Science.gov

Sample records for linear accelerator cavities

  1. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  2. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    DOEpatents

    Dolgashev, Valery A.

    2016-06-28

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.

  3. Linear induction accelerators made from pulse-line cavities with external pulse injection.

    PubMed

    Smith, I

    1979-06-01

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator. PMID:18699588

  4. Cavity control system advanced modeling and simulations for TESLA linear accelerator and free electron laser

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced. The elementary analysis of the cavity resonator on RF (radio frequency) level and low level frequency with signal and power considerations is presented. For the field vector detection the digital signal processing is proposed. The electromechanical model concerning Lorentz force detuning is applied for analyzing the basic features of the system performance. For multiple cavities driven by one klystron the field vector sum control is considered. Simulink model implementation is developed to explore the feedback and feed-forward system operation and some experimental results for signals and power considerations are presented.

  5. Multi-cavity complex controller with vector simulator for TESLA technology linear accelerator

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Szewinski, Jaroslaw

    2008-01-01

    A digital control, as the main part of the Low Level RF system, for superconducting cavities of a linear accelerator is presented. The FPGA based controller, supported by MATLAB system, was developed to investigate a novel firmware implementation. The complex control algorithm based on the non-linear system identification is the proposal verified by the preliminary experimental results. The general idea is implemented as the Multi-Cavity Complex Controller (MCC) and is still under development. The FPGA based controller executes procedure according to the prearranged control tables: Feed-Forward, Set-Point and Corrector unit, to fulfill the required cavity performance: driving in the resonance during filling and field stabilization for the flattop range. Adaptive control algorithm is applied for the feed-forward and feedback modes. The vector Simulator table has been introduced for an efficient verification of the FPGA controller structure. Experimental results of the internal simulation, are presented for a cavity representative condition.

  6. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  7. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  8. Development of a four cavity second-harmonic gyroklystron as driver for a linear accelerator

    NASA Astrophysics Data System (ADS)

    Gouveia, Emmanuel Steve

    Gyroklystrons are microwave amplifiers that combine the multi-cavity configuration of a klystron with the energy extraction mechanism of the cyclotron maser instability. These devices have been studied at the University of Maryland for several years. This work is focused on the development of a 17.14 GHz four-cavity frequency-doubling gyroklystron circuit. This device was designed specifically to drive a high gradient linear accelerator recently developed by the Haimson Corporation. The gyroklystron was designed using the code MAGYKL, yielding a predicted output power of 87 MW for an input drive power of 250 W, with a velocity pitch ratio (alpha) of 1.4. The tube was later fabricated, and underwent a series of experimental tests to evaluate its performance. The highest peak power observed was 18.5 +/- 1.7 MW, corresponding to an efficiency of 7.0% and a gain of 24.0 dB. This result fell short of the theoretical design, yet it was consistent with the low value of the velocity pitch ratio (alpha = 0.85) realized in the experiments. This limitation on alpha was linked to the onset of instabilities in the input cavity. The ultimate cause of these instabilities was the thermal non-uniformity in the emitter of our electron gun, which led to a significant variation (approximately 50%) of the current density across the beam. In order to remedy this problem, we have radically redesigned the input cavity, changing both its geometry and Q factor. These measures should dramatically reduce the probability of instabilities, thus allowing us to remove the experimental limitations imposed on alpha. This new design is presented here. We also describe advanced designs of an output cavity with radial power extraction, and a compact circular to rectangular mode converter. A detailed description of the present experimental setup is given, along with an overview of the power transport system necessary to feed the accelerator with output power from the gyroklystron.

  9. Frequency conversion in field stabilization system for application in SC cavity of linear accelerator

    NASA Astrophysics Data System (ADS)

    Filipek, Tomasz A.

    2005-09-01

    The paper concerns frequency conversion circuits of electromagnetic field stabilization system in superconductive cavity of linear accelerator. The stabilization system consists of digital part (based on FPGA) and analog part (frequency conversions, ADC/DAC, filters). Frequency conversion circuit is analyzed. The main problem in the frequency conversion for the stabilization system are: linearity of conversion and stability. Also, second order problems are subject of analysis: control of local oscillator parameters and fluctuation of actuated signal (exposing conversion). The following work was done: analysis of individual stage parameters on field stability and external influence, simulation. The work was closed with conclusions of the major frequency conversion parameters for field stabilization. The results have been applied for field stabilization system (RF Feedback System) in TESLA Test Facility 2 and preliminary research on X-Ray Free Electron Laser.

  10. Cavity digital control testing system by Simulink step operation method for TESLA linear accelerator and free electron laser

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced in this paper. The FPGA -- Field Programmable Gate Array technology has been implemented for digital controller stabilizing cavity field gradient. The cavity SIMULINK model has been applied to test the hardware controller. The step operation method has been developed for testing the FPGA device coupled to the SIMULINK model of the analog real plant. The FPGA signal processing has been verified according to the required algorithm of the reference MATLAB controller. Some experimental results have been presented for different cavity operational conditions.

  11. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  12. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  13. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    NASA Astrophysics Data System (ADS)

    Caliskan, A.; Yılmaz, M.

    2012-02-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  14. Crab Cavities for Linear Colliders

    SciTech Connect

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; Shulte, D.; Jones, Roger M.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  15. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  16. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  17. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, William M.

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  18. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  19. Damped acceleration cavities

    SciTech Connect

    Palmer, R.B.

    1988-07-01

    Structures with slots to strongly damp higher order longitudinal and transverse modes should allow the use, in linear colliders, of multiple bunches, and thus attain luminosities of over 10/sup 34/cm/sup /minus/2/sec/sup /minus/1/. Preliminary measurements on model structures suggest that such damping can be achieved. 10 refs., 9 figs.

  20. Finite element analysis and frequency shift studies for the bridge coupler of the coupled cavity linear accelerator of the spallation neutron source.

    SciTech Connect

    Chen, Z.

    2001-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron scattering research facility. The linear accelerator (linac) is the principal accelerating structure and divided into a room-temperature linac and a superconducting linac. The normal conducting linac system that consists of a Drift Tube Linac (DTL) and a Coupled Cavity Linac (CCL) is to be built by Los Alamos National Laboratory. The CCL structure is 55.36-meters long. It accelerates H- beam from 86.8 Mev to 185.6 Mev at operating frequency of 805 MHz. This side coupled cavity structure has 8 cells per segment, 12 segments and 11 bridge couplers per module, and 4 modules total. A 5-MW klystron powers each module. The number 3 and number 9 bridge coupler of each module are connected to the 5-MW RF power supply. The bridge coupler with length of 2.5 {beta}{gamma} is a three-cell structure and located between the segments and allows power flow through the module. The center cell of each bridge coupler is excited during normal operation. To obtain a uniform electromagnetic filed and meet the resonant frequency shift, the RF induced heat must be removed. Thus, the thermal deformation and frequency shift studies are performed via numerical simulations in order to have an appropriate cooling design and predict the frequency shift under operation. The center cell of the bridge coupler also contains a large 4-inch slug tuner and a tuning post that used to provide bulk frequency adjustment and field intensity adjustment, so that produce the proper total field distribution in the module assembly.

  1. Superconducting Cavities for the APT Accelerator

    NASA Astrophysics Data System (ADS)

    Krawczyk, Frank L.; Gentzlinger, Robert C.; Montoya, Debbie I.; Rusnak, Brian; Shapiro, Alan H.

    1997-05-01

    One type of design for an Accelerator Production of Tritium (APT) facility being investigated at LANL consists mainly of a linear accelerator using superconducting rf cavities for the acceleration of a high current cw proton beam. For electron accelerators with particles moving at almost the speed of light (β=1.0), resonators with a rounded shape, consisting of elliptical, circular and straight sections, are well established. They are referred to as ``elliptical'' cavities. For the APT-design, this shape has been adapted for much slower proton beams from a β of less than 0.64 to slightly above 0.82. This is a new energy range, in which resonators of an elliptical type have never been used before. Simulations with the well-proven electromagnetic modeling tools MAFIA and SUPERFISH were performed. The structures have been optimized for their rf properties as well as for beam dynamics requirements. Single cell test cavities are under construction and will be tested in our structures laboratory. Their performance in terms of obtainable gradients, Q and multipacting behavior, as well as a comparison of the major rf parameters with the results of the cavity simulations, will be reported.

  2. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  3. FXR accelerator cavity impedance experiments

    SciTech Connect

    Avalle, C.A.

    1998-01-05

    One of the goals of the present Flash X-Ray (FXR) accelerator upgrade effort [1][2] at Lawrence Livermore National Laboratory (LLNL) is to reduce the cavity transverse impedance, since it has been shown that beam stability is significantly affected by this parameter [3]. Recently, we have evaluated various techniques and cell modifications to accomplish that, both through lab measurements and computer models. A spare cell, identical in every way to cells in the accelerator, was specially modified for the experiments. The impedance measurements were done without the beam, by applying twin-wire techniques. This report describes the results of these experiments and suggests possible cell modifications to improve their performance. The techniques and modifications which are suggested might also be applicable to AHF and DARHT-2 long-pulse accelerator development.

  4. Distributed coupling high efficiency linear accelerator

    DOEpatents

    Tantawi, Sami G.; Neilson, Jeffrey

    2016-07-19

    A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.

  5. Stereotactic Irradiation of the Postoperative Resection Cavity for Brain Metastasis: A Frameless Linear Accelerator-Based Case Series and Review of the Technique

    SciTech Connect

    Kelly, Paul J.; Alexander, Brian M.; Hacker, Fred; Marcus, Karen J.; Weiss, Stephanie E.

    2012-01-01

    Purpose: Whole-brain radiation therapy (WBRT) is the standard of care after resection of a brain metastasis. However, concern regarding possible neurocognitive effects and the lack of survival benefit with this approach has led to the use of stereotactic radiosurgery (SRS) to the resection cavity in place of WBRT. We report our initial experience using an image-guided linear accelerator-based frameless stereotactic system and review the technical issues in applying this technique. Methods and Materials: We retrospectively reviewed the setup accuracy, treatment outcome, and patterns of failure of the first 18 consecutive cases treated at Brigham and Women's Hospital. The target volume was the resection cavity without a margin excluding the surgical track. Results: The median number of brain metastases per patient was 1 (range, 1-3). The median planning target volume was 3.49 mL. The median prescribed dose was 18 Gy (range, 15-18 Gy) with normalization ranging from 68% to 85%. In all cases, 99% of the planning target volume was covered by the prescribed dose. The median conformity index was 1.6 (range, 1.41-1.92). The SRS was delivered with submillimeter accuracy. At a median follow-up of 12.7 months, local control was achieved in 16/18 cavities treated. True local recurrence occurred in 2 patients. No marginal failures occurred. Distant recurrence occurred in 6/17 patients. Median time to any failure was 7.4 months. No Grade 3 or higher toxicity was recorded. A long interval between initial cancer diagnosis and the development of brain metastasis was the only factor that trended toward a significant association with the absence of recurrence (local or distant) (log-rank p = 0.097). Conclusions: Frameless stereotactic irradiation of the resection cavity after surgery for a brain metastasis is a safe and accurate technique that offers durable local control and defers the use of WBRT in select patients. This technique should be tested in larger prospective studies.

  6. [Linear accelerator radiosurgery].

    PubMed

    Brandt, R A; Salvajoli, J V; Oliveira, V C; Carmignani, M; da Cruz, J C; Leal, H D; Ferraz, L

    1995-03-01

    Radiosurgery is the precise radiation of a known intracranial target with a high dose of energy, sparing the adjacent nervous tissue. Technological advances in the construction of linear accelerators, stereotactic instruments and in computer sciences made this technique easier to perform and affordable. The main indications for radiosurgery are inoperable cerebral vascular malformations, vestibular and other cranial schwannomas, skull base meningiomas, deep seated gliomas and cerebral metastases. More recently, the development of fraccionated stereotactic radiotherapy increased the spectrum of indications to bigger lesions and to those adjacent to critical nervous structures. We present our initial experience in the treatment of 31 patients. An adequate control of the neoplastic lesions was obtained and the adequate time of observation is still needed to evaluate the results in arteriovenous malformations. PMID:7575207

  7. Accurate dynamics in an azimuthally-symmetric accelerating cavity

    NASA Astrophysics Data System (ADS)

    Appleby, R. B.; Abell, D. T.

    2015-02-01

    We consider beam dynamics in azimuthally-symmetric accelerating cavities, using the EMMA FFAG cavity as an example. By fitting a vector potential to the field map, we represent the linear and non-linear dynamics using truncated power series and mixed-variable generating functions. The analysis provides an accurate model for particle trajectories in the cavity, reveals potentially significant and measurable effects on the dynamics, and shows differences between cavity focusing models. The approach provides a unified treatment of transverse and longitudinal motion, and facilitates detailed map-based studies of motion in complex machines like FFAGs.

  8. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  9. Sustained linear acceleration

    NASA Technical Reports Server (NTRS)

    Fraser, T. M.

    1973-01-01

    The subjective effects of sustained acceleration are discussed, including positive, negative, forward, backward, and lateral acceleration effects. Physiological effects, such as retinal and visual response, unconsciousness and cerebral function, pulmonary response, and renal output, are studied. Human tolerance and performance under sustained acceleration are ascertained.

  10. Application of ILC superconducting cavities for acceleration of protons

    SciTech Connect

    Ostroumov, P.N.; Aseev, V.N.; Gonin, I.V.; Rusnak, B.; /LLNL, Livermore

    2007-10-01

    Beam acceleration in the International Linear Collider (ILC) will be provided by 9-cell 1300 MHz superconducting (SC) cavities. The cavities are designed for effective acceleration of charged particles moving with the speed of light and are operated on {pi}-mode to provide maximum accelerating gradient. Significant R&D effort has been devoted to develop ILC SC technology and its RF system which resulted excellent performance of ILC cavities. Therefore, the proposed 8-GeV proton driver in Fermilab is based on ILC cavities above {approx}1.2 GeV. The efficiency of proton beam acceleration by ILC cavities drops fast for lower velocities and it was proposed to develop squeezed ILC-type (S-ILC) cavities operating at 1300 MHz and designed for {beta}{sub G} = 0.81, geometrical beta, to accelerate protons or H{sup -} from {approx}420 MeV to 1.2 GeV. This paper discusses the possibility of avoiding the development of new {beta}{sub G} = 0.81 cavities by operating ILC cavities on 8/9{pi}-mode of standing wave oscillations.

  11. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  12. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  13. Linear induction accelerator and pulse forming networks therefor

    DOEpatents

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  14. The Klynac: An Integrated Klystron and Linear Accelerator

    SciTech Connect

    Potter, J. M.; Schwellenbach, D.

    2013-04-01

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

  15. The Klynac: An integrated klystron and linear accelerator

    SciTech Connect

    Potter, James M.; Schwellenbach, David; Meidinger, Alfred

    2013-04-19

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

  16. Linear Accelerator (LINAC)

    MedlinePlus

    ... is the device most commonly used for external beam radiation treatments for patients with cancer. The linear ... shape of the patient's tumor and the customized beam is directed to the patient's tumor. The beam ...

  17. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  18. Linear accelerator for tritium production

    SciTech Connect

    Garnett, R.W.; Billen, J.H.; Chan, K.C.; Genzlinger, R.; Gray, E.R.; Nath, S.; Rusnak, B.; Schrage, D.L.; Stovall, J.E.; Takeda, H.; Wood, R.; Wangler, T.P.; Young, L.M.

    1996-06-01

    For many years now, Los Alamos National Laboratory has been working to develop a conceptual design of a facility for accelerator production of tritium (APT). The APT accelerator will produce high energy protons which will bombard a heavy metal target, resulting in the production of large numbers of spallation neutrons. These neutrons will be captured by a low-{ital Z} target to produce tritium. This paper describes the latest design of a room-temperature, 1.0 GeV, 100 mA, cw proton accelerator for tritium production. The potential advantages of using superconducting cavities in the high-energy section of the linac are also discussed and a comparison is made with the baseline room-temperature accelerator. {copyright} {ital 1996 American Institute of Physics.}

  19. Linear accelerators of the future

    SciTech Connect

    Loew, G.A.

    1986-07-01

    Some of the requirements imposed on future linear accelerators to be used in electron-positron colliders are reviewed, as well as some approaches presently being examined for meeting those requirements. RF sources for use in these linacs are described, as well as wakefields, single bunches, and multiple-bunch trains. (LEW)

  20. Rf cavity primer for cyclic proton accelerators

    NASA Astrophysics Data System (ADS)

    Griffin, J. E.

    1988-04-01

    The electrical and mechanical properities of particle accelerator rf cavities are described in a manner which will be useful to physics and engineering graduates entering the accelerator field. The discussion is limited to proton (or antiproton) synchrotron accelerators or storage rings operating roughly in the range of 20 to 200 MHz. The very high gradient, fixed frequency UHF or microwave devices appropriate for electron machines and the somewhat lower frequency and broader bandwidth devices required for heavy ion accelerators are discussed extensively in other papers in this series. While it is common practice to employ field calculation programs such as SUPERFISH, URMEL, or MAFIA as design aids in the development of rf cavities, we attempt here to elucidate various of the design parameters commonly dealt with in proton machines through the use of simple standing wave coaxial resonator expressions. In so doing, we treat only standing wave structures. Although low-impedance, moderately broad pass-band travelling wave accelerating systems are used in the CERN SPS, such systems are more commonly found in linacs, and they have not been used widely in large cyclic accelerators. Two appendices providing useful supporting material regarding relativistic particle dynamics and synchrotron motion in cyclic accelerators are added to supplement the text.

  1. Elementary principles of linear accelerators

    NASA Astrophysics Data System (ADS)

    Loew, G. A.; Talman, R.

    1983-09-01

    A short chronology of important milestones in the field of linear accelerators is presented. Proton linacs are first discussed and elementary concepts such as transit time, shunt impedance, and Q are introduced. Critical issues such as phase stability and transverse forces are addressed. An elementary discussion of waveguide acclerating structures is also provided. Finally, electron accelerators addressed. Taking SLAC as an exmple, various topics are discussed such as structure design, choice of parameters, frequency optmization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly.

  2. Radio frequency focused interdigital linear accelerator

    DOEpatents

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  3. RHIC 28 MHZ ACCELERATING CAVITY SYSTEM.

    SciTech Connect

    ROSE,J.; BRENNAN,J.M.; CAMPBELL,A.; KWIATKOWSKI,S.; RATTI,A.; PIRKL,W.

    2001-06-18

    The 28 MHz accelerating system consists of a quarter wave cavity driven by an inductively coupled 100kW tetrode amplifer and 1kW solid state driver amplifer. 40dB of rf feedback closed around the cavity and amplifers reduces small perturbations within the loop by a factor of 100, and reduces the time required to shift the phase at transition by a factor of 10, limited by the saturation of the drive chain. The cavity is tuned over a 200kHz range by a mechanical tuner which varies the gap capacitance. Broadband HOM damping is provided by two orthogonal loop coupled high pass filters. Design parameters and commissioning results are presented.

  4. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  5. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator

    NASA Astrophysics Data System (ADS)

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P. D.

    2013-09-01

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  6. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator

    SciTech Connect

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P. D.

    2013-09-15

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  7. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator.

    PubMed

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P D

    2013-09-01

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system. PMID:24089846

  8. Isogeometric simulation of Lorentz detuning in superconducting accelerator cavities

    NASA Astrophysics Data System (ADS)

    Corno, Jacopo; de Falco, Carlo; De Gersem, Herbert; Schöps, Sebastian

    2016-04-01

    Cavities in linear accelerators suffer from eigenfrequency shifts due to mechanical deformation caused by the electromagnetic radiation pressure, a phenomenon known as Lorentz detuning. Estimating the frequency shift up to the needed accuracy by means of standard Finite Element Methods, is a complex task due to the non exact representation of the geometry and due to the necessity for mesh refinement when using low order basis functions. In this paper, we use Isogeometric Analysis for discretizing both mechanical deformations and electromagnetic fields in a coupled multiphysics simulation approach. The combined high-order approximation of both leads to high accuracies at a substantially lower computational cost.

  9. Development of high purity niobium used in SRF accelerating cavity

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Xie, Wei-Ping; Li, Ming-Yang; He, Ji-Lin; Fan, Hui-Ru; Zhang, Bao-Cheng; He, Fei-Si; Zhao, Kui; Chen, Jia-Er; Liu, Ke-Xin

    2008-12-01

    Niobium is widely used in SRF (Superconducting Radio Frequency) cavities due to its excellent superconductivity and workability. With the continuous development of technology, higher demands of material are raised. One of the key issues is that RRR (Residual Resistance Ratio) of the Nb material should be more than 300, which requires that the Nb ingot have even higher RRR. This article introduces the development and the experimental results of high purity niobium in OTIC in Ningxia (Ningxia Orient Tantalum Industry Co. Ltd.), and the test results of the single cell TESLA (Tera Electron volt energy Superconducting Linear Accelerator) shaped cavity manufactured by Peking University using Nb material from OTIC. Supported by National Basic Research Program of China (2002CB713600)

  10. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    NASA Astrophysics Data System (ADS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R&D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q0 was 1.5×1010 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni-Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and permeability

  11. Hybrid photonic-bandgap accelerating cavities

    NASA Astrophysics Data System (ADS)

    Di Gennaro, E.; Zannini, C.; Savo, S.; Andreone, A.; Masullo, M. R.; Castaldi, G.; Gallina, I.; Galdi, V.

    2009-11-01

    In a recent investigation, we studied two-dimensional (2D) point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.

  12. Photonic Band Gap structures: A new approach to accelerator cavities

    SciTech Connect

    Kroll, N. |; Smith, D.R.; Schultz, S.

    1992-12-31

    We introduce a new accelerator cavity design based on Photonic Band Gap (PGB) structures. The PGB cavity consists of a two-dimensional periodic array of high dielectric, low loss cylinders with a single removal defect, bounded on top and bottom by conducting sheets. We present the results of both numerical simulations and experimental measurements on the PGB cavity.

  13. Linear Epidermal Nevus of the Oral Cavity: A Rare Diagnosis

    PubMed Central

    Santos, Mariana Dutra de Cássia Ferreira; Duarte, Alexandre Scalli Mathias; Carvalho, Guilherme Machado; Guimarães, Alexandre Caixeta; Zappelini, Carlos Eduardo Monteiro; Coelho Dal Rio, Ana Cristina; Corrêa, Maria Elvira Pizzigatti; Milani Altemani, Albina Messias de Almeida; Danielli Nicola, Ester Maria

    2012-01-01

    Linear epidermal nevus is an uncommon diagnosis of benign lesions of the oral cavity. It is characterized by a congenital malformation arising from the ectoderm cells, which are arranged according to a typical linear configuration known as Blaschko's lines. We report a case of linear epidermal nevus of oral cavity in a 51-year-old lady or woman. The linear epidermal nevus of the oral cavity, although rare, can be considered a differential diagnosis of oral papillomatosis (OP). The histopathological studies and detailed description are the center of the diagnostic and clinical evolution. PMID:22811716

  14. Automating linear accelerator quality assurance

    SciTech Connect

    Eckhause, Tobias; Thorwarth, Ryan; Moran, Jean M.; Al-Hallaq, Hania; Farrey, Karl; Ritter, Timothy; DeMarco, John; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Park, SungYong; Perez, Mario; Booth, Jeremy T.

    2015-10-15

    Purpose: The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. Methods: The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. Results: For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The

  15. Terahertz-driven linear electron acceleration

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  16. Terahertz-driven linear electron acceleration.

    PubMed

    Nanni, Emilio A; Huang, Wenqian R; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m(-1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  17. Terahertz-driven linear electron acceleration

    SciTech Connect

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  18. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  19. Versatile Low Level RF System For Linear Accelerators

    SciTech Connect

    Potter, James M.

    2011-06-01

    The Low Level RF (LLRF) system is the source of all of the rf signals required for an rf linear accelerator. These signals are amplified to drive accelerator and buncher cavities. It can even provide the synchronizing signal for the rf power for a synchrotron. The use of Direct Digital Synthesis (DDS) techniques results in a versatile system that can provide multiple coherent signals at the same or different frequencies with adjustable amplitudes and phase relations. Pulsing the DDS allows rf switching with an essentially infinite on/off ratio. The LLRF system includes a versatile phase detector that allows phase-locking the rf frequency to a cavity at any phase angle over the full 360 deg. range. With the use of stepper motor driven slug tuners multiple cavity resonant frequencies can be phase locked to the rf source frequency. No external phase shifters are required and there is no feedback loop phase setup required. All that is needed is to turn the frequency feedback on. The use of Digital Signal Processing (DSP) allows amplitude and phase control over the entire rf pulse. This paper describes the basic principles of a LLRF system that has been used for both proton accelerators and electron accelerators, including multiple tank accelerators, sub-harmonic and fundamental bunchers, and synchrotrons.

  20. Elementary principles of linear accelerators

    SciTech Connect

    Loew, G.A.; Talman, R.

    1983-09-01

    These lectures come in five sections. The first is this introduction. The second is a short chronology of what are viewed as important milestones in the field. The third covers proton linacs. It introduces elementary concepts such as transit time, shunt impedance, and Q. Critical issues such as phase stability and transverse forces are discussed. The fourth section contains an elementary discussion of waveguide accelerating structures. It can be regarded as an introduction to some of the more advanced treatments of the subject. The final section is devoted to electron accelerators. Taking SLAC as an example, various topics are discussed such as structure design, choice of parameters, frequency optimization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly. 41 figures, 4 tables.

  1. High frequency planar accelerating structures for future linear colliders

    SciTech Connect

    Yu, D.; Ben-Menahem, S.; Wilson, P.; Miller, R.; Ruth, R.; Nassiri, A.

    1994-12-31

    Modern microfabrication techniques based on deep etch x-ray lithography, e.g., LIGA, can be used to produce large-aspect-ratio, metallic or dielectric, planar structures suitable for high-frequency RF acceleration of charged particle beams. Specifically, these techniques offer significant advantages over conventional manufacturing methods for future linear colliders (beyond NLC, the Next Linear Collider) because of several unique systems requirements. First, to have the required ac wall plug power within reasonable limits, such future linear colliders (5 TeV) must operate at high frequency (30 GHz). Secondly, luminosity requirements suggest the use of multi-bunch acceleration of electrons and positrons in the linear collider. Thirdly, in order to clearly discriminate physics events in the final interaction point at which electrons and positrons collide, it is required that secondary particle production from beamstrahlung be minimized. Flat electron and positron beams with a large aspect ratio will be beneficial in reducing beamstrahlung in the final focus region, but cause the beam to be more sensitive to wakefields in the vertical dimension. In principle, a flat beam can be accelerated in a planar structure with reduced wakefield in the vertical direction for the entire length of the accelerator. The LIGA process is particularly suitable for manufacturing miniaturized, planar, asymmetric cavities at high frequency. The main advantages of the LIGA process are fabrication of structures with high aspect ratio, small dimensional tolerances, and arbitrary mask shape (cross-section). Other advantages include mass-production with excellent repeatability and precision of up to an entire section of an accelerating structure consisting of a number of cells. It eliminates the need of tedious machining and brazing, for example, of individual disks and cups in conventional disk-loaded structures. Also, planar input/output couplers for the accelerating structure can be easily

  2. Linear accelerators for TeV colliders

    SciTech Connect

    Wilson, P.B.

    1985-05-01

    This paper summarizes four tutorial lectures on linear electron accelerators: Electron Linacs for TeV Colliders, Emittance and Damping Rings, Wake Fields: Basic Concepts, and Wake Field Effects in Linacs.

  3. Terahertz-driven linear electron acceleration

    DOE PAGESBeta

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  4. Developing of superconducting niobium cavities for accelerators

    NASA Astrophysics Data System (ADS)

    Pobol, I. L.; Yurevich, S. V.

    2015-11-01

    The results of a study of structure and mechanical properties of welding joints, superconducting characteristics of the material after joining of welded components of superconducting radio frequency cavities are presented. The paper also describes the results of testing of the RF 1.3 GHz single-cell niobium cavity manufactured in the PTI NAS Belarus.

  5. Applications of Electron Linear Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Westenskow*, Glen; Chen, Yu-Jiuan

    Linear Induction Accelerators (LIAs) can readily produce intense electron beams. For example, the ATA accelerator produced a 500 GW beam and the LIU-30 a 4 TW beam (see Chap. 2). Since the induction accelerator concept was proposed in the late 1950s [1, 2], there have been many proposed schemes to convert the beam power to other forms. Categories of applications that have been demonstrated for electron LIAs include:

  6. Cryogen free superconducting splittable quadrupole magnet for linear accelerators

    SciTech Connect

    Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

    2011-09-01

    A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

  7. Stability of non-linear integrable accelerator

    SciTech Connect

    Batalov, I.; Valishev, A.; /Fermilab

    2011-09-01

    The stability of non-linear Integrable Optics Test Accelerator (IOTA) model developed in [1] was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the beam size in the linear part of the accelerator was proposed.

  8. Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration

    SciTech Connect

    Badziak, J.; Jablonski, S.; Pisarczyk, T.; Raczka, P.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Rosinski, M.; Borodziuk, S.; Krousky, E.; Liska, R.; Kucharik, M.; Ullschmied, J.

    2012-05-15

    Acceleration of dense matter to high velocities is of high importance for high energy density physics, inertial confinement fusion, or space research. The acceleration schemes employed so far are capable of accelerating dense microprojectiles to velocities approaching 1000 km/s; however, the energetic efficiency of acceleration is low. Here, we propose and demonstrate a highly efficient scheme of acceleration of dense matter in which a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and then accelerated in a guiding channel by the pressure of a hot plasma produced in the cavity by the laser beam or by the photon pressure of the ultra-intense laser radiation trapped in the cavity. We show that the acceleration efficiency in this scheme can be much higher than that achieved so far and that sub-relativisitic projectile velocities are feasible in the radiation pressure regime.

  9. A New Cavity Design For Medium Beta Acceleration

    SciTech Connect

    He, Feisi; Wang, Haipeng; Rimmer, Robert A.

    2014-02-01

    Heavy duty or cw, superconducting proton and heavy ion accelerators are being proposed and constructed worldwide. The total length of the machine is one of the main drivers in terms of cost. Thus hwr and spoke cavities at medium beta are usually optimized to achieve low surface field and high gradient. A novel accelerating structure at beta=0.5 evolved from spoke cavity is proposed, with lower surface fields but slightly higher heat load. It would be an interesting option for pulsed and cw accelerators with beam energy of more than 200mev/u.

  10. Reactive RF Tuning For Compensation of a Detuned Accelerating Cavity

    SciTech Connect

    Yoon Kang; Michael Tiefenback; Pavel Chevtsov

    2002-08-01

    The resonant frequency of an accelerating RF cavity is detuned from the desired frequency by certain physical disturbances, such as thermal and other mechanical wall distortions. Cavity wall distortions due to microphonics (acoustic vibrations) and the Lorentz force (radiation pressure) can be serious problems in pulsed RF operation of superconducting (SRF) cavities with thin cavity walls and a high quality factor. The resulting detuning results a change of input reactance. The offset reactance at the cavity input may be tuned out properly with a reactive element in the input transmission line, so that the generator RF power can be delivered efficiently to the cavity. A fast response electrical tuner may be built for compensating high frequency detuning without any mechanical coupling.

  11. Transverse emittance dilution due to coupler kicks in linear accelerators

    NASA Astrophysics Data System (ADS)

    Buckley, Brandon; Hoffstaetter, Georg H.

    2007-11-01

    One of the main concerns in the design of low emittance linear accelerators (linacs) is the preservation of beam emittance. Here we discuss one possible source of emittance dilution, the coupler kick, due to transverse electromagnetic fields in the accelerating cavities of the linac caused by the power coupler geometry. In addition to emittance growth, the coupler kick also produces orbit distortions. It is common wisdom that emittance growth from coupler kicks can be strongly reduced by using two couplers per cavity mounted opposite each other or by having the couplers of successive cavities alternate from above to below the beam pipe so as to cancel each individual kick. While this is correct, including two couplers per cavity or alternating the coupler location requires large technical changes and increased cost for superconducting cryomodules where cryogenic pipes are arranged parallel to a string of several cavities. We therefore analyze consequences of alternate coupler placements. We show here that alternating the coupler location from above to below compensates the emittance growth as well as the orbit distortions. For sufficiently large Q values, alternating the coupler location from before to after the cavity leads to a cancellation of the orbit distortion but not of the emittance growth, whereas alternating the coupler location from before and above to behind and below the cavity cancels the emittance growth but not the orbit distortion. We show that cancellations hold for sufficiently large Q values. These compensations hold even when each cavity is individually detuned, e.g., by microphonics. Another effective method for reducing coupler kicks that is studied is the optimization of the phase of the coupler kick so as to minimize the effects on emittance from each coupler. This technique is independent of the coupler geometry but relies on operating on crest. A final technique studied is symmetrization of the cavity geometry in the coupler region with

  12. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  13. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  14. A water-filled radio frequency accelerating cavity

    SciTech Connect

    Faehl, R.J.; Keinigs, R.K.; Pogue, E.W.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project was to study water-filled resonant cavities as a high-energy density source to drive high-current accelerator configurations. Basic considerations lead to the expectation that a dielectric-filled cavity should be able to store up to e/e{sub o} as much energy as a vacuum one with the same dimensions and thus be capable of accelerating a proportionately larger amount of charge before cavity depletion occurs. During this project, we confirmed that water-filled cavities with e/e{sub o} = 60-80 did indeed behave with the expected characteristics, in terms of resonant TM modes and cavity Q. We accomplished this result with numerical cavity eigenvalue codes; fully electromagnetic, two-dimensional, particle-in-cell codes; and, most significantly, with scaled experiments performed in water-filled aluminum cavities. The low-power experiments showed excellent agreement with the numerical results. Simulations of the high-field, high-current mode of operation indicated that charged-particle loss on the dielectric windows, which separate the cavity from the beamline, must be carefully controlled to avoid significant distortion of the axial fields.

  15. Short pulse dynamics in a linear cavity fiber laser

    NASA Astrophysics Data System (ADS)

    Razukov, Vadim A.; Melnikov, Leonid A.

    2016-04-01

    New suitable numerical scheme is proposed for simulation of dynamics of oppositely running pulses in a fiber laser with linear cavity. The proposed model allows to include various temporal and spatial effects which affect the laser dynamics. The pulse evolution in the fiber cavity with perfect reflectors at the fiber ends with accounting of fiber group velocity dispersion and self-phase modulation is demonstrated.

  16. Diagnostic resonant cavity for a charged particle accelerator

    DOEpatents

    Barov, Nikolai

    2007-10-02

    Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

  17. Recent progress on photonic band gap accelerator cavities

    SciTech Connect

    Smith, D.R.; Li, D.; Vier, D.C.

    1997-02-01

    We report on the current status of our program to apply Photonic Band Gap (PBG) concepts to produce novel high-energy, high-intensity accelerator cavities. The PBG design on which we have concentrated our initial efforts consists of a square array of metal cylinders, terminated by conducting or superconducting sheets, and surrounded by microwave absorber on the periphery of the structure. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. In previous work, we have proposed that this structure could be utilized as an accelerator cavity, with advantageous properties over conventional cavity designs. In the present work, we present further studies, including MAFIA-based numerical calculations and experimental measurements, demonstrating the feasibility of using the proposed structure in a real accelerator application.

  18. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  19. Evolution of Rising Magnetic Cavities and UHECR Acceleration

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos

    2011-08-01

    GN jets produce low density cavities in clusters of galaxies. Stability requires the presence of magnetic fields. We find self-consistent analytical structure of cavities containing large-scale electromagnetic fields and plasma expanding self-similarly. These solutions have no surface currents and, thus, are less susceptible to resistive decay, while they can be confined by a uniform pressure without deformation. If the adiabatic index of the plasma within the cavity is Γ>4/3, the expansion leads to the sudden formation of large-scale current sheets. We demonstrate that the ensuing explosive reconnection of the magnetic field can accelerate UHECRs.

  20. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    SciTech Connect

    Ives, Robert Lawrence; Parsons, Gregory; Williams, Philip; Oldham, Christopher; Mundy, Zach; Dolgashev, Valery

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  1. HOM-Free Linear Accelerating Structure for e+ e- Linear Collider at C-Band

    SciTech Connect

    Kubo, Kiyoshi

    2003-07-07

    HOM-free linear acceleration structure using the choke mode cavity (damped cavity) is now under design for e{sup +}e{sup -} linear collider project at C-band frequency (5712 MHz). Since this structure shows powerful damping effect on most of all HOMs, there is no multibunch problem due to long range wakefields. The structure will be equipped with the microwave absorbers in each cells and also the in-line dummy load in the last few cells. The straightness tolerance for 1.8 m long structure is closer than 30 {micro}m for 25% emittance dilution limit, which can be achieved by standard machining and braising techniques. Since it has good vacuum pumping conductance through annular gaps in each cell, instabilities due to the interaction of beam with the residual-gas and ions can be minimized.

  2. Radio-frequency quadrupole linear accelerator

    SciTech Connect

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.

  3. Laser polishing for topography management of accelerator cavity surfaces

    SciTech Connect

    Zhao, Liang; Klopf, J. Mike; Reece, Charles E.; Kelley, Michael J.

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  4. Non-linear optics of ultrastrongly coupled cavity polaritons

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Liu, Bin; McMaster, Michael; Singer, Kenneth

    2016-05-01

    Experiments at CWRU have developed organic cavity polaritons that display world-record vacuum Rabi splittings of more than an eV. This ultrastrongly coupled polaritonic matter is a new regime for exploring non-linear optical effects. We apply quantum optics theory to quantitatively determine various non-linear optical effects including types of low harmonic generation (SHG and THG) in single and double cavity polariton systems. Ultrastrongly coupled photon-matter systems such as these may be the foundation for technologies including low-power optical switching and computing.

  5. A linear accelerator for simulated micrometeors.

    NASA Technical Reports Server (NTRS)

    Slattery, J. C.; Becker, D. G.; Hamermesh, B.; Roy, N. L.

    1973-01-01

    Review of the theory, design parameters, and construction details of a linear accelerator designed to impart meteoric velocities to charged microparticles in the 1- to 10-micron diameter range. The described linac is of the Sloan Lawrence type and, in a significant departure from conventional accelerator practice, is adapted to single particle operation by employing a square wave driving voltage with the frequency automatically adjusted from 12.5 to 125 kHz according to the variable velocity of each injected particle. Any output velocity up to about 30 km/sec can easily be selected, with a repetition rate of approximately two particles per minute.

  6. Optical-feedback cavity-enhanced absorption spectroscopy in a linear cavity: model and experiments

    NASA Astrophysics Data System (ADS)

    Manfred, Katherine M.; Ciaffoni, Luca; Ritchie, Grant A. D.

    2015-08-01

    Optical-feedback cavity-enhanced absorption spectroscopy is a highly sensitive trace gas sensing technique that relies on feedback from a resonant intracavity field to successively lock the laser to the cavity as the wavelength is scanned across a molecular absorption with a comb of resonant frequencies. V-shaped optical cavities have been favoured in the past in order to avoid additional feedback fields from non-resonant reflections that potentially suppress the locking to the resonant cavity frequency. A model of the laser-cavity coupling demonstrates, however, that the laser can stably lock to a resonant linear cavity, within certain constraints on the relative intensity of the two feedback sources. By mode mismatching the field into the linear cavity, we have shown that it is theoretically and practically possible to spatially filter out the unwanted non-resonant component in order for the resonant field to dominate the feedback competition at the laser. A 5.3 cw quantum cascade laser scanning across a absorption feature demonstrated stable locking to achieve a minimum detectable absorption coefficient of for 1-s averaging. Detailed investigations of feedback effects on the laser output verified the validity of our theoretical models.

  7. Fabrication of the APS Storage Ring radio frequency accelerating cavities

    SciTech Connect

    Primdahl, K.; Bridges, J.; DePaola, F.; Kustom, R.; Snee, D.

    1993-07-01

    Specification, heat treatment, strength, and fatigue life of the Advanced Photon Source (APS) Storage Ring 352-MHz radio frequency (RF) accelerating cavity copper is discussed. Heat transfer studies, including finite element analysis, and configuration of water cooling is described. Requirements for and techniques of machining are considered. Braze and electron beam joint designs are compared. Vacuum considerations during fabrication are discussed.

  8. Beam loading and cavity compensation for the ground test accelerator

    SciTech Connect

    Jachim, S.P.; Natter, E.F.

    1989-01-01

    The Ground Test Accelerator (GTA) will be a heavily beam-loaded H/sup minus/ linac with tight tolerances on accelerating field parameters. The methods used in modeling the effects of beam loading in this machine are described. The response of the cavity to both beam and radio-frequency (RF) drive stimulus is derived, including the effects of cavity detuning. This derivation is not restricted to a small-signal approximation. An analytical method for synthesizing a predistortion network that decouples the amplitude and phase responses of the cavity is also outlined. Simulation of performance, including beam loading, is achieved through use of a control system analysis software package. A straightforward method is presented for extrapolating this work to model large coupled structures with closely spaced parasitic modes. Results to date have enabled the RF control system designs for GTA to be optimized and have given insight into their operation. 6 refs., 10 figs.

  9. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

    1998-09-22

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

  10. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  11. Perception of linear acceleration in weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, Anthony P.; Young, Laurence R.; Merfeld, Daniel M.

    1991-01-01

    Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear 'sleds' in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.

  12. Perception of linear acceleration in weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, A. P.; Young, L. R.; Merfeld, D. M.

    1990-01-01

    Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear "sleds" in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.

  13. The SPARC linear accelerator based terahertz source

    SciTech Connect

    Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Gatti, G.; Pace, E.; Rossi, A. R.; Vaccarezza, C.; Catani, L.; Cianchi, A.; Marchetti, B.; Mostacci, A.; Palumbo, L.; Ronsivalle, C.; and others

    2013-03-04

    Ultra-short electron beams, produced through the velocity bunching compression technique, are used to drive the SPARC linear accelerator based source, which relies on the emission of coherent transition radiation in the terahertz range. This paper reports on the main features of this radiation, as terahertz source, with spectral coverage up to 5 THz and pulse duration down to 200 fs, with an energy per pulse of the order of several micro-joule, and as electron beam longitudinal diagnostics.

  14. [Weekly control measurement at the linear accelerator].

    PubMed

    Christ, G

    1983-05-01

    Weekly control measurements taken at the linear accelerator of the Medizinisches Strahleninstitut der Universität Tübingen are described which largely exceed those prescribed by the "Richtlinien Strahlenschutz in der Medizin" (instructions about radioprotection in medicine). Since the determination of the field homogeneity and the energy of electron and X-ray radiation is very time-consuming, a largely automatized procedure has been elaborated which is presented in this study. PMID:6857748

  15. Minimization of power consumption during charging of superconducting accelerating cavities

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy

    2015-11-01

    The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.

  16. Calculating Beam Breakup in Superconducting Linear Accelerators

    SciTech Connect

    Geoffrey Krafft; Joseph Bisognano; Sharon Laubach

    1990-02-09

    As the intensity of a particle beam passing through a linear accelerator is raised, interactions between particles play an increasingly prominent role in determining the overall dynamics of the beam. These many body effects, known collectively as beam breakup, tend to degrade the quality of the transported beam, and hence they must be calculated to accurately predict the evolution of the beam as it traverses the accelerator. Several codes which compute various collective effects have been developed and used to simulate the dynamics of beams passing through superconducting accelerator structures. All the codes use the same basic algorithm: the beam is tracked through elements giving the focusing forces on the particles, and at the appropriate locations in the linac, localized forces are impressed on the particles which model the electromagnetic interactions. Here, a difficulty is that the usual ''Coulomb'' interaction between particles is changed by the electromagnetic environment of the accelerator. By such calculations it has been shown that recirculating linear accelerators such as the one being built at the Continuous Electron Beam Accelerator Facility (CEBAF) should remain stable against multipass beam breakup instability as long as the average current does not exceed about 20 mA, that the beam quality at CEBAF will be degraded when the single bunch charge approaches 10{sup 9} electrons, and that the beam quality of superconducting linacs that are optimized for high current transport begins to decrease at around 10{sup 10} electrons per bunch. The latter result is of interest to individuals who would use superconducting linacs as beam sources for free electron lasers or for superconducting colliders for high energy physics research.

  17. Tilt perception during dynamic linear acceleration.

    PubMed

    Seidman, S H; Telford, L; Paige, G D

    1998-04-01

    Head tilt is a rotation of the head relative to gravity, as exemplified by head roll or pitch from the natural upright orientation. Tilt stimulates both the otolith organs, owing to shifts in gravitational orientation, and the semicircular canals in response to head rotation, which in turn drive a variety of behavioral and perceptual responses. Studies of tilt perception typically have not adequately isolated otolith and canal inputs or their dynamic contributions. True tilt cannot readily dissociate otolith from canal influences. Alternatively, centrifugation generates centripetal accelerations that simulate tilt, but still entails a rotatory (canal) stimulus during important periods of the stimulus profiles. We reevaluated the perception of head tilt in humans, but limited the stimulus to linear forces alone, thus isolating the influence of otolith inputs. This was accomplished by employing a centrifugation technique with a variable-radius spinning sled. This allowed us to accelerate the sled to a constant angular velocity (128 degrees/s), with the subject centered, and then apply dynamic centripetal accelerations after all rotatory perceptions were extinguished. These stimuli were presented in the subjects' naso-occipital axis by translating the subjects 50 cm eccentrically either forward or backward. Centripetal accelerations were thus induced (0.25 g), which combined with gravity to yield a dynamically shifting gravitoinertial force simulating pitch-tilt, but without actually rotating the head. A magnitude-estimation task was employed to characterize the dynamic perception of pitch-tilt. Tilt perception responded sluggishly to linear acceleration, typically reaching a peak after 10-30 s. Tilt perception also displayed an adaptation phenomenon. Adaptation was manifested as a per-stimulus decline in perceived tilt during prolonged stimulation and a reversal aftereffect upon return to zero acceleration (i.e., recentering the subject). We conclude that otolith

  18. A computational study of dielectric photonic-crystal-based accelerator cavities

    NASA Astrophysics Data System (ADS)

    Bauer, C. A.

    Future particle accelerator cavities may use dielectric photonic crystals to reduce harmful wakefields and increase the accelerating electric field (or gradient). Reduced wakefields are predicted based on the bandgap property of some photonic crystals (i.e. frequency-selective reflection/transmission). Larger accelerating gradients are predicted based on certain dielectrics' strong resistance to electrical breakdown. Using computation, this thesis investigated a hybrid design of a 2D sapphire photonic crystal and traditional copper conducting cavity. The goals were to test the claim of reduced wakefields and, in general, judge the effectiveness of such structures as practical accelerating cavities. In the process, we discovered the following: (1) resonant cavities in truncated photonic crystals may confine radiation weakly compared to conducting cavities (depending on the level of truncation); however, confinement can be dramatically increased through optimizations that break lattice symmetry (but retain certain rotational symmetries); (2) photonic crystal cavities do not ideally reduce wakefields; using band structure calculations, we found that wakefields are increased by flat portions of the frequency dispersion (where the waves have vanishing group velocities). A complete comparison was drawn between the proposed photonic crystal cavities and the copper cavities for the Compact Linear Collider (CLIC); CLIC is one of the candidates for a future high-energy electron-positron collider that will study in greater detail the physics learned at the Large Hadron Collider. We found that the photonic crystal cavity, when compared to the CLIC cavity: (1) can lower maximum surface magnetic fields on conductors (growing evidence suggests this limits accelerating gradients by inducing electrical breakdown); (2) shows increased transverse dipole wakefields but decreased longitudinal monopole wakefields; and (3) exhibits lower accelerating efficiencies (unless

  19. Design of inductively detuned RF extraction cavities for the Relativistic Klystron Two Beam Accelerator

    SciTech Connect

    Henestroza, E.; Yu, S.S.; Li, H.

    1995-04-01

    An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q{sub ext} and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes.

  20. A Digital Self Excited Loop for Accelerating Cavity Field Control

    SciTech Connect

    Curt Hovater; Trent Allison; Jean Delayen; John Musson; Tomasz Plawski

    2007-06-22

    We have developed a digital process that emulates an analog oscillator and ultimately a self excited loop (SEL) for field control. The SEL, in its analog form, has been used for many years for accelerating cavity field control. In essence the SEL uses the cavity as a resonant circuit -- much like a resonant (tank) circuit is used to build an oscillator. An oscillating resonant circuit can be forced to oscillate at different, but close, frequencies to resonance by applying a phase shift in the feedback path. This allows the circuit to be phased-locked to a master reference, which is crucial for multiple cavity accelerators. For phase and amplitude control the SEL must be forced to the master reference frequency, and feedback provided for in both dimensions. The novelty of this design is in the way digital signal processing (DSP) is structured to emulate an analog system. While the digital signal processing elements are not new, to our knowledge this is the first time that the digital SEL concept has been designed and demonstrated. This paper reports on the progress of the design and implementation of the digital SEL for field control of superconducting accelerating cavities.

  1. Field Emission in CEBAF's SRF Cavities and Implications for Future Accelerators

    SciTech Connect

    Jay Benesch

    2006-02-15

    Field emission is one of the key issues in superconducting RF for particle accelerators. When present, it limits operating gradient directly or via induced heat load at 2K. In order to minimize particulate contamination of and thus field emission in the CEBAF SRF cavities during assembly, a cold ceramic RF window was placed very close to the accelerating cavity proper. As an unintended consequence of this, the window is charged by field-emitted electrons, making it possible to monitor and model field emission in the CEBAF cavities since in-tunnel operation began. From January 30, 1995, through February 10, 2003, there were 64 instances of spontaneous onset or change in cavity field emission with a drop in usable gradient averaging 1.4 ({sigma} 0.8) MV/m at each event. Fractional loss averaged 0.18 ({sigma} 0.12) of pre-event gradient. This event count corresponds to 2.4 events per century per cavity, or 8 per year in CEBAF. It is hypothesized that changes in field emission are due to adsorbed gas accumulation. The possible implications of this and other observations for the International Linear Collider (ILC) and other future accelerators will be discussed.

  2. Lorentz Force Detuning Analysis of the SNS Accelerating Cavities

    SciTech Connect

    R. Mitchell; K. Matsumoto; G. Ciovati; K. Davis; K. Macha; R. Sundelin

    2001-09-01

    The Spallation Neutron Source (SNS) project incorporates a superconducting radio-frequency (SRF) accelerator for the final section of the pulsed mode linac Cavities with geometrical {beta} values of {beta} = 0.61 and {beta} = 0.81 are utilized in the SRF section, and are constructed out of thin-walled niobium with stiffener rings welded between the cells near the iris. The welded titanium helium vessel and tuner assembly restrains the cavity beam tubes Cavities with {beta} values less than one have relatively steep and flat side-walls making the cavities susceptible to Ised RF induces cyclic Lorentz pressures that mechanically excite the cavities, producing a dynamic Lorentz force detuning different from a continuous RF system. The amplitude of the dynamic detuning for a given cavity design is a function of the mechanical damping, stiffness of the tuner/helium vessel assembly, RF pulse profile, and the RF pulse rate. This paper presents analysis and testing results to date, and indicates areas where more investigation is required.

  3. Omega3P: A Parallel Finite-Element Eigenmode Analysis Code for Accelerator Cavities

    SciTech Connect

    Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Ko, Kwok; /SLAC

    2009-03-04

    Omega3P is a parallel eigenmode calculation code for accelerator cavities in frequency domain analysis using finite-element methods. In this report, we will present detailed finite-element formulations and resulting eigenvalue problems for lossless cavities, cavities with lossy materials, cavities with imperfectly conducting surfaces, and cavities with waveguide coupling. We will discuss the parallel algorithms for solving those eigenvalue problems and demonstrate modeling of accelerator cavities through different examples.

  4. Elliptical Cavity Shape Optimization for Acceleration and HOM Damping

    SciTech Connect

    Haipeng Wang; Robert Rimmer; Genfa Wu

    2005-05-01

    We report a survey of center cell shapes developed for Superconducting Radio Frequency (SRF) multi-cell cavities for different projects. Using a set of normalized parameters, we compare the designs for different frequencies and particle velocities for the fundamental mode. Using dispersion curves of High Order Modes (HOM) (frequency verse phase advance) calculated by MAFIA for a single cell, we further optimize the cavity shape to avoid a light cone line crossing at the dangerous resonance frequencies determined by the beam bunch structure and eliminate the trapped (or high R/Q) modes with a low group velocity. We developed this formulation to optimize a 5-cell, 750MHz cavity shape, with good real-estate accelerating gradient and a strong HOM damping waveguide structure for the JLab 1MW ERL-FEL project.

  5. Wake-field studies on photonic band gap accelerator cavities

    NASA Astrophysics Data System (ADS)

    Li, Derun; Kroll, N.; Smith, D. R.; Schultz, S.

    1997-03-01

    We have studied the wake-field of several metal Photonic Band Gap (PBG) cavities which consist of either a square or a hexagonal array of metal cylinders, bounded on top and bottom by conducting or superconducting sheets, surrounded by placing microwave absorber at the periphery or by replacing outer rows of metal cylinders with lossy dielectric ones, or by metallic walls. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. While both monopole and dipole wake-fields have been studied, we confine our attention here mainly to the dipole case. The dipole wake-field is produced by modes in the propagation bands which tend to fill the entire cavity more or less uniformly and are thus easy to damp selectively. MAFIA time domain simulation of the transverse wake-field has been compared with that of a cylindrical pill-box comparison cavity. Even without damping the wake-field of the metal PBG cavity is substantially smaller than that of the pill-box cavity and may be further reduced by increasing the size of the lattice. By introducing lossy material at the periphery we have been able to produce Q factors for the dipole modes in the 40 to 120 range without significantly degrading the accelerating mode.

  6. Superconducting Accelerating Cavity Pressure Sensitivity Analysis and Stiffening

    SciTech Connect

    Rodnizki, J; Ben Aliz, Y; Grin, A; Horvitz, Z; Perry, A; Weissman, L; Davis, G Kirk; Delayen, Jean R.

    2014-12-01

    The Soreq Applied Research Accelerator Facility (SARAF) design is based on a 40 MeV 5 mA light ions superconducting RF linac. Phase-I of SARAF delivers up to 2 mA CW proton beams in an energy range of 1.5 - 4.0 MeV. The maximum beam power that we have reached is 5.7 kW. Today, the main limiting factor to reach higher ion energy and beam power is related to the HWR sensitivity to the liquid helium coolant pressure fluctuations. The HWR sensitivity to helium pressure is about 60 Hz/mbar. The cavities had been designed, a decade ago, to be soft in order to enable tuning of their novel shape. However, the cavities turned out to be too soft. In this work we found that increasing the rigidity of the cavities in the vicinity of the external drift tubes may reduce the cavity sensitivity by a factor of three. A preliminary design to increase the cavity rigidity is presented.

  7. Production of medical radioisotopes with linear accelerators.

    PubMed

    Starovoitova, Valeriia N; Tchelidze, Lali; Wells, Douglas P

    2014-02-01

    In this study, we discuss producing radioisotopes using linear electron accelerators and address production and separation issues of photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both are the same. Yields of (γ,p) reactions are typically lower than (γ,n) ones, however they have the advantage that target and product nuclides belong to different chemical species so their separation is often not such an intricate problem. In this paper we consider two examples, (100)Mo(γ,n)(99)Mo and (68)Zn(γ,p)(67)Cu, of photonuclear reactions. Monte-Carlo simulations of the yields are benchmarked with experimental data obtained at the Idaho Accelerator Center using a 44MeV linear electron accelerator. We propose using a kinematic recoil method for photoneutron production. This technique requires (100)Mo target material to be in the form of nanoparticles coated with a catcher material. During irradiation, (99)Mo atoms recoil and get trapped in the coating layer. After irradiation, the coating is dissolved and (99)Mo is collected. At the same time, (100)Mo nanoparticles can be reused. For the photoproduction method, (67)Cu can be separated from the target nuclides, (68)Zn, using standard exchange chromatography methods. Monte-Carlo simulations were performed and the (99)Mo activity was predicted to be about 7MBq/(g(⁎)kW(⁎)h) while (67)Cu activity was predicted to be about 1MBq/(g(⁎)kW(⁎)h). Experimental data confirm the predicted activity for both cases which proves that photonuclear reactions can be used to produce radioisotopes. Lists of medical isotopes which might be obtained using photonuclear reactions have been compiled and are included as well. PMID:24374071

  8. Acceleration in Linear and Circular Motion

    ERIC Educational Resources Information Center

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  9. CULA: hybrid GPU accelerated linear algebra routines

    NASA Astrophysics Data System (ADS)

    Humphrey, John R.; Price, Daniel K.; Spagnoli, Kyle E.; Paolini, Aaron L.; Kelmelis, Eric J.

    2010-04-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent FLOPS/watt ratio. High-level linear algebra operations are computationally intense, often requiring O(N3) operations and would seem a natural fit for the processing power of the GPU. Our work is on CULA, a GPU accelerated implementation of linear algebra routines. We present results from factorizations such as LU decomposition, singular value decomposition and QR decomposition along with applications like system solution and least squares. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally.

  10. Wakefield and RF Kicks Due to Coupler Asymmetry in TESLA-Type Accelerating Cavities

    SciTech Connect

    Bane, K.L.F.; Adolphsen, C.; Li, Z.; Dohlus, M.; Zagorodnov, I.; Gonin, I.; Lunin, A.; Solyak, N.; Yakovlev, V.; Gjonaj, E.; Weiland, T.; /Darmstadt, Tech. Hochsch.

    2008-07-07

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm.

  11. Novel Approach to Linear Accelerator Superconducting Magnet System

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  12. Qubit Measurement with a Nonlinear Cavity Detector Beyond Linear Response

    NASA Astrophysics Data System (ADS)

    Laflamme, Catherine; Clerk, Aashish

    2012-02-01

    We consider theoretically the use of a driven, nonlinear superconducting microwave cavity to measure a coupled superconducting qubit. This is similar to setups studied in recent experiments.ootnotetextM. Hatridge et al. Phys.Rev.B, 83,134501 (2011)^,ootnotetextF.R. Ong et al. PRL 106,167002 (2011) In a previous work, we demonstrated that for weak coupling (where linear response theory holds) one misses the quantum limit on QND detection in this system by a large factor proportional to the parametric gain.ootnotetextC. Laflamme and A.A. Clerk, Phys. Rev. A 83, 033803 (2011) Here we calculate measurement backaction beyond linear response by using an approximate mapping to a detuned degenerate parametric amplifier having both linear and dispersive couplings to the qubit. We find surprisingly that the backaction dephasing rate is far more sensitive to corrections beyond linear response than the detector response. Thus, increasing the coupling strength can significantly increase the efficiency of the measurement. We interpret this behavior in terms of the non-Gaussian photon number fluctuations of the nonlinear cavity. Our results have applications to quantum information processing and quantum amplification with superconducting microwave circuits.

  13. Development of compact linear accelerator in KBSI

    SciTech Connect

    Yoon, Jang-Hee; Lee, Byoung-Seob; Choi, Seyong; Park, Jin Yong; Ok, Jung-Woo; Won, Mi-Sook

    2012-02-15

    The compact linear accelerator using a 28 GHz ECRIS is under construction in KBSI, South Korea. The main capability of this facility is the production of fast neurons for the neutron radiography. The designing of a superconducting magnet, microwave transmission system, beam extraction, and plasma chamber of ECRIS were finished. The nominal axial design fields of the magnets are 3.6 T at injection and 2.2 T at extraction; the nominal radial design field strength at the plasma chamber wall is 2.1 T. We already installed 10 kW, 28 GHz gyrotron, and tested a microwave power from gyrotron using a dummy load. The current status will be discussed in this paper.

  14. Development of compact linear accelerator in KBSI.

    PubMed

    Yoon, Jang-Hee; Lee, Byoung-Seob; Choi, Seyong; Park, Jin Yong; Ok, Jung-Woo; Won, Mi-Sook

    2012-02-01

    The compact linear accelerator using a 28 GHz ECRIS is under construction in KBSI, South Korea. The main capability of this facility is the production of fast neurons for the neutron radiography. The designing of a superconducting magnet, microwave transmission system, beam extraction, and plasma chamber of ECRIS were finished. The nominal axial design fields of the magnets are 3.6 T at injection and 2.2 T at extraction; the nominal radial design field strength at the plasma chamber wall is 2.1 T. We already installed 10 kW, 28 GHz gyrotron, and tested a microwave power from gyrotron using a dummy load. The current status will be discussed in this paper. PMID:22380162

  15. Magnetic repulsion of linear accelerator contaminates.

    PubMed

    Butson, M J; Wong, T P; Law, A; Law, M; Mathur, J N; Metcalfe, P E

    1996-06-01

    Neodymium Iron Boron (NdFeB) rare earth permanent magnets have unique properties that enable them to fit easily onto the accessory mount of a clinical linear accelerator to partially sweep away electron contamination produced by the treatment head and block trays and thus increase skin sparing. Using such magnets the central axis entrance surface dose has been reduced by 11% for a 20 x 30 cm field size from 32% to 21% of maximum dose by the magnetic device. A reduction of 14% from 32% to 18% was seen for a 20 x 20 cm field size with a 6 mm perspex block tray positioned above the magnet. The magnetic device is light weight and thus clinically usable. PMID:8798165

  16. Space-charge limits in linear accelerators

    SciTech Connect

    Wangler, T.P.

    1980-12-01

    This report presents equations that allow an approximate evaluation of the limiting beam current for a large class of radio-frequency linear accelerators, which use quadrupole strong focusing. Included are the Alvarez, the Wideroe, and the radio-frequency quadrupole linacs. The limiting-current formulas are presented for both the longitudinal and the transverse degrees of freedom by assuming that the average space-charge force in the beam bunch arises from a uniformly distributed charge within an azimuthally symmetric three-dimensional ellipsoid. The Mathieu equation is obtained as an approximate, but general, form for the transverse equation of motion. The smooth-approximation method is used to obtain a solution and an expression for the transverse current limit. The form of the current-limit formulas for different linac constraints is discussed.

  17. High-gradient compact linear accelerator

    SciTech Connect

    Carder, B.M.

    1995-12-31

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  18. High-gradient compact linear accelerator

    DOEpatents

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  19. High-gradient compact linear accelerator

    DOEpatents

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  20. LIONs at the Stanford Linear Accelerator Center

    NASA Astrophysics Data System (ADS)

    Constant, T.; Simmons, R.; Zdarko, R.

    1997-05-01

    The term LION is an acronym for Long Ion chamber. This is a distributed ion chamber which is used to monitor secondary ionization along the shield walls of a beam line resulting from missteered charged particle beams in lieu of the use of many discrete ion chambers. A cone of ionizing radiation emanating from a point source as a result of missteering intercepts a portion of 1 5/8" Heliax cable (about 100 meters in length) filled with Argon gas @ 20 psi and induces a pulsed current which is proportional to the ionizing charge. This signal is transmitted via the cable to an integrator circuit whose output is directed to an electronic comparator, which in turn is used to turn off the accelerated primary beam when preset limits are exceeded. This device is used to prevent potentially hazardous ionizing radiation resulting from missteered beams in areas which might be occupied by people. This paper describes the desigh parameters and use experience in the Final Focus Test Beam area of the Stanford Linear Accelerator.

  1. Computation of Normal Conducting and Superconducting Linear Accelerator (LINAC) Availabilities

    SciTech Connect

    Haire, M.J.

    2000-07-11

    A brief study was conducted to roughly estimate the availability of a superconducting (SC) linear accelerator (LINAC) as compared to a normal conducting (NC) one. Potentially, SC radio frequency cavities have substantial reserve capability, which allows them to compensate for failed cavities, thus increasing the availability of the overall LINAC. In the initial SC design, there is a klystron and associated equipment (e.g., power supply) for every cavity of an SC LINAC. On the other hand, a single klystron may service eight cavities in the NC LINAC. This study modeled that portion of the Spallation Neutron Source LINAC (between 200 and 1,000 MeV) that is initially proposed for conversion from NC to SC technology. Equipment common to both designs was not evaluated. Tabular fault-tree calculations and computer-event-driven simulation (EDS) computer computations were performed. The estimated gain in availability when using the SC option ranges from 3 to 13% under certain equipment and conditions and spatial separation requirements. The availability of an NC LINAC is estimated to be 83%. Tabular fault-tree calculations and computer EDS modeling gave the same 83% answer to within one-tenth of a percent for the NC case. Tabular fault-tree calculations of the availability of the SC LINAC (where a klystron and associated equipment drive a single cavity) give 97%, whereas EDS computer calculations give 96%, a disagreement of only 1%. This result may be somewhat fortuitous because of limitations of tabular fault-tree calculations. For example, tabular fault-tree calculations can not handle spatial effects (separation distance between failures), equipment network configurations, and some failure combinations. EDS computer modeling of various equipment configurations were examined. When there is a klystron and associated equipment for every cavity and adjacent cavity, failure can be tolerated and the SC availability was estimated to be 96%. SC availability decreased as

  2. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  3. Energy Efficiency of an Intracavity Coupled, Laser-Driven Linear Accelerator Pumped by an External Laser

    SciTech Connect

    Neil Na, Y.C.; Siemann, R.H.; Byer, R.L.; /Stanford U., Phys. Dept.

    2005-06-24

    We calculate the optimum energy efficiency of a laser-driven linear accelerator by adopting a simple linear model. In the case of single bunch operation, the energy efficiency can be enhanced by incorporating the accelerator into a cavity that is pumped by an external laser. In the case of multiple bunch operation, the intracavity configuration is less advantageous because the strong wakefield generated by the electron beam is also recycled. Finally, the calculation indicates that the luminosity of a linear collider based on such a structure is comparably small if high efficiency is desired.

  4. Beamline considerations for a compact, high current, high power linear RF electron accelerator

    SciTech Connect

    Marder, B.

    1987-06-01

    A design for a compact, high current, high power linear electron accelerator using an rf power source is investigated. It consists of adjacent cavities into which rf power is injected and through which electron pulses pass. The source is assumed to be capable of delivering sufficient rf power to the desired location at the proper phase. Beamline issues such as cavity loading, energy extraction, longitudinal and transverse pulse focusing, and beam breakup are considered. A device which, given the required source, can deliver beam parameters comparable to existing induction accelerators but which is more than an order of magnitude smaller appears feasible.

  5. Advanced electromagnetic design of cavities for high current accelerators

    SciTech Connect

    Krawczyk, F.L.

    1995-05-01

    For high-current accelerators such as those proposed for transmutation technologies or spallation sources, preconstruction numerical modeling has a high importance. Non axisymmetric cavities require a full 3-D modeling. A complex analysis of structures beyond tuning and the calculation of Q and shunt impedance is required and also the interaction with the mechanical properties of the structures has to be taken into account. This paper reports on recent work done at LANL for proposed beam funnels, a new normal-conducting medium-energy structure (CCDTL) and superconducting cavities for medium energy. The electromagnetic calculations have been done with MAFIA, Rel 3.2, the thermal and stress analysis results reported come from the ABAQUS engineering code.

  6. Numerical Simulations for the Cool-Down of the XFEL and TTF Superconducting Linear Accelerators

    SciTech Connect

    Jensch, K.; Lange, R.; Petersen, B.

    2004-06-23

    The alignment of the superconducting RF-cavities and the magnet packages of the cryomodules of the future XFEL linear accelerator and the existing TTF linear accelerator at DESY can be affected by the mechanical stress caused by thermal gradients during the cool-down and warm-up. Also the design of the XFEL cryogenic system has to include the cool-down and warm-up procedures. An object-oriented software concept is applied to analyze the cool-down procedures for the TTF and the XFEL linear accelerators by numerical simulations. The numerical results are compared to measurements taken during the first cool-down of the TTF linear accelerator. Some results for the XFEL cryogenic system are presented.

  7. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Rosiński, M.; Jabłoński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Rączka, P.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.

    2015-01-01

    Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes.

  8. Analysis of a teleportation scheme involving cavity field states in a linear superposition of Fock states

    NASA Astrophysics Data System (ADS)

    Carvalho, C. R.; Guerra, E. S.; Jalbert, Ginette

    2008-04-01

    We analyse a teleportation scheme of cavity field states. The experimental sketch discussed makes use of cavity quantum electrodynamics involving the interaction of Rydberg atoms with superconducting (micromaser) cavities as well as with classical microwave (Ramsey) cavities. In our scheme the Ramsey cavities and the atoms play the role of auxiliary systems used to teleport a field state, which is formed by a linear superposition of vacuum |∅> and the one-photon state |1>, from a micromaser cavity to another.

  9. Radio frequency noise from clinical linear accelerators.

    PubMed

    Burke, B; Lamey, M; Rathee, S; Murray, B; Fallone, B G

    2009-04-21

    There is a great deal of interest in image-guided radiotherapy (IGRT), and to advance the state of IGRT, an integrated linear accelerator-magnetic resonance (linac-MR) system has been proposed. Knowledge of the radiofrequency (RF) emissions near a linac is important for the design of appropriate RF shielding to facilitate the successful integration of these two devices. The frequency spectra of both electric and magnetic fields of RF emission are measured using commercially available measurement probes near the treatment couch in three clinical linac vaults with distinct physical layouts. The magnitude spectrum of the RF power emitted from these three linacs is then estimated. The electric field spectrum was also measured at several distances from the linac modulator in order to assess the effects of variations in spatial location in the treatment vault. A large fraction of RF power is emitted at frequencies below 5 MHz. However, the measured RF power at the Larmor frequency (8.5 MHz) of the proposed 0.2 T MR in the linac-MR (0.4-14.6 microW m(-2)) is still large enough to cause artifacts in MR images. Magnetron-based linacs generally emit much larger RF power than klystron-based linacs. In the frequency range of 1-50 MHz, only slight variation in the measured electric field is observed as a function of measurement position. This study suggests that the RF emissions are strong enough to cause image artifacts in MRI systems. PMID:19336849

  10. Humans use internal models to estimate gravity and linear acceleration.

    PubMed

    Merfeld, D M; Zupan, L; Peterka, R J

    1999-04-15

    Because sensory systems often provide ambiguous information, neural processes must exist to resolve these ambiguities. It is likely that similar neural processes are used by different sensory systems. For example, many tasks require neural processing to distinguish linear acceleration from gravity, but Einstein's equivalence principle states that all linear accelerometers must measure both linear acceleration and gravity. Here we investigate whether the brain uses internal models, defined as neural systems that mimic physical principles, to help estimate linear acceleration and gravity. Internal models may be used in motor contro, sensorimotor integration and sensory processing, but direct experimental evidence for such models is limited. To determine how humans process ambiguous gravity and linear acceleration cues, subjects were tilted after being rotated at a constant velocity about an Earth-vertical axis. We show that the eye movements evoked by this post-rotational tilt include a response component that compensates for the estimated linear acceleration even when no actual linear acceleration occurs. These measured responses are consistent with our internal model predictions that the nervous system can develop a non-zero estimate of linear acceleration even when no true linear acceleration is present. PMID:10217143

  11. Commissioning an Elekta Versa HD linear accelerator.

    PubMed

    Narayanasamy, Ganesh; Saenz, Daniel; Cruz, Wilbert; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2016-01-01

    The purpose of this study is to report the dosimetric aspects of commissioning performed on an Elekta Versa HD linear accelerator (linac) with high-dose-rate flattening filter-free (FFF) photon modes and electron modes. Acceptance and commissioning was performed on the Elekta Versa HD linac with five photon energies (6 MV, 10 MV, 18 MV, 6 MV FFF, 10 MV FFF), four electron energies (6 MeV, 9MeV, 12 MeV, 15 MeV) and 160-leaf (5 mm wide) multileaf collimators (MLCs). Mechanical and dosimetric data were measured and evaluated. The measurements include percent depth doses (PDDs), in-plane and cross-plane profiles, head scatter factor (Sc), relative photon output factors (Scp), universal wedge transmission factor, MLC transmission factors, and electron cone factors. Gantry, collimator, and couch isocentricity measurements were within 1 mm, 0.7 mm, and 0.7 mm diameter, respectively. The PDDs of 6 MV FFF and 10 MV FFF beams show deeper dmax and steeper falloff with depth than the corresponding flattened beams. While flatness values of 6 MV FFF and 10 MV FFF normalized profiles were expectedly higher than the corresponding flattened beams, the symmetry values were almost identical. The cross-plane penumbra values were higher than the in-plane penumbra values for all the energies. The MLC transmission values were 0.5%, 0.6%, and 0.6% for 6 MV, 10 MV, and 18 MV photon beams, respectively. The electron PDDs, profiles, and cone factors agree well with the literature. The outcome of radiation treatment is directly related to the accuracy in the dose modeled in the treatment planning system, which is based on the commissioned data. Commissioning data provided us a valuable insight into the dosimetric characteristics of the beam. This set of commissioning data can provide comparison data to others performing Versa HD commissioning, thereby improving patient safety. PMID:26894351

  12. Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons

    SciTech Connect

    Kurennoy, Sergey S.

    2012-05-14

    A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

  13. RF properties of 1050 MHz, β = 0.49 Elliptical cavity for High Current Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Roy, Amitava; Mondal, J.; Mittal, K. C.

    2008-04-01

    BARC is developing technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator driven subcritical system project. We have studied RF properties of 1050 MHz, β = 0.49 single cell Elliptical cavity for possible use in High Current Proton Accelerator. Cavity shape optimization studies have been done by means of 2D cavity tuning code SUPERFISH and 3D High Frequency Simulation code CST Microwave Studio. The cavity peak electric and magnetic fields, power dissipation Pc, quality factor Q and effective shunt impedante ZT2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameter for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.

  14. BBU design of linear induction accelerator cells for radiography application

    SciTech Connect

    Shang, C.C.; Chen, Y.J.; Gaporaso, G.J.; Houck, T.L.; Molau, N.E.; Focklen, J.; Gregory, S.

    1997-05-06

    There is an ongoing effort to develop accelerating modules for high-current electron accelerators for advanced radiography application. Accelerating modules with low beam-cavity coupling impedances along with gap designs with acceptable field stresses comprise a set of fundamental design criteria. We examine improved cell designs which have been developed for accelerator application in several radiographic operating regimes. We evaluate interaction impedances, analyze the effects of beam structure coupling on beam dynamics (beam break-up instability and corkscrew motion). We also provide estimates of coupling through interesting new high-gradient insulators and evaluate their potential future application in induction cells.

  15. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  16. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  17. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  18. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  19. Laser nitriding for niobium superconducting radio-frequency accelerator cavities

    SciTech Connect

    Senthilraja Singaravelu, John Klopf, Gwyn Williams, Michael Kelley

    2010-10-01

    Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-forperformance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. It depends on the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of most of these machines. Presently Nb SRF cavities operate near 1.9 K, well (and expensively) below the 4.2 K atmospheric boiling point of liquid He. Transforming the 40 nm thick active interior surface layer from Nb to delta NbN (Tc = 17 K instead of 9.2 K) appears to be a promising approach. Traditional furnace nitriding appears to have not been successful for this. Further, exposing a complete SRF cavity to the time-temperature history required for nitriding risks mechanical distortion. Gas laser nitriding instead has been applied successfully to other metals [P.Schaaf, Prog. Mat. Sci. 47 (2002) 1]. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work, we chose conditions just sufficient for boiling as a reference point. We used a Spectra Physics HIPPO nanosecond laser (l = 1064 nm, Emax= 0.392 mJ, beam spot@ 34 microns, PRF =15 – 30 kHz) to obtain an incident fluence of 1.73 - 2.15 J/cm2 for each laser pulse at the target. The target was a 50 mm diameter SRF-grade Nb disk maintained in a nitrogen atmosphere at a pressure of 550 – 625 torr and rotated at a constant speed of 9 rpm. The materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and x-ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. EPMA measurements of N/Nb atom ratio as a function of depth found a constant

  20. Induction linear accelerator technology for SDIO applications

    SciTech Connect

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser. (LEW)

  1. Optimal coupler and power setting for superconductive linear accelerators

    SciTech Connect

    Branlard, J.; Chase, B,; Nagaitsev, S.; Nezhevenko, O.; Reid, J.; /Fermilab

    2008-09-01

    The modeling analysis presented in this paper addresses the question of how to achieve the highest vector sum gradient for all beam currents when individual cavities operate at different gradients due to their inherent quenching limitations. The analytical method explained here constitutes a step forward toward the operability of the International Linear Collider (ILC), Project X [8], or XFEL [7]. Unlike previously proposed methods [1, 2], this approach prevents cavities from quenching should the beam current be lower than its maximum value.

  2. Cryogenic system for the MYRRHA superconducting linear accelerator

    SciTech Connect

    Chevalier, Nicolas R.; Junquera, Tomas; Thermeau, Jean-Pierre; Romão, Luis Medeiros; Vandeplassche, Dirk

    2014-01-29

    SCK⋅CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  3. High order mode damping in the NSLS accelerating RF cavities by the use of damping antennae

    NASA Astrophysics Data System (ADS)

    Fewell, N.; Wen, Z.

    High order modes were successfully damped in the existing NSLS accelerating cavities by the insertion of damping antennae. The location of the antennae was aided by cavity field plots using superfish and their lengths determined experimentally. A description of their construction is presented together with the results of their insertion upon higher order cavity modes and beam stability.

  4. Production and test results of SC 3.9-GHz accelerating cavity at Fermilab

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charlie; Edwards, Helen; Foley, Mike; Gonin, Ivan; Mitchell, Donald; Olis, D.; Rowe, Allan; Salman, Tariq; Solyak, Nikolay; /Fermilab

    2006-08-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve beam performances for TTF-FEL facility. In the frame of collaboration Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. In this paper we discuss the status of the cavity and coupler production and the first result of cavity tests. It is hoped that this project will be completed during the first half of 2007 and the cryomodule delivered to DESY in this time span.

  5. The application of a linear electron accelerator in radiation processing

    NASA Astrophysics Data System (ADS)

    Ruiying, Zhou; Binglin, Wang; Wenxiu, Chen; Yongbao, Gu; Yinfen, Zhang; Simin, Qian; Andong, Liu; Peide, Wang

    A 3-5 MeV electron beam generated by a BF-5 type linear electron accelerator has been used in some radiation processing works, such as, (1) The cross-linking technology by radiation for the polyethylene foaming processing --- the correlation between the cross-linkage and the absorbed dose, the relation between the elongation of foaming polyethylene and the dose, the relation between the size of the cavities and the gelatin rate and the optimum range of dosage for foaming have been found. (2) The research work on the fast switch thyristor irradiated by electron beam --- The relation between the absorbed dose and the life-time of minority carriers has been studied and the optimum condition for radiation processing was determined. This process is much better than the conventional gold diffusion in raising the quality and end-product rate of these devices. Besides, we have made some testing works on the hereditary mutation of plant seeds and microorganism mutation induced by electron radiation and radiation sterilization for some medical instruments and foods.

  6. E-beam accelerator cavity development for the ground-based free electron laser

    NASA Astrophysics Data System (ADS)

    Bultman, N. K.; Spalek, G.

    Los Alamos National Laboratory is designing and developing four prototype accelerator cavities for high power testing on the Modular Component Technology Development (MCTD) test stand at Boeing. These cavities provide the basis for the e-beam accelerator hardware that will be used in the Ground Based Free Electron Laser (GBFEL) to be sited at the White Sands Missile Range (WSMR) in New Mexico.

  7. Single crystal niobium tubes for particle colliders accelerator cavities

    SciTech Connect

    Murphy, James E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred °C of the melting temperature of niobium, which is 2477 °C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 °C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was

  8. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  9. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    NASA Astrophysics Data System (ADS)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half

  10. Highly efficient acceleration and collimation of high-density plasma using laser-induced cavity pressure

    SciTech Connect

    Badziak, J.; Borodziuk, S.; Pisarczyk, T.; Chodukowski, T.; Krousky, E.; Masek, K.; Skala, J.; Ullschmied, J.; Rhee, Yong-Joo

    2010-06-21

    An efficient scheme of acceleration and collimation of dense plasma is proposed and examined. In the scheme, a target placed in a cavity coupled with a guiding channel is irradiated by a laser beam introduced into the cavity through a hole and accelerated along the channel by the pressure of the ablating plasma confined in the cavity. Using 1.315 mum, 0.3 ns laser pulse of energy up to 200 J and a thin CH target, it was shown that the energetic efficiency of acceleration in this scheme is an order of magnitude higher than in the case of conventional ablative acceleration.

  11. A brief history of high power RF proton linear accelerators

    SciTech Connect

    Browne, J.C.

    1996-12-31

    The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.

  12. Linear induction accelerator approach for advanced radiography

    SciTech Connect

    Caporaso, G.J.

    1997-05-01

    Recent advances in induction accelerator technology make it possible to envision a single accelerator that can serve as an intense, precision multiple pulse x-ray source for advanced radiography. Through the use of solid-state modulator technology repetition rates on the order of 1 MHz can be achieved with beam pulse lengths ranging from 200 ns to 2 {micro}secs. By using fast kickers, these pulses may be sectioned into pieces which are directed to different beam lines so as to interrogate the object under study from multiple lines of sight. The ultimate aim is to do a time dependent tomographic reconstruction of a dynamic object. The technology to accomplish these objectives along with a brief discussion of the experimental plans to verify it will be presented.

  13. Research and development of capacitive transducer with linear acceleration

    NASA Astrophysics Data System (ADS)

    Korobova, Natalia; Kochurina, Elena; Timoshenkov, Sergey; Chaplygin, Yuriy; Anchutin, Stepan; Kosolapov, Andrey

    2015-05-01

    Paper presents the study results and modeling of functional characteristics of the linear acceleration transducers, enabling sensors creation with the specified parameters. Sensing element made for linear acceleration transducer with torsion cruciform section has been proposed on the based design and technological principles. It allows minimizing the impact of cross-acceleration and gives the maximum of center mass displacement for high sensors sensitivity in the given dimensions. The range of measured acceleration from ± 0.2g to ± 50g was provided by changing the torsion bar thickness n = 34 ÷ 56 microns. The transducers frequency range of linear acceleration 100-150 Hz depends on the gas pressure P = 700-800Pa in which the sensor element was located. Methods converting displacement of sensing element in the sensor output have been provided. On their basis the linear acceleration transducers with analog output signal having a predetermined frequency range and high linearity of the transformation (nonlinearity 0.2-1.5%) was developed. Also the linear acceleration transducers with digital signal consuming little (no more than 850 μA), low noisy (standard deviation to 0.1mg/rt-Hz) and high sensitivity (up to 0.1mg) to the accelerations was made. Errors in manufacturing process of sensitive elements and operating environment temperature affect the changes in the characteristics of the linear acceleration transducers. It has been established that different plate thickness up to 3.6% leads to the scale factor error to 4.7%. Irreproducibility of depth anisotropic etching of silicon up to 6.6% introduces an error in the output signal of 2.9 ... 13.8mg.

  14. Eye movements due to linear accelerations in the rabbit.

    PubMed Central

    Baarsma, E A; Collewijn, H

    1975-01-01

    1. Compensatory vertical or torsional eye movements of rabbits caused by linear accelerations along the transverse or sagittal axis were measured. Sinusoidal accelerations (parallel swing) in a frequency range of 0-068--1-22 Hz and acceleration steps (linear track) of 0-02--0-11 g were applied. 2. On the parallel swing, properties of the maculo-ocular reflexes were similar for transverse and sagittal acceleration. Gain (rotation of eye/rotation of the resultant linear vector) proved to be very low: about 0-1 for 0-3 Hz and smaller than 0-01 for frequencies above 1-0 Hz. The decrease in gain was accompanied by an increase in phase lag to about 180degrees. No non-linearity was revealed by the use of different amplitudes (10--30 cm). 3. On the linear track, eye deviation after an acceleration step took many seconds to develop fully. Gain increased with time and was about 0-65 after 5 sec. 4. The results indicate that the responses of the otoliths, as reflected in maculo-ocular reactions, are very slow. Fluctuations in the direction of gravity seem to be averaged over several seconds by the system. This may explain that erratic linear accelerations(frequency greater than 1 Hz) during locomotion or transport do not lead to eye movements or disorientation. PMID:1127609

  15. LOADED WAVE GUIDES FOR LINEAR ACCELERATORS

    DOEpatents

    Walkinshaw, W.; Mullett, L.B.

    1959-12-01

    A periodically loaded waveguide having substantially coaxially arranged elements which provide an axial field for the acceleration of electrons is described. Radiofrequency energy will flow in the space between the inner wall of an outer guide and the peripheries of equally spaced irises or washes arranged coaxially with each other and with the outer guide, where the loading due to the geometry of the irises is such as to reduce the phase velocity of the r-f energy flowing in the guide from a value greater than that of light to the velocity of light or less.

  16. The role of linear accelerators in industry

    NASA Astrophysics Data System (ADS)

    Sivinski, Jacek S.; Sloan, Daniel P.

    1985-05-01

    The short-term demand for ionizing energy will increase rapidly due to developing irradiation markets in sludge irradiation, medical product sterilization, biological toxic waste sterilization, exhaust gas treatment, and the much larger area of food disinfestation. Incentives for the increase are due not only to inherent positive characteristics of ionizing radiation, but to the worldwide concern and increased awareness of currently used fumigants, such as methyl bromide, ethylene dibromide, and ethylene oxide. Cobalt-60 is a gamma-emitting isotope, produced primarily by the Atomic Energy of Canada Limited, which can help satisfy these developing market demands. As an alternative to cobalt-60, the US Department of Energy is promoting cesium-137, a gamma emitter obtained from reprocessed nuclear waste. However, the supply of these two isotopes is limited and unable to meet the projected ionizing energy demands. Utilization of accelerator technology is therefore critical to the development of various product irradiation programs. It will not only meet the demand which is in excess of that covered by the isotopes, but it will also release the limited quantities of isotope for better use in roles for which they are especially suited. The accelerator and isotope roles in the irradiation markets need to be more finely focused in the future to benefit the growth of both systems.

  17. Development of a 10 MW, 91 GHz Gyroklystron for W-Band Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Nielson, Jeff; Ives, Lawrence; Lawson, Wes; Arjona, Melany

    1999-11-01

    An international effort is underway to design advanced linear electron-positron colliders with mass energies beyond 1 TeV. High power RF sources are required to drive accelerators operating at frequencies as high as W-Band. Calabazas Creek Research, Inc. is funded by the U.S. Department of Energy to design a 10 MW, second harmonic, gyroklystron at 91 GHz. The program is coordinated with W-Band accelerator research at the Stanford Linear Accelerator Center. The goal is to achieve an electronic efficiency of 45presentation will describe the proposed electron gun, three cavity RF circuit, magnetic circuit, and input and output couplers. Current simulation results will be presented and design tradeoffs will be discussed.

  18. Numerical simulations of input and output couplers for linear accelerator structures

    SciTech Connect

    Ng, C.K.; Ko, K.

    1993-04-01

    We present the numerical procedures involved in the design of coupler cavities for accelerator sections for linear colliders. The MAFIA code is used to simulate an X-band accelerator section with a symmetrical double-input coupler at each end. The transmission properties of the structure are calculated in the time domain and the dimensions of the coupler cavities are adjusted until the power coupling is optimized and frequency synchronism is obtained. We compare the performance of the symmetrical double-input design with that of the conventional single-input type by evaluating the field amplitude and phase asymmetries. We also evaluate the peak gradient in the coupler and discuss the implication of pulse rise time on dark current generation.

  19. Proton linear accelerators: A theoretical and historical introduction

    SciTech Connect

    Lapostolle, P.M.

    1989-07-01

    From the beginning, the development of linear accelerators has followed a number of different directions. This report surveys the basic ideas and general principles of such machines, pointing out the problems that have led to the various improvements, with the hope that it may also aid further progress. After a brief historical survey, the principal aspects of accelerator theory are covered in some detail: phase stability, focusing, radio-frequency accelerating structures, the detailed calculation of particle dynamics, and space-charge effects at high intensities. These developments apply essentially to proton and ion accelerators, and only the last chapter deals with a few aspects relative to electrons. 134 refs.

  20. Response properties of pigeon otolith afferents to linear acceleration

    NASA Technical Reports Server (NTRS)

    Si, X.; Angelaki, D. E.; Dickman, J. D.

    1997-01-01

    In the present study, the sensitivity to sinusoidal linear accelerations in the plane of the utricular macula was tested in afferents. The head orientation relative to the translation axis was varied in order to determine the head position that elicited the maximal and minimal responses for each afferent. The response gain and phase values obtained to 0.5-Hz and 2-Hz linear acceleration stimuli were then plotted as a function of head orientation and a modified cosine function was fit to the data. From the best-fit cosine function, the predicted head orientations that would produce the maximal and minimal response gains were estimated. The estimated maximum response gains to linear acceleration in the utricular plane for the afferents varied between 75 and 1420 spikes s-1 g-1. The mean maximal gains for all afferents to 0.5-Hz and 2-Hz sinusoidal linear acceleration stimuli were 282 and 367 spikes s-1 g-1, respectively. The minimal response gains were essentially zero for most units. The response phases always led linear acceleration and remained constant for each afferent, regardless of head orientation. These response characteristics indicate that otolith afferents are cosine tuned and behave as one-dimensional linear accelerometers. The directions of maximal sensitivity to linear acceleration for the afferents varied throughout the plane of the utricle; however, most vectors were directed out of the opposite ear near the interaural axis. The response dynamics of the afferents were tested using stimulus frequencies ranging between 0.25 Hz and 10 Hz (0.1 g peak acceleration). Across stimulus frequencies, most afferents had increasing gains and constant phase values. These dynamic properties for individual afferents were fit with a simple transfer function that included three parameters: a mechanical time constant, a gain constant, and a fractional order distributed adaptation operator.

  1. Rf transfer in the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator

    SciTech Connect

    Makowski, M.A.

    1991-01-01

    A significant technical problem associated with the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator is the transfer of RF energy from the drive accelerator to the high-gradient accelerator. Several concepts have been advanced to solve this problem. This paper examines one possible solution in which the drive and high-gradient cavities are directly coupled to one another by means of holes in the cavity walls or coupled indirectly through a third intermediate transfer cavity. Energy cascades through the cavities on a beat frequency time scale which must be made small compared to the cavity skin time but large compared to the FEL pulse length. The transfer is complicated by the fact that each of the cavities in the system can support many resonant modes near the chosen frequency of operation. A generalized set of coupled-cavity equations has been developed to model the energy transfer between the various modes in each of the cavities. For a two cavity case transfer efficiencies in excess of 95% can be achieved. 3 refs., 2 figs.

  2. 3.9 GHz superconducting accelerating 9-cell cavity vertical test results

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charles; Dhanaraj, Nandhini; Edwards, Helen; Foley, Mike; Harms, Elvin; Mitchell, Donald; Rowe, Allan; Solyak, Nikolay; Moeller, Wolf-Dietrich; /DESY

    2007-06-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the FLASH (TTF/DESY) facility [1]. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. The first 9-cell Nb cavities were tested in a vertical setup and they didn't reach the designed accelerating gradient [2]. The main problem was a multipactor in the HOM couplers, which lead to overheating and quenching of the HOM couplers. New HOM couplers with improved design are integrated in the next 9-cell cavities. In this paper we present all results of the vertical tests.

  3. Plasma Processing of SRF Cavities for the next Generation Of Particle Accelerators

    SciTech Connect

    Vuskovic, Leposava

    2015-11-23

    The cost-effective production of high frequency accelerating fields are the foundation for the next generation of particle accelerators. The Ar/Cl2 plasma etching technology holds the promise to yield a major reduction in cavity preparation costs. Plasma-based dry niobium surface treatment provides an excellent opportunity to remove bulk niobium, eliminate surface imperfections, increase cavity quality factor, and bring accelerating fields to higher levels. At the same time, the developed technology will be more environmentally friendly than the hydrogen fluoride-based wet etching technology. Plasma etching of inner surfaces of standard multi-cell SRF cavities is the main goal of this research in order to eliminate contaminants, including niobium oxides, in the penetration depth region. Successful plasma processing of multi-cell cavities will establish this method as a viable technique in the quest for more efficient components of next generation particle accelerators. In this project the single-cell pill box cavity plasma etching system is developed and etching conditions are determined. An actual single cell SRF cavity (1497 MHz) is plasma etched based on the pill box cavity results. The first RF test of this plasma etched cavity at cryogenic temperature is obtained. The system can also be used for other surface modifications, including tailoring niobium surface properties, surface passivation or nitriding for better performance of SRF cavities. The results of this plasma processing technology may be applied to most of the current SRF cavity fabrication projects. In the course of this project it has been demonstrated that a capacitively coupled radio-frequency discharge can be successfully used for etching curved niobium surfaces, in particular the inner walls of SRF cavities. The results could also be applicable to the inner or concave surfaces of any 3D structure other than an SRF cavity.

  4. Research and development for electropolishing of Nb for ILC accelerator cavities

    SciTech Connect

    Kelley, Michael J.

    2009-09-21

    The objectives of this project are to 1, Expand the scientific and technological understanding of the effect of post-treatment (electropolish, buffered chemical polish, low-temperature baking) on the surface of niobium; 2, Relate the knowledge to the performance of niobium superconducting radiofrequency accelerator cavities; and, 3, Thereby design and demonstrate an electropolish process that can be applied to complete cavities.

  5. Modeling Breakdown and Electron Orbits in High-Gradient Accelerating Cavities

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Mahalingam, Sudhakar; Stoltz, Peter H.; Norem, J.

    2010-11-01

    Next-generation rf accelerating cavities will employ very high-gradient electric fields, greater than 100 MV/m, as well as strong magnetic fields. However, breakdown of accelerating structures due to high field gradients is a major limitation on these accelerating cavities. One possible mechanism for breakdown initiation is the rapid buildup of electrons due to field emission coupled with secondary electron emission. Multipacting may enhance this effect. In order to understand the physical processes of breakdown initiation and the effectiveness of potential mitigation techniques, researchers in the Muon Accelerator Program are experimenting with a simplified cavity, referred to as the Box Cavity, in which they will measure breakdown under high-gradient rf with strong externally applied magnetic fields with different orientations. We present here simulation results for the box cavity including the effects of rf (805 MHz), magnetic fields, field-dependent emission, secondary electron emission, and space charge, using the 3-Dimensional plasma simulation code VORPAL. We measure the effect of different magnetic field strengths and orientations on electron orbits and buildup. We also simulate the effects of field emission in different parts of the box cavity, such as from corners of the box near the rf coupler, and measure the effects on electron buildup over many rf periods. These detailed and self-consistent models will aid experimentalists to understand breakdown onset in high-gradient metallic accelerating cavities.

  6. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  7. Linear induction accelerators for fusion and neutron production

    SciTech Connect

    Barletta, W.A. |

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs.

  8. On radiation protection at the LINAC-800 linear electron accelerator

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Minashkin, V. F.; Nozdrin, M. A.; Shirkov, G. D.; Schegolev, V. Yu.

    2012-07-01

    The Automatic System of Radiation Safety Control (ASRSC) of the LINAC-800 linear electron accelerator is designed to ensure radiation safety for accelerator personnel during regular operations and in emergency cases. The results of calculating the emission power used to develop the ARPS are given. Both hardware and software components of the radiation control system are described. This paper also presents a description of the interlock and signalization system.

  9. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    SciTech Connect

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  10. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE PAGESBeta

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  11. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2015-02-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  12. Status of the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    White, M.; Arnold, N.; Berg, W.; Cours, A.; Fuja, R.; Grelick, A.; Ko, K.; Qian, Y.; Russell, T.; Sereno, N.

    1994-09-01

    A 2856-MHz S-band, electron-positron linear accelerator (linac) has been constructed at the Advanced Photon Source (APS). It is the source of particles and the injector for the other APS accelerators, and linac commissioning is well underway. The linac is operated 24 hours per day to support linac beam studies and rf conditioning, as well as positron accumulator ring and synchrotron commissioning studies. The design goal for accelerated positron current is 8-mA, and has been met. Maximum positron energy to date is 420-MeV, approaching the design goal of 450-MeV. The linac design and its performance are discussed.

  13. Staging optics considerations for a plasma wakefield acceleration linear collider

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; Delahaye, J. P.; Hogan, M. J.; Joshi, C.; Muggli, P.; Raubenheimer, T. O.; Yakimenko, V.

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  14. Physical and mechanical metallurgy of high purity Nb accelerator cavities.

    SciTech Connect

    Wright, N. T.; Bieler, T. R.; Pourgoghart , F.; Compton, C.; Hartwig, K. T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, G. E.; Liu, W.; Michigan State Univ.; Texas A & M Univ.; ORNL

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

  15. The hydrodynamics of linear accelerations in bluegill sunfish, Lepomis macrochirus

    NASA Astrophysics Data System (ADS)

    Wise, Tyler; Boden, Alex; Schwalbe, Margot; Tytell, Eric

    2015-11-01

    As fish swim, their body interacts with the fluid around them in order to generate thrust. In this study, we examined the hydrodynamics of linear acceleration by bluegill sunfish, Lepomis macrochirus, which swims using a carangiform mode. Carangiform swimmers primarily use their caudal fin and posterior body for propulsion, which is different from anguilliform swimmers, like eels, that undulate almost their whole body to swim. Most previous studies have examined steady swimming, but few have looked at linear accelerations, even though most fish do not often swim steadily. During steady swimming, thrust and drag forces are balanced, which makes it difficult to separate the two, but during acceleration, thrust exceeds drag, making it easier to measure; this may reveal insights into how thrust is produced. This study used particle image velocimetry (PIV) to compare the structure of the wake during steady swimming and acceleration and to estimate the axial force. Axial force increased during acceleration, but the orientation of the vortices did not differ between steady swimming and acceleration, which is different than anguilliform swimmers, whose wakes change structure during acceleration. This difference may point to fundamental differences between the two swimming modes. This material is based upon work supported by the U. S. Army Research Office under grant number W911NF-14-1-0494.

  16. Monitoring linear accelerator output constancy using the PTW Linacheck.

    PubMed

    McDermott, Garry M; Buckle, Andrew H

    2011-01-01

    The PTW-Linacheck was assessed for its ability to monitor linear accelerator radiation output constancy. The key issues that were considered were the setup for daily output measurements, e.g., requirements for build-up and backscatter material, and the reproducibility and linearity of the device with linear accelerator output. An appropriate measurement setup includes a 10 × 10 cm field at 100 cm FSD, 5 cm backscatter, and no added build-up for 4 MeV electron beams, 1 cm added build-up for 6-16 MeV electron beams and 5 cm added build-up for 6-15 MV photon beams. Using this measurement setup, the dose linearity and short-term reproducibility were acceptable; however, the Linacheck should be recalibrated on a monthly basis to ensure acceptable long-term reproducibility. PMID:20346645

  17. SLC status and SLAC (Stanford Linear Accelerator Center) future plans

    SciTech Connect

    Richter, B.

    1989-08-01

    In this presentation, I shall discuss the linear collider program at the Stanford Linear Accelerator Center as it is now, and as we hope to see it evolve over the next few years. Of greatest interest to the high energy accelerator physics community gathered here is the development of the linear collider concept, and so I shall concentrate most of this paper on a discussion of the present status and future evolution of the SLC. I will also briefly discuss the research and development program that we are carrying out aimed at the realization of the next generation of high-energy linear colliders. SLAC had a major colliding-beam storage-ring program as well, including present rings and design studies on future high-luminosity projects, but time constraints preclude a discussion of them. 8 figs., 3 tabs.

  18. Monitoring Linear Accelerator Output Constancy Using the PTW Linacheck

    SciTech Connect

    McDermott, Garry M.; Buckle, Andrew H.

    2011-04-01

    The PTW-Linacheck was assessed for its ability to monitor linear accelerator radiation output constancy. The key issues that were considered were the setup for daily output measurements, e.g., requirements for build-up and backscatter material, and the reproducibility and linearity of the device with linear accelerator output. An appropriate measurement setup includes a 10 x 10 cm field at 100 cm FSD, 5 cm backscatter, and no added build-up for 4 MeV electron beams, 1 cm added build-up for 6-16 MeV electron beams and 5 cm added build-up for 6-15 MV photon beams. Using this measurement setup, the dose linearity and short-term reproducibility were acceptable; however, the Linacheck should be recalibrated on a monthly basis to ensure acceptable long-term reproducibility.

  19. Status of the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    White, M.; Berg, W.; Fuja, R.; Grelick, A.; Mavrogenes, G.; Nassiri, A.; Russell, T.; Wesolowski, W.

    1993-08-01

    A 2856-MHz S-band, 450-MeV electron/positron linear accelerator is the first part of the injector for the Advanced Photon Source (APS) 7-GeV storage ring. Construction of the APS linac is currently nearing completion, and commissioning will begin in July 1993. The linac and its current status are discussed in this paper.

  20. Cumulative Beam Breakup in Linear Accelerators with Arbitrary Beam Current Profile

    SciTech Connect

    Jean Delayen

    2003-06-01

    An analytical formalism for the solution of cumulative beam breakup in linear accelerators with arbitrary time dependence of beam current is presented, and a closed-form expression for the time and position dependence of the transverse displacement is obtained. It is applied to the behavior of single bunches and to the steady state and transient behavior of dc beams and beams composed of point-like and finite length bunches. This formalism is also applied to the problem of cumulative beam breakup in the presence of random displacement of cavities and focusing elements, and a general solution is presented.

  1. Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies

    SciTech Connect

    Kurennoy, Sergey S.; Chan, Kwok-Chi Dominic; Jason, Andrew; Miyadera, Haruo; Turchi, Peter J.

    2011-01-01

    An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

  2. Numerical design and model measurements for a 1.3 GHz microtron accelerating cavity

    NASA Astrophysics Data System (ADS)

    Kleeven, W. J. G. M.; Theeuwen, M. E. H. J.; Knoben, M. H. M.; Moerdijk, A. J.; Botman, J. I. M.; van der Heide, J. A.; Timmermans, C. J.; Hagedoorn, H. L.

    1992-05-01

    As part of the free electron laser project TEUFEL, a 25 MeV racetrack microtron is under construction at the Eindhoven University. The accelerating cavity of this microtron is a standing wave on axis coupled structure. It consists of three accelerating cells and two coupling cells. Numerical field calculations for this cavity were done with the computer codes SUPERFISH, URMEL-T and MAFIA. Not only the accelerating modes but also the dangerous beam breakup modes were calculated with MAFIA. An aluminium, scale 1:1 model of the structure was made in order to measure various cavity properties. Field profiles were measured with the perturbation ball method. An equivalent LC-circuit simulation of the accelerating structure was made, which serves as a model for the interpretation of the results.

  3. Separated-orbit bisected energy-recovered linear accelerator

    DOEpatents

    Douglas, David R.

    2015-09-01

    A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.

  4. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    NASA Astrophysics Data System (ADS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-11-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  5. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    NASA Astrophysics Data System (ADS)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  6. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    Energy Science and Technology Software Center (ESTSC)

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  7. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  8. Linear accelerators for TeV colliders. Revision

    SciTech Connect

    Wilson, P.B.

    1985-10-01

    The basic scaling relations for important linear collider design parameters are introduced. Some of the basic concepts concerning the design of accelerating structures are presented, and breakdown limitations are discussed. Rf power sources are considered. Some of the key concepts of wakefield accelerators are discussed, and some examples of wake fields for typical linac structures are presented. Some general concepts concerning emittance, and the limitations on the emittance that can be obtained from linac guns and damping rings are discussed. 49 refs., 15 figs. (LEW)

  9. Linear accelerator for production of tritium: Physics design challenges

    SciTech Connect

    Wangler, T.P.; Lawrence, G.P.; Bhatia, T.S.; Billen, J.H.; Chan, K.C.D.; Garnett, R.W.; Guy, F.W.; Liska, D.; Nath, S.; Neuschaefer, G.; Shubaly, M.

    1990-01-01

    In the summer of 1989, a collaboration between Los Alamos National Laboratory and Brookhaven National Laboratory conducted a study to establish a reference design of a facility for accelerator production of tritium (APT). The APT concept is that of a neutron-spallation source, which is based on the use of high-energy protons to bombard lead nuclei, resulting in the production of large quantities of neutrons. Neutrons from the lead are captured by lithium to produce tritium. This paper describes the design of a 1.6-GeV, 250-mA proton cw linear accelerator for APT.

  10. Polarization maintaining linear cavity Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Jang, Heesuk; Jang, Yoon-Soo; Kim, Seungman; Lee, Keunwoo; Han, Seongheum; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-01

    We present a polarization-maintaining (PM) type of Er-doped fiber linear oscillator designed to produce femtosecond laser pulses with high operational stability. Mode locking is activated using a semiconductor saturable absorber mirror (SESAM) attached to one end of the linear PM oscillator. To avoid heat damage, the SESAM is mounted on a copper-silicon-layered heat sink and connected to the linear oscillator through a fiber buffer dissipating the residual pump power. A long-term stability test is performed to prove that the proposed oscillator design maintains a soliton-mode single-pulse operation without breakdown of mode locking over a week period. With addition of an Er-doped fiber amplifier, the output power is raised to 180 mW with 60 fs pulse duration, from which an octave-spanning supercontinuum is produced.

  11. Parallel Computation of Intergrated Electronmagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.; Kabel, A.; Lee, L-Q.; Li, Z.; Ng, C-K.; Xiao, L.; Ko, K.

    2008-07-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  12. Parallel Computation of Integrated Electromagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.E.; Kabel, A.C.; Ko, K.; Lee, L.; Li, Z.; Ng, C.K.; Xiao, L.; /SLAC

    2011-11-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  13. Narrowband beam loading compensation in the Fermilab Main Injector accelerating cavities

    SciTech Connect

    Joseph E. Dey; John S. Reid and James Steimel

    2001-07-12

    A narrowband beam loading compensation system was installed for the Main Injector Accelerating Cavities. This feedback operates solely on the fundamental resonant mode of the cavity. This paper describes modifications to the high level Radio Frequency system required to make the system operational. These modifications decreased the effect of steady-state beam loading by a factor of 10 and improved the reliability of paraphasing for coalescing.

  14. Analysis and Control of Wakefields in X-Band Crab Cavities for Compact Linear Collider

    SciTech Connect

    Ambattu, P.K.; Burt, G.; Khan, V.F.; Jones, R.M.; Dexter, A.; Dolgashev, V.; /SLAC

    2012-04-25

    The Compact Linear Collider requires a crab cavity on each beamline prior to the interaction point to rotate the bunches before collision. The cavities are X-band travelling wave type and are located close to the final doublet of the beam delivery system. This makes the beam very sensitive to transverse momentum imparted by wakefields; hence the wakefields must be tightly controlled. Of special concerns are the orthogonal polarization of the operating mode and the fundamental monopole mode of the crab cavity. The former mode is at the same frequency as the operating mode of a cylindrically symmetric cavity and the latter one is at a lower frequency and hence is difficult to damp using a single means. In this paper major problematic modes of the crab cavity are investigated and damping requirements for them are calculated. Possibility of meeting the required wakefield control using waveguide damping and choke damping is thoroughly investigated. As a comparison, damped-detuning is also investigated.

  15. Analysis and control of wakefields in X-band crab cavities for Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Ambattu, P. K.; Burt, G.; Khan, V. F.; Jones, R. M.; Dexter, A.; Dolgashev, V.

    2011-11-01

    The Compact Linear Collider requires a crab cavity on each beamline prior to the interaction point to rotate the bunches before collision. The cavities are X-band travelling wave type and are located close to the final doublet of the beam delivery system. This makes the beam very sensitive to transverse momentum imparted by wakefields; hence the wakefields must be tightly controlled. Of special concerns are the orthogonal polarisation of the operating mode and the fundamental monopole mode of the crab cavity. The former mode is at the same frequency as the operating mode of a cylindrically symmetric cavity and the latter one is at a lower frequency and hence is difficult to damp using a single means. In this paper major problematic modes of the crab cavity are investigated and damping requirements for them are calculated. Possibility of meeting the required wakefield control using waveguide damping and choke damping is thoroughly investigated. As a comparison, damped-detuning is also investigated.

  16. Finite element analyses of a linear-accelerator electron gun

    SciTech Connect

    Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  17. Detection of infrasound and linear acceleration in fishes.

    PubMed Central

    Sand, O; Karlsen, H E

    2000-01-01

    Fishes have an acute sensitivity to extremely low-frequency linear acceleration, or infrasound, even down to below 1 Hz. The otolith organs are the sensory system responsible for this ability. The hydrodynamic noise generated by swimming fishes is mainly in the infrasound range, and may be important in courtship and prey predator interactions. Intense infrasound has a deterring effect on some species, and has a potential in acoustic barriers. We hypothesize that the pattern of ambient infrasound in the oceans may be used for orientation in migratory fishes, and that pelagic fishes may detect changes in the surface wave pattern associated with altered water depth and distant land formations. We suggest that the acute sensitivity to linear acceleration could be used for inertial guidance, and to detect the relative velocity of layered ocean currents. Sensitivity to infrasound may be a widespread ability among aquatic organisms, and has also been reported in cephalopods and crustaceans. PMID:11079418

  18. Beam dynamics in a long-pulse linear induction accelerator

    SciTech Connect

    Ekdahl, Carl; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mc Cuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rose, Chris R; Sanchez, Manolito; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Williams, John; Scarpetti, Raymond; Genoni, Thomas; Hughes, Thomas; Toma, Carsten

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  19. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    SciTech Connect

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; Degraff, Brian D.; Gold, Steven W.; Hannah, Brian S.; Howell, Matthew P.; Kim, Sang-Ho; Mammosser, John; McMahan, Christopher J.; Neustadt, Thomas S.; Saunders, Jeffrey W.; Tyagi, Puneet V.; Vandygriff, Daniel J.; Vandygriff, David M.; Ball, Jeffrey Allen; Blokland, Willem; Crofford, Mark T.; Lee, Sung-Woo; Stewart, Stephen; Strong, William Herb

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.

  20. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    DOE PAGESBeta

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; Degraff, Brian D.; Gold, Steven W.; Hannah, Brian S.; Howell, Matthew P.; Kim, Sang-Ho; Mammosser, John; McMahan, Christopher J.; et al

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less

  1. In-situ plasma processing to increase the accelerating gradients of superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Doleans, M.; Tyagi, P. V.; Afanador, R.; McMahan, C. J.; Ball, J. A.; Barnhart, D. L.; Blokland, W.; Crofford, M. T.; Degraff, B. D.; Gold, S. W.; Hannah, B. S.; Howell, M. P.; Kim, S.-H.; Lee, S.-W.; Mammosser, J.; Neustadt, T. S.; Saunders, J. W.; Stewart, S.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2016-03-01

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. In this article, the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus are discussed.

  2. Operations and maintenance manual for the linear accelerator (sled)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Linear Accelerator, a sliding chair which is pulled along a stationary platform in a horizontal axis is described. The driving force is a motor controlled by a velocity loop amplifier, and the mechanical link to the chair is a steel cable. The chair is moved in forward and reverse directions as indicated by the direction of motor rotation. The system operation is described with emphasis on the electronic control and monitoring functions. Line-by-line schematics and wire lists are included.

  3. Organizational cultural survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Linear Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  4. Selection of linear-cavity fibre laser radiation using a reflection interferometer

    SciTech Connect

    Terentyev, V S; Simonov, V A

    2013-08-31

    We consider the use of a two-mirror multibeam reflection interferometer as a selector of linear-cavity single-mode fibre laser radiation and present experimental data on continuous wavelength tuning of an erbium-doped fibre laser. Conditions are found for single-longitudinal-mode operation of the fibre laser cavity using a reflection interferometer, with the possibility of broadband wavelength tuning. (control of laser pulse parameters)

  5. Superconducting accelerator cavity with a heat affected zone having a higher RRR

    DOEpatents

    Brawley, John; Phillips, H. Lawrence

    2000-01-01

    An improved method for welding accelerator cavities without the need for time consuming and expensive faying surface treatments comprising electron beam welding such cavities in a vacuum welding chamber within a vacuum envelope and using the following welding parameters: a beam voltage of between about 45 KV and 55 KV; a beam current between about 38 ma and 47 ma; a weld speed of about 15 cm/min; and a sharp focus and a rhombic raster of between about 9 KHz and 10 Khz. A welded cavity made according to the method of the present invention is also described.

  6. Photon spectral characteristics of dissimilar 6 MV linear accelerators.

    PubMed

    Hinson, William H; Kearns, William T; deGuzman, Allan F; Bourland, J Daniel

    2008-05-01

    This work measures and compares the energy spectra of four dosimetrically matched 6 MV beams, generated from four physically different linear accelerators. The goal of this work is twofold. First, this study determines whether the spectra of dosimetrically matched beams are measurably different. This study also demonstrates that the spectra of clinical photon beams can be measured as a part of the beam data collection process for input to a three-dimensional (3D) treatment planning system. The spectra of 6 MV beams that are dosimetrically matched for clinical use were studied to determine if the beam spectra are similarly matched. Each of the four accelerators examined had a standing waveguide, but with different physical designs. The four accelerators were two Varian 2100C/Ds (one 6 MV/18 MV waveguide and one 6 MV/10 MV waveguide), one Varian 600 C with a vertically mounted waveguide and no bending magnet, and one Siemens MD 6740 with a 6 MV/10 MV waveguide. All four accelerators had percent depth dose curves for the 6 MV beam that were matched within 1.3%. Beam spectra were determined from narrow beam transmission measurements through successive thicknesses of pure aluminum along the central axis of the accelerator, made with a graphite Farmer ion chamber with a Lucite buildup cap. An iterative nonlinear fit using a Marquardt algorithm was used to find each spectrum. Reconstructed spectra show that all four beams have similar energy distributions with only subtle differences, despite the differences in accelerator design. The measured spectra of different 6 MV beams are similar regardless of accelerator design. The measured spectra show excellent agreement with those found by the auto-modeling algorithm in a commercial 3D treatment planning system that uses a convolution dose calculation algorithm. Thus, beam spectra can be acquired in a clinical setting at the time of commissioning as a part of the routine beam data collection. PMID:18561644

  7. Heterogenous Acceleration for Linear Algebra in Multi-coprocessor Environments

    SciTech Connect

    Luszczek, Piotr R; Tomov, Stanimire Z; Dongarra, Jack J

    2015-01-01

    We present an efficient and scalable programming model for the development of linear algebra in heterogeneous multi-coprocessor environments. The model incorporates some of the current best design and implementation practices for the heterogeneous acceleration of dense linear algebra (DLA). Examples are given as the basis for solving linear systems' algorithms - the LU, QR, and Cholesky factorizations. To generate the extreme level of parallelism needed for the efficient use of coprocessors, algorithms of interest are redesigned and then split into well-chosen computational tasks. The tasks execution is scheduled over the computational components of a hybrid system of multi-core CPUs and coprocessors using a light-weight runtime system. The use of lightweight runtime systems keeps scheduling overhead low, while enabling the expression of parallelism through otherwise sequential code. This simplifies the development efforts and allows the exploration of the unique strengths of the various hardware components.

  8. Advanced low-beta cavity development for proton and ion accelerators

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.

  9. The Stanford Linear Accelerator Center pulsed x-ray facility.

    PubMed

    Ipe, N E; McCall, R C; Baker, E D

    1987-04-01

    The Stanford Linear Accelerator Center (SLAC) operates a high-energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the radio-frequency power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target window. The window consists of Al 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of Au 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 microseconds. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The maximum absorbed dose rate obtained at 6.35 cm below the target window as measured by an ionization chamber is 258 Gy/h. The major part of the x-ray tube is enclosed in a large walk-in cabinet made of 1.9-cm-thick (3/4-inch-thick) plywood and lined with 0.32-cm-thick (1/8-inch-thick) Pb to make a very versatile facility. PMID:3570789

  10. Properties of linear entropy of the atom in a tripartite cavity-optomechanical system

    NASA Astrophysics Data System (ADS)

    Liao, Q. H.; Nie, W. J.; Xu, J.; Liu, Y.; Zhou, N. R.; Yan, Q. R.; Chen, A.; Liu, N. H.; Ahmad, M. A.

    2016-05-01

    We investigate the dynamics of linear entropy of an atom in a tripartite cavity-optomechanical system consisting of a two-level atom in a high-finesse optical cavity with a vibrating mirror at one end. The influence of atomic coherence on the time evolution of linear entropy is examined. It is shown that a Greenberger–Horne–Zeilinger like state can be generated. Moreover, it is found that the entanglement between the atom and the subsystem of field and mirror can be controlled by atomic coherence and the parameters of optomechanical coupling coefficient and atom-field coupling strength.

  11. Niobium cavity development for the high-energy linac of the rare isotope accelerator

    SciTech Connect

    D. Barni; C. Pagani; P. Pierini; C. Compton; T. Grimm; W. Hartung; H. Podlech; R. York; G. Ciovati; P. Kneisel

    2001-08-01

    The Rare Isotope Accelerator (RIA) is being designed to supply an intense beam of exotic isotopes for nuclear physics research [1]. Superconducting cavities are to be used to accelerate the CW beam of heavy ions to 400 MeV per nucleon, with a beam power of up to 400 kW. Because of the varying velocity of the ion beam along the linac, a number of different types of superconducting structures are needed. The RIA linac will accelerate heavy ions over the same velocity range as the proton linac for the Spallation Neutron Source (SNS). It was decided to use the 6-cell axisymmetric 805 MHz cavities and cryostats of SNS for the downstream portion of the RIA linac, thereby saving the non-recurring development and engineering costs. For additional cost saving, it was decided to extend the SNS multi-cell axisymmetric cavity design to lower velocity, {beta} = v/c = 0.4, using the same cryostats and RF systems. Axisymmetric cavities will thus constitute about three-quarters of RIA's total accelerating voltage, and most of that voltage will be provided by cavities already developed for SNS. The axisymmetric cavities will accelerate the RIA beam from {beta} = 0.4 to {beta} = 0.72. This velocity range can be efficiently covered with two different types of 6-cell cavities, one with a geometric {beta}, {beta}{sub g}, of 0.47, and the other with a {beta}{sub g} of 0.61. The {beta}{sub g} = 0.61 cavity will be of the existing SNS design; some {beta}{sub g} = 0.81 SNS cavities may also be desired at the end of the RIA linac for acceleration of light ions above 400 MeV per nucleon. Prototypes for both {beta}{sub g} = 0.61 and {beta}{sub g} = 0.81 have been fabricated and tested [2]. The {beta}{sub g} = 0.47 cavity is the focus of the present work. The reduction in {beta}{sub g} to 0.47 results in less favourable electromagnetic and mechanical properties, and opens up the possibility of multipacting, but several groups have already designed and prototyped cavities in this range. These

  12. Proton Injector for CW-Mode Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sherman, Joseph D.; Swenson, Donald; Guy, Frank; Love, Cody; Starling, Joel; Willis, Carl

    2009-03-01

    Numerous applications exist for CW linear accelerators with final energies in the 0.5 to 4.0 MeV proton energy range. Typical proton current at the linac output energy is 20 mA. An important subsystem for the accelerator facility is a reliable dc mode proton injector. We present here design and laboratory results for a dc, 25-keV, 30-mA proton injector. The proton source is a 2.45-GHz microwave hydrogen ion source which operates with an 875-G axial magnetic field. Low emittance, high proton fraction (>85%), beams have been demonstrated from this source. The injector uses a novel dual-solenoid magnet for matching the injector beam into a radio frequency quadrupole (RFQ) linear accelerator. Recently, a dc ion-source development program has given up to 30 mA beam current. The dual solenoid is a compact and simple design utilizing tape-wound, edge-cooled coils. The low-energy beam transport design as well as 25-keV beam matching calculations to an RFQ will also be presented.

  13. Design and test of superconducting RF cavity prototypes for high intensity proton accelerators

    NASA Astrophysics Data System (ADS)

    Junquera, T.; Biarrotte, J. L.; Saugnac, H.; Gassot, H.; Lesrel, J.; Olry, G.; Bousson, S.; Safa, H.; Charrier, J. P.; Devanz, G.

    2002-05-01

    High intensity proton beams, in the multi-MW range (typically 1 GeV and a few mA) are considered today for different applications: neutron sources, nuclear waste transmutation, radioactive ion beams and neutrino factories. All the foreseen projects are based on superconducting RF cavities for the high energy part of the linac accelerator between 100 MeV and 1 GeV. In this paper we present conceptual and experimental work made by the French group in the R&D preliminary phase. The aim of this study was to design an optimized cavity prototype integrating the more recent progress on RF superconductivity in terms of fabrication and preparation techniques. To reach high accelerating gradients while keeping safety margins and good reliability imposes careful cavity geometry optimization and detailed study of some important technological issues. The most relevant results obtained with several cavity prototypes (accelerating gradient, multipactor,…) are presented. Some other important components of the cavity (helium tank and cold tuner) are also discussed.

  14. Electron Beam Focusing in the Linear Accelerator (linac)

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  15. Effect of a Wire on the Electromagnetic Field in an Accelerating Cavity in the Coaxial-Wire Method

    NASA Astrophysics Data System (ADS)

    Toyomasu, Takanori; Izawa, Masaaki; Kamiya, Yukihide

    1995-01-01

    A wire used in the coaxial-wire method to measure the characteristics of an accelerating cavity cannot be treated as a perturbator. Using a pill-box model, we analytically studied the electromagnetic field of a cavity with a wire. By this analysis, the effect of the wire on the resonance frequencies and Q-values of the cavity modes was clarified.

  16. Status and results from the next linear collider test accelerator

    SciTech Connect

    Ruth, R.D.; Adolphsen, C.; Allison, S.

    1996-08-01

    The design for the Next Linear Collider (NLC) at SLAC is based on two 11.4 GHz linacs operating at an unloaded acceleration gradient of 50 MV/m increasing to 85 MV/m as the energy is increased from {1/2} TeV to 1 TeV in the center of mass. During the past several years there has been tremendous progress on the development of 11.4 GHz (X-band) RF systems. These developments include klystrons which operate at the required power and pulse length, pulse compression systems that achieve a factor of four power multiplication and structures that are specially designed to reduce long-range wakefields. Together with these developments, we have constructed a {1/2} GeV test accelerator, the NLC Test Accelerator (NLCTA). The NLCTA will serve as a test bed as the design of the NLC is refined. In addition to testing the RF system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration, in particular the study of multibunch beam loading compensation and transverse beam break-up. In this paper we present the status of the NLCTA and the results of initial commissioning.

  17. Radio frequency accelerating cavity having slotted irises for damping certain electromagnetic modes

    DOEpatents

    Palmer, R.B.

    1991-05-21

    An accelerating cavity is disclosed having one or more iris structures mounted therein for strongly damping unwanted frequencies that are generated in the cavity by bunches of particles in a particle beam that is accelerated through the cavity during its operation. Each of the iris structures is characterized by containing a plurality of radial slots therein that extend from the central aperture through the iris member to the perimeter thereof. The outer end of each of the radial slots includes an enlarged portion that is effective to prevent undesired frequencies from being reflected back into the center aperture of the iris member. Waveguide means connect the outer ends of the radial slots to frequency damping means or to a dump or dumps. 17 figures.

  18. Radio frequency accelerating cavity having slotted irises for damping certain electromagnetic modes

    DOEpatents

    Palmer, Robert B.

    1991-01-01

    An accelerating cavity having one or more iris structures mounted therein for strongly damping unwanted frequencies that are generated in the cavity by bunches of particles in a particle beam that is accelerated through the cavity during its operation. Each of the iris structures is characterized by containing a plurality of radial slots therein that extend from the central aperture through the iris member to the perimeter thereof. The outer end of each of the radial slots includes an enlarged portion that is effective to prevent undesired frequencies from being reflected back into the center aperture of the iris member. Waveguide means connect the outer ends of the radial slots to frequency damping means or to a dump or dumps.

  19. A Novel Linear Accelerator For Image Guided Radiation Therapy

    SciTech Connect

    Ding Xiaodong; Boucher, Salime

    2011-06-01

    RadiaBeam is developing a novel linear accelerator which produces both kilovoltage ({approx}100 keV) X-rays for imaging, and megavoltage (6 to 20 MeV) X-rays for therapy. We call this system the DEXITron: Dual Energy X-ray source for Imaging and Therapy. The Dexitron is enabled by an innovation in the electromagnetic design of the linac, which allows the output energy to be rapidly switched from high energy to low energy. In brief, the method involves switching the phase of the radiofrequency (RF) power by 180 degrees at some point in the linac such that, after that point, the linac decelerates the beam, rather than accelerating it. The Dexitron will have comparable cost to other linacs, and avoids the problems associated with current IGRT equipment.

  20. A Novel Linear Accelerator For Image Guided Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Ding, Xiaodong; Boucher, Salime

    2011-06-01

    RadiaBeam is developing a novel linear accelerator which produces both kilovoltage (˜100 keV) X-rays for imaging, and megavoltage (6 to 20 MeV) X-rays for therapy. We call this system the DEXITron: Dual Energy X-ray source for Imaging and Therapy. The Dexitron is enabled by an innovation in the electromagnetic design of the linac, which allows the output energy to be rapidly switched from high energy to low energy. In brief, the method involves switching the phase of the radiofrequency (RF) power by 180 degrees at some point in the linac such that, after that point, the linac decelerates the beam, rather than accelerating it. The Dexitron will have comparable cost to other linacs, and avoids the problems associated with current IGRT equipment.

  1. Linear particle accelerator with seal structure between electrodes and insulators

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  2. Phase and Radial Motion in Ion Linear Accelerators

    SciTech Connect

    Takeda, H.; Billen, J. H.

    2007-03-29

    Parmila is an ion-linac particle-dynamics code. The name comes from the phrase, "Phase and Radial Motion in Ion Linear Accelerators." The code generates DTL, CCDTL, and CCL accelerating cells and, using a "drift-kick" method, transforms the beam, represented by a collection of particles, through the linac. The code includes a 2-D and 3-D space-charge calculations. Parmila uses data generated by the Poisson Superfish postprocessor SEC. This version of Parmila was written by Harunori Takeda and was supported through Feb. 2006 by James H. Billen. Setup installs executable programs Parmila.EXE, Lingraf.EXE, and ReadPMI.EXE in the LANL directory. The directory LANL\\Examples\\Parmila contains several subdirectories with sample files for Parmila.

  3. The Advanced Photon Source (APS) Linear Accelerator: design and performance

    SciTech Connect

    White, M.M.

    1996-06-01

    The Advanced Photon Source linear accelerator (linac) system consists of a 200-MeV, 2856-MHz S-band electron linac and a 2-radiation-length- thick tungsten target followed by a 450-MeV positron linac. The linac system has operated 24 hours per day for the past two years to support accelerator commissioning and beam studies, and to provide beam for the experimental program. It achieves the design goal for positron current of 8 mA, and produces electron energies up to 650 MeV without the target in place. The linac is described, and its operation and performance are discussed. 9 refs., 3 figs., 1 tab.

  4. RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR

    SciTech Connect

    Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

    2012-07-01

    Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

  5. Phase and Radial Motion in Ion Linear Accelerators

    Energy Science and Technology Software Center (ESTSC)

    2007-03-29

    Parmila is an ion-linac particle-dynamics code. The name comes from the phrase, "Phase and Radial Motion in Ion Linear Accelerators." The code generates DTL, CCDTL, and CCL accelerating cells and, using a "drift-kick" method, transforms the beam, represented by a collection of particles, through the linac. The code includes a 2-D and 3-D space-charge calculations. Parmila uses data generated by the Poisson Superfish postprocessor SEC. This version of Parmila was written by Harunori Takeda andmore » was supported through Feb. 2006 by James H. Billen. Setup installs executable programs Parmila.EXE, Lingraf.EXE, and ReadPMI.EXE in the LANL directory. The directory LANL\\Examples\\Parmila contains several subdirectories with sample files for Parmila.« less

  6. Cavity-based linear polarizer immune to the polarization direction of an incident plane wave.

    PubMed

    Wang, Jiang; Shen, Zhongxiang; Gao, Xiang; Wu, Wen

    2016-01-15

    We herein report a linear polarizer based on a 2D array of substrate integrated waveguide cavities, which can convert an arbitrary linearly polarized (LP) incident wave into an outgoing LP wave in a specified polarization direction with constant transmittance. Two orthogonal slots etched on the front surface of the cavity are utilized to couple a wave of arbitrary polarization into the cavity, while another slot on the back side helps to couple the field out along a desired polarization direction. Microwave experiments are performed as a proof of concept. The proposed polarizer exhibits very good performance with stable transmittance as 50% and a polarization extinction ratio over 45 dB. The new polarizer is potentially useful in novel polarization-selective devices that are immune to the polarization direction of an incident plane wave. PMID:26766730

  7. Examination of sea freight containers using modern electron linear accelerators

    NASA Astrophysics Data System (ADS)

    Dönges, G.; Geus, G.; Henkel, R.; Ries, H.; Schall, P.; Bermbach, R.

    1992-05-01

    Electron linear accelerators and scintillation line detectors were studied as major components of a transmission scanning system to check the contents of standard sea containers. A maximum beam energy of 10 MeV was found to be the best compromise of high penetration capability of the bremsstrahlung and the WHO recommendations for irradiation of food. CsI(Tl) scintillation detectors turned out to be very efficient and reliable for this rugged application. The results obtained in full size prototype systems are discussed.

  8. Unexpectedly large dose rate dependent output from a linear accelerator.

    PubMed

    Cheng, P C; Kubo, H

    1988-01-01

    During our routine calibration of a Varian Clinac-20 linear accelerator, the absorbed dose for a fixed monitor unit (mu) was found to decrease with increasing dose rate. Between dose rates of 100 and 500 mu/min, there was up to 20% difference in absorbed dose for a 20-MeV electron beam. The cause of this problem was a failure in the electronics circuit of an integrating board. This paper presents our analysis of the problem and suggests a possible means of isolating such a failure to warn technologists, physicists, and engineers. PMID:3141760

  9. Induction linear accelerators for commercial photon irradiation processing

    SciTech Connect

    Matthews, S.M.

    1989-01-13

    A number of proposed irradiation processes requires bulk rather than surface exposure with intense applications of ionizing radiation. Typical examples are irradiation of food packaged into pallet size containers, processing of sewer sludge for recycling as landfill and fertilizer, sterilization of prepackaged medical disposals, treatment of municipal water supplies for pathogen reduction, etc. Volumetric processing of dense, bulky products with ionizing radiation requires high energy photon sources because electrons are not penetrating enough to provide uniform bulk dose deposition in thick, dense samples. Induction Linear Accelerator (ILA) technology developed at the Lawrence Livermore National Laboratory promises to play a key role in providing solutions to this problem. This is discussed in this paper.

  10. Radiation measurements at the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    Moe, H.J.; Vacca, J.H.; Veluri, V.R.; White, M.

    1995-07-01

    The injector and source of particles for the Advanced Photon Source is a 2856-MHz, S-band, electron-positron linear accelerator (linac). It produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. Radiation measurements were made during normal electron and positron operation, as well as during several beam loss scenarios. Neutron and gamma measurements made outside the shielding walls during normal operation are within DOE guidelines. Measured radiation fields are compared to predicted levels for different conditions.

  11. Physics design of linear accelerators for intense ion beams

    SciTech Connect

    Wangler, T.P.

    1988-01-01

    Advances in the physics and technology of linear accelerators for intense ion beams are leading to new methods for the design of such machines. The physical effects that limit beam current and brightness are better understood and provide the criteria for choosing the rf frequency and for determining optimum focusing configurations to control longitudinal and transverse emittances. During the past decade, the use of developments such as the radio-frequency quadrupole, multiple beams, funneling, ramped-field linac tanks, and self-matching linac tanks is leading to greater design flexibility and improved performance capabilities. 39 refs., 3 tabs., 1 fig.

  12. Accelerating sparse linear algebra using graphics processing units

    NASA Astrophysics Data System (ADS)

    Spagnoli, Kyle E.; Humphrey, John R.; Price, Daniel K.; Kelmelis, Eric J.

    2011-06-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of over 1 TFLOPS of peak computational throughput at a cost similar to a high-end CPU with excellent FLOPS-to-watt ratio. High-level sparse linear algebra operations are computationally intense, often requiring large amounts of parallel operations and would seem a natural fit for the processing power of the GPU. Our work is on a GPU accelerated implementation of sparse linear algebra routines. We present results from both direct and iterative sparse system solvers. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally. For example, the CPU is responsible for graph theory portion of the direct solvers while the GPU simultaneously performs the low level linear algebra routines.

  13. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    NASA Astrophysics Data System (ADS)

    Machida, S.; Barlow, R.; Berg, J. S.; Bliss, N.; Buckley, R. K.; Clarke, J. A.; Craddock, M. K.; D'Arcy, R.; Edgecock, R.; Garland, J. M.; Giboudot, Y.; Goudket, P.; Griffiths, S.; Hill, C.; Hill, S. F.; Hock, K. M.; Holder, D. J.; Ibison, M. G.; Jackson, F.; Jamison, S. P.; Johnstone, C.; Jones, J. K.; Jones, L. B.; Kalinin, A.; Keil, E.; Kelliher, D. J.; Kirkman, I. W.; Koscielniak, S.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P. A.; McKenzie, J. W.; Méot, F.; Middleman, K. J.; Moss, A.; Muratori, B. D.; Orrett, J.; Owen, H. L.; Pasternak, J.; Peach, K. J.; Poole, M. W.; Rao, Y.-N.; Saveliev, Y.; Scott, D. J.; Sheehy, S. L.; Shepherd, B. J. A.; Smith, R.; Smith, S. L.; Trbojevic, D.; Tzenov, S.; Weston, T.; Wheelhouse, A.; Williams, P. H.; Wolski, A.; Yokoi, T.

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a `scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10mm in radius over an electron momentum range of 12-18MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  14. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    SciTech Connect

    Machida, S.; Barlow, R.; Berg, J.S.; Bliss, N.; Buckley, R.K.; Clarke, J.A.; Craddock, M.K.; D'Arcy, R.; Edgecock, R.; Garland, J.M.; Giboudot, Y.; /Rutherford /Huddersfield U. /Brookhaven /Daresbury /Cockcroft Inst. Accel. Sci. Tech. /TRIUMF /British Columbia U., Vancouver, Dept. Phys. Astron. /University Coll. London /Manchester U. /Brunel U. /ASP, Melbourne

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10?mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  15. To study the emittance dilution in Superconducting Linear Accelerator Design for International Linear Collider (ILC)

    NASA Astrophysics Data System (ADS)

    Ranjan, Kirti; Solyak, Nikolay; Tenenbaum, Peter

    2005-04-01

    Recently the particle physics community has chosen a single technology for the new accelerator, opening the way for the world community to unite and concentrate resources on the design of an International Linear collider (ILC) using superconducting technology. One of the key operational issues in the design of the ILC will be the preservation of the small beam emittances during passage through the main linear accelerator (linac). Sources of emittance dilution include incoherent misalignments of the quadrupole magnets and rf-structure misalignments. In this work, the study of emittance dilution for the 500-GeV center of mass energy main linac of the Superconducting Linear Accelerator design, based on adaptation of the TESLA TDR design is performed using LIAR simulation program. Based on the tolerances of the present design, effect of two important Beam-Based steering algorithms, Flat Steering and Dispersion Free Steering, are compared with respect to the emittance dilution in the main linac. We also investigated the effect of various misalignments on the emittance dilution for these two steering algorithms.

  16. Linear accelerator x-ray sources with high duty cycle

    SciTech Connect

    Condron, Cathie; Brown, Craig; Gozani, Tsahi; Langeveld, Willem G. J.; Hernandez, Michael

    2013-04-19

    X-ray cargo inspection systems typically use a several-MV pulsed linear accelerator (linac) to produce a bremsstrahlung spectrum of x rays by bombarding a target with electrons. The x rays traverse the cargo and are detected by a detector array. Spectroscopy of the detected x rays is very desirable: if one can determine the spectrum of the transmitted x rays, one can determine the Z of the material they traversed. Even in relatively low-dose modes of operation, thousands of x rays arrive at each detector element during each pulse, unless the x rays are heavily absorbed or scattered by the cargo. For portal or fixed-site systems, dose rates, and therefore x-ray count rates, are even higher. Because of the high x-ray count rate, spectroscopy is impractical in conventional cargo inspection systems, except in certain special cases. For a mobile system, typical pulse durations are a few microseconds, and the number of pulses is on the order of 100 per second, leading to a duty factor of about 0.04%. Clearly, a linear accelerator x-ray source with much higher duty factor would be useful, since then the same number of x rays could be spread out over time, reducing the x-ray count rate. In this paper, we explore the possibility of designing a linear accelerator system, using more or less Conventional Off the Shelf (COTS) components, capable of duty cycles of 1% or greater. A survey was conducted of available linac RF source options and, given the possibilities, calculations were performed for suitable beam centerline designs. Keeping in mind that the size and cost of the accelerator system should be practical for use in a mobile cargo inspection system, only a few options are shown to be reasonably feasible, both requiring the use of klystrons instead of the magnetrons used in conventional systems. An S-Band design appears clearly possible, and there is also a promising X-Band design.

  17. The polarized electron source of the Stanford Linear Accelerator Center

    SciTech Connect

    Schultz, D.; Alley, R.; Clendenin, J.; Frisch, J.; Mulhollan, G.; Saez, P.; Tang, H.; Witte, K.

    1994-08-01

    The Stanford Linear Accelerator has been running with polarized electrons both in the collider (SLC) mode and in the fixed target mode. The accelerators polarized electron source is based on a thin, strained GaAs photocathode, which is held at a negative high voltage and illuminated by a Titanium Sapphire laser. The reliability of the source was better than 95% during the eight-month-long 1993 SLC run. A beam polarization of 63% was measured by the SLD experiment at the SLC interaction point in the 1993 data run. The fixed-target experiment E143 measured a beam polarization of 85% in its 1993--94 run. These polarization measurements, made at high energy, are in good agreement with measurements made at low energy on a calibrated Mott polarimeter. The higher beam polarization in the fixed target experiment is due to a thinner, more highly strained GaAs photocathode than had been used earlier, and to the experiment`s low beam current requirements. The SLC is now running with the high polarization photocathode. Details of the source, and experience with the high polarization strained GaAs photocathodes on the accelerator in the current SLC run, will be presented.

  18. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    SciTech Connect

    O. Kononenko

    2015-02-17

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  19. Studies of coupled cavity LINAC (CCL) accelerating structures with 3-D codes

    SciTech Connect

    Spalek, G.

    2000-08-01

    The cw CCL being designed for the Accelerator Production of Tritium (APT) project accelerates protons from 96 MeV to 211 MeV. It consists of 99 segments each containing up to seven accelerating cavities. Segments are coupled by intersegment coupling cavities and grouped into supermodules. The design method needs to address not only basic cavity sizing for a given coupling and pi/2 mode frequency, but also the effects of high power densities on the cavity frequency, mechanical stresses, and the structure's stop band during operation. On the APT project, 3-D RF (Ansoft Corp.'s HFSS) and coupled RF/structural (Ansys Inc.'s ANSYS) codes are being used. to develop tools to address the above issues and guide cooling channel design. The code's predictions are being checked against available low power Aluminum models. Stop band behavior under power will be checked once the tools are extended to CCDTL structures that have been tested at high power. A summary of calculations made to date and agreement with measured results will be presented.

  20. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  1. A new linear inductive voltage adder driver for the Saturn Accelerator

    SciTech Connect

    Mazarakis, M.G.; Spielman, R.B.; Struve, K.W.; Long, F.W.

    2000-08-09

    Saturn is a dual-purpose accelerator. It can be operated as a large-area flash x-ray source for simulation testing or as a Z-pinch driver especially for K-line x-ray production. In the first mode, the accelerator is fitted with three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the current of all the modules is combined via a post-hole convolute arrangement and driven through a cylindrical array of very fine wires. We present here a point design for a new Saturn class driver based on a number of linear inductive voltage adders connected in parallel. A technology recently implemented at the Institute of High Current Electronics in Tomsk (Russia) is being utilized. In the present design we eliminate Marx generators and pulse-forming networks. Each inductive voltage adder cavity is directly fed by a number of fast 100-kV small-size capacitors arranged in a circular array around each accelerating gap. The number of capacitors connected in parallel to each cavity defines the total maximum current. By selecting low inductance switches, voltage pulses as short as 30-50-ns FWHM can be directly achieved. The voltage of each stage is low (100-200 kv). Many stages are required to achieve multi-megavolt accelerator output. However, since the length of each stage is very short (4-10 cm), accelerating gradients of higher than 1 MV/m can easily be obtained. The proposed new driver will be capable of delivering pulses of 15-MA, 36-TW, 1.2-MJ to the diode load, with a peak voltage of {minus}2.2 MV and FWHM of 40-ns. And although its performance will exceed the presently utilized driver, its size and cost could be much smaller ({approximately}1/3). In addition, no liquid dielectrics like oil or deionized water will be required. Even elimination of ferromagnetic material (by using air-core cavities) is a possibility.

  2. RF properties of periodic accelerating structures for linear colliders

    SciTech Connect

    Wang, J.W.

    1989-07-01

    With the advent of the SLAC electron-positron linear collider (SLC) in the 100 GeV center-of-mass energy range, research and development work on even higher energy machines of this type has started in several laboratories in the United States, Europe, the Soviet Union and Japan. These linear colliders appear to provide the only promising approach to studying e/sup /plus//e/sup /minus// physics at center-of-mass energies approaching 1 TeV. This thesis concerns itself with the study of radio frequency properties of periodic accelerating structures for linear colliders and their interaction with bunched beams. The topics that have been investigated are: experimental measurements of the energy loss of single bunches to longitudinal modes in two types of structures, using an equivalent signal on a coaxial wire to simulate the beam; a method of canceling the energy spread created within a single bunch by longitudinal wakefields, through appropriate shaping of the longitudinal charge distribution of the bunch; derivation of the complete transient beam-loading equation for a train of bunches passing through a constant-gradient accelerator section, with application to the calculation and minimization of multi-bunch energy spread; detailed study of field emission and radio frequency breakdown in disk-loaded structures at S-, C- and X-band frequencies under extremely high-gradient conditions, with special attention to thermal effects, radiation, sparking, emission of gases, surface damage through explosive emission and its possible control through RF-gas processing. 53 refs., 49 figs., 9 tabs.

  3. Highly efficient and high output power of erbium doped fiber laser in a linear cavity configuration

    NASA Astrophysics Data System (ADS)

    Awang, N. A.; Zulkifli, M. Z.; Norizan, S. F.; Harun, S. W.; Ghani, Z. A.; Ahmad, H.

    2010-10-01

    A simple Erbium Doped Fiber Laser (EDFL) in linear cavity configuration is reported. The cavity design is based on an FBG as a back reflector, and a loop back optical circulator with an output coupler as the front reflector. Different coupling ratios of the coupler are tested and 50: 50 provides the highest coupling output power of 22.06 dBm (160.7 mW). The pump power conversion efficiency is about 95% when pumping with two pump lasers at 1460 and 1490 nm with combined pumping power of 545 mW. The laser output has a measured linewidth of 0.0179 nm.

  4. Lorentz force detuning analysis of the Spallation Neutron Source (SNS) accelerating cavities.

    SciTech Connect

    Mitchell, R.R.; Matsumoto, K. Y.; Ciovati, G.; Davis, K.; Macha, K.; Sundelin, R. M.

    2001-01-01

    The Spallation Neutron Source (SNS) project incorporates a superconducting radio-frequency (SRF) accelerator for the final section of the pulsed mode linac. Cavities with geometrical {beta} values of {beta}=0.61 and {beta}=0.81 are utilized in the SRF section, and are constructed out of thin-walled niobium with stiffener rings welded between the cells near the iris. The welded titanium helium vessel and tuner assembly restrains the cavity beam tubes. Cavities with {beta} values less than one have relatively steep and flat side-walls making the cavities susceptible to Lorentz force detuning. In addition, the pulsed RF induces cyclic Lorentz pressures that mechanically excite the cavities, producing a dynamic Lorentz force detuning different from a continuous RF system. The amplitude of the dynamic detuning for a given cavity design is a function of the mechanical damping, stiffness of the tuner/helium vessel assembly, RF pulse profile, and the RF pulse rate. This paper presents analysis and testing results to date, and indicates areas where more investigation is required.

  5. The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide

    SciTech Connect

    St Aubin, Joel; Steciw, Stephen; Fallone, B. G.

    2010-02-15

    Purpose: The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. Methods: For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. Results: With the full waveguide designed to resonate at 2998.5{+-}0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially

  6. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity.

    PubMed

    Clayton, C E; Adli, E; Allen, J; An, W; Clarke, C I; Corde, S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Xu, X; Yakimenko, V

    2016-01-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m(-1) to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569

  7. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    PubMed Central

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-01-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569

  8. Effect of low temperature baking on the RF properties of niobium superconducting cavities for particle accelerators

    SciTech Connect

    Gianluigi Ciovati

    2004-03-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models

  9. High power testing of the prototype accelerating cavity (352 MHz) for the advanced photon source (APS)

    SciTech Connect

    Bridges, J.F.; Kang, Y.W.; Kustom, R.L.; Primdahl, K.

    1992-07-01

    Measurement of the higher order of modes of a prototype single-cell 352 MHz cavity for the APS 7-Gev storage ring will be presented and discussed. A cavity made from solid copper was built according to dimensions derived from URMEL program runs. The longitudinal and transverse impedances of the first several higher order modes have been measured using various-shaped metal beads. High power ( > 60 kW) testing of the cavity will be described along with design and operation of dampers for those modes with coupled-bunch instability threshold currents under 300 milliamperes, the maximum circulating positron current. Low power level rf circuitry for timing and synchronization of the various APS accelerators and storage ring will be described.

  10. High power testing of the prototype accelerating cavity (352 MHz) for the advanced photon source (APS)

    SciTech Connect

    Bridges, J.F.; Kang, Y.W.; Kustom, R.L.; Primdahl, K.

    1992-01-01

    Measurement of the higher order of modes of a prototype single-cell 352 MHz cavity for the APS 7-Gev storage ring will be presented and discussed. A cavity made from solid copper was built according to dimensions derived from URMEL program runs. The longitudinal and transverse impedances of the first several higher order modes have been measured using various-shaped metal beads. High power ( > 60 kW) testing of the cavity will be described along with design and operation of dampers for those modes with coupled-bunch instability threshold currents under 300 milliamperes, the maximum circulating positron current. Low power level rf circuitry for timing and synchronization of the various APS accelerators and storage ring will be described.