Science.gov

Sample records for line widths transition

  1. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    NASA Astrophysics Data System (ADS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-07-01

    Inelastic structure factors for rotational transitions of uniaxial NH3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling. Present address: LPCM, CNRS-Université de Bordeaux I, 351 Cours de Libération, Talence F-33405, France.

  2. Cyclotron transition line-width due to interactions with the flexural wave of a phonon confined in a quantum well

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2016-03-01

    The cyclotron transition line-width for a system of electrons interacting with the flexural wave of phonons confined in a quantum well structure of silicon was calculated using the optical conductivity formula derived by the projection-reduction method. Only a few confined phonons with low energy make a significant contribution to the line-width, which increases with increasing temperature. The well width and magnetic field dependence of the line-width are complicated and the flexural mode contributes to the line-width more strongly than the dilatational mode at low magnetic fields and for small well widths.

  3. REDSHIFTS, WIDTHS, AND RADIANCES OF SPECTRAL LINES EMITTED BY THE SOLAR TRANSITION REGION

    SciTech Connect

    Feldman, U.; Dammasch, I. E.; Doschek, G. A.

    2011-12-20

    A long-standing problem in understanding the physics of the transition region has been the ubiquitous redshifts of transition region ultraviolet spectral lines relative to chromospheric emission lines, a result known since the Skylab era. Extended spectral scans performed for various regions of the solar disk by the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory contain thousands of line profiles per study and allow a thorough investigation of the redshift phenomenon. In using these data from seven distinct disk areas made in lines spanning the chromosphere to coronal temperature range, we derive a relationship between Doppler wavelength shifts and radiances and a relationship between line widths and radiances. While chromospheric and coronal lines emitted by very bright plasmas may in some cases show pronounced redshifts, transition-region lines predominantly show redshifts everywhere in the quiet Sun and in active regions. In coronal holes, however, they display a reduced shift, which at times altogether disappears. The observations and the findings will be described, and possible explanations will be considered.

  4. Diatomic predissociation line widths

    NASA Technical Reports Server (NTRS)

    Child, M. S.

    1973-01-01

    Predissociation by rotation and curve crossing in diatomic molecules is discussed. The pattern of predissociation line widths is seen as providing a highly sensitive yardstick for the determination of unknown potential curves. In addition, the computation of such a pattern for given potential curves is considered a matter of routine, unless the predissociation happens to occur from an adiabatic potential curve. Analytic formulas are used to provide physical insight into the details of the predissociation pattern, to the extent that a direct inversion procedure is developed for determination of the repulsive potential curves for Type 1 predissociations.

  5. Line shape parameters of PH3 transitions in the Pentad near 4-5 μm: Self-broadened widths, shifts, line mixing and speed dependence

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Benner, D. Chris; Kleiner, Isabelle; Sams, Robert L.; Fletcher, Leigh N.

    2014-08-01

    Accurate knowledge of spectroscopic line parameters of PH3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν4, ν2 + ν4, ν1 and ν3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH3 pressures (∼2-50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν4, ν1 and ν3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν1 and ν3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν2 and ν4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C3v symmetry in general, and of PH3

  6. Optically thick line widths in pyrotechnic flares

    NASA Technical Reports Server (NTRS)

    Douda, B. E.; Exton, R. J.

    1975-01-01

    Experimentally determined sodium line widths for pyrotechnic flares are compared with simple analytical, optically-thick-line-shape calculations. Three ambient pressure levels are considered (760, 150 and 30 torr) for three different flare compositions. The measured line widths range from 1.3 to 481 A. The analytic procedure emphasizes the Lorentz line shape as observed under optically-thick conditions. Calculated widths are in good agreement with the measured values over the entire range.

  7. Line shape parameters of PH3 transitions in the Pentad near 4–5 μm: Self-broadened widths, shifts, line mixing and speed dependence

    SciTech Connect

    Malathy Devi, V.; Benner, D. C.; Kleiner, Isabelle; Sams, Robert L.; Fletcher, Leigh N.

    2014-08-01

    Accurate knowledge of spectroscopic line parameters of PH3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν4, ν2 + ν4, ν1 and ν3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH3 pressures (~2–50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν4, ν1 and ν3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν1 and ν3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν2 and ν4) bands. The measurements from present study should be useful for the

  8. Infrared line widths at planetary atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1988-01-01

    Recent theoretical models and measurements of the variation of collision-broadened line width with temperature in the infrared are discussed for temperatures relevant to planetary atmospheres. The present review is restricted to lines broadened by H2, N2, O2, CO2, and He, the lines formed in the atmospheres of Jupiter, Saturn, Uranus, and Neptune. The design for a low-temperature absorption cell consisting of a nickel-coated copper tube is described. The lack of an adequate theoretical model for variation of the collision-broadened line width with temperature in terms of the molecular constants of the colliding partners is pointed out.

  9. Investigating Starburst Galaxy Emission Line Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Meskhidze, Helen; Richardson, Chris T.

    2016-01-01

    Modeling star forming galaxies with spectral synthesis codes allows us to study the gas conditions and excitation mechanisms that are necessary to reproduce high ionization emission lines in both local and high-z galaxies. Our study uses the locally optimally-emitting clouds model to develop an atlas of starburst galaxy emission line equivalent widths. Specifically, we address the following question: What physical conditions are necessary to produce strong high ionization emission lines assuming photoionization via starlight? Here we present the results of our photoionization simulations: an atlas spanning 15 orders of magnitude in ionizing flux and 10 orders of magnitude in hydrogen density that tracks over 150 emission lines ranging from the UV to the near IR. Each simulation grid contains ~1.5x104 photoionization models calculated by supplying a spectral energy distribution, grain content, and chemical abundances. Specifically, we will be discussing the effects on the emission line equivalent widths of varying the metallicity of the cloud, Z = 0.2 Z⊙ to Z = 5.0 Z⊙, and varying the star-formation history, using the instantaneous and continuous evolution tracks and the newly released Starburst99 Geneva rotation tracks.

  10. An Empirical Expression for the Line Widths of Ammonia

    NASA Technical Reports Server (NTRS)

    Brown, Linda R.; Peterson, Dean B.

    1994-01-01

    The hydrogen-broadened line widths of 116 (sup 14)NH(sub 3) ground state transitions have been measured at 0.006 cm(sup -1) resolution using a Bruker spectrometer in the 24 to 210 cm(sup -1) region. The rotational variation of the experimental widths with J(sup '),K(sup ') = 1,0 to 10,10 has been reproduced to 2.4 % using an heuristically derived expression of the form

    gamma = a(sub 0) + a(sub 1) J(sup ') + a (sub 2) K(sup ') + a(sub 3) J(sup ')(sup 2) + a(sub 4) J(sup ') K(sup ')

    where J(sup ') and K(sup ') are the lower state symmetric top quantum numbers. This function has also been applied to the measured widths of the 58 transitions of nu(sub 1) at 3 (micro)m, each broadened by N(sub 2), O(sub 2), Ar, H(sub 2), and He. The rms of the observed minus calculated widths are 5% or better for the five foreign broadeners. The values of the fitted constants suggest that for some broadeners the expression might also be written as

    gamma = a(sub 0) + b(sub 1) J(sup ') + b(sub 2)(J(sup ' )- K(sup ')) + b(sub 3) J(sup ')(J(sup ') - K(sup '))

    .

  11. The Stokes line width and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Nikishov, A. I.; Ritus, V. I.

    1994-01-01

    For a function given by contour integral the two types (conventions) of asymptotic representations are considered: the usual representation by asymptotic series in inverse powers of large parameters and the special division of contour integral in contributions of high and low saddle points. It is shown that the width of the recessive term formation zone (Stokes strip) in the second convention is determined by uncertainty relation and is much less than the zone width in the first convention. The reasons of such a difference is clarified. The results of the work are useful for understanding of formation region of the exponentially small process arising on the background of the strong one.

  12. Line-width temperature dependence of selected R-branch transitions in the nu-3 fundamental of (N-14)2O-16 between 135 and 295 K

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Wilson, H. W.

    1992-01-01

    Tunable diode laser spectroscopy has been used to measure the temperature dependence of N2 foreign gas broadening coefficients for eight R-branch transitions in the nu-3 fundamental of (N-14)2O-16 at 135, 176, 210, and 295 K. The exponent n of the relation for quadrupole-quadrupole collisional interactions is found to range from 0.66 to 0.71, in approximate agreement with the theoretically predicted value of 0.75.

  13. Comparison of electron width models for fast line profile calculations

    NASA Astrophysics Data System (ADS)

    Iglesias, Carlos A.

    2016-03-01

    The first non-vanishing term in the perturbation expansion of the electron contribution to the line width, commonly used in spectral line broadening by plasmas, was previously expressed in terms of the thermally averaged bremsstrahlung Gaunt factor. The approximations in the derivation, however, suggest that the result is uncertain. The electron width formula is tested with the hydrogen Balmer series and found suspect. Calculations for the He II Lyman series also display similar difficulties. The limitation of this electron width formulation is traced to the absence of an explicit strong collision cutoff beyond which the second-order theory is invalid.

  14. Rapid inspection for sub-wavelength line-width

    NASA Astrophysics Data System (ADS)

    Chang, Ming; Chen, Chih-Yang; Liou, Huay-Chung

    2010-08-01

    This paper presents a rapid inspection technique used for the evaluation of structures with line-width below sub-wavelength and diffraction limit. Inspections are carried out with an optical microscope via a vertical scanning and through-focus measurement, where the intensities of reflection light from different focal positions of the specimen are transferred into a series of numeric data through the use of an Entropy algorithm. A through-focus focus metric (TFFM) profile is then obtained for the inspection of line-width. The secondary peak in TFFM profile is related to the distance of 180° phase difference of the grating image according to the Talbot effect. This characteristic can be used to determine the pitch of grating specimen. Based on the variance of the secondary peak for different line-width, the line-width of a grating can be obtained from the comparison of simulated and measured data. Experimental results show that the Entropy algorithm can be used to achieve more reliable and fast evaluation in line-width inspection. Furthermore, as through-focus measurement is a non-destructive inspection method, it can be used as another positive element which equals to a traditional nano-scale inspection methods, such as AFM and SEM.

  15. An Empirical Expression for Line Widths of Ammonia from Far-Infrared Measurements

    NASA Technical Reports Server (NTRS)

    Brown, L.; Peterson, D.

    1994-01-01

    The hydrogen- and self-broadened line widths of 116 (sup 14)NH(sub 3) ground state transitions with J,K = 1,0 to 10,10 have been measured at 0.0006 cm(sup -1) resolution using a Bruker spectrometer between 40 to 210 cm(sup -1). These experimental widths have been reproduced to 2.4% and 11% respectively using an heuristically derived expression of the form....

  16. Photospheric Line Equivalent Widths in Calcium K Faculae

    NASA Astrophysics Data System (ADS)

    Walton, S. R.; Preminger, D. G.; Chapman, G. A.; Cookson, A. M.

    2003-05-01

    We have recently shown (Preminger, Walton, and Chapman 2002) that the total solar irradiance S can be modeled by a linear combination of photometric quantities which measure the fractional brightness change in the continuum and in the Ca II K line. We concluded that the change in S on solar cycle time scales is caused by variations in spectral lines, not in the continuum. In order to further test this conclusion, we have begun comparing our photometric Ca II K images with line equivalent width maps made in Fe I 6302.5. Bright features in our K images are well correlated with areas of lower equivalent width. We are beginning to quantitatively measure this correlation and will present further results at the meeting. This research has been supported by NSF grant ATM-9912132.

  17. Stark Widths of Spectral Lines of Neutral Neon

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.; Simić, Zoran; Kovačević, Andjelka; Valjarević, Aleksandar; Sahal-Bréchot, Sylvie

    2015-12-01

    In order to complete Stark broadening data for Ne I spectral lines which are needed for analysis of stellar atmospheres, collisional widths and shifts (the so-called Stark broadening parameters) of 29 isolated spectral lines of neutral neon have been determined within the impact semiclassical perturbation method. Calculations have been performed for the broadening by collisions with electrons, protons and ionized helium for astrophysical applications, and for collisions with ionized neon and argon for laboratory plasma diagnostics. The shifts have been compared with existing experimental values. The obtained data will be included in the STARK-B database, which is a part of the Virtual Atomic and Molecular Data Center - VAMDC.

  18. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  19. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  20. Effect of coupling parasitics and CMOS driver width on transition time for dynamic inputs

    NASA Astrophysics Data System (ADS)

    Sharma, Devendra Kumar; Kaushik, Brajesh Kumar; Sharma, R. K.

    2014-05-01

    This article analyses the effect of coupling parasitics and CMOS gate driver width on transition time delay of coupled interconnects driven by dynamically switching inputs. Propagation delay through an interconnect is dependent not only on the technology/topology but also on many other factors such as input transition time, load characteristic, driving gate dimensions and so on. The delay is affected by rise/fall time of the signal, which in turn is dependent on the driving gate and the load presented to it. The signal transition time is also a strong function of wire parasitics. This article addresses the different issues of signal transition time. The impact of inter-wire parasitics and driver width on signal transition time are presented in this article. Furthermore, the effect of unequal transition time of the inputs to interconnect lines on crosstalk noise and delay is analysed. To demonstrate these effects, two distributed RLC lines coupled capacitively and inductively are taken into consideration. The simulations are run at three different technology nodes, viz. 65 nm, 90 nm and 130 nm.

  1. Stark widths and shifts for spectral lines of Sn IV

    NASA Astrophysics Data System (ADS)

    de Andrés-García, I.; Alonso-Medina, A.; Colón, C.

    2016-01-01

    In this paper, we present theoretical Stark widths and shifts calculated corresponding to 66 spectral lines of Sn IV. We use the Griem semi-empirical approach and the COWAN computer code. For the intermediate coupling calculations, the standard method of least-squares fitting from experimental energy levels was used. Data are presented for an electron density of 1017 cm-3 and temperatures T = 1.1-5.0 (104 K). The matrix elements used in these calculations have been determined from 34 configurations of Sn IV: 4d10ns(n = 5-10), 4d10nd(n = 5-8), 4d95s2, 4d95p2, 4d95s5d, 4d85s5p2 and 4d105g for even parity and 4d10np(n = 5-8), 4d10nf (n = 4-6), 4d95snp(n = 5-8), 4d85s25p and 4d95snf (n = 4-10) for odd parity. Also, in order to test the matrix elements used in our calculations, we present calculated values of radiative lifetimes of 14 levels of Sn IV. There is good agreement between our calculations and the experimental radiative lifetimes obtained from the bibliography. The spectral lines of Sn IV are observed in UV spectra of HD 149499 B obtained with the Far Ultraviolet Spectroscopic Explorer, the Goddard High Resolution Spectrograph and the International Ultraviolet Explorer. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. Also our values of Stark broadening parameters have been compared with the data available in the bibliography.

  2. Narrow optical line width from site-controlled InGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Lily; Yakes, Michael; Sweeney, Timothy; Carter, Samuel; Kim, Chulsoo; Kim, Mijin; Bracker, Allan; Gammon, Daniel

    2013-03-01

    The incorporation of self-assembled quantum dots (QDs) in systematically scalable quantum devices requires a method of nucleating dots with nanometer-scale spatial accuracy while preserving their narrow optical line width. We have developed a technique combining e-beam lithography, wet etching, and molecular beam epitaxial (MBE) growth to deterministically position InGaAs QDs with spectrometer limited photoluminescence line widths. Our technique takes advantage of the anisotropy in GaAs growth to evolve an etched pattern of holes and lines into faceted structures in which dots nucleate. Using this technique, we were able to grow a buffer layer of pure GaAs up to 90 nm in thickness between the processed surface and the dot nucleation surface, effectively separating the QDs from unavoidable residual defects and impurities on the patterned surface that broaden their optical line widths. Additionally, we demonstrate control over the number of dots nucleating per site, from single to a chain of several, by varying the dimensions of the original pattern. Our dots are grown in a Schottky diode structure. Their PL spectrum shows discrete charging transitions, with narrow linewidths near the spectrometer's resolution limit of 20 micro eV.

  3. Catalogue of equivalent widths and line intensities for prominences observed during 1964-1965

    NASA Technical Reports Server (NTRS)

    Rakhubovskiy, A. S.

    1973-01-01

    The method of observation and processing of the prominence spectra are described briefly. The equivalent widths, central intensities, half-widths and Doppler halfwidths are presented of the emission lines of the prominences.

  4. Oscillator Strengths and Predissociation Widths for Rydberg Transitions in Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Federman, Steven R.; Sheffer, Y.; Eidelsberg, Michele; Lemaire, Jean-Louis; Fillion, Jean-Hugues; Rostas, Francois; Ruiz, J.

    2006-01-01

    CO is used as a probe of astronomical environments ranging from planetary atmospheres and comets to interstellar clouds and the envelopes surrounding stars near the end of their lives. One of the processes controlling the CO abundance and the ratio of its isotopomers is photodissociation. Accurate oscillator strengths for Rydberg transitions are needed for modeling this process. Absorption bands were analyzed by synthesizing the profiles with codes developed independently in Meudon and Toledo. Each synthetic spectrum was adjusted to match the experimental one in a non-linear least-squares fitting procedure with the band oscillator strength, the line width (instrumental and predissociation.

  5. Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 microns

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, Malathy V.; Benner, D. Chris; Thakur, K. B.

    1988-01-01

    Air- and nitrogen-broadened half-widths and line shifts at room temperature for more than 60 individual vibration-rotation transitions in the nu1 fundamental band of (O-16)3 and several transitions in the nu3 band were determined from infrared absorption spectra. These spectra were recorded at 0.005/cm resolution with a Fourier-transform spectrometer. A tunable-diode-laser spectrometer operating in the 1090-1150/cm region was also used to record data on oxygen-, nitrogen-, and air-broadened half-widths for selected individual transitions. The nitrogen- and air-broadened half-widths determined by these two different measurement techniques are consistent to within 4 percent. The results are in good agreement with other published measurements and calculations.

  6. On the selective photoexcitation of molecules within the homogeneous width of optical lines

    NASA Astrophysics Data System (ADS)

    Izmailov, Azad Ch.; Mahmoudi, Mohammad; Tajalli, Habib

    2000-03-01

    We investigate the photoexcitation of molecules of a gas, caused by the change of the state of the coherent population trapping of the open Λ-system of quantum levels at the sharp change of phase and amplitude parameters of the two-frequency laser pumping. Analysis is carried out both on the basis of the Schrödinger equation and in the formalism of the density matrix of molecules in the case of homogeneously broadened spectral lines. The maximum photoexcitation takes place at the two-quantum resonance between lower long-lived states of the Λ-system. It is shown, that the narrow, high-contrast peak of the photoexcitation appears on the comparatively low and wide background, caused by collisions of molecules. Conditions are determined, when the influence of this background is minimum and the spectral width of the photoexcitation peak is much less than the homogeneous widths of the optical lines of resonance transitions in the Λ-system. Such photoexcitation may be used in the technology of isotope (isomer) separation, selective photochemistry and photobiology even at essential overlap of optical spectra of different molecules.

  7. Influence of the transition width on the magnetocaloric effect across the magnetostructural transition of Heusler alloys.

    PubMed

    Cugini, F; Porcari, G; Fabbrici, S; Albertini, F; Solzi, M

    2016-08-13

    We report a complete structural and magneto-thermodynamic characterization of four samples of the Heusler alloy Ni-Co-Mn-Ga-In, characterized by similar compositions, critical temperatures and high inverse magnetocaloric effect across their metamagnetic transformation, but different transition widths. The object of this study is precisely the sharpness of the martensitic transformation, which plays a key role in the effective use of materials and which has its origin in both intrinsic and extrinsic effects. The influence of the transition width on the magnetocaloric properties has been evaluated by exploiting a phenomenological model of the transformation built through geometrical considerations on the entropy versus temperature curves. A clear result is that a large temperature span of the transformation is unfavourable to the magnetocaloric performance of a material, reducing both isothermal entropy change and adiabatic temperature change obtainable in a given magnetic field and increasing the value of the maximum field needed to fully induce the transformation. The model, which is based on standard magnetometric and conventional calorimetric measurements, turns out to be a convenient tool for the determination of the optimum values of transformation temperature span in a trade-off between sheer performance and amplitude of the operating range of a material.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402934

  8. Do the Line Widths of Coronal Emission Lines Increase with Height above the Limb?

    NASA Astrophysics Data System (ADS)

    Singh, Jagdev; Sakurai, Takashi; Ichimoto, Kiyoshi

    2006-03-01

    In our earlier studies we obtained off-the-limb spectroscopic observations in a number of forbidden emission lines ([Fe X-XIV]) to study the physical properties and their temporal variations in steady coronal structures. Short exposure times adopted in those observations permitted us to study the variation in line widths up to about 150" above the limb. With a view to investigating the variations in the parameters of coronal emission lines up to about 500", we made raster scans with exposure times that are longer than the earlier exposure times by a factor of about 10. We find that the FWHM of the [Fe XIV] 5303 Å line decreases up to 300''+/-50'' and then remains more or less the same up to 500", while that of the [Fe X] 6374 Å line increases up to about 250" and subsequently remains unchanged. The FWHMs of the [Fe XI] 7892 Å and [Fe XIII] 10747 Å lines show an intermediate behavior. Furthermore, the ratio of the FWHM of 6374 to 5303 Å increases from 0.93 at the limb to 1.18 at 200" above the limb. The nonvariability in the FWHM of emission lines after about 300" above the limb in steady coronal structures does not support the prevailing view that the nonthermal velocity increases with height due to either the coronal waves or the high-velocity solar wind. The present results indicate the inadequacy of the earlier coronal loop models. The observed variations in FWHM of the coronal emission lines with height above the limb can be explained by assuming the recent model of coronal loops proposed by Akiyama et al.

  9. Ferromagnetic resonance line width in magnetic films as a function of temperature

    NASA Astrophysics Data System (ADS)

    Lebecki, Kristof M.

    2015-05-01

    Ferromagnetic resonance (FMR) experiment is considered for the case of a constant field applied in plane of a thin film. Role of temperature is investigated by replacing the Landau-Lifshitz-Gilbert equation by the Landau-Lifshitz-Bloch approach. Two important FMR parameters are evaluated: the resonance field and the line width. Although the resonant field has to be calculated numerically, a well working approximating expression is given. In the case of the line width, an analytical formula is obtained. Both the resonance field and the line width grow exponentially with temperature in the whole temperature range. The magnitude of the FMR line broadening is estimated by checking different conditions (microwave frequency and damping) for permalloy showing that increase of temperature from 0% to 90% of the Curie temperature increases the line width roughly by a factor of two.

  10. Shift and width measurements of the Stark-broadened ionized helium line at 1215 A

    NASA Technical Reports Server (NTRS)

    Van Zandt, J. R.; Adcock, J. C., Jr.; Griem, H. R.

    1976-01-01

    Time-resolved photoelectric measurements were made of the shifts of helium plasma lines at 1640 A and 1215 A and of the Stark profile of the 1215 A line, using an electromagnetic shock tube as a light source. These red shifts are consistent with a plasma polarization shift, where the interaction energy between the radiating ion and the perturbing plasma electrons corresponds to the Coulomb interaction near the excited state Bohr radius. No significant shifts were observed for the 1640 A line, while the 1215 A line underwent a red shift of about 0.5 A. The measured Stark width of the 1215 A line was 10-45% greater than the calculated width based on the measured width of the 4686 A line.

  11. Measurement of the room temperture R(1) line width of forty-two rubies.

    PubMed

    Benedict, R A; Nester, J F; Kellington, C M

    1967-03-01

    Accurate measurement of the room temperature R(1) fluorescent line width of forty-two ruby laser crystals has been made using a pressure-scanned Fabry-Perot etalon. In forty-one of these rubies the chromium content was nearly the same, and the R(1) line width for all was 5.0 +/- 0.3 A, in agreement with present theories. PMID:20057772

  12. Virilization of the Broad Line Region in Active Galactic Nuclei—connection between shifts and widths of broad emission lines

    NASA Astrophysics Data System (ADS)

    Jonić, S.; Kovačević-Dojčinović, J.; Ilić, D.; Popović, L. Č.

    2016-03-01

    We investigate the virilization of the emission lines {Hβ } and Mg II in the sample of 287 Type 1 Active Galactic Nuclei taken from the Sloan Digital Sky Survey database. We explore the connections between the intrinsic line shifts and full widths at different levels of maximal intensity. We found that: (i) {Hβ} seems to be a good virial estimator of black hole masses, and an intrinsic redshift of {Hβ} is dominantly caused by the gravitational effect, (ii) there is an anti-correlation between the redshift and width of the wings of the Mg II line, (iii) the broad Mg II line can be used as virial estimator only at 50 % of the maximal intensity, while the widths and intrinsic shifts of the line wings cannot be used for this purpose.

  13. Diode laser measurements of CO line widths at planetary atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Chudamani, S.; Kapur, S.

    1987-01-01

    A tunable diode laser spectrometer and the sweep integration technique were used to measure hydrogen-broadened half-widths and nitrogen-broadened half-widths of eight lines between P(1) and P(15) in the CO fundamental at several temperatures between 94 and 298 K. The results are of interest in connection with studies of the atmospheres of earth, Jupiter, Saturn, and Titan.

  14. Preparation of RNA samples with narrow line widths for solid state NMR investigations

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Bardaro, Michael F.; Varani, Gabriele; Drobny, Gary P.

    2012-10-01

    Solid state NMR can provide detailed structural and dynamic information on biological systems that cannot be studied under solution conditions, and can investigate motions which occur with rates that cannot be fully studied by solution NMR. This approach has successfully been used to study proteins, but the application of multidimensional solid state NMR to RNA has been limited because reported line widths have been too broad to execute most multidimensional experiments successfully. A reliable method to generate spectra with narrow line widths is necessary to apply the full range of solid state NMR spectroscopic approaches to RNA. Using the HIV-1 transactivation response (TAR) RNA as a model, we present an approach based on precipitation with polyethylene glycol that improves the line width of 13C signals in TAR from >6 ppm to about 1 ppm, making solid state 2D NMR studies of selectively enriched RNAs feasible at ambient temperature.

  15. Aerial imaging study of the mask-induced line-width roughness of EUV lithography masks

    NASA Astrophysics Data System (ADS)

    Wojdyla, Antoine; Donoghue, Alexander; Benk, Markus P.; Naulleau, Patrick P.; Goldberg, Kenneth A.

    2016-03-01

    EUV lithography uses reflective photomasks to print features on a wafer through the formation of an aerial image. The aerial image is influenced by the mask's substrate and pattern roughness and by photon shot noise, which collectively affect the line-width on wafer prints, with an impact on local critical dimension uniformity (LCDU). We have used SHARP, an actinic mask-imaging microscope, to study line-width roughness (LWR) in aerial images at sub-nanometer resolution. We studied the impact of photon density and the illumination partial coherence on recorded images, and found that at low coherence settings, the line-width roughness is dominated by photon noise, while at high coherence setting, the effect of speckle becomes more prominent, dominating photon noise for exposure levels of 4 photons/nm2 at threshold on the mask size.

  16. N2 pressure - broadened O3 line widths and strengths near 1129.4 cm-1

    NASA Technical Reports Server (NTRS)

    Copeland, G. E.; Majorana, L. N.; Harward, C. N.; Steinkamp, R. J.

    1982-01-01

    A Beer's Law experiment was performed with a tunable diode laser to find the N2 pressure broadening characteristics of a single 03 absorption line at 1129.426 cm for N2 pressures from 10 to 100 torr (O3 pressure = 3.16 torr). SO2 line positions were used for wavelength calibration. Line shapes were interatively fitted to a Lorentz function. Results were delta (HWHM in MHz) = 47.44 (+ or - 5.34) MHz + 1.730 (+ or - 0.088) MHz/torr *p(torr) with sigma = 0.9897. This intercept compares well with the Doppler O3 - O3 broadened (at 3.16 torr) width of 44.52 Hz. This result in a HWHM line width of 0.44 cm atm at 760 torr and 285 K. The line strengths integrated over delta nu = 0.55 cm were found to be N2 pressure dependent.

  17. Quantitative trait locus analysis for kernel width using maize recombinant inbred lines.

    PubMed

    Hui, G Q; Wen, G Q; Liu, X H; Yang, H P; Luo, Q; Song, H X; Wen, L; Sun, Y; Zhang, H M

    2015-01-01

    Maize (Zea mays L.) kernel width is one of the most important traits that is related to yield and appearance. To understand its genetic mechanisms more clearly, a recombinant inbred line (RIL) segregation population consisting of 239 RILs was used for quantitative trait locus (QTL) mapping for kernel width. We found four QTLs on chromosomes 3 (one), 5 (two), and 10 (one). The QTLs were close to their adjacent markers, with a range of 0-23.8 cM, and explained 6.2-19.7% of the phenotypic variation. The three QTLs on chromosomes 3 and 5 had positive additive effects, and to a certain extent increased kernel width, whereas the one on chromosome 10 exhibited negative additive effects and decreased kernel width. These results can be used for gene cloning and marker-assisted selection in maize-breeding programs. PMID:26600508

  18. Doppler-width thermodynamic thermometry by means of line-absorbance analysis

    SciTech Connect

    Castrillo, A.; De Vizia, M. D.; Gianfrani, L.; Moretti, L.; Galzerano, G.; Laporta, P.; Merlone, A.

    2011-09-15

    A clean and effective implementation of Doppler-width thermometry is described. Exploiting the relationship between line-center absorbance and integrated absorbance, the Doppler width of a molecular spectral line can be retrieved from a set of profiles resulting from different gas pressures. The method is validated by its application to numerically simulated spectra. Preliminary experiments, in water vapor samples, turn out to be successful, demonstrating Doppler-widths' retrieval in the near-infrared with a precision of 8x10{sup -5}, at the water triple point temperature. The direct link to the Boltzmann constant makes the proposed method very attractive for temperature metrology as a tool for the realization of a new thermodynamic temperature scale.

  19. A simple formula for estimating Stark widths of neutral lines. [of stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Freudenstein, S. A.; Cooper, J.

    1978-01-01

    A simple formula for the prediction of Stark widths of neutral lines similar to the semiempirical method of Griem (1968) for ion lines is presented. This formula is a simplification of the quantum-mechanical classical path impact theory and can be used for complicated atoms for which detailed calculations are not readily available, provided that the effective position of the closest interacting level is known. The expression does not require the use of a computer. The formula has been applied to a limited number of neutral lines of interest, and the width obtained is compared with the much more complete calculations of Bennett and Griem (1971). The agreement generally is well within 50% of the published value for the lines investigated. Comparisons with other formulas are also made. In addition, a simple estimate for the ion-broadening parameter is given.

  20. Electron spin resonance of interacting spins in n-Ge: II. Change in the width and shape of lines

    SciTech Connect

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V. Goloshchapov, S. I.

    2008-11-15

    The effect of spin interaction on the width and shape of the electron spin resonance line in compensated and uncompensated n-Ge:As has been studied. It is shown that, in the case of a magnetic field oriented along the [100] axis, the width of the resonance line decreases irrespective of the degree of compensation as the critical concentration of the insulator-metal transition is approached, owing to enhancement of the exchange interaction of spins and to an increase in the spin relaxation time. When the magnetic field is directed along other axes, an additional line broadening appears in compensated samples. This broadening is determined by the influence exerted on the g factor by fluctuations of the internal electrostatic field via the stresses generated by these fluctuations. For well-conducting samples, in which the thickness of the skin layer becomes smaller than that of the sample, the line takes on an asymmetric (Dysonian) shape. In this case, the ratio between the wings of the derivative, characteristic of this line shape, is determined by the ratio between the rates of spin diffusion and spin relaxation.

  1. Predicting accurate line shape parameters for CO2 transitions

    NASA Astrophysics Data System (ADS)

    Gamache, Robert R.; Lamouroux, Julien

    2013-11-01

    The vibrational dependence of CO2 half-widths and line shifts are given by a modification of the model proposed by Gamache and Hartmann [Gamache R, Hartmann J-M. J Quant Spectrosc Radiat Transfer 2004;83:119]. This model allows the half-widths and line shifts for a ro-vibrational transition to be expressed in terms of the number of vibrational quanta exchanged in the transition raised to a power and a reference ro-vibrational transition. Calculations were made for 24 bands for lower rotational quantum numbers from 0 to 160 for N2-, O2-, air-, and self-collisions with CO2. These data were extrapolated to J″=200 to accommodate several databases. Comparison of the CRB calculations with measurement gives very high confidence in the data. In the model a Quantum Coordinate is defined by (c1 |Δν1|+c2 |Δν2|+c3|Δν3|)p. The power p is adjusted and a linear least-squares fit to the data by the model expression is made. The procedure is iterated on the correlation coefficient, R, until [|R|-1] is less than a threshold. The results demonstrate the appropriateness of the model. The model allows the determination of the slope and intercept as a function of rotational transition, broadening gas, and temperature. From the data of the fits, the half-width, line shift, and the temperature dependence of the half-width can be estimated for any ro-vibrational transition, allowing spectroscopic CO2 databases to have complete information for the line shape parameters.

  2. DO QUASAR BROAD-LINE VELOCITY WIDTHS ADD ANY INFORMATION TO VIRIAL BLACK HOLE MASS ESTIMATES?

    SciTech Connect

    Croom, Scott M.

    2011-08-01

    We examine how much information measured broad-line widths add to virial black hole (BH) mass estimates for flux-limited samples of quasars. We do this by comparing the BH mass estimates to those derived by randomly reassigning the quasar broad-line widths to different objects and re-calculating the BH mass. For 9000 BH masses derived from the H{beta} line we find that the distributions of original and randomized BH masses in the M{sub BH}-redshift plane and the M{sub BH}-luminosity plane are formally identical. A two-dimensional Kolmogorov-Smirnov test does not find a difference at >90% confidence. For the Mg II line (32,000 quasars) we do find very significant differences between the randomized and original BH masses, but the amplitude of the difference is still small. The difference for the C IV line (14,000 quasars) is 2{sigma}-3{sigma} and again the amplitude of the difference is small. Subdividing the data into redshift and luminosity bins we find that the median absolute difference in BH mass between the original and randomized data is 0.025, 0.01, and 0.04 dex for H{beta}, Mg II, and C IV, respectively. The maximum absolute difference is always {<=}0.1 dex. We investigate whether our results are sensitive to corrections to Mg II virial masses, such as those suggested by Onken and Kollmeier. These corrections do not influence our results, other than to reduce the significance of the difference between original and randomized BH masses to only 1{sigma}-2{sigma} for Mg II. Moreover, we demonstrate that the correlation between mass residuals and Eddington ratio discussed by Onken and Kollmeier is more directly attributable to the slope of the relation between H{beta} and Mg II line width. The implication is that the measured quasar broad-line velocity widths provide little extra information, after allowing for the mean velocity width. In this case virial estimates are equivalent to M{sub BH}{proportional_to}L{sup {alpha}}, with L/L{sub Edd

  3. High-average-power narrow-line-width sum frequency generation 589 nm laser

    NASA Astrophysics Data System (ADS)

    Lu, Yanhua; Fan, Guobin; Ren, Huaijin; Zhang, Lei; Xu, Xiafei; Zhang, Wei; Wan, Min

    2015-10-01

    An 81 W average-power all-solid-state sodium beacon laser at 589 nm with a repetition rate of 250 Hz is introduced, which is based on a novel sum frequency generation idea between two high-energy, different line widths, different beam quality infrared lasers (a 1064 nm laser and a 1319 nm laser). The 1064 nm laser, which features an external modulated CW single frequency seed source and two stages of amplifiers, can provide average-power of 150 W, beam quality M2 of ~1.8 with ultra-narrow line width (< 100 kHz). The 1319 nm laser can deliver average-power of 100 W, beam quality M2 of ~3.0 with a narrow line width of ~0.3 GHz. By sum frequency mixing in a LBO slab crystal (3 mm x 12 mm x 50 mm), pulse energy of 325 mJ is achieved at 589 nm with a conversion efficiency of 32.5 %. Tuning the center wavelength of 1064 nm laser by a PZT PID controller, the target beam's central wavelength is accurately locked to 589.15910 nm with a line width of ~0.3 GHz, which is dominated mainly by the 1319 nm laser. The beam quality is measured to be M2 < 1.3. The pulse duration is measured to be 150 μs in full-width. To the best of our knowledge, this represents the highest average-power for all-solid-state sodium beacon laser ever reported.

  4. Effect of Slag Thickness on Macrosegregation and Transition Zone Width of Electroslag Remelting Dual Alloy Ingot

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Yan, Hongguang; Ren, Neng; Li, Baokuan

    2016-01-01

    The influence of the slag thickness on macrosegregation and transition zone (TZ) width of electroslag remelting (ESR) dual alloy ingot was investigated. To produce a dual alloy ingot, an electrode, constituted by a CrMoV bar and a NiCrMoV alloy bar, was remelted by using the ESR process. The slag thickness ranged from 50 mm to 70 mm. The results indicate that the slag temperature and melt rate first increase and then decrease with the increasing of the slag thickness. The metal sump depth, however, monotonically decreases. The most pronounced macrosegregation is found when the slag thickness is 50 mm and is alleviated with a thicker slag. The minimal TZ width appears when the slag thickness is 60 mm. Processing the ESR dual alloy ingot with a 60-mm slag layer is the best choice for reducing the TZ width and macrosegregation in the present work.

  5. Theoretical Studies of N2-broadened Half-widths of H2O Lines Involving High j States

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    Based on the properties of the energy levels and wave functions of H2O states, one can categorize H2O lines into individually defined groups such that within the same group, the energy levels and the wave functions associated with two paired lines have an identity property while those associated with different pairs have a similarity property. Meanwhile, by thoroughly analyzing processes used to calculate N2-broadened half-widths, it was found that the 'Fourier series' of W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub f) T(sub f) and W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub i) T(sub i), and a factor P(sub 222) (j(sub f) T(sub f) j(sub i) T(sub i)) are the key items in the Robert-Bonamy formalism to distinguish contributions to ReS2(r(sub c)) among different transitions of j(sub f) T(sub f) - j(sub i). However, these items are completely determined by the energy levels and the wave functions associated with their initial and final states and they must bear the latter's features as well. Thus, it becomes obvious that for two paired lines in the same group, their calculated half-widths must be almost identical and the values associated with different pairs must vary smoothly as their ji values vary. Thus, the pair identity and the smooth variation rules are established within individual groups of lines. One can use these rules to screen half-width data listed in HITRAN and to improve the data accuracies.

  6. Stark width measurements of Fe II lines with wavelengths in the range 230-260 nm

    NASA Astrophysics Data System (ADS)

    Aguilera, J. A.; Manrique, J.; Aragón, C.

    2011-12-01

    The experimental Stark widths of 26 Fe II lines with wavelengths in the range 230-260 nm have been determined by laser-induced breakdown spectroscopy. These measurements complete the data reported previously for the wavelength range 260-300 nm. The laser-induced plasmas have been generated from Fe-Cu and Fe-Ni samples. The curve-of-growth methodology is used to determine the iron concentration required to avoid self-absorption. The electron density at the different instants of the plasma lifetime, determined from the Stark broadening of the Hα line, is in the range (1.6-7.4) × 1017 cm-3. The plasma temperature is in the range 12 900-15 200 K. The Stark widths obtained are compared with previous experimental and theoretical data.

  7. All-electronic line width reduction in a semiconductor diode laser using a crystalline microresonator

    NASA Astrophysics Data System (ADS)

    Rury, Aaron S.; Mansour, Kamjou; Yu, Nan

    2015-07-01

    This study examines the capability to significantly suppress the frequency noise of a semiconductor distributed feedback diode laser using a universally applicable approach: a combination of a high-Q crystalline whispering gallery mode microresonator reference and the Pound-Drever-Hall locking scheme using an all-electronic servo loop. An out-of-loop delayed self-heterodyne measurement system demonstrates the ability of this approach to reduce a test laser's absolute line width by nearly a factor of 100. In addition, in-loop characterization of the laser stabilized using this method demonstrates a 1-kHz residual line width with reference to the resonator frequency. Based on these results, we propose that utilization of an all-electronic loop combined with the use of the wide transparency window of crystalline materials enable this approach to be readily applicable to diode lasers emitting in other regions of the electromagnetic spectrum, especially in the UV and mid-IR.

  8. Theoretical and experimental determination of L -shell decay rates, line widths, and fluorescence yields in Ge

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Madeira, T. I.; Parente, F.; Indelicato, P.; Marques, J. P.; Santos, J. P.; Hoszowska, J.; Dousse, J.-Cl.; Loperetti, L.; Zeeshan, F.; Müller, M.; Unterumsberger, R.; Beckhoff, B.

    2015-08-01

    Fluorescence yields (FYs) for the Ge L shell were determined by a theoretical and two experimental groups within the framework of the International Initiative on X-Ray Fundamental Parameters Collaboration. Calculations were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental value of the L3FY ωL 3 was determined at the Physikalisch-Technische Bundesanstalt undulator beamline of the synchrotron radiation facility BESSY II in Berlin, Germany, and the L α1 ,2 and L β1 line widths were measured at the Swiss Light Source, Paul Scherrer Institute, Switzerland, using monochromatized synchrotron radiation and a von Hamos x-ray crystal spectrometer. The measured fluorescence yields and line widths are compared to the corresponding calculated values.

  9. Low intensity noise and narrow line-width diode laser light at 540 nm

    NASA Astrophysics Data System (ADS)

    Wang, Lirong; Tamaki, Ryo; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2015-05-01

    We present a convenient method to generate high quality single-frequency green light at a wavelength of 540 nm. It consists of a noise suppressed external cavity diode laser at a wavelength of 1080 nm by optical filtering and resonant optical feedback, and a frequency doubling of the fundamental light with an a-cut KTP crystal. Highly efficient conversion is realized by type II non-critical phase matching. A stable single-frequency operation with a maximum power of about 20 mW is performed for more than 3 h. Both the intensity noise and line-width reach the level of a monolithic nonplanar ring laser, which is well known for its extraordinarily narrow line-width and extremely low noise among available single-frequency operating lasers.

  10. Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Yao, Yuhan; Wang, Yifei; Liu, He; Li, Yuanrui; Song, Boxiang; Wu, Wei

    2015-11-01

    Nanoimprint lithography is a promising technology for patterning large-area structures in nanometer scale at a low cost. In order to fabricate large-area nanoimprint master mold, interference lithography is widely used in defining periodical structures. However, neither roughness nor structural dimension can be effectively controlled via interference exposure. In this paper, we report a fabrication technique based on V-shaped master mold that can adjust line width of gratings as well as reduce the sidewall roughness. The fabrication of the V-shaped grating master mold is demonstrated, and the line width tuning and smoothening processes are discussed. With the help of the smoothening process, the optical efficiency of smoothened guided-mode resonance grating increased by 75 % from the original sample.

  11. Stark width measurements of Fe II lines with wavelengths in the range 260-300 nm

    NASA Astrophysics Data System (ADS)

    Aragón, C.; Vega, P.; Aguilera, J. A.

    2011-03-01

    The Stark widths of 21 Fe II lines with wavelengths in the range 260-300 nm have been measured using laser-induced plasmas as spectroscopic sources. A set of Fe-Cu samples has been employed to generate the plasmas. To reduce self-absorption, each line has been measured using a different sample, with an iron concentration determined by means of the curve-of-growth methodology. The remaining error due to self-absorption has been estimated to be lower than 10%. Different instants of the plasma evolution, from 0.84 to 2.5 µs, are included in the measurements. The electron density, in the range (1.6-7.3) × 1017 cm-3, is determined by the Stark broadening of the Hα line. Within this range, the Stark widths are found to be proportional to the electron density. The Boltzmann plot method is used to obtain the plasma temperature, which is in the range 12 900-15 200 K. The Stark widths obtained have been compared with available experimental and theoretical data.

  12. Strong-field cyclotron scattering. I - Scattering amplitudes and natural line width

    NASA Astrophysics Data System (ADS)

    Graziani, Carlo

    1993-07-01

    The introduction of resonance line width into the QED cyclotron scattering amplitudes is considered. It is shown that the width arises from loop corrections to the electron propagator, which also bring about shifts in the Landau energy levels. A formalism is developed that allows the dressed electron propagator to be derived. It is shown that the states of Herold et al. (1982) and of Sokolov and Ternov (1968), which diagonalize the component of the magnetic moment operator parallel to the external magnetic field, are appropriate for calculation of the scattering amplitudes, whereas the states of Johnson and Lippmann (1949) are not. In addition, it is shown that the Breit-Wigner broadening approximation E tends to E - i(Gamma)/2 is consistent with the perturbation-theoretic order of the calculation, if the former basis states are chosen, but not the latter.

  13. Width of the 511 keV line from the bulge of the galaxy

    SciTech Connect

    Zhitnitsky, Ariel

    2007-11-15

    In this paper I present the detail estimations for the width of the 511 keV line produced by a mechanism when dark matter is represented by macroscopically large dense nuggets. I argue that the width of 511 keV emission in this mechanism is very narrow (in a few keV range) in agreement with all observations. The dominant mechanism of the annihilation in this case is the positronium formation e{sup +}e{sup -}{yields}{sup 1}S{sub 0}{yields}2{gamma} rather than a direct e{sup +}e{sup -}{yields}2{gamma} annihilation. I also discuss some generic features of the {gamma} rays spectrum (in few MeV range) resulting from this mechanism.

  14. Coupling Between Microstrip Lines With Finite Width Ground Plane Embedded in Thin Film Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Manos M.; Papapolymerou, John

    2003-01-01

    Three-dimensional (3D) interconnects built upon multiple layers of polyimide are required for constructing 3D circuits on CMOS (low resistivity) Si wafers, GaAs, and ceramic substrates. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines a r e susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements a r e used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions. Furthermore, it is shown that coupled microstrip lines establish a slotline type mode between the two ground planes and a dielectric waveguide type mode, and that the via holes recommended here eliminate these two modes.

  15. Chromospheric scaling laws, width-luminosity correlations, and the Wilson-Bappu effect. [correlation between stellar magnitude and emission line width

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.

    1979-01-01

    Simple scaling laws for the thickness and mean electron density of stellar chromospheres as functions of surface gravity and chromospheric heating are proposed. These scaling laws are shown to be a consequence of hydrostatic equilibrium, the influence of gas ionization on plasma cooling functions, and the assumption that chromospheric heating is relatively constant with height. It is argued that line width-luminosity correlations similar to those observed in the Ca II K and Mg II k resonance lines are implied by the chromospheric scaling laws if the outer edges of the K and k emission cores are formed in the Lorentzian wings of the absorption profile. The results are compared with the Wilson-Bappu effect, empirical width-luminosity correlations for Ca II K1 minimum features, and solar-plage profiles of the Ca II K and Mg II k resonance lines.

  16. A study of line widths and kinetic parameters of ions in the solar corona

    NASA Astrophysics Data System (ADS)

    Zhao, G. Q.; Wu, D. J.; Wang, C. B.

    2014-10-01

    Solar extreme-ultraviolet (EUV) lines emitted by highly charged ions have been extensively studied to discuss the issue of coronal heating and solar wind acceleration. Based on observations of the polar corona by the SUMER/SOHO spectrometer, this paper investigates the relation between the line widths and kinetic parameters of ions. It is shown that there exists a strongly linear correlation between two variables ( σ/ λ)2 and M -1, where σ, λ and M are the half-width of the observed line profile at , the wavelength and the ion mass, respectively. The Pearson product-moment correlation coefficients exceed 0.9. This finding tends to suggest that the ions from a given height of polar corona have a common temperature and a common non-thermal velocity in terms of existing equation. The temperature and non-thermal velocity are obtained by linear least-square fit. The temperature is around 2.8 MK at heights of 57″ and 102″. The non-thermal velocity is typical 21.6 km s-1 at height of 57″ and 25.2 km s-1 at height of 102″.

  17. C IV LINE-WIDTH ANOMALIES: THE PERILS OF LOW SIGNAL-TO-NOISE SPECTRA

    SciTech Connect

    Denney, K. D.; Vestergaard, M.; Pogge, R. W.; Kochanek, C. S.; Peterson, B. M.; Assef, R. J.

    2013-09-20

    Comparison of six high-redshift quasar spectra obtained with the Large Binocular Telescope with previous observations from the Sloan Digital Sky Survey shows that failure to correctly identify absorption and other problems with accurate characterization of the C IV λ1549 emission line profile in low signal-to-noise (S/N) data can severely limit the reliability of single-epoch mass estimates based on the C IV emission line. We combine the analysis of these new high-quality data with a reanalysis of three other samples based on high-S/N spectra of the C IV emission line region. We find that a large scatter between the Hβ- and C IV-based masses remains even for this high-S/N sample when using the FWHM to characterize the broad-line region velocity dispersion and the standard virial assumption to calculate the mass. However, we demonstrate that using high-quality data and the line dispersion to characterize the C IV line width leads to a high level of consistency between C IV- and Hβ-based masses, with <0.3 dex of observed scatter and an estimated ∼0.2 dex intrinsic scatter, in the mass residuals.

  18. 2.5 MHz Line-Width High-energy, 2 Micrometer Coherent Wind Lidar Transmitter

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.; Reithmaier, Karl

    2007-01-01

    2 micron solid-state lasers are the primary choice for coherent Doppler wind detection. As wind lidars, they are used for wake vortex and clear air turbulence detection providing air transport safety. In addition, 2 micron lasers are one of the candidates for CO2 detection lidars. The rich CO2 absorption line around 2 micron, combined with the long upper state life of time, has made Ho based 2 micron lasers a viable candidate for CO2 sensing DIAL instrument. The design and fabrication of a compact coherent laser radar transmitter for Troposphere wind sensing is under way. This system is hardened for ground as well as airborne applications. As a transmitter for a coherent wind lidar, this laser has stringent spectral line width and beam quality requirements. Although the absolute wavelength does not have to be fixed for wind detection, to maximize return signal, the output wavelength should avoid atmospheric CO2 and H2O absorption lines. The base line laser material is Ho:Tm:LuLF which is an isomorph of Ho:Tm:YLF. LuLF produces 20% more output power than Ho:Tm:YLF. In these materials the Tm absorption cross-section, the Ho emission cross-section, the Tm to Ho energy transfer parameters and the Ho (sup 5) I (sub 7) radiative life time are all identical. However, the improved performance of the LuLF is attributed to the lower thermal population in the (sup 5) I (sub 8) manifold. It also provides higher normal mode to Q-switch conversion than YLF at high pump energy indicating a lower up-conversion. The laser architecture is composed of a seed laser, a ring oscillator, and a double pass amplifier. The seed laser is a single longitudinal mode with a line width of 13 KHz. The 100mJ class oscillator is stretched to 3 meters to accommodate the line-width requirement without compromising the range resolution of the instrument. The amplifier is double passed to produce greater than 300mJ energy.

  19. Narrow line-width phosphors for phosphor-converted white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Khanna, Aloka

    The luminous efficacy of present day phosphor-converted white LEDs is limited by phosphors with broad spectral emission in the long wavelength visible range (600-700 nm). The light output from the cool-white LEDs that do not use a red phosphor is 30-35% higher than the warm white LEDs fabricated with a red phosphor in addition to the yellow phosphor. However, the CRI of cool-white LEDs is significantly lower (~60-70) than the CRI of the warm white LEDs (~80-95) due to lack of the red photons in the emission spectrum. Therefore, a trade-off exists between luminous efficacy and color rendering capability of light generated by phosphor-converted white LEDs. In order to solve this problem, an efficient red phosphor with considerably narrow full width of half maxima (~5-10 nm) and emission in the 600-650 nm wavelength range is required. The narrow spectral line-width can be achieved by introducing trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) in oxide host lattices although the high energy gaps of these hosts makes these phosphors unsuitable for excitation with near-UV/Blue (380-470 nm) LED sources. Therefore, the goal of this project is two-fold- to develop new material systems which can serve as potential hosts for trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) with strong excitation bands in the near-UV/blue wavelength region (380-470 nm) and improve the efficiency of the known oxide phosphors doped with trivalent lanthanide ions and the novel phosphors via crystal growth processes. Moreover, phosphors in the green-yellow wavelength region with a narrow emission line-width have the potential of improving the luminous efficacy of the phosphor-converted LEDs as the human eye sensitivity curve peaks at 555 nm. Thus, in parallel with the narrow line-width red phosphor research, new compositions doped with Tb3+ (550 nm), Dy3+ (575 nm), etc. are being explored with strong excitation bands in near

  20. Red-blue-green solid state light sources using a narrow line-width green phosphor.

    PubMed

    Liu, A; Khanna, A; Dutta, P S; Shur, M

    2015-04-01

    We demonstrate that using a narrow line-width green phosphor with the peak wavelength closely aligned with the peak in the human eye sensitivity significantly improves the Luminous Efficacy of Radiation (LER) for Red-Green-Blue (RGB) emitters. Compared to the traditional RGB sources, the improvement in LER of 20 lm/W can be achieved. Combining the narrow band green phosphor with conventional wide band red and blue phosphors allows for trading off these improvements against the deviation from the Planckian locus for even higher LER. The light sources with the narrow line green phosphor are particularly promising for high energy efficiency and high intensity illumination, where somewhat compromises can be made in the color quality such as in automotive, outdoor spaces, industrial ware-houses, public places (train stations, airports) etc.. PMID:25968796

  1. Characterization of optical proximity matching for 130-nm node gate line width

    NASA Astrophysics Data System (ADS)

    Zheng, Sandra; Zhang, Gary; Wang, ChangAn; Detweiler, Shangting F.

    2003-06-01

    As IC density shrinks based on Moore"s law, optical lithography continually is scaled to print ever-smaller features by using resolution enhancement techniques such as phase shift mask, optical proximity correction (OPC), off-axis illumination and sub-resolution assistant features. OPC has been playing a key role to maximize the overlapping process window through pitch in the sub-wavelength optical lithography. As an important cost control measure, one general OPC model is applied to the full exposure field across multiple scanners. To implement this technique, optical proximity matching of line width across the field and across multiple tools turns out to be very crucial particularly at gate pattern. In addition, it is very important to obtain reliable critical dimension (CD) data sets with low noise level and high accuracy from the metrology tool. Otherwise, extracting the real scanner fingerprint in term of CD can not be achieved with precision in the order of 1nm~2nm. Scatterometry CD measurements have demonstrated excellent results to overcome this problem. The methodology of Scatterometry is emerging as one of the best metrology tool candidates in terms of gate line width control for technology nodes beyond 130nm. This paper investigates the sources of error that consume the CD budget of optical proximity matching for line through pitch (LTP). The study focuses on the 130nm technology node and uses experimental data and Prolith resist vector model based simulations. Scatterometer CD measurements of LTP are used for the first time and effectively correlated to lens aberrations and effective partial coherence (EPC) measurements which were extracted by Litel In-situ Interferometer (ISI) and Source Metrology Instrument (SMI). Implications of optical proximity matching are also discussed for future technology nodes. From the results, the paper also demonstrates the efficacy of scatterometer line through pitch measurements for OPC characterization.

  2. Bayesian Identification of Emission-Line Galaxies with Photometric Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Leung, Andrew S.; Gawiser, Eric J.; Acquaviva, Viviana; HETDEX Collaboration

    2015-01-01

    We present a Bayesian approach to the classification of emission-line galaxies as an alternative to the traditional limit of requiring Lyman-alpha emitting (LAE) galaxies to have rest-frame equivalent width (EW) > 20Å. The Bayesian method relies on known distributions of line luminosities and equivalent widths as prior probabilities and returns the probability that an object is an LAE given the observed characteristics. This will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify more than a million emission-line galaxies into LAEs and low-redshift [O II] emitters. For a simulated HETDEX catalog with realistic measurement noise, the Bayesian method recovers a majority of the LAEs missed by the EW > 20 Angstroms cutoff over 2 < z < 3. The method is robust, performing at least as well as the EW > 20Å cut in contamination (false positives) and incompleteness (false negatives). Trade-off between contamination and incompleteness can be achieved by adjusting the stringency of the probability requirement for classifying an observed object as an LAE. A basic implementation of the Bayesian reduces errors in cosmological parameters by ~22%, which is equivalent to obtaining ~40% more data. The inclusion of the color of the galaxies, contingent on the availability of this information, increases the discriminating power of Bayesian separation and results in further reductions in errors. The Bayesian method is also being used to determine which single broadband filter produces the best performance. This method would enable large-scale structure analyses to be performed directly on emission-line objects labeled with probabilities of being LAEs rather than splitting the sample into LAEs and [O II] emitters.We gratefully acknowledge support from NSF through grant AST-1055919.

  3. Measurements of Non-thermal Line Widths in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Brooks, David H.; Warren, Harry P.

    2016-03-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1-4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s-1, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  4. Single line-of-sight dual energy backlighter for mix width experiments

    SciTech Connect

    Baker, K. L. Glendinning, S. G.; Martinez, D.; Dittrich, T. R.; MacLaren, S. A.; Felker, S.; Seugling, R.; Doane, D.; Wallace, R.; Guymer, T. M.; Moore, A. S.; Whiting, N.; Sorce, C.

    2014-11-15

    We present a diagnostic technique used to spatially multiplex two x-ray radiographs of an object onto a detector along a single line-of-sight. This technique uses a thin, <2 μm, cosputtered backlighter target to simultaneously produce both Ni and Zn He{sub α} emission. A Ni picket fence filter, 500 μm wide bars and troughs, is then placed in front of the detector to pass only the Ni He{sub α} emission in the bar region and both energies in the trough region thereby spatially multiplexing the two radiographs on a single image. Initial experimental results testing the backlighter spectrum are presented along with simulated images showing the calculated radiographic images though the nickel picket fence filter which are used to measure the mix width in an accelerated nickel foam.

  5. Single line-of-sight dual energy backlighter for mix width experimentsa)

    NASA Astrophysics Data System (ADS)

    Baker, K. L.; Glendinning, S. G.; Guymer, T. M.; Martinez, D.; Moore, A. S.; Dittrich, T. R.; MacLaren, S. A.; Felker, S.; Seugling, R.; Doane, D.; Wallace, R.; Whiting, N.; Sorce, C.

    2014-11-01

    We present a diagnostic technique used to spatially multiplex two x-ray radiographs of an object onto a detector along a single line-of-sight. This technique uses a thin, <2 μm, cosputtered backlighter target to simultaneously produce both Ni and Zn Heα emission. A Ni picket fence filter, 500 μm wide bars and troughs, is then placed in front of the detector to pass only the Ni Heα emission in the bar region and both energies in the trough region thereby spatially multiplexing the two radiographs on a single image. Initial experimental results testing the backlighter spectrum are presented along with simulated images showing the calculated radiographic images though the nickel picket fence filter which are used to measure the mix width in an accelerated nickel foam.

  6. Scanning-electron-microscope image processing for accurate analysis of line-edge and line-width roughness

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Nishida, Akio

    2012-03-01

    The control of line-edge or line-width roughness (LER/LWR) is a challenge especially for future devices that are fabricated using extreme-ultraviolet lithography. Accurate analysis of the LER/LWR plays an essential role in this challenge and requires the noise involved in scanning-electron-microscope (SEM) images to be reduced by appropriate image processing prior to analyses. In order to achieve this, the authors simulated SEM images using the Monte-Carlo method and detected line edges in experimental and these theoretical images after noise filtering using new imageanalysis software. The validity of these simulation and software was confirmed by a good agreement between the experimental and theoretical results. In the case when the image pixels aligned perpendicular (crosswise) to line edges were averaged, the variance var(φ) that was additionally induced by the image noise decreased with the number NPIX,X of averaged pixels but turned to increase for relatively large NPIX,X's. Real LER/LWR, however, remained unaffected. On the other hand, averaging image pixels aligned parallel (longitudinal) to line edges not only reduced var(φ) but smoothed the real LER/LWR. As a result, the nominal variance of the real LWR, obtained using simple arithmetic, monotonically decreased with the number NPIX,L of averaged pixels. Artifactual oscillations were additionally observed in power spectral densities. var(φ) in this case decreased in an inverse proportion to the square root of NPIX,L according to the statistical mechanism clarified here. In this way, image processing has a marked effect on the LER/LWR analysis and needs to be much more cared and appropriately applied. All the aforementioned results not only constitute a solid basis of but improve previous empirical instructions for accurate analyses. The most important instruction is to avoid the longitudinal averaging and to crosswise average an optimized number of image pixels consulting the equation derived in this

  7. Nitrogen, oxygen and air broadened widths and relative intensities of N2O lines near 2450/cm

    NASA Technical Reports Server (NTRS)

    Hawkins, R. L.

    1982-01-01

    Spectra of the v sub 1 + 2v sub 2 and the weak underlying v sub 1 + 3v sub 2 - v sub 2 band of N2O near 2450/cm were analyzed by the nonlinear, least squares, whole band technique. The oxygen, nitrogen, and air broadened line widths and the relative line intensities were determined. The air broadened widths, for/m/3, are in agreement with those in the 1980 AFGL line listing and the relative band intensities also agree, within about 20% with the values in this listing.

  8. Design of multiplier-less sharp transition width non-uniform filter banks using gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Bindiya T., S.; Elias, Elizabeth

    2015-01-01

    In this paper, multiplier-less near-perfect reconstruction tree-structured filter banks are proposed. Filters with sharp transition width are preferred in filter banks in order to reduce the aliasing between adjacent channels. When sharp transition width filters are designed as conventional finite impulse response filters, the order of the filters will become very high leading to increased complexity. The frequency response masking (FRM) method is known to result in linear-phase sharp transition width filters with low complexity. It is found that the proposed design method, which is based on FRM, gives better results compared to the earlier reported results, in terms of the number of multipliers when sharp transition width filter banks are needed. To further reduce the complexity and power consumption, the tree-structured filter bank is made totally multiplier-less by converting the continuous filter bank coefficients to finite precision coefficients in the signed power of two space. This may lead to performance degradation and calls for the use of a suitable optimisation technique. In this paper, gravitational search algorithm is proposed to be used in the design of the multiplier-less tree-structured uniform as well as non-uniform filter banks. This design method results in uniform and non-uniform filter banks which are simple, alias-free, linear phase and multiplier-less and have sharp transition width.

  9. Behavior of Li abundances in solar-analog stars. Evidence for line-width dependence

    NASA Astrophysics Data System (ADS)

    Takeda, Y.; Kawanomoto, S.; Honda, S.; Ando, H.; Sakurai, T.

    2007-06-01

    Context: It is known that the surface lithium abundances of field solar-analog G dwarfs show a large dispersion of ⪆2 dex (among which our Sun is located at the lower end) despite the similarity of stellar parameters, and planet-host stars tend to show comparatively lower Li abundances in the narrow T_eff range. Aims: To investigate the reason for these phenomena, an extensive study of Li abundances and their dependence on stellar parameters was carried out for a homogeneous sample of 118 selected solar analogs based on high-dispersion spectra obtained at Okayama Astrophysical Observatory. Methods: The atmospheric parameters were spectroscopically determined by using the equivalent widths of Fe i and Fe ii lines, the ages/masses were estimated from stellar evolutionary tracks, and the width of the macrobroadening (rotation plus macroturbulence) function as well as Li abundances (A_Li) were established by spectrum-fitting analyses. Results: The resulting A_Li vs. T_eff relation revealed a characteristic inverse-triangle-like distribution enclosed by two clear-cut boundaries (the slanted one running from ~5900 K to ~5800 K and the vertical one at ~5700 K), while the Sun is located around its lowest apex. More significantly, A_Li in this region of large dispersion was found to closely correlate with the macrobroadening width (v_r+m), which is considered to be the most important parameter. Conclusions: With a reasonable assumption that the difference of rotational velocity is mainly responsible for the variety of v_r+m, we may conclude that the stellar angular momentum plays the decisive role in determining the surface Li abundances of solar-analog stars in the T_eff range of ~5900-5700 K. The low-Li tendency of planet-host stars may thus be interpreted in terms of rotational characteristics. Based on observations carried out at Okayama Astrophysical Observatory (Okayama, Japan). Tables 2-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc

  10. Distance-based standard deviation analysis method for line width roughness data

    NASA Astrophysics Data System (ADS)

    Bzik, Thomas J.; Rao, Madhukar B.; Zhang, Peng

    2005-05-01

    Linewidth roughness (LWR) is a major challenge for 90nm node and below. As feature sizes decrease, the reliable measurement, statistical comparison and interpretation of LWR data become increasingly important. The reliability of all LWR statistical analysis methods are strongly impacted by the architecture of LWR data being analyzed. Some of the key structural aspects of the collected data include: measurement box size, distance between neighboring measurements and whether measurement boxes have been "stitched" together for analysis. Additionally, the true nature of underlying line width variation, including both cyclical and non-cyclical trends, impacts how reliable a given interpretation will be. Current statistical methodologies for linewidth data are oriented at estimation of the frequency and scale of cyclical variation in linewidth components. Fourier analysis is traditionally applied for this purpose. Such analyses assume both that there is a cyclical component (e.g., sinusoidal) or components in the data to be modeled, as well as implicitly assuming a Gaussian error distribution for the linewidth variation that remains after modeling. The assumption that Fourier analysis is appropriate for LWR data often not met in practice by the LWR data undergoing analysis. A more model-independent approach, distance-based standard deviations, is proposed for use as part of an LWR statistical analysis methodology. It is based on the calculation of local standard deviations of linewidth for all possible distances between measured points. This methodology permits the statistical comparison of linewidth roughness over any distance of interest and makes efficient use of all data for a given measurement box length. It can determine the minimum measurement box length required to capture all linewidth variation. In addition, the method can confirm the validity of line stitching to increase measurement box size, and locate the sources of variance in the overall LWR value (e

  11. Line-Shape Transition of Collision Broadened Lines

    NASA Astrophysics Data System (ADS)

    Harde, H.; Katzenellenbogen, N.; Grischkowsky, D.

    1995-02-01

    Using the newly developed technique of THz time-domain spectroscopy, we have measured the far-wing absorption line profile of the ensemble of collision broadened ground state rotational lines of methylchloride vapor out to more than 200 linewidths from resonance, corresponding to frequency offsets as much as 5× the resonant frequency. On these far wings the measured absorption is approximately an order of magnitude less than that predicted by the van Vleck-Weisskopf theory. Our observations show that at higher frequencies a transition occurs from the regime of the van Vleck-Weisskopf theory to the regime of the Lorentz theory.

  12. Effects on Calculated Half-Widths and Shifts from the Line Coupling for Asymmetric-Top Molecules

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy formalism by considering the line coupling for linear molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For H2O immersed in N2 bath, the line coupling selection rules applicable for the pure rotational band to determine whether two specified lines are coupled or not are established. Meanwhile, because the coupling strengths are determined by relative importance of off-diagonal matrix elements versus diagonal elements of the operator -iS1 -S2, quantitative tools are developed with which one is able to remove weakly coupled lines from consideration. By applying these tools, we have found that within reasonable tolerances, most of the H2O lines in the pure rotational band are not coupled. This reflects the fact that differences of energy levels of the H2O states are pretty large. But, there are several dozen strongly coupled lines and they can be categorized into different groups such that the line couplings occur only within the same groups. In practice, to identify those strongly coupled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling. We have calculated half-widths and shifts for some groups, including the line coupling. Based on these calculations, one can conclude that for most of the H2O lines, it is unnecessary to consider the line coupling. However, for several dozens of lines, effects on the calculated half-widths from the line coupling are small, but remain noticeable and reductions of calculated half-widths due to including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very significant and variations of calculated shifts could be as large as 25%.

  13. Effects on calculated half-widths and shifts from the line coupling for asymmetric-top molecules

    SciTech Connect

    Ma, Q.; Tipping, R. H.

    2014-06-28

    The refinement of the Robert-Bonamy formalism by considering the line coupling for linear molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For H{sub 2}O immersed in N{sub 2} bath, the line coupling selection rules applicable for the pure rotational band to determine whether two specified lines are coupled or not are established. Meanwhile, because the coupling strengths are determined by relative importance of off-diagonal matrix elements versus diagonal elements of the operator −iS{sub 1} − S{sub 2}, quantitative tools are developed with which one is able to remove weakly coupled lines from consideration. By applying these tools, we have found that within reasonable tolerances, most of the H{sub 2}O lines in the pure rotational band are not coupled. This reflects the fact that differences of energy levels of the H{sub 2}O states are pretty large. But, there are several dozen strongly coupled lines and they can be categorized into different groups such that the line couplings occur only within the same groups. In practice, to identify those strongly coupled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling. We have calculated half-widths and shifts for some groups, including the line coupling. Based on these calculations, one can conclude that for most of the H{sub 2}O lines, it is unnecessary to consider the line coupling. However, for several dozens of lines, effects on the calculated half-widths from the line coupling are small, but remain noticeable and reductions of calculated half-widths due to including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very significant and variations of calculated shifts could be as large as 25%.

  14. Noise filtering of scanning-electron-microscope images for accurate analysis of line-edge and line-width roughness

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Nishida, Akio

    2012-10-01

    The control of line-edge or line-width roughness (LER/LWR) is a challenge, especially for future devices that are fabricated using extreme-ultraviolet (EUV) lithography. Accurate analysis of the LER/LWR plays an essential role in this challenge and requires the noise involved in scanning-electron-microscope (SEM) images to be reduced by appropriate noise filtering prior to analysis. To achieve this, we simulated the SEM images using a Monte Carlo method, and detected line edges in both experimental and theoretical images after noise filtering using new image-analysis software. The validity of this software and these simulations was confirmed by a good agreement between the experimental and theoretical results. In the case when the image pixels aligned perpendicular (crosswise) to line edges were averaged, the variance var(φ) that was additionally induced by the image noise decreased with a number N of averaged pixels, with exceptions when N was relatively large, whereupon the variance increased. The optimal N to minimize var(φ) was formulated based on a statistical mechanism of this change. LER/LWR statistics estimated using the crosswise filtering remained unaffected when N was smaller than the aforementioned optimal value, but monotonically changed when N was larger contrary to expectations. This change was possibly caused by an asymmetric scan-signal profile at edges. On the other hand, averaging image pixels aligned parallel (longitudinal) to line edges not only reduced var(φ) but smoothed real LER/LWR. As a result, the nominal variance of real LWR, obtained using simple arithmetic, monotonically decreased with a number N of averaged pixels. Artifactual oscillations were additionally observed in power spectral densities. Var(φ) in this case decreased in inverse proportion to the square root of N according to the statistical mechanism clarified here. In this way, the noise filtering has a marked effect on the LER/LWR analysis and needs to be appropriately

  15. A new distance measure using the correlation between CO luminosity and its line width

    NASA Astrophysics Data System (ADS)

    Goto, Tomo

    2015-08-01

    Does the dark energy vary over cosmic time? To answer this question, we need to map the expansion of the Universe over a large span of the cosmic time. Type Ia supernovae have been used to measure distances to z$\\sim$1.7, but beyond this, no reliable distance measure has been established. We propose a new distance measure using sub-millimeter (submm) galaxies to determine distances out to z$\\sim$6. Using a large sample of submm galaxies compiled from the literature, we show there exists a significant correlation between the CO luminosity ($L'CO$) and the CO line width (FWHM) of submm galaxies. We use this correlation to measure intrinsic luminosity of submm galaxies, based on the observed FWHM. Through comparison with their observed brightness, we measure their luminosity distance, and construct the Hubble diagram to z$\\sim$6. Submm galaxies are detected all across the history of the Universe, including some at z$>$6. With the advent of ALMA, it is expected that large numbers of distant submm galaxies will be discovered in the near future. This method is suitable for such an era, providing a new opportunity to constrain the earliest cosmic expansion.

  16. Voigt equivalent widths and spectral-bin single-line transmittances: Exact expansions and the MODTRAN®5 implementation

    NASA Astrophysics Data System (ADS)

    Berk, Alexander

    2013-03-01

    Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.

  17. Measurements of collision-broadened line widths in the 7.66-micron band of (C-12)H4 at temperatures relevant to the atmosphere

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad; Chudamani, Sury

    1989-01-01

    A tunable diode laser spectrometer is used to measure the collision-broadened half widths of spectral lines in the fundamental band of (C-12)H4 at 7.66 microns at temperatures between 130 and 295 K. Consideration is given to O2-, N2-, and air-broadened half widths. The temperature dependence of the measured line widths is examined.

  18. Landau-Zener-Stueckelberg theory for multiphoton intrashell transitions in Rydberg atoms: Bloch-Siegert shifts and widths

    SciTech Connect

    Foerre, Morten

    2004-07-01

    We derive closed analytic expressions for intrashell transitions in Rydberg atoms exposed to linearly polarized or circularly polarized periodic electromagnetic fields. The resonance energies and transition probabilities are calculated using multichannel Landau-Zener-Stueckelberg theory. The theory provides formulas for the resonance widths and positions for arbitrary field strength and frequency. The formulas are in excellent agreement with numerical solution of the evolution equations.

  19. High-energy all-solid-state sodium beacon laser with line width of 0.6 GHz

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Hua; Xie, Gang; Zhang, Lei; Fan, Guo-Bin; Pang, Yu; Li, Nan; Wei, Bin; Gao, Song-Xin; Zhang, Wei; Tang, Chun

    2015-02-01

    A high-energy all-solid-state sodium beacon laser at 589 nm with a repetition rate of 50 Hz is introduced, which is based on sum frequency mixing between a 1,064 nm laser and a 1,319 nm laser. The 1,064 nm laser, which features an external modulated CW seed laser and several stages of amplifiers, can provide pulse energy of 740 mJ with ultra-narrow line width (~17 kHz) and superior stability. The 1,319 nm laser can deliver pulse energy of 580 mJ with a narrow line width of 0.6 GHz. By sum frequency mixing in a LBO crystal, pulse energy of 380 mJ is achieved at 589 nm with a conversion efficiency of 29 %. By controlling the center wavelength of 1,064 nm laser, the target beam's central wavelength is locked to be 589.1592 nm with a line width of 0.6 GHz, which is dominated mainly by the 1,319 nm laser. The beam quality factor is measured to be M 2 = 1.6. The pulse duration is measured to be 140 μs in full-width at half-maximum (FWHM). To the best of our knowledge, this represents the highest pulse energy for all-solid-state sodium beacon laser ever reported.

  20. Electrical Properties of Nanometer-Width Refractory Metal Lines Fabricated by Focused Ion Beam and Oxide Resists

    NASA Astrophysics Data System (ADS)

    Koshida, Nobuyoshi; Watanuki, Shinichi; Yoshida, Kazuyoshi; Endo, Kinju; Komuro, Masanori; Atoda, Nobufumi

    1992-12-01

    Nanometer-width refractory metal lines are generated on Si substrates with high resolution by focused ion beam (FIB) exposure to MoO3 and WO3 inorganic resists, development and subsequent reduction in dry H2 gas. On the basis of some experiments for optimizing the process parameters, the electrical properties of fabricated fine Mo and W lines are evaluated in terms of the sheet resistance and its temperature dependence. A 40-nm-wide line did not show any signs of electromigration after the electrical measurements at current densities of 105 A/cm2 for several tens of minutes.

  1. The solar O III spectrum. II - Longer wavelengths, line widths, and the He II Lyman alpha radiation field

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Behring, W. E.; Bhatia, A. K.

    1983-01-01

    The solar O III spectrum above 900 A is analyzed, including several visible and infrared lines which are important in nebular studies. The dependence of the line intensities on the rate of photoexcitation by He Ly-alpha is determined, and the observability of these lines in the solar spectrum is studied. The impact approximation is employed to calculate the expected line widths of the stronger solar O III lines. The photoexciting field at 304 A calculated from the observed intensities of the O III lines below 900 A (Bhatia et al., 1982) is compared with the field predicted by a recent model (Avrett et al., 1976). It is shown that additional radiation trapping must be present beyond that given by this model.

  2. Temperature dependences for N2- and air-broadened Lorentz half-width coefficients of methane transitions around 3.38 μm

    NASA Astrophysics Data System (ADS)

    Ma, Hongliang; Liu, Qiang; Cao, Zhensong; Chen, Weidong; Vicet, Aurore; Huang, Yinbo; Zhu, Wenyue; Gao, Xiaoming; Rao, Ruizhong

    2016-03-01

    We have measured high-resolution absorption spectra of methane broadened by N2 and air at sample temperatures between 173.0 K and room temperature. The measurements were performed based on direct laser absorption spectroscopy using a tunable diode laser combined with a temperature controlled cryogenically cooled absorption cell. These spectra have been analyzed to determine the pressure-broadened half-width coefficients as well as their temperature dependences for six singlet lines belonging to the ν3 band of methane near 3.38 μm. To our knowledge, the temperature dependence exponents for the pressure-broadened half-width coefficients are reported experimentally for the first time for six transitions of 12CH4 with intensities stronger than 4×10-20 cm-1/(molecule cm-2). The measured half-width coefficients and the temperature dependence exponents of these transitions are compared with the available values reported in the literature and the HITRAN2012 database. Agreements and discrepancies are discussed.

  3. Scanning electron microscope measurement of width and shape of 10nm patterned lines using a JMONSEL-modeled library.

    PubMed

    Villarrubia, J S; Vladár, A E; Ming, B; Kline, R J; Sunday, D F; Chawla, J S; List, S

    2015-07-01

    The width and shape of 10nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm. PMID:25747180

  4. Air- and Self-Broadened Half Widths, Pressure-Induced Shifts, and Line Mixing in the Nu(sub 2) Band of (12)CH4

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Benner, D. Chris; Pedroi-Cross, A.; Devi, V. Malathy

    2013-01-01

    Lorentz self- and air-broadened half width and pressure-induced shift coefficients and their dependences on temperature have been measured from laboratory absorption spectra for nearly 130 transitions in the nu(sub 2) band of (12)CH4. In addition line mixing coefficients (using the relaxation matrix element formalism) for both self- and airbroadening were experimentally determined for the first time for a small number of transitions in this band. Accurate line positions and absolute line intensities were also determined. These parameters were obtained by analyzing high-resolution (approx. 0.003 to 0.01 per cm) laboratory spectra of high-purity natural CH4 and air-broadened CH4 recorded at temperatures between 226 and 297 K using the McMath-Pierce Fourier transform spectrometer (FTS) located at the National Solar Observatory on Kitt Peak, Arizona. A multispectrum nonlinear least squares technique was used to fit short (5-15 per cm) spectral intervals in 24-29 spectra simultaneously. Parameters were determined for nu(sub 2) transitions up to J" = 16. The variations of the measured broadening and shift parameters with the rotational quantum number index and tetrahedral symmetry species are examined. The present results are also compared with previous measurements available in the literature.

  5. Development of stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping

    SciTech Connect

    Liu, Bo; Tong, Xin; Jiang, Chenyang; Brown, Daniel R.; Robertson, Lee

    2015-06-05

    In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.

  6. Indirect-direct bandgap transition and gap width tuning in bilayer MoS2 superlattices

    NASA Astrophysics Data System (ADS)

    Jiang, J. T.; Xiu, S. L.; Zheng, M. M.; Jia, T. T.; Liu, H. Y.; Zhang, Y.; Chen, G.

    2014-10-01

    Using the band-folding analysis and the first-principles method, we have carefully studied the electronic properties of the bilayer MoS2 superlattices. In the (N,M) bilayer MoS2 superlattice, the bottom of the conduction band could be folded from K to Г points resulting in the direct bandgap semiconductor if both N and M are integer multiple of 3. Furthermore, the gap width could be tuned by the in-plane stretching and the perpendicular compressing. These studies could pave the path for designing the direct bandgap nanostructures and tuning their gap width toward the applications in the high-performance photoelectronic devices.

  7. Measurements of argon-, helium-, hydrogen-, and nitrogen-broadened widths of methane lines near 9000 per cm

    NASA Technical Reports Server (NTRS)

    Fox, Kenneth; Jennings, Donald E.; Stern, Elizabeth A.; Hubbard, Rob

    1988-01-01

    Pressure-broadened widths of rotational-vibrational lines in CH4 have been measured at very high spectral resolution in the R-branch of the 3nu3 overtone. The broadening gases were Ar, He, H2, and N2. Results are presented as averages for J-multiplets at ambient temperature. The overall values (per cm per atm) for these R-branch lines are 0.0651 (CH4-Ar), 0.0508 (CH4-He), 0.0728 (CH4-H2), and 0.0715 (CH4-N2).

  8. Coupling Between Microstrip Lines with Finite Width Ground Plane Embedded in Polyimide Layers for 3D-MMICs on Si

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Emmanouil M.; Papapolymerou, John; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/millimeter-wave integrated circuits on complementary metal oxide semiconductor (CMOS) (low resistivity) Si wafers. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements are used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions.

  9. Inclusion of UTA widths in the Configurationally Resolved Super-Transition-Arrays (CRSTA) method

    NASA Astrophysics Data System (ADS)

    Kurzweil, Y.; Hazak, G.

    2013-09-01

    The mathematical machinery of the CRSTA method (G. Hazak and Y. Kurzweil, High Energy Density Physic, 8, 290 (2012)), for evaluation of radiation absorption spectrum in hot dense plasmas is extended to include the effect of the UTA widths. An extended generating function is presented which enables the evaluation of the analytical sum of Gaussian UTA spectra. A numerical example is presented.

  10. Methane spectral line widths and shifts, and dependences on physical parameters

    NASA Technical Reports Server (NTRS)

    Fox, K.; Quillen, D. T.; Jennings, D. E.; Wagner, J.; Plymate, C.

    1991-01-01

    A detailed report of the recent high-resolution spectroscopic research on widths and shifts measured for a strong infrared-active fundamental of methane is presented. They were measured in collision with several rare gases and diatomic molecules, in the vibrational-rotational fundamental near 3000/cm. These measurements were made at an ambient temperature of 294 K over a range of pressures from 100 to 700 torr. The measurements are discussed in a preliminary but detailed and quantitative manner with reference to masses, polarizabilities, and quadrupole moments. Some functional dependences on these physical parameters are considered. The present data are useful for studies of corresponding planetary spectra.

  11. Multispectrum Analysis of 12CH4 in the v4 Band: I. Air-Broadened Half Widths, Pressure-Induced Shifts, Temperature Dependences and Line Mixing

    NASA Technical Reports Server (NTRS)

    Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi

    2009-01-01

    Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.

  12. H{beta} LINE WIDTHS AS AN ORIENTATION INDICATOR FOR LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Punsly, Brian; Zhang Shaohua E-mail: brian.punsly@comdev-usa.co

    2010-12-20

    There is evidence from radio-loud quasars to suggest that the distribution of the H{beta} broad emission line (BEL) gas is arranged in a predominantly planar orientation, and this result may well also apply to radio-quiet quasars. This would imply that the observed FWHM of the H{beta} BELs is dependent on the orientation of the line of sight to the gas. If this view is correct then we propose that the FWHM can be used as a surrogate, in large samples, to determine the line of sight to the H{beta} BELs in broad absorption line quasars (BALQSOs). The existence of broad UV absorption lines (BALs) means that the line of sight to BALQSOs must also pass through the BAL out-flowing gas. It is determined that there is a statistically significant excess of narrow-line profiles in the SDSS DR7 archival spectra of low-ionization broad absorption line quasars (LoBALQSOs), indicating that BAL gas flowing close to the equatorial plane does not commonly occur in these sources. We also find that the data is not well represented by random lines of sight to the BAL gas. Our best fit indicates two classes of LoBALQSOs, the majority ({approx}2/3) are polar outflows that are responsible for the enhanced frequency of narrow-line profiles, and the remainder are equatorial outflows. We further motivated the line of sight explanation of the narrow-line excess in LoBALQSOs by considering the notion that the skewed distribution of line profiles is driven by an elevated Eddington ratio in BALQSOs. We constructed a variety of control samples comprised of non-LoBALQSOs matched to a de-reddened LoBALQSO sample in redshift, luminosity, black hole mass, and Eddington ratio. It is demonstrated that the excess of narrow profiles persists within the LoBALQSO sample relative to each of the control samples with no reduction of the statistical significance. Thus, we eliminate the possibility that the excess narrow lines seen in the LoBALQSOs arise from an enhanced Eddington ratio.

  13. Comparison of Trajectory Models in Calculations of N2-broadened Half-widths and N2-induced Line Shifts for the Rotational Band of H2O-16 and Comparison with Measurements

    NASA Technical Reports Server (NTRS)

    Lamouroux, J.; Gamache, R. R.; Laraia, A. L.; Ma, Q.; Tipping, R. H.

    2012-01-01

    In this work, Complex Robert-Bonamy calculations of half-widths and line shifts were done for N2-broadening of water for 1639 transitions in the rotational band using two models for the trajectories. The first is a model correct to second order in time, the Robert-Bonamy parabolic approximation. The second is the solution of Hamilton's equations. Both models use the isotropic part of the atom-atom potential to determine the trajectories. The present calculations used an intermolecular potential expanded to 20th order to assure the convergence of the half-widths and line shifts. The aim of the study is to assess if the difference in the half-widths and line shifts determined from the two trajectory models is greater than the accuracy requirements of the spectroscopic and remote sensing communities. The results of the calculations are compared with measurements of the half-widths and line shifts. It is shown that the effects of the trajectory model greatly exceed the needs of current remote sensing measurements and that line shape parameters calculated using trajectories determined by solving Hamilton's equations agree better with measurement.

  14. Scale heights and equivalent widths of the iron K-shell lines in the Galactic diffuse X-ray emission

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Uchiyama, Hideki; Koyama, Katsuji

    2016-06-01

    This paper reports the analysis of the X-ray spectra of the Galactic diffuse X-ray emission (GDXE) in the Suzaku archive. The fluxes of the Fe I Kα (6.4 keV), Fe XXV Heα (6.7 keV), and Fe XXVI Lyα (6.97 keV) lines are separately determined. From the latitude distributions, we confirm that the GDXE is decomposed into the Galactic center (GCXE), the Galactic bulge (GBXE) and the Galactic ridge (GRXE) X-ray emissions. The scale heights (SHs) of the Fe XXV Heα line of the GCXE, GBXE, and GRXE are determined to be ˜40, ˜310, and ˜140 pc, while those of the Fe I Kα line are ˜30, ˜160, and ˜70 pc, respectively. The mean equivalent widths (EWs) of the sum of the Fe XXV Heα and Fe XXVI Lyα lines are ˜750 eV, ˜600 eV, and ˜550 eV, while those of the Fe I Kα line are ˜150 eV, ˜60 eV, and ˜100 eV for the GCXE, GBXE, and GRXE, respectively. The origin of the GBXE, GRXE, and GCXE is separately discussed based on the new results of the SHs and EWs, in comparison with those of the cataclysmic variables, active binaries and coronal active stars.

  15. Scale heights and equivalent widths of the iron K-shell lines in the Galactic diffuse X-ray emission

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Uchiyama, Hideki; Koyama, Katsuji

    2016-08-01

    This paper reports the analysis of the X-ray spectra of the Galactic diffuse X-ray emission (GDXE) in the Suzaku archive. The fluxes of the Fe I Kα (6.4 keV), Fe XXV Heα (6.7 keV), and Fe XXVI Lyα (6.97 keV) lines are separately determined. From the latitude distributions, we confirm that the GDXE is decomposed into the Galactic center (GCXE), the Galactic bulge (GBXE) and the Galactic ridge (GRXE) X-ray emissions. The scale heights (SHs) of the Fe XXV Heα line of the GCXE, GBXE, and GRXE are determined to be ˜40, ˜310, and ˜140 pc, while those of the Fe I Kα line are ˜30, ˜160, and ˜70 pc, respectively. The mean equivalent widths (EWs) of the sum of the Fe XXV Heα and Fe XXVI Lyα lines are ˜750 eV, ˜600 eV, and ˜550 eV, while those of the Fe I Kα line are ˜150 eV, ˜60 eV, and ˜100 eV for the GCXE, GBXE, and GRXE, respectively. The origin of the GBXE, GRXE, and GCXE is separately discussed based on the new results of the SHs and EWs, in comparison with those of the cataclysmic variables, active binaries and coronal active stars.

  16. Temperature and strain measurements using the power, line-width, shape, and frequency shift of the Brillouin loss spectrum

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoyi; Smith, Jeffrey; Brown, Anthony W.

    2002-09-01

    A Brillouin scattering based fiber sensor system has been developed by our Fiber Optics Group for the structural monitoring and civil engineering related applications. In this paper, the Brillouin loss spectrum has been characterized in terms of its center frequency, peak power, line-width and shape. These parameters have been considered as a function of the input pump and probe laser powers, the pump pulse duration, strain and temperature. The measurement accuracy has been studied at different Brillouin frequency steps to study the uncertainty of the Brillouin frequency, line-width, peak power and shape factor vs. signal to noise ratio, so that we can optimize the system performance. Characterization of the Brillouin loss spectrum led to the development of an innovative technique to measure the strain and temperature simultaneously using the strain and temperature dependence on the peak power in conjunction with the Brillouin frequency for the single mode fiber with 3m spatial resolution, 3°C temperature resolution and 200 me (mm/m) strain accuracy.

  17. All-fiber designed narrow line-width 1.55μm double cladding fiber lasers

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Wu, Zhiyang; Xu, Lijing

    2014-11-01

    To develop 1.55μm high power lasers with compactness, narrow spectral line-width and high wavelength stability suitable for practical applications, EY-DCFLs built in all-fiber configuration are investigated. The experimental setups are composed of Er3+/Yb3+ co-doped double-clad gain fiber, multimode 976nm pump laser diode, double-clad fiber Bragg gratings (FBGs) and (1+1)x1 side pump couplers. FBGs with different reflectivity are applied as output reflectors, and forward-pump scheme and backward-pump scheme are performed respectively. As the efficiency and the spectral stability are considered simultaneously, EY-DCFL with low reflective FBG mirror and in backward-pump manner is more desirable. In the optimized all-fiber EY-DCFL, the maximum output power with an optical-optical efficiency of more than 17% is up to 1.5 W, and the wavelength is defined at 1550.8nm with a line-width about 0.03nm.

  18. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    SciTech Connect

    Nguyen, Dinh Cong; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen; Lewellen, IV, John W.; Marksteiner, Quinn R.

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, which leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10-5 .

  19. A new approach to spectral line shapes of the weak oxygen transitions for atmospheric applications

    NASA Astrophysics Data System (ADS)

    Domysławska, Jolanta; Wójtewicz, Szymon; Masłowski, Piotr; Cygan, Agata; Bielska, Katarzyna; Trawiński, Ryszard S.; Ciuryło, Roman; Lisak, Daniel

    2016-01-01

    We propose to construct a new database of O2 molecular spectral lines for atmospheric application, consistent with recent IUPAC recommendation [Tennyson et al. Pure Appl Chem 2014;86:1931] going beyond Voigt profile by incorporation of the speed dependence of collisional broadening and shifting. For this purpose we collected the laboratory data for the self-perturbed oxygen B-band transitions. Line shapes were measured at low pressures by the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer linked to the optical frequency comb. Data were analyzed by means of the quadratic speed-dependent Voigt profile. The absolute transition frequencies are determined with accuracy even as good as 150 kHz. Line intensities, pressure width and shift coefficients and the speed-dependent parameters are determined with subpercent accuracy.

  20. Compensation effects and relation between the activation energy of spin transition and the hysteresis loop width for an iron(ii) complex.

    PubMed

    Bushuev, Mark B; Pishchur, Denis P; Nikolaenkova, Elena B; Krivopalov, Viktor P

    2016-06-22

    The enthalpy-entropy compensation was observed for the cooperative → spin transition (the phase is a mononuclear complex [FeL2](BF4)2, L is 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)-6-methylpyrimidine). The physical origin of this effect is the fact that the → spin transition is the first order phase transition accompanied by noticeable variations in the Tonset↑, ΔH and ΔS values. Higher ΔH and ΔS values are correlated with higher Tonset↑ values. The higher the enthalpy and entropy of the spin transition, the wider the hysteresis loop. The kinetic compensation effect, i.e. a linear relationship between ln A and Ea, was observed for the → spin transition. Moreover, an isokinetic relationship was detected in this system: the Arrhenius lines (ln k vs. 1/T) obtained from magnetochemical data for different samples of the phase undergoing the → transition show a common point of intersection (Tiso = 490 ± 2 K, ln kiso = -6.0 ± 0.2). The validity of this conclusion was confirmed by the Exner-Linert statistical method. This means that the isokinetic relationship and the kinetic compensation effect (ln A vs. Ea) in this system are true ones. The existence of a true kinetic compensation effect is supported independently by the fact that the hysteresis loop width for the cooperative spin transition ↔ increases with increasing activation barrier height. Estimating the energy of excitations for the phase with Tiso ∼ 490 K yields wavenumbers of ca. 340 cm(-1) corresponding to the frequencies of the stretching vibrations of the Fe(LS)-N bonds, i.e. the bonds directly involved in the mechanism of the spin transition. This is the first observation of the kinetic compensation effect (ln A vs. Ea) and the isokinetic relationship for a cooperative spin crossover system showing thermal hysteresis. Our results provide the first experimental evidence that the higher the activation barrier for the spin transition, the wider the hysteresis loop for a

  1. Stark parameters irregularities of Xe II lines obtained by transitions from ({sup 3}P{sub 1})6plevels

    SciTech Connect

    Mar, S.; Pelaez, R. J.; Rodriguez, F.; Aparicio, J. A.

    2008-10-22

    Stark widths and shifts of some Xe II lines belonging to the supermultiplets with upper levels ({sup 3}P{sub 1})6p were measured using a pulsed discharge lamp. Plasma parameters, i.e. electron density and temperature, in this experiment were in the range from 0.2 to 1.4x10{sup 23} m{sup -3} and from 18000 to 23000 K, respectively. Lines obtained by transitions from levels ({sup 3}P{sub 1})6p show some strong intra-supermultiplet irregularities in their Stark widths and shifts. These results and the measurements obtained in previous works were used here to analyse the main irregularities that can appear in the case of Xe II. This study may be very useful for obtaining Stark parameters of non-measured lines, using the known parameters of other lines belonging to similar transitions.

  2. Effect of slot width on transition and noise attenuation of a flat sound shield in a Mach 6 wind tunnel

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.; Harvey, W. D.; Srokowski, A. J.

    1975-01-01

    An experimental and theoretical study of a sound shield concept to attenuate the noise radiated into the test section from the turbulent boundary layer on the walls of wind tunnels was conducted. The model investigated was planar with a sharp flat plate leading edge faired into an array of rods aligned nearly parallel to the local flow. For a ratio of gap diameter to rod diameter of 0.16, the flow was laminar over the entire model at a maximum local length Reynolds number of 14 million. A 45% reduction in the tunnel free stream root mean square pressure level was measured within the shielded region for this gap width when the boundary layers on the rods were laminar. Smaller ratios of gap diameter to rod diameter resulted in substantial reductions in the transition Reynolds number, and in a 40% pressure reduction.

  3. Collision strengths and transition probabilities for Co III forbidden lines

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Sochi, Taha

    2016-07-01

    In this paper we compute the collision strengths and their thermally averaged Maxwellian values for electron transitions between the 15 lowest levels of doubly ionized cobalt, Co2+, which give rise to forbidden emission lines in the visible and infrared region of spectrum. The calculations also include transition probabilities and predicted relative line emissivities. The data are particularly useful for analysing the thermodynamic conditions of supernova ejecta.

  4. On the equivalent widths determination of some lines arising from thea5D term of neutral iron in the solar spectrum.

    NASA Astrophysics Data System (ADS)

    Gasanalizade, A. G.

    Using the absolute oscillator strengths for Fe I lines by the Oxford scale and the absolute curve of growth of iron for two atmospheric models the author determines the equivalent widths of 21 solar lines of Fe I arising from the term a5D.

  5. Measurements of collision-broadened line widths in the nu4-fundamental band of (C-12)H4 at low temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Chudamani, S.

    1989-01-01

    Collision-broadened half-widths of several lines in the nu4 fundamental band of (C-12)H4 have been measured at low temperatures between 130 and 295 K using a tunable diode laser and the sweep integration technique. The broadening gases are H2, N2, He, and Ar. The temperature dependence of the measured line widths is described in terms of an exponent n, which is shown not only to be different for each broadening gas but also to depend upon the tetrahedral symmetry identification of the lines of CH4.

  6. Unbiased line width roughness measurements with critical dimension scanning electron microscopy and critical dimension atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Azarnouche, L.; Pargon, E.; Menguelti, K.; Fouchier, M.; Fuard, D.; Gouraud, P.; Verove, C.; Joubert, O.

    2012-04-01

    With the constant decrease of semiconductor device dimensions, line width roughness (LWR) becomes one of the most important sources of device variability and thus needs to be controlled below 2 nm for the future technological nodes of the semiconductor roadmap. The LWR control at the nanometer scale requires accurate measurements, which are inevitably impacted by the noise level of the equipment that causes bias from true LWR values. In this article, we compare the capability of two metrology tools, the critical dimension scanning electron microscopy (CD-SEM) and critical dimension atomic force microscopy (CD-AFM) to measure the true line width roughness of silicon and photoresist lines. For this purpose, we propose several methods based on previous works to estimate the noise level of those two equipments and thus extract the true LWR. One of the developed methods for the CD-SEM technique generalizes the power spectral densities (PSD) fitting method proposed by Hiraiwa and Nishida with a more universal autocorrelation function, which includes both correlation length and roughness exponent. However, PSD fitting method could not be used with CD-AFM due to the time consuming character of this technique. Hence, other experimental protocols have been set up for CD-AFM in order to accurately characterize the LWR. Our study shows that the CD-SEM technique combined with our PSD fitting method is much more powerful than CD-AFM to get all roughness information (true LWR, correlation length, and roughness exponent) with a good accuracy and efficiency on hard materials such as silicon. Concerning materials degradable under electron beam exposure such as photoresist, the choice is more disputable, since ultimately they are impacted by the electrons. Fortunately, our PSD fitting method allows working with low number of integration frames, which limits the resist degradation. Besides, we have highlighted some limitations of the CD-AFM technique due to the tip diameter. This

  7. Metal-insulator transition in AlxGa1-xAs/GaAs heterostructures with large spacer width

    NASA Astrophysics Data System (ADS)

    Gold, A.

    1991-10-01

    Analytical results are presented for the mobility of a two-dimensional electron gas in a heterostructure with a thick spacer layer α. Due to multiple-scattering effects a metal-insulator transition occurs at a critical electron density Nc=N1/2i/(4π1/2α) (Ni is the impurity density). The transport mean free path l(t) (calculated in Born approximation) at the metal-insulator transition is l(t)c=2α. A localization criterion in terms of the renormalized single-particle mean free path l(sr) is presented: kFcl(sr)c=(1/2)1/2 (kFc is the Fermi wave number at the critical density). I compare the theoretical results with recent experimental results found in AlxGa1-xAs/GaAs heterostructures with large spacer width: 1200<α<2800 Å. Remote impurity doping and homogeneous background doping are considered. The only fitting parameter used for the theoretical results is the background doping density NB=6×1013 cm-3. My theory is in fair agreement with the experimental results.

  8. Erratum: ``CO Line Width Differences in Early Universe Molecular Emission-Line Galaxies: Submillimeter Galaxies versus QSO Hosts'' (AJ, 131, 2763 [2006])

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Wang, Ran

    2006-11-01

    It has been pointed out to us that in three dimensions the mean angle of randomly oriented disks with respect to the sky plane is <θ>=30deg, and not the 45° assumed in the original paper. This lower angle for the (assumed) random distribution of submillimeter galaxies, coupled with the factor of 2.3 lower mean CO line width for high-z, far-IR-luminous QSO host galaxies relative to the submillimeter galaxies, implies a mean angle with respect to the sky plane for the QSO host galaxies of <θ>QSO=13deg, as opposed to the 18° quoted in the original paper. We thank Pat Hall for bringing this to our attention.

  9. Laser-excitation technique for the measurement of absolute transition probabilities of weak atomic lines

    NASA Technical Reports Server (NTRS)

    Kwong, H. S.; Smith, P. L.; Parkinson, W. H.

    1982-01-01

    A new technique is presented for the measurement of transition probabilities for weak allowed, intersystem, and forbidden lines. The method exploits the fact that oscillator strength is proportional to the number of stimulated absorptions and emissions produced by a narrow-band laser pulse of known energy which is in resonance with an atomic transition. The method is tested for a particular transition of Mg I with a known oscillator strength value and of appropriate magnitude. The number densities are measured using a Mach-Zehnder interferometer and the hook method for the lower level population and by measuring an absorption-equivalent width for the other. The apparatus consisted of a high-power tunable laser and a magnesium oven to produce excited Mg vapor, and a laser-plasma background continuum. The results are in good agreement with theoretical and other experimental data.

  10. Experimental demonstration of line-width modulation in plasmonic lithography using a solid immersion lens-based active nano-gap control

    SciTech Connect

    Lee, Won-Sup; Kim, Taeseob; Choi, Guk-Jong; Lim, Geon; Joe, Hang-Eun; Gang, Myeong-Gu; Min, Byung-Kwon; Park, No-Cheol; Moon, Hyungbae; Kim, Do-Hyung; Park, Young-Pil

    2015-02-02

    Plasmonic lithography has been used in nanofabrication because of its utility beyond the diffraction limit. The resolution of plasmonic lithography depends on the nano-gap between the nanoaperture and the photoresist surface—changing the gap distance can modulate the line-width of the pattern. In this letter, we demonstrate solid-immersion lens based active non-contact plasmonic lithography, applying a range of gap conditions to modulate the line-width of the pattern. Using a solid-immersion lens-based near-field control system, the nano-gap between the exit surface of the nanoaperture and the media can be actively modulated and maintained to within a few nanometers. The line-widths of the recorded patterns using 15- and 5-nm gaps were 47 and 19.5 nm, respectively, which matched closely the calculated full-width at half-maximum. From these results, we conclude that changing the nano-gap within a solid-immersion lens-based plasmonic head results in varying line-width patterns.

  11. Minimum line width of ion beam-modified polystyrene by negative carbon ions for nerve-cell attachment and neurite extension

    NASA Astrophysics Data System (ADS)

    Sommani, P.; Tsuji, H.; Sato, H.; Kitamura, T.; Hattori, M.; Gotoh, Y.; Ishikawa, J.

    2007-04-01

    The minimum line width of the negative-ion-modified polystyrene (PS) for guidance and immobilizations of nerve-cell body and neurite extension have been investigated. Carbon negative ions were implanted into PS at fluence of 3 × 1015 ions/cm2 and energy of 5-20 keV through the various triangle apertures of the micro-pattern mask. After in vitro culture of the nerve-like cells of rat adrenal pheochromocytoma (PC12h), results showed that the minimum line widths for a single cell attachment and for neurite extension were 5-7 and 3-5 μm, respectively. While the minimum line width for attachment of cell group with long neurite was about 20 μm. The suitable widths for a large number of cells and for neurite extension were 20 and 5 μm, respectively. Therefore, the guidance for a clear separation of the attachment size of cell body and neurite extension could be achieved by the different modified line widths.

  12. Multispectrum measurements of spectral line parameters including temperature dependences of N2- and self-broadened half-width coefficients in the region of the v9 band of 12C2H6

    SciTech Connect

    Malathy Devi, V.; Benner, D. C.; Rinsland, C.P.; Smith, M.A.H.; Sams, Robert L.; Blake, Thomas A.; Flaud, Jean Marie; Sung, Keeyoon; Brown, L.R.; Mantz, A. W.

    2010-11-01

    Ethane is a prominent contributor to the spectrum of Titan, particularly in the region of the v9 band at 12μm. A multispectrum nonlinear least squares fitting program was applied to laboratory spectra of ethane to measure accurate positions, absolute intensities, N2- and selfbroadened half- width coefficients and their temperature dependences for a large number transitions. These measurements include several pQ and rQ sub-bands (and other sub-bands such as pP, rR) in the v9 fundamental band of 12C2H6 centered near 822 cm-1. Positions were measured for 2958 transitions and intensities for 3771 transitions. N2- and self-broadened half-width coefficients were determined for over 1700 transitions while temperature dependence exponents were retrieved for over 1350 of those transitions. Of these, many measurements (mostly line positions and intensities) belong to the v9+v4-v4 hot band, v9+2v4-2v4 hot band, 13C12CH6 v9 band and unidentified transitions. Forty-three high resolution (0.0016-0.005 cm-1) infrared laboratory absorption spectra recorded at temperatures between 148 and 298 K were fitted simultaneously to retrieve these parameters. Forty-one of these spectra were obtained in the temperature range of 211-298 K using the Bruker IFS 120HR interferometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. Two additional spectra at 148 K were recorded using a new temperature stabilized cryogenic cell designed to work inside the sample compartment of the high resolution Bruker IFS 125HR interferometer of the Jet Propulsion Laboratory (JPL) in Pasadena California. The specialized cooling cell developed at Connecticut College and capable of achieving gas sample temperatures down to 70 K with a temperature stability and uniformity of better than ±0.05 K was employed to record the 148 K spectra. Constraints to intensity ratios, doublet separations, half-width coefficients and their temperature dependence exponents were required to

  13. Narrow line-width single-longitudinal-mode fiber laser using silicon-on-insulator based micro-ring-resonator

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Hsu, Yung; Hsu, Chin-Wei; Yang, Ling-Gang; Chow, Chi-Wai; Yeh, Chien-Hung; Lai, Yin-Chieh; Tsang, Hon-Ki

    2016-02-01

    In this work, we propose and demonstrate a stable single-longitudinal-mode (SLM) fiber laser with narrow line-width by using an integrated silicon-on-insulator micro-ring resonator (SOI MRR) and two subsidiary fiber rings for the first time, to the best of our knowledge. The laser is tunable over the wavelength range from 1546 to 1570 nm, with only step tuning of 2 nm steps. A maximum 49 dB side mode suppression ratio (SMSR) can be achieved. The compact SOI MRR provides a large free-spectral-range (FSR), while the subsidiary rings provide Vernier effect producing a single lasing mode. The FSR of the SOI MRR can be very large and controllable (since it is easy to fabricate small SOI MRR when compared with making small fiber-rings) using the complementary-metal-oxide-semiconductor (CMOS) compactable SOI fabrication processes. In our proposed laser, the measured single sideband (SSB) spectrum shows that the densely spaced longitudinal modes can be significantly suppressed to achieve SLM. The laser linewidth is only 3.5 kHz measured by using the self-heterodyne method. 30 min stability evaluation in terms of lasing wavelength and optical power is performed; showing the optical wavelength and power are both very stable, with fluctuations of only 0.02 nm and 0.8 dB, respectively.

  14. Ultraviolet observations of cool stars. IV - Intensities of Lyman-alpha and Mg II in epsilon Pegasi and epsilon Eridani, and line width-luminosity correlations

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1975-01-01

    A spectrometer on the Copernicus satellite has been used to confirm the existence of a line width-luminosity relation for the Ly-alpha and Mg II 2800-A chromospheric emission lines in K-type stars by observation of a K2 dwarf (epsilon Eri) and a K2 supergiant (epsilon Peg). Combined with previously reported observations of lines in three K giants (alpha Boo, alpha Tau, and beta Gem), the data are consistent with an identical dependence of line width on absolute visual magnitude for the Ca II K, Ly-alpha, and Mg II 2795-A lines. Surface fluxes of Ly-alpha, Mg II 2800-A, and O V 1218-A (upper limit) for epsilon Eri, and of Mg II 2800-A for epsilon Peg are also compared with values reported previously for the three giant stars.

  15. Calculation of K Shell Intensity Ratios and Line Widths of Ti and some of its compounds by means of 5,96 keV energy

    NASA Astrophysics Data System (ADS)

    Kağan Köksal, Oğuz; Apaydın, Gökhan; Cengiz, Erhan; Karabulut, Kazım

    2016-04-01

    K shell intensity ratios and Line Widths of pure Ti and some of its compounds have been determined experimentally using an Ultra-LEGe detector with resolution 140 eV at 5.9 keV. The samples were excited 5.96 keV photons emitted from a 55Fe radioisotope source with 50 mCi activity. The experimental values of the K shell intensity ratios have been compared with the experimental and theoretical values available in the literature for pure Ti and line widths have been only compared with a theoretical value for pure Ti.

  16. Broadband Uniplanar Microstrip to Slot-Line Transitions

    NASA Technical Reports Server (NTRS)

    Dib, Nihad I.; Simons, Rainee N.; Katehi, Linda P. B.

    1995-01-01

    New in line uniplanar microstrip-to-slotline transitions for MIC/MMIC and phased array slotline antenna applications are described. Such transactions are compact and suitable to be used in an open environment or inside a package or a multichip module. The transitions share the concept of using a balun which consists of two microstrip lines connected to a slotline through a pair of coupled microstrips. The transitions are studied theoretically using the finite difference time domain (FDTD) technique and measured experimentally using an HP8510C Network Analyzer. For a back-to-back configuration, an insertion loss of less than 1.3 dB per transition is achieved over a 40% 3-dB bandwidth with a minimum of 0.6 dB at the design frequency.

  17. Temperature-Dependence of Air-Broadened Line Widths and Shifts in the nu3 Band of Ozone

    NASA Technical Reports Server (NTRS)

    Smith, Mary A. H.; Rinsland, Curtis P.; Devi, V. Malathy; Benner, D. Chris; Cox, A. M.

    2006-01-01

    The 9.6-micron bands of O3 are used by many remote-sensing experiments for retrievals of terrestrial atmospheric ozone concentration profiles. Line parameter errors can contribute significantly to the total errors in these retrievals, particularly for nadir-viewing. The McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak was used to record numerous high-resolution infrared absorption spectra of O3 broadened by various gases at temperatures between 160 and 300 K. Over 30 spectra were analyzed simultaneously using a multispectrum nonlinear least squares fitting technique to determine Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for selected transitions in the 3 fundamental band of (16)O3. We compare the present results with other measurements reported in the literature and with the ozone parameters on the 2000 and 2004 editions of the HITRAN database.

  18. Dependence of the groundstate interband optical transition in InAs-GaSb superlattices on the width of the GaSb layers

    NASA Astrophysics Data System (ADS)

    Folkes, Patrick; Little, J.; Svensson, S.; Olver, K.; Amtout, A.; Krishna, S.

    2006-03-01

    We have investigated the optical characteristics of a set of InAs-GaSb superlattice structures (SLS) which have InAs layers with a fixed width of 25 å and GaSb layers whose width varies from stucture to structure over the range 25 å to 100 å. Photoluminescence measurements were carried out over the range 10K -- 100K on the SLS. Using photodiodes fabricated from the SLS, measurements of the photocurrent-excitation energy spectrum and the time-resolved photoconductivity were carried out at 78K. The observed dependence of the relative oscillator strength of the SLS band-edge transition on the GaSb layer width will be compared with theory^1. The effect of defects on the the optical and transport properties of the SLS and the dependence of this effect on the GaSb layer width will be discussed.

  19. Transition Probabilities for Spectral Lines in Co I

    NASA Astrophysics Data System (ADS)

    Nitz, D. E.; Wilson, K. L.; Lentz, L. R.

    1996-05-01

    We are in the process of determining transition probabilities for visible and uv lines in Co I from Fourier transform spectra recorded at Kitt Peak and made available to us by Prof. W. Whaling. Normalization of relative transition probabilities obtained from these spectra is achieved using recently-measured Co I lifetimes.(D. E. Nitz, S. D. Bergeson, and J. E. Lawler, J. Opt. Soc. Am. B 12, 377 (1995).) To date we have obtained preliminary results for 240 lines having branch fractions > 1

  20. Carbon and nitrogen abundances determined from transition layer lines

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1992-01-01

    The possibility of determining relative carbon, nitrogen, and silicon abundances from the emission-line fluxes in the lower transition layers between stellar chromospheres and coronae is explored. Observations for main-sequence and luminosity class IV stars with presumably solar element abundances show that for the lower transition layers Em = BT sup -gamma. For a given carbon abundance the constants gamma and B in this relation can be determined from the C II and C IV emission-line fluxes. From the N V and S IV lines, the abundances of these elements relative to carbon can be determined from their surface emission-line fluxes. Ratios of N/C abundances determined in this way for some giants and supergiants agree within the limits of errors with those determined from molecular bands. For giants, an increase in the ratio of N/C at B-V of about 0.8 is found, as expected theoretically.

  1. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  2. Atlas Transmission Line/Transition Design and Fabrication Status

    SciTech Connect

    Ballard, E.O.; Baca, D.M.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Nielsen, K.E.; Parker, G.V.; Ricketts, R.L.; Valdez, G.

    1999-06-27

    Atlas is a pulsed-power facility under development at Los Alamos National Laboratory to drive high-energy density experiments. Design has been completed for this new generation pulsed-power machine consisting of an azimuthal array of 24, 240-kV Marx modules and transmission lines supplying current to the load region at the machine center. The transmission line consists of a cable header, load protection switch, and tri-plate assembly interfacing to the center transition section. The cable header interface to the Marx module provides a mechanism to remove the Marx module for maintenance without removing other components of the transmission line. The load protection switch provides a mechanism for protecting the load during charging of the Marx in the event of a pre-fire condition. The aluminum tri-plate is a low-inductance transmission line carries radial current flow from the Marx energy storage system at the machine periphery toward the load. All transmission line components are oil insulated except the solid-dielectric insulated power flow channel connected directly to the load. The transition region at the machine center consists of several components that enable the radial converging vertical transmission lines to interface to a horizontal disk/conical power flow channel delivering current to the load. The current carrying transition components include the high-voltage and ground conductors interfacing to the tri-plate transmission lines. The tri-plate tank attachment ring interfaces to the tri-plate tanks and the base-plate. The base-plate supports the transition components and interfaces to the center support structure of the machine. The bottom insulator also attaches to the base-plate and to the high-voltage conductor, providing an oil containment seal between the transition and vacuum vessel. Design has been completed for all Atlas components. Some prototype hardware fabrication has been completed and first article hardware is in various stages of

  3. Effect of photoions on the line shape of the Foerster resonance lines and microwave transitions in cold rubidium Rydberg atoms

    SciTech Connect

    Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; Dyubko, S. F.; Alekseev, E. A.; Pogrebnyak, N. L.; Bezuglov, N. N.; Arimondo, E.

    2012-01-15

    Experiments are carried out on the spectroscopy of the Foerster resonance lines Rb(37P) + Rb(37P) {yields} Rb(37S) + Rb(38S) and microwave transitions nP {yields} n Prime S, n Prime D between Rydberg states of cold rubidium atoms in a magneto-optical trap (MOT). Under ordinary conditions, all spectra exhibit a linewidth of 2-3 MHz irrespective of the interaction time between atoms or between atoms and microwave radiation, although the limit resonance width should be determined by the inverse interaction time. The analysis of experimental conditions has shown that the main source of line broadening is the inhomogeneous electric field of cold photoions that are generated under the excitation of initial nP Rydberg states by broadband pulsed laser radiation. The application of an additional electric-field pulse that rapidly extracts photoions produced by a laser pulse leads to a considerable narrowing of lines of microwave resonances and the Foerster resonance. Various sources of line broadening in cold Rydberg atoms are analyzed.

  4. Fluctuations of a receding contact line near the entrainment transition

    NASA Astrophysics Data System (ADS)

    Bico, Jose; Delon, Giles; Fermigier, Marc

    2004-11-01

    We study experimentally the fluctuations of a contact line receding on a plane solid substrate. The contact line is perturbed by localized defects and we follow the relaxation of perturbations induced by these defects, as a function of the mean contact line speed and wavelengths characteristic of the perturbations. We compare our results with theoretical predictions by Golestanian and Raphael showing a divergence of the relaxation time at the entrainment transition (when the receding velocity exceeds a critical value, the liquid is entrained by the solid).

  5. Transition probability of the Al II 2669 intersystem line

    NASA Technical Reports Server (NTRS)

    Johnson, B. C.; Smith, P. L.; Parkinson, W. H.

    1986-01-01

    Time-resolved observations of the spin-changing, or 'intersystem' emission at 2669.157 A obtained by the ion storage technique are used to measure the transition probability of the 3s2 1S0 - 3s3p 3P1 exp 0 line in Al II. A laser-generated plasma was used as the source of the metastable Al(+) ions. The A-value result obtained for the intersystem transition is 3.33 + or - 0.23 x 10 to the 3rd/sec at the 90-percent confidence level; this value is used to derive two line-intensity ratios which involve the intersystem line as a function of electron density and temperature.

  6. 973 nm wavelength stabilized hybrid ns-MOPA diode laser system with 15.5 W peak power and a spectral line width below 10 pm

    NASA Astrophysics Data System (ADS)

    Vu, Thi N.; Klehr, Andreas; Sumpf, Bernd; Wenzel, Hans; Erbert, Götz; Tränkle, Günther

    2014-05-01

    A master oscillator power amplifier (MOPA) system for the generation of ns-pulses with high peak power, narrow spectral line width, and stabilized emission wavelength will be presented. The master oscillator is a distributed feedback (DFB) ridge waveguide (RW) laser. The tapered amplifier consists of one RW section and one flared gain-guided section. The DFB laser is operated in continuous wave mode and emits at 973.5 nm with a spectral line width below 10 pm. The RW section of the amplifier acts as an optical gate. The tapered section amplifies the generated optical pulse. An optical peak power of 15.5 W for a pulse width of 8 ns is obtained. The emission wavelength remains constant at all output power levels of the MOPA system for a fixed current into the DFB laser. The spectral power density of the ASE is 37 dB smaller than the lasing spectral power density. The spectral line width is smaller than 10 pm, limited by the resolution of the optical spectrum analyzer.

  7. DETERMINING INTERSTELLAR CARBON ABUNDANCES FROM STRONG-LINE TRANSITIONS

    SciTech Connect

    Sofia, U. J.; Parvathi, V. S.; Babu, B. R. S.; Murthy, J.

    2011-01-15

    Carbon is arguably the most important element in the interstellar medium, yet its abundance in gas and dust is poorly understood due to a paucity of data. We explore the possibility of substantially increasing our knowledge of interstellar carbon by applying and assessing a new method for determining the column density of the dominant ion of interstellar carbon in diffuse neutral lines of sight. The method relies on profile fitting of the strong transition of C II at 1334 A in spectra continuum normalized with stellar models. We apply our method to six sight lines for which the carbon abundance has previously been determined with a weak intersystem absorption transition. Our strong-line method consistently shows a significantly lower gas-phase C abundance than the measurements from the weak lines. This result implies that more carbon could reside in dust than was previously thought. This has implications for dust models, which often suffer from a lack of sufficient carbon to plausibly explain extinction. There is no immediately clear explanation for the difference found between the strong- and weak-line C II determinations, but there are indications that the results from the method presented here have advantages over the weak-line column densities. If this is the case, then the reported oscillator strength for the C II transition at 2325 A may be too small. Our findings further suggest that damping wings modeled with a single absorption component may not produce accurate abundances. This problem could affect a large number of H I abundances determined through absorption line analysis that are reported in the literature.

  8. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan; Rousseau, Olivier; Otani, YoshiChika

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  9. Discovery of a transiting planet near the snow-line

    SciTech Connect

    Kipping, D. M.; Torres, G.; Buchhave, L. A.; Kenyon, S. J.; Henze, C.; Bryson, S. T.; Isaacson, H.; Kolbl, R.; Marcy, G. W.; Stassun, K.; Bastien, F.

    2014-11-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4σ confidence. Kepler-421b receives the same insolation as a body at ∼2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ∼180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ∼3 Myr, indicating that Kepler-421b may have formed at its observed location.

  10. Discovery of a Transiting Planet near the Snow-line

    NASA Astrophysics Data System (ADS)

    Kipping, D. M.; Torres, G.; Buchhave, L. A.; Kenyon, S. J.; Henze, C.; Isaacson, H.; Kolbl, R.; Marcy, G. W.; Bryson, S. T.; Stassun, K.; Bastien, F.

    2014-11-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4σ confidence. Kepler-421b receives the same insolation as a body at ~2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ~180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ~3 Myr, indicating that Kepler-421b may have formed at its observed location. Based on archival data of the Kepler telescope.

  11. Influence of nanoconfinement on the rotational dependence of line half-widths for 2-0 band of carbon oxide

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Petrova, T. M.; Ponomarev, Yu. N.; Solodov, A. M.

    2015-09-01

    Absorption spectra of carbon oxide, confined in nanoporous silica aerogel, have been measured within 4100-4400 cm-1 region at room temperature and at several pressures using Bruker IFS-125 HR Fourier spectrometer. Dependence of the half-width (HWHM) values on rotational quantum numbers is studied and compared with the data available in literature. It is found that variations in the half-width values for the confined CO at small quantum numbers are larger than at moderate ones. The influence of confinement tightness on rotational dependence is discussed.

  12. Phase Transitions above the Yrast Line in {sup 154}Dy

    SciTech Connect

    Ma, W. C.; Martin, V.; Khoo, T. L.; Lauritsen, T.; Egido, J. L.; Ahmad, I.; Bhattacharyya, P.; Carpenter, M. P.; Daly, P. J.; Grabowski, Z. W.

    2000-06-26

    Spectra of the E2 quasicontinuum {gamma} rays feeding different spin regions of the {sup 154}Dy yrast line have been extracted. These are compared with corresponding theoretical spectra obtained by numerical simulations based on temperature-dependent Hartree-Fock theory, with thermal shape fluctuations. In this manner, different regions of the spin-energy plane can be examined. The results support the predictions of a smeared-out phase transition at high spin above the yrast line. (c) 2000 The American Physical Society.

  13. Determination of transition probability for the 655-nm Tl line.

    NASA Astrophysics Data System (ADS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J. J.

    Studies of high-pressure Hg-Tl I a.c. (50 Hz) arc plasmas have been used to verify the validity of Boltzmann statistics at the moment of maximum electron density (5 ms) by applying LTE criteria. For a known plasma temperature, the transition probability of the optically-thin 655-nm line of Tl was derived from emission measurements by using the self-reversed 535-nm line of Tl as reference [A655 = (3.74±0.37)×106s-1].

  14. Wavelength stabilized ns-MOPA diode laser system with 16 W peak power and a spectral line width below 10 pm

    NASA Astrophysics Data System (ADS)

    Nghiem Vu, Thi; Klehr, Andreas; Sumpf, Bernd; Wenzel, Hans; Erbert, Götz; Tränkle, Günther

    2014-03-01

    A master oscillator power amplifier system for the generation of ns-pulses with high peak power, stabilized wavelength and narrow spectral line width will be presented. The master oscillator is a distributed feedback (DFB) ridge waveguide (RW) laser. The tapered amplifier consists of three RW sections and one flared gain-guided section. The DFB laser is operated in continuous wave mode and emits at 1064 nm with a spectral line width below 10 pm. One RW section of the amplifier acts as an optical gate for pulse selection. The tapered section amplifies the generated optical pulse. By adjusting the delay time between the current pulses injected into the picker and into the tapered section, respectively, the power of the amplified spontaneous emission was reduced below 1% of the average laser power. For an optical pulse length of 2 ns, a peak power of 16 W was obtained. A side mode suppression ratio better than 46 dB was observed.

  15. Research of narrow line-width Er3+-doped fiber ring laser with FBG F-P etalon and FBG Sagnac loop

    NASA Astrophysics Data System (ADS)

    Ou, Zhonghua; Dai, Zhiyong; Wu, Bo; Zhang, Lixun; Peng, Zengshou; Liu, Yongzhi

    2008-12-01

    A novel method of narrow line-width Er3+-doped fiber ring laser based on FBG F-P etalon and FBG Sagnac loop is presented in this paper. The all-fiber single frequency and narrow line-width Er3+-doped fiber ring laser has been designed in which two 976 nm laser diodes are used as the pump sources, the high concentration Er3+-doped fiber as the gain medium, the fiber Faraday rotator is adopted to eliminate the spatial hole burning effect, the FBG F-P etalon and FBG Sagnac loop filter can discriminate and select laser longitudinal modes efficiently. The experiment system using 3m long Er3+-doped fibers is presented, when the maximum pump power of two 976nm laser diodes is 146mW, the fiber laser exhibits 16mW threshold and stable single frequency 1550nm laser with the output powers of 45mW is acquired, and the slope efficiency is about 34.6%. The 3dB line-width is less than 9.3 kHz, measured by the delayed selfheterodyne method with 15km single-mode fiber, and no mode hopping is observed. The fiber laser has the advantages of simple structure, high efficiency and high reliability and it has great potential applications in the fields of optical fiber sensing system.

  16. Diode laser measurements of line strengths and widths in the 4.5-micron bands of N2O

    NASA Technical Reports Server (NTRS)

    Lowenstein, M.; Podolske, J. R.; Blackburn, T. E.; Varanasi, P.

    1986-01-01

    Line-strength measurements in the N2O nu3-fundamental region using a tunable diode-laser spectrometer. From these measurements and the Herman-Wallis factor determined by Boissy et al. (1975), the nu-3-fundamental band strength is found to be 1203 + or - 22 per sq cm atm at 297 K. Line-broadening parameters for two nu-3-fundamental lines were determined using nitrogen (N2) as the broadening gas. Measured strengths and N2 line-broadening parameters for several hot-band lines are also presented.

  17. Spectral line parameters including temperature dependences of N2- and self-broadened widths in the region of the nu9 band of C2H6 using a multispectrum fitting technique

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Benner, D. Chris; Rinsland, C. P.; Smith, M. A. H.; Sams, R. L.; Blake, T. A.; Flaud, Jean-Marie; Sung, Keeyoon; Brown, L. R.; Mantz, A. W.

    2010-04-01

    Ethane is a prominent contributor to the spectrum of Titan, particularly in the region of the nu9 band at 12 micron. A multispectrum nonlinear least squares fitting program was applied to laboratory spectra of ethane to measure accurate positions, absolute intensities, N2- and self-broadened half width coefficients and their temperature dependences for a large number transitions. These measurements include several PQ and RQ sub-bands (and other sub bands such as PP, RR) in the nu9 fundamental band of 12C2H6 centered near 822 cm-1. Positions and intensities were measured for more than 1750 transitions. N2- and self-broadened half width coefficients were measured for over 1450 transitions while the temperature dependence exponents were determined for 1330 transitions. About 1900 additional measurements (mostly line positions and intensities) belonging to the nu9+nu4-nu4 hot band, 13C12CH6 nu9 band and over 500 unidentified transitions were also made in the fitted intervals. Forty-three high resolution (0.0016-0.003 cm-1) infrared laboratory absorption spectra recorded at temperatures between 150 and 298 K were fitted simultaneously in retrieving these parameters. Forty-one of these spectra were recorded in the temperature range of 211-298 K using the Bruker IFS 120HR interferometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. Two additional spectra at 150 K were obtained using the high resolution Bruker IFS 125HR interferometer of the Jet Propulsion Laboratory (JPL) in Pasadena, California. A specialized cooling cell capable of achieving temperatures down to 70 K was employed to record the 150 K spectra. Constraints pertaining to intensity ratios, doublet separations, half width coefficients and their temperature dependence exponents were written in determining these parameters for each of the two torsional split components. Similar to N2- and self-broadened half width coefficients, their temperature dependence exponents were

  18. Evaluating Possible Heating Mechanisms Using the Transition Region Line Profiles of Late-Type Stars

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Linsky, Jeffrey L.; Ayres, Thomas R.

    1997-01-01

    Our analysis of high-resolution Goddard High-Resolution Spectrograph (GHRS) spectra of late-type stars shows that the Si IV and C IV lines formed near 10(exp 5) K can be decomposed into the sum of two Gaussians, a broad component and a narrow component. We find that the flux contribution of the broad components is correlated with both the C IV and X-ray surface fluxes. For main-sequence stars, the widths of the narrow components suggest subsonic nonthermal velocities, and there appears to be a tight correlation between these nonthermal velocities and stellar surface gravity [xi(sub nc) varies as g(sup (-.68 +/-.07))]. For evolved stars with lower surface gravities, the nonthermal velocities suggested by the narrow components are at or just above the sound speed. Nonthermal velocities computed from the widths of the broad components are always highly supersonic. We propose that the broad components are diagnostics for microflare heating. Turbulent dissipation and Alfven waves are both viable candidates for the narrow component heating mechanism. A solar analog for the broad components might be the 'explosive events' detected by the High-Resolution Telescope and Spectrograph (HRTS) experiment. The broad component we observe for the Si IV lambda 1394 line of alpha Cen A, a star that is nearly identical to the Sun, has a FWHM of 109 +/- 10 km/s and is blueshifted by 9 +/- 3 km/s relative to the narrow component. Both of these properties are consistent with the properties of the solar explosive events. However, the alpha Cen A broad component accounts for 25% +/- 4% of the total Si IV line flux, while solar explosive events are currently thought to account for no more than 5% of the Sun's total transition region emission. This discrepancy must be resolved before the connection between broad components and explosive events can be positively established. In addition to our analysis of the Si IV and C IV lines of many stars, we also provide a more thorough analysis of all

  19. Temperature Dependencies of Linewidths, Positions, and Line Shifts of Spectral Transitions of Trivalent Neodymium Ions in Ceramic Nd3+:Y2O3

    NASA Astrophysics Data System (ADS)

    Pedraza, Francisco; Khachatryan, Edward; Dennis, Robert; Nash, Kelly; Sardar, Dhiraj

    2010-10-01

    Effects of temperature on widths and shifts of the spectral lines of Nd^3+ in Y2O3 polycrystalline ceramic have been investigated. The spectral lines corresponding to the inter-Stark transitions R1 -> Y1 (1074 nm) and R1-> X3 (914 nm) within the ^4F3/2 -> ^4I11/2 and ^4F3/2 -> ^4I9/2 transitions, respectively, have been studied. The widths of these lines and their shifts have been measured as a function of temperature in 10K- 300K range. The spectral linewidths of both transitions are found to increase with increasing temperature. This research was supported by the National Science Foundation Grant No. DMR-0934218.

  20. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report (Report and Appendices)

    SciTech Connect

    Chandler, K.; Eudy, L.

    2009-01-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses. This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008. These results are an addition to those provided in the previous three evaluation reports.

  1. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report (Report and Appendices)

    SciTech Connect

    Eudy, L.; Chandler, K.

    2009-08-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  2. Strong-field cyclotron scattering. I - Scattering amplitudes and natural line width. [in spectra of accretion-powered X-ray pulsars

    NASA Technical Reports Server (NTRS)

    Graziani, Carlo

    1993-01-01

    The introduction of resonance line width into the QED cyclotron scattering amplitudes is considered. It is shown that the width arises from loop corrections to the electron propagator, which also bring about shifts in the Landau energy levels. A formalism is developed that allows the dressed electron propagator to be derived. It is shown that the states of Herold et al. (1982) and of Sokolov and Ternov (1968), which diagonalize the component of the magnetic moment operator parallel to the external magnetic field, are appropriate for calculation of the scattering amplitudes, whereas the states of Johnson and Lippmann (1949) are not. In addition, it is shown that the Breit-Wigner broadening approximation E tends to E - i(Gamma)/2 is consistent with the perturbation-theoretic order of the calculation, if the former basis states are chosen, but not the latter.

  3. Absorption spectral band width of charge transfer transition of E(T)(30) dye in homogeneous and heterogeneous media.

    PubMed

    Das, Parimal Kumar; Pramanik, Ramkrishna; Bagchi, Sanjib

    2003-06-01

    Solvation characteristics in homogeneous and heterogeneous media have been probed by monitoring the band width of ICT band of 2,6-di-phenyl-4(2,4,6-triphenyl-1-pyridino) phenolate, the indicator solute for E(T)(30) scale, in pure, mixed binary solvents and aqueous micellar solution. Non-ideal solvation behaviour is observed in all the binary solvent mixtures. Index of preferential solvation has been calculated as a function of solvent composition. Study in micellar media indicates that the dye is located at the micelle-water interface. The effects of variation of micelle concentration, temperature and electrolyte concentration have also been studies. PMID:12736053

  4. The role of higher-multipolar and repulsive forces in the calculation of collision-broadened line-widths of linear molecules

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Sarangi, S.

    1974-01-01

    Collision-broadened line widths in CO-CO2 and CO-O2 collisions have been calculated by incorporating interactions due to octopoles and hexadecapoles and short-range repulsive interactions into Anderson's (1949) theory. It is shown how these higher-order interactions can be manipulated to yield good agreement with experimental data. A critical evaluation of this totally empirical manipulation suggests that a thorough revision of the theory is required for all but simple dipole-dipole interactions. In the process of the evaluation, the values of the multipole moments are discussed.

  5. Theoretical Stark widths and shifts of spectral lines of 2p5nf and 2p55g configurations of Mg III

    NASA Astrophysics Data System (ADS)

    Moreno-Díaz, Cristina; Alonso-Medina, Aurelia; Colón, Cristóbal

    2014-11-01

    In this paper, we report theoretical Stark widths and shifts calculated using the Griem semi-empirical approach, which corresponds to 111 spectral lines of Mg III. The values of these Stark broadening parameters of spectral lines that arise from levels of 2p5nf and 2p55g configurations of Mg III are presented in the literature for the first time. The aim of this work is to provide values to estimate the electron density of plasma Mg III in astrophysics and industrial applications. The data are presented for the temperatures T = 0.5-10.0 (104 K) and for an electron density of 1017 cm-3. The matrix of elements used in these calculations has been determined from 23 configurations of Mg III: 2s22p6, 2s22p53p, 2s22p54p, 2s22p54f and 2s22p55f for the even parity and 2s22p5ns (n = 3-6), 2s22p5nd (n = 3-9), 2s22p55g and 2s2p6np (n = 3-8) for the odd parity. For the intermediate coupling calculations, we use the standard method of least square fitting from experimental energy levels by means of Cowan’s computer code. Lines with wavelengths of 134.6460, 135.2800, 189.0380, 190.0043, 192.8424, 408.2939 and 409.4375 nm have high probabilities and also have high values of broadening. Therefore, these lines can be used in some applications. A common regularity for the Stark width of the 189.038 nm spectral line of Mg III is discussed.

  6. Topological Phase Transitions in Line-nodal Superconductors

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Han, Sangeun; Moon, Eun-Gook

    Fathoming interplay between symmetry and topology of many-electron wave-functions deepens our understanding in quantum nature of many particle systems. Topology often protects zero-energy excitation, and in a certain class, symmetry is intrinsically tied to the topological protection. Namely, unless symmetry is broken, topological nature is intact. We study one specific case of such class, symmetry-protected line-nodal superconductors in three spatial dimensions (3d). Mismatch between phase spaces of order parameter fluctuation and line-nodal fermion excitation induces an exotic universality class in a drastic contrast to one of the conventional ϕ4 theory in 3d. Hyper-scaling violation and relativistic dynamic scaling with unusually large quantum critical region are main characteristics, and their implication in experiments is discussed. For example, continuous phase transition out of line-nodal superconductors has a linear phase boundary in a temperature-tuning parameter phase-diagram. This work was supported by the Brain Korea 21 PLUS Project of Korea Government and KAIST start-up funding.

  7. A sequential assignment procedure for proteins that have intermediate line widths in MAS NMR spectra: amyloid fibrils of human CA150.WW2.

    PubMed

    Becker, Johanna; Ferguson, Neil; Flinders, Jeremy; van Rossum, Barth-Jan; Fersht, Alan R; Oschkinat, Hartmut

    2008-08-11

    The second WW domain (WW2) of CA150, a human transcriptional activator, forms amyloid fibrils in vitro under physiological conditions. Based on experimental constraints from MAS NMR spectroscopy experiments, alanine scanning and electron microscopy, a structural model of CA150.WW2 amyloid fibrils was calculated earlier. Here, the assignment strategy is presented and suggested as a general approach for proteins that show intermediate line width. The (13)C,(13)C correlation experiments were recorded on fully or partially (13)C-labelled fibrils. The earlier (13)C assignment (26 residues) was extended to 34 of the 40 residues by direct (13)C-excitation experiments by using a deuterated sample that showed strongly improved line width. A 3D HNC-TEDOR (transferred-echo double-resonance) experiment with deuterated CA150.WW2 fibrils yielded 14 amide nitrogen and proton resonance assignments. The obtained chemical shifts were compared with the chemical shifts determined with the natively folded WW domain. TALOS (Torsion angle likelihood obtained from shift and sequence similarity) predictions confirmed that, under physiological conditions, the fibrillar form of CA150.WW2 adopts a significantly different beta structure than the native WW-domain fold. PMID:18642254

  8. Rise of a Brazil nut: A transition line

    NASA Astrophysics Data System (ADS)

    Godoy, Sergio; Risso, Dino; Soto, Rodrigo; Cordero, Patricio

    2008-09-01

    Using molecular dynamics we study the behavior of a large particle immersed in a bed of smaller ones. The system is bidimensional, consisting of many rough inelastic hard disks of equal size plus a larger one: the intruder. All possible parameters of the system are kept fixed except for two dimensionless parameters determining the frequency and amplitude of the vibrating base. A systematic exploration of this parameter space leads to determining a transition line separating a zone in which the Brazil nut effect is observed and one in which it is not. The results strongly suggest that, in the region of the parameter space in which the study is made, there is a minimum amplitude and a maximum frequency for the Brazil nut effect to take place. These results compare well with isolated results from other authors.

  9. Investigation of Line Width Narrowing and Spectral Jumps of Single Stable Defect Centers in ZnO at Cryogenic Temperature.

    PubMed

    Neitzke, Oliver; Morfa, Anthony; Wolters, Janik; Schell, Andreas W; Kewes, Günter; Benson, Oliver

    2015-05-13

    Finding new solid state defect centers in novel host materials is crucial for realizing integrated hybrid quantum photonic devices. We present a preparation method for defect centers with photostable bright single photon emission in zinc oxide, a material with promising properties in terms of processability, availability, and applications. A detailed optical study reveals a complex dynamic of intensity fluctuations at room temperature. Measurements at cryogenic temperatures show very sharp (<60 GHz) zero phonon lines (ZPLs) at 580 nm to  620 nm (≈ 2.0 eV) with frozen out fast fluctuations. Remaining discrete jumps of the ZPL, which depend on the excitation power, are observed. The low temperature results will narrow down speculations on the origin of visible-near-infrared (NIR) wavelength defect emission in zinc oxide and provide a basis for improved theoretical models. PMID:25816112

  10. Dependence of light pulse propagation on its temporal width: Transition from group velocity to c-propagation

    NASA Astrophysics Data System (ADS)

    Ignesti, Emilio; Tommasi, Federico; Fini, Lorenzo; Cavalieri, Stefano

    2016-07-01

    We show how the velocity of an optical pulse propagating through a dispersive medium depends on the pulse duration. A transition from the group velocity for long pulses to the in-vacuum velocity for short pulses is shown both in experimental results and in theoretical predictions. The temporal duration of the experimental pulses are 150 ps and 3.5 ns. A description of the pulse propagation in terms of the time "center of mass" of the energy flow allows an intuitive overview of the results.

  11. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  12. Equilibrium lines and barriers to phase transitions: the cubic diamond to beta-tin transition in Si from first principles.

    PubMed

    Qiu, S L; Marcus, P M

    2012-06-01

    The phase transition between the cubic diamond (cd) and beta-tin (β-Sn) phases of Si under pressure and the region of interaction of the two phases are studied by first-principles total energy calculations. For a non-vibrating crystal we determine the pressure of the thermodynamic phase transition p(t) = 96 kbar, the Gibbs free energy barrier at p(t) of ΔG = 19.6 mRyd/atom that stabilizes the phases against a phase transition and the finite pressure range in which both phases are stable. We show that the phases in that pressure range are completely described by three equilibrium lines of states along which the structure, the total energy E, the hydrostatic pressure p that would stabilize the structure and the values of G all vary. Two equilibrium lines describe the two phases (denoted the ph-eq line, ph is cd or β-Sn phase); a third line is a line of saddle points of G with respect to structure (denoted the sp-eq line) that forms a barrier of larger G against instability of the metastable ranges of the phase lines. An important conclusion is that the sp-eq line merges with the two ph-eq lines: one end of the sp-eq line merges with the cd-eq line at high pressure, the other end merges with the β-Sn-eq line at low pressure. The mergers end the barrier protecting the metastable ranges of the two ph-eq lines, hence the lines go unstable beyond the mergers. The mergers thus simplify the phase diagram by providing a natural termination to the stable parts of all metastable ranges of the ph-eq lines. Although 96 kbar is lower than the experimental transition pressure, we note that phonon pressure raises the observed transition pressure. PMID:22551557

  13. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect

    Seely, J. F. Feldman, U.; Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert; Pereira, N.; Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P.; Chen, Hui; Williams, G. J.; Park, J.

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  14. Transient analysis and control of bias magnetic state in the transformer of on-line pulse-width-modulation switching full bridge direct current-direct current converter

    NASA Astrophysics Data System (ADS)

    Chen, Jiaxin; Guo, Youguang; Zhu, Jianguo; Wei Lin, Zhi

    2012-04-01

    This paper presents a finite element analysis (FEA) based method for analyzing and controlling the bias magnetic state of the transformer of a pulse-width-modulation (PWM) switching full bridge dc-dc converter. A field-circuit indirect coupling method for predicting the transient bias magnetic state is introduced first. To increase flexibility of the proposed method, a novel transformer model which can address not only its basic input-output characteristic, but also the nonlinear magnetizing inductance, is proposed. Both the asymmetric characteristic and the variable laws of the current flowing through the two secondary windings during the period of PWM switching-off state are highlighted. Finally, the peak magnetizing current controlled method based on the on-line magnetizing current computation is introduced. Analysis results show that this method can address the magnetic saturation at winding ends, and hence many previous difficulties, such as the start-up process and asymmetry of power electronics, can be easily controlled.

  15. Conformational transitions of single polymer adsorption in poor solvent: Wetting transition due to molecular confinement induced line tension.

    PubMed

    Wei, Hsien-Hung; Li, Yen-Ching

    2016-07-01

    We report a theory capable of describing conformational transitions for single polymer adsorption in a poor solvent. We show that an additional molecular confinement effect near the contact line can act exactly like line tension, playing a critical role in the behavior of an absorbed polymer chain. Using this theory, distinct conformational states: desorbed globule (DG), surface attached cap (SAC), and adsorbed lens (AL), can be vividly revealed, resembling the drying-wetting transition of a nanodroplet. But the transitions between these states can behave rather differently from those in the usual wetting transitions. The DG-SAC transition is discrete, occurring at the adsorption threshold when the globule size at the desorbed state is equal to the adsorption blob. The SAC-AL transition is smooth for finite chain lengths, but can change to discontinuous in the infinite chain limit, characterized by the different end-to-end exponent 3/8 and the unique crossover exponent 1/4. Distinctive critical exponents near this transition are also determined, indicating that it is an additional universality class of phase transitions. This work also sheds light on nanodrop spreading, wherein the important role played by line tension might simply be a manifestation of the local molecular confinement near the contact line. PMID:27575170

  16. Conformational transitions of single polymer adsorption in poor solvent: Wetting transition due to molecular confinement induced line tension

    NASA Astrophysics Data System (ADS)

    Wei, Hsien-Hung; Li, Yen-Ching

    2016-07-01

    We report a theory capable of describing conformational transitions for single polymer adsorption in a poor solvent. We show that an additional molecular confinement effect near the contact line can act exactly like line tension, playing a critical role in the behavior of an absorbed polymer chain. Using this theory, distinct conformational states: desorbed globule (DG), surface attached cap (SAC), and adsorbed lens (AL), can be vividly revealed, resembling the drying-wetting transition of a nanodroplet. But the transitions between these states can behave rather differently from those in the usual wetting transitions. The DG-SAC transition is discrete, occurring at the adsorption threshold when the globule size at the desorbed state is equal to the adsorption blob. The SAC-AL transition is smooth for finite chain lengths, but can change to discontinuous in the infinite chain limit, characterized by the different end-to-end exponent 3/8 and the unique crossover exponent 1/4. Distinctive critical exponents near this transition are also determined, indicating that it is an additional universality class of phase transitions. This work also sheds light on nanodrop spreading, wherein the important role played by line tension might simply be a manifestation of the local molecular confinement near the contact line.

  17. Spectral line shapes of L-shell transitions in Ne-like iron

    NASA Astrophysics Data System (ADS)

    Mancini, Roberto C.

    2016-05-01

    Photon-energy-resolved large-scale opacity calculations employ Stark broadened spectral line shapes only to account for the contribution of K-shell line transitions. Detailed ion broadening effects are not considered for L- and M-shell transitions. We present Stark broadening calculations for the line profiles of L-shell transitions linking ground state and singly excited states in Ne-like iron ions. These detailed line shapes have been computed in the standard Stark broadening theory approximation taking into account the effect of both static ions and dynamic electrons. The results show the importance of the ion's effect on the line broadening of several L-shell line transitions.

  18. Narrow Width Pentaquarks

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Sorba, P.

    A general study of pentaquarks built with four quarks in a L=1 state and an antiquark in S-wave shows that several of such states are forbidden by a selection rule, which holds in the limit of flavor symmetry, to decay into a baryon and a meson final state. We identify the most promising /line{10} multiplet for the classification of the Θ+ and Ξ-- particles recently discovered with the prediction of a narrow width for both of them.

  19. The evolution of the equivalent width of the Hα emission line and specific star formation rate in star-forming galaxies at 1 < z < 5

    NASA Astrophysics Data System (ADS)

    Mármol-Queraltó, E.; McLure, R. J.; Cullen, F.; Dunlop, J. S.; Fontana, A.; McLeod, D. J.

    2016-08-01

    We present the results of a study which uses spectral energy distribution (SED) fitting to investigate the evolution of the equivalent width (EW) of the Halpha emission line in star-forming galaxies over the redshift interval 1=1 in the CANDELS UDS and GOODS-S fields. Confining our analysis to a constant stellar mass range (9.5line flux, we use our galaxy samples to compare the evolution of EW(Ha) and specific star-formation rate (sSFR). Our results indicate that over the redshift range 1

  20. Role of re-growth interface preparation process for spectral line-width reduction of single InAs site-controlled quantum dots.

    PubMed

    Herranz, Jesús; Wewior, Lukasz; Alén, Benito; Fuster, David; González, Luisa; González, Yolanda

    2015-05-15

    We present growth and optical characterization measurements of single InAs site-controlled quantum dots (SCQDs) grown by molecular beam epitaxy on GaAs (001) patterned substrates by atomic force microscopy oxidation lithography. InAs SCQDs directly grown on the patterned surface were used as a seed layer and strain template for the nucleation of optically active single InAs SCQDs. The preservation of the initial geometry of the engraved pattern motifs after the re-growth interface preparation process, the lack of buffer layer growth prior to InAs seed layer deposition and the development of suitable growth conditions provide us an improvement of the SCQDs' active layer optical properties while retaining a high ratio of single occupation (89%). In this work a fivefold reduction of the average optical line-width from 870 μeV to 156 μeV for InAs SCQDs located 15 nm from the re-growth interface is obtained by increasing the temperature of the initial thermal treatment step of the re-growth interface from 490 °C to 530 °C. PMID:25895541

  1. Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jayaraman, V.; Jiang, J.; Potsaid, B.; Cole, G.; Fujimoto, J.; Cable, A.

    2012-03-01

    MEMS tunable vertical cavity surface emitting laser (MEMS-VCSEL) development, over the past two decades, has primarily focused on communications and spectroscopic applications. Because of the narrow line-width, single-mode operation, monolithic fabrication, and high-speed capability of these devices, MEMS-VCSELs also present an attractive optical source for emerging swept source optical coherence tomography (SSOCT) systems. In this paper, we describe the design and performance of broadly tunable MEMS-VCSELs targeted for SSOCT, emphasizing 1310nm operation for cancer and vascular imaging. We describe the VCSEL structure and fabrication, employing a fully oxidized GaAs/AlxOy mirrors in conjunction with dielectric mirrors and InP-based multi-quantum well active regions. We also describe the optimization of MEMs speed and frequency response for SSOCT. Key results include 1310 nm VCSELs with >120nm dynamic tuning range and imaging rates near 1MHz, representing the widest VCSEL tuning range and some of the fastest swept source imaging rates thus far obtained. We also describe how low-noise semiconductor optical amplification boosts average optical power to the required levels, while maintaining superior OCT imaging quality and state of the art system sensitivity. Finally, we present measured multi-centimeter dynamic coherence length, and discuss the implications of VCSELs for OCT.

  2. Landau levels and spin splitting in the two-dimensional electron gas of a HgTe quantum well near the critical width for the topological phase transition

    NASA Astrophysics Data System (ADS)

    Pakmehr, M.; Bruene, C.; Buhmann, H.; Molenkamp, L. W.; Stier, A. V.; McCombe, B. D.

    2014-12-01

    We report a detailed low-temperature study of the two-dimensional (2D) electron gas in a 6.1-nm-wide HgTe quantum well with H g0.3C d0.7Te barriers by terahertz magnetophotoconductivity and magnetotransmission combined with magnetotransport measurements (Rx x and Rx y) in magnetic fields up to 10 T. This well width, close to that at the topological phase transition, corresponds to conventional band ordering, and we probe the "bulk" quasi-2D Landau-level (LL) spectrum of the conduction band at high energies (≈135 -160 meV ) above the Dirac point. The calculated separations between adjacent LLs of the same spin based on published parameters for this structure are in fair agreement with the measured cyclotron resonance energies. However, the very large spin splittings observed (Espin>Ecyclotron) require a significantly larger g -parameter ge for electrons. Tilted field coincidence experiments are consistent with the large spin splitting showing coincidences at 3/2 and twice the cyclotron energy. This large value of ge also leads to interesting crossings of the calculated LLs, and we find direct evidence of these crossings in the Rx x measurements at lower electron densities (Fermi energies) produced by negative gate bias.

  3. Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}

    SciTech Connect

    Gökçe, Yasin; Çelik, Gültekin; Yıldız, Murat

    2014-07-15

    Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.

  4. Anomalous optogalvanic line shapes of argon metastable transitions in a hollow cathode lamp

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.

    1993-01-01

    Anomalous optogalvanic line shapes were observed in a commercial hollow cathode lamp containing argon buffer gas. Deviations from Gaussian line shapes were particularly strong for transitions originating from the 3P2 metastable level of argon. The anomalous line shapes can be described reasonably well by the assumption that two regions in the discharge are excited simultaneously, each giving rise to a purely Gaussian line shape, but with different polarities, amplitudes, and linewidths.

  5. Accurate transition rates for intercombination lines of singly ionized nitrogen

    SciTech Connect

    Tayal, S. S.

    2011-01-15

    The transition energies and rates for the 2s{sup 2}2p{sup 2} {sup 3}P{sub 1,2}-2s2p{sup 3} {sup 5}S{sub 2}{sup o} and 2s{sup 2}2p3s-2s{sup 2}2p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p{sup 3} {sup 1,3}P{sub 1}{sup o} and 2s{sup 2}2p3s {sup 1,3}P{sub 1}{sup o}levels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  6. Measurements of argon broadened Lorentz width and pressure-induced line shift coefficients in the nu4 band of (C-12)H4

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    1989-01-01

    Room temperature argon broadened halfwidth and pressure-induced line shift coefficients have been determined for 118 transitions in the nu4 band of (C-12)H4 from analysis of high resolution laboratory absorption spectra recorded with the McMath Fourier transform spectrometer operated on Kitt Peak by the National Solar Observatory. Transitions up to J-double-prime = 12 have been measured using a nonlinear least-squares spectral fitting procedure. The variation of the measured halfwidth coefficients with symmetry type and rotational quantum number is very similar to that measured previously for N2 and air broadening, but the absolute values of the argon broadening coefficients are all smaller. On average, the ratio of the argon broadened halfwidth coefficient to the corresponding N2 broadened halfwidth coefficient is 0.877 + or - 0.017 (2 Sigma). More than 95 percent of the pressure-induced shifts are negative with values ranging from -0.0081 to +0.0055/cm atm. The pressure shifts in argon are nearly equal to corresponding values measured previously in N2 and air.

  7. Forbidden lines of the solar corona and transition zone - 975-3000 A

    NASA Technical Reports Server (NTRS)

    Sandlin, G. D.; Brueckner, G. E.; Tousey, R.

    1977-01-01

    Forbidden lines characteristic of plasmas at temperatures of 50,000 to 3 million K are observed in ATM UV spectra. Identifications, accurate wavelengths, ionization classes, intensities, and half-widths are presented. Coronal blends with He II at 1640 A are noted. Variations in nonthermal velocities with limb distance are observed. Doppler shifts in the coronal lines observed on the disk may be related to the solar wind. The coincidence of two lines with F IV(3P-5S) is evidence for atomic fluorine in the sun.

  8. Analysis of Transition-Region Emission-Line Profiles from Full-Disk Scans of the Sun Using the SUMER Instrument on SOHO

    NASA Astrophysics Data System (ADS)

    Peter, H.

    1999-05-01

    We examine statistical properties of line profiles seen in full-disk observations with the UV spectrograph SUMER on board SOHO. In the SUMER data archive, full-disk data with complete spectral information are available only for wavelength regions including the He I (584 Å), Ne VIII (770 Å), C III (977 Å) and C IV (1548 Å) emission lines. In this paper we will concentrate on C IV and Ne VIII. Collectively these data provide us with the unique opportunity to study the properties of line profiles in the lower and upper solar transition-region beyond what could be achieved with earlier instruments. In particular, these data reveal the center-to-limb behavior of line shifts and line widths for the first time in a statistically meaningful way. For C IV these data show the well-known redshift of the transition-region lines in the quiet Sun and a clear correlation of the Doppler shift and the nonthermal broadening to the intensity as a characteristic of the network structure. This correlation is not found in the coronal holes. No indications for the network can be found in Ne VIII. For Ne VIII we find a center-to-limb variation of the line shift opposite to C IV, which leads to the conclusion that Ne VIII must be blueshifted at disk center. This also shows the need for a remeasurement of the wavelength of Ne VIII in the laboratory. The center-to-limb variation of the line width leads to the conclusion that the nonresolved motions are not isotropic with a preference for the vertical component. Both lines show a clear signal for an outflow in the polar coronal holes. We discuss the implications of these and other observations for models of the transition-region and corona. The line shift behavior of Ne VIII and other lines from the upper transition-region deserves deeper investigation and probably has pivotal importance in our understanding of the solar transition-region. We are pursuing such work.

  9. ANALYSIS OF BREIT-PAULI TRANSITION PROBABILITIES FOR LINES IN O III

    SciTech Connect

    Fischer, C. Froese; Tachiev, G.; Rubin, R. H.; Rodriguez, M.

    2009-09-20

    Accurate atomic data are essential for understanding the properties of both O III lines produced by the Bowen fluorescence mechanism and [O III] forbidden lines observed in numerous gaseous nebulae. Improved Breit-Pauli transition probabilities have been published for the carbon sequence. Included were revised data for O III. The present paper analyzes the accuracy of the data specifically for O III by comparison with other theory as well as some recent experiments and observations. For the electric dipole transition probabilities, good agreement is found for allowed Bowen fluorescence lines between predictions of intensity ratios with observed data. For forbidden transitions, the Breit-Pauli magnetic dipole transition operator requires corrections that often are neglected. Good agreement is found when these transition probabilities are computed with multiconfiguration Dirac-Hartree-Fock methods.

  10. The evolution of the equivalent width of the Hα emission line and specific star formation rate in star-forming galaxies at 1 < z < 5

    NASA Astrophysics Data System (ADS)

    Mármol-Queraltó, E.; McLure, R. J.; Cullen, F.; Dunlop, J. S.; Fontana, A.; McLeod, D. J.

    2016-08-01

    We present the results of a study which uses spectral energy distribution (SED) fitting to investigate the evolution of the equivalent width (EW) of the Hα emission line in star-forming galaxies over the redshift interval 1 < z < 5. After first demonstrating the ability of our SED-fitting technique to recover EW(Hα) using a sample of galaxies at z ≃ 1.3 with EW(Hα) measurements from 3D-HST grism spectroscopy, we proceed to apply our technique to samples of spectroscopically confirmed and photometric-redshift selected star-forming galaxies at z ≥ 1 in the CANDELS (Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey) UDS and GOODS-S fields. Confining our analysis to a constant stellar mass range (9.5 < log (M⋆/M⊙) < 10.5), we find that the median EW(Hα) evolves only modestly with redshift, reaching a rest-frame value of EW(Hα) =301 ± 30 Å by redshift z ≃ 4.5. Furthermore, using estimates of star formation rate (SFR) based on both UV luminosity and Hα line flux, we use our galaxy samples to compare the evolution of EW(Hα) and specific star formation rate (sSFR). Our results indicate that over the redshift range 1 < z < 5, the evolution displayed by EW(Hα) and sSFR is consistent, and can be adequately parametrized as ∝ (1 + z)1.0 ± 0.2. As a consequence, over this redshift range, we find that the sSFR and rest-frame EW(Hα) of star-forming galaxies with stellar masses M⋆ ≃ 10^{10}{ M_{sun;} are related by EW(Hα)/Å = (63 ± 7) × sSFR/Gyr-1. Given the current uncertainties in measuring the SFRs of high-redshift galaxies, we conclude that EW(Hα) provides a useful independent tracer of sSFR for star-forming galaxies out to redshifts of z = 5.

  11. Stark line broadening of the n=4 to 3 transitions in high-Z heliumlike ions

    SciTech Connect

    Loboda, P. A.; Lykov, V. A.; Popova, V. V.

    1995-05-01

    Stark line broadening of the n=4 to 3 transitions of He-like Ne, Mg, and Al in multicharged ion plasmas is considered. Line profiles calculations involved quasi-static ion broadening, impact electron broadening, natural, and Doppler broadening. Considerable effect of Stark line broadening due to plasma ions for the 4F-3D transitions of He-like Ne is demonstrated at the Ne-plasma parameters yielding a maximum gain in the theoretical modeling of the resonantly photopumped Na-Ne x-ray laser scheme under the conditions of the Saturn experiments. The sensitivity of the calculated line profiles to the intermediate coupling effects and different energy level data is also investigated. Calculated line profiles of the 4F-3D transitions in He-like Mg and Al are compared to the experimental and other theoretical data.

  12. SOLAR TRANSITION REGION LINES OBSERVED BY THE INTERFACE REGION IMAGING SPECTROGRAPH: DIAGNOSTICS FOR THE O IV AND Si IV LINES

    SciTech Connect

    Dudík, J.; Del Zanna, G.; Mason, H. E.; Dzifčáková, E.; Golub, L.

    2014-01-01

    The formation of the transition region O IV and Si IV lines observable by the Interface Region Imaging Spectrograph (IRIS) is investigated for both Maxwellian and non-Maxwellian conditions characterized by a κ-distribution exhibiting a high-energy tail. The Si IV lines are formed at lower temperatures than the O IV lines for all κ. In non-Maxwellian situations with lower κ, the contribution functions are shifted to lower temperatures. Combined with the slope of the differential emission measure, it is possible for the Si IV lines to be formed at very different regions of the solar transition region than the O IV lines; possibly close to the solar chromosphere. Such situations might be discernible by IRIS. It is found that photoexcitation can be important for the Si IV lines, but is negligible for the O IV lines. The usefulness of the O IV ratios for density diagnostics independently of κ is investigated and it is found that the O IV 1404.78 Å/1399.77 Å ratio provides a good density diagnostics except for very low T combined with extreme non-Maxwellian situations.

  13. Variation in the Pre-transit Balmer Line Signal Around the Hot Jupiter HD 189733b

    NASA Astrophysics Data System (ADS)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.; Barman, Travis

    2016-07-01

    As followup to our recent detection of a pre-transit signal around HD 189733 b, we obtained full pre-transit phase coverage of a single planetary transit. The pre-transit signal is again detected in the Balmer lines but with variable strength and timing, suggesting that the bow shock geometry reported in our previous work does not describe the signal from the latest transit. We also demonstrate the use of the Ca ii H and K residual core flux as a proxy for the stellar activity level throughout the transit. A moderate trend is found between the pre-transit absorption signal in the 2013 data and the Ca ii H flux. This suggests that some of the 2013 pre-transit hydrogen absorption can be attributed to varying stellar activity levels. A very weak correlation is found between the Ca ii H core flux and the Balmer line absorption in the 2015 transit, hinting at a smaller contribution from stellar activity compared to the 2013 transit. We simulate how varying stellar activity levels can produce changes in the Balmer line transmission spectra. These simulations show that the strength of the 2013 and 2015 pre-transit signals can be reproduced by stellar variability. If the pre-transit signature is attributed to circumplanetary material, its evolution in time can be described by accretion clumps spiraling toward the star, although this interpretation has serious limitations. Further high-cadence monitoring at Hα is necessary to distinguish between true absorption by transiting material and short-term variations in the stellar activity level.

  14. Theoretical and Experimental Study of Microstrip-to-Slot Line Uniplanar Transition

    NASA Technical Reports Server (NTRS)

    Yook, Jong-Gwan; Dib, Nihad I.; Katehi, Linda P. B.; Simons, Rainee N.; Taub, Susan R.

    1994-01-01

    Recent advances in MMCI technology make it possible to construct transitions from CPW-to-microstrip with via hole, microstrip-to-slot line and microshield line-to-CPW all of which have potential applications in the feed network of antennas. In this study we investigate the characteristics of the microstrip-to-slot line uniplanar transition using the finite element methods (FEM) and finite difference time domain (FDTD) techniques, and compared the theoretical results with the measurements. In both cases, the results agree with the measurements within a few percent.

  15. Nonuniqueness of H23 and H2 field-temperature transition lines in spin-glasses

    NASA Astrophysics Data System (ADS)

    Wenger, L. E.; Mydosh, J. A.

    1984-04-01

    Including the magnetic field dependence on the superparamagnetic relaxation time τ, "transition" lines in the H-T plane are obtained for constant τ. These lines follow the relation TH-T0~Hν where ν~23 except for H-->0 which shows a crossover to ν=2. Thus a power law similar to that derived from mean-field models of spin-glasses is obtained, based strictly on a superparamagnetic relaxation-time approach. This questions the conclusion that experimental observations of H-T lines are solely the result of a mean-field phase transition.

  16. Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials

    NASA Astrophysics Data System (ADS)

    Adous, M.; Quéffélec, P.; Laguerre, L.

    2006-08-01

    A one-port coaxial/cylindrical transition line is considered for the broadband complex permittivity measurement of civil engineering materials. Cylindrical samples of heterogeneous material with large aggregate dimensions (up to 25 mm) can be measured over a frequency range from 50 MHz to 1.6 GHz. The choice of this line technology results in the simplification of the sample machining and enhancement in the high frequency limit, in comparison to the classical coaxial line technology. From a mode-matching technique, the relation between the material complex permittivity and the reflection coefficient at the coaxial/cylindrical transition is obtained including axisymmetric higher order modes excited at the transition. Once the line is calibrated using a specific calibration kit, complex permittivities are retrieved from an iterative optimization procedure. Preliminary results obtained for a set of bituminous concrete samples with different porosities and natures of rock aggregates are shown.

  17. nu-2 band of H2 O-16 - Line strengths and transition frequencies

    NASA Technical Reports Server (NTRS)

    Toth, Robert A.

    1991-01-01

    High-resolution spectra of H2 O-16 were recorded with a Fourier-transform spectrometer covering transitions in the (010)-(000) band from 1066 to 2582/cm. The measured line frequencies were used along with additional data taken from studies at microwave and far-infrared frequencies in an analysis to obtain rotational energies of levels in the (000) and (010) states. Measurements of the line strengths were fitted by least squares to a model in which the dipole moment matrix elements were represented by as many as 19 expansion coefficients. The results produced computed line strength values that are in excellent agreement, on the average, with the 874 experimental transitions included in the analysis. These results provide a more accurate representation of the line positions and strengths for the (010)-(000) band than are currently available on the HITRAN absorption line parameter compilation.

  18. No Timing Variations Observed in Third Transit of Snow-line Exoplanet Kepler-421b

    NASA Astrophysics Data System (ADS)

    Dalba, Paul A.; Muirhead, Philip S.

    2016-07-01

    We observed Kepler-421 during the anticipated third transit of the snow-line exoplanet Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Previously, the Kepler spacecraft only observed two transits of Kepler-421b, leaving the planet’s transit ephemeris unconstrained. Our visible light, time-series observations from the 4.3 m Discovery Channel Telescope were designed to capture pre-transit baseline and the partial transit of Kepler-421b, barring significant TTVs. We use the light curves to assess the probabilities of various transit models using both the posterior odds ratio and the Bayesian Information Criterion, and find that a transit model with no TTVs is favored to 3.6σ confidence. These observations suggest that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the Kepler-421b ephemeris constrained, we calculate future transit times and discuss the opportunity to characterize the atmosphere of this cold, long-period exoplanet via transmission spectroscopy. Our investigation emphasizes the difficulties associated with observing long-period exoplanet transits and the consequences that arise from failing to refine transit ephemerides.

  19. 100-GHz Phase Switch/Mixer Containing a Slot-Line Transition

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Wells, Mary; Dawson, Douglas

    2009-01-01

    A circuit that can function as a phase switch, frequency mixer, or frequency multiplier operates over a broad frequency range in the vicinity of 100 GHz. Among the most notable features of this circuit is a grounded uniplanar transition (in effect, a balun) between a slot line and one of two coplanar waveguides (CPWs). The design of this circuit is well suited to integration of the circuit into a microwave monolithic integrated circuit (MMIC) package. One CPW is located at the input end and one at the output end of the top side of a substrate on which the circuit is fabricated (see Figure 1). The input CPW feeds the input signal to antiparallel flip-chip Schottky diodes connected to the edges of the slot line. Phase switching is effected by the combination of (1) the abrupt transition from the input CPW to the slot line and (2) CPW ground tuning effected by switching of the bias on the diodes. Grounding of the slot metal to the bottom metal gives rise to a frequency cutoff in the slot. This cutoff is valuable for separating different frequency components when the circuit is used as a mixer or multiplier. Proceeding along the slot line toward the output end, one encounters the aforementioned transition, which couples the slot line to the output CPW. Impedance tuning of the transition is accomplished by use of a high-impedance section immediately before the transition.

  20. Disappearance of Widom Line for Liquid-Liquid Phase Transition with Horizontal Coexistence Line

    NASA Astrophysics Data System (ADS)

    Luo, Jiayuan; Xu, Limei; Buldyrev, Sergey; Angell, Austen; Stanley, Gene

    2012-02-01

    The study of spherically symmetric two-scale Jagla model with both repulsive and attractive ramps has been very successful in demonstrating the anomalous behavior of liquids (especially water) and its relation with respect to the existence of a liquid-liquid (LL) critical point. However, the co-existence line of Jagla model shows a positive slope, which is opposite to what has been found in the simulations of water. To more convincingly link the result of the study on Jagla model with that of water, we applied discrete molecular dynamics to Gibson and Wilding's modified Jagla model and found that by shrinking both the attractive and repulsive ramps, the slope of the coexistence line can be reduced to zero. However, at these values of the parameters, the LL critical point becomes completely unstable with respect to crystal and glass. We further studied the Widom line, defined as extreme of response functions and also continuation of the coexistence line into one phase region, and found Widom line disappeared in the case of zero slope of the coexistence line, due to the equal enthalpy of low-density liquid (LDL) and high-density liquid (HDL).

  1. Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star

    NASA Astrophysics Data System (ADS)

    Collier Cameron, A.; Guenther, E.; Smalley, B.; McDonald, I.; Hebb, L.; Andersen, J.; Augusteijn, Th.; Barros, S. C. C.; Brown, D. J. A.; Cochran, W. D.; Endl, M.; Fossey, S. J.; Hartmann, M.; Maxted, P. F. L.; Pollacco, D.; Skillen, I.; Telting, J.; Waldmann, I. P.; West, R. G.

    2010-09-01

    Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the light curve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33 V = 8.3, v sini = 86 km s-1). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas-giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit, we directly derive the size of the planet, the inclination and obliquity of its orbital plane and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1MJupiter on the planet. We also find evidence of a third body of substellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars. Based on observations at Tautenburg Observatory, McDonald Observatory and the Nordic Optical Telescope. E-mail: acc4@st-and.ac.uk

  2. On the transition rates of the Fe X and Fe XIV corona lines

    SciTech Connect

    Trabert, E

    2003-11-20

    Despite a considerable scatter of the theoretical predictions of the M1/E2 transition rate of the ''red iron line'' (FeX) in the solar corona, there is disagreement of all the results with the single measurement that used an electrostatic ion trap. Employing a heavy-ion storage ring for measuring the same transition in isoelectronic ions of Co, Ni, and Cu, the situation has been clarified, and a new data point for FeX can be determined by extrapolation. This result agrees with the basic atomic structure prediction for the line strength in combination with the experimental transition energy. For the ''green iron line'' (FeXIV), a recent measurement with an electron beam ion trap has resolved similar discrepancies.

  3. Fe L-shell lines from n (n=4, 5, 6) to 2 transitions

    NASA Astrophysics Data System (ADS)

    Chen, H.; Beiersdorfer, P.; Brown, G.; Behar, E.

    2003-03-01

    Fe L-shell emission lines at wavelengths less than 10 angstroms come from n (n great than 3) to 2 transitions. These lines embed information such as electron density and temperature that is of fundamental importance to understanding the physics of astrophysical objects. Unresolved by previous x-ray observatories, these low wavelength Fe lines are clearly observable by Chandra and XMM x-ray satellites. To meet the needs of using these lines as diagnostics, we have studied the n to 2 transitions (n = 4, 5, 6) Fe L-shell lines using the atomic codes HULLAC and FAC. Using the LLNL electron beam ion trap, we also made laboratory measurements for this wavelength region, following the success of our Fe L-shell emission lines for the 3-2 transitions (Brown et al, APJ supp. 2002). Our measurements and their comparison with code simulations will be reported, together with a discussion of the possible use of these low wavelength lines as diagnostics for astrophysics. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA SARA grants to LLNL, GSFC, and Columbia University.

  4. Continuity of states between the cholesteric → line hexatic transition and the condensation transition in DNA solutions

    NASA Astrophysics Data System (ADS)

    Yasar, Selcuk; Podgornik, Rudolf; Valle-Orero, Jessica; Johnson, Mark R.; Parsegian, V. Adrian

    2014-11-01

    A new method of finely temperature-tuning osmotic pressure allows one to identify the cholesteric --> line hexatic transition of oriented or unoriented long-fragment DNA bundles in monovalent salt solutions as first order, with a small but finite volume discontinuity. This transition is similar to the osmotic pressure-induced expanded --> condensed DNA transition in polyvalent salt solutions at small enough polyvalent salt concentrations. Therefore there exists a continuity of states between the two. This finding, together with the corresponding empirical equation of state, effectively relates the phase diagram of DNA solutions for monovalent salts to that for polyvalent salts and sheds some light on the complicated interactions between DNA molecules at high densities.

  5. Continuity of states between the cholesteric → line hexatic transition and the condensation transition in DNA solutions

    PubMed Central

    Yasar, Selcuk; Podgornik, Rudolf; Valle-Orero, Jessica; Johnson, Mark R.; Parsegian, V. Adrian

    2014-01-01

    A new method of finely temperature-tuning osmotic pressure allows one to identify the cholesteric → line hexatic transition of oriented or unoriented long-fragment DNA bundles in monovalent salt solutions as first order, with a small but finite volume discontinuity. This transition is similar to the osmotic pressure-induced expanded → condensed DNA transition in polyvalent salt solutions at small enough polyvalent salt concentrations. Therefore there exists a continuity of states between the two. This finding, together with the corresponding empirical equation of state, effectively relates the phase diagram of DNA solutions for monovalent salts to that for polyvalent salts and sheds some light on the complicated interactions between DNA molecules at high densities. PMID:25371012

  6. Continuity of states between the cholesteric → line hexatic transition and the condensation transition in DNA solutions

    DOE PAGESBeta

    Yasar, Selcuk; Podgornik, Rudolf; Valle-Orero, Jessica; Johnson, Mark R.; Parsegian, V. Adrian

    2014-11-05

    A new method of finely temperature-tuning osmotic pressure allows one to identify the cholesteric → line hexatic transition of oriented or unoriented long-fragment DNA bundles in monovalent salt solutions as first order, with a small but finite volume discontinuity. This transition is similar to the osmotic pressure-induced expanded → condensed DNA transition in polyvalent salt solutions at small enough polyvalent salt concentrations. Therefore there exists a continuity of states between the two. This finding with the corresponding empirical equation of state, effectively relates the phase diagram of DNA solutions for monovalent salts to that for polyvalent salts and sheds somemore » light on the complicated interactions between DNA molecules at high densities.« less

  7. Continuity of states between the cholesteric → line hexatic transition and the condensation transition in DNA solutions

    SciTech Connect

    Yasar, Selcuk; Podgornik, Rudolf; Valle-Orero, Jessica; Johnson, Mark R.; Parsegian, V. Adrian

    2014-11-05

    A new method of finely temperature-tuning osmotic pressure allows one to identify the cholesteric → line hexatic transition of oriented or unoriented long-fragment DNA bundles in monovalent salt solutions as first order, with a small but finite volume discontinuity. This transition is similar to the osmotic pressure-induced expanded → condensed DNA transition in polyvalent salt solutions at small enough polyvalent salt concentrations. Therefore there exists a continuity of states between the two. This finding with the corresponding empirical equation of state, effectively relates the phase diagram of DNA solutions for monovalent salts to that for polyvalent salts and sheds some light on the complicated interactions between DNA molecules at high densities.

  8. The numerical study of first order wetting transition with two defect lines

    NASA Astrophysics Data System (ADS)

    Wu, X. T.

    2016-09-01

    The first order wetting transition with two defect lines, one near a wall and another at a distance N1, in the d = 2 Ising model is studied by the bond propagation algorithm. The numerical calculations are carried out on very large lattices with size up to 1602 × 160. The finite size effects of the first order transition in that model are discussed. The magnetization profile is also calculated. The numerical results agree with the exact results very well.

  9. WAVELENGTH MEASUREMENTS OF K TRANSITIONS OF OXYGEN, NEON, AND MAGNESIUM WITH X-RAY ABSORPTION LINES

    SciTech Connect

    Liao Jinyuan; Zhang Shuangnan; Yao Yangsen

    2013-09-10

    Accurate atomic transition data are important in many astronomical research areas, especially for studies of line spectroscopy. Whereas transition data of He-like and H-like ions (i.e., ions in high-charge states) have been accurately calculated, the corresponding data of K transitions of neutral or low-ionized metal elements are still very uncertain. Spectroscopy of absorption lines produced in the interstellar medium (ISM) has been proven to be an effective way to measure the central wavelengths of these atomic transitions. In this work, we analyze 36 Chandra High Energy Transmission Grating observations to search for and measure the ISM absorption lines along sight lines to 11 low-mass X-ray binaries. We correct the Galactic rotation velocity to the rest frame for every observation and then use two different methods to merge all the corrected spectra to a co-added spectrum. However, the co-added spectra obtained by this method exhibit biases, toward to either observations with high counts or lines with high signal-to-noise ratios. We do a Bayesian analysis of several significantly detected lines to obtain the systematic uncertainty and the bias correction for other lines. Compared to previous studies, our results improve the wavelength accuracy by a factor of two to five and significantly reduce the systematic uncertainties and biases. Several weak transitions (e.g., 1s-2p of Mg IV and Mg V; 1s-3p of Mg III and Mg V) are also detected for the first time, albeit with low significance; future observations with improved accuracy are required to confirm these detections.

  10. Spectral line shapes and frequencies of the molecular oxygen B-band R-branch transitions

    NASA Astrophysics Data System (ADS)

    Domysławska, Jolanta; Wójtewicz, Szymon; Masłowski, Piotr; Cygan, Agata; Bielska, Katarzyna; Trawiński, Ryszard S.; Ciuryło, Roman; Lisak, Daniel

    2015-04-01

    We present the line-shape parameters for the first 11 lines of the oxygen B-band R-branch self-broadened transitions measured at low pressures by the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer (PDH-locked FS-CRDS) linked to the optical frequency comb. The collisional self-broadening, shifting and narrowing parameters were determined together with the quadratic speed-dependence as well as phase- and velocity-changing correlations parameters. The absolute frequencies of the transitions with combined standard uncertainties below 150 kHz are reported. Dependence of line parameters on choice of the line-shape model is discussed.

  11. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    SciTech Connect

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  12. Line group techniques in description of the structural phase transitions in some superconductors

    NASA Technical Reports Server (NTRS)

    Meszaros, CS.; Balint, A.; Bankuti, J.

    1995-01-01

    The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature SUperconductors. As an example, the material YBa2Cu3O(7-x) is discussed briefly.

  13. Strong optical and UV intermediate-width emission lines in the quasar SDSS J232444.80–094600.3: dust-free and intermediate-density gas at the skin of dusty torus?

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Zhen; Zhou, Hong-Yan; Hao, Lei; Wang, Shu-Fen; Ji, Tuo; Liu, Bo

    2016-09-01

    Emission lines from the broad emission line region (BELR) and the narrow emission line region (NELR) of active galactic nuclei (AGNs) have been extensively studied. However, emission lines are rarely detected between these two regions. We present a detailed analysis of quasar SDSS J232444.80–094600.3 (SDSS J2324–0946), which is remarkable for its strong intermediate-width emission lines (IELs) with FWHM ≈ 1800 km s‑1. The IEL component is present in different emission lines, including the permitted lines Lyα λ1216, CIV λ1549, semiforbidden line [CIII] λ1909, and forbidden lines [OIII] λλ4959, 5007. With the aid of photo-ionization models, we found that the IELs are produced by gas with a hydrogen density of nH ∼ 106.2 ∼ 106.3 cm‑3, a distance from the central ionizing source of R ∼ 35 – 50 pc, a covering factor of ∼ 6%, and a dust-to-gas ratio of ≤ 4% that of the SMC. We suggest that the strong IELs of this quasar are produced by nearly dust-free and intermediate-density gas located at the skin of the dusty torus. Such strong IELs, which serve as a useful diagnostic, can provide an avenue to study the properties of gas between the BELR and the NELR.

  14. Line strengths of rovibrational and rotational transitions in the X2 Π ground state of OH

    NASA Astrophysics Data System (ADS)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.; Sneden, Christopher; Afşar, Melike; Li, Gang; Gordon, Iouli E.

    2016-01-01

    A new line list including positions and absolute transition strengths (in the form of Einstein A values and oscillator strengths) has been produced for the OH ground X2 Π state rovibrational (Meinel system) and pure rotational transitions. All possible transitions are included with v‧ and v ″ up to 13, and J up to between 9.5 and 59.5, depending on the band. An updated fit to determine molecular constants has been performed, which includes some new rotational data and a simultaneous fitting of all molecular constants. The absolute transition strengths are based on a new dipole moment function, which is a combination of two high level ab initio calculations. The calculations show good agreement with an experimental v = 1 lifetime, experimental μv values, and Δv=2 line intensity ratios from an observed spectrum. To achieve this good agreement, an alteration in the method of converting matrix elements from Hund's case (b) to (a) was made. Partitions sums have been calculated using the new energy levels, for the temperature range 5-6000 K, which extends the previously available (in HITRAN) 70-3000 K range. The resulting absolute transition strengths have been used to calculate O abundances in the Sun, Arcturus, and two red giants in the Galactic open and globular clusters M67 and M71. Literature data based mainly on [O I] lines are available for the Sun and Arcturus, and excellent agreement is found.

  15. Managing the Transition into Higher Education: An On-Line Spiral Induction Programme

    ERIC Educational Resources Information Center

    Laing, Christopher; Robinson, Alan; Johnston, Veronique

    2005-01-01

    In helping students manage the transition into higher education, there must be (i) an understanding of the needs and expectations of the students, and (ii) a process that inducts the students into the needs and expectations of higher education. This premise underpins the on-line Spiral Induction Programme (onSIP) developed at Southampton…

  16. Transition from drift to interchange instabilities in an open magnetic field line configuration

    SciTech Connect

    Poli, F. M.; Ricci, P.; Fasoli, A.; Podesta, M.

    2008-03-15

    The transition from a regime dominated by drift instabilities to a regime dominated by pure interchange instabilities is investigated and characterized in the simple magnetized toroidal device TORPEX [TORoidal Plasma EXperiment, A. Fasoli et al., Phys. of Plasmas 13, 055906 (2006)]. The magnetic field lines are helical, with a dominant toroidal component and a smaller vertical component. Instabilities with a drift character are observed in the favorable curvature region, on the high field side with respect to the maximum of the background density profile. For a limited range of values of the vertical field they coexist with interchange instabilities in the unfavorable curvature region, on the plasma low field side. With increasing vertical magnetic field magnitude, a gradual transition between the two regimes is observed on the low field side, controlled by the value of the field line connection length. The observed transition follows the predictions of a two-fluid linear model.

  17. Spectral line shapes of self-broadened P-branch transitions of oxygen B band

    NASA Astrophysics Data System (ADS)

    Wójtewicz, S.; Cygan, A.; Masłowski, P.; Domysławska, J.; Lisak, D.; Trawiński, R. S.; Ciuryło, R.

    2014-09-01

    We used the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer assisted by the optical frequency comb for systematic line-shape study of self-broadened P-branch transitions of the O216B band [b1Σg+(v=1)←X3Σg-(v=0)]. In the line-shape analysis we take into account the line-narrowing effects described by Dicke narrowing or the speed dependence of collisional broadening. The relation between the parameters describing Dicke narrowing with the use of the soft- and hard-collision models is discussed and verified experimentally in the low pressure regime using the multispectrum fitting technique. We report line positions with uncertainties of about 170 kHz, the collisional broadening coefficients with 0.45% uncertainties, and line intensities with 0.5% uncertainties. We compare these results to data available in the literature.

  18. Hexagonal graphite to cubic diamond transition from equilibrium lines and barrier calculations

    NASA Astrophysics Data System (ADS)

    Qiu, Shen Li

    2014-07-01

    Phase equilibrium lines of hexagonal graphite (hg) and cubic diamond (cd) phases of carbon as well as a saddle-point equilibrium line between the two phase equilibrium lines are studied by first-principles total-energy calculations. The Gibbs free energies ( G) of the three equilibrium lines determine the transition pressure p t = 70 kbar (0.070 Mbar) from hg phase to cd phase and the barrier height at p t of ΔG = 178 mRy/atom that stabilizes the two phases against a phase transition. The cd phase becomes unstable at V = 13.6 au3/atom ( p = 26 Mbar) where the curvature at the equilibrium point of the energy curve (denoted E V ( c/ a) curve) goes to zero. The hg and cd phase equilibrium lines cross at V = 14.5 au3/atom where the regular hg phase (with one minimum in each E V ( c/ a) curve) ends and the irregular hg phase (with two minima in each E V ( c/ a) curve) develops. The feature of "two phase equilibrium lines cross" was not observed in our previous work [S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012); S.L. Qiu, P.M. Marcus, Eur. Phys. J. B 86, 425 (2013)] where the two interacting crystal phases have a common unit cell with different c/ a ratios. This work demonstrates that the saddle-point equilibrium line along with the two phase equilibrium lines are all needed for a complete description of crystal phases and their transitions under pressure.

  19. Hexagonal graphite to cubic diamond transition from equilibrium lines and barrier calculations

    NASA Astrophysics Data System (ADS)

    Li Qiu, Shen

    2014-07-01

    Phase equilibrium lines of hexagonal graphite (hg) and cubic diamond (cd) phases of carbon as well as a saddle-point equilibrium line between the two phase equilibrium lines are studied by first-principles total-energy calculations. The Gibbs free energies (G) of the three equilibrium lines determine the transition pressure pt = 70 kbar (0.070 Mbar) from hg phase to cd phase and the barrier height at pt of ΔG = 178 mRy/atom that stabilizes the two phases against a phase transition. The cd phase becomes unstable at V = 13.6 au3/atom (p = 26 Mbar) where the curvature at the equilibrium point of the energy curve (denoted EV(c/a) curve) goes to zero. The hg and cd phase equilibrium lines cross at V = 14.5 au3/atom where the regular hg phase (with one minimum in each EV(c/a) curve) ends and the irregular hg phase (with two minima in each EV(c/a) curve) develops. The feature of "two phase equilibrium lines cross" was not observed in our previous work [S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012); S.L. Qiu, P.M. Marcus, Eur. Phys. J. B 86, 425 (2013)] where the two interacting crystal phases have a common unit cell with different c/a ratios. This work demonstrates that the saddle-point equilibrium line along with the two phase equilibrium lines are all needed for a complete description of crystal phases and their transitions under pressure.

  20. Effect of temperature on avalanche region width and DC to RF conversion efficiency of the p+nn-n+ 4H-SiC impact avalanche transit time diodes

    NASA Astrophysics Data System (ADS)

    Chen, Qing; Yang, Lin'an; Wang, Shulong; Hao, Yue

    2016-06-01

    The effect of temperature on avalanche region width and DC to RF conversion efficiency of the p+nn-n+ impact ionization avalanche transit time diodes based on 4H-SiC material for 140 GHz design frequency has been investigated by means of the MEDICI simulation platform. It is shown that the avalanche region width of the IMPATT diodes working at the same operating current densities first decreases and then increases with the increasing temperature. The DC to RF conversion efficiency of the IMPATT diodes first increases and then decreases with the increasing temperature. The increase in ionization rate of impurities with increasing temperature and the decrease in the carrier impact ionization rate with increasing temperature are responsible for the results. In addition, the expansion of avalanche region and the degradation of DC to RF conversion efficiency at lower temperature are more pronounced in lower p+ region doping concentration diode than that in higher p+ region doping concentration.

  1. Tunable diode laser mesurements of widths of air- and nitrogen-broadened lines in the nu(4) band of C-13H4

    NASA Technical Reports Server (NTRS)

    Devi, V. M.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.

    1985-01-01

    Tunable diode laser measurements of air-broadened and N2-broadened halfwidths are reported for 23 lines in the nu(4) band of C-13H4, between 1260 and 1360/cm. For all lines, at least three scans of each of four or more pressures were recorded. The experimental halfwidths presently obtained for C-13H4 are both larger and smaller than the U.S. Air Force Geophysics Laboratory values.

  2. Excitation rate coefficients and line ratios for the optical and ultraviolet transitions in S II

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Pradhan, Anil K.

    1993-01-01

    New calculations are reported for electron excitation collision strengths, rate coefficients, transition probabilities, and line ratios for the astrophysically important optical and UV lines in S II. The collision strengths are calculated in the close coupling approximation using the R-matrix method. The present calculations are more extensive than previous ones, including all transitions among the 12 lowest LS terms and the corresponding 28 fine-structure levels in the collisional-radiative model for S II. While the present rate coefficients for electron impact excitation are within 10-30 percent of the previous values for the low-lying optical transitions employed as density diagnostics of H II regions and nebulae, the excitation rates for the UV transitions 4S super 0 sub 3/2 - 4Psub 1/2,3/2,5/2 differ significantly from earlier calculations, by up to factor of 2. We describe temperature and density sensitive flux ratios for a number of UV lines. The present UV results are likely to be of interest in a more accurate interpretation of S II emission from the Io plasma torus in the magnetosphere of Jupiter, as well as other UV sources observed from the IUE, ASTRO 1, and the HST.

  3. Dallas area rapid transit LRT starter line assessment study design. Final research report

    SciTech Connect

    Shunk, G.A.; Turnbull, K.F.; Lindquist, N.F.

    1995-03-01

    Light rail transit (LRT) systems have recently been implemented in a number of urban areas throughout the United States and additional projects are in various stages of planning and development. Questions have been raised concerning the impact of these systems on ridership levels, transit operating costs, regional mobility, land use, economic development, energy, air quality, congestion levels, and other factors. The implementation of the Dallas Area Rapid Transit (DART) LRT starter line provides the opportunity to assess the impact of an LRT system in a Southwestern city in the United States. This research project was undertaken to assist with the development of a comprehensive study design for assessing the effects of the DART LRT starter line. To accomplish this objective, a review was conducted of before-and-after studies of recent LRT, heavy rail, and high-occupancy vehicle (HOV) projects. The goals and objectives of the DART system were also reviewed and existing transportation-related data collection activities in the Dallas area were examined. This information was used to develop a preliminary study design for assessing the effects of the DART LRT starter line. This report documents the review of recent before-and-after studies and presents the preliminary study design for assessing the effects of the DART LRT starter line.

  4. A Compact and Broadband Differential Microstrip Line to Rectangular Waveguide Transition Using Dipole Antenna

    NASA Astrophysics Data System (ADS)

    Yang, Ziqiang; Yang, Tao; Liu, Yu; Peng, Hao

    2016-02-01

    In this paper, a compact full Ka-band differential microstrip line (DML) to rectangular waveguide transition is proposed. The dipole antenna with semi-elliptic arms is introduced to transform the differential mode of DML to the TE10 mode of the rectangular waveguide directly. The two arms of the dipole antenna are connected together by a shorting strip to reduce the size of the dipole. Compared with the DML-to-waveguide transition using the fin-line topology, the size of the proposed transition has been reduced by 86 %. To verify this transition, a back-to-back structure is fabricated and tested. It provides a return loss of better than 15.2 dB and an insertion loss of 0.73 to 1.07 dB within a wide frequency range from 26.5 to 40 GHz. The measurement results show good agreement with the simulation results. Furthermore, a tolerance analysis is also performed via the simulation to prove that this transition is robust in the fabrication and mechanical assembly.

  5. A Compact and Broadband Differential Microstrip Line to Rectangular Waveguide Transition Using Dipole Antenna

    NASA Astrophysics Data System (ADS)

    Yang, Ziqiang; Yang, Tao; Liu, Yu; Peng, Hao

    2016-06-01

    In this paper, a compact full Ka-band differential microstrip line (DML) to rectangular waveguide transition is proposed. The dipole antenna with semi-elliptic arms is introduced to transform the differential mode of DML to the TE10 mode of the rectangular waveguide directly. The two arms of the dipole antenna are connected together by a shorting strip to reduce the size of the dipole. Compared with the DML-to-waveguide transition using the fin-line topology, the size of the proposed transition has been reduced by 86 %. To verify this transition, a back-to-back structure is fabricated and tested. It provides a return loss of better than 15.2 dB and an insertion loss of 0.73 to 1.07 dB within a wide frequency range from 26.5 to 40 GHz. The measurement results show good agreement with the simulation results. Furthermore, a tolerance analysis is also performed via the simulation to prove that this transition is robust in the fabrication and mechanical assembly.

  6. Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios

    NASA Technical Reports Server (NTRS)

    Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.

    2003-01-01

    UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic

  7. Diagnostics of the κ-distribution using Si III lines in the solar transition region

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Kulinová, A.

    2011-07-01

    Aims: The solar transition region satisfies the conditions for appearance of the non-thermal κ-distribution. We aim to prove the occurrence of the non-thermal κ-distribution in the solar transition region and diagnose its parameters. Methods: The intensity ratios of Si iii lines observed by SUMER in 1100-1320 Å region do not correspond to the line ratios computed under the assumption of the Maxwellian electron distribution. We computed a set of synthetic Si iii spectra for the electron κ-distributions with different values of the parameter κ. We had to include the radiation field in our calculations to explain the observed line ratios. We propose diagnostics of the parameter κ and other plasma parameters and analyze the effect of the different gradient of differential emission measures (DEM) on the presented calculations. Results: The used line ratios are sensitive to T, density and the parameter κ. All these parameters were determined from the SUMER observations for the coronal hole (CH), quiet Sun (QS) and active region (AR) using our proposed diagnostics. A strong gradient of DEM influences the diagnosed parameters of plasma. The essential contributions to the total line intensities do not correspond to single T but a wider range of T, and they originate in different atmospheric layers. The amount of the contributions from these atmospheric layers depends on the gradient of DEM and the shape of the electron distribution function. Conclusions: The κ-distribution is able to explain the observed Si iii line spectrum in the transition region. The degree of non-thermality increases with the activity of the solar region, it is lower for CH and higher for the AR. The DEM influences the diagnosed T and Ne but it has only little effect on the diagnostics of the parameter κ.

  8. Measurement at different temperatures of absolute intensities, line half-widths, and broadening by Ar and N2 for the 30 0 1 II--00 0 0 band of CO2

    NASA Technical Reports Server (NTRS)

    Valero, F. P. J.; Suarez, C. B.

    1978-01-01

    Vibration-rotation line intensities, self-broadening coefficients, and foreign-gas-broadening (Ar and N2) coefficients were measured at 197, 233, and 294 K for the 30 0 1 II--00 0 0 band of CO2 at 6348/cm. Values for the total band intensity, purely vibrational transition moment, and vibration-rotation interaction factor were deduced from the measurements.

  9. Recommended Isolated-Line Profile for Representing High-Resolution Spectroscoscopic Transitions

    NASA Astrophysics Data System (ADS)

    Tennyson, J.; Bernath, P. F.; Campargue, A.; Császár, A. G.; Daumont, L.; Gamache, R. R.; Hodges, J. T.; Lisak, D.; Naumenko, O. V.; Rothman, L. S.; Tran, H.; Hartmann, J.-M.; Zobov, N. F.; Buldyreva, J.; Boone, C. D.; De Vizia, M. Domenica; Gianfrani, L.; McPheat, R.; Weidmann, D.; Murray, J.; Ngo, N. H.; Polyansky, O. L.

    2014-06-01

    Recommendations of an IUPAC Task Group, formed in 2011 on "Intensities and line shapes in high-resolution spectra of water isotopologues from experiment and theory" (Project No. 2011-022-2-100), on line profiles of isolated high-resolution rotational-vibrational transitions perturbed by neutral gas-phase molecules are presented. The well-documented inadequacies of the Voigt profile, used almost universally by databases and radiative-transfer codes to represent pressure effects and Doppler broadening in isolated vibrational-rotational and pure rotational transitions of the water molecule, have resulted in the development of a variety of alternative line profile models. These models capture more of the physics of the influence of pressure on line shapes but, in general, at the price of greater complexity. The Task Group recommends that the partially-Correlated quadratic-Speed-Dependent Hard-Collision profile should be adopted as the appropriate model for high-resolution spectroscopy. For simplicity this should be called the Hartmann-Tran profile (HTP). This profile is sophisticated enough to capture the various collisional contributions to the isolated line shape, can be computed in a straightforward and rapid manner, and reduces to simpler profiles, including the Voigt profile, under certain simplifying assumptions. For further details see: J. Tennyson et al, Pure Appl. Chem., 2014, in press.

  10. Note: Improved line strengths of rovibrational and rotational transitions within the X3Σ- ground state of NH

    NASA Astrophysics Data System (ADS)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.

    2015-07-01

    Recently, a line list including positions and transition strengths was published for the NH X3Σ- rovibrational and rotational transitions. The calculation of the transition strengths requires a conversion of transition matrix elements from Hund's case (b) to (a). The method of this conversion has recently been improved during other work on the OH X2Π rovibrational transitions, by removing an approximation that was present previously. The adjusted method has been applied to the NH line list, resulting in more accurate transition strengths. An updated line list is presented that contains all possible transitions with v' and v″ up to 6, and J up to between 25 and 44, depending on the band.

  11. Effect of Wall Temperature on Roughness Induced Attachment-Line Transition

    NASA Technical Reports Server (NTRS)

    Dietz, Anthony; Coleman, Colin; Laub, Jim; Poll, D. I. A.; Nixon, David (Technical Monitor)

    1999-01-01

    An experiment on a cooled swept cylinder in a low-disturbance Mach 1.6 wind tunnel is described. The flow attachment line is disturbed by trip wires of varying size and the laminar/turbulent state of the downstream boundary layer is determined with a hot wire. The results demonstrate that although cooling the wall increases the stability of the boundary layer, it promotes roughness induced transition. Analysis of the data suggests that the attachment- line Reynolds number can account for the effect of wall cooling if the viscosity is evaluated at a particular reference temperature.

  12. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report

    SciTech Connect

    Eudy, L.; Chandler, K.

    2011-03-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

  13. Line group techniques in description of the structural phase transitions in some superconductors

    SciTech Connect

    Meszaros, C.; Bankuti, J.; Balint, A.

    1994-12-31

    The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature Superconductors. As an example, the material YBa{sub 2}Cu{sub 3}O{sub 7-x} is discussed briefly.

  14. Collisional shift and broadening of the transition lines in pionic helium

    NASA Astrophysics Data System (ADS)

    Obreshkov, Boyan; Bakalov, Dimitar

    2016-06-01

    We calculate the density shift and broadening of selected dipole transition lines of pionic helium in gaseous helium at low temperatures up to T =12 K and pressure up to a few bars. In the approximation of binary collisions the shift and broadening depend linearly on the density; we evaluate the slope of this linear dependence for a few spectral lines of known experimental interest and also investigate its temperature dependence. We find a blueshift of the resonance frequencies of the (n ,l )=(16 ,15 )→(16 ,14 ) , (17 ,16 )→(17 ,15 ) , and (16 ,15 )→(17 ,14 ) unfavored transitions and a redshift for the favored one, (17 ,16 )→(16 ,15 ) . The results are intended to significantly increase the efficiency of the laser spectroscopy investigations of pionic helium and help with the interpretation of the experimental data.

  15. Prospects for higher spatial resolution quantitative X-ray analysis using transition element L-lines

    NASA Astrophysics Data System (ADS)

    Statham, P.; Holland, J.

    2014-03-01

    Lowering electron beam kV reduces electron scattering and improves spatial resolution of X-ray analysis. However, a previous round robin analysis of steels at 5 - 6 kV using Lα-lines for the first row transition elements gave poor accuracies. Our experiments on SS63 steel using Lα-lines show similar biases in Cr and Ni that cannot be corrected with changes to self-absorption coefficients or carbon coating. The inaccuracy may be caused by different probabilities for emission and anomalous self-absorption for the La-line between specimen and pure element standard. Analysis using Ll(L3-M1)-lines gives more accurate results for SS63 plausibly because the M1-shell is not so vulnerable to the atomic environment as the unfilled M4,5-shell. However, Ll-intensities are very weak and WDS analysis may be impractical for some applications. EDS with large area SDD offers orders of magnitude faster analysis and achieves similar results to WDS analysis with Lα-lines but poorer energy resolution precludes the use of Ll-lines in most situations. EDS analysis of K-lines at low overvoltage is an alternative strategy for improving spatial resolution that could give higher accuracy. The trade-off between low kV versus low overvoltage is explored in terms of sensitivity for element detection for different elements.

  16. Spectral line shapes of P-branch transitions of oxygen B-band

    NASA Astrophysics Data System (ADS)

    Wójtewicz, Szymon; Cygan, Agata; Masłowski, Piotr; Domysławska, Jolanta; Wcisło, Piotr; Zaborowski, Mikołaj; Lisak, Daniel; Trawiński, Ryszard S.; Ciuryło, Roman

    2014-06-01

    The precise line-shape measurements of self- and foreign-broadened P-branch transitions of the oxygen B band near 689 nm are presented. Data were obtained using the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer assisted by the optical frequency comb.1,2 This technique enables us to achieve high spectral resolution (about 1 MHz) and high signal-to-noise ratio spectra (above 10000:1) of weak transitions.3,4 It is showed that the inclusion of the line-narrowing effects (Dicke narrowing or the speed dependence of collisional broadening) is necessary to properly model measured line shapes. The multispectrum fitting technique is used to minimize correlation between line-shape parameters. Relations between the line narrowing obtained from different line-shape models in the low pressure limit (below 5 kPa) were verified experimentally. Line positions with uncertainties of about 170 kHz, intensities and the collisional broadening coefficients with uncertainties of about 0.5% are reported and compared to data available in the literature.5 The research is part of the program of the National Laboratory FAMO in Toruń, Poland, and is supported by the Polish National Science Centre Projects no. DEC-2011/01/B/ST2/00491 and UMO-2012/05/N/ST2/02717. The research is also supported by the Foundation for Polish Science TEAM and HOMING PLUS Projects co-financed by the EU European Regional Development Fund. A. Cygan is partially supported by the Foundation for Polish Science START Project.

  17. Gravure-Offset Printed Metallization of Multi-Crystalline Silicon Solar Cells with Low Metal-Line Width for Mass Production.

    PubMed

    Lee, Jonghwan; Jeong, Chaehwan

    2016-05-01

    The gravure offset method has been developed toward an industrially viable printing technique for electronic circuitry. In this paper, a roller type gravure offset manufacturing process was developed to fabricate fine line for using front electrode for solar cells. In order to obtain the optimum metallization printing lines, thickness of 20 μm which is narrow line is required. The main targets are the reduction of metallized area to reduce the shading loss, and a high conductivity to transport the current as loss free as possible out of the cell. However, it is well known that there is a poor contact resistance between the front Ag electrode and the n(+) emitter. Nickel plating was conducted to prevent the increase of contact resistance and the increase of fill factor (FF). The performance of n-Si/Ag (seed layer)/Ni solar cells were observed in 609 mV of open circuit voltage, 35.54 mA/cm2 of short circuit current density, 75.75% of fill factor, and 16.04% of conversion efficiency. PMID:27483859

  18. Vertical transitions between transmission lines and waveguides in multilayer liquid crystal polymer (LCP) substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Yifei; Shi, Shouyuan; Martin, Rick D.; Prather, Dennis W.

    2014-03-01

    In this paper we present two vertical transitions, in multilayer LCP substrates for millimeter wave (mmW) imaging application. The first transition is from conductor-backed co-planar waveguide (CBCPW) to strip line, and the second one connects CBCPW to substrate integrated waveguide (SIW). The multilayer structure consists of three LCP layers and four metal claddings. The CBCPW is designed on the top LCP layer, the strip line is sandwiched by the top and middle layers, and the SIW is built within the middle and bottom layers. Micro vias construct the side wall for the SIW, and electrically connect the transmission lines and waveguides. Both of the transitions perform low loss and low reflection at 77 GHz. They can efficiently connect the passive and active components in the front-end RF module of our mmW imager. Additionally, they may have promising application in high-performance systems, requiring high density, low size, weight, and power (SWaP).

  19. Astronomy Behind Enemy Lines in Colonial North America: John Winthrop's Observations of the Transits of Venus

    NASA Astrophysics Data System (ADS)

    Schechner, S. J.

    2005-12-01

    In May 1761, John Winthrop packed up two students, an excellent clock, an octant, and two telescopes, and embarked for Newfoundland to observe the Transit of Venus. Winthrop's departure was hasty. Only days before had the President and Fellows of Harvard College approved Professor Winthrop's request to take the college apparatus behind enemy lines to serve the cause of science, and Winthrop knew he had no time to waste if he were to reach Newfoundland and properly calibrate his equipment before the Transit. Winthrop's expedition to St. John's, Newfoundland was nothing short of remarkable. His goal was to help determine the distance from the Earth to the Sun, and he was the only North American astronomer fit for this project. His expedition was financed by the General Court of Massachusetts, which also secured him safe passage across enemy lines during the French and Indian War. Winthrop's trip to St. John's was a major achievement for colonial astronomy, but he was unhappy with his observations and so looked forward to a second chance to observe a transit in 1769. Benjamin Franklin urged him to go to Lake Superior. Planning for that transit was thwarted, however, by two events: (1) the loss of nearly all of Harvard's apparatus in a fire of 1764; and (2) pre-Revolutionary politics in the American colonies. In the end, Winthrop was forced to content himself with first-class observations with new instruments in Cambridge.

  20. Effects of Sonic Line Transition on Aerothermodynamics of the Mars Pathfinder Probe

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Braun, Robert D.; Cruz, Christopher I.

    1995-01-01

    Flow field solutions over the Mars Pathfinder Probe spanning the trajectory through the Martian atmosphere at angles of attack from 0 to 11 degrees are obtained. Aerodynamic coefficients derived from these solutions reveal two regions where the derivative of pitching moment with respect to angle of attack is positive at small angles of attack. The behavior is associated with the transition of the sonic line location between the blunted nose and the windside shoulder of the 70 degree half-angle cone in a gas with a low effective ratio of specific heats. The transition first occurs as the shock layer gas chemistry evolves from highly nonequilibrium to near equilibrium, above approximately 6.5 km/s and 40 km altitude, causing the effective specific heat ratio to decrease. The transition next occurs in an equilibrium flow regime as velocities decrease through 3.5 km/s and the specific heat ratio increases again with decreasing enthalpy. The effects of the expansion over the shoulder into the wake are more strongly felt on the fustrum when the sonic line sits on the shoulder. The transition also produces a counter-intuitive trend in which windside heating levels decrease with increasing angle of attack resulting from an increase in the effective radius of curvature. Six-degree-of-freedom trajectory analyses utilizing the computed aerodynamic coefficients predict a moderate, 3 to 4 degree increase in total angle of attack as the probe, spinning at approximately 2 revolutions per minute, passes through these regions.

  1. Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines.

    PubMed

    Gallardo, Marcela; Calaf, Gloria M

    2016-09-01

    Curcumin (diferuloyl methane) is an antioxidant that exerts antiproliferative and apoptotic effects and has anti-invasive and anti-metastatic properties. Evidence strongly implicates that epithelial-mesenchymal transition (EMT) is involved in malignant progression affecting genes such as Slug, AXL and Twist1. These genes are abnormally expressed in many tumors and favor metastasis. The purpose of this study was to determine the potential effect of curcumin on EMT, migration and invasion. Triple-positive and triple-negative breast cancer cell lines for estrogen receptor (ER), progesterone receptor (PgR) and HER/neu were used: i) MCF-10F, a normal immortalized breast epithelial cell line (negative), ii) Tumor2, a malignant and tumorigenic cell line (positive) derived from Alpha5 cell line injected into the immunologically depressed mice and transformed by 60/60 cGy doses of high LET (linear energy transfer) α particles (150 keV/µm) of radiation and estrogen, and iii) a commercially available MDA-MB‑231 (negative). The effect of curcumin (30 µM for 48 h) was evaluated on expression of EMT-related genes by RT-qPCR. Results showed that curcumin decreased E-cadherin, N-cadherin, β-catenin, Slug, AXL, Twist1, Vimentin and Fibronectin protein expression, independently of the positivity of the markers in the cell lines. Curcumin also decreased migration and invasive capabilities in comparison to their own controls. It can be concluded that curcumin influenced biochemical changes associated with EMT-related genes that seems to promote such transition and are at the core of several signaling pathways that mediate the transition. Thus, it can be suggested that curcumin is able to prevent or delay cancer progression through the interruption of this process. PMID:27573203

  2. The accuracy of using the spectral width boundary measured in off-meridional SuperDARN HF radar beams as a proxy for the open-closed field line boundary

    NASA Astrophysics Data System (ADS)

    Chisham, G.; Freeman, M. P.; Sotirelis, T.; Greenwald, R. A.

    2005-10-01

    Determining reliable proxies for the ionospheric signature of the open-closed field line boundary (OCB) is crucial for making accurate measurements of magnetic reconnection. This study compares the latitudes of spectral width boundaries (SWBs) measured by different beams of the Goose Bay radar of the Super Dual Auroral Radar Network (SuperDARN), with the latitudes of OCBs determined using the low-altitude Defense Meteorological Satellite Program (DMSP) spacecraft, in order to determine whether the accuracy of the SWB as a proxy for the ionospheric projection of the OCB depends on the line-of-sight direction of the radar beam. The latitudes of SWBs and OCBs were identified using automated algorithms applied to 5 years (1997 2001) of data measured in the 1000 1400 magnetic local time (MLT) range. Six different Goose Bay radar beams were used, ranging from those aligned in the geomagnetic meridional direction to those aligned in an almost zonal direction. The results show that the SWB is a good proxy for the OCB in near-meridionally-aligned beams but becomes progressively more unreliable for beams greater than 4 beams away from the meridional direction. We propose that SWBs are identified at latitudes lower than the OCB in the off-meridional beams due to the presence of high spectral width values that result from changes in the orientation of the beams with respect to the gradient in the large-scale ionospheric convection pattern. Keywords. Ionosphere (Instruments and techniques; Plasma convection) Magnetospheric physics (Magnetopause, cusp and boundary layers)

  3. Role of dipolar and exchange interactions in the positions and widths of EPR transitions for the single-molecule magnets Fe8 and Mn12

    NASA Astrophysics Data System (ADS)

    Park, Kyungwha; Novotny, M. A.; Dalal, N. S.; Hill, S.; Rikvold, P. A.

    2002-10-01

    We examine quantitatively the temperature dependence of the linewidths and line shifts in electron paramagnetic resonance experiments on single crystals of the single-molecule magnets Fe8 and Mn12, at fixed frequency, with an applied magnetic field along the easy axis. We include intermolecular spin-spin interactions (dipolar and exchange) and distributions in both the uniaxial anisotropy parameter D and the Landé g factor. The temperature dependence of the linewidths and the line shifts are mainly caused by the spin-spin interactions. For both Fe8 and Mn12, the temperature dependence of the calculated line shifts and linewidths agrees well with the trends of the experimental data. The linewidths for Fe8 reveal a stronger temperature dependence than those for Mn12, because for Mn12 a much wider distribution in D overshadows the temperature dependence of the spin-spin interactions. For Fe8, the line-shift analysis suggests two competing interactions: a weak ferromagnetic exchange coupling between neighboring molecules and a longer-ranged dipolar interaction. This result could have implications for ordering in Fe8 at low temperatures.

  4. The Diagnostic Potential of Transition Region Lines Undergoing Transient Ionization in Dynamic Events

    NASA Astrophysics Data System (ADS)

    Doyle, J. G.; Giunta, A.; Singh, A.; Madjarska, M. S.; Summers, H.; Kellett, B. J.; O'Mullane, M.

    2012-09-01

    We discuss the diagnostic potential of high cadence UV spectral data when transient ionization is considered. For this we use high cadence UV spectra taken during the impulsive phase of a solar flare (observed with instruments on-board the Solar Maximum Mission) which showed excellent correspondence with hard X-ray pulses. The ionization fraction of the transition region ion O v and, in particular, the contribution function for the O v 1371 Å line are computed within the Atomic Data and Analysis Structure, which is a collection of fundamental and derived atomic data and codes to manipulate them. Due to transient ionization, the O v 1371 Å line is enhanced in the first fraction of a second with the peak in the line contribution function occurring initially at a higher electron temperature than in ionization equilibrium. The rise time and enhancement factor depend mostly on the electron density. The fractional increase in the O v 1371 Å emissivity due to transient ionization can reach a factor of two-four and can explain the fast response in the line flux of transition regions ions during the impulsive phase of flares solely as a result of transient ionization. This technique can be used to diagnose the electron temperature and density of solar flares observed with the forthcoming Interface Region Imaging Spectrograph.

  5. Doppler wavelength shifts of transition zone lines measured in Skylab solar spectra

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Bohlin, J. D.; Feldman, U.

    1976-01-01

    Wavelengths of lines of the transition-zone ions Si IV, C IV, O IV, N V, and O V are observed to be redshifted relative to the wavelengths of chromospheric lines in XUV spectra obtained from the normal-incidence spectrograph on Skylab. The spectra cover the wavelength range from 1200 to 1565 A and were obtained with the slit positioned over chromospheric network and cell regions, on coronal holes, and above the limb. The network-area and coronal-hole spectra were obtained near the disk center. Only some of the spectra show redshifted transition-zone lines. The observed shifts are between 0.03 and 0.08 A, implying velocities of 15 km/s or less. The amount of wavelength shift does not always appear to be the same for lines of different ions. The shifts imply that descending plasma in the solar atmosphere produces more emission than ascending plasma at temperatures between approximately 70,000 and 200,000 K.

  6. Near-infrared line identification in type Ia supernovae during the transitional phase

    SciTech Connect

    Friesen, Brian; Baron, E.; Wisniewski, John P.; Miller, Timothy R.; Parrent, Jerod T.; Thomas, R. C.; Marion, G. H.

    2014-09-10

    We present near-infrared synthetic spectra of a delayed-detonation hydrodynamical model and compare them to observed spectra of four normal Type Ia supernovae ranging from day +56.5 to day +85. This is the epoch during which supernovae are believed to be undergoing the transition from the photospheric phase, where spectra are characterized by line scattering above an optically thick photosphere, to the nebular phase, where spectra consist of optically thin emission from forbidden lines. We find that most spectral features in the near-infrared can be accounted for by permitted lines of Fe II and Co II. In addition, we find that [Ni II] fits the emission feature near 1.98 μm, suggesting that a substantial mass of {sup 58}Ni exists near the center of the ejecta in these objects, arising from nuclear burning at high density.

  7. Transition probabilities of PrII-lines emitted from a ferroelectric plasma source

    NASA Astrophysics Data System (ADS)

    Goly, A.; Kusz, J.; Quang, B. Nguyen; Weniger, S.

    1991-03-01

    An argon-praseodymium plasma was generated under atmospheric pressure between a ceramic ferroelectric plate and a praseodymium plate. The system of plates was connected to an acoustic frequency supply. The plasma radiation was analyzed in the spectral range from 2000 to 7000 A by using a grating spectrograph with a linear dispersion near 1 mm/A, adopted to photoelectric measurements. The emission spectrum of praseodymium was recorded, and the intensities of a few hundred lines were measured. Transition probabilities were determined for 62 PrII-lines, using available lifetime data for excited levels and measured branching ratios of the corresponding lines. Reasonable agreement has been found between the experimental data of Lage and Whaling (1976) and some of the present results.

  8. The 21 centimeter line width as an extragalactic distance indicator. III - The correction for velocity dispersion and the B- and H-band Tully-Fisher relations

    NASA Astrophysics Data System (ADS)

    Bottinelli, L.; Gouguenheim, L.; Paturel, G.; de Vaucouleurs, G.

    1984-05-01

    The curvature of the H-band Tully-Fisher relation reported by Aaronson and Mould (1983) is demonstrated to be wholly a result of neglecting the corrections for bandwidth and turbulent velocities. The application of the correction model of Bottinelli et al. (1980, 1982, 1983) eliminates the curvature and decreases the slope of the linearized H-band relation to the previously determined value of 9.7. The curvature of the H-band relation disappears when the correction for velocity dispersion derived for the B-band is applied to the H-band data. After correction for the effect of bandwidth and velocity dispersion, the slope and zero point of the H-band relation are nearly independent of type. For well observed galaxies, it is shown that the distance moduli derived from the B- and H-band relations, both corrected for line broadening, have mean errors of, respectively, 0.3 and 0.4 mag.

  9. Contact line motion in confined liquid-gas systems: Slip versus phase transition

    NASA Astrophysics Data System (ADS)

    Xu, Xinpeng; Qian, Tiezheng

    2010-11-01

    In two-phase flows, the interface intervening between the two fluid phases intersects the solid wall at the contact line. A classical problem in continuum fluid mechanics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics. In one-component two-phase (liquid-gas) systems, the contact line can move through the mass transport across the interface while in two-component (binary) fluids, the contact line can move through diffusive transport across the interface. While these mechanisms alone suffice to remove the stress singularity, the role of fluid slip at solid surface needs to be taken into account as well. In this paper, we apply the diffuse-interface modeling to the study of contact line motion in one-component liquid-gas systems, with the fluid slip fully taken into account. The dynamic van der Waals theory has been presented for one-component fluids, capable of describing the two-phase hydrodynamics involving the liquid-gas transition [A. Onuki, Phys. Rev. E 75, 036304 (2007)]. This theory assumes the local equilibrium condition at the solid surface for density and also the no-slip boundary condition for velocity. We use its hydrodynamic equations to describe the continuum hydrodynamics in the bulk region and derive the more general boundary conditions by introducing additional dissipative processes at the fluid-solid interface. The positive definiteness of entropy production rate is the guiding principle of our derivation. Numerical simulations based on a finite-difference algorithm have been carried out to investigate the dynamic effects of the newly derived boundary conditions, showing that the contact line can move through both phase transition and slip, with their relative contributions

  10. Contact line motion in confined liquid-gas systems: Slip versus phase transition.

    PubMed

    Xu, Xinpeng; Qian, Tiezheng

    2010-11-28

    In two-phase flows, the interface intervening between the two fluid phases intersects the solid wall at the contact line. A classical problem in continuum fluid mechanics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics. In one-component two-phase (liquid-gas) systems, the contact line can move through the mass transport across the interface while in two-component (binary) fluids, the contact line can move through diffusive transport across the interface. While these mechanisms alone suffice to remove the stress singularity, the role of fluid slip at solid surface needs to be taken into account as well. In this paper, we apply the diffuse-interface modeling to the study of contact line motion in one-component liquid-gas systems, with the fluid slip fully taken into account. The dynamic van der Waals theory has been presented for one-component fluids, capable of describing the two-phase hydrodynamics involving the liquid-gas transition [A. Onuki, Phys. Rev. E 75, 036304 (2007)]. This theory assumes the local equilibrium condition at the solid surface for density and also the no-slip boundary condition for velocity. We use its hydrodynamic equations to describe the continuum hydrodynamics in the bulk region and derive the more general boundary conditions by introducing additional dissipative processes at the fluid-solid interface. The positive definiteness of entropy production rate is the guiding principle of our derivation. Numerical simulations based on a finite-difference algorithm have been carried out to investigate the dynamic effects of the newly derived boundary conditions, showing that the contact line can move through both phase transition and slip, with their relative contributions

  11. Line strengths of rovibrational and rotational transitions within the X^3Σ {^-} ground state of NH

    NASA Astrophysics Data System (ADS)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.; van Hemert, Marc C.; Groenenboom, Gerrit C.

    2014-08-01

    A new line list for rovibrational and rotational transitions, including fine structure, within the NH X^3Σ {^-} ground state has been created. It contains line intensities in the form of Einstein A and f-values, for all possible bands up to v' = 6, and for J up to between 25 and 44. The intensities are based on a new dipole moment function (DMF), which has been calculated using the internally contracted multi-reference configuration interaction method with an aug-cc-pV6Z basis set. The programs RKR1, LEVEL, and PGOPHER were used to calculate line positions and intensities using the most recent spectroscopic line position observations and the new DMF, including the rotational dependence on the matrix elements. The Hund's case (b) matrix elements from the LEVEL output (available as Supplement 1 of the supplementary material) have been transformed to the case (a) form required by PGOPHER. New relative intensities for the (1,0) band have been measured, and the calculated and observed Herman-Wallis effects are compared, showing good agreement. The line list (see Supplement 5 of the supplementary material) will be useful for the study of NH in astronomy, cold and ultracold molecular systems, and in the nitrogen chemistry of combustion.

  12. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    SciTech Connect

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  13. Line tension of alkane lenses on aqueous surfactant solutions at phase transitions of coexisting interfaces.

    PubMed

    Matsubara, Hiroki; Ushijima, Baku; Law, Bruce M; Takiue, Takanori; Aratono, Makoto

    2014-04-01

    Alkane droplets on aqueous solutions of surfactants exhibit a first-order wetting transition as the concentration of surfactant is increased. The low-concentration or "partial wetting" state corresponds to an oil lens in equilibrium with a two-dimensional dilute gas of oil and surfactant molecules. The high-concentration or "pseudo-partial wetting" state consists of an oil lens in equilibrium with a mixed monolayer of surfactant and oil. Depending on the combination of surfactant and oil, these mixed monolayers undergo a thermal phase transition upon cooling, either to a frozen mixed monolayer or to an unusual bilayer structure in which the upper leaflet is a solid layer of pure alkane with hexagonal packing and upright chains while the lower leaflet remains a disordered liquid-like mixed monolayer. Additionally, certain long-chain alkanes exhibit a surface freezing transition at the air-oil interface where the top monolayer of oil freezes above its melting point. In this review, we summarize our previous studies and discuss how these wetting and surface freezing transitions influence the line tension of oil lenses from both an experimental and theoretical perspective. PMID:24007861

  14. FLUCTUATIONS AND FLARES IN THE ULTRAVIOLET LINE EMISSION OF COOL STARS: IMPLICATIONS FOR EXOPLANET TRANSIT OBSERVATIONS

    SciTech Connect

    Loyd, R. O. Parke; France, Kevin

    2014-03-01

    Variations in stellar flux can potentially overwhelm the photometric signal of a transiting planet. Such variability has not previously been well-characterized in the ultraviolet lines used to probe the inflated atmospheres surrounding hot Jupiters. Therefore, we surveyed 38 F-M stars for intensity variations in four narrow spectroscopic bands: two enclosing strong lines from species known to inhabit hot Jupiter atmospheres, C II λλ1334, 1335 and Si III λ1206; one enclosing Si IV λλ1393, 1402; and 36.5 Å of interspersed continuum. For each star/band combination, we generated 60 s cadence lightcurves from archival Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph time-tagged photon data. Within these lightcurves, we characterized flares and stochastic fluctuations as separate forms of variability. Flares: we used a cross-correlation approach to detect 116 flares. These events occur in the time-series an average of once per 2.5 hr, over 50% last 4 minutes or less, and most produce the strongest response in Si IV. If the flare occurred during a transit measurement integrated for 60 minutes, 90/116 would destroy the signal of an Earth, 27/116 Neptune, and 7/116 Jupiter, with the upward bias in flux ranging from 1% to 109% of quiescent levels. Fluctuations: photon noise and underlying stellar fluctuations produce scatter in the quiescent data. We model the stellar fluctuations as Gaussian white noise with standard deviation σ {sub x}. Maximum likelihood values of σ {sub x} range from 1% to 41% for 60 s measurements. These values suggest that many cool stars will only permit a transit detection to high confidence in ultraviolet resonance lines if the radius of the occulting disk is ≳1 R{sub J} . However, for some M dwarfs this limit can be as low as several R {sub ⊕}.

  15. Calculation of the water vapor line intensities for rotational transitions between high-excited energy levels

    NASA Astrophysics Data System (ADS)

    Egorov, O. V.; Voitsekhovskaya, O. K.; Kashirskii, D. E.

    2015-11-01

    The intensities of water vapor in the range of pure rotational transitions were calculated up to high quantum numbers (Jmax ~ 30 and Ka max ~ 25). The diagonalization of the effective rotational Hamiltonian, approximated by Pade-Borel method, is applied to obtain the eigenvectors. The centrifugal distortion perturbations in line intensities were taken into account by the traditional equations for matrix elements of the transformed dipole moment, including eight parameters, and previously developed by authors Pade approximant. Moreover, to conduct the calculations, the rotational wavefunctions of the symmetric rotor molecule were applied. The results were compared with the known theoretical data.

  16. ON THE TRANSITION RATE OF THE Fe X RED CORONAL LINE

    SciTech Connect

    Brenner, G.; Crespo Lopez-Urrutia, J. R.; Bernitt, S.; Fischer, D.; Ginzel, R.; Kubicek, K.; Maeckel, V.; Mokler, P. H.; Simon, M. C.; Ullrich, J.

    2009-09-20

    We present a lifetime measurement of the 3s {sup 2}3p {sup 52} P{sup o} {sub 1/2} first excited fine-structure level of the ground state configuration in chlorine-like Fe X, which relaxes to the ground state through a magnetic dipole (M1) transition (the so-called red coronal line) with a wavelength accurately determined to 637.454(1) nm. Moreover, the Zeeman splitting of line was observed. The lifetime of 14.2(2) ms is the most precise one measured in the red wavelength region and agrees well with advanced theoretical predictions and an empirically scaled interpolation based on experimental values from the same isoelectronic sequence.

  17. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices

    SciTech Connect

    Eudy, L.; Chandler, K.

    2011-10-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

  18. Absolute redshifts in the CIV 1548 A line in the transition region of the quiet sun

    NASA Technical Reports Server (NTRS)

    Henze, William; Engvold, Oddbjorn

    1992-01-01

    Observations with the Ultraviolet Spectrometer and Polarimeter instrument on the SMM spacecraft were made at the polar limb and disk center for the accurate determination of Doppler shifts of the CIV 1548 A emission line formed at 10 exp -5 K in the transition region of the quiet sun. Individual data points representing 3 arcsec square pixels yield both redshifts and blueshifts, but the mean values from four different days of observations are toward the red. The mean redshifts are in the range 4-8 km/s and are produced by nearly vertically directed flows; the uncertainty associated with the mean values corresponds to +/- 0.5 km/s. The redshift increases with brightness of the CIV line.

  19. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports

    SciTech Connect

    Eudy, L.; Chandler, K.

    2012-05-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

  20. Atomic filter based on stimulated Raman transition at the rubidium D1 line.

    PubMed

    Zhao, Xiuchao; Sun, Xianping; Zhu, Maohua; Wang, Xiaofei; Ye, Chaohui; Zhou, Xin

    2015-07-13

    We report on a 795 nm atomic filter consisting of a stimulated Raman gain amplifier together with normal Faraday anomalous dispersion optical filtering (FADOF) at the rubidium D1 line. The filter is operated with a single transmission peak. The gain of the filter's transmission light signal is enhanced up to 85-fold compared to case operating without a stimulated Raman transition. Based on atomic coherence, the filter's minimum transmission bandwidth is less than 22 MHz. In each filtering channel, the signal light's frequency can be tuned by changing the detuning of the coupling light. Such a filter with stimulated Raman gain is more efficient in extracting weak signals in the presence of a strong light background compared with the normal FADOF. This expands the range of potential applications in optical communications and lidar technology. This filtering method can also be extended to the lines of other atoms. PMID:26191858

  1. EVIDENCE FOR A SNOW LINE BEYOND THE TRANSITIONAL RADIUS IN THE TW Hya PROTOPLANETARY DISK

    SciTech Connect

    Zhang, K.; Pontoppidan, K. M.; Salyk, C.; Blake, G. A.

    2013-04-01

    We present an observational reconstruction of the radial water vapor content near the surface of the TW Hya transitional protoplanetary disk, and report the first localization of the snow line during this phase of disk evolution. The observations are comprised of Spitzer-IRS, Herschel-PACS, and Herschel-HIFI archival spectra. The abundance structure is retrieved by fitting a two-dimensional disk model to the available star+disk photometry and all observed H{sub 2}O lines, using a simple step-function parameterization of the water vapor content near the disk surface. We find that water vapor is abundant ({approx}10{sup -4} per H{sub 2}) in a narrow ring, located at the disk transition radius some 4 AU from the central star, but drops rapidly by several orders of magnitude beyond 4.2 AU over a scale length of no more than 0.5 AU. The inner disk (0.5-4 AU) is also dry, with an upper limit on the vertically averaged water abundance of 10{sup -6} per H{sub 2}. The water vapor peak occurs at a radius significantly more distant than that expected for a passive continuous disk around a 0.6 M{sub Sun} star, representing a volatile distribution in the TW Hya disk that bears strong similarities to that of the solar system. This is observational evidence for a snow line that moves outward with time in passive disks, with a dry inner disk that results either from gas giant formation or gas dissipation and a significant ice reservoir at large radii. The amount of water present near the snow line is sufficient to potentially catalyze the (further) formation of planetesimals and planets at distances beyond a few AU.

  2. Laboratory Measurements of Fe XXIV Line Emission: 3-->2 Transitions near Excitation Threshold

    NASA Astrophysics Data System (ADS)

    Gu, M. F.; Kahn, S. M.; Savin, D. W.; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Reed, K. J.; Bhalla, C. P.; Grabbe, S. R.

    1999-06-01

    Using the Electron Beam Ion Trap facility at Lawrence Livermore National Laboratory, we have measured relative cross sections for Fe XXIV line emission at electron energies between 0.7 and 3.0 keV. The measurements include line formation by direct electron impact excitation (DE), radiative cascades, resonant excitation (RE), and dielectronic recombination (DR) satellites with captured electrons in n>=5 levels. Good agreement with R-matrix and distorted wave calculations is found. In collisionally ionized plasmas, at temperatures near where the ion abundance peaks (kTe~1.7 keV), the RE contributions arefound to be <~5% of the line emission, while the DR satellites contribute <~10%. While good agreement with state-of-the-art atomic physics calculations is found, there is less good agreement with existingspectral synthesis codes in common astrophysical use. For the Fe XXIV 3p3/2-->2s1/2, 3p1/2-->2s1/2, and 3d5/2-->2p3/2 transitions, the synthesis code MEKAL underestimates the emissivity in coronal equilibrium by ~20% at temperatures near where the ion abundance peaks. In situations where the ionization balance is not solely determined by the electron temperature, RE and DR satellites may contribute a considerable fraction of the line emission.

  3. VizieR Online Data Catalog: Line lists of transitions for interstellar urea (Remijan+, 2014)

    NASA Astrophysics Data System (ADS)

    Remijan, A. J.; Snyder, L. E.; McGuire, B. A.; Kuo, H.-L.; Looney, L. W.; Friedel, D. N.; Golubiatnikov, G. Y.; Lovas, F. J.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; McCall, B. J.; Hollis, J. M.

    2016-04-01

    The first measurements of the microwave spectra of urea were made from 5GHz to 50GHz using a heated waveguide cell (Brown et al., 1975JMoSp..58..445B). Further measurements were reported by Kasten & Dreizler (1986ZNatA..41.1173K) and Kretschmer et al. (1996MolPh..87.1159K). New spectroscopic measurements were made at NIST over the frequency range from 59GHz to 114GHz. A total of 38 rotational transitions was measured. Later, the Kharkov group carried out higher frequency measurements. Using a heated quartz absorption cell utilizing an automated synthesizer-based spectrometer (Ilyushin et al., 2005JMoSp.231...15I), the Kharkov group provided 75 new measurements between 78GHz and 240GHz. The urea lines for which we searched were calculated using the millimeter-wave data discussed above, as well as the hyperfine-free data from the existing literature cited earlier. As an aid to further interstellar searches for urea transitions, we provide a complete list of predicted rotational lines of urea available in Table6 covering the frequency range of 1GHz to 600GHz. (1 data file).

  4. Flux-line entanglement as the mechanism of FLL-melting transition in anisotropic HTSC

    SciTech Connect

    Nonomura, Yoshihiko; Hu, Xiao

    1999-12-01

    The mechanism of the flux-line-lattice (FLL) melting in anisotropic high-{Tc} superconductors in B {parallel} {cflx c} is clarified by Monte Carlo simulations of the 3D frustrated XY model. The percentage of entangled flux lines abruptly changes at the melting temperature T{sub m}, while no sharp change can be found in the number and size distribution of vortex loops around T{sub m}. Therefore, the origin of this melting transition is the entanglement of flux lines. Scaling behaviors of the melting temperature T{sub m} are consistent with this one-dimensional character of the entanglement mechanism of the FLL melting. That is, T{sub m} does not depend on the system size in the ab plane, while it is scaled by the system size along the c axis, L{sub c}, as T{sub m}(L{sub c}) {minus} T{sub m}({infinity}) {proportional{underscore}to} L{sub c}{sup {minus}d}, d = 1.

  5. Stick-Slip to Sliding Transition of Dynamic Contact Lines under AC Electrowetting.

    PubMed

    't Mannetje, D J C M; Mugele, F; van den Ende, D

    2013-12-01

    We show that at low velocities the dynamics of a contact line of a water drop moving over a Teflon-like surface under ac electrowetting must be described as stick-slip motion, rather than one continuous movement. At high velocities we observe a transition to a slipping regime. In the slipping regime the observed dependence of the contact angle is well described by a linearization of both the hydrodynamic and the molecular-kinetic model for the dynamic contact line behavior. The overall geometry of the drop also has a strong influence on the contact angle: if the drop is confined to a disk-like shape with radius R, much larger than the capillary length, and height h, smaller than the capillary length, the advancing angle increases steeper with velocity as the aspect ratio h/R is smaller. Although influence of the flow field near a contact line on the contact angle behavior has also been observed in other experiments, these observations do not fit either model. Finally, in our ac experiments no sudden increase of the hysteresis beyond a certain voltage and velocity was observed, as reported by other authors for a dc voltage, but instead we find with increasing voltage a steady decrease of the hysteresis. PMID:24219094

  6. Magnetic property of transition metal-Si atomic line on silicon Σ3 grain boundary: A theoretical study

    NASA Astrophysics Data System (ADS)

    Li, Yong-Hua; Guo, Shu-Kuan; Ma, Zhong-Quan; Qu, Guo-Hui; Shi, Ting-Ting; Gong, Xin-Gao; Xia, Qin; Wei, Su-Huai

    2014-06-01

    Using first-principles calculations within density functional theory, we investigate the electronic and magnetic properties of different 3d transition metal-Si atomic lines on silicon Σ3 (112) grain boundary, which can be formed through grain boundary segregation. We find that (i) Fe atoms occupy the substitutional sites at the grain boundary and form an Fe-Si atomic line, but the interaction between the Fe atoms is antiferromagnetic. (ii) The ferromagnetic stability increases with the atomic number of the transition metals and Co-Si atomic line is more stable in the ferromagnetic phase and shows a semimetallic behavior. We suggest that this special TM-Si atomic line formed by thermodynamically favorable transition metal segregation on Si grain boundary could be used in design of spin-dependent quantum devices.

  7. Complexity in the high latitude HF radar spectral width boundary region

    NASA Astrophysics Data System (ADS)

    Parkinson, M. L.; Hannah, K. M.; Dyson, P. L.

    2008-05-01

    SuperDARN radars are sensitive to the collective Doppler characteristics of decametre-scale irregularities in the high latitude ionosphere. The radars routinely observe a distinct transition from large spectral width (>100 m s-1) located at higher latitudes to low spectral width (<50 m s-1) located at lower latitudes. Because of its equatorward location, the TIGER Tasmanian radar is very sensitive to the detection of the spectral width boundary (SWB) in the nightside auroral ionosphere. An analysis of the line-of-sight velocities and 2-D beam-swinging vectors suggests the meso-scale (~100 km) convection is more erratic in the high spectral width region, but slower and more homogeneous in the low spectral width region. The radar autocorrelation functions are better modelled using Lorentzian Doppler spectra in the high spectral width region, and Gaussian Doppler spectra in the low spectral width region. However, paradoxically, Gaussian Doppler spectra are associated with the largest spectral widths. Application of the Burg maximum entropy method suggests the occurrence of double-peaked Doppler spectra is greater in the high spectral width region, implying the small-scale (~10 km) velocity fluctuations are more intense above the SWB. These observations combined with collective wave scattering theory imply there is a transition from a fast flowing, turbulent plasma with a correlation length of velocity fluctuations less than the scattering wavelength, to a slower moving plasma with a correlation length greater than the scattering wavelength. Peak scaling and structure function analysis of fluctuations in the SWB itself reveals approximately scale-free behaviour across temporal scales of ~10 s to ~34 min. Preliminary scaling exponents for these fluctuations, αGSF=0.18±0.02 and αGSF=0.09±0.01, are even smaller than that expected for MHD turbulence.

  8. Phase transition between two kinds of flux-line lattice in high- Tc superconductors in a tilted field

    NASA Astrophysics Data System (ADS)

    Nonomura, Y.; Hu, X.

    2004-10-01

    Structures of flux-line lattices (FLL) in vortex states of high- Tc superconductors in a tilted field are directly studied by Monte Carlo simulations of the three-dimensional anisotropic XY model, where only Josephson couplings are considered between superconducting layers. A nontrivial structural transition between the Josephson-dominant and Abrikosov-dominant FLL phases occurs as the tilting angle of the external field is increased at low enough temperatures. A similar phase transition is observed by varying the anisotropy parameter with a fixed external field. A finite latent heat at the transition point indicates that this phase transition is of first order.

  9. Determination of nitrogen to carbon abundance ratios from transition layer emission lines

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1992-01-01

    We have finished studying the nitrogen to carbon abundance ratios for stars with different effective temperatures T(sub eff) and luminosities using transition layer emission lines and using spectra available in the IUE archives. The N/C abundance ratio determinations using transition layer emission lines are as accurate as the photospheric abundance determinations as found by comparison of results obtained by both methods for the same stars. Our measurements confirm photospheric abundance determinations in regions of the HR diagram where they can be obtained. Our studies have extended the temperature range to higher temperatures. They have shown the exact positions in the HR diagram where the mixing due to the outer convection zones reaches deep enough to bring nuclear processed material to the surface. This occurs at effective temperatures which are higher by delta log T(sub eff) approximately 0.04 or roughly 400 K than expected theoretically. Since the depth of the convection zone increases rapidly with decreasing T(sub eff) this may indicate considerable overshoot beyond the lower boundary of the convection zone. Our N/C abundance ratio determinations from transition layer emission lines have confirmed that the actual enrichment observed for some cool giants is larger than expected theoretically, again indicating a larger degree of mixing in several stars either from below or from above. For the supergiants it probably indicates overshoot above the convective core in the progenitor main sequence stars. For the more massive giants this may also be the case, though we did not find a correlation between delta log N/C and the absolute magnitudes, but these are rather uncertain. As byproducts of these studies we also found anomalies in Si/C and N/C abundance ratios for F giants which can be understood as the relict of surface abundance changes for their main sequence progenitors due to diffusion. This anomaly disappears for G giants, for which the depths of the

  10. Laboratory Measurements of Fe XXIV Line Emission: 3->2 Transitions near Excitation Threshold

    NASA Astrophysics Data System (ADS)

    Gu, M. F.; Kahn, S. M.; Savin, D. W.; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Reed, K. J.; Bhalla, C. P.; Grabbe, S. R.

    1999-04-01

    Using the Electron Beam Ion Trap facility at Lawrence Livermore National Laboratory, we have measured relative cross sections for Fe XXIV line emission at electron energies between 0.7 and 3.0 keV. The measurements include line formation by direct electron-impact excitation (DE), radiative cascades, resonant excitation (RE), and dielectronic recombination (DR) satellites with captured electron in n>=5 levels. Good agreement with R-matrix and distorted wave calculations is found. In collisionally ionized plasmas, at temperatures near where the ion abundance peaks (kTe ~ 1.7 keV), the RE contributions are found to be ≲ 5% of the line emission, while the DR satellites contribute ≲ 10%. While good agreement with state-of-the-art atomic physics calculations is found, there is less good agreement with existing spectral synthesis codes in common astrophysical use. For the Fe XXIV 3p_{3/2}-> 2s_{1/2}, 3d_{3/2}-> 2p_{3/2}, and 3d_{5/2}-> 2p_{3/2} transitions, the synthesis code MEKAL underestimates the emissivity in coronal equilibrium by ~ 20% at temperatures near where the ion abundance peaks. In situations where the ionization balance is not solely determined by the electron temperature, RE and DR satellites may contribute a considerable fraction of the line emission. Work at Lawrence Livermore National Laboratory was performed under the auspices of the US Department of Energy under contract No. W-7405-ENG-48. This program is supported by a NASA High Energy Astrophysics X-Ray Astronomy Research and Analysis grant NAGW-4185 (Columbia University) and work order W-19127 (LLNL). The work at Kansas State University is supported by Division of Chemical Science, Office of Basic Energy Research, U.S. Department of Energy.