications for the photometric RM of AGN interiors in the era of large surveys are discussed.

  7. Optical region elemental abundance analyses of B and A stars. VII - The metallic-lined star 32 Aquarii

    NASA Technical Reports Server (NTRS)

    Kocer, D.; Bolcal, C.; Inelmen, E.; Adelman, S. J.

    1987-01-01

    An abundance analysis using photographic region spectrograms and fully line-blanketed model atmospheres has been performed for the metallic-lined (Am) star 32 Aquarii consistent with previous papers of this series. Its pattern of abundance anomalies is not identical with those of the hot Am stars although there are definite similarities. Changes of up to order 1 dex are foundly by comparison with the previous analysis by Smith. Slightly better agreement is found with the recent analyses of singly-ionized rare earth lines by Magazzu and Cowley. Results are also presented for a model selected on the basis of photometric indices according to the formula of Moon and Dworetsky.

  8. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region

    NASA Technical Reports Server (NTRS)

    Grossmann, Benoist E.; Browell, Edward V.

    1989-01-01

    High-resolution spectroscopic measurements of H2O vapor in the 720-nm wavelength region were conducted to investigate the broadening and shifting of H2O lines by air, nitrogen, oxygen, and argon over a wide range of pressures and temperatures. For each of the buffer gases under study, a linear relationship was found between the widths and the shifts, with the broader lines having the smaller pressure shifts. The pressure shifts measured compared favorably with theoretical values reported by Bykov et al. (1988). The temperature-dependence exponents for air-broadening were found to be J-dependent, with the lower-J lines having the higher exponents.

  9. TYPE 2 ACTIVE GALACTIC NUCLEI WITH DOUBLE-PEAKED [O III] LINES: NARROW-LINE REGION KINEMATICS OR MERGING SUPERMASSIVE BLACK HOLE PAIRS?

    SciTech Connect

    Liu Xin; Shen Yue; Strauss, Michael A.; Greene, Jenny E.

    2010-01-01

    We present a sample of 167 type 2 active galactic nuclei (AGNs) with double-peaked [O III] lambdalambda4959,5007 narrow emission lines, selected from the Seventh Data Release of the Sloan Digital Sky Survey. The double-peaked profiles can be well modeled by two velocity components, blueshifted and redshifted from the systemic velocity. Half of these objects have a more prominent redshifted component. In cases where the Hbeta emission line is strong, it also shows two velocity components whose line-of-sight (LOS) velocity offsets are consistent with those of [O III]. The relative LOS velocity offset between the two components is typically a few hundred km s{sup -1}, larger by a factor of approx1.5 than the line full width at half maximum of each component. The offset correlates with the host stellar velocity dispersion sigma{sub *}. The host galaxies of this sample show systematically larger sigma{sub *}, stellar masses, and concentrations, and older luminosity-weighted mean stellar ages than a regular type 2 AGN sample matched in redshift, [O III] lambda5007 equivalent width, and luminosity; they show no significant difference in radio properties. These double-peaked features could be due to narrow-line region kinematics, or binary black holes. The statistical properties do not show strong preference for or against either scenario, and spatially resolved optical imaging, spectroscopy, radio or X-ray follow-up are needed to draw firm conclusions.

  10. X-ray heating and ionization of broad-emission-line regions in QSO's and active galaxies

    SciTech Connect

    Weisheit, J.C.; Shields, G.A.; Tarter, C.B.

    1980-07-01

    Absorption of x-rays deep within the broad-line emitting clouds in QSO's and the nuclei of active galaxies creates extensive zones of warm (T approx. 10/sup 4/K), partially ionized N/sub e//N approx. 0.1) gas. Because Lyman alpha photons are trapped in these regions, the x-ray energy is efficiently channeled into Balmer lines collisionally excited from the n = 2 level. The HI regions plus the HII regions created by ultraviolet photons illuminating the surfaces of the clouds give rise to integrated L..cap alpha../H..cap alpha.. line emission ratios between 1 and 2. Enhanced MgII line emission from the HI regions gives rise to integrated MgII/H..cap alpha.. ratios near 0.5. The OI line lambda 8446 is efficiently pumped by trapped H..cap alpha.. photons and in the x-ray heated zone an intensity ratio I (lambda 8446)/I(H..cap alpha..) approx. < 0.1 is calculated. All of these computed ratios now are in agreement with observations.

  11. Chromospheric and transition region structure of the Herbig emission stars HR 5999 and BN Ori

    NASA Technical Reports Server (NTRS)

    Brown, A.; Tjinadjie, H. R. E.; The, P. S.

    1986-01-01

    The IUE spectra of HR 5999 and BN Ori were analyzed, showing strong emission lines of C II, C IV, O I, and Si IV (also Mg II in HR 5999), indicating the presence of chromospheres and transition regions around these high mass premain sequence (PMS) stars. Infrared, optical, and ultraviolet observations show that BN Ori has a spectral type of FO-2 IIIe, a bolometric luminosity of 36 L, age 1.5 million yr, and mass 2 to 2.5 solar mass. As HR 5999 fades, the ratio of total to selective absorption increases indicating the appearance of larger grains or changes in grain alignment. Emission measure distributions are used to investigate the atmospheric structure of the stars. As HR 5999 fades the emission measure distribution rises systematically and the inferred transition region pressures increase. The transition region and chromospheric radiative losses are large and imply input mechanical energy fluxes similar to those of lower mass PMS stars.

  12. ESSEA On-Line Courses and the WestEd Eisenhower Regional Consortium (WERC)

    NASA Astrophysics Data System (ADS)

    Rognier, E.

    2001-12-01

    The WestEd Eisenhower Regional Consortium (WERC) is in its second year of offering two Earth Systems Science On-line Graduate courses from IGES - one for High School teachers, and one for Middle School teachers. These high-quality courses support WERC's commitment to "supporting increased scientific and mathematical literacy among our nation's youth through services and other support aimed at enhancing the efforts of those who provide K-12 science and mathematics education." WERC has been able to use its EdGateway online community network to offer these courses to environmental education and science teachers nationwide. Through partnerships with the North American Association for Environmental Education (NAAEE), the National Environmental Education Advancement Project (NEEAP), and other regional, state and local science and environmental education organizations, WERC has a broad reach in connecting with science educators nationwide. WERC manages several state and national listservs, which enable us to reach thousands of educators with information about the courses. EdGateway also provides a private online community in which we offer the courses. WERC partners with two Master Teachers from Utah, who facilitate the courses, and with the Center for Science and Mathematics Education at Weber State University, who provides low-cost graduate credit for the courses. Our students have included classroom teachers from upper elementary through high school, community college science teachers, and environmental science center staff who provide inservice for teachers. Educators from Hawaii to New Jersey have provided diverse personal experiences of Earth Systems Science events, and add richness to the online discussions. Two Earth Science Experts, Dr. Rick Ford from Weber State University, and Dr. Art Sussman from WestEd also contribute to the high caliber of learning the students experience in the courses. (Dr. Sussman's book, Dr. Art's Guide to Planet Earth, is used as one of

  13. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: III. Emission Line Diagnostics of Ensembles of H II Regions

    SciTech Connect

    Dopita, M A; Fischera, J; Sutherland, R S; Kewley, L J; Leitherer, C; Tuffs, R J; Popescu, C C; van Breugel, W; Groves, B A

    2006-05-10

    We have built, as far as possible, fully self-consistent models of H II regions around aging clusters of stars. These produce strong emission line diagnostics applicable to either individual H II regions in galaxies, or to the integrated emission line spectra of disk or starburst galaxies. The models assume that the expansion and internal pressure of individual H II regions is driven by the net input of mechanical energy from the central cluster, be it through winds or supernova events. This eliminates the ionization parameter as a free variable, replacing it with a parameter which depends on the ratio of the cluster mass to the pressure in the surrounding interstellar medium. These models explain why H II regions with low abundances have high excitation, and demonstrate that at least part of the warm ionized medium is the result of overlapping faint, old, large, and low pressure H II regions. We present a number of line ratios (at both optical and IR wavelengths) that provide reliable abundance diagnostics for either single H II regions or for integrated galaxy spectra, and others that are sensitive to the age of the cluster stars exciting individual H II regions.

  14. Line strengths, A-factors and absorption cross-sections for fine structure lines in multiplets and hyperfine structure components in lines in atomic spectrometry—a user's guide

    NASA Astrophysics Data System (ADS)

    Axner, Ove; Gustafsson, Jörgen; Omenetto, Nicolò; Winefordner, James D.

    2004-01-01

    This work summarizes and elucidates a number of fundamental concepts in atomic spectrometry regarding the 'strengths' of transitions between various energy levels and states in atoms. Although several of the expressions and rules for line strengths of transitions reported here can be found, in one way or another, in various books dealing with atomic structure, atomic spectrometry or quantum mechanics, the treatment in such books can be variously complex and difficult to follow for a non-experienced reader. In addition, detailed information about transition-specific 'strengths' of transitions used to be restricted to line strengths, whereas most experiments rather need transition-specific A-factors or transition-specific absorption cross-sections. This work therefore aims at pointing out the most important aspects of the concept of 'strengths' of transitions between various energy levels and states in atoms by presenting explicit expressions for not only relative and absolute line strengths but also oscillator strengths ( f-values), A-factors and absorption cross-sections, for transitions between fine structure levels within a multiplet as well as for hyperfine structure components within a line (i.e. between hyperfine structure levels), including their mutual relations, in a consistent and user-friendly manner. The work also recapitulates the most important summation rules for line strengths, oscillator strengths ( f-values), A-factors and absorption cross-sections for lines within multiplets and hyperfine structure components within lines. Many of the expressions are illustrated with clear and intelligible examples. For the sake of clarity and completeness, the work also comprises a short review of the nomenclature for atomic structure and transitions.

  15. First in situ evidence of electron pitch angle scattering due to magnetic field line curvature in the Ion diffusion region

    NASA Astrophysics Data System (ADS)

    Zhang, Y. C.; Shen, C.; Marchaudon, A.; Rong, Z. J.; Lavraud, B.; Fazakerley, A.; Yao, Z.; Mihaljcic, B.; Ji, Y.; Ma, Y. H.; Liu, Z. X.

    2016-05-01

    Theory predicts that the first adiabatic invariant of a charged particle may be violated in a region of highly curved field lines, leading to significant pitch angle scattering for particles whose gyroradius are comparable to the radius of the magnetic field line curvature. This scattering generates more isotropic particle distribution functions, with important impacts on the presence or absence of plasma instabilities. Using magnetic curvature analysis based on multipoint Cluster spacecraft observations, we present the first investigation of magnetic curvature in the vicinity of an ion diffusion region where reconnected field lines are highly curved. Electrons at energies > 8 keV show a clear pitch angle ordering between bidirectional and trapped distribution in surrounding regions, while we show that in the more central part of the ion diffusion region electrons above such energies become isotropic. By contrast, colder electrons (~1 keV) retain their bidirectional character throughout the diffusion regions. The calculated adiabatic parameter K2 for these electrons is in agreement with theory. This study provides the first observational evidence for particle pitch angle scattering due to magnetic field lines with well characterized curvature in a space plasma.

  16. Self-shadowing effects of slim accretion disks in active galactic nuclei: the diverse appearance of the broad-line region

    SciTech Connect

    Wang, Jian-Min; Qiu, Jie; Du, Pu; Ho, Luis C.

    2014-12-10

    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energy distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.

  17. The Complex North Transition Region of Centaurus A: Radio Structure

    NASA Astrophysics Data System (ADS)

    Neff, Susan G.; Eilek, Jean A.; Owen, Frazer N.

    2015-04-01

    We present deep radio images of the inner ~50 kpc of Centaurus A, taken with the Karl G. Jansky Very Large Array at 90 cm. We focus on the Transition Regions between the inner galaxy—including the active nucleus, inner radio lobes, and star-forming disk—and the outer radio lobes. We detect previously unknown extended emission around the Inner Lobes, including radio emission from the star-forming disk. We find that the radio-loud part of the North Transition Region (NTR), known as the North Middle Lobe, is significantly overpressured relative to the surrounding interstellar medium. We see no evidence for a collimated flow from the active galactic nucleus through this region. Our images show that the structure identified by Morganti et al. as a possible large-scale jet appears to be part of a narrow ridge of emission within the broader, diffuse, radio-loud region. This knotty radio ridge is coincident with other striking phenomena: compact X-ray knots, ionized gas filaments, and streams of young stars. Several short-lived phenomena in the NTR, as well as the frequent re-energization required by the Outer Lobes, suggest that energy must be flowing through both Transition Regions at the present epoch. We suggest that the energy flow is in the form of a galactic wind.

  18. Seismic Structure of India from Regional Waveform Matching

    NASA Astrophysics Data System (ADS)

    Gaur, V.; Maggi, A.; Priestley, K.; Rai, S.

    2003-12-01

    We use a neighborhood adaptive grid search procedure and reflectivity synthetics to model regional distance range (500-2000~km) seismograms recorded in India and to determine the variation in the crust and uppermost mantle structure across the subcontinent. The portions of the regional waveform which are most influenced by the crust and uppermost mantle structure are the 10-100~s period Pnl and fundamental mode surface waves. We use the adaptive grid search algorithm to match both portions of the seismogram simultaneously. This procedure results in a family of 1-D path average crust and upper mantle velocity and attenuation models whose propagation characteristics closely match those of the real Earth. Our data set currently consist of ˜20 seismograms whose propagation paths are primarily confined to the Ganges Basin in north India and the East Dharwar Craton of south India. The East Dharwar Craton has a simple and uniform structure consisting of a 36+/-2 km thick two layer crust, and an uppermost mantle with a sub-Moho velocity of 4.5~km/s. The structure of northern India is more complicated, with pronounced low velocities in the upper crustal layer due to the large sediment thicknesses in the Ganges basin.

  19. On the Magnetic Structure of the Solar Transition Region

    NASA Astrophysics Data System (ADS)

    Judge, Philip; Centeno, Rebecca

    2008-11-01

    We examine the hypothesis that cool loops dominate emission from solar transition region plasma below temperatures of 2 × 105 K. We compare published VAULT images of H Lyα, a lower transition region line, with nearly contemporaneous magnetograms from Kitt Peak, obtained during the second flight (VAULT-2) on 2002 June 14. The measured surface fields and potential extrapolations suggest that there are too few short loops and that Lyα emission is associated with the base regions of longer, coronal loops. VAULT-2 data of network boundaries have an asymmetry on scales larger than supergranules, also indicating an association with long loops. We complement the Kitt Peak data with very sensitive vector polarimetric data from the spectropolarimeter on board Hinode to determine the influence of very small magnetic concentrations on our analysis. From these data, two classes of behavior are found. Within the cores of strong magnetic flux concentrations (>5 × 1018 Mx) associated with active network and plage, small-scale mixed fields are absent, and any short loops can connect just the peripheries of the flux to cell interiors. Core fields return to the surface via longer, most likely coronal, loops. In weaker concentrations, short loops can connect concentrations and produce mixed fields within network boundaries, as suggested by Dowdy and colleagues. The VAULT-2 data that we examined are associated with strong concentrations. We conclude that the cool-loop model applies only to a small fraction of the VAULT-2 emission, but we cannot discount a significant role for cool loops in quieter regions. We suggest a physical picture for how network Lyα emission may occur through the cross-field diffusion of neutral atoms from chromospheric into coronal plasma.

  20. Crustal structure of the Nordland region, northern Norway

    NASA Astrophysics Data System (ADS)

    Maystrenko, Yuriy P.; Olesen, Odleiv; Gernigon, Laurent; Gradmann, Sofie

    2016-04-01

    To understand the major structural features of the sedimentary cover and crystalline crust within the Nordland County area of Norway, a data-based 3D structural model has been constructed in the framework of the Neonor2 project, "Neotectonics in Nordland - implications for petroleum exploration". The 3D structural model covers the Lofoten Ridge, the Ribban and Vestfjorden basins and adjacent areas of the Norwegian mainland. The model also covers the northern part of the adjacent Vøring Basin. At the regional scale, the 3D model includes the rifted margin which is located at the transition from the exposed crystalline rocks of the Fennoscandian Shield in the east to the Cenozoic oceanic domain of the Norwegian-Greenland Sea in the west. During the construction of the 3D structural model, all recently published and/or released data have been compiled in order to set the initial model. This initial 3D model has been validated by a 3D density modelling in order to obtain a gravity-consistent 3D structural model of the entire study area. The 3D density modelling has been carried out by using the IGMAS plus software (the Interactive Gravity and Magnetic Application System). During the 3D density modelling, densities have been assigned as constant values for the crystalline rocks. In contrast, densities of sedimentary rocks have been set to be depth-dependent in order to reflect the compaction of sedimentary rocks with depth. According to the results of the 3D density modeling, the crystalline crust of the investigated region consists of several layers with different densities. The deepest crustal layer is the high-density lower crust which corresponds to the high-velocity lower crustal layer. The regional-scale gravity response associated with the positions of the Moho and lithosphere-asthenosphere boundary is one of the key factors for performing a proper 3D density model of the study area. At the regional scale, the Moho and lithosphere-asthenosphere boundary are

  1. Origin of double-line structure in nonsequential double ionization by few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Zhong, Mingmin; Wu, Zhengmao

    2016-07-01

    We investigate nonsequential double ionization (NSDI) of molecules by few-cycle laser pulses at the laser intensity of 1.2-1.5 × 1014 W/cm2 using the classical ensemble model. The same double-line structure as the lower intensity (1.0 × 1014 W/cm2) is also observed in the correlated electron momentum spectra for 1.2-1.4 × 1014 W/cm2. However, in contrast to the lower intensity where NSDI proceeds only through the recollision-induced double excitation with subsequent ionization (RDESI) mechanism, here, the recollision-induced excitation with subsequent ionization (RESI) mechanism has a more significant contribution to NSDI. This indicates that RDESI is not necessary for the formation of the double-line structure and RESI can give rise to the same type of structure independently. Furthermore, we explore the ultrafast dynamics underlying the formation of the double-line structure in RESI.

  2. Mechanistic role of structurally dynamic regions in Dicistroviridae IGR IRESs.

    PubMed

    Pfingsten, Jennifer S; Castile, Alice E; Kieft, Jeffrey S

    2010-01-01

    Dicistroviridae intergenic region (IGR) internal ribosome entry site(s) (IRES) RNAs drive a cap-independent pathway of translation initiation, recruiting both small and large ribosomal subunits to viral RNA without the use of any canonical translation initiation factors. This ability is conferred by the folded three-dimensional structure of the IRES RNA, which has been solved by X-ray crystallography. Here, we report the chemical probing of Plautia stali intestine virus IGR IRES in the unbound form, in the 40S-subunit-bound form, and in the 80S-ribosome-bound form. The results, when combined with an analysis of crystal structures, suggest that parts of the IRES RNA change structure as the preinitiation complex forms. Using mutagenesis coupled with native gel electrophoresis, preinitiation complex assembly assays, and translation initiation assays, we show that these potentially structurally dynamic elements of the IRES are involved in different steps in the pathway of ribosome recruitment and translation initiation. Like tRNAs, it appears that the IGR IRES undergoes local structural changes that are coordinated with structural changes in the ribosome, and these are critical for the IRES mechanism of action. PMID:19878683

  3. Structure of the Intermediate Filament-Binding Region of Desmoplakin

    PubMed Central

    Kang, Hyunook; Weiss, Thomas M.; Bang, Injin; Weis, William I.; Choi, Hee-Jung

    2016-01-01

    Desmoplakin (DP) is a cytoskeletal linker protein that connects the desmosomal cadherin/plakoglobin/plakophilin complex to intermediate filaments (IFs). The C-terminal region of DP (DPCT) mediates IF binding, and contains three plakin repeat domains (PRDs), termed PRD-A, PRD-B and PRD-C. Previous crystal structures of PRDs B and C revealed that each is formed by 4.5 copies of a plakin repeat (PR) and has a conserved positively charged groove on its surface. Although PRDs A and B are linked by just four amino acids, B and C are separated by a 154 residue flexible linker, which has hindered crystallographic analysis of the full DPCT. Here we present the crystal structure of a DPCT fragment spanning PRDs A and B, and elucidate the overall architecture of DPCT by small angle X-ray scattering (SAXS) analysis. The structure of PRD-A is similar to that of PRD-B, and the two domains are arranged in a quasi-linear arrangement, and separated by a 4 amino acid linker. Analysis of the B-C linker region using secondary structure prediction and the crystal structure of a homologous linker from the cytolinker periplakin suggests that the N-terminal ~100 amino acids of the linker form two PR-like motifs. SAXS analysis of DPCT indicates an elongated but non-linear shape with Rg = 51.5 Å and Dmax = 178 Å. These data provide the first structural insights into an IF binding protein containing multiple PRDs and provide a foundation for studying the molecular basis of DP-IF interactions. PMID:26808545

  4. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.; Moore, Ronald L.

    2014-01-01

    Hi-C: first observational evidence of field line braiding in the AR corona; NLFFF extrapolations support. Flux emergence and/or cancellation in the coronal braided region generate large stresses and tension in the coronal field loops which is released as heat in the corona. The field in these sub-regions are highly sheared and have apparent high speed plasma flows, therefore, the contribution from shearing flows to power the coronal and transition region heating can not be ruled out! The spatial resolution of Hi-­C is five times better than AIA. The cadence of Hi-C is 2.5 - 6 times better than AIA. The 193 Å was selected because of the strong emission line of Fe XII (peak formation temperature of 1.5 MK). Hi-­C collected data for 345 s @ 5.4 s cadence. The Hi-C target region was NOAA AR 11520; 11 July 2012, 18:51-18:57 UT. NLFFF extrapolation confirms the braided structure, and free magnetic energy estimates in the given volume.

  5. Sound transmission through triple-panel structures lined with poroelastic materials

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2015-03-01

    In this paper, previous theories on the prediction of sound transmission loss for a double-panel structure lined with poroelastic materials are extended to address the problem of a triple-panel structure. Six typical configurations are considered for a triple-panel structure based on the method of coupling the porous layers to the facing panels which determines critically the sound insulation performance of the system. The transfer matrix method is employed to solve the system by applying appropriate types of boundary conditions for these configurations. The transmission loss of the triple-panel structures in a diffuse sound field is calculated as a function of frequency and compared with that of corresponding double-panel structures. Generally, the triple-panel structure with poroelastic linings has superior acoustic performance to the double-panel counterpart, remarkably in the mid-high frequency range and possibly at low frequencies, by selecting appropriate configurations in which those with two air gaps in the structure exhibit the best overall performance over the entire frequency range. The poroelastic lining significantly lowers the cut-on frequency above which the triple-panel structure exhibits noticeably higher transmission loss. Compared with a double-panel structure, the wider range of system parameters for a triple-panel structure due to the additional partition provides more design space for tuning the sound insulation performance. Despite the increased structural complexity, the triple-panel structure lined with poroelastic materials has the obvious advantages in sound transmission loss while without the penalties in weight and volume, and is hence a promising replacement for the widely used double-panel sandwich structure.

  6. Determining large-scale heliospheric structure using ultraviolet resonance line observations

    NASA Technical Reports Server (NTRS)

    Hall, Doyle T.

    1995-01-01

    Currently the Pioneer 10 and Voyager 1 and 2 spacecraft are beyond the orbit of Pluto, traveling outward from the Sun. Each is capable of detecting ultraviolet radiation resonantly scattered from hydrogen and helium atoms in the heliosphere and local interstellar medium. These observations are particularly well suited for the investigation of the large-scale heliospheric H and He distributions because the Voyager spacecraft are heading upstream, into the direction of local interstellar flow, whereas Pioneer 10 is heading downstream. Observations of the brightest resonance line, H Lyman-alpha, reveals that beyond about 20 AU from the Sun, upstream intensities decrease less quickly as a function of solar distance than downstream intensities. This implies that the heliospheric H distributions in the upstream and downstream directions are significantly different. Heliospheric H atoms originate in the local interstellar flow, and must penetrate through the heliospheric interface, where they are subject to charge exchange collisions with solar wind and interstellar protons. Models indicate that this process is probably responsible for the upstream/downstream difference in H Lyman-alpha. In addition, a recent spectroscopic determination of the H atom velocity distribution in the inner heliosphere implies a significant deceleration in the bulk flow speed of the heliospheric hydrogen gas relative to the helium flow, an effect that is also likely due to H-p charge exchange occurring in the upstream heliospheric interface region. In this presentation, recent heliospheric resonance line observations and their interpretations will be reviewed, focusing on their sensitivity to large-scale heliospheric structure.

  7. Crustal Structure in and Around the Miura Peninsula, Japan, Using an Off-Line Seismographic Array

    NASA Astrophysics Data System (ADS)

    Kawamura, T.; Okaya, D.; Hirata, N.

    2005-12-01

    A deep seismic profiling around the Metropolitan Tokyo region, the Kanto district, started in 2002 under the project titled as the Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion. The deep seismic profiling, Tokyo Bay 2003, was performed along the major axis of the Tokyo Bay. During 90 days, we had continuous records including many shot signals produced by vibrators on land and air-guns at the bay area. These data provided far-offset first arrival signals and wide angle reflections. We focus on the common receiver gather records of the Tokyo Bay 2003 off-line stations data to identify first arrival and wide angle phases. We applied the first arrival tomography method using a finite difference travel time solver (Hole, 1992) to those data to obtain a 3-D P-wave velocity structure of the uppermost crust along the profile. Then, its tomography profile was assumed an initial model, and P wave velocity structure which satisfied an observed travel time for a trial and error was made. We obtained results of inversion tomography and forward modeling in and around the Miura peninsula as follows: Across the Tokyo Bay, near surface is a layer with velocities of 1.6-2.5 km/s. This low velocity area corresponds to the fore-arc basin sediment (post Early Miocene) which extends to a depth of approximately 4 km. Beneath a low velocity area, higher velocity (5.0-5.6 km/s) and low velocity-gradient basement rocks exist, which was estimated to Pre-Neogene rocks (Shimanto or Chichibu belt). At the Miura peninsula, higher velocity (3.0-4.0 km/s), in comparison with the Tokyo bay side, patches are located at a depth of approximately 6 km, which we interpreted as Pre-Neogene basement rocks. Finally, the velocity structure obtained by the forward and inversion analysis are used to improve the processing of the reflection profiling data to clarify the deeper structure in the peninsula, including a good velocity constraint for a pre

  8. The host galaxies and narrow-line regions of four double-peaked [OIII] AGNs

    SciTech Connect

    Villforth, Carolin; Hamann, Fred

    2015-03-01

    Major gas-rich mergers of galaxies are expected to play an important role in triggering and fueling luminous active galactic nuclei (AGNs). The mechanism of AGN fueling during mergers, however, remains poorly understood. We present deep multi-band (u/r/z) imaging and long-slit spectroscopy of four double-peaked [OIII] emitting AGNs. This class of object is likely associated with either kiloparsec-separated binary AGNs or final stage major mergers, although AGNs with complex narrow-line regions (NLRs) are known contaminants. Such objects are of interest since they represent the onset of AGN activity during the merger process. Three of the four double-peaked [OIII] emitters studied have been confirmed as major mergers using near-infrared imaging and one is a confirmed X-ray binary AGN. All AGNs are luminous, radio-quiet to radio-intermediate, and have redshifts of 0.1regions showing considerable reddening, consistent with enhanced star formation. One source shows an offset between gas and stellar kinematics, consistent with either a bipolar flow or a counter-rotating gas disk. In all other sources, the ionized gas

  9. The effect of nonequilibrium ionization on ultraviolet line shifts in the solar transition region

    NASA Technical Reports Server (NTRS)

    Spadaro, D.; Noci, G.; Zappala, R. A.; Antiochos, S. K.

    1990-01-01

    The line profiles and wavelength positions of all the important emission lines due to carbon were computed for a variety of steady state siphon flow loop models. For the lines from the lower ionization states (C II-C IV) a preponderance of blueshifts was found, contrary to the observations. The lines from the higher ionization states can show either a net red- or blueshift, depending on the position of the loop on the solar disk. Similar results are expected for oxygen. It is concluded that the observed redshifts cannot be explained by the models proposed here.

  10. The spatial and kinematic structure of QSO metal-line absorption systems

    NASA Technical Reports Server (NTRS)

    Lanzetta, Kenneth M.

    1992-01-01

    Recent attempts to infer the spatial and kinematic distributions of the material responsible for absorption lines observed in the spectra of background QSOs are presented. Current models of the absorbing regions are compared, and initial observational results are described. This research is expected to lead eventually to a detailed picture of the extended gaseous halo regions of galaxies at early evolutionary stages and to an understanding of the physical processes at work in these halos.

  11. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Bonwell,E.; Fisher, T.; Fritz, A.; Wetzel, D.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including {beta}-sheet. Modeling of a-helix and {beta}-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 {mu}m thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 {mu}m diameter or confocal 5 {mu}m x 5 {mu}m spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current

  12. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Wetzel, D.; Bonwell, E; Fritz, T; Fritz, A

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the {alpha}-helix form compared with that in other secondary structure forms including {beta}-sheet. Modeling of {alpha}-helix and {beta}-sheet absorption bands that contribute to the amide I band at 1650 cm{sup -1} was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 {mu}m thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 {mu}m diameter or confocal 5 {mu}mX5{mu}m spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the {alpha}-helix population relative to other secondary protein structures from the position and shape of the amide I

  13. Mg ii Lines Observed During the X-class Flare on 29 March 2014 by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Liu, W.; Heinzel, P.; Kleint, L.; Kašparová, J.

    2015-12-01

    Mg ii lines represent one of the strongest emissions from the chromospheric plasma during solar flares. In this article, we studied the Mg ii lines observed during the X1 flare on 29 March 2014 (SOL2014-03-29T17:48) by the Interface Region Imaging Spectrograph (IRIS). IRIS detected large intensity enhancements of the Mg ii h and k lines, subordinate triplet lines, and several other metallic lines at the flare footpoints during this flare. We have used the advantage of the slit-scanning mode (rastering) of IRIS and performed, for the first time, a detailed analysis of spatial and temporal variations of the spectra. Moreover, we were also able to identify positions of strongest hard X-ray (HXR) emissions using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations and to correlate them with the spatial and temporal evolution of IRIS Mg ii spectra. The light curves of the Mg ii lines increase and peak contemporarily with the HXR emissions but decay more gradually. There are large red asymmetries in the Mg ii h and k lines after the flare peak. We see two spatially well-separated groups of Mg ii line profiles, non-reversed and reversed. In some cases, the Mg ii footpoints with reversed profiles are correlated with HXR sources. We show the spatial and temporal behavior of several other line parameters (line metrics) and briefly discuss them. Finally, we have synthesized the Mg ii k line using our non-LTE code with the Multilevel Accelerated Lambda Iteration (MALI) technique. Two kinds of models are considered, the flare model F2 of Machado et al. ( Astrophys. J. 242, 336, 1980) and the models of Ricchiazzi and Canfield ( Astrophys. J. 272, 739, 1983, RC models). Model F2 reproduces the peak intensity of the non-reversed Mg ii k profile at flare maximum, but does not account for high wing intensities. On the other hand, the RC models show the sensitivity of Mg ii line intensities to various electron-beam parameters. Our simulations also show that

  14. Reactions of Regional Cooperative Southernpea (cowpea) Breeding Lines to Southern Root-knot Nematode Race 3, 2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Southernpea breeding lines from the Regional Southernpea Cooperative Trial were evaluated for resistance to southern root-knot nematode, Meloidogyne incognita race 3, in a greenhouse test. The experimental design was a randomized complete block with four replicates. Each plot consisted of five see...

  15. Densities, temperatures, pressures, and abundances derived from O II recombination lines in H II regions and their implications

    SciTech Connect

    Peimbert, Antonio; Peimbert, Manuel E-mail: peimbert@astro.unam.mx

    2013-12-01

    Based on high-quality observations of multiplet V1 of O II and the NLTE atomic computations of O II, we study the density and temperature of a sample of H II regions. We find that the signature for oxygen-rich clumps of high density and low temperature is absent in all objects of our sample: one extragalactic and eight Galactic H II regions. The temperatures derived from (1) recombination lines (RLs) of O II, and (2) RLs of H I together with Balmer continua are lower than those derived from forbidden lines, while the densities derived from RLs of O II are similar or smaller than densities derived from forbidden lines. Electron pressures derived from collisionally excited lines are about two times larger than those derived from RLs. These results imply that the proper abundances are those derived from RLs and suggest that other processes in addition to direct photoionization, such as dissipation of turbulent energy in shocks, magnetic reconnection, and shadowed regions, might be responsible for the large abundance discrepancy factor and t {sup 2} values observed in H II regions.

  16. Structural design considerations for a line-focus reflective module using inexpensive composite materials

    NASA Astrophysics Data System (ADS)

    Murphy, L. M.

    1982-08-01

    The structural design aspects of a parabolic trough reflective module is addressed. The reflective module is a lightweight, low flexural rigidity design that is rotated about the focal line. The modules and support frame are designed to rotate with a cable drive system in a cross row manner. Analysis indicates that the structural and optical aspects of the reflector frame concept are adequate, with dramatic savings in weight and costs for the structure.

  17. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  18. Line group techniques in description of the structural phase transitions in some superconductors

    NASA Technical Reports Server (NTRS)

    Meszaros, CS.; Balint, A.; Bankuti, J.

    1995-01-01

    The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature SUperconductors. As an example, the material YBa2Cu3O(7-x) is discussed briefly.

  19. On-line failure detection and damping measurement of aerospace structures by random decrement signatures

    NASA Technical Reports Server (NTRS)

    Cole, H. A., Jr.

    1973-01-01

    Random decrement signatures of structures vibrating in a random environment are studied through use of computer-generated and experimental data. Statistical properties obtained indicate that these signatures are stable in form and scale and hence, should have wide application in one-line failure detection and damping measurement. On-line procedures are described and equations for estimating record-length requirements to obtain signatures of a prescribed precision are given.

  20. MAGNETIC STRUCTURE PRODUCING X- AND M-CLASS SOLAR FLARES IN SOLAR ACTIVE REGION 11158

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Shiota, D.

    2013-06-10

    We study the three-dimensional magnetic structure of the solar active region 11158, which produced one X-class and several M-class flares on 2011 February 13-16. We focus on the magnetic twist in four flare events, M6.6, X2.2, M1.0, and M1.1. The magnetic twist is estimated from the nonlinear force-free field extrapolated from the vector fields obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory using the magnetohydrodynamic relaxation method developed by Inoue et al. We found that strongly twisted lines ranging from half-turn to one-turn twists were built up just before the M6.6 and X2.2 flares and disappeared after that. Because most of the twists remaining after these flares were less than a half-turn twist, this result suggests that the buildup of magnetic twist over the half-turn twist is a key process in the production of large flares. On the other hand, even though these strong twists were also built up just before the M1.0 and M1.1 flares, most of them remained afterward. Careful topological analysis before the M1.0 and M1.1 flares shows that the strongly twisted lines were surrounded mostly by the weakly twisted lines formed in accordance with the clockwise motion of the positive sunspot, whose footpoints are rooted in strong magnetic flux regions. These results imply that these weakly twisted lines might suppress the activity of the strongly twisted lines in the last two M-class flares.

  1. Widely Extended [O III] 88μm Line Emission around the 30 Doradus Region Revealed with AKARI FIS-FTS

    NASA Astrophysics Data System (ADS)

    Kawada, Mitsunobu; Takahashi, Ai; Yasuda, Akiko; Kiriyama, Yuichi; Mori, Tatsuya; Mouri, Akio; Kaneda, Hidehiro; Okada, Yoko; Takahashi, Hidenori; Murakami, Noriko

    2011-08-01

    We present a distribution map of the far-infrared [O II] 88 μm line emission around the 30 Doradus (30 Dor) region in the Large Magellanic Cloud obtained with the Fourier Transform Spectrometer of the Far-Infrared Surveyor on board AKARI. The map reveals that the [O III] emission is widely distributed by more than 10' around the super star cluster R 136, implying that the 30 Dor region is affluent with interstellar radiation field that is hard enough to ionize O2+. The observed [O III] line intensities are as high as (1-2) × 10-6 W m-2 sr-1 on the peripheral regions 4'-5' away from the center of 30 Dor, which requires gas densities of 60-100 cm-3. However, the observed size of the distribution of the [O III] emission is too large to be explained by massive stars in the 30 Dor region enshrouded by clouds with a constant gas density of 102 cm-3. Therefore, the surrounding structure is likely to be highly clumpy. We also find a global correlation between the [O III] and the far-infrared continuum emission, suggesting that the gas and dust are well mixed in the highly ionized region where the dust survives in clumpy dense clouds shielded from energetic photons.

  2. Spring-Block Model Reveals Region-Like Structures

    PubMed Central

    Máté, Gabriell; Néda, Zoltán; Benedek, József

    2011-01-01

    A mechanical spring-block model is used for realizing an objective space partition of settlements from a geographic territory in region-like structures. The method is based on the relaxation-dynamics of the spring-block system and reveals in a hierarchical manner region-like entities at different spatial scales. It takes into account in an elegant manner both the spatiality of the elements and the connectivity relations among them. Spatiality is taken into account by using the geographic coordinates of the settlements, and by detecting the neighbors with the help of a Delaunay triangulation. Connectivity between neighboring settlements are quantified using a Pearson-like correlation for the relative variation of a relevant socio-economic parameter (population size, GDP, tax payed per inhabitant, etc.). The method is implemented in an interactive JAVA application and it is applied with success for an artificially generated society and for the case of USA, Hungary and Transylvania. PMID:21346819

  3. Fine structure of the magnetic field in active regions

    NASA Astrophysics Data System (ADS)

    Pustilnik, Lev; Beskrovnaya, Nina; Ikhsanov, Nazar

    High-resolution observations with SOHO, SDO, TRACE, HINODE suggest that the solar magnetic field in active regions has a complicated fine structure. There is a large number of thin magnetic arcs extended from the photosphere to corona with almost constant cross-section. We explore a possibility to model the complex of interacting arcs in terms of a dynamical percolating network. A transition of the system into flaring can be triggered by the flute instability of prominences and/or coronal condensations. We speculate around an assumption that the energy release in active regions is governed by the same scenario as dynamical current percolation through a random resistors network in which the saltatory conduction is controlled by a local current level.

  4. Spring-block model reveals region-like structures.

    PubMed

    Máté, Gabriell; Néda, Zoltán; Benedek, József

    2011-01-01

    A mechanical spring-block model is used for realizing an objective space partition of settlements from a geographic territory in region-like structures. The method is based on the relaxation-dynamics of the spring-block system and reveals in a hierarchical manner region-like entities at different spatial scales. It takes into account in an elegant manner both the spatiality of the elements and the connectivity relations among them. Spatiality is taken into account by using the geographic coordinates of the settlements, and by detecting the neighbors with the help of a Delaunay triangulation. Connectivity between neighboring settlements are quantified using a Pearson-like correlation for the relative variation of a relevant socio-economic parameter (population size, GDP, tax payed per inhabitant, etc.). The method is implemented in an interactive JAVA application and it is applied with success for an artificially generated society and for the case of USA, Hungary and Transylvania. PMID:21346819

  5. Spectropolarimetry of V854 Centauri at minimum light - Clues to the geometry of the dust and emission-line region

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.; Clayton, Geoffrey C.; Schulte-Ladbeck, Regina E.; Meade, Marilyn R.

    1992-01-01

    The RCB star V854 Cen is observed during a very deep decline (Delta m = 8.2) at the AAT. The continuum polarization is very high, ranging from 14 percent at 4200 A to about 4 percent at 6500 A. The polarization decreases across the emission lines, but the polarized flux remains constant. This indicates that the emission lines are unpolarized, so the emission probably arises in a region unobscured by dust. In such a deep minimum, the visible continuum flux is probably almost entirely scattered light, which explains its high polarization. The scattered flux may arise in the same clouds contributing to the observed IR flux if the albedo is low and the grains forward throwing. The emission-line spectrum itself is very unusual for an RCB star in decline, with strong C2 bands and Balmer lines.

  6. 40 CFR Appendix II to Part 310 - EPA Regions and NRC Telephone Lines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., RI, CT) (617) 723-8928 Region II (NJ, NY, PR, VI) (800) 424-8802 Region III (PA, DE, MD, DC, VA, WV) (215) 814-3255 Region IV (NC, SC, TN, MS, AL, GA, FL, KY) (404) 562-8700 Region V (OH, IN, IL, WI,...

  7. A new analysis of fine-structure constant measurements and modelling errors from quasar absorption lines

    NASA Astrophysics Data System (ADS)

    Wilczynska, Michael R.; Webb, John K.; King, Julian A.; Murphy, Michael T.; Bainbridge, Matthew B.; Flambaum, Victor V.

    2015-12-01

    We present an analysis of 23 absorption systems along the lines of sight towards 18 quasars in the redshift range of 0.4 ≤ zabs ≤ 2.3 observed on the Very Large Telescope (VLT) using the Ultraviolet and Visual Echelle Spectrograph (UVES). Considering both statistical and systematic error contributions we find a robust estimate of the weighted mean deviation of the fine-structure constant from its current, laboratory value of Δα/α = (0.22 ± 0.23) × 10-5, consistent with the dipole variation reported in Webb et al. and King et al. This paper also examines modelling methodologies and systematic effects. In particular, we focus on the consequences of fitting quasar absorption systems with too few absorbing components and of selectively fitting only the stronger components in an absorption complex. We show that using insufficient continuum regions around an absorption complex causes a significant increase in the scatter of a sample of Δα/α measurements, thus unnecessarily reducing the overall precision. We further show that fitting absorption systems with too few velocity components also results in a significant increase in the scatter of Δα/α measurements, and in addition causes Δα/α error estimates to be systematically underestimated. These results thus identify some of the potential pitfalls in analysis techniques and provide a guide for future analyses.

  8. Resonance line radiation originating from a region with well-developed plasma turbulence

    NASA Astrophysics Data System (ADS)

    Kleiman, E. B.; Koulinich, V. V.

    1994-10-01

    This study considers the influence of the effects of scattering due to Langmuir turbulent pulsations in the transfer of radiation in the spectral lines. The transfer equation of radiation in spectral lines, by taking into account scattering due to Langmuir turbulent pulsations, is written in a form convenient for application by numerical methods. The profile's intensity for a plane-parallel finite isothermal slab of a turbulent plasma in the case of complete redistribution of scattering by an atom are obtained. Numerical studies show that in this case with the broadening of spectral lines and the decreasing of self-reversal, the Langmuir frequency nupe is of the same order as the electronic Doppler width delta nuDe. Creation of the line satellites when nupe is larger than the line width delta nu is shown with the aid of numerical methods.

  9. A time-resolved study of the broad-line region in blazar 3C 454.3

    SciTech Connect

    Isler, Jedidah C.; Urry, C. M.; Coppi, P.; Bailyn, C.; Buxton, M.; Chatterjee, R.; Bonning, E. W.; Maraschi, L.

    2013-12-20

    We present multi-epoch optical observations of the blazar 3C 454.3 (z = 0.859) from 2008 August through 2011 December, using the Small and Medium Aperture Research Telescope System Consortium 1.5 m + RCSpectrograph and 1.3 m + ANDICAM in Cerro Tololo, Chile. The spectra reveal that the broad emission lines Mg II, Hβ, and Hγ are far less variable than the optical or γ-ray continuum. Although the γ-rays varied by a factor of 100 above the EGRET era flux, the lines generally vary by a factor of two or less. Smaller variations in the γ-ray flux did not produce significant variation in any of the observed emission lines. Therefore, to first order, the ionizing flux from the disk changes only slowly during large variations of the jet. However, two exceptions in the response of the broad emission lines are reported during the largest γ-ray flares in 2009 December and 2010 November, when significant deviations from the mean line flux in Hγ and Mg II were observed. Hγ showed a maximum 3σ and 4σ deviation in each flare, respectively, corresponding to a factor of 1.7 and 2.5 increase in flux. Mg II showed a 2σ deviation in both flares; no variation was detected in Hβ during either flare. These significant deviations from the mean line flux also coincide with 7 mm core ejections reported previously (Jorstad et al.). The correlation of the increased emission line flux with millimeter core ejections and γ-ray, optical, and ultraviolet flares suggests that the broad-line region extends beyond the γ-emitting region during the 2009 and 2010 flares.

  10. Alignment of the system's chief nursing officer: staff or direct line structure?

    PubMed

    Kerfoot, Karlene M; Luquire, Rosemary

    2012-01-01

    The role of the system chief nursing officer nationally and internationally has been traditionally structured as a staff model, a direct line model, or a hybrid that includes parts of each model. The choice of structure should be made after a thorough investigation of what outcomes the system wants this position to accomplish, developing the appropriate structure to achieve these outcomes, and then engaging a chief nursing officer with the skills indicated by the type of structure chosen. This article describes these 3 structures and the support infrastructure necessary for each model. PMID:22955221

  11. TagLine: Information Extraction for Semi-Structured Text in Medical Progress Notes

    PubMed Central

    Finch, Dezon K.; McCart, James A.; Luther, Stephen L.

    2014-01-01

    Statistical text mining and natural language processing have been shown to be effective for extracting useful information from medical documents. However, neither technique is effective at extracting the information stored in semi-structure text elements. A prototype system (TagLine) was developed to extract information from the semi-structured text using machine learning and a rule based annotator. Features for the learning machine were suggested by prior work, and by examining text, and selecting attributes that help distinguish classes of text lines. Classes were derived empirically from text and guided by an ontology developed by the VHA’s Consortium for Health Informatics Research (CHIR). Decision trees were evaluated for class predictions on 15,103 lines of text achieved an overall accuracy of 98.5 percent. The class labels applied to the lines were then used for annotating semi-structured text elements. TagLine achieved F-measure over 0.9 for each of the structures, which included tables, slots and fillers. PMID:25954358

  12. TagLine: Information Extraction for Semi-Structured Text in Medical Progress Notes.

    PubMed

    Finch, Dezon K; McCart, James A; Luther, Stephen L

    2014-01-01

    Statistical text mining and natural language processing have been shown to be effective for extracting useful information from medical documents. However, neither technique is effective at extracting the information stored in semi-structure text elements. A prototype system (TagLine) was developed to extract information from the semi-structured text using machine learning and a rule based annotator. Features for the learning machine were suggested by prior work, and by examining text, and selecting attributes that help distinguish classes of text lines. Classes were derived empirically from text and guided by an ontology developed by the VHA's Consortium for Health Informatics Research (CHIR). Decision trees were evaluated for class predictions on 15,103 lines of text achieved an overall accuracy of 98.5 percent. The class labels applied to the lines were then used for annotating semi-structured text elements. TagLine achieved F-measure over 0.9 for each of the structures, which included tables, slots and fillers. PMID:25954358

  13. The Spin Structure of the Proton in the Resonance Region

    SciTech Connect

    Renee Fatemi

    2002-01-01

    Inclusive double spin asymmetries have been measured for {rvec p}({rvec e},e{prime}) using the CLAS detector and a polarized {sup 15}NH{sub 3} target at Jefferson Lab in 1998. The virtual photon asymmetry A{sub 1}, the longitudinal spin structure function, g{sub 1} (x, Q{sup 2}), and the first moment {Gamma}{sub 1}{sup p}, have been extracted for a Q{sup 2} range of 0.15-2.0 GeV{sup 2}. These results provide insight into the low Q{sup 2} evolution of spin dependent asymmetries and structure functions as well as the transition of {Gamma}{sub 1}{sup p} from the photon point, where the Gerasimov, Drell and Hearn Sum Rule is expected to be satisfied, to the deep inelastic region.

  14. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, Knut; Moen, Joran; Pedersen, Arne

    2010-05-01

    Quasistatic electric field structures in the vicinity of the cusp have been studied using Cluster data. There are two categories of electric potential structures, S-shaped and U-shaped. In previous studies in the nightside auroral region, the S-shaped potential was uniquely related to the boundary transition between low density and high density plasma regimes, leading to the conclusion that the electric field profile depends on whether the plasma populations on each side of the boundary can support intense field-aligned and Pedersen currents. In this study in the dayside cusp this is not the case, and a different explanation has to be sought. Most electric field structures are associated with the start of the cusp ion dispersion or with injection signatures within the cusp, and the field-aligned currents associated with these structures are found to be consistent with the cusp currents expected for the IMF By polarity at the time. This indicates that the electric field structures are generated by the cusp current system, or modified by the cusp current system to be consistent with the required currents. Furthermore, we provide firm evidence for the dayside Region 1 current to be located on open field lines, which have been postulated but to our knowledge heretofore not experimentally verified.

  15. Shallow velocity structure in the Imperial Valley region of Southern California

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.

    2013-12-01

    The Imperial Valley, located south of the Salton Sea of Southern California, contains a pull-apart basin formed by the on-going oblique extension between the southernmost San Andreas fault and the northern Imperial fault. In this very seismically active area, the earthquakes tend to occur in the form of seismic swarms (e.g. events in August 2012), often related to the geothermal systems in the valley. Previous active seismic studies (e.g. Fuis et al. 1979, Parsons and McCarthy 1996) have revealed major crustal structures including the shallow basin structures in the valley and surroundings, based primarily on 2D models. A better 3D structure model is still awaiting construction to provide improved information on the location of earthquakes, faults, fault-zone properties, and the evolution of the basin. The 2011 Salton Seismic Imaging Project (SSIP) deployed a seismic array at 2-km grid spacing in the central northern part of the valley (Line 11), and three longer seismic lines across the valley with active sources (Lines 1, 2, and 3). Here we will present the shallow (to 8-km depth) 3D structure in this region obtained by modeling the traveltimes of the first arrivals in these recordings and from earlier experiments. We have processed arrivals from all shots at all receivers, from the SSIP dataset, in the region south of the Salton Sea. Relevant data from the 1979 Imperial Valley experiment has also been used. The 3D structure of the valley was inverted from the surface to 8-km depth using the technique of Hole (1992). On average, the velocity increases rapidly from ~2 km/s at the surface to 5.6 km/s at 5 km depth, a velocity range corresponding to the unmetamorphosed sediments (Fuis et al. 1984). Below 5-km depth, velocity increases slowly to 6.3 km/s at 8-km depth, a velocity range corresponding to the metasedimentary rocks, or 'basement' (Fuis et al. 1984). In depth slices, geothermal areas are characterized by high velocity zones. Specifically, we observe a

  16. Line parameters including temperature dependences of air- and self-broadened line shapes of 12C16O2: 2.06-μm region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Payne, Vivienne H.; Drouin, Brian J.; Yu, Shanshan; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Gamache, Robert R.

    2016-08-01

    This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-μm spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were ∼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014.

  17. Temporal and Spatial Characteristics of Acceleration Structures in the Auroral Return Current Region

    NASA Astrophysics Data System (ADS)

    Marklund, G. T.; Karlsson, T.; Figueiredo, S.; Johansson, T.; Buchert, S.

    2003-12-01

    Temporal and spatial characteristics of high-altitude auroral electric fields, and, in particular, those which are related to quasi-static auroral electric potential structures, are discussed using Cluster multi-point observations from auroral field line crossings at geocentric distances of about 5 RE. Intense and narrow-structured diverging electric fields, associated with upward accelerated electrons, being fingerprints of quasi-static acceleration structures in the auroral return current region, appear more frequently at these altitudes than their counterpart, converging electric fields, on auroral field lines, for reasons not yet understood. The time needed for evacuating ionospheric electrons at the ionospheric end of the return current flux tube, which depend on the field-aligned current density, represent one characteristic time scale for the accelerating electric fields. We present results from four Cluster encounters with such acceleration structures and how these and their associated field-aligned current and electron distributions, evolve on the different time scales given by different inter-spacecraft separation distances.

  18. Automated measurement of epidermal thickness from optical coherence tomography images using line region growing

    NASA Astrophysics Data System (ADS)

    Delacruz, Jomer; Weissman, Jesse; Gossage, Kirk

    2010-02-01

    Optical Coherence Tomography (OCT) is a non-invasive imaging modality that acquires cross sectional images of tissue in-vivo. It accelerates skin diagnosis by eliminating invasive biopsy and laborious histology in the process. Dermatologists have widely used it for looking at morphology of skin diseases such as psoriasis, dermatitis, basal cell carcinoma etc. Skin scientists have also successfully used it for looking at differences in epidermal thickness and its underlying structure with respect to age, body sites, ethnicity, gender, and other related factors. Similar to other in-vivo imaging systems, OCT images suffer from a high degree of speckle and noise content, which hinders examination of tissue structures. Most of the previous work in OCT segmentation of skin was done manually. This compromised the quality of the results by limiting the analyses to a few frames per area. In this paper, we discuss a region growing method for automatic identification of the upper and lower boundaries of the epidermis in living human skin tissue. This image analysis method utilizes images obtained from a frequency-domain OCT. This system is high-resolution and high-speed, and thus capable of capturing volumetric images of the skin in short time. The three-dimensional (3D) data provides additional information that is used in the segmentation process to help compensate for the inherent noise in the images. This method not only provides a better estimation of the epidermal thickness, but also generates a 3D surface map of the epidermal-dermal junction, from which underlying topography can be visualized and further quantified.

  19. Molecular hydrogen line ratios in four regions of shock-excited gas

    NASA Technical Reports Server (NTRS)

    Burton, M. G.; Brand, P. W. J. L.; Geballe, T. R.; Webster, A. S.

    1989-01-01

    Five emission lines of molecular hydrogen, with wavelengths in the ranges of 2.10-2.25 and 3.80-3.85 microns, have been observed in four objects of different type in which the line emission is believed to be excited by shocks. The relative intensities of the lines 1 - 0 S(1):1 - 0 S(O):2 - 1 S(1) are approximately 10.5:2.5:1.0 in all four objects. The 0 - 0 S(13):1 - 0 O(7) line ratio, however, varies from 1.05 in OMC-1 to about 2.3 in the Herbig-Haro object HH 7. The excitation temperature derived from the S(13) and O(7) lines is higher than that derived from the 1 - 0 and 2 - 1 S(1) lines in all four objects, so the shocked gas in these objects cannot be characterized by a single temperature. The constancy of the (1-0)/(2-1) S(1) line ratio between sources suggests that the post-shock gas is 'thermalized' in each source. The S(13)/O(7) ratio is particularly sensitive to the density and temperature conditions in the gas.

  20. Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines.

    PubMed

    Ritter, Anett; Voedisch, Bernd; Wienberg, Johannes; Wilms, Burkhard; Geisse, Sabine; Jostock, Thomas; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for large scale production of recombinant biopharmaceuticals. Although these cells have been extensively used, a demand to further increase the performance, for example, to facilitate the process of clone selection to isolate the highest producing cell lines that maintain stability of production over time is still existing. We compared gene expression profiles of high versus low producing CHO clones to identify regulated genes which can be used as biomarkers during clone selection or for cell line engineering. We present evidence that increased production rates and cell line stability are correlated with the loss of the telomeric region of the chromosome 8. A new parental CHO cell line lacking this region was generated and its capability for protein production was assessed. The average volumetric productivity of cells after gene transfer and selection was found to be several fold improved, facilitating the supply of early drug substance material to determine for example, quality. In addition, significantly more cell clones with a higher average productivity and higher protein production stability were obtained with the new host cell line after single cell cloning. This allows reduced efforts in single cell sorting, screening of fewer clones and raises the opportunity to circumvent time and labor-intensive stability studies. Biotechnol. Bioeng. 2016;113: 1084-1093. © 2015 Wiley Periodicals, Inc. PMID:26523402

  1. Ion-scale structure in Mercury's magnetopause reconnection diffusion region

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-06-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use ~150 ms measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of ~0.3-3 mV/m reconnection electric fields separated by ~5-10 s, resulting in average and peak normalized dayside reconnection rates of ~0.02 and ~0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  2. Nuclear structure in the neutron-rich doubly magic sup 78 Ni region

    SciTech Connect

    Hill, J.C.; Wohn, F.K.; Winger, J.A.; Warburton, E.K.; Gill, R.L.; Schuhmann, R.B.; Brookhaven National Lab., Upton, NY; Clark Univ., Worcester, MA )

    1989-01-01

    The magic numbers Z=28 and N=50 imply that very neutron-rich {sup 78}Ni, which has not yet been observed, is doubly magic. The {sup 78}Ni region was investigated by studying the N=50 isotones and neutron-rich Zn isotopes. Results on the level structure of {sup 83}As, {sup 74}Zn, and {sup 76}Zn populated in the decays of {sup 83}Ge, {sup 74}Cu, and {sup 76}Cu are presented. The parent nuclides were produced and mass separated using the TRISTAN facility on-line to the High-Flux Beam Reactor at Brookhaven. The systematics of the N=50 isotones and even-A Zn isotopes are discussed and compared with shell-model calculations involving active nucleons outside of a {sup 78}Ni and {sup 66}Ni core, respectively. The extent to which the {sup 78}Ni region can be considered doubly magic is assessed. 43 refs., 7 figs.

  3. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites.

    PubMed Central

    Liu, Kejun; Goodman, Major; Muse, Spencer; Smith, J Stephen; Buckler, Ed; Doebley, John

    2003-01-01

    Two hundred and sixty maize inbred lines, representative of the genetic diversity among essentially all public lines of importance to temperate breeding and many important tropical and subtropical lines, were assayed for polymorphism at 94 microsatellite loci. The 2039 alleles identified served as raw data for estimating genetic structure and diversity. A model-based clustering analysis placed the inbred lines in five clusters that correspond to major breeding groups plus a set of lines showing evidence of mixed origins. A "phylogenetic" tree was constructed to further assess the genetic structure of maize inbreds, showing good agreement with the pedigree information and the cluster analysis. Tropical and subtropical inbreds possess a greater number of alleles and greater gene diversity than their temperate counterparts. The temperate Stiff Stalk lines are on average the most divergent from all other inbred groups. Comparison of diversity in equivalent samples of inbreds and open-pollinated landraces revealed that maize inbreds capture <80% of the alleles in the landraces, suggesting that landraces can provide additional genetic diversity for maize breeding. The contributions of four different segments of the landrace gene pool to each inbred group's gene pool were estimated using a novel likelihood-based model. The estimates are largely consistent with known histories of the inbreds and indicate that tropical highland germplasm is poorly represented in maize inbreds. Core sets of inbreds that capture maximal allelic richness were defined. These or similar core sets can be used for a variety of genetic applications in maize. PMID:14704191

  4. Non-LTE modelling of prominence fine structures using hydrogen Lyman-line profiles

    NASA Astrophysics Data System (ADS)

    Schwartz, P.; Gunár, S.; Curdt, W.

    2015-05-01

    Aims: We perform a detailed statistical analysis of the spectral Lyman-line observations of the quiescent prominence observed on May 18, 2005. Methods: We used a profile-to-profile comparison of the synthetic Lyman spectra obtained by 2D single-thread prominence fine-structure model as a starting point for a full statistical analysis of the observed Lyman spectra. We employed 2D multi-thread fine-structure models with random positions and line-of-sight velocities of each thread to obtain a statistically significant set of synthetic Lyman-line profiles. We used for the first time multi-thread models composed of non-identical threads and viewed at line-of-sight angles different from perpendicular to the magnetic field. Results: We investigated the plasma properties of the prominence observed with the SoHO/SUMER spectrograph on May 18, 2005 by comparing the histograms of three statistical parameters characterizing the properties of the synthetic and observed line profiles. In this way, the integrated intensity, Lyman decrement ratio, and the ratio of intensity at the central reversal to the average intensity of peaks provided insight into the column mass and the central temperature of the prominence fine structures.

  5. Radio Induced Fluorescence (RIF) Imaging Of E-region Quasi-periodic Structures

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.

    The horizontal structure of sporadic-E layers has been imaged using artificial airglow excited by high power radio waves. In January 1998, the HF facility at Arecibo, Puerto Rico beamed a 80 MW signal upward at 3.175 MHz. The beam reflected in the E- region near 120 km altitude to excite green-line emissions at 557.7 nm. Ground based images showed quasi-periodic structures with periods near 2 and 10 km. These struc- tures been interpreted as being produced by Kelvin-Helmholtz (K-H) instabilities in the neutral atmosphere. The excitation of radio induced fluorescence (RIF) emissions has been studied with both one-dimensional and two-dimensional computer simulations of the conversion of electromagnetic waves into electron plasma waves. The steep gradients on the bottomside of the E-layer provide conditions for efficient mode conversion. The re- sulting Langmuir waves accelerate electrons to energies between 2 and 10 eV. These suprathermal electrons collide with oxygen atoms to produce green-line emissions. The optical glow only occurs in the parts of the E-region where the plamsa is dense enough to reflect the 3.175 MHz radio waves. Results of the E-layer observations using the RIF technique have shown horizontal stuctures that are most likely produced by the K-H instability. A numerical model has been generated to demonstrate the effects of neutral wind shears on the E-region structures. The model includes the effects of both speed-shear and turning shear dy- namics. The results of the numerical model are used to suggest future research using high-power radio wave to study the ion dynamics of the lower thermosphere.

  6. Structure of various KL{sup 1} x-ray satellite lines of heavy atoms

    SciTech Connect

    Polasik, Marek; Lewandowska-Robak, Maja

    2004-11-01

    Multiconfiguration Dirac-Fock calculations with the inclusion of the transverse (Breit) interaction and QED corrections have been carried out for Pd, Sn, Tb, Ta, Pb, and Th in order to obtain positions and intensities of various electric dipole, electric quadrupole, and magnetic dipole K x-ray diagram lines and of their KL{sup 1} satellites. Theoretically constructed stick spectra have been presented together with synthesized spectra (the sum of the Lorentzian natural line shapes) for each studied element. Taking into account the existence of an L-shell hole in the 2s or 2p subshell, the effect of additional L-shell ionization on the shapes and structure of the K x-ray spectra has been examined. It has been observed that generally with increasing atomic number Z the shapes of particular satellite line groups tend to become smoother and to differ less from the shapes of appropriate diagram lines. Relations between the values of energy shifts of various satellite lines for each element and the changes of these relations with Z have also been studied. Additionally, the relations between the intensities of different diagram lines for each element have been systematically analyzed, likewise the changes with Z of the role of particular diagram lines. This study can be helpful in reliable and quantitative interpretation of many experimental K x-ray spectra of Pd, Sn, Tb, Ta, Pb, and Th induced in collisions with various projectiles.

  7. A New Contact Line Structure for Surfactant-Driven Superspreading Phenomenon

    NASA Astrophysics Data System (ADS)

    Wei, Hsien-Hung

    2015-11-01

    We propose a new contact line structure capable of explaining the curious linear spreading law observed in surfactant-driven superspreading. We show that a tiny surfactant leak from the air-liquid interface to the substrate suffices to promote the motion of the contact line. This leak leads to a microscopic surfactant-depletion zone on the interface in the vicinity of the contact line. Together with pressure buildup by the Marangoni shearing, a distinctive capillary nose is then developed over the zone to drive the contact line in a surfactant-free manner at a constant wetting speed, which explains the linear superspreading law. Our study not only captures many features seen in previous experiments and simulations, but also provides renewed insights into the superspreading phenomenon.

  8. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    SciTech Connect

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.

  9. Two Channel Dielectric-Lined Rectangular High Transformer Ratio Accelerator Structure Experiment

    SciTech Connect

    Shchelkunov, S. V.; LaPointe, M. A.; Hirshfield, J. L.; Marshall, T. C.; Sotnikov, G.; Gai, Wei; Conde, M.; Power, J.; Mihalcea, D.

    2010-11-04

    Current status of a two-channel cm-scale rectangular dielectric lined wakefield accelerator structure is described. This structure is installed at the Argonne Wakefield Accelerator facility (AWA), and is presently being evaluated. The device has a transformer ratio of {approx}12.5:1. When driven by a {approx}50 nC single drive bunch it is expected to obtain {approx}6 MV/m acceleration gradient. Related issues are discussed.

  10. This aerial photograph displays solid propellant line structures E34 through ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This aerial photograph displays solid propellant line structures E-34 through E-40. Original 4 x 5 in negative housed in the JPL Archives, Pasadena, California. (JPL negative no. 384-6572A, 24 May 1967) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  11. A new approach to plane-sweep overlay: topological structuring and line-segment classification

    USGS Publications Warehouse

    van Roessel, Jan W.

    1991-01-01

    An integrated approach to spatial overlay was developed with the objective of creating a single function that can perform most of the tasks now assigned to discrete functions in current systems. Two important components of this system are a unique method for topological structuring, and a method for attribute propagation and line-segment classification. -Author

  12. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    SciTech Connect

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  13. Crustal structure of the south-central Andes Cordillera and backarc region from regional waveform modelling

    NASA Astrophysics Data System (ADS)

    Alvarado, P.; Beck, S.; Zandt, G.

    2007-08-01

    We investigate the crustal structure in the Andes Cordillera and its backarc region using regional broadband waveforms from crustal earthquakes. We consider seismic waveforms recorded at regional distances by the CHile-ARgentina Geophysical Experiment (CHARGE) during 2000-2002 and utilize previous seismic moment tensor inversion results. For each single station-earthquake pair, we fixed the source parameters and performed forward waveform modelling using ray paths that sample the crust of the highest elevation Cordillera and the accreted terranes in the backarc region. Our investigation indicates that synthetic seismograms for our earthquake-station geometry are most sensitive to crustal parameters and less sensitive to mantle parameters. We performed a grid search around crustal thickness, P-wave seismic velocity (Vp) and P- to S-wave seismic velocity ratio (Vp/Vs), fixing mantle parameters. We evaluated this waveform analysis by estimating an average correlation coefficient between observed and synthetic data over the three broadband components. We identified all acceptable crustal models that correspond to high correlation coefficients that provide best overall seismogram fits for the data and synthetic waveforms filtered mainly between 10 and 80 s. Our results indicate along strike variations in the crustal structure for the north-south high Cordillera with higher P-wave velocity and thickness in the northern segment (north of 33°S), and persistently high Vp/Vs ratio (>1.85) in both segments. This is consistent with a colder mafic composition for the northern segment and a region of crustal thickening above the flat slab region. In contrast, the results for the current volcanic arc (south of 33°S) agree with a warmer crust consistent with partial melt related to Quaternary volcanism presumably of an intermediate to mafic composition. A distinctive feature in the backarc region is the marked contrast between the seismic properties of the Cuyania and Pampia

  14. Magnetic Structure of Sites of Braiding in Hi-C Active Region

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood. To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.

  15. Nanoscale structure and mechanical behavior of growth lines in shell of abalone Haliotis gigantea.

    PubMed

    Sumitomo, Taro; Kakisawa, Hideki; Kagawa, Yutaka

    2011-04-01

    In the natural world, bottom-up hierarchical construction of complex structures results in materials with remarkable properties. A well known example is the nacre of mollusk shells, commonly called "mother of pearl", whose excellent strength and toughness has been the subject of research for many decades. A significant discovery has been the presence of periodic layers called "growth lines". These are thin distinct layers within the bulk of the shell which form periodically, with their structure affected by environmental changes. Studies of their formation and behavior offer valuable insight into the architecture of seashells. In this work, the structure and mechanical behavior of growth lines in shells of abalone Haliotis gigantea were investigated using electron microscopy and nanoindentation. Growth lines form directly out of nacre into layers of blocks and irregular particles. In comparison to nacre, they have basic structures, form rapidly, and are harder, which suggest that they serve a protective role during lifecycle transitions. This exemplifies how natural structures are able to closely control growth architecture in order to form different structures for different functions, all from the same base materials. PMID:21232604

  16. Crustal structure of the Carpathian-Pannonian region from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Grecu, Bogdan; Stuart, Graham; Houseman, Gregory; Hegedüs, Endre; South Carpathian Project Working Group

    2013-11-01

    We use ambient noise tomography to investigate the crust and uppermost mantle structure beneath the Carpathian-Pannonian region of Central Europe. Over 7500 Rayleigh wave empirical Green's functions are derived from interstation cross-correlations of vertical component ambient seismic noise recordings (2005-2011) using a temporary network of 54 stations deployed during the South Carpathian Project (2009-2011), 56 temporary stations deployed in the Carpathian Basins Project (2005-2007) and 100 permanent and regional broad-band stations. Rayleigh wave group velocity dispersion curves (4-40 s) are determined using the multiple-filter analysis technique. Group velocity maps are computed on a grid of 0.2° × 0.2° from a non-linear 2-D tomographic inversion using the subspace method. We then inverted the group velocity maps for the 3-D shear wave velocity structure of the crust and uppermost mantle beneath the region. Our shear wave velocity model provides a uniquely complete and relatively high-resolution view of the crustal structure in the Carpathian-Pannonian region, which in general is validated by comparison with previous studies using other methods to probe the crustal structure. At shallow depths (<10 km) we find relatively high velocities below where basement is exposed (e.g. Bohemian Massif, Eastern Alps, most of Carpathians, Apuseni Mountains and Trans-Danubian Ranges) whereas sedimentary areas (e.g. Vienna, Pannonian, Transylvanian and Foçsani Basins) are associated with low velocities of well defined depth extent. The mid to lower crust (16-34 km) below the Mid-Hungarian Line is associated with a broad NE-SW trending relatively fast anomaly, flanked to the NW by an elongated low-velocity region beneath the Trans-Danubian Ranges. In the lowermost crust and uppermost mantle (between 30 and 40 km), relatively low velocities are observed beneath the Bohemian Massif and Eastern Alps but the most striking features are the broad low velocity regions beneath the

  17. Lyman-alpha line as a solar activity index for calculations of solar spectrum in the EUV region

    NASA Astrophysics Data System (ADS)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Katyushina, Valeria; Woods, Thomas

    It is investigated a possibility of retrieval of solar spectrum data using intensity observational data of the only solar spectral line L (Hydrogen Lyman-alpha, 121.6 nm).Using as an example spectra obtained by SEE instruments on TIMED satellite, it was shown, that both for lines and for continuum in the spectral range 27-105 nm, which is essential for ionization processes in the ionosphere, a correlation between their intensities and L was high. Therefore it becomes possible to use L measurements data as a natural solar activity index for calculations of EUV solar emission spectrum for solving aeronomical problems. It is noticed, that EUV model, obtained with using SEE data, does not allow to calculate correctly critical frequencies of ionospheric E-layer owing to low intensities of lines 97.7 and 102.6 nm, which produce the main part of ionization in ionospheric E-region.

  18. VLA H53α and H92α line observations of the central region of NGC 253

    NASA Astrophysics Data System (ADS)

    Rodriguez-Rico, C. A.; Goss, W. M.; Zhao, J.-H.; Gomez, Y.; Anantharamaiah, K. R.

    2006-06-01

    We present new Very Large Array (VLA) observations toward NGC 253 of the recombination line H53α (43 GHz) at an angular resolution of 1.5" × 1.0". The free-free emission at 43 GHz is estimated to be ˜ 100 mJy, implying a star formation rate of ˜ 1.3 M⊙ yr-1 in the nuclear region of this starburst galaxy. A reanalysis is made for previously reported H92α observations carried out with angular resolution of 1.5" × 1.5" (Anantharamaiah & Goss) and 0." × 0.21" (Mohan et al.). Based on the line and continuum emission models used for the 1.5" × 1.0" angular resolution observations, the RRLs H53α and H92α are tracers of the high-density ( ˜ 105 cm-3) and low-density ( ˜ 103 cm-3) thermally ionized gas components in NGC 253, respectively. The velocity fields observed in the H53α and H92α lines (1.5" × 1.0") are consistent. The velocity gradient in the central ˜ 18 pc of the NE component, as observed in both the H53α and H92α lines, is in the opposite direction to the velocity gradient determined from the CO observations. The enclosed virial mass, as deduced from the H53α velocity gradient over the NE component, is ˜ 5 × 106 M⊙ in the central ˜ 18 pc region. The H92α line observations at high angular resolution (⪉ 0.36" × 0.21") reveal a larger velocity gradient, along a P.A. ˜ 45o on the NE component, of ˜ 110 km s-1 arcsec-1. The dynamical mass estimated using the high angular resolution H92α data ( ˜ 7 × 106 M⊙) supports the existence of an accreted massive object in the nuclear region of NGC 253.

  19. THE HANLE EFFECT OF THE HYDROGEN Ly{alpha} LINE FOR PROBING THE MAGNETISM OF THE SOLAR TRANSITION REGION

    SciTech Connect

    Trujillo Bueno, Javier; Stepan, JirI; Casini, Roberto E-mail: stepan@iac.es

    2011-09-01

    We present some theoretical predictions concerning the amplitude and magnetic sensitivity of the linear-polarization signals produced by scattering processes in the hydrogen Ly{alpha} line of the solar transition region. To this end, we have calculated the atomic-level polarization (population imbalances and quantum coherences) induced by anisotropic radiation pumping in semiempirical and hydrodynamical models of the solar atmosphere, taking into account radiative transfer and the Hanle effect caused by the presence of organized and random magnetic fields. The line-center amplitudes of the emergent linear-polarization signals are found to vary typically between 0.1% and 1%, depending on the scattering geometry and the strength and orientation of the magnetic field. The results shown here encourage the development of UV polarimeters for sounding rockets and space telescopes with the aim of opening up a diagnostic window for magnetic field measurements in the upper chromosphere and transition region of the Sun.

  20. Regional and local geologic structure of the Momotombo field, Nicaragua

    SciTech Connect

    Goldsmith, L.H.

    1980-09-01

    The regional geologic-tectonic setting of northwestern Nicaragua is the result of subduction. Differential plate margin movement and segmentation formed a deep rift paralleling the Middle American Trench. Deep-seated shear faults provided access to sublithospheric magmas to create the Nicaraguan volcanic chain. Volcan Momotombo is the southernmost volcano of the Marabios Range of northern Nicaragua. It hosts a proven geothermal resource known as the Momotombo field, located within a small graben structure and measuring less than one square kilometer. This geothermally productive area appears not to be a geothermal reservoir, but rather part of a thermal convection system. Wells in the central and eastern part of the field have diminished in output and temperature. The presence of a temperature inversion zone, clearly distinguishable in the eastern end of the field, indicates that no conductive heating of the productive zone is taking place.

  1. Interpretation of subsurface structure using gravity data from region of Appalachian ultradeep hole

    SciTech Connect

    Williams, R.T.; Favret, P.; Fabbri, L.; Chavez-Perez, S.

    1986-05-01

    More than 5000 new gravity measurements have been made over an area of 7500 km/sup 2/ in the region of the proposed ultradeep core hole in the southern Appalachians (ADCOH). Data were obtained mostly at surveyed elevations at approximately 0.5-km intervals along highways, and county and US Forest Service roads in the study area. The data have been reduced to simple Bouguer anomaly values using a standard crustal density of 2.67 g/cc and the International Gravity Formula of 1967. Simple Bouguer anomaly values range from about -10 to -80 mgal within the study area. Profiles crossing the outcrop of the Brevard fault zone (BFZ) at different locations reveal a characteristic gravity signature, with a decrease in gravity of more than 1.5 mgal. A profile along the route of ADCOH seismic line 3, located along US Highway 64 west of Hayesville, North Carolina, crosses a gravity high with an amplitude of more than 50 mgal. A contour map of simple Bouguer anomaly values reveals a linear gravity high of about 4 mgal, trending about N10/sup 0/E, that crosses ADCOH seismic line 1 northwest of Westminster, South Carolina, and seismic line 3 at its intersection with the BFZ. This anomaly correlates with a family of basement faults having more than 0.5 km of throw, seen on both seismic lines 1 and 3, and is evidence that these faults are oblique to both the trend of surface structure and the direction of the seismic profiles. Low gravity values are observed near the Shooting Creek window and Tallulah Falls dome, indicating that these structures may be cored by low-density, possibly sedimentary rocks.

  2. Heterogeneous structure in and around the source region of hazardous inland earthquake

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Iidaka, T.; Iwasaki, T.; Tsumura, N.

    2014-12-01

    A detailed crustal structure and deep geometry of the active fault provide important information to constrain the process of earthquake occurrence. Dense seismic array observation is one of the most effective techniques to reveal inhomogeneous structure. Recently, several dense seismic array observations have been conducted across the active fault in Japan: for example, Tachikawa fault located near the Tokyo metropolitan area, and the Neodani fault located in the central Japan. Previous studies indicated that the heterogeneous lower crust should be the key to understand the mechanism of earthquake occurrence (e.g., Iio et al., 2002). In November of 2012, a highly dense seismic experiment was conducted in and around the source region of the 1891 Nobi-earthquake (M 8.0), central Japan. The transect line ran from Fukuchiyama-city to Ina-city over a 260 km profile, on which 8 explosives were fired. We deployed 1,793 off-line recorders to record the explosive seismic signal. The collected data have high signal-to-noise ratios, from which we can easily recognize not only the first arrival phases but also latter phages. Two-dimensional (2-D) P-wave velocity structure beneath the survey line was derived by ray tracing method. Remarkable characteristics of the 2-D velocity structure are relatively low-velocity middle and lower crusts (Vp=5.9-6.3 km/s) and change in crustal thickness beneath the central part of the profile (Shiga and Gifu Prefecture). This low velocity region involves the deeper extension of the Neodani fault. The 1891 Nobi-earthquake was associated with rupture of the Neodani fault. The subducting Philippine Sea plate (PHS) is in contact with the low-velocity lower island-arc crust. The contact zone between the base of the low-velocity lower crust and the top of the PHS is located at a depth of about 28km. The island arc Moho is about 33 km deep beneath the eastern part of the profile (Gifu and Nagano Prefecture). Several reflectors can be recognized within

  3. The region of formation of the ultraviolet high temperature resonance lines in the eclipsing binary Beta Persei (Algol)

    NASA Technical Reports Server (NTRS)

    Brandi, E.; Garcia, L. G.; Kondo, Y.; Sahade, J.

    1989-01-01

    A new series of IUE observations of Beta Persei has shown that the high temperature resonance lines of Si IV and C IV arise in a region that surrounds the brighter, early-type component of the system. The continuum spectrum corresponds to that of a B8V object, and the value of E(B-V) that yielded the best match between the two IUE regions was 0.06, the value quoted for Beta Per in Jamar et al.'s (1976) Catalog.

  4. Crustal structure of the Columbia Plateau region, Washington

    SciTech Connect

    Rohay, A.C.; Malone, S.D.

    1983-04-01

    Refraction data from blasts recorded in eastern Washington between 1980 and 1983 are used to determine the upper crustal structure of the Columbia Plateau. Fourteen blast sites with over 25 individual shots were recorded on the University of Washington regional seismic network made up of 36 short-period seismograph stations recorded digitally at 100 samples/s. Additional data were obtained from a 12-station dense digital network in the central plateau operated by the Rockwell Hanford Operations Basalt Waste Isolation Project. Major crustal refractors of 5.1 and 6.05 km/s are observed at distances of 15 to 50 km and 50 to 120 km, respectively. A time-term method is used to model layer thicknesses below the stations for each major refractor. A statistical source-receiver separation operation is used to handle the inherent nonindependence of the data. Constraints are used to fix the mean values of the time terms. Ray tracing through two-dimensional velocity structures is used to augment the interpretation of the time-term solutions for areas where the lateral velocity changes are large. Station delays for the 5.1-km/s layer show a good correlation with elevation and surficial geology. The areal extent of the 5.1-km/s layer roughly coincides with the Columbia River basalts. Time terms from the 6.05-km/s layer indicate a nearly uniform depth of 1 to 2 km in the northern plateau. Time terms in the central plateau indicate a depth to the 6.05-km/s layer of over 8 km, and a systematic thinning away from its center. Magnetotelluric studies indicate that the basalts are probably no thicker than 5 km in the central Columbia Plateau region.

  5. The structure of the static corona and transition region

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Noci, G.

    1986-01-01

    Static models of coronal loops are investigated. For loops that are low-lying with heights above the chromosphere below about 5000 km, it is shown that a new type of solution appears to the static equations, in addition to the well-known coronal loop solution. The new solution is characterized by a maximum plasma temperature less than about 100,000 K. The structure and properties of these cool solutions are discussed. The differential emission measure Q(T) expected for a magnetic arcade, which must naturally contain both hot and cool loops, is calculated. It is shown that the cool loops have a dramatic effect on the form of Q(T) in the lower transition region. In particular, they can account for the observed rise in Q at low T, which has long been thought to be incompatible with the static-loop model. Finally, the implications of the cool loops on other observations of both the solar and stellar coronae and transition regions are discussed.

  6. Structure and dynamics of Saturn's outer magnetosphere and boundary regions

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Lepping, R. P.; Ness, N. F.

    1983-01-01

    In 1979-1981, the three USA spacecraft Pioneer 11 and Voyagers 1 and 2 discovered and explored the magnetosphere of Saturn to the limited extent possible on flyby trajectories. Considerable variation in the locations of the bow shock (BS) and magnetopause (MP) surfaces were observed in association with variable solar wind conditions and, during the Voyager 2 encounter, possible immersion in Jupiter's distant magnetic tail. The limited number of BS and MP crossings were concentrated near the subsolar region and the dawn terminator, and that fact, together with the temporal variability, makes it difficult to assess the three dimensional shape of the sunward magnetospheric boundary. The combined BS and MP crossing positions from the three spacecraft yield an average BS-to-MP stagnation point distance ratio of 1.29 +/- 0.10. This is near the 1.33 value for the Earth's magnetosphere, implying a similar sunward shape at Saturn. Study of the structure and dynamical behavior of the outer magnetosphere, both in the sunward hemisphere and the magnetotail region using combined plasma and magnetic field data, suggest that Saturn's magnetosphere is more similar to that of Earth than that of Jupiter.

  7. BOND: Bayesian Oxygen and Nitrogen abundance Determinations in giant H II regions using strong and semistrong lines

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Stasińska, G.; Morisset, C.; Cid Fernandes, R.

    2016-08-01

    We present the Bayesian oxygen and nitrogen abundance determinations (BOND) method. BOND is a Bayesian code (available at: http://bond.ufsc.br) to simultaneously derive oxygen and nitrogen abundances in giant H II regions. It compares observed emission lines to a grid of photoionization models without assuming any relation between O/H and N/O. Our grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Varying starburst ages accounts for variations in the ionizing radiation field hardness, which arise due to the ageing of H II regions or the stochastic sampling of the initial mass function. All previous approaches assume a strict relation between the ionizing field and metallicity. The other novelty is extracting information on the nebular physics from semistrong emission lines. While strong lines ratios alone ([O III]/Hβ, [O II]/Hβ and [N II]/Hβ) lead to multiple O/H solutions, the simultaneous use of [Ar III]/[Ne III] allows one to decide whether an H II region is of high or low metallicity. Adding He I/Hβ pins down the hardness of the radiation field. We apply our method to H II regions and blue compact dwarf galaxies, and find that the resulting N/O versus O/H relation is as scattered as the one obtained from the temperature-based method. As in previous strong-line methods calibrated on photoionization models, the BOND O/H values are generally higher than temperature-based ones, which might indicate the presence of temperature fluctuations or kappa distributions in real nebulae, or a too soft ionizing radiation field in the models.

  8. BOND: Bayesian Oxygen and Nitrogen abundance Determinations in giant H II regions using strong and semi-strong lines

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Stasińska, G.; Morisset, C.; Cid Fernandes, R.

    2016-04-01

    We present BOND, a Bayesian code to simultaneously derive oxygen and nitrogen abundances in giant H II regions. It compares observed emission lines to a grid of photoionization models without assuming any relation between O/H and N/O. Our grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Varying starburst ages accounts for variations in the ionizing radiation field hardness, which arise due to the ageing of H II regions or the stochastic sampling of the initial mass function. All previous approaches assume a strict relation between the ionizing field and metallicity. The other novelty is extracting information on the nebular physics from semi-strong emission lines. While strong lines ratios alone ([O III]/Hβ, [O II]/Hβ and [N II]/Hβ) lead to multiple O/H solutions, the simultaneous use of [Ar III]/[Ne III] allows one to decide whether an H II region is of high or low metallicity. Adding He I/Hβ pins down the hardness of the radiation field. We apply our method to H II regions and blue compact dwarf galaxies, and find that the resulting N/O vs O/H relation is as scattered as the one obtained from the temperature-based method. As in previous strong-line methods calibrated on photoionization models, the BOND O/H values are generally higher than temperature-based ones, which might indicate the presence of temperature fluctuations or kappa distributions in real nebulae, or a too soft ionizing radiation field in the models.

  9. Differential interferometry of QSO broad-line regions - I. Improving the reverberation mapping model fits and black hole mass estimates

    NASA Astrophysics Data System (ADS)

    Rakshit, Suvendu; Petrov, Romain G.; Meilland, Anthony; Hönig, Sebastian F.

    2015-03-01

    Reverberation mapping (RM) estimates the size and kinematics of broad-line regions (BLR) in quasars and type I AGNs. It yields size-luminosity relation to make QSOs standard cosmological candles, and mass-luminosity relation to study the evolution of black holes and galaxies. The accuracy of these relations is limited by the unknown geometry of the BLR clouds distribution and velocities. We analyse the independent BLR structure constraints given by super-resolving differential interferometry. We developed a three-dimensional BLR model to compute all differential interferometry and RM signals. We extrapolate realistic noises from our successful observations of the QSO 3C 273 with AMBER on the VLTI. These signals and noises quantify the differential interferometry capacity to discriminate and measure BLR parameters including angular size, thickness, spatial distribution of clouds, local-to-global and radial-to-rotation velocity ratios, and finally central black hole mass and BLR distance. A Markov Chain Monte Carlo model-fit, of data simulated for various VLTI instruments, gives mass accuracies between 0.06 and 0.13 dex, to be compared to 0.44 dex for RM mass-luminosity fits. We evaluate the number of QSOs accessible to observe with current (AMBER), upcoming (GRAVITY) and possible (OASIS with new generation fringe trackers) VLTI instruments. With available technology, the VLTI could resolve more than 60 BLRs, with a luminosity range larger than four decades, sufficient for a good calibration of RM mass-luminosity laws, from an analysis of the variation of BLR parameters with luminosity.

  10. Ne II FINE-STRUCTURE LINE EMISSION FROM THE OUTFLOWS OF YOUNG STELLAR OBJECTS

    SciTech Connect

    Shang, Hsien; Lin, Wei-Chieh; Liu, Chun-Fan J.; Glassgold, Alfred E.

    2010-05-10

    The flux and line shape of the fine-structure transitions of Ne II and Ne III at 12.8 and 15.55 {mu}m and of the forbidden transitions of O I {lambda}6300 are calculated for young stellar objects with a range of mass-loss rates and X-ray luminosities using the X-wind model of jets and the associated wide-angle winds. For moderate and high accretion rates, the calculated Ne II line luminosity is comparable to or much larger than produced in X-ray irradiated disk models. All of the line luminosities correlate well with the main parameter in the X-wind model, the mass-loss rate, and also with the assumed X-ray luminosity-and with one another. The line shapes of an approaching jet are broad and have strong blue-shifted peaks near the effective terminal velocity of the jet. They serve as a characteristic and testable aspect of jet production of the neon fine-structure lines and the O I forbidden transitions.

  11. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a

  12. Structure and stability in TMC-1: Analysis of NH3 molecular line and Herschel continuum data

    NASA Astrophysics Data System (ADS)

    Fehér, O.; Tóth, L. V.; Ward-Thompson, D.; Kirk, J.; Kraus, A.; Pelkonen, V.-M.; Pintér, S.; Zahorecz, S.

    2016-05-01

    Aims: We examined the velocity, density, and temperature structure of Taurus molecular cloud-1 (TMC-1), a filamentary cloud in a nearby quiescent star forming area, to understand its morphology and evolution. Methods: We observed high signal-to-noise (S/N), high velocity resolution NH3(1,1), and (2, 2) emission on an extended map. By fitting multiple hyperfine-split line profiles to the NH3(1, 1) spectra, we derived the velocity distribution of the line components and calculated gas parameters on several positions. Herschel SPIRE far-infrared continuum observations were reduced and used to calculate the physical parameters of the Planck Galactic Cold Clumps (PGCCs) in the region, including the two in TMC-1. The morphology of TMC-1 was investigated with several types of clustering methods in the parameter space consisting of position, velocity, and column density. Results: Our Herschel-based column density map shows a main ridge with two local maxima and a separated peak to the south-west. The H2 column densities and dust colour temperatures are in the range of 0.5-3.3 × 1022 cm-2 and 10.5-12 K, respectively. The NH3 column densities and H2 volume densities are in the range of 2.8-14.2 × 1014 cm-2 and 0.4-2.8 × 104 cm-3. Kinetic temperatures are typically very low with a minimum of 9 K at the maximum NH3 and H2 column density region. The kinetic temperature maximum was found at the protostar IRAS 04381+2540 with a value of 13.7 K. The kinetic temperatures vary similarly to the colour temperatures in spite of the fact that densities are lower than the critical density for coupling between the gas and dust phase. The k-means clustering method separated four sub-filaments in TMC-1 with masses of 32.5, 19.6, 28.9, and 45.9 M⊙ and low turbulent velocity dispersion in the range of 0.13-0.2 km s-1. Conclusions: The main ridge of TMC-1 is composed of four sub-filaments that are close to gravitational equilibrium. We label these TMC-1F1 through F4. The sub-filaments TMC

  13. The ionization structure of the Orion Nebula - Infrared line observations and models

    NASA Technical Reports Server (NTRS)

    Simpson, J. P.; Rubin, R. H.; Erickson, E. F.; Haas, M. R.

    1986-01-01

    Observations of the forbidden O III 52 and 88 microns lines and the forbidden N III 57 microns line have been made at six positions and the forbidden Ne III 36 microns line at four positions in the Orion Nebula to probe its ionization structure. The wavelength of the forbidden Ne III line was measured to be 36.009-36.017 microns. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one-component and two-component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37,000-40,000 K and log g = 4.0 and 4.5. Both the new IR observations and the visible line measurements of oxygen and nitrogen require Teff of no more than 37,000 K. However, the doubly ionized neon requires a model with Teff of at least 39,000 K, which is more consistent with that inferred from the radio flux or spectral type. These differences in Teff are not due to effects of dust on the stellar radiation field but are probably due to inaccuracies in the assumed stellar spectrum. Neon and nitrogen are approximately solar, but oxygen is half-solar in abundance. From the IR O(++) lines, it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement.

  14. Ionization structure of the Orion Nebula - infrared line observations and models

    SciTech Connect

    Simpson, J.P.; Rubin, R.H.; Erickson, E.F.; Haas, M.R.

    1986-12-01

    Observations of the forbidden O III 52 and 88 microns lines and the forbidden N III 57 microns line have been made at six positions and the forbidden Ne III 36 microns line at four positions in the Orion Nebula to probe its ionization structure. The wavelength of the forbidden Ne III line was measured to be 36.009-36.017 microns. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one-component and two-component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37,000-40,000 K and log g = 4.0 and 4.5. Both the new IR observations and the visible line measurements of oxygen and nitrogen require Teff of no more than 37,000 K. However, the doubly ionized neon requires a model with Teff of at least 39,000 K, which is more consistent with that inferred from the radio flux or spectral type. These differences in Teff are not due to effects of dust on the stellar radiation field but are probably due to inaccuracies in the assumed stellar spectrum. Neon and nitrogen are approximately solar, but oxygen is half-solar in abundance. From the IR O(++) lines, it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement. 54 references.

  15. An atlas of emission line fluxes of planetary nebulae in the 1150-3200 A region

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Mccracken, C. W.

    1981-01-01

    Emission line fluxes for 28 planetary nebulae are presented. The nebulae were chosen to cover a wide range of excitation classes, apparent diameters, location in the sky, and types of central stars. All objects were observed in the low dispersion mode of the IUE spectrographs, using the large entrance aperture.

  16. Three-dimensional molecular line transfer: a simulated star-forming region

    NASA Astrophysics Data System (ADS)

    Rundle, David; Harries, Tim J.; Acreman, David M.; Bate, Matthew R.

    2010-09-01

    We present the first non-local thermodynamic equilibrium (non-LTE), comoving frame molecular line calculations of a star-forming cluster simulated using smoothed particle hydrodynamics (SPH), from which we derive high-resolution synthetic observations. We have resampled a particle representation on to an adaptive mesh and self-consistently solved the equations of statistical equilibrium in the comoving frame, using TORUS, a three-dimensional adaptive mesh refined radiative transfer code. We verified the applicability of the code to the conditions of the SPH simulation by testing its output against other codes. We find that the level populations obtained for optically thick and thin scenarios closely match the ensemble average of the other codes. We have used the code to obtain non-LTE level populations of multiple molecular species throughout the cluster and have created three-dimensional velocity-resolved spatial maps of the emergent intensity. Line profiles of cores traced by N2H+ (1-0) are compared to probes of low-density gas, 13CO (1-0) and C18O (1-0), surrounding the cores along the line of sight. The relative differences of the line centre velocities are shown to be small compared to the velocity dispersion, matching recent observations. We conclude that one cannot reject competitive accretion as a viable theory of star formation based on observed velocity profiles.

  17. Crustal Structure Beneath Pleasant Valley, Nevada from Local and Regional Earthquake Travel Times

    NASA Astrophysics Data System (ADS)

    Kant, L. B.; Nabelek, J.; Braunmiller, J.

    2011-12-01

    In 1915 the Pleasant Valley fault in the Basin and Range Province of northern Nevada ruptured in a Mw~7 earthquake, one of the largest normal faulting earthquakes in U.S. history. We are currently operating a densely spaced linear array of broadband three-component seismometers across the Pleasant Valley fault to investigate the structure and the geometry of the fault zone. Here, we present a local crustal velocity model derived from P and S wave travel times of local and regional earthquakes recorded by the Pleasant Valley array. Regional events in northern California, eastern Nevada and Utah that occurred in line with the array are well recorded and provide constraints on upper mantle velocities. Many local seismic events were also observed. Only a few of these events were detected by the ANSS network, reflecting the limited detection capability in sparsely instrumented northern Nevada. The local event set includes earthquakes, mining blasts and sonic booms from nearby jet airplane flights. A subset of these events was located using Hypoinverse. Their travel time curves are used to estimate crustal structure and velocity in the Pleasant Valley region. This is an EarthScope FlexArray project.

  18. Evaluation of hydrogen atom density in the plasma core region based on the Balmer-α line profile

    NASA Astrophysics Data System (ADS)

    Goto, M.; Sawada, K.; Fujii, K.; Hasuo, M.; Morita, S.

    2011-02-01

    The Balmer-α line profile is measured with high wavelength resolution for a discharge in the Large Helical Device. The line profile is regarded as a superposition of continuously varying Doppler broadened components and is expressed as the Laplace transform. Numerical Laplace inversion of the measured line profile gives the distribution function of line emissivity in terms of atom temperature. The temperature dependence of the line emissivity is interpreted as spatial dependence so that the ionization rate and atom density of neutral hydrogen are determined. The temperature range of the detected atoms extends beyond 2 keV which corresponds to a penetration depth of about 1 m in the plasma, or the location at ρ ~ 0.3, where ρ is the normalized minor radius. The atom density of approximately 1013 m-3 is derived in the plasma core region which is more than four orders smaller than that at the plasma boundary. Calculation of neutral transport with a Monte-Carlo simulation code gives satisfactory consistency with the experimental results.

  19. On-Line Modal State Monitoring of Slowly Time-Varying Structures

    NASA Technical Reports Server (NTRS)

    Johnson, Erik A.; Bergman, Lawrence A.; Voulgaris, Petros G.

    1997-01-01

    Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons include condition-based maintenance, health monitoring, performance improvements, and control. In many cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the development of effective on-line monitoring schemes help to speed the decision-making process and reduce the risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an overview of several structural system identification methods. Included in this discussion and comparison are H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage adaptive on-line monitoring scheme is developed and evaluated.

  20. Shallow velocity structure and hidden faults of Kunming city region

    NASA Astrophysics Data System (ADS)

    Yu, Geng-Xin; Lou, Hai; Wang, Chun-Yong; Fu, Li-Yun; Zhang, Jian-Guo; Qin, Jia-Zheng; Yang, Run-Hai; Li, Hai-Ou

    2008-09-01

    In order to image the 3-D velocity structure of its shallow crust in Kunming region, China, finite-difference seismic tomography is used to invert the seismic data selected carefully from six-shot data. The result lays a foundation for the discussion of the relationship between the obtained velocity structure and the hidden faults, and for the illumination of the depth extents of main active faults surrounding Kunming city. Puduhe-Xishan fault lies on the western margin of the Kunming basin and is just situated on the west edge of the low velocity anomaly zone found at all depth levels. This indicates that this fault is a borderline fault of the Kunming basin. It can be concluded that the fault dips eastwards with a steep angle and its depth extent is large. Puji-Hanjiacun fault and Heilongtan-Guandu fault play a role in controlling the low velocity anomaly zone in middle basin. The depth extents of the two faults are comparatively small, without traversing the interface of basin floor.

  1. Structural control of scarps in the Rembrandt region of Mercury

    NASA Astrophysics Data System (ADS)

    Ruiz, Javier; López, Valle; Dohm, James M.; Fernández, Carlos

    2012-06-01

    Lobate scarps, thought to be the surface expression of large thrust faults, are the most spectacular contractional tectonic features visible on Mercury. Most lobate scarps follow a general and relatively simple pattern, with a roughly arcuate or linear form in plan view, and an asymmetric cross section characterized by a steeply rising scarp face and a gently declining back scarp. In this work, we study two peculiar and complex scarps in the Rembrandt region of Mercury through MESSENGER imagery. On the one hand, the formation of these scarps resulted in the deformation of features such as impact craters, fractures, extensional faults, and volcanic plains, while on the other hand, the deformed features partly influenced the formation of the scarps. Evidence for structural control on the formation of the scarps includes their orientation, segmentation, bifurcation, change in structural trend and dip orientation, and transition into high-relief ridges or wrinkle ridge morphologies in some cases. Thus, these two lobate scarps provide examples of complex geological relations among other features, expanding the recognized richness of mercurian geology. Also, the southern scarp records a complex history of contraction, suggesting that the development of some mercurian lobate scarps may be more complex than usually thought.

  2. Small-Scale High-Temperature Structures in Flare Regions

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Chernov, G. P.; Hanaoka, I.

    2001-04-01

    When analyzing YOHKOH/SXT, HXT (soft and hard X-ray) images of solar flares against the background of plasma with a temperature T ~ 6 MK, we detected localized (with minimum observed sizes of approximately 2000 km) high-temperature structures (HTSs) with T = (20-50) MK with a complex spatial-temporal dynamics. Quasi-stationary, stable HTSs form a chain of hot cores that encircles the flare region and coincides with the magnetic loop. No structures are seen in the emission measure. We reached conclusions about the reduced heat conductivity (a factor of ~10^3 lower than the classical isotropic one) and high thermal insulation of HTSs. The flare plasma becomes collisionless in the hottest HTSs (T > 20 MK). We confirm the previously investigated idea of spatial heat localization in the solar atmosphere in the form of HTSs during flare heating with a volume nonlocalized source. Based on localized soliton solutions of a nonlinear heat conduction equation with a generalized flare-heating source of a potential form including radiative cooling, we discuss the nature of HTSs.

  3. Interacting active regions and coronal holes: implications for coronal outflows and solar wind structure

    NASA Astrophysics Data System (ADS)

    Culhane, J. Leonard; Baker, Deborah; Rouillard, Alexis; van Driel-Gesztelyi, Lidia

    When active regions are adjacent to coronal holes a variety of magnetic field interactions can result. These may include the interchange reconnection between the closed active region (AR) fields and the open field of the coronal hole (CH), leading to fast and significant evolution of coronal hole boundaries. Outcomes may include variability of -or changes in, active region-associated hot plasma outflows seen with Hinode/EIS and the modulation of the solar wind flows on open field lines. Depending on their relative positions on the Sun, the AR-CH interactions may have their signatures embedded in co-rotating interaction regions (CIRs) or rarefaction regions. During two intervals -8/11 January, 2008 and 7/9 December, 2008, we have made observations with Hinode of two oppositely configured situations on the Sun. For 8/11 January, the coronal hole leads the active region while for 7/9 December the order is reversed. The Hinode EIS instrument is used to locate outflows and measure their velocities while the XRT is used to image the source regions, including the variable nature of the outflows. SOHO EIT imaging is used to follow the longer-term evolution of the coronal hole boundaries while MDI is used to observe changes in the magnetic field. STEREO imaging and in-situ data are also employed -as are ACE observations, to assess the resulting impacts on interplanetary solar wind structures. The contrasting behaviour that results from magnetic interactions in the two different configurations is described and assessed.

  4. Line group techniques in description of the structural phase transitions in some superconductors

    SciTech Connect

    Meszaros, C.; Bankuti, J.; Balint, A.

    1994-12-31

    The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature Superconductors. As an example, the material YBa{sub 2}Cu{sub 3}O{sub 7-x} is discussed briefly.

  5. STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. II. EPISODIC FORMATION OF BROAD-LINE REGIONS

    SciTech Connect

    WangJianmin; Du Pu; Ge Junqiang; Hu Chen; Baldwin, Jack A.; Ferland, Gary J.

    2012-02-20

    This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into four phases. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS because of the CAS overdensity driven by continuous injection of warm gas from the SF disk. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of broad-line regions (BLRs). We follow the formation of cold clouds through the thermal instability of the CAS during phases II and III, using linear analysis. Since the clouds are produced inside the CAS, the initial spatial distribution of newly formed clouds and angular momentum naturally follow the CAS dynamics, producing a flattened disk of clouds. The number of clouds in phases II and III can be estimated, as well as the filling factor of clouds in the BLR. Since the cooling function depends on the metallicity, the metallicity gradients that originate in the SF disk give rise to different properties of clouds in different radial regions. We find from the instability analysis that clouds have column density N{sub H} {approx}< 10{sup 22} cm{sup -2} in the metal-rich regions whereas they have N{sub H} {approx}> 10{sup 22} cm{sup -2} in the

  6. Characterization of rearrangements involving 4q, 13q and 16q in hepatocellular carcinoma cell lines using region-specific multiplex-FISH probes.

    PubMed

    Tjia, Wai Mui; Hu, Liang; Zhang, Min-Yue; Guan, Xin-Yuan

    2007-05-18

    Deletions in 4q, 13q and 16q were frequently detected in hepatocellular carcinoma (HCC) by comparative genomic hybridization (CGH) studies. However, detailed chromosome structural aberrations are not fully explored. Using CGH combined with multiplex-color FISH (M-FISH) with chromosome region-specific probes (CRPs), chromosome structural aberrations in 4q, 13q and 16q in six HCC cell lines were studied. All CRPs, which were generated from microdissected DNA, were specific, strong in intensity and sensitive enough to detect chromosome structural aberrations including translocation and deletion. FISH with BAC probes was used to further characterize translocation breakpoints and deletions. A breakpoint at 16q22 was localized at a BAC clone (RP11-341K23) and another breakpoint at 4q28 was localized within a 620 kb-region. A minimal deleted region at 13q21 was found between BAC clones RP11-240M20 and RP11-435P18. This study demonstrated that the combination of CGH, M-FISH and BAC-FISH is a very useful tool to detect and characterize translocation breakpoint. PMID:17098359

  7. Space Telescope Imaging Spectrograph Long-Slit Spectroscopy of the Narrow-Line Region of NGC 4151. 1; Kinematics and Emission-Line Ratios

    NASA Technical Reports Server (NTRS)

    Nelson, C. H.; Weistrop, D.; Hutchinson, J. B.; Crenshaw, D. M.; Gull, T. R.; Kaiser, M. E.; Kraemer, S. B.; Lindler, D.

    2003-01-01

    Long-slit spectra of the Seyfert galaxy NGC 4151 from the UV to the near-infrared have been obtained with the Space Telescope Imaging Spectrograph (STIS) to study the kinematics and physical conditions in the narrow-line region (NLR). The kinematics shows evidence for three components, a low-velocity system in normal disk rotation, a high-velocity system in radial outflow at a few hundred kilometers per second relative to the systemic velocity, and an additional high-velocity system also in outflow with velocities up to 1400 km s(-l), in agreement with results from STIS slitless spectroscopy. We have explored two simple kinematic models and suggest that radial outflow in the form of a wind is the most likely explanation. We also present evidence indicating that the wind may be decelerating with distance from the nucleus. We find that the emission-line ratios along our slits are all entirely consistent with photoionization from the nuclear continuum source. A decrease in the ratios [O III] lambda 5007/H beta and [O III] lambda 5007/[O II] lambda 3727 suggests that the density decreases with distance from the nucleus. This trend is borne out by the [S II] ratios as well. We find no strong evidence for interaction between the radio jet and the NLR gas in either the kinematics or the emission-line ratios, in agreement with the recent results of Kaiser et al., who found no spatial coincidence of NLR clouds and knots in the radio jet. These results are in contrast to other recent studies of nearby active galactic nuclei that find evidence for significant interaction between the radio source and the NLR gas.

  8. Ectopic recombination within homologous immunoglobulin mu gene constant regions in a mouse hybridoma cell line.

    PubMed Central

    Baker, M D; Read, L R

    1992-01-01

    We have transferred a pSV2neo vector containing the wild-type constant region of the immunoglobulin mu gene (C mu) into the mutant hybridoma igm482, which bears a 2-bp deletion in the third constant-region exon of its haploid chromosomal mu gene (C mu 3). Independent igm482 transformants contain the wild-type immunoglobulin C mu region stably integrated in ectopic chromosomal positions. We report here that the wild-type immunoglobulin C mu region can function as the donor sequence in a gene conversion event which corrects the 2-bp deletion in the mutant igm482 chromosomal C mu 3 exon. The homologous recombination event restores normal immunoglobulin M production in the mutant cell. Images PMID:1406631

  9. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    SciTech Connect

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-25

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution ({lambda}/{Delta}{lambda} >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  10. The location and kinematics of the coronal-line emitting regions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Mullaney, J. R.; Ward, M. J.; Done, C.; Ferland, G. J.; Schurch, N.

    2009-03-01

    We use the photoionization code CLOUDY to determine both the location and the kinematics of the optical forbidden, high-ionization line (hereafter, FHIL) emitting gas in the narrow line Seyfert 1 galaxy Ark 564. The results of our models are compared with the observed properties of these emission lines to produce a physical model that is used to explain both the kinematics and the source of this gas. The main features of this model are that the FHIL emitting gas is launched from the putative dusty torus and is quickly accelerated to its terminal velocity of a few hundred km s-1. Iron-carrying grains are destroyed during this initial acceleration. This velocity is maintained by a balance between radiative forces and gravity in this super-Eddington source. Eventually the outflow is slowed at large radii by the gravitational forces of and interactions with the host galaxy. In this model, FHIL emission traces the transition between the active galactic nucleus (AGN) and bulge zones of influence.

  11. Origin of double-line structure in nonsequential double ionization by few-cycle laser pulses.

    PubMed

    Huang, Cheng; Zhong, Mingmin; Wu, Zhengmao

    2016-07-28

    We investigate nonsequential double ionization (NSDI) of molecules by few-cycle laser pulses at the laser intensity of 1.2-1.5 × 10(14) W/cm(2) using the classical ensemble model. The same double-line structure as the lower intensity (1.0 × 10(14) W/cm(2)) is also observed in the correlated electron momentum spectra for 1.2-1.4 × 10(14) W/cm(2). However, in contrast to the lower intensity where NSDI proceeds only through the recollision-induced double excitation with subsequent ionization (RDESI) mechanism, here, the recollision-induced excitation with subsequent ionization (RESI) mechanism has a more significant contribution to NSDI. This indicates that RDESI is not necessary for the formation of the double-line structure and RESI can give rise to the same type of structure independently. Furthermore, we explore the ultrafast dynamics underlying the formation of the double-line structure in RESI. PMID:27475356

  12. Crustal Structure of the Middle East from Regional Seismic Studies

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Sibol, Matthew; Caron, Pierre; Ghalib, Hafidh; Chen, Youlin

    2010-05-01

    We present results of crustal studies obtained with seismic data from the Northern Iraq Seismic Network (NISN). NISN has operated ten broadband stations in north-eastern Iraq since late 2005. This network was supplemented by the five-element broadband Iraq Seismic Array (KSIRS) in 2007. More recently, the former Iraq Seismic Network (ISN), destroyed during the war with Iran, was reestablished with the deployment of six broadband stations throughout Iraq. The aim of the present study is to derive models of the local and regional crustal structure of the Middle East, including Eastern Turkey, Iraq and Iran. To achieve this goal, we derive crustal velocity models using receiver function, surface wave and body wave analyses. These refined velocity models will eventually be used to obtain accurate hypocenter locations and event focal mechanisms. Our analysis of preliminary hypocenter locations produced a clearer picture of the seismicity associated with the tectonics of the region. The largest seismicity rate is confined to the active northern section of the Zagros thrust zone, while it decreases towards the southern end, before the intensity increases in the Bandar Abbas region again. Additionally, the rift zones in the Red Sea and the Gulf of Aden are clearly demarked by high seismicity rates. Surface wave velocity analysis resulted in a clear demarcation of the tectonic features in the region. The Arabian shield, Zagros thrust zone and the Red Sea are apparent through distinct velocity distributions separating them from each other. Furthermore, the shear wave velocity of the crust in North Iraq appears to be 10% higher than that of the Iranian plateau. The velocity anomaly of the Zagros mountains appears to be present into the upper mantle beyond the resolving limit of our model. Analysis of waveform data for obstructed pathways indicates clear propagation paths from the west or south-west across the Arabian shield as well as from the north and east into NISN. Phases

  13. Structural differences between C-terminal regions of tropomyosin isoforms

    PubMed Central

    Śliwińska, Małgorzata

    2013-01-01

    Tropomyosins are actin-binding regulatory proteins which overlap end-to-end along the filament. High resolution structures of the overlap regions were determined for muscle and non-muscle tropomyosins in the absence of actin. Conformations of the junction regions bound to actin are unknown. In this work, orientation of the overlap on actin alone and on actin–myosin complex was evaluated by measuring FRET distances between a donor (AEDANS) attached to tropomyosin and an acceptor (DABMI) bound to actin’s Cys374. Donor was attached to the Cys residue introduced by site-directed mutagenesis near the C-terminal half of the overlap. The recombinant alpha-tropomyosin isoforms used in this study – skeletal muscle skTM, non-muscle TM2 and TM5a, and chimeric TM1b9a had various amino acid sequences of the N- and C-termini involved in the end-to-end overlap. The donor-acceptor distances calculated for each isoform varied between 36.4 Å and 48.1 Å. Rigor binding of myosin S1 increased the apparent FRET distances of skTM and TM2, but decreased the distances separating TM5a and TM1b9a from actin. The results show that isoform-specific sequences of the end-to-end overlaps determine orientations and dynamics of tropomyosin isoforms on actin. This can be important for specificity of tropomyosin in the regulation of actin filament diverse functions. PMID:24167776

  14. Sound Transmission Through Multi-Panel Structures Lined with Elastic Porous Materials

    NASA Astrophysics Data System (ADS)

    Bolton, J. S.; Shiau, N.-M.; Kang, Y. J.

    1996-04-01

    Theory and measurements related to sound transmission through double panels lined with elastic porous media are presented. The information has application to the design of noise control barriers and to the optimization of aircraft fuselage transmission loss, for example. The major difference between the work described here and earlier research in this field relates to the treatment of the porous material that is used to line the cavity between the two panels of the double panel structure. Here we have used the porous material theory proposed by Biot since it takes explicit account of all the wave types known to propagate in elastic porous materials. As a result, it is possible to use the theory presented here to calculate the transmission loss of lined double panels at arbitrary angles of incidence; results calculated over a range of incidence angles may then be combined to yield the random incidence transmission loss. In this paper, the equations governing wave propagation in an elastic porous material are first considered briefly and then the general forms for the stresses and displacements within the porous material are given. Those solutions are expressed in terms of a number of constants that can be determined by application of appropriate boundary conditions. The boundary conditions required to model double panels having linings that are either directly attached to the facing panels or separated?!from them by air gaps are presented and discussed. Measurements of the random incidence transmission loss of aluminium double-panel structures lined with polyurethane foam are presented and have been found to be in good agreement with theoretical predictions. Both the theoretical predictions and the measured results have shown that the method by which an elastic porous lining material is attached to the facing panels can have a profound influence on the transmission loss of the panel system. It has been found, for example, that treatments in which the lining material

  15. [Variation in evolutionary unstable regions of the chloroplast genome in plants obtained in anther culture of dihaploid wheat lines].

    PubMed

    Mozgova, G V; Orlov, P A; Shalygo, N V

    2006-02-01

    In dihaploid wheats, two evolutionarily unstable regions of the chloroplast genome were examined. These regions include the following genes, changes in which could be associated with albinism in anther culture: rbcL, encoding the large Rubisco subunit; psaA, encoding p700 apoprotein Ia; petA, encoding cytochrome f; atpB and atpE, encoding respectively beta and epsilon subunits of the CF1 ATPase complex; trnE, encoding glutamine tRNA; and cemA, encoding a cell membrane protein. Using PCR, we have shown that atpB was the gene most often not detected in the lines examined. These results suggest that regeneration of albino plants is accompanied by a deletion of a chloroplast DNA region harboring this gene. PMID:16583703

  16. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents.

    PubMed

    Thambugala, Dinushika; Ragupathy, Raja; Cloutier, Sylvie

    2016-07-01

    Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2-4.6 kb, the desaturase loci have a higher gene density than the genome's average of one gene per 7.8-8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications. PMID:27142663

  17. Tracing quasar narrow-line regions across redshift: a library of high-S/N optical spectra

    NASA Astrophysics Data System (ADS)

    Tammour, A.; Gallagher, S. C.; Richards, Gordon

    2015-04-01

    In a single optical spectrum, the quasar narrow-line region (NLR) reveals low-density, photoionized gas in the host galaxy interstellar medium (ISM), while the immediate vicinity of the central engine generates the accretion disc continuum and broad emission lines. To isolate these two components, we construct a library of high-S/N optical composite spectra created from the Sloan Digital Sky Survey Data Release 7. We divide the sample into bins of continuum luminosity and Hβ full width at half-maximum that are used to construct median composites at different redshift steps up to 0.75. We measure the luminosities of the narrow-emission lines [Ne V] λ3427, [Ne III] λ3870, [O III] λ5007, and [O II] λ3728 with ionization potentials (IPs) of 97, 40, 35, and 13.6 eV, respectively. The high IP lines' luminosities show no evidence of increase with redshift consistent with no evolution in the AGN spectral energy distribution or the host galaxy ISM illuminated by the continuum. In contrast, we find that the [O II] line becomes stronger at higher redshifts, and we interpret this as a consequence of enhanced star formation contributing to the [O II] emission in host galaxies at higher redshifts. The SFRs estimated from the [O II] luminosities show a flatter increase with z than non-AGN galaxies given our assumed AGN contribution to the [O II] luminosity. Finally, we confirm an inverse correlation between the strength of the Fe II λ4570 complex and both the [O III] equivalent width (though not the luminosity) and the width of the Hβ line as known from the eigenvector 1 correlations.

  18. Crustal structure of the Pannonian-Carpathian region, Central Europe, from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Stuart, G. W.; Houseman, G. A.; Carpathian Basins Project Working Group

    2010-12-01

    The Pannonian Basin of Central Europe is a major extensional basin surrounded by the Carpathian Mountains. During the evolution of the Carpathian-Pannonian region, extension of the crust and lithosphere created several inter-related basins of which the Pannonian basin is the largest. Imaging the seismic velocity structure of the crust and the upper mantle may help us understand the structure and geodynamic evolution of this part of central Europe. Here, we use ambient noise tomography to investigate the crust and uppermost mantle structure in the region. We have collected and processed continuous data from 56 temporary stations deployed in the Carpathian Basins Project (CBP) for 16 months (2005-2007) and 41 permanent broadband stations; this dataset enables the most well-resolved images of the S-wave structure of the region yet obtained. We computed the cross-correlation between vertical component seismograms from pairs of stations and stacked the correlated waveforms over 1-2 years to estimate the Rayleigh wave Green’s function. Frequency-time analysis is used to measure the group velocity dispersion curves, which are then inverted for the group velocity maps. Our 4-10 s group velocity maps exhibit low velocity anomalies which clearly defined the major sediment depo-centers in the Carpathian region. A broad low velocity anomaly in the center of the 5 s group velocity map can be associated with the Pannonian Basin, whereas an anomaly in the southeastern region is related to the Moesian platform. Further east, the Vienna Basin can also be seen on our maps. A fast anomaly in the central region can be associated with the Mid-Hungarian line. At periods from 18 to 24 seconds, group velocities become increasingly sensitive to crustal thickness. The maps also reveal low-velocity anomalies associated with the Carpathians. The low velocity anomalies are probably caused by deeper crustal roots beneath the mountain ranges which occur due to isostatic compensation. CBP

  19. Seasonal Variations in the CO Line Profile and the Retrieved Thermal/Pressure Structures in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, G. L.; Mumma, M. J.; Riesen, T. E.; Tokunaga, A. T.

    2013-10-01

    We report retrievals of temperature vertical profiles up to 100 km over Tharsis and Syrtis regions on Mars obtained by inverting the strong rotational (3-2) line of carbon monoxide (CO) at 346 GHz. Observations of CO were made from mid Northern Spring to early Northern Summer on Mars (Ls= 36°-108°, 23 Nov, 2011 - 13 May, 2012) using the Caltech Submillimeter Observatory's (CSO) high-resolution heterodyne receiver (Barney) on top of Mauna Kea, Hawai'i. The temperature profiles were derived using our radiative transfer model that considers the latest spectroscopic constants for CO collisionally broadened by CO2. We observe notable changes of the line profile for different dates, which are directly related to seasonal variations in the thermal/pressure structure of the atmosphere. The seasonal variability of the martian CO line profile, the extracted temperature profiles, and comparisons with modeled profiles from the Mars Climate Database (Lewis et al, 1999) will be presented. We gratefully acknowledge support from the NASA Planetary Astronomy Program , NASA Astrobiology Institute, Planetary Atmospheres programs. This material is based upon work at the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology under cooperative agreement with the National Science Foundation, grant number AST-0838261.

  20. A novel structure of transmission line pulse transformer with mutually coupled windings.

    PubMed

    Yu, Binxiong; Su, Jiancang; Li, Rui; Zhao, Liang; Zhang, Xibo; Wang, Junjie

    2014-03-01

    A novel structure of transmission line transformer (TLT) with mutually coupled windings is described in this paper. All transmission lines except the first stage of the transformer are wound on a common ferrite core for the TLT with this structure. A referral method was introduced to analyze the TLT with this structure, and an analytic expression of the step response was derived. It is shown that a TLT with this structure has a significantly slower droop rate than a TLT with other winding structures and the number of ferrite cores needed is largely reduced. A four-stage TLT with this structure was developed, whose input and output impedance were 4.2 Ω and 67.7 Ω, respectively. A frequency response test of the TLT was carried out. The test results showed that pulse response time of the TLT is several nanoseconds. The TLT described in this paper has the potential to be used as a rectangle pulse transformer with very fast response time. PMID:24689623

  1. Invariant Crease Lines for Topological and Structural Analysis of Tensor Fields

    PubMed Central

    Tricoche, Xavier; Kindlmann, Gordon; Westin, Carl-Fredrik

    2009-01-01

    We introduce a versatile framework for characterizing and extracting salient structures in three-dimensional symmetric second-order tensor fields. The key insight is that degenerate lines in tensor fields, as defined by the standard topological approach, are exactly crease (ridge and valley) lines of a particular tensor invariant called mode. This reformulation allows us to apply well-studied approaches from scientific visualization or computer vision to the extraction of topological lines in tensor fields. More generally, this main result suggests that other tensor invariants, such as anisotropy measures like fractional anisotropy (FA), can be used in the same framework in lieu of mode to identify important structural properties in tensor fields. Our implementation addresses the specific challenge posed by the non-linearity of the considered scalar measures and by the smoothness requirement of the crease manifold computation. We use a combination of smooth reconstruction kernels and adaptive refinement strategy that automatically adjust the resolution of the analysis to the spatial variation of the considered quantities. Together, these improvements allow for the robust application of existing ridge line extraction algorithms in the tensor context of our problem. Results are proposed for a diffusion tensor MRI dataset, and for a benchmark stress tensor field used in engineering research. PMID:18989019

  2. Uppermost mantle structure of the Europe-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Amaru, M.; Spakman, W.; Villasenor, A.

    2003-04-01

    We have obtained a P-wave velocity model for the crust and uppermost mantle beneath Europe using seismic tomography. The travel time dataset is a subset of well located events from the ISC bulletins, and consists of 1.5 million P-wave arrival times from 60,000 events recorded at epicentral distances of less than 14 degrees. Because of the data selection and the ray path distribution the best sampled and best resolved area of the model is in the depth range between 35 and 55 km. Therefore our results are comparable to those obtained using Pn tomography methods. Pn tomography usually assumes that the P waves travel as head waves just below the Moho and only the 2D (horizontal) distribution of Pn velocity is calculated. The variations in crustal structure are not included in the model, so station and event correction terms must be incorporated. Our method, which is also suited for global tomography studies, does not require these approximations because rays are traced along their entire path. In order to evaluate the resolution and the uncertainty of the obtained model, tests with synthetic velocity models and randomly permuted data vectors are performed. The size of the resolvable anomalies in the best sampled regions is horizontally approximately 60 km. As the resolution decreases with depth, vertical structures like subducted slabs are not detected in the model. The model agrees well with recent high-resolution surface wave models but shows in general sharper features. Also, more details than in previous Pn studies are resolved. For example, the Trans-European Suture Zone is well imaged, seperating the East-European platform with its high velocities from Western Europe. High velocities associated with old oceanic crust such as the South-Caspian basin, the Black Sea and the Eastern Mediterranean are also well imaged in the model. Low velocities are found for the Alboran, Thyrrenean and Agean basins reflecting extensional processes and back-arc volcanism.

  3. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.

    PubMed

    Guo, Min; Abbott, Derek; Lu, Minhua; Liu, Huafeng

    2016-03-01

    Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with 64 × 128 fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues. PMID:26768475

  4. On open and closed field line regions in Tsyganenko's field model and their possible associations with horse collar auroras

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hones, E. W., Jr.; Craven, J. D.; Frank, L. A.; Elphinstone, R. D.; Stern, D. P.

    1991-01-01

    The boundary between open and closed field lines is investigated in the empirical Tsyganenko (1987) magnetic field model. All field lines extending to distances beyond -70 R(E), the tailward velocity limit of the Tsyganenko model are defined as open, while all other field lines, which cross the equatorial plane earthward of -70 R(E) and are connected with the earth at both ends, are assumed closed. It is found that this boundary at the surface of the earth, identified as the polar cap boundary, can exhibit the arrowhead shape, pointed toward the sun, which is found in horse collar auroras. For increasing activity levels, the polar cap increases in area and becomes rounder, so that the arrowhead shape is less pronounced. The presence of a net B(y) component can also lead to considerable rounding of the open flux region. The arrowhead shape is found to be closely associated with the increase of B(z) from the midnight region to the flanks of the tail, consistent with a similar increase of the plasma sheet thickness.

  5. Numerical simulations of magnetoacoustic-gravity waves in the solar coronal curved magnetic field lines structure

    NASA Astrophysics Data System (ADS)

    Jelínek, P.; Murawski, K.

    2013-09-01

    We present a two-dimensional (2D) magnetohydrodynamic (MHD) model of magneto-acoustic-gravity waves in the gravitationally stratified solar corona that is shaped by a realistic (VAL-C, Vernazza Avrett Loeser model C) temperature profile and curved magnetic field lines. These waves are triggered by an initial Gaussian pulse in the horizontal component of velocity, that is, launched either just below or above the transition region. The time-dependent ideal MHD equations are solved numerically with the use of the FLASH code. The numerical results reveal conversion of a horizontal flow into its vertical counterpart, oscillations of the transition region and vertical jets of cold plasma penetrating the solar corona. The wavelet analysis of the mass-density variations at a fixed detection point leads to the oscillation period of about 180 s, which corresponds to 3-min oscillations observed in solar active regions.

  6. Structural characterization of a neuroblast-specific phosphorylated region of MARCKS.

    PubMed

    Tinoco, Luzineide W; Fraga, Jully L; Anobom, Cristiane D; Zolessi, Flavio R; Obal, Gonzalo; Toledo, Andrea; Pritsch, Otto; Arruti, Cristina

    2014-04-01

    MARCKS (Myristoylated Alanine-Rich C Kinase substrate) is a natively unfolded protein that interacts with actin, Ca(2+)-Calmodulin, and some plasma membrane lipids. Such interactions occur at a highly conserved region that is specifically phosphorylated by PKC: the Effector Domain. There are two other conserved domains, MH1 (including a myristoylation site) and MH2, also located in the amino terminal region and whose structure and putative protein binding capabilities are currently unknown. MH2 sequence contains a serine that we described as being phosphorylated only in differentiating neurons (S25 in chick). Here, Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopy were used to characterize the phosphorylated and unphosphorylated forms of a peptide with the MARCKS sequence surrounding S25. The peptide phosphorylated at this residue is recognized by monoclonal antibody 3C3 (mAb 3C3). CD and NMR data indicated that S25 phosphorylation does not cause extensive modifications in the peptide structure. However, the sharper lines, the absence of multiple spin systems and relaxation dispersion data observed for the phosphorylated peptide suggested a more ordered structure. Surface Plasmon Resonance was employed to compare the binding properties of mAb 3C3 to MARCKS protein and peptide. SPR showed that mAb 3C3 binds to the whole protein and the peptide with a similar affinity, albeit different kinetics. The slightly ordered structure of the phosphorylated peptide might be at the origin of its ability to interact with mAb 3C3 antibody, but this binding did not noticeably modify the peptide structure. PMID:24590112

  7. Design summary of the magnet support structures for the proton storage ring injection line upgrade

    SciTech Connect

    Bernardin, J.D.; Ledford, J.E.; Smith, B.G.

    1997-05-01

    This report summarizes the technical engineering and design issues associated with the Proton Storage Ring (PSR) Injection Line upgrade of the Los Alamos Neutron Science Center (LANSCE). The main focus is on the engineering design calculations of several magnet support structures. The general procedure based upon a set number of design criteria is outlined, followed by a case-by-case summary of the engineering design analyses, reutilization or fabrication callouts and design safety factors.

  8. New electron levels and classified lines in Pr II from hyperfine structure measurements

    SciTech Connect

    Furmann, B. . E-mail: furman@phys.put.poznan.pl; Stefanska, D.; Dembczynski, J.; Stachowska, E.

    2007-01-15

    Classification of 75 spectral lines (hitherto not classified) in singly ionized praseodymium (Pr II) with the use of 31 new electron levels belonging to odd configurations 4f{sup 3}5d and 4f{sup 3}6s and 14 new levels belonging to even configurations is presd. Hyperfine structure constant A and B for each new level were determined by using the method of laser-induced fluorescence in a hollow cathode discharge.

  9. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  10. Constraining the Variation of the Fine-structure Constant with Observations of Narrow Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10-5, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (- 0.59 ± 0.55) × 10-5 in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10-5, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (- 0.47 ± 0.53) × 10-5. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (- 0.01 ± 0.26) × 10-5. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of

  11. The structure and ionization of the extended emission-line filaments surrounding the QSO MR 2251-178

    SciTech Connect

    Macchetto, F.; Colina, L.; Golombek, D.; Perryman, M.A.C.; Di Serego Alighieri, S. ESA, Astrophysics Div., Noordwijk ESA, Space Telescope European Coordinating Facility, Garching )

    1990-06-01

    This paper presents new VLA radio maps, at 6 cm and 20 cm, of the QSO MR 2251-178, together with deep high-spatial-resolution images in the O II forbidden 3727-A line in the O III forbidden 5007-A line, and H-alpha emission lines, showing the presence of extended emission-line filaments surrounding the MR 2251-178. The morphology of the circumnuclear emission-line regions and an extended system of filaments in different ionization states are shown. The physical characteristics, such as luminosities, densities, mass, and ionization parameters of different filaments are derived. 48 refs.

  12. Kappa-distributions and Temperature Structure of the Prominence-Corona Transition Region

    NASA Astrophysics Data System (ADS)

    Dzifčáková, Elena; Mackovjak, Šimon; Heinzel, Petr

    2014-01-01

    The influence of the electron κ - distributions on the differential emission measure (DEM) of the prominence-corona transition region (PCTR) derived from observed line intensities has been investigated. An important consequence of the κ - distribution is formation of the emission lines in much wider temperature ranges. The implications for the formation temperature of the observed SDO/AIA band emissions are shown.

  13. ION TEMPERATURE AND NON-THERMAL VELOCITY IN A SOLAR ACTIVE REGION: USING EMISSION LINES OF DIFFERENT ATOMIC SPECIES

    SciTech Connect

    Imada, S.; Hara, H.; Watanabe, T.

    2009-11-10

    We have studied the characteristics of the ion thermal temperature and non-thermal velocity in an active region observed by the EUV Imaging Spectrometer onboard Hinode. We used two emission lines of different atomic species (Fe XVI 262.98 A and S XIII 256.69 A) to distinguish the ion thermal velocity from the observed full width at half-maximum. We assumed that the sources of the two emission lines are the same thermal temperature. We also assumed that they have the same non-thermal velocity. With these assumptions, we could obtain the ion thermal temperature, after noting that M{sub sulfur} approx 0.6M{sub iron}. We have carried out the ion thermal temperature analysis in the active region where the photon counts are sufficient (>4500). What we found is as follows: (1) the common ion thermal temperatures obtained by Fe XVI and S XIII are approx2.5 MK, (2) the typical non-thermal velocities are approx13 km s{sup -1}, (3) the highest non-thermal velocities (>20 km s{sup -1}) are preferentially observed between the bright points in Fe XVI, while (4) the hottest material (>3 MK) is observed relatively inside the bright points compared with the highest non-thermal velocity region.

  14. Far-infrared lines from G45.13 + 0.14 A and K3-50 A - Density fluctuations in compact H II regions

    NASA Technical Reports Server (NTRS)

    Colgan, Sean W. J.; Simpson, J. P.; Rubin, Robert H.; Erickson, Edwin F.; Haas, M. R.; Wolf, Juergen

    1991-01-01

    Properties of two compact H II regions, K3-50 A and G45.13 + 0.14 A, were investigated by measuring FIR fluxes from forbidden O III 51.8 and 88.4 micron lines, forbidden N III 57.3 micron line, forbidden S III 33.5 micron line, and forbidden Ne III 36.0 micron line of these regions, using a cooled grating spectrometer on NASA's Kuiper Airborne Observatory. For both H II regions, the ratio of the two FIR O(2+) lines indicates an electron density of about 1000/cu cm, which for K3-50 A is a factor of 10 to 100 lower than the density determined from optical line observations of the lower excitation species S(+) and N(+) and than the peak rms density deduced from radio continuum measurements by Turner and Matthews (1984). Detailed spherically symmetric models of the two sources were constructed using all available measurements.

  15. The optical depth of the 158 micron forbidden C-12 II line - Detection of the F = 1 - 0 forbidden C-13 II hyperfine-structure component. [in Orion nebula

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Geis, N.; Madden, S. C.; Herrmann, F.; Genzel, R.; Poglitsch, A.; Jackson, J. M.

    1991-01-01

    The detection of the F = 1 - 0 hyperfine component of the 158-micron forbidden C-13 II fine-structure line in the interstellar medium is reported. A 12-point intensity map was obtained of the forbidden C-13 distribution over the inner 190-arcsec (R.A.) X 190-arcsec (decl.) regions of the Orion Nebula using an imaging Fabry-Perot interferometer. The forbidden C-12 II/C-13 II line intensity ratio varies significantly over the region mapped. It is highest (86 +/-0) in the core of the Orion H II region, and significantly lower (62 +/-7) in the outer regions of the map, reflecting higher optical depth in the forbidden C-12 II line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin forbidden C-13 II line at the edges of the bowl-shaped H II region blister.

  16. The structure and evolution of cis-regulatory regions: the shavenbaby story

    PubMed Central

    Stern, David L.; Frankel, Nicolás

    2013-01-01

    In this paper, we provide a historical account of the contribution of a single line of research to our current understanding of the structure of cis-regulatory regions and the genetic basis for morphological evolution. We revisit the experiments that shed light on the evolution of larval cuticular patterns within the genus Drosophila and the evolution and structure of the shavenbaby gene. We describe the experiments that led to the discovery that multiple genetic changes in the cis-regulatory region of shavenbaby caused the loss of dorsal cuticular hairs (quaternary trichomes) in first instar larvae of Drosophila sechellia. We also discuss the experiments that showed that the convergent loss of quaternary trichomes in D. sechellia and Drosophila ezoana was generated by parallel genetic changes in orthologous enhancers of shavenbaby. We discuss the observation that multiple shavenbaby enhancers drive overlapping patterns of expression in the embryo and that these apparently redundant enhancers ensure robust shavenbaby expression and trichome morphogenesis under stressful conditions. All together, these data, collected over 13 years, provide a fundamental case study in the fields of gene regulation and morphological evolution, and highlight the importance of prolonged, detailed studies of single genes. PMID:24218640

  17. Ceftaroline fosamil as first-line versus second-line treatment for acute bacterial skin and skin structure infections (ABSSSI) or community-acquired bacterial pneumonia (CABP).

    PubMed

    Guervil, David J; Kaye, Keith S; Hassoun, Ali; Cole, Phillip; Huang, Xing-Yue; Friedland, H David

    2016-06-01

    The Clinical Assessment Program and Teflaro(®) Utilization Registry (CAPTURE) is a multicenter registry study of acute bacterial skin and skin structure infection (ABSSSI) and community-acquired bacterial pneumonia (CABP) patients treated with ceftaroline fosamil in the US. Data for this analysis were collected between August 2011 and February 2013 at US study centres by randomly ordered chart review. Clinical success rates among ABSSSI patients were >81% when ceftaroline fosamil was used as first- or second-line therapy, including monotherapy and concurrent therapy. Among CABP patients, clinical success rates were >77% among first-line and second-line patients and patients who received first-line concurrent therapy or second line monotherapy or concurrent therapy. For CABP patients treated with ceftaroline fosamil as first-line monotherapy, the clinical success rate was 70%. Ceftaroline fosamil is an effective treatment option for patients with ABSSSI or CABP with similar clinical success rates when used as first-line or second-line treatment. PMID:25817579

  18. The Structure of the Nearby Giant Star-Forming Region 30 Doradus

    NASA Astrophysics Data System (ADS)

    Pellegrini, Eric; Baldwin, Jack; Hanson, Margaret; Ferland, Gary; Troland, Thomas

    2007-08-01

    The rates of star formation and chemical evolution are controlled in part by the interaction of stellar radiation and winds with the remnant molecular gas from which the stars have formed. We are carrying out a detailed, panchromatic study of these processes in the two nearest giant star-forming regions, 30 Doradus and NGC 3603, as an aide in understanding the nature of Giant Extragalactic H II Regions, starbursts, and Ultra-Luminous IR Galaxies. We recently completed our observations of NGC 3603. Here we request 2 nights on the Blanco telescope to obtain a dense grid of optical long-slit spectra criss- crossing 30 Dor. These will cover the [S II] doublet (to measure N_e) and also [O III], H(beta), [O I], H(alpha) and [N II] to measure the ionization mechanism and ionization parameter, at ~3800 different spots in the nebula. We also request 3 nights on SOAR to take K-band long slit spectra covering H^+ Br(gamma) and several H_2 lines across three representative edge-on ionization fronts in 30 Dor. The IR spectra will be taken in locations also covered by the optical spectra, and will tell us about the structure, pressure support and heating mechanisms in the photo-dissociation regions (PDRs) at these points. Either half of this project can stand on its own, but both parts together will permit the PI to complete his PhD thesis.

  19. Eunis Observation of Pervasive Faint Fe XIX Line Emission from a Solar Active Region: Evidence for Coronal Heating By Nanoflares

    NASA Astrophysics Data System (ADS)

    Brosius, J. W.; Daw, A. N.; Rabin, D. M.

    2014-12-01

    We present spatially resolved EUV spectroscopic measurements ofpervasive, faint Fe XIX 592.2 A line emission in an active regionobserved during the 2013 April 23 flight of the Extreme UltravioletNormal Incidence Spectrograph (EUNIS-13) sounding rocket instrument. With cooled detectors, high sensitivity, and high spectralresolution, EUNIS-13 resolves the lines of Fe XIX at 592.2 A (formedat temperature T around 8.9 MK) and Fe XII at 592.6 A (T around 1.6MK). The Fe XIX line emission, observed over an area in excess of4920 square arcsec (2.58x10^9 square km, more than 60% of the activeregion), provides strong evidence for the nanoflare heating model ofthe solar corona. No GOES events occurred in the region less than 2hours before the rocket flight, but a microflare was observed northand east of the region with RHESSI and EUNIS during the flight. Theabsence of significant upward velocities anywhere in the region,particularly the microflare, indicates that the pervasive Fe XIXemission is not propelled outward from the microflare site, but ismost likely attributed to localized heating (due to reconnection,wave dissipation, or some other mechanism) consistent with thenanoflare heating model of the solar corona. We measure average FeXIX/Fe XII intensity ratios of 0.070 outside the AR core, 0.22 inarea of bright coronal emission (the area in which the Fe XIIintensity exceeds half its maximum observed value), and 0.55 in theregion's hot core. Using the CHIANTI atomic physics database andassuming ionization equilibrium, we estimate corresponding Fe XIX/FeXII emission measure ratios of about 0.076, 0.23 and 0.59. Theemission measure ratios must be viewed with caution in light oflingering uncertainties in the Fe XII contribution functions.EUNIS-13 was supported by the NASA Heliophysics Division through itsLow Cost Access to Space program.

  20. INTENSITY MAPPING OF THE [C II] FINE STRUCTURE LINE DURING THE EPOCH OF REIONIZATION

    SciTech Connect

    Gong Yan; Cooray, Asantha; Silva, Marta; Santos, Mario G.; Bock, James; Bradford, C. Matt; Zemcov, Michael

    2012-01-20

    The atomic C II fine-structure line is one of the brightest lines in a typical star-forming galaxy spectrum with a luminosity {approx}0.1%-1% of the bolometric luminosity. It is potentially a reliable tracer of the dense gas distribution at high redshifts and could provide an additional probe to the era of reionization. By taking into account the spontaneous, stimulated, and collisional emission of the C II line, we calculate the spin temperature and the mean intensity as a function of the redshift. When averaged over a cosmologically large volume, we find that the C II emission from ionized carbon in individual galaxies is larger than the signal generated by carbon in the intergalactic medium. Assuming that the C II luminosity is proportional to the carbon mass in dark matter halos, we also compute the power spectrum of the C II line intensity at various redshifts. In order to avoid the contamination from CO rotational lines at low redshift when targeting a C II survey at high redshifts, we propose the cross-correlation of C II and 21 cm line emission from high redshifts. To explore the detectability of the C II signal from reionization, we also evaluate the expected errors on the C II power spectrum and C II-21 cm cross power spectrum based on the design of the future millimeter surveys. We note that the C II-21 cm cross power spectrum contains interesting features that capture physics during reionization, including the ionized bubble sizes and the mean ionization fraction, which are challenging to measure from 21 cm data alone. We propose an instrumental concept for the reionization C II experiment targeting the frequency range of {approx}200-300 GHz with 1, 3, and 10 m apertures and a bolometric spectrometer array with 64 independent spectral pixels with about 20,000 bolometers.

  1. VizieR Online Data Catalog: Line ratios in giant HII region H 1013 (Stasinska+, 2013)

    NASA Astrophysics Data System (ADS)

    Stasinska, G.; Morisset, C.; Simon-Diaz, S.; Bresolin, F.; Schaerer, D.; Brandl, B.

    2013-08-01

    Cedres & Cepa (2002, Cat. J/A+A/391/809) used CDD observations in several narrow-band filters to compile a catalogue of 338 HII regions in the inner parts of M 101 (NGC 5457), also providing information about their fluxes, extinctions, equivalent widths, spatial distribution, excitations, radiation hardness, ionization parameters and metallicities. H1013 is identified as the HII region number 299 in their catalogue. We use the Hα and Hβ continuum-subtracted images (kindly provided by B. Cedres) in our study. These images were obtained at the Nordic Optical Telescope with the ALFOSC instrument in direct imaging mode (spatial resolution of 0.189-arcsec/pix). (1 data file).

  2. Far Infrared Line Profiles from Photodissociation Regions and Warm Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Boreiko, R. T.; Betz, A. L.

    1998-01-01

    This report summarizes the work done under NASA Grant NAG2-1056 awarded to the University of Colorado. The aim of the project was to analyze data obtained over the past several years with the University of Colorado far-infrared heterodyne spectrometer aboard the Kuiper Airborne Observatory. Of particular interest were observations of CO and ionized carbon (C II) in photodissociation regions (PDRS) at the interface between UV-ionized H II regions and the neutral molecular clouds supporting star formation. These data, obtained with a heterodyne spectrometer having a resolution of 3.2 MHz, which is equivalent to a velocity resolution of 0.2 km s(exp -1) at 60 microns and 1.0 km s(exp -1) at 300 microns, were analyzed to obtain physical parameters such as density and temperature in the observed PDR.

  3. He-broadening and shift coefficients of water vapor lines in infrared spectral region

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2015-11-01

    The water vapor line broadening and shift coefficients in the ν1+ν2, ν2+ν3, ν1+ν3, 2ν3, 2ν1, 2ν2+ν3, and ν1+2ν2 vibrational bands induced by helium pressure were measured using a Bruker IFS 125HR spectrometer. The vibrational bands 2ν3 and ν1+2ν2 were investigated for the first time. The interaction potential used in the calculations of broadening and shift coefficients was chosen as the sum of pair potentials, which were modeled by the Lennard-Jones (6-12) potentials. The vibrational and rotational contributions to this potential were obtained by use of the intermolecular potential parameters and intramolecular parameters of H2O molecule. The calculated values of the broadening and shift coefficients were compared with the experimental data.

  4. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Doi, Akihiro; Kino, Motoki; Nagira, Hiroshi; Kawakatu, Nozomu; Nagai, Hiroshi; Asada, Keiichi

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  5. A far wing line shape theory and its application to the water continuum absorption in the infrared region. I

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1991-01-01

    The present theory for the continuous absorption that is due to the far-wing contribution of allowed lines is based on the quasistatic approximation for the far wing limit and the binary collision approximation of one absorber molecule and one bath molecule. The validity of the theory is discussed, and numerical results of the water-continuum absorption in the IR region are presented for comparison with experimental data. Good agreement is obtained for both the magnitude and temperature dependence of the absorption coefficients.

  6. Long regional magnetotelluric profile crossing geotectonic structures of central Poland

    NASA Astrophysics Data System (ADS)

    Stefaniuk, M.; Pokorski, J.; Wojdyla, M.

    2009-04-01

    Introduction The magnetotelluric survey was made along a regional profile, which runs across Poland from south-west to north-east during 2005-2006 years. The profile crosses major geological structures of Central Poland, including the Variscan Externides and Variscan foredeep, the Transeuropean Suture Zone and the marginal zone of East European Craton. The main objectives of the project include identification of sub-Zechstein sedimentary structures and evaluation of resistivity distribution within the deep crust, especially at the contact of East European Precambrian Craton and Central Europe Paleozoic structures. The length of the profile is about 700 km; 161 deep magnetotelluric sounding sites were made with a medium spacing of about 4 km. Data acquisition and processing The recording of the components of natural electromagnetic field was made with a broad range of frequencies, varying from 0.0003 Hz up to 575 Hz with use of MT-1 system of Electromagnetic Instruments Incorporation. This frequency band allowed obtaining the information about geology ranging from a few dozen meters to approximately 100 km, depending on the vertical distribution of the resistivity inside geological medium. To reduce the electromagnetic noise, magnetic and electric remote reference was applied. A remote reference site was located at a distance of over 100 km of field sites. Processing of the recorded data included the estimation of the components of impedance tensor (Zxx, Zxy, Zyx and Zyy ), with use of robust type procedures. The components of the impedance tensor allowed in a subsequent step for calculation of field curves for two orientations of the measurement system (XY - described further as the TM mode and YX - TE mode) and additional parameters of the medium like skew, strike, pole diagrams etc. Recording of the vertical component of electromagnetic field (Hz) allowed calculation of tipper parameter T. Magnetotelluric soundings interpretation Geophysical interpretation of MT

  7. Active folded structures of the Western Caucasus (Sochi region)

    NASA Astrophysics Data System (ADS)

    Trikhunkov, Yaroslav; Zelenin, Egor

    2014-05-01

    The Western Caucasus as a margin segment of folded system of the Greater Caucasus was formed at the periphery of collision interaction of the Scythian Plate and the Transcaucasian Massif. The estimated age of the primary folded deformations of the initial surface of that territory ranges from the late Eocene to late Neogene. We have obtained new data on modern folded deformations of the anticlinal ridges, which prevail in Sochi region in the southern macroslope of the mountain system. Very similar Alek, Galitsinsky, Akhun, Nikolaevsky anticlinal ridges are uplifting in the main Caucasus direction (NW - SE) and are crossed by narrow antecedent river valleys. These ridges stand out contrasting to sinclinal depressions, where fluviatile accumulation prevails. At the intersection of the Mzymta river and the Galitsinsky anticlinal ridge a narrow Akhshtyr canyon with steep, 150 meters high slopes were formed. Downstream in the neighboring Akhshtyr synclinal depression the valley expands. Here the floodplain and two levels of terraces with the height of 20 - 30 and 50 - 60 m correspondingly were formed. The age of the first terrace was defined by archeologic data of V. Shchelinsky (2007) and by correlation with marine Black Sea Late Karangat terrace as a 135 - 90 ka (Eemian interglacial). The second terrace is apparently older and dates back to Middle Pleistocene. The field research and analysis of the elevations by ASTER GDEM allowed us to trace both terraces in the southern structural slope of the Galitsinsky ridge above the canyon, adjacent to the Akhshtyr depression, at the heights 70 and 110 m correspondingly. Alluvial deposits in outcrops of lower terrace (elongated pebbles, which look like modern alluvium of the Mzymta) were traced on the surface of the slope. Thereby, described fragments of the Mzymta terraces were uplifted above the level of the corresponding terraces in the synclinal depression as a result of dislocation on the slope of the actively uplifting

  8. D IR Line Shapes for Determining the Structure of a Peptide in a Bilayer

    NASA Astrophysics Data System (ADS)

    Woys, Ann Marie; Lin, Y. S.; Skinner, J. S.; Zanni, M. T.; Reddy, A. S.; de Pablo, J. J.

    2010-06-01

    Structure of the antimicrobial peptide, ovispirin, on a lipid bilayer was determined using 2D IR spectroscopy and spectra calculated from molecular dynamics simulations. Ovispirin is an 18 residue amphipathic peptide that binds parallel to the membrane in a mostly alpha helical conformation. 15 of the 18 residues were ^1^3C^1^8O isotopically labeled on the backbone to isolate the amide I vibration at each position. 2D IR spectra were collected for each labeled peptide in 3:1 POPC/POPG vesicles, and peak width along the diagonal was measured. The diagonal line width is sensitive to the vibrator's electrostatic environment, which varies through the bilayer. We observe an oscillatory line width spanning 10 to 24 cm-1 and with a period of nearly 3.6 residues. To further investigate the position of ovispirin in a bilayer, molecular dynamics simulations determined the peptide depth to be just below the lipid headgroups. The trajectory of ovispirin at this depth was used to calculate 2D IR spectra, from which the diagonal line width is measured. Both experimental and simulated line widths are similar in periodicity and suggest a kink in the peptide backbone and the tilt in the bilayer. A. Woys, Y. S. Lin, A. S. Reddy, W. Xiong, J. J. de Pablo, J. S. Skinner, and M. T. Zanni, JACS 132, 2832-2838 (2010).

  9. Comparison of structural and least-squares lines for estimating geologic relations

    USGS Publications Warehouse

    Williams, G.P.; Troutman, B.M.

    1990-01-01

    Two different goals in fitting straight lines to data are to estimate a "true" linear relation (physical law) and to predict values of the dependent variable with the smallest possible error. Regarding the first goal, a Monte Carlo study indicated that the structural-analysis (SA) method of fitting straight lines to data is superior to the ordinary least-squares (OLS) method for estimating "true" straight-line relations. Number of data points, slope and intercept of the true relation, and variances of the errors associated with the independent (X) and dependent (Y) variables influence the degree of agreement. For example, differences between the two line-fitting methods decrease as error in X becomes small relative to error in Y. Regarding the second goal-predicting the dependent variable-OLS is better than SA. Again, the difference diminishes as X takes on less error relative to Y. With respect to estimation of slope and intercept and prediction of Y, agreement between Monte Carlo results and large-sample theory was very good for sample sizes of 100, and fair to good for sample sizes of 20. The procedures and error measures are illustrated with two geologic examples. ?? 1990 International Association for Mathematical Geology.

  10. Efficient Banknote Recognition Based on Selection of Discriminative Regions with One-Dimensional Visible-Light Line Sensor

    PubMed Central

    Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-01-01

    Banknote papers are automatically recognized and classified in various machines, such as vending machines, automatic teller machines (ATM), and banknote-counting machines. Previous studies on automatic classification of banknotes have been based on the optical characteristics of banknote papers. On each banknote image, there are regions more distinguishable than others in terms of banknote types, sides, and directions. However, there has been little previous research on banknote recognition that has addressed the selection of distinguishable areas. To overcome this problem, we propose a method for recognizing banknotes by selecting more discriminative regions based on similarity mapping, using images captured by a one-dimensional visible light line sensor. Experimental results with various types of banknote databases show that our proposed method outperforms previous methods. PMID:26959022

  11. Measurements of [O I] λ6300/Hα Line Intensity Ratios for Four O Star H II Regions

    NASA Astrophysics Data System (ADS)

    Hausen, N. R.; Reynolds, R. J.; Haffner, L. M.

    2002-12-01

    We have used the Wisconsin Hα Mapper facility to measure the [O I] λ6300/Hα line intensity ratios for four O star H II regions: S27 (observation coordinates l=6.3d,b=+23.6d), S252 (l=190.1d,b=+0.6d), S261 (l=194.1d,b=-1.9d), and S264 (l=195.1d,b=-12.0d). We find that the ratios range from 0.0015 to 0.0053. These results are roughly a factor of 10 lower than measured [O I]/Hα ratios in directions that sample the warm ionized component of the interstellar medium. This difference implies a significantly lower hydrogen ionization ratio n(H+)/n(H0) or higher electron temperature in the diffuse ionized gas compared with that in the bright discrete O star H II regions.

  12. A parametric study of nonlinear seismic response analysis of transmission line structures.

    PubMed

    Tian, Li; Wang, Yanming; Yi, Zhenhua; Qian, Hui

    2014-01-01

    A parametric study of nonlinear seismic response analysis of transmission line structures subjected to earthquake loading is studied in this paper. The transmission lines are modeled by cable element which accounts for the nonlinearity of the cable based on a real project. Nonuniform ground motions are generated using a stochastic approach based on random vibration analysis. The effects of multicomponent ground motions, correlations among multicomponent ground motions, wave travel, coherency loss, and local site on the responses of the cables are investigated using nonlinear time history analysis method, respectively. The results show the multicomponent seismic excitations should be considered, but the correlations among multicomponent ground motions could be neglected. The wave passage effect has a significant influence on the responses of the cables. The change of the degree of coherency loss has little influence on the response of the cables, but the responses of the cables are affected significantly by the effect of coherency loss. The responses of the cables change little with the degree of the difference of site condition changing. The effect of multicomponent ground motions, wave passage, coherency loss, and local site should be considered for the seismic design of the transmission line structures. PMID:25133215

  13. Isotope shifts and hyperfine structure of the laser-cooling Fe I 358-nm line

    NASA Astrophysics Data System (ADS)

    Huet, N.; Pettens, M.; Bastin, T.

    2015-11-01

    We report on the measurement of the isotope shifts of the 3 d74 s a 5F5-3 d74 p z 5G6o Fe i line at 358 nm between all four stable isotopes ,Fe56Fe54,Fe57 , and Fe58 , as well as the hyperfine structure of that line for Fe57 , the only stable isotope having a nonzero nuclear spin. This line is of primary importance for laser-cooling applications. In addition, an experimental value of the field and specific mass shift coefficients of the transition is reported as well as the hyperfine structure magnetic dipole coupling constant A of the transition excited state in Fe57 , namely A (3 d74 p z 5G6o) =31.241 (48 ) MHz. The measurements were carried out by means of laser-induced fluorescence spectroscopy performed on an isotope-enriched iron atomic beam. All measured frequency shifts are reported with relative uncertainties below one third percent.

  14. A Parametric Study of Nonlinear Seismic Response Analysis of Transmission Line Structures

    PubMed Central

    Wang, Yanming; Yi, Zhenhua

    2014-01-01

    A parametric study of nonlinear seismic response analysis of transmission line structures subjected to earthquake loading is studied in this paper. The transmission lines are modeled by cable element which accounts for the nonlinearity of the cable based on a real project. Nonuniform ground motions are generated using a stochastic approach based on random vibration analysis. The effects of multicomponent ground motions, correlations among multicomponent ground motions, wave travel, coherency loss, and local site on the responses of the cables are investigated using nonlinear time history analysis method, respectively. The results show the multicomponent seismic excitations should be considered, but the correlations among multicomponent ground motions could be neglected. The wave passage effect has a significant influence on the responses of the cables. The change of the degree of coherency loss has little influence on the response of the cables, but the responses of the cables are affected significantly by the effect of coherency loss. The responses of the cables change little with the degree of the difference of site condition changing. The effect of multicomponent ground motions, wave passage, coherency loss, and local site should be considered for the seismic design of the transmission line structures. PMID:25133215

  15. Statistical analysis of shear line and torrential rain over Yangtze-Huaihe river region in China during June-July 1981-2013

    NASA Astrophysics Data System (ADS)

    yao, xiuping; ma, jiali

    2016-04-01

    Using ERA-Interim wind data and China's 756 meteorological station daily precipitation data, the shear line days, torrential rain days and shear line torrential rain days during June-July over Yangtze-Huaihe river region in 1981-2013 have been selected by 3 criteria, meridional shear of zonal wind, relative vorticity , zero line of zonal wind. It is shown that during June and July(61days) from 1981 to 2013,30.2 days (nearly 1 month) are torrential rain days, 33.2 days are shear line days,22.0 days are shear line torrential rain days. Shear line torrential rain days has accounted for nearly 2/3 of shear line days and nearly 3/4 of torrential rain days. The numbers of the shear line days, torrential rain days during June-July are on insignificant annual increase, the increase rate of which is one order of magnitude larger than that of shear line torrential rain days, which is basically unchanged in the past 33 years. Earlier than 2000, there are more frequency fluctuations of shear line day, torrential rain day and shear line torrential rain day compared with that later than 2000.There are some similar decadal variances in torrential rain days,shear line days and shear line torrential rain days over Yangtze-Huaihe river region,and those decadal variances of the 3 series are also similar with the decadal variance of precipitation amount over Yangtze-Huaihe river region in the period of 1981-2007.Shear line torrential rain mostly occur between late June and early July, the Meiyu period. The number of shear line torrential rain days during June-July shows 2-3 year period prior to 1995 and no significant period later than 1995.Climatologically, the numbers of shear line torrential day show 2-4 day period in early-middle June and middle-late July, while it shows no significant period from late June to early July, indicating that shear line torrential rain day maintain a stable frequency during that period ,and precipitation caused by shear line makes up most of the Meiyu

  16. Far Infrared Line Profiles from Photodissociation Regions and Warm Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Boreiko, R. T.; Betz, A. L.

    1998-01-01

    This report summarizes the work done under NASA Grant NAG2-1056 awarded to the University of Colorado. The aim of the project was to analyze data obtained over the past several years with the University of Colorado far-infrared heterodyne spectrometer (Betz & Boreiko 1993) aboard the Kuiper Airborne Observatory. Of particular interest were observations of CO and ionized carbon (C II) in photodissociation regions (PDRs) at the interface between UV-ionized H II regions and the neutral molecular clouds supporting star formation. These data, obtained with a heterodyne spectrometer having a resolution of 3.2 MHz, which is equivalent to a velocity resolution of 0.2 km/s at 60 microns and 1.0 km/s at 300 microns, were analyzed to obtain physical parameters such as density and temperature in the observed PDR. The publication resulting from the work reported here is appended. No inventions were made nor was any federally owned property acquired as a result of the activities under this grant.

  17. Far Infrared Line Profiles from Photodissociation Regions and Warm Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Boreiko, R. T.; Betz, A. L.

    1998-01-01

    This report summarizes the work done under NASA Grant NAG2-1056 awarded to the University of Colorado. The aim of the project was to analyze data obtained over the past several years with the University of Colorado far-infrared heterodyne spectrometer (Betz Boreiko 1993) aboard the Kuiper Airborne Observatory. Of particular interest were observations of CO and ionized carbon (C II) in photodissociation regions (PDRS) at the interface between UV-ionized H II regions and the neutral molecular clouds supporting star formation. These data, obtained with a heterodyne spectrometer having a resolution of 3.2 MHz, which is equivalent to a velocity resolution of 0.2 km/s at 60 microns and 1.0 km/s at 300 microns, were analyzed to obtain physical parameters such as density and temperature in the observed PDR. The publication resulting from the work reported here is appended. No inventions were made nor was any federally owned property acquired as a result of the activities under this grant.

  18. Line Intensities of CH3D in the Triad Region: 6-10 mu m

    SciTech Connect

    Brown, L. R.; Nikitin, A.; Benner, D. C.; Devi, V. M.; Smith, M.A.H.; Fejard, L.; Champion, J. P.; Tyuterev, Vl G.; Sams, Robert L.

    2004-06-30

    Line intensities of the three fundamentals of the 12CH3D Triad are modeled with an RMS of 3.2% using over 2100 observed values retrieved by multispectrum fitting of enriched sample spectra recorded with two Fourier transform spectrometers. The band strengths of the Triad in units of 10-18 cm-1/(molecule cm-2) at 296 K are, respectively, 2.33 for v6 (E) at 1161 cm-1, 1.75 for v3 (A1) at 1307 cm-1 and 0.571 for v5 (E) at 1472 cm-1. The total calculated absorption arising from 12CH3D Triad fundamentals is 4.65x10-18 cm-1/molecule cm-2) at 296K. In addition, some 740 intensities of nine hotbands are fitted to 8.1%; most of the hotband measurements belong to 2v6-v6 and v3+v6-v3 near 1160 cm-1, 2v3-v3 near 1304 cm-1. The other observed hotbands are v5 + v6-v6 2v5-v5, v5+v6-v5, v3+v5-v3, and v3+v5-v5.

  19. Evolution of Mhc Class i Complex Region with Special Reference to Fragmentary Line Sequences

    NASA Astrophysics Data System (ADS)

    Tateno, Yoshio; Fukami-Kobayashi, Kaoru; Inoko, Hidetoshi

    2008-03-01

    We reviewed the origin and evolution of the two pairs of immune genes, (MHC-B and MHC-C) and (MICA and MICB) in man, chimpanzee and rhesus monkey based mainly on our previous work. Since those genes were well known to have been subject to strong natural selection in evolution, they themselves were not suitable for our study. We thus took another approach to use fragmented and nonfunctional LINEs that had coevolved with the two pairs in the same genomic fragments. Our results showed that MHC-B and MHC-C duplicated about 22 Mry (million years) ago, and MICA and MICB duplicated about 14 Myr ago. Interestingly, rhesus monkey was found not to have either pair but many repeats similar to MHC-B. Therefore, we estimated the divergence time of the monkey, and found that it diverged out from a common ancestor of man and chimpanzee about 30 Myr ago. The divergence time was consistent with the duplication times of the two pairs of immune genes. Based on our results we would predict that orangutan and gorilla also have the two pairs, because the both primate species are considered to have diverged less than 14 Myr ago.

  20. Effects of external radiation fields on line emission—application to star-forming regions

    SciTech Connect

    Chatzikos, Marios; Ferland, G. J.; Williams, R. J. R.; Porter, Ryan; Van Hoof, P. A. M.

    2013-12-20

    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background, as well as by a nearby active galactic nucleus. These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code CLOUDY. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field and show that about 60% of its emission lines are sensitive to background subtraction. We argue that this geometric approach could provide an additional tool toward understanding the complex radiation fields of starburst galaxies.

  1. Prevalence of Micro-Jets from the Network Structures of the Solar Transition Region and Chromosphere

    NASA Astrophysics Data System (ADS)

    DeLuca, E. E.; Tian, H.; Cranmer, S. R.; Reeves, K.; Miralles, M. P.; McCauley, P.; McKillop, S.

    2014-12-01

    IRIS observations in the 1330Å, 1400Å and 2796Å passbands have revealed numerous small-scale jet-like features with speeds of ~80-250 km/s from the chromospheric network. These network jets occur in both the quiet Sun and coronal holes. Their widths are often ~300 km or less. Many of these jets show up as elongated features with enhanced line width in maps obtained with transition region (TR) lines, suggesting that these jets reach at least TR temperatures and they constitute an important element of TR structures. The ubiquitous presence of these high-reaching (often >10 Mm) jets also suggests that they may play a crucial role in the mass and energy budgets of the corona and solar wind. The generation of these jets in the network and the accompanying Alfven waves is also consistent with the "magnetic furnace model" of solar wind proposed by Axford & McKenzie (1992). The large speeds (greater than sound speed) suggest that the Lorentz force (perhaps related to reconnection) must play an important role in the generation and propagation of the network jets. We believe that many network jets are the on-disk counterparts and TR manifestation of type-II spicules.

  2. Semi-isometric registration of line features for flexible fitting of protein structures.

    PubMed

    Abeysinghe, S; Baker, M L; Chiu, W; Ju, T

    2010-01-01

    In this paper, we study a registration problem that is motivated by a practical biology problem - fitting protein structures to low-resolution density maps. We consider registration between two sets of lines features (e.g., helices in the proteins) that have undergone not a single, but multiple isometric transformations (e.g., hinge-motions). The problem is further complicated by the presence of symmetry in each set. We formulate the problem as a clique-finding problem in a product graph, and propose a heuristic solution that includes a fast clique-finding algorithm unique to the structure of this graph. When tested on a suite of real protein structures, the algorithm achieved high accuracy even for very large inputs containing hundreds of helices. PMID:21124809

  3. Structure Of Rare-Earth Nuclei Around The Proton Drip Line

    SciTech Connect

    Rykaczewski, K.P.; Gross, C.J.; Yu, C.H.; Grzywacz, R.K.; Bingham, C.R.; Danchev, M.; Mazzocchi, C.; Tantawy, M.N.; Batchelder, J.C.; Karny, M.; Krolas, W.; Fong, D.; Hamilton, J.H.; Ramayya, A.V.; Piechaczek, A.; Zganjar, E.; Winger, J.A.; Ginter, T.N.; Stolz, A.; Hagino, K.

    2005-04-05

    Decay studies on rare earth nuclei around the proton drip line have been performed by means of the Recoil Mass Spectrometer at the Holifield Radioactive Ion Beam Facility in Oak Ridge. The proton emission from the odd-odd N=77 isotone 146Tm was reinvestigated, resulting in the assignment of the 1.01 MeV proton line to the decay of a short-lived 146Tm state. A new proton radioactivity of 144Tm was identified. The decays of isomeric levels in the N=77 isotones, 140Eu, 142Tb and 144Ho were remeasured using {gamma} and electron detectors. The analysis of the structure of studied nuclei, which accounts for the coupling between the protons and neutrons and for core excitations, is presented.

  4. Line-field parallel swept source MHz OCT for structural and functional retinal imaging.

    PubMed

    Fechtig, Daniel J; Grajciar, Branislav; Schmoll, Tilman; Blatter, Cedric; Werkmeister, Rene M; Drexler, Wolfgang; Leitgeb, Rainer A

    2015-03-01

    We demonstrate three-dimensional structural and functional retinal imaging with line-field parallel swept source imaging (LPSI) at acquisition speeds of up to 1 MHz equivalent A-scan rate with sensitivity better than 93.5 dB at a central wavelength of 840 nm. The results demonstrate competitive sensitivity, speed, image contrast and penetration depth when compared to conventional point scanning OCT. LPSI allows high-speed retinal imaging of function and morphology with commercially available components. We further demonstrate a method that mitigates the effect of the lateral Gaussian intensity distribution across the line focus and demonstrate and discuss the feasibility of high-speed optical angiography for visualization of the retinal microcirculation. PMID:25798298

  5. Conformal doping of topographic silicon structures using a radial line slot antenna plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru

    2014-06-01

    Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.

  6. Line-field parallel swept source MHz OCT for structural and functional retinal imaging

    PubMed Central

    Fechtig, Daniel J.; Grajciar, Branislav; Schmoll, Tilman; Blatter, Cedric; Werkmeister, Rene M.; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-01-01

    We demonstrate three-dimensional structural and functional retinal imaging with line-field parallel swept source imaging (LPSI) at acquisition speeds of up to 1 MHz equivalent A-scan rate with sensitivity better than 93.5 dB at a central wavelength of 840 nm. The results demonstrate competitive sensitivity, speed, image contrast and penetration depth when compared to conventional point scanning OCT. LPSI allows high-speed retinal imaging of function and morphology with commercially available components. We further demonstrate a method that mitigates the effect of the lateral Gaussian intensity distribution across the line focus and demonstrate and discuss the feasibility of high-speed optical angiography for visualization of the retinal microcirculation. PMID:25798298

  7. Monitoring in the Western Pacific region shows evidence of seagrass decline in line with global trends.

    PubMed

    Short, Frederick T; Coles, Robert; Fortes, Miguel D; Victor, Steven; Salik, Maxwell; Isnain, Irwan; Andrew, Jay; Seno, Aganto

    2014-06-30

    Seagrass systems of the Western Pacific region are biodiverse habitats, providing vital services to ecosystems and humans over a vast geographic range. SeagrassNet is a worldwide monitoring program that collects data on seagrass habitats, including the ten locations across the Western Pacific reported here where change at various scales was rapidly detected. Three sites remote from human influence were stable. Seagrasses declined largely due to increased nutrient loading (4 sites) and increased sedimentation (3 sites), the two most common stressors of seagrass worldwide. Two sites experienced near-total loss from of excess sedimentation, followed by partial recovery once sedimentation was reduced. Species shifts were observed at every site with recovering sites colonized by pioneer species. Regulation of watersheds is essential if marine protected areas are to preserve seagrass meadows. Seagrasses in the Western Pacific experience stress due to human impacts despite the vastness of the ocean area and low development pressures. PMID:24746094

  8. CONNECTION BETWEEN MID-INFRARED EMISSION PROPERTIES AND NARROW-LINE REGION OUTFLOWS IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang Kai; Wang Tinggui; Dong Xiaobo; Yan Lin

    2013-05-01

    The location of warm dust producing the mid-infrared (MIR) emission in type 1 active galactic nuclei (AGNs) is complex and not yet fully known. We explore this problem by studying how the MIR covering factor (CF{sub MIR} = L{sub MIR}/L{sub bol}) correlates with the fundamental parameters of AGN accretion process (such as L{sub bol}, black hole mass M{sub BH}, and Eddington ratio L/L{sub Edd}) and the properties of narrow emission lines (as represented by [O III] {lambda}5007), using large data sets derived from the Sloan Digital Sky Spectroscopic Survey (SDSS) and the Wide Infrared Sky Survey (WISE). First, we find that the luminosity of the [O III] wing component (L{sub wing}) correlates more tightly with the continuum luminosity ({lambda}L{sub {lambda}}(5100)) than the luminosity of the line core component (L{sub core}) does, which is in line with our previous conclusion that the wing component, generally blueshifted, originates from the polar outflows in the inner narrow-line region (NLR). We then find that the MIR CF shows the strongest correlation with L{sub wing}/L{sub bol} rather than with L{sub core}/L{sub bol} or the above fundamental AGN parameters, and the correlation becomes stronger as the infrared wavelength increases. We also confirm the anti-correlations of CF{sub MIR} with L{sub bol} and M{sub BH}, and the lack of dependence of CF{sub MIR} on the Eddington ratio. These results suggest that a large fraction of the warm dust producing MIR emission in AGNs is likely embedded in polar outflows in the NLR instead of in the torus.

  9. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines.

    PubMed Central

    Baker, C C; Phelps, W C; Lindgren, V; Braun, M J; Gonda, M A; Howley, P M

    1987-01-01

    We cloned and analyzed the integrated human papillomavirus type 16 (HPV-16) genomes that are present in the human cervical carcinoma cell lines SiHa and CaSki. The single HPV-16 genome in the SiHa line was cloned as a 10-kilobase (kb) HindIII fragment. Integration of the HPV-16 genome occurred at bases 3132 and 3384 with disruption of the E2 and E4 open reading frames (ORFs). An additional 52-base-pair deletion of HPV-16 sequences fused the E2 and E4 ORFs. the 5' portion of the disrupted E2 ORF terminated immediately in the contiguous human right-flanking sequences. Heteroduplex analysis of this cloned integrated viral genome with the prototype HPV-16 DNA revealed no other deletions, insertions, or rearrangements. DNA sequence analysis of the E1 ORF, however, revealed the presence of an additional guanine at nucleotide 1138, resulting in the fusion of the E1a and E1b ORFs into a single E1 ORF. Sequence analysis of the human flanking sequences revealed one-half of an Alu sequence at the left junction and a sequence highly homologous to the human O repeat in the right-flanking region. Analysis of the three most abundant BamHI clones from the CaSki line showed that these consisted of full-length, 7.9-kb HPV-16 DNA; a 6.5-kb genome resulting from a 1.4-kb deletion of the long control region; and a 10.5-kb clone generated by a 2.6-kb tandem repeat of the 3' early region. These HPV-16 genomes were arranged in the host chromosomes as head-to-tail, tandemly repeated arrays. Transcription analysis revealed expression of the HPV-16 genome in each of these two cervical carcinoma cell lines, albeit at significantly different levels. Preliminary mapping of the viral RNA with subgenomic strand-specific probes indicated that viral transcription appeared to be derived primarily from the E6 and E7 ORFs. Images PMID:3029430

  10. Closed magnetic structures in the chromosphere and in the transition region

    NASA Technical Reports Server (NTRS)

    Malherbe, J. M. (Editor); Schmieder, B.; Simon, G.; Mein, P.; Tandberg-Hanssen, E.

    1987-01-01

    Using simultaneous observations of the same solar regions in the lines H-alpha and C IV 1548 A, schematic models of closed magnetic lines have been derived from dynamical constraints. It is concluded that the magnetic loops are closed at higher levels above facular than above nonfacular regions. This result remains valid whatever are the assumed density models and even if the 3-min oscillations are taken into account. The center-to-limb behavior is well predicted by taking into account the relative opacity in the chromosphere and transition region.

  11. RADIATIVE TRANSFER MODELS OF MID-INFRARED H{sub 2}O LINES IN THE PLANET-FORMING REGION OF CIRCUMSTELLAR DISKS

    SciTech Connect

    Meijerink, R.; Pontoppidan, K. M.; Blake, G. A.; Poelman, D. R.; Dullemond, C. P.

    2009-10-20

    The study of warm molecular gas in the inner regions of protoplanetary disks is of key importance for the study of planet formation and especially for the transport of H{sub 2}O and organic molecules to the surfaces of rocky planets/satellites. Recent Spitzer observations have shown that the mid-infrared spectra of protoplanetary disks are covered in emission lines due to water and other molecules. Here, we present a non-local thermodynamic equilibrium (LTE) two-dimensional radiative transfer model of water lines in the 10-36 mum range that can be used to constrain the abundance structure of water vapor, given an observed spectrum, and show that an assumption of LTE does not accurately estimate the physical conditions of the water vapor emission zones, including temperatures and abundance structures. By applying the model to published Spitzer spectra we find that: (1) most water lines are subthermally excited, (2) the gas-to-dust ratio must be as much as 1-2 orders of magnitude higher than the canonical interstellar medium ratio of 100-200, (3) the gas temperature must be significantly higher than the dust temperature, in agreement with detailed heating/cooling models, and (4) the water vapor abundance in the disk surface must be significantly truncated beyond approx1 AU. A low efficiency of water formation below T approx 300 K may naturally result in a lower water abundance beyond a certain radius. However, we find that chemistry, although not necessarily ruled out, may not be sufficient to produce a sharp abundance drop of many orders of magnitude and speculate that the depletion may also be caused by vertical turbulent diffusion of water vapor from the superheated surface to regions below the snow line, where the water can freeze out and be transported to the midplane as part of the general dust settling. Such a vertical cold finger effect is likely to be efficient due to the lack of a replenishment mechanism of large, water-ice coated dust grains to the disk

  12. Optimal Image Stitching for Concrete Bridge Bottom Surfaces Aided by 3d Structure Lines

    NASA Astrophysics Data System (ADS)

    Liu, Yahui; Yao, Jian; Liu, Kang; Lu, Xiaohu; Xia, Menghan

    2016-06-01

    Crack detection for bridge bottom surfaces via remote sensing techniques is undergoing a revolution in the last few years. For such applications, a large amount of images, acquired with high-resolution industrial cameras close to the bottom surfaces with some mobile platform, are required to be stitched into a wide-view single composite image. The conventional idea of stitching a panorama with the affine model or the homographic model always suffers a series of serious problems due to poor texture and out-of-focus blurring introduced by depth of field. In this paper, we present a novel method to seamlessly stitch these images aided by 3D structure lines of bridge bottom surfaces, which are extracted from 3D camera data. First, we propose to initially align each image in geometry based on its rough position and orientation acquired with both a laser range finder (LRF) and a high-precision incremental encoder, and these images are divided into several groups with the rough position and orientation data. Secondly, the 3D structure lines of bridge bottom surfaces are extracted from the 3D cloud points acquired with 3D cameras, which impose additional strong constraints on geometrical alignment of structure lines in adjacent images to perform a position and orientation optimization in each group to increase the local consistency. Thirdly, a homographic refinement between groups is applied to increase the global consistency. Finally, we apply a multi-band blending algorithm to generate a large-view single composite image as seamlessly as possible, which greatly eliminates both the luminance differences and the color deviations between images and further conceals image parallax. Experimental results on a set of representative images acquired from real bridge bottom surfaces illustrate the superiority of our proposed approaches.

  13. Real-time photoacoustic tomograpghy using linear array probe and detection of line structure using Hough transform.

    PubMed

    Shin, Seung-Won; Park, Jaebyung; Shin, Dong Ho; Song, Chul-Gyu; Kim, Kyeong-Seop

    2015-01-01

    A real-time photoacoustic tomography (PAT) system is developed using a linear array probe and phantom images are acqu